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Preface

This book has its origins in Jean Bacon's Concurrent Systems editions 1 and 2. Edition 3 was created recently, specifically for the Open 

University of the UK who have used the book for their course 'Software Systems and their Development' (M301) since 1999. That course 

does not require a detailed treatment of operating systems' design with case studies and those parts of Concurrent Systems were 

removed in its third edition.

This book extends the treatment of operating systems, making it even more appropriate for the standard Operating Systems curriculum. 

Editions 1 and 2 of Concurrent Systems established the fundamental principles which are necessary for understanding software systems. 

Features of Operating Systems: Concurrent and Distributed Software Design are:

Java is used throughout to illustrate object-orientation concepts, concurrent algorithms and distributed programming.

The coverage of operating systems' design and case studies is updated and extended.

There is a chapter on security which complements the coverage of distributed systems.

The case studies in Part IV have separated the treatment of classical UNIX from that of current versions and include a new 

chapter on extensible operating systems. 'The World Wide Web' and a rewrite of 'Middleware' represent recent developments 

in distributed systems.

The philosophy and approach, focusing on system design issues, remain unchanged and have been applied to the systems that have 

evolved since 1993.

The aim of this book is to equip students with an integrated view of modern software systems. Modularity, concurrency and distribution 

are the unifying themes, both within the design of operating systems and in the systems supported by operating systems. The book takes 

a systems approach rather than a programming language approach, since concurrent and distributed programming are firmly rooted in 

system design. The language is an implementation tool for the system designer and programming languages are covered throughout the 

book from this perspective.

The structure of the book is:

Introduction, in which types of real-world system are described and requirements for building computerized systems 

established.

Part I, in which the relationship between technology and system design is explored. The basic operating system functions are 

described in detail and the abstraction, and implementation, of a system as a community of concurrent processes is 

established. The fundamental properties of distributed systems are set down and the provision of security in such systems is 

discussed.

Part II, in which the focus is concurrency control in operating systems and application-level systems, and inter-process 

communication (IPC) is explored in the context of system design. To partition the material, the theme of this part 

concentrates on how to achieve atomicity of a method invocation on an object in main memory. We conclude by considering 

the cases when the object invoked is persistent or remote; distributed IPC is covered in detail.

Part III, in which the theme is concurrent composite operations or transactions. The traditional application area for these ideas 

is database systems but we illustrate the general applicability of these systems concepts.

Part IV, in which some case studies are considered from the perspective developed throughout the book.
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Computer systems curriculum

Because distributed systems have come into widespread use comparatively recently, most curricula include them at final-year 

undergraduate or post-graduate level. Distributed systems are now commonplace and a student is more likely to be using one than a 

centralized time-sharing system. It is somewhat artificial to cover the functions of a shared, centralized operating system in great detail in a 

first course, particularly when the rate of development of technology makes it essential constantly to re-evaluate traditional approaches 

and algorithms.

In general, there is a tendency for closely related specialisms to diverge, even at undergraduate level. An overview of system components 

and their relationships is desirable from an early stage:

Operating systems include communications handling.

Language runtime systems work closely with (and are constrained by) operating systems.

Real-time systems need specially tailored operating systems.

Dedicated communications-handling computers need specially tailored operating systems.

Database management systems run on operating systems and need concurrency and file handling with special guarantees.

Concurrent programs run on operating systems.

Operating systems (and their components) are concurrent programs.

Window systems require concurrent processes.

Many system components employ databases.

Distributed systems employ distributed databases.

Distributed databases need communications.

Distributed operating systems need transactions.

Operating Systems: Concurrent and Distributed Software Design achieves this integration by setting up a common framework of modular 

structure (a simple object model is used throughout), concurrency control and distribution.

We have used this approach in the Computer Science curriculum at Cambridge since 1988, when a new three-year undergraduate degree 

programme started. A concurrent systems course, in the second year of a three-year degree course, is a prerequisite for further study in 

distributed operating systems, communications and networks, theory of concurrency, and various case studies and projects. Figure P.1

suggests an order of presentation of systems material. Courses in the general area of real-time, embedded control systems would also 

follow naturally from this course.

Figure P.1. Operating systems in distributed, concurrent software in the curriculum.



In Curriculum 91 for Computing, published by the IEEE Computer Society and the ACM (see Denning et al., 1989; Tucker 1991) the general 

topic 'Operating Systems' includes distributed operating systems and communications. Curriculum 91 identifies the three major paradigms 

of the discipline as: theory, which is rooted in mathematics; abstraction (modelling), which is rooted in experimental scientific method; and 

design, which is rooted in engineering. Theory deals with the underlying mathematics of each subarea of computing. Abstraction allows us 

to model large, complex systems in order to comprehend their structure and behaviour and carry out experiments on them. Design deals 

with the process of implementing a system to meet a specification. The approach taken here embodies abstraction and design and 

establishes the basis for theory.

In December 2001 IEEE-CS/ACM published, in their Computing Curricula 2001, a curriculum for Computer Science. Curricula for

Computer Engineering, Software Engineering and Information Systems are to follow. They argue that, since the subject has grown

extensively and rapidly in the past decade, a minimal core curriculum should be defined, allowing a variety of extensions. The core topics

for the 18 minimum core hours in Operating Systems are: overview of operating systems (2), operating systems principles (2), concurrency

(6), scheduling and dispatch (3) and memory management (5). The core topics for the 15 minimum core hours of Net-Centric Computing

are introduction (2), communication and networking (7), network security (3), and the web as an example of client–server computing (3).

The ten-hour minimal core in Information Management has transaction processing as an early extension. 'Objects First' is one of three

proposed models (with 'Imperative First' and 'Functional First') for introducing programming. The systems view presented here includes,

integrates and extends this core coverage in systems topics.
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Audience

It is assumed that the reader will come to this material with some knowledge and experience of systems and languages. First-year 

undergraduate courses on programming and systems software are appropriate prerequisites. It is suitable as a text to be read in parallel 

with specialized courses in communications and databases. It is a suitable starting point for graduate students in the systems area, 

providing integrating and summarizing study for the current wide variety of undergraduate degrees. Practitioners in systems design 

including systems programming will find the fundamentals of the subject here. Graduate students who are researching the theory of 

concurrency will find the practical basis for their subject here.
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An outline of the contents

Chapter 1 describes a number of types of system and draws out requirements for supporting them. Software systems can exploit a wide 

range of hardware topologies and architectures. Although this area is not addressed in great detail their characteristics are noted for 

reference throughout the book.

Chapters 2 through 8 form Part I. System design and implementation require software to be engineered. Software engineering, which 

involves the specification, design, implementation, maintenance and evolution of software systems, has merited many books in its own 

right. Here we briefly establish a context of modular software structure, establishing an object model to be used throughout.

Modular system structure is introduced in Chapter 2 and the modular structure of operating systems is set up. The idea that a minimal 

kernel or 'microkernel' is an appropriate basis for high-performance specialized services is introduced here. The concepts of process and 

protocol to achieve the dynamic execution of software are also introduced.

In Chapter 3 device handling and communications handling are covered. These topics are treated together to highlight the similarities 

(between communications and other devices) and differences (communications software is larger and more complex than 

device-handling software). The communications-handling subsystem of an operating system is itself a concurrent (sub)system, in that at 

a given time it may be handling several streams of input coming in from various sources across the network as well as requests for 

network communication from local clients.

Chapter 4 gives the detailed concrete basis for the process abstraction that is provided by operating systems. Once the process 

abstraction is created as one operating system function we can show how processes are used to achieve the dynamic execution of the 

rest of the system. Operating system processes may be used within operating system modules, while application-level processes may 

be located within application modules. There are several design options which are discussed throughout the book. Later sections are 

concerned with language systems and a particular concern is the support for concurrency. The relation between operating system and 

language system processes is discussed in detail.

Chapter 5 covers memory management. The address space of a process is an important concept, as also are mechanisms for sharing 

part of it.

Chapter 6 gives the basic concepts of filing systems. File system implementations involve data structures both in main memory and in 

persistent memory on disk. Both the memory management and file management subsystems of operating systems are concurrent 

systems in that they may have in progress both requests from clients and demands for service from the hardware.

Chapter 7 introduces distributed software systems. We focus on their fundamental properties then cover time and naming in some 

detail. Subsequent chapters can then consider distribution of the various functions being studied.

Chapter 8 is concerned with security in centralized and distributed systems.

Part I is concerned with technology and its impact on system design. Knowledge of the material presented here is necessary for a 

thorough understanding of software systems. Care must be taken, when working at the language or theoretical modelling levels, that the 

assumptions made can be justified for the operating system and hardware that will be used to implement a system.

Part II focuses on a major system design requirement: concurrency control. It explains the mechanisms for ensuring that a given 

concurrent process can execute without interference from any other, bearing in mind that processes may be cooperating with other 

processes (and need to synchronize with them) or competing with other processes to acquire some resource.

Chapters 9 to 16 comprise Part II. In Part II we temporarily ignore the issues of composite operations and the need to access multiple 

resources to carry out some task and confine the discussion to a single method invocation on an object in main memory. The notion of a 

single abstract operation is informal and closely related to the modular structuring of systems. A process can, in general, read or write a 

single word of memory without fear of interference from any other process. Such a read or write is indivisible. In practice, a programming 

language variable or a useful data abstraction, such as an array, list or record, cannot be read or written atomically. It is the access to 

such shared abstractions by concurrent processes that is the concern of Part II. Chapters 9 to 14 are mostly concerned with 'load and go' 

systems that run in a single or distributed main memory. Chapters 15 and 16 start to consider the effect of failures in system components 

and process interactions which involve persistent memory.



Chapter 9 discusses the major division between processes which share memory, running in a common address space, and those which 

do not. Examples are given, showing the need for both types of structure.

Chapter 10 is concerned with the lowest level of support for process interactions. The architecture of the computer and the system is

relevant here. It is important to know whether any kind of composite read–modify–write instruction is available and whether the system

architecture contains shared-memory multiprocessors or only uniprocessors. Concurrency control without hardware support is discussed

and semaphores are introduced.

Chapter 11 builds on the lowest level to create algorithms to solve classic systems problems. A discussion of the difficulty of writing 

correct semaphore programs leads on to high-level language support for concurrency in the next chapter.

Chapter 12 looks at language primitives that have been introduced into high-level concurrent programming languages where the 

underlying assumption is that processes execute in a shared address space. The support for concurrent programming in Java is 

described here.

Chapter 13 compares inter-process communication (IPC) mechanisms within systems where shared memory is available and where it is 

not. In both cases processes need to access common information and synchronize their activities.

Chapter 14 covers IPC for processes which inhabit separate address spaces. Pipes and message passing are discussed. The material 

here is highly relevant to distributed IPC, but the integration of IPC and communications services in left for Chapter 16.

Chapter 15 introduces the possibility that a system might crash at any time and outlines mechanisms that could be used to provide crash 

resilience. An initial discussion of operations which involve persistent data is also given.

Chapter 16 focuses on IPC in distributed systems, taking account of their fundamental characteristics, introduced in Chapter 7. We see 

how an operation at one node of a distributed system can be invoked from another node using a remote procedure call protocol. Node 

crashes and restarts and network failures are considered. Although distributed IPC is the main emphasis of the chapter, it includes a 

general discussion of naming, location and the binding of names to locations in distributed systems. Socket programming in Java and 

Java's remote method invocation (RMI) are given as practical examples.

Chapters 17 through 23 comprise Part III where the discussion is broadened to composite operations (transactions) and the concurrent 

execution of their component operations. The objects concerned may be in main memory, in persistent memory and/or distributed.

Chapter 17 introduces the problems and defines the context for this study. Composite operations may span distributed systems and 

involve persistent memory.

Chapter 18 discusses the desirability of dynamic resource allocation and the consequent possibility of system deadlock. An introduction 

to resource allocation and management is given, including algorithms for deadlock detection and avoidance.

Chapter 19 discusses composite operation execution in the presence of concurrency and crashes and builds up a definition of the 

fundamental properties of transactions. A model based on abstract data objects is used.

Chapter 20 discusses concurrency control for transactions. Two-phase locking, time-stamp ordering and optimistic concurrency control 

are described and compared.

Chapter 21 is mainly concerned with crash recovery, although the ability to abort transactions for concurrency control purposes is a 

related problem. A specific implementation is given.

Chapter 22 extends the object model for transactions in distributed systems and reconsiders the methods of implementing concurrency 

control. The problem of distributed atomic commitment is discussed and a two-phase commit protocol is given as an example. A 

validation protocol for optimistic concurrency control is also given.

Chapter 23 covers algorithms which may be used by distributed computations.

Chapters 24 through 30 comprise Part IV, in which case studies are presented. Greater depth is possible here than in the examples used 

earlier. An aim is to show that the approach developed throughout the book helps the reader to comprehend large, complex systems.

Chapter 24 describes the basic UNIX seventh edition design, 'classical UNIX'. The design is evaluated and the process management 

and inter-process communication facilities, in particular, are criticized.

Chapter 25 shows how these criticisms have been addressed in LINUX, Solaris and contemporary UNIX.

Chapter 26, on extensible operating systems, explores more radical operating system structures, including microkernels.



Chapter 27 is a case study on Microsoft's Windows 2000 which has an object-oriented design. PC hardware is now able to provide 

protection suitable for supporting multiple applications and users and sufficient power for large-scale applications.

Chapter 28 covers web programming, a subject which was invented after edition 1 of Concurrent Systems was published and which has 

grown extensively since edition 2. This style of programming is set to dominate much of distributed systems design and development.

Chapter 29 covers the broad range of middlewares, contrasting those based on synchronous object invocation and those based on 

asynchronous message passing. The former include Java and OMG's OMA and CORBA and the latter IBM's MQseries and the TIBCO 

TIB/Rendezvous. Microsoft's DCOM and .NET are also outlined.

Chapter 30 first discusses how transaction processing monitors are implemented in terms of processes, IPC and communications. Some 

examples of transaction processing systems in the area of electronic funds transfer are then given, for example, an international 

automatic teller machine (ATM) network.

The appendix presents a historical and functional evolution of software systems in a technological and commercial context. How to 

achieve concurrency control without any hardware support is also included, together with exercises.
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Order of presentation

Figure P.2 indicates dependencies in the material and shows how the chapters might be selected for courses on operating systems and 

distributed systems and for supplementary material on concurrent and systems programming or databases.

Figure P.2. Presentation of the material.

The material in Part II could be taken in a different order. Although there is a flow of argument through the chapters as written, there is no 

inherent reason why shared-memory IPC has to come before that with no shared memory, although distribution follows naturally from the 



latter.

A concurrent programming course could supplement Part I and Part II with full details of a language to be used for project work; Java 

would be the natural choice. Chapters 17 and 18 from Part III should also be included.

A course on concurrency control in database systems would use Part III, but earlier chapters which cover operating system support for 

databases provide an excellent background.
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Further study

The book naturally leads on to advanced systems courses: specialized operating systems, real-time embedded control systems, 

large-scale distributed systems, distributed databases. The conceptual framework of concurrency control, distribution, naming, location, 

placement, protection, authentication and encryption are set up, ready for exploitation in systems design.
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Objective

The main emphasis of the book is system design (with the operating system as a major component), how to comprehend existing 

systems and how to design new systems. One can't write certain kinds of system in certain languages above certain operating systems. 

This book aims to show the reader why. Computers are marketed optimistically. Names such as 'real-time operating system' are used 

with little concern for their meaning. In order to survive an encounter with a salesperson one must know exactly what one wants and 

must know the pitfalls to look out for in the systems one is offered. I hope the book will help systems designers to select the right 

hardware and software to satisfy their requirements.
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Instructor's guide

A web-browsable instructor's guide was developed for the second edition of Concurrent Systems, containing the following:

Curriculum design. An outline of parts of the IEEE-CS/ACM Computing Curricula 1991 is given. Uses of Concurrent Systems

in the curriculum are discussed.

Points to emphasize and teaching hints. For each chapter, key points, potential difficulties and suggested approaches to

teaching the material are given.

Solutions to exercises and some additional exercises. The solutions include examples of how the various designs that are

discussed have been used in practice.

Extensions for this book are underway. The guide is available from www.booksites.net/bacon

Contact your Pearson Education or Addison-Wesley sales representative for a password.
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Chapter 1. System design requirements

1.1 Inherently concurrent systems

1.2 Supporting potentially concurrent applications

1.3 Architectures for software systems

1.4 Defining a concurrent system

1.5 Systems implementation requirements

1.6 Security, protection and fault tolerance in system design

The aim of this book is to establish principles for understanding, designing and implementing software systems. System software runs 

indefinitely, typically supporting other running programs and users; the concept of concurrent activity is central. An operating system 

running on a single computer is an example of a system. A database management system, which runs above an operating system, is 

another. System structure, concurrency control and distribution are central concepts in system design. In this chapter we motivate the 

model of a (possibly distributed) 'concurrent system' by means of examples.

We shall start from an informal, intuitive definition of a concurrent system. Concurrent means 'at the same time'; the system software has 

to support many users or programs at the same time. The meaning of 'at the same time' is explored more deeply as we progress through 

the book, but initially we shall assume that the same measure of time holds throughout a system. A concurrent system must therefore 

handle separate activities which are in progress at the same time. To be a little more precise, we shall consider two activities to be 

concurrent if, at a given time, each is at some point between its starting point and finishing point.

The broad range of types of software system is introduced in this chapter and their essential characteristics are highlighted emphasizing 

structure, concurrency and distribution. Requirements for implementing these systems are drawn out in each case and the chapter 

concludes with a discussion of the requirements of concurrent software systems in general. The rest of the book is concerned with 

meeting these requirements.

We hope to build software systems which exploit new technology in emerging application areas. We need to be in a position to bring a 

good deal of processing power and memory to bear on a given problem and using a multicomputer system of some kind is likely to be 

the best way to do this. For this reason, this chapter includes a survey of the different kinds of overall system architecture on which a 

concurrent software system might run.

In some cases, a system is inherently concurrent since it is handling activities that can happen simultaneously in the world external to 

the computer system, such as users who want to run programs or clients who want to do bank transactions. For a system which 

supports many simultaneous users, the system designers may choose to load a separate copy of some system program, such as a 

compiler, for every user or may choose to have all users share a single copy. The shared system program is a simple example of a 

concurrent system.

Application programs are typically initiated by a user and run to completion. For certain applications it might be possible to work on parts 

of a problem in parallel by devising a concurrent algorithm for its solution. This is a valuable approach when an application involves a 

massive amount of computation and data and there is a real-time requirement for the result, such as in weather forecasting. These are 

potentially concurrent applications. At present, many problems of this type are solved, if at all, by sequential (rather than concurrent) 

algorithms on expensive, high-performance computers. A concurrent approach could improve matters in two ways. Either the same 

quality of result could be achieved at lower cost by using a number of inexpensive off-the-shelf computers, or a better model of the 

physical system could be built, perhaps giving rise to even more data to be processed but generating a more accurate result. Concurrent 

algorithms might also bring the solution of a wider range of problems within a reasonable budget. The methods of supporting concurrent 

activities within systems are equally applicable to supporting concurrent activities within applications.



Application programs are run by systems. We shall study how many applications may be run simultaneously by an operating system and 

how operating systems support concurrent applications.
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1.1 Inherently concurrent systems

Systems which must respond to, or manage, simultaneous activities in their external environment are inherently concurrent and may 

broadly be classified as:

real-time and embedded systems (special-purpose operating systems);

operating systems (OSs);

distributed operating systems (the OS components are distributed);

database management and transaction processing systems (run above operating systems);

distributed, application-level services.

The implementation of a system may be centralized, running on a single computer (which may also be termed a host or node), or may be 

distributed over a number of computers. The user interface to a system may make its support for concurrent activities explicit.

1.1.1 Real-time and embedded systems

The special characteristic of real-time systems is that there are timing requirements which are dictated by the environment of the computer 

system. It may be essential, for example, for the computer system to respond to an alarm signal in some specific time, although it may be 

highly unlikely that such a signal will occur and it will never be predictable. The term 'hard real-time system' is used to indicate that the 

timing requirements are absolute. 'Soft real-time' indicates that failing to meet a deadline will not lead to a catastrophe.

Another useful distinction is between static and dynamic real-time systems. In a static system an analysis of the activities that must be 

carried out by the system can be done when the system is designed. In a dynamic real-time system requests may occur at irregular and 

unpredictable times and the system must respond dynamically and with guaranteed performance. Examples are given below.

It is worth emphasizing that 'real-time' does not always imply 'very fast indeed', but rather that timing requirements are known and must be 

guaranteed.

Examples of real-time systems are process control systems for power stations, chemical plants, etc., military command and control 

systems, hospital patient monitoring systems, spaceflight, aeroplane and car engine controllers, air traffic control systems, robot 

controllers, real-time image processing and display systems, videophones and many more.

Process control

A common scenario is that data is gathered from the controlled system and analysed. This may involve simply taking a temperature or 

pressure reading at an appropriate time interval and checking against a safe level, or more complex data gathering across the process 

followed by mathematical analysis and feedback to fine-tune the system. The accuracy with which this can be done depends on the 

amount of data gathered by whatever measuring or sampling devices are employed and the time that can be spent on the analysis. The 

data gathering and analysis are predictable and periodic. The period depends on the process being controlled. The computer-controlled 

fuel injection system for a car engine must sample many times per second; the temperature in a furnace is sampled every few seconds; 

the water level in a reservoir may only need to be sampled every hour.



This periodic activity must be integrated with the ability to respond to unpredictable events. An alarm could occur, indicating that some 

action must be taken with high priority. Maybe the temperature of a nuclear reactor is too high and must be lowered, or perhaps gas 

pressure is building up in a coal mine, indicating the danger of an explosion.

Another type of non-periodic event is high-level or coarse-grained parameter tuning. This is initiated by a management system which has a 

high-level view of the entire system, perhaps gathered from widespread sampling. Management may also wish to make changes, such as 

to the relative amounts of the various materials being produced by a system. This may be less urgent than an alarm signal, but is the 

means by which the process is controlled as a whole.

The two types of activity may be classified as monitoring and control. Monitoring involves gathering data; control involves regular, 

fine-grained tuning, irregular coarse-grained tuning and response to alarms. Figure 1.1 shows these two major activities in a computer 

system which is part of a distributed process control system. There may be a trade-off between the accuracy of the data analysis and the 

system's ability to respond to events: at certain times, accuracy may be sacrificed to rapid response. But it is critical that if an alarm occurs 

it must get immediate attention and that certain events must have response in a specified time.

Figure 1.1. Example of a distributed process control system.

There is scope for concurrency in such systems in that many small computer systems of this kind will work together to control a large 

industrial or experimental process and each one may have several functions it must perform.

Not all real-time systems are distributed, multicomputer systems. A domestic appliance, a robot, a car engine, or a missile may have a 

single embedded controlling computer. The software will still have several functions to perform, associated with monitoring and control. 



There is, in general, a requirement for the support of separate activities.

Real-time systems of the kind described here are hard and static. Timing requirements are absolute and the system's requirements can be 

analysed statically at system design time. The approach is usually to design a periodic schedule for the system, allowing for the possibility 

of alarms in each period.

Multimedia support

An emerging application area for high-performance networked workstations is multimedia: the ability to show moving pictures and hear 

voice in addition to the traditional display of text and graphics. Assuming the workstation has a windowing system, one or more windows 

could be used for video. Many applications, such as a videophone, videomail or videoconferencing, require a talking person to be 

displayed (Figure 1.2). In this case the video (picture) and audio (voice) must be synchronized for delivery to the workstation screen; the 

voice must be synchronized with lip movements.

Figure 1.2. Multimedia workstations.

Videoconferencing and videophones operate in real time. Data can be lost if the system does not keep up. Videomail requires messages 

which may contain text with video and voice clips to be stored and delivered to the workstation screen when the mail is read. Once the 

process of reading the mail starts there are real-time requirements on the system to deliver the components at an acceptable rate and in 

synchrony.

There are many potential applications for stored multimedia documents. For example, a database containing a museum catalogue could 

include a video clip of an item shown from all angles. A database on ornithology could contain text and drawings for each bird, maps of its 

territory, audio of the song and video of the bird in flight.

When multimedia data is stored, requests to deliver it to a workstation screen are unpredictable and the system must respond 

dynamically. Several requests might arrive during the same time period. To achieve acceptable performance the storage system, 

operating system and communications software must be able to make guarantees of a certain quality of service.

Video requires massive amounts of storage space and it must be transferred at a very high rate for a smooth, jitter-free picture to be seen. 

Taking an example from a local system, a one-minute video clip occupies over 12 megabytes of storage and the required transfer rate is 

200 kilobits per second. The voice to be synchronized with the picture has lower storage and bandwidth requirements, typically 64 kbits per 

second. We assume that adequate amounts of storage are available for video and voice 'across a network' and that the network has 

enough bandwidth to deliver voice and video 'streams'. The system software design problem is to ensure that both video and voice are 

delivered to the workstation at a high enough rate for a good picture to be seen and synchronized voice to be heard.

The activities of delivering voice and video are separate and have different requirements for throughput, but both must get sufficient 

processor time to deliver the image and voice to a standard that the human observer finds acceptable. Although video requires more 

processing, memory and network resources, we are not too sensitive to temporary hitches in its delivery, whereas we find shortcomings in 



the delivery of voice infuriating (think of the inaudible announcement that comes over the loudspeaker when your train is due). There are 

therefore some quite complicated trade-offs to be made.

To what extent should multimedia workstations be considered real-time systems? A videophone requires video and voice to be delivered in 

real time; if data is corrupted it cannot be recovered except by a human user asking for a repeat. The environment dictates certain 

requirements for the system to be usable. It could be classified as a soft real-time system.

There is only a quantitative difference between multimedia systems and traditional time-sharing systems; multimedia systems need more 

processing power, network bandwidth and storage capacity and software that is capable of exploiting them. There is a qualitative 

difference between such soft real-time systems and power station control systems, where there is an absolute requirement for response, 

even if some components of the system fail. This is implied by the name 'hard real-time system' for the latter.

Hard real-time applications involving real-time video might be as follows:

An aeroplane contains a video camera. The pictures it records are compared with an internally stored map of its intended route. 

This is part of an automatic system for keeping the plane to its planned route and to prevent it crashing into hills or church 

towers.

A factory automation system involves many mobile robots, each containing a video camera. The robots must avoid obstacles 

which may include other mobile robots and humans. There have been fatal accidents in systems of this kind, caused by bugs in 

real-time software.

Cars of the future might contain video cameras. The car must stop if a child runs in front of it. The cars behind it must avoid 

crashing into it. Should the image processing software be able to distinguish between a child and a dog (or a rabbit)?

Requirements

The requirements for building a real-time system that have emerged from the above discussion may be summarized as follows:

There is a need to support separate activities. Some may be periodic, such as gathering data (taking measurements of 

temperature, pressure, etc.), and others unpredictable, such as responding to alarm signals.

There is a need to meet the specific requirements of each activity, which may involve meeting time deadlines.

There may be a need for the separate activities to work together to achieve a common goal.

1.1.2 Operating systems and distributed operating systems

We shall first consider self-standing computer systems. It is useful to distinguish between single-user systems and multi-user systems; see 

Figure 1.3(a) and (b). Single-user systems range from small inexpensive personal computers to high-performance workstations.

Multi-user systems are based on high-performance micro or minicomputers (with a small number of users) or expensive multi-processor 

mainframe or supercomputers. We consider the hardware basis for concurrent systems in more detail in Section 1.3.

Figure 1.3. Components of (a) single-user systems and (b) multi-user systems.



In a single-user system the user's keyboard and screen are packaged with the processor(s) and memory; a single computer is perceived. 

The users of a multi-user system access the system via a terminal. Terminals are separate from the main memory, central processor(s) 

and shared devices such as disks and printers. A terminal might provide a graphical user interface and a windowing system and might 

have internal processors and memory dedicated to these functions. The old 'dumb' terminal has evolved into a special-purpose computer. 

A system might have large numbers of terminals, remote from the central computer, which are managed in groups by dedicated terminal 

concentrator computers.

A general-purpose operating system runs in the personal computer, single-user workstation or shared computer. Its purpose is to run the 

user's programs and to allocate the hardware resources they need such as memory, disk space, devices and processors.

There is scope for concurrency in both single-user and multi-user systems. We shall see that devices tend to be very slow compared with 

processors. The operating system will attend to the devices when necessary, but run programs while the devices are busy producing the 

next input or performing the last output.

In a single-user system the user should be allowed to start off some lengthy computation, such as 'number crunching' or paginating a long 

document, and carry out other tasks, such as reading mail, in parallel. The operating system should be able to support these separate 

concurrent activities, running several applications and handling several devices.

There is obvious scope for concurrency in multi-user systems: running many users' programs, handling many devices simultaneously and 

responding to users' commands. Again, the operating system will attempt to overlap processing and device handling wherever possible. 

An example is a printer spooler; users' commands to print files are noted and the printing takes place in parallel with general program 

execution.

In comparison with the statically analysable real-time systems we considered above, the events handled by operating systems tend to be 

irregular and unpredictable rather than periodic. The load they must handle is dynamic. A user may start using a terminal or workstation at 

any time and create a heavy computational or input/output (I/O) load. Although timing considerations are important they tend not to be as 

critical and inflexible as in real-time systems. It is desirable that a user at a terminal should get a response in a short time, but the 

consequences of not meeting this requirement are not comparable with a nuclear power station blowing up.

A multi-user operating system must manage the sharing of system resources between users while ensuring that an acceptable service is 

given to all of them. It must respond to potentially conflicting demands from users for the resources it manages, such as memory, 

processing time and filing space. Requests will occur dynamically and some will involve a number of related objects which are managed 

by the operating system.

Consider an example involving only one user: the user gives the command to delete a file. The space the file occupies on disk will become 



free space and the directory entry for the file must be removed. This involves reading the directory from disk into main memory, changing it 

and writing it back to disk. The details of file management will be explained in Chapter 6, but it is clear that the simple operation of deleting 

a file involves several different operations by the operating system. The design of a file management system must allow for the fact that a 

crash could occur at any time, including part-way through a composite operation, and also that different users may make concurrent 

requests for operations such as creating and deleting files.

Distributed operating systems

Distributed systems consist of computers connected by a communications medium such as a local area network (LAN). LANs are 

generally owned by a single organization and span relatively small distances, typically a single building or a few adjacent buildings. A 

university campus network may comprise a number of interconnected LANs. A popular model of a LAN-based distributed system is that of 

personal workstations augmented by shared server computers available across the network, for filing, printing, etc., as shown in Figure 

1.4.

Figure 1.4. A simple distributed operating system.

The workstation operating system is a single-user system with scope for concurrency as described above. The workstations may have 

local disks, and therefore local filing system software. However, it is likely that the local disks will be relatively small and users will run out 

of space. Also, users will want to share files with each other. It makes sense to store system files that everyone needs centrally rather than 

at every workstation. Also, users don't want the trouble of backing up their own files to guard against disk or software failures. For these 

reasons it is likely that file storage will be provided as a network-based service. It is also likely that a number of file servers will be needed 

to provide sufficient storage space and processing capacity for all but the smallest systems. These shared servers must respond to 

simultaneous requests from clients and are therefore concurrent systems. The Athena system at the Massachusetts Institute of 

Technology (MIT) (Treese, 1988) and the ITC system at Carnegie Mellon University (Satyanarayanan et al., 1985) are examples of this kind 

of distributed system. They provide computing services for all the students of their respective universities.

The operating systems in the computers that are part of a distributed system contain software for communications handling. At the 

lowest level, handling a network connection is similar to handling a high-speed peripheral. However, the data delivered by the network may 

have come from any one of the other computers in the distributed system rather than just a single device. Computers can send data at 

very high speed and the network is likely to deliver pieces of data from many sources in an interleaved order. The higher levels of 

communications software will therefore have a number of incoming communications in progress simultaneously and must deliver 



complete, reassembled 'messages' to the correct destinations.

The communications software must also take 'messages' from its clients and send them across the network to their intended destinations. 

Again, a number of requests for this service may be outstanding at a given time. A given message may contain a very large document and 

may be split into pieces of an acceptable size for the network hardware.

It is clear from the above discussion that a communications handling subsystem of an operating system is itself a concurrent system. The 

term 'subsystem' will be used to indicate a major functional unit within a system.

The above discussion has taken the example of a localized distributed system based on a LAN. There are many distributed systems 

connected by wide area networks (WANs) and communications software is in general designed to allow worldwide interaction.

Requirements of operating systems

There is a need for the operating system to support separate activities at the application level (external to the operating 

system): the independent actions of its users or the multiple activities of a single user. The requirements that applications place 

on operating systems are dynamic and unpredictable.

There is a need for separate activities within the operating system: it must handle simultaneous requests from a number of its 

clients and it must handle simultaneously active devices.

There is a need for some of the separate activities to cooperate to achieve a common goal; an example is a printer spooler 

which prints files for users. It must take requests from the various users who want their files printed and liaise with those system 

components which know how to control the printer and locate files on the disk.

There is a need to manage competition for resources by separate activities.

Separate activities must be able to read and write system data structures without interference.

There is a need for a single task to be carried out as a whole, even when it involves a number of related subtasks. This must 

take into account potentially interfering concurrent activities and possible failures of the system.

The requirements on operating systems are wide ranging. Many aspects of concurrency control have traditionally been studied in the 

context of operating systems, since many problems were first encountered and defined in operating system design. Chapters 3, 5 and 6

expand on operating system functions and Chapter 4 shows how they support separate activities. Part II is concerned with some of the 

detailed problems of cooperation and competition between related activities.

Part III explores the problems associated with composite tasks. This area has traditionally been studied in the context of database 

management and transaction processing systems, since these systems have stronger requirements in this area than traditional operating 

systems. Operating systems may tell a user that the most recent version of a file has been lost after a system crash. If a database system 

tells a user that a transaction is done it must guarantee that this is the case and the results of the transaction must survive any subsequent 

system failure. In spite of this difference in emphasis the conceptual basis both for operating systems and for database systems is the 

same.

1.1.3 Window-based interfaces

Current workstations and terminals typically have graphical user interfaces (GUIs) or window systems. The advent of such systems 

has made concurrent activity explicit and natural to all computer users. Even low-end PC-based systems now run window interfaces. You 

may use the keyboard to type commands in some windows but more often you use the mouse device to move a cursor across the screen 

to click on a command button or select from a menu within an existing window, to cause a new window to be created or to open an 

iconified window for use.

For example, consider an email application with a window interface. To run the application you may type a command such as exmh in a 

command window, causing a new window to be created and the mail application to be made available for use via this window. 



Alternatively, this may be done as part of your login procedure for an application such as email which is part of your working environment. 

A window may be open or iconified and may be moved between these states by a mouse click.

Suppose you wish to send some mail and click on the appropriate command button. An empty mail template will appear in a new window 

and you may proceed to type a message. Part-way through you notice that new mail has arrived (by means of a flag and bleep) and click 

in the original mail window on the 'incorporate new mail' button. One incoming message may need a quick response so you click on 'reply' 

and get another new window with a reply template. At this stage the mail application has generated three windows and you may move 

between them at will. That is, the mail application has generated three concurrent activities.

We are familiar with a much higher degree of concurrent activity than this when using window-based interfaces. One may move freely 

among windows within and between applications. One may also wish to have concurrent activity associated with a single window. For 

example, one may click on a button to 'purge all mail folders' of messages that have been deleted but not yet removed from the system. 

This takes some time and in parallel with this background activity one wishes to use other commands, such as reading messages or 

incorporating new ones that arrive.

1.1.4 Database management and transaction processing systems

Database applications are concerned with large amounts of persistent data, that is, data on permanent storage devices that exists 

independently of any running program. A typical user of a database system wants to make queries about the data, such as 'what is the 

current level of my bank account' or 'list the owners who live in Cambridge of purple Ford cars manufactured in 1990'. The owners of the 

database are concerned with keeping it up to date and will want to make updates. We assume a database management system (DBMS) 

which is responsible for interacting with users and organizing the reading and writing of the database to satisfy their requirements. The 

DBMS is a concurrent system since it may have to handle several clients simultaneously. The term transaction is used for a request from 

a client to a DBMS.

There are many uses for databases. Commercial systems include banking, airline and other booking systems, stock control for retailing, 

records of employees, and so on. Engineering systems cover such things as CAD systems, VLSI design and components databases for 

manufacturing. Statistical databases are held of population census data, for weather forecasting, etc. Public databases are held by police, 

health and social service institutions. There are also library and other specialized reference systems with expert systems to assist in the 

formulation of queries to extract the required information from specialized databases.

In applications where it is not critical that at all times the data appears to be up to date to the current instant, updates may be batched and 

run when convenient, perhaps overnight. This approach simplifies the management of the database enormously and is likely to be used if 

at all possible. Many of the problems associated with concurrent access are avoided by this means. For example, users may accept that 

the value given for the balance of a bank account is not up to date; the value at the end of the previous working day may be output with a 

clear indication of the time at which the value was valid. There is no guarantee in such a system that there is sufficient money in an 

account to cover a withdrawal. The trend is towards more up-to-date and interactive use of banking databases. Stock control in a 

supermarket might be managed on a daily basis with consolidation of purchases and reordering of stock carried out overnight.

In some systems the activities of reading and updating data are closely related and updates cannot be deferred. It would be impossible to 

run an airline or theatre reservation system with an overnight batched update policy. You need to know immediately whether you have 

booked a seat and not tomorrow morning, and therefore each transaction needs to see the up-to-date system state. Other examples of 

transaction processing systems are the international automatic teller machine (ATM) network service, which provides cash dispensing 

and other banking services world wide, and point of sale terminals. Both are discussed in Chapter 30.

There is scope for concurrency in database applications because of simultaneous requests from clients. In some kinds of database 

different clients are unlikely to require access to the same part of the database; it is unlikely that anyone else will be attempting to access 

my medical record at the same time as my doctor. Concurrent access is desirable for a fast response to queries and there are unlikely to 

be conflicting requests, that is, requests that attempt to update and read the same part of the database at the same time. Any number of 

transactions which only require to read the database may be run in parallel. If it is possible to update the database as well as read it, the 

DBMS must ensure that transactions do not interfere with each other.

In order to respond to queries in the timescale required, data will be copied from secondary storage (such as disk) into main memory and 

reads and updates will use the main memory copy. This introduces the potential problem that the copy of the data held on secondary 

storage becomes out of date. If the system crashes, the contents of main memory may be lost; for example, a power failure causes loss of 

main memory. The users of the system may have gone away in the belief that their transactions are complete and their results securely 

recorded. The management system must ensure that this is the case, even if writing information out to disk slows the system down. A 

transaction system must therefore support concurrent access and allow for system failure at any time.



Figure 1.5(a) shows the components of a transaction processing system for airline bookings. Many booking clerks can be acting 

simultaneously on behalf of their clients to book seats on flights recorded in a database. The administration also makes changes to the 

database. Figure 1.5(b) illustrates the world-wide nature of such a system. The diagram shows some of the components of the SITA

(Société Internationale de Télécommunications Aéronautiques) private network as it was in the 1970s (Chou, 1977). Even then, over 200 

airlines were members of this non-profit cooperative organization.

Figure 1.5. Airline booking systems. (a) Components. (b) Part of the early SITA private network.

The kind of problem addressed in Part II is to book a seat on a flight correctly; it is booked but not double-booked (assuming that the 

owners do not have an over-booking policy). The kind of problem addressed in Part III is how to implement a system which can automate 

the booking of an itinerary consisting of a number of connecting flights or none at all; if one connection can't be booked then none of the 

others are.

Requirements



The requirements for building transaction processing and database management systems that have emerged from the above discussion 

may be summarized as follows:

There is a need to support separate activities.

There is a need to ensure that the separate activities access and update common data without interference.

There is a need to ensure that the results of transactions are recorded permanently and securely before the user is told that an 

operation has been done.

1.1.5 Middleware

Distributed systems have become commonplace since first WANs and later LANs (since the late 1970s) allowed network-based 

distributed software to be developed. Support for distributed programs is now a common requirement and we expect to be able to run 

widely distributed applications (or services) such as electronic mail, network news or a web browser. They should run irrespective of the 

hardware or operating system we are using; that is, we expect to be able to work in a heterogeneous environment. More generally, 

industrial and commercial companies need interworking between their distributed components; for example, sales, stock control and 

invoicing may take place in geographically separate locations.

The idea is to build a layer of software (middleware) above the heterogeneous operating systems 

to present a uniform platform above which distributed applications can run. This simplifies the 

development of distributed applications by removing the need to port each application to a range 

of operating systems and hardware.

The components of a distributed program may run concurrently and, as we have seen in previous sections, various applications may run 

concurrently in each component of a distributed system.

1.1.6 Distributed systems: The World Wide Web

In 1990 Tim Berners-Lee developed a prototype hypermedia system called the World Wide Web (WWW). The original application domain 

had been nuclear physics at CERN, Switzerland. The novel aspect of the system was that cross-network communication formed an 

integral part of the system, thus creating the potential for transferring hypermedia pages without restriction 'world wide'.

In 1993 the Mosaic browser was developed by NCSA (the University of Illinois' National Center for Supercomputing). This provided a 

convenient window-based interface for the hypermedia transfer system. Since then the growth of the WWW has been explosive. Huge 

numbers of companies, universities and individuals have built information servers that anyone with a web browser can read.

Each page may contain text, images and links to other pages. A page is created using a hypertext markup language (HTML) which is 

similar to the standard markup language SGML but also contains instructions on how the page should be displayed. Each page is 

identified 'world wide' by a name called a universal resource locator (URL) which forms part of any link to that page. Although the link 

information appears in the HTML we do not see this in the page we view. Here certain words or images are highlighted (made 'active') so 

that when we click on them the current page is replaced by the page to which the link refers. To achieve this, the browser contacts the 

server which holds the page named in the link and transfers it for viewing in the browser. The protocol used between the web browser and 

web server to achieve this is called the hypertext transfer protocol (http).

Each client operates sequentially, viewing a page at a time. Any given server may receive any number of concurrent requests for pages; 

another example where a server may have many simultaneous clients. As use of the web extends we shall increasingly see large 

databases accessible through web interfaces, thus compounding the need for many clients to have their requests served concurrently.

Animations can be added to web pages, typically written in the Java programming language. Here 



concurrent processing may be used at the client to speed up the animation and to allow it to occur 

in parallel with user interaction with the page, for example when the page represents a form to be 

filled in.
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1.2 Supporting potentially concurrent applications

We now move from systems which are inherently concurrent to applications which might benefit from concurrent implementation. Parallel 

algorithms are not presented in detail. Rather, the aim is to show the requirements for operating system support of separate but related 

concurrent activities that will work together to achieve some result. It is also important to investigate the requirement for some degree of 

interaction between the parallel computations.

The general motivation for exploiting potential concurrency in an application is that some or all of the following are the case:

there is a large amount of computing to be done;

there is a large amount of data to be processed;

there is a real-time requirement for the result;

hardware is available for running the potentially concurrent components in parallel.

First, some general approaches to obtaining a concurrent solution to a problem are described.

1.2.1 Replicated code, partitioned data

Perhaps the simplest approach is to use a sequential algorithm but to partition the data. Figure 1.6 shows the general idea. If all the 

components must run to completion the overall time taken is that of the longest component (the other components have run in parallel and 

have finished before the longest one) plus the overhead of initiating the parallel computations and synchronizing on their completion. The 

speed-up achieved therefore depends on being able to divide the computation into pieces with approximately equal computation time. This 

is because we have assumed that the total amount of data processing to be done is the same whether it is done sequentially or in parallel. 

If we can divide the computation into components which require the same amount of computation time we have maximized the 

concurrency in the execution of the algorithm.

Figure 1.6. Replicated code, partitioned data.



Examples of problems which are suited to this static partitioning of data are as follows:

finding all the roots of a given function;

finding the turning points of a given function;

searching for specific values in data which has no ordering related to the values required; for example, the data may be 

records about people which are ordered according to their surnames. You are searching for people with a specific value in 

some field of their record, for example, those with an Australian grandparent.

A parallel algorithm for searching might be particularly suitable for large amounts of data, some of which is in main memory and some on 

disk. While one parallel activity waits for more data to be brought in from disk, another can proceed with processing data in main memory.

In some applications, once a solution is found by one component all the others can cease their activity. An example is a search for a single 

solution to a problem or query. In this case, once the solution is found all the components which are still executing should be stopped. The 

system mechanisms should make it possible to do this.

1.2.2 Pipelined processing

Another simple approach is the pipeline. If the total function to be applied to the data can be divided into distinct processing phases, 

different portions of data can flow along from function to function. Figure 1.7 shows a four-stage pipeline. An example is a compiler with 

phases for lexical analysis, parsing, type checking, code generation and so on. As soon as the first program or module has passed the 

lexical analysis phase it may be passed on to the parsing phase while the lexical analyser starts on the second program or module.

Figure 1.7. A four-stage pipeline.

The requirements here are for the separate activities executing the various phases to be able to synchronize with each other: to wait for 

new data to become available or to wait for the next phase to finish processing its current data.



1.2.3 Tree-structured algorithms

Many algorithms can be represented by a tree structure. For example, the evaluation of a function for given arguments may often be split

into the evaluation of two (or more) subfunctions, which in turn can be split … In this case there is potential for parallel evaluation each

time a branch is made as each subfunction must deliver its result to contribute to the higher-level evaluation.

Certain problems require that every branch must be evaluated in full. In other applications the tree structure is a way of dividing a search 

space where only one solution is required. The whole space should be traversed only if no solution exists. As soon as a solution is found 

the algorithm should terminate. Again, as discussed in Section 1.2.1, ongoing executions (and the process of creating new ones) should 

be stopped.

In other cases, such as speech recognition, the parallel branch traversals may represent alternative possibilities for a solution. Each 

branch has an associated probability of matching the solution and the requirement is to produce the combination of branches with the 

highest probability of success.

A tree structure introduces more potential parallelism than the simple, static, linear partitioning described above in Section 1.2.1. A new 

problem here is how to create a reasonable number of parallel computations dynamically, bearing in mind the overhead of each 

computation and the number of physical processors available to execute them.

1.2.4 Shared data

In Section 1.1.4 we saw that activities in a transaction processing system need to access the same shared data, such as in an airline 

booking system. The requirements of the application are such that the data cannot be partitioned: you have to book the seat on the flight 

the client wants, even if someone else is attempting to book a seat on the same flight.

The algorithms outlined above have attempted to avoid the need for concurrent activities to access shared data. We focused on parallel 

activities carrying out independent work. Even in these cases, their results may need to be merged into a shared data structure. Also, 

when one activity finishes its work it may be able to request more work from the manager or from one of the other parallel activities. In 

practice, interaction and cooperation between the activities are likely to be required.

Concurrent algorithms may be designed so that concurrent activities access shared, rather than strictly partitioned, data. For example, the 

work to be carried out is divided into units and recorded in a shared data structure. Each activity reads a work item from the shared data 

structure and marks it as taken. A potential problem is that the concurrent activities have to access the shared data one at a time to avoid 

corrupting it (we shall study this problem later). If the units of work are long relative to the time taken to get the next unit from the data 

structure then contention for access to the shared data is likely to be tolerable.

1.2.5 Application areas

A full treatment of the different application areas in which concurrent algorithms can be used merits a number of books, for example, Quinn 

(1987), Almasi and Gottlieb (1989) and Bertsekas and Tsitsiklis (1989). A brief summary is given here and detailed study is left for further 

reading.

In the area of numerical algorithms, the modelling, or simulation, of physical systems can consume a great deal of computing power and 

data space. Examples are simulation of nuclear reactions and modelling the atmosphere for weather forecasting. Numerical methods 

based on the solution of partial differential equations, Fast Fourier and other transforms and optimization in general are candidates for 

parallel decomposition.

Software engineering tasks, such as the compilation of programs which comprise very large numbers of modules, are an obvious target for 

parallelization. A library containing the interface specifications of the modules must be available so that intermodule operation invocations 

can be checked.



Graphics applications, such as those involving raytracing techniques to achieve three-dimensional images, can be parallelized.

The general area of artificial intelligence has a large number of problems which require a large amount of processing power, such as voice 

and image recognition, natural language processing and expert systems. It is often the case that a number of solutions to a problem must 

be evaluated and the most likely one selected.

1.2.6 Requirements for supporting concurrent applications

Some simple approaches to designing concurrent algorithms were presented above. They illustrated the approaches of partitioning the 

data, statically or dynamically, and partitioning the code into a pipeline. For potentially concurrent applications we may have the option of 

designing an algorithm based on partitioning. For inherently concurrent applications, such as transaction processing systems, we may not 

have the option of partitioning the data. For some applications it may be more appropriate to use shared data. In general, in a potentially 

concurrent application, the separate activities are related and cooperate to achieve a common goal.

Some requirements for the support of concurrency at the application level are:

There is a need to support separate activities.

There is a need for these activities to be managed appropriately: to be created as required and stopped when no longer needed.

There is a need for separate activities to synchronize with each other, and possibly to pass data when synchronized.

There may be a need for separate activities to share the data relating to the application; alternatively, the data may be strictly 

partitioned.

The application will be written in a programming language and it must be possible to meet the requirements outlined here through the 

facilities offered by the language and the underlying operating system.
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1.3 Architectures for software systems

It is desirable that cheap processing power, large and fast memory and high-bandwidth communications media should be exploited. 

Conventional architectures and interconnection topologies may be used as a basis for concurrent software. Alternatively, special 

architectures may be appropriate for certain application areas. Some are well understood and available commercially, while others are 

novel and still the subject of research and evaluation. This section reviews the options available. Where appropriate, any special language 

system associated with the architecture is described.

A broad classification that is helpful when considering concurrent systems was given by Flynn (Bayer et al., 1978). It is based on the 

number of independent instruction streams and data streams being processed by the system.

1.3.1 System classification

SISD: Single instruction stream, single data stream

This is the conventional uniprocessor model, with a single processor fetching and executing a sequence of instructions which operate on 

the data items specified within them. This is the original von Neumann model of the operation of a computer.

SIMD: Single instruction stream, multiple data stream

In this case there are many processing elements but they are designed to execute the same instruction at the same time. For this reason 

the processors can be simple: they do not need to fetch instructions from their private memory, but receive their instructions from a central 

controller. They do, however, operate on separate data items such as the elements of vectors or arrays.

Any machine that has vector or array instructions which execute in parallel can be classified as SIMD. It may be that the array processor 

component is a special-purpose attached processor such as in the early ICL DAP (Distributed Array Processor). This component had 

thousands of small processors and was loaded to perform matrix calculations. A conventional SISD computer carried out this process. The 

very high-performance, and expensive, Cray range of computers offers vector operations of this type.

The potential increase in performance through using an SIMD processor depends on the proportion of matrix instructions in the 

application. It is inevitable that parts of the algorithms concerned will execute sequentially and there is overhead in loading the array 

processor.

This kind of concurrency is fine grained, being at the level of a single instruction on a single data item, and synchronous, in that the 

operations occur together. Many application areas produce problems that require vector and matrix solutions. Some of these areas are 

well funded and are able to use the expensive SIMD computers, often called 'supercomputers', that have been developed specifically for 

this purpose. In this book we are concerned with more general-purpose concurrent systems and will not consider SIMD machines further.



MIMD: Multiple instruction stream, multiple data stream

Systems with more than one processor fetching and executing instructions are MIMD. The instructions need not be closely related and 

they are executed asynchronously. This is a very broad category (the classification scheme has been criticized for this reason) and 

includes networks of computers and multiprocessors built from separate computers.

Another broad classification that distinguishes conventional systems from experimental ones is into the categories control-driven, 

data-driven and demand-driven. The conventional von Neumann model of a computer is control-driven. The processor fetches and 

executes a sequence of instructions, the program counter acting as sequence controller. It is argued that sequencing is usually 

overspecified in conventional programming languages and that, very often, instructions that are written down in a sequence could be 

executed in parallel. The problem is how to detect automatically when instructions are independent of each other and exploit this potential 

concurrency.

Consider the following program fragment:

x = a x b;

y = c x d;

z = x + y;

In this simple example, x and y can be evaluated in parallel, but both must be evaluated before z.

An outline of the range of possible hardware on which a concurrent software system might be implemented is now given. Sections 1.3.2 to 

1.3.4 consider control-driven architectures with increasing numbers of constituent computers. The data-driven and demand-driven 

approaches are discussed briefly in Sections 1.3.5 and 1.3.6. Finally, network-based systems are considered.

1.3.2 Conventional uniprocessors

A single uniprocessor computer may be used to implement some kinds of concurrent system. A time-sharing operating system is an 

example. Many users are interacting with the system simultaneously and many programs are in the process of being executed (that is, 

they are at some point between their start and termination) at a given time. We shall see in Chapter 4 that the fact that there is only one 

processor may be transparent to the programmer. At the application software level it is as though each program is executing on a 

dedicated processor.

An important point about uniprocessors is that the technique of forbidding interrupts may be used for controlling concurrency. Device 

handling, including interrupts, will be explained in Chapter 3, but the basic idea is that you can prevent the processor from doing anything 

other than its current activity until it reaches the end of it, when you 'enable interrupts' again. In the meantime, mayhem may have broken 

out and alarm signals may be pending but the processor carries on regardless. We shall expand on this technique for simplifying the 

design of concurrent software in Chapter 9. It obviously has to be used with great care and for short periods of time. The system designer 

has to decide whether, and to what extent, to make use of the fact that software will run on a uniprocessor. This dependency can impose a 

major constraint on possible system upgrades and has often prevented the owners of commercial operating systems from improving the 

performance of their systems by introducing more processors. Removing such a dependency retrospectively requires a major rewrite of 

the heart of a system.

Starting from a uniprocessor system it is common to exploit more processing power by adding dedicated machines for specific 

device-handling functions. The terminal-handling function might be offloaded into a separate 'front-end' computer. Disk controllers have 

become quite complex in their functionality and contain dedicated processors. When functions have been moved to special-purpose, 

dedicated computers to the greatest possible extent, the next step is to move on to multiprocessors to obtain more potential concurrency.

The conventions for processor architecture evolve in response to factors such as the increase in processing power and the speed and 

quantity of memory. The trend for general-purpose processors is towards reduced instruction set computers (RISC) and away from 

complex instruction set computers (CISC). There are implications for concurrency control in RISC machines, which are discussed in 

Chapters 3, 10 and 11.



There is a place for conventional uniprocessors in many large-scale systems. A process control system may consist of a number of 

relatively small computers placed strategically around the process being controlled. A network connects them and the system is managed 

automatically by software whenever possible and manually when higher-level, strategic decisions are required. A program development 

environment may be based on personal uniprocessor workstations and uniprocessor machines may also be used for controlling printers 

and file servers. This style of concurrent system was introduced above in Section 1.1.

1.3.3 Shared-memory multiprocessors

The conventional multiprocessor model is of a relatively small number of processors (ranging from two to about 30) executing programs 

from a single shared memory. Note that only one copy of the operating system and any other system software is needed. We now have 

the situation that software from the same memory is being executed at the same time on a number of processors. A fundamental 

distinction between different kinds of concurrent software is whether or not the components which run in parallel share memory.

It is more difficult to write operating systems that run on multiprocessors than on uniprocessors. Aspects of this problem are still being 

researched. Sometimes, to simplify the design, one dedicated processor will execute the operating system and one dedicated processor 

will handle all I/O. At the end of Part II the reader should understand the trade-offs involved in such decisions.

When more than some fairly small number of processors access a single shared memory, contention for memory access becomes too 

great. The effect can be alleviated by providing the processors with hardware-controlled caches in which recently accessed memory 

locations are held. If we wish to get more concurrency into a system we have to look to a different system topology.

1.3.4 Multicomputer multiprocessors

There are very many different computer system designs based on interconnected computers. Let us make the simplifying assumption that

each processor accesses only its own local memory directly. The processors may be placed on a shared bus, typically up to 10–15 of

them before contention becomes excessive. They communicate with each other through the control and data paths of the bus. A hierarchy

of buses may be used to increase the number of processors in the system, as for example in the early Pluribus and Cm* systems

(Siewiorek et al., 1982).

To exploit massive concurrency we may wish to use many tens of processors. In this case their connectivity is a major design decision. It 

is sometimes argued that a tree structure is appropriate for a wide range of problems and that each processor should be connected to 

three others (its parent and two children). The Inmos transputer has four high-speed serial links for the construction of interconnected 

systems. A tree-like structure could be built or indeed any topology appropriate for the application.

A crossbar switch arrangement allows any processor to communicate with any other, but only if no other processor is already doing so. It 

is expensive to connect everything to everything using a switching arrangement and we must not forget that a motivation for using large 

numbers of computers is to take advantage of inexpensive, off-the-shelf components, so the cost is important.

As network performance has increased, interconnection by this means is an alternative to multicomputer multiprocessors for some 

concurrent applications; the components may be loaded onto separate machines connected to a network.

A general problem with multicomputers is the complexity of the software systems required to manage them and the time to load software 

prior to execution. There is little advantage for general applications if loading concurrent software into a multicomputer is a lengthy and 

complex process, involving transfer through many computers en route, even if execution completes in a fraction of the sequential 

execution time. At present, such topologies tend to be used for software that will run indefinitely once loaded, such as in embedded control 

systems.

1.3.5 Dataflow (data-driven) architectures



In a conventional (imperative) programming language you have to write down a sequence of statements even when there are no 

dependencies between them and they could be executed in any order or concurrently. Dataflow is a response to this overspecification of 

sequencing.

It is also argued that conventional von Neumann computers have a fundamental design flaw in their bottleneck for memory access. 

Instructions are fetched in sequence and their data operands are then read or written as specified in the instruction. It is difficult to speed 

up program execution by fetching instructions or data in advance so you have to rely on getting them quickly when you find out where they 

are.

In the dataflow model, an instruction may execute as soon as its data operands are ready. Any number of instructions can execute in 

parallel, depending on the number of processors available. It is possible to arrange for the operations to have at most two arguments. The 

first argument to be ready for an operation will detect that its pair is not yet available and will wait in memory provided for the purpose. The 

second will detect that the first is ready, by an associative match on the memory, and they will then go off together to a processor for 

execution. The result of the operation will become an argument for another operation, and so on.

It is necessary to distinguish between different executions of the same operation, such as in separate calls of a given procedure and the 

executions of a loop in a program. To address this problem special languages have been developed for dataflow in which there can be at 

most one assignment to a given variable.

The concurrency made available by the dataflow approach is potentially very great and at a very fine granularity: at the machine 

instruction level. The challenge is to devise an architecture that can exploit the concurrency.

A problem with a data-driven approach is that unnecessary processing may be carried out for paths in a program that may never be 

followed; for example, in a simple if-then-else statement, both the 'then' path and the 'else' path may have been computed before the 

condition is evaluated. This computation may have been done in competition with other computations which were needed. To solve this 

problem a 'demand-driven' approach is advocated with the aim that only those values that are needed are computed. Function application 

has seemed attractive as a basis for this approach.

1.3.6 Architectures for functional languages

A pure functional language does not have destructive assignment statements. When a function is applied to its arguments it always 

produces the same result since there can be no side-effects; that is, in a functional language you can assume that f(a) + f(a) = 2 x f(a). 

This is not true in all imperative languages because the first call of f with argument a may have caused an assignment to some variable 

within the body of f (a side-effect). The second call f(a) may then deliver a different result from the first.

It is argued therefore that functional languages are inherently concurrent. Any number of function applications can be carried out in 

parallel; as soon as the arguments are available the function can be applied. There is greater potential for controlling the concurrency than 

in the dataflow approach if we can defer a function application until we are sure that the result is needed: so called 'lazy evaluation'. Again, 

the challenge is to design a machine to exploit the idea.

Both data-driven and demand-driven architectures, and associated software systems, are still in the research domain. In the meantime, 

conventional von Neumann machines have exhibited a regular and dramatic increase in performance and decrease in cost with which it is 

very difficult to compete (Hennessy and Patterson, 2003).

1.3.7 Network-based systems

Local area networks (LANs)



A local area network (LAN) offers full connectivity for some number of computer systems. This contrasts with many multicomputer 

multiprocessor topologies as discussed above: for example, a transputer can be connected to at most four other transputers. Each 

transputer in a multitransputer topology may need to handle data which comes from an external source and is destined for an external 

destination. In contrast, each computer on a network is only concerned with data which is sent specifically to it.

Figure 1.8 shows three basic LAN topologies, namely star, bus and ring, for the popular workstation–server model discussed in Section 1.1. 

In the star topology every message is first directed to a central switch which forwards it to its intended destination. The central switch is an 

obvious reliability hazard and should, perhaps, be a reliable multiprocessor. In a bus topology an attached computer that wants to 

communicate puts its 'message' addressed to its intended recipient computer on the bus. All computers monitor the bus and extract the 

messages addressed to them. Failure of an attached computer usually does not stop the bus from working. The problem to be solved is 

how to determine when the bus is free to be used. We shall see one solution in Section 3.7. In the ring topology an attached computer that 

wants to communicate puts its 'message' on the ring. When the message passes through the intended recipient's station it is extracted. 

Failure of any repeater causes the whole ring to fail and methods of duplicating the links and stations are used in applications which 

cannot tolerate failure.

Figure 1.8. Star, bus and ring LAN topologies.

The approach to communications handling in component computers of multi-computer multiprocessor systems and computers attached to 

networks is very different. This is partly because they have evolved to meet different requirements and partly because of their different 

emphasis on hardware and software to support data transfer. The former employ hardware protocols, such as in a computer's internal 

bus, to transmit data from source to destination. The higher levels of software, which interpret the data (introduced in Section 1.1.2), tend 

to be much simpler than in network-based systems. The software protocols which the latter employ will be introduced in Section 3.8. 

These handle more options for sending information to different destinations, allow for loss of data due to network errors or shortage of 

storage space and in general are more complex.

The basic philosophy of network communications software is to regard the network as a shared resource which must be managed. For 

example, a user of an attached workstation may have started a background compilation, which requires several files to be read from a file 



server and, in parallel, may be reading mail from a mail server. Certain attached computers exist solely to support communication, for 

example, when two LANs are connected by a gateway computer or a LAN is connected to a wide area network (WAN).

A simple outline of data communication using a LAN is that a packet of information is composed by a connected computer system, 

addressed to some other connected computer system, and put on the LAN. The addressing information in the packet ensures that the 

intended destination computer will take the packet. It is a function of the software in the attached computers to compose and interpret the 

information.

The LAN design determines the size of the packet of information that it can accept. An Ethernet packet can contain up to 4 kbytes of data 

and a Cambridge Fast Ring cell contains 32 bytes, for example. This should not have to be a concern of application-level software, so 

communications software manages the transmission and safe reception of information between networked systems. Communications 

hardware and software are discussed further in Chapter 3.

LANs are widely used as a basis for program development environments. Each user has a workstation and there are shared server 

computers such as file servers; that is, the LAN is the interconnection medium for a distributed system, such as is described in Section 

1.1.2.

The bandwidth of the LAN medium is shared by the attached computers. In certain types of LAN a proportion of the bandwidth can be 

guaranteed to each attached computer. This kind of guarantee can be essential for some applications. It is also important to know the 

overhead imposed by the communications software. The network may be able to guarantee a high, sustained throughput of data but the 

application software is concerned with the time taken for data to be transferred between application levels on different computers. The 

design of the communications software and the operating system greatly affect this, but as LAN bandwidth increases it becomes 

increasingly feasible for a LAN-based system to be used for many kinds of distributed application.

A single LAN, with associated communications software, can handle a certain number of attached computers. If more than this were to be 

attached, contention for access to the network might become too frequent, and some networks might become congested. For this reason, 

and also for reasons of geographic separation, a number of interconnected LANs are often used in a company or campus, sometimes 

called a local internet.

Wide area networks (WANs)

When computers or LANs need to be connected over long distances, wide area networks (WANs) are used, as shown in Figure 1.9. There 

are now many world-wide WANs which are used for applications such as electronic mail, information retrieval services, dealings on the 

international stock exchanges, banking, commerce and science. Figure 1.9 indicates that certain computers are dedicated to the 

communications-handling function. A gateway computer is shown attaching each LAN and host system to the WAN and a communications 

subnet comprising computers called 'routers' is shown. These communications computers cooperate to route each 'message' from its 

source to its destination.

Figure 1.9. LANs connected by WANs.



Like the international telephone service, basic WAN infrastructure is provided by the public telephone companies. There are also WANs 

with private, dedicated connections.

In general, LANs operate at 10s to 100s of megabits per second and are highly reliable. WANs comprise many different links with different 

characteristics; some may be slow and unreliable. A world-wide network may contain a satellite link through which a large volume of data 

can be transferred but with a long end-to-end delay; some computers may be attached to a WAN by telephone lines. The trend is towards 

the provision of high-speed connections which have the characteristics of LANs. We discuss networks in more detail in Chapter 3.

1.3.8 Summary of hardware bases for concurrent systems

Figure 1.10 summarizes the topologies that might be used as the hardware basis for a concurrent system. The arrows indicate the 

direction of increasing concurrency achieved through different paths of development.

Figure 1.10. Summary of concurrent system topologies.



Architectures based on dataflow or function application are an alternative to the conventional von Neumann machine. They attempt to 

exploit all the potential concurrency of the application rather than that written down in a conventional programming language. Their 

challenge is to devise an efficient implementation, able to compete with the sophistication of current conventional processor and compiler 

technology. As they are still in the research domain and are often associated with specific languages they will not be considered further in 

this book.

The central path takes a single uniprocessor as starting point and attempts to introduce an increasing amount of processing power. 

Special-purpose processors can handle devices, but a major design change comes when several processors are used to execute 

programs residing in a single memory. Above a certain number of processors accessing a given memory, a topology comprising 

interconnected computers is necessary. There is a variety of possible interconnection structures. Vector and array processors may be 

seen as special-purpose multiprocessor machines.

An alternative to the complexity of the interconnection structures of multicomputer multiprocessor systems is a network. A LAN medium 

may be used to achieve full connectivity of a certain number of computers, but communication is achieved through software rather than 

hardware protocols. As LAN performance increases, networked computers can be used for distributed computations as well as the more 

conventional program development environments, provided that the operating system and communications software impose an 

acceptable and bounded overhead.
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1.4 Defining a concurrent system

The discussion so far has been based on an intuitive notion of what a concurrent system is. We have looked at a number of types of 

computerized system in which different activities are in the process of being executed (are at some stage between their starting point and 

finishing point) at the same time, that is, concurrently. System software runs indefinitely and supports a number of applications and/or 

users. Applications are usually implemented as sequential programs but certain applications may benefit from being implemented as 

concurrent programs. The concurrency in the application must be supported by the system that runs it.

Figure 1.11 shows some of the concurrent (sub)systems that have been mentioned. In each case a number of activities may be in 

progress simultaneously within the system, either because components of a concurrent algorithm have been started off in parallel or 

because a number of clients may simultaneously make demands on the system, as shown in Figure 1.12. The concurrent system may be 

an operating system, a subsystem within an operating system or an application-level service running above an operating system. In all 

cases, the concurrent system shown may be distributed across a number of computers rather than centralized in a single computer.

Figure 1.11. Examples of concurrent (sub)systems.

Figure 1.12. Concurrent activity.



We have made an implicit assumption that it is meaningful to assert that two events happen 'at the same time'. We shall examine this 

assumption more deeply when we look at systems in which the time at which an event happens is defined by a clock local to the computer 

in which the event takes place. If many computers, each with their own clock, are cooperating together to achieve some goal the times 

their local clocks indicate are not guaranteed to be the same.

We are concerned with software systems, implemented on a variety of hardware, in which a number of separate activities are in progress 

at the same time. The separate activities are related in some sense; we assume that it is possible to define the goal of the concurrent 

system. The goal may be general, such as 'to run the applications of a number of users of an operating system', or more specific, such as 

'to allow users controlled, secure access to their bank accounts'. The goal of a concurrent application may be 'to find the most probable 

piece of English speech represented by some digitally encoded data'.

In some cases the separate activities may be working together closely, cooperating, to solve a given problem. In other cases the relation 

may be much looser; the concurrent activities may be independent but running above common system software and needing to share 

common system resources for which they must compete.

The activities may need to interact with the external environment of the computer system and may need to meet timing requirements

when doing so.

The activities may need to use the main memory only of a single computer (as part of a 'load and go' program execution) or they may 

use main memory only, but of a number of computers in a distributed system. Finally, the activities may access or record data in persistent 

memory (for example, a disk-based filing system). In this case they use both main memory and persistent memory of a single 

computer or of computers in a distributed system.
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1.5 Systems implementation requirements

Some common requirements can be drawn from the discussion on concurrent systems above.

Support for separate activities

Examples are:

the monitoring and control activities in a process control system;a.

the running of users' programs by an operating system;b.

the handling of devices by an operating system;c.

the transactions of the customers of a banking system;d.

the concurrent computations executing an application.e.

1.

Support for the management of separate activities

In particular, the ability to create, run, stop and kill them, and possibly to indicate their relative priorities.

2.

Support for related activities to work together

Examples are:

parallel activities each generating part of a solution to a problem;a.

device-handling programs which deliver input data to, or take output data from, user programs;b.

booking clerks making airline bookings on behalf of clients, when many clerks can run programs concurrently.c.

3.

The ability to meet timing requirements

Examples are:

that an alarm might require a response in a specified time;a.

the weather forecast must be ready before the time of the forecast arrives;b.

users must hear clear, smooth, recognizable speech and see non-jittering video;c.

users should get response in a 'reasonable' time from systems.d.

If a real-time application runs above an operating system the application must know what the operating system can guarantee 

and with what probability. Note that it might be necessary for the application level to indicate the priorities of its separate 

activities to the underlying operating system in order that timing requirements can be met. This is not possible in most current 

operating systems.

4.

Support for composite tasks

A single task may have several components which are executed concurrently with other tasks. The system may fail after the 

completion of some of the subtasks but before the whole task is complete.

5.

The rest of this book shows how these requirements are met. Part I is concerned with establishing the abstraction and implementation of 

process to meet the requirement for support of separate activities. Part II shows how related activities may work together to carry out the 

functions of a system. In order to keep the complexity of the presentation to a minimum, the discussion in Part II is restricted to the 

implementation of correct execution of a 'single operation' without interference. Part III addresses the problems of composite tasks which 



may involve a number of subtasks involving a single main memory, main memory and persistent memory in a single computer system, or 

the main memory and persistent memory of computers in a distributed system.
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1.6 Security, protection and fault tolerance in system design

Emphasis has been given to the dynamic behaviour of systems in which many concurrent activities may be in progress. Support for 

concurrency is a major aspect of system design, and development of the material presented in this book will be motivated by the support 

for concurrency in systems. Orthogonal to this development is the fact that all systems have some degree of requirement for security, 

protection and tolerance of errors and failures. When the details of system design and implementation are given, these aspects will also 

be covered.

The topic of security is huge and includes all aspects of controlling access to computers, networks and the information stored, processed 

and transferred in computer systems. We can express a general requirement that it should be possible for policies to be expressed and 

enforced relating to who (which principals) may have access to computers, networks and information.

In Chapter 2 we establish a framework for describing and designing systems in terms of their structure and reasoning about their 

dynamic behaviour. There, we see how running systems and applications are protected from accidental or malicious corruption. We also 

establish a general model, a system's access matrix, for recording all authorized accesses of all principals known to the system to all 

objects managed by it. Chapter 5 gives details of how running programs are confined to areas of main memory: memory protection; and 

Chapter 6 describes how access to information stored in files is controlled: access control or authorization. In Chapter 8 an overview of 

security in distributed systems is given. In a distributed, networked world it becomes even more crucial to establish securely which 

principal is attempting to use a system. The secure establishment of identity is called authentication. We also outline how secure 

communication of data is achieved by encryption and how cross-network access to services and data is controlled.

Exercises

1.1
What is a real-time system?a.

Why is it useful to distinguish 'hard' from other real-time systems?b.

In what ways do operating systems which support real-time systems differ from those which support 

single-user workstations and multi-user, time-sharing systems?

c.

1.2 Classify the following as hard real-time, real-time or non-real-time systems:

An embedded computer system which controls the fuel mixture in a car engine

A robot controller for a car production assembly line

An on-line library catalogue system

A single-user workstation which supports graphics, digitized voice and video

A world-wide electronic mail (email) system

A network of computers for a banking system



A hospital patient monitoring and control system

An on-line medical record system

A weather forecasting system based on a model of the earth's atmosphere

An international stock exchange computer system.

Do any of the above systems have to handle concurrent activities?

1.3 Give examples of monitoring and control activities in real-time and non-real-time systems.

1.4
Define three general models for concurrent algorithms.a.

On what kinds of hardware could you run a concurrent algorithm and expect to achieve better performance 

than on a uniprocessor? Are any new overheads introduced for the hardware you mention?

b.

1.5
What is a concurrent system?a.

Can a concurrent system run on a uniprocessor computer? Give examples to justify your answer.b.

1.6 What is a shared-memory multiprocessor? Are any of the approaches for devising concurrent algorithms particularly 

suited to this kind of architecture?

1.7 What is the difference between communications handling for a multicomputer system with hardware-controlled 

connections between specific computers and a network-based multicomputer system?
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Part I: System design: Technology and principles

Computer science is concerned with exploiting technology. A prime motivation for the study of software systems 

is to be able to exploit current and projected processing power, memory size and speed, storage capacity and 

communications bandwidth. CPU performance is increasing at about 35% per annum (for microprocessors), 

memory size quadruples every three years, disk performance grows relatively modestly at about 5% per annum. 

Local and wide area network bandwidths are increasing less uniformly but equally dramatically. The ten megabits 

per second local area network commonly used since the 1980s is being replaced by hundred megabit networks 

connected by gigabit backbones.

We are aiming to exploit technology by bringing more processing power to bear on the solutions to problems. In 

order to do this we must use concurrent software systems. The Introduction started from an informal, intuitive 

notion of what is meant by a concurrent system and proceeded to a more rigorous definition and some 

implementation requirements.

A major challenge for computer science is the management of complexity since computerized systems which 

exploit the potential of technology tend to be large and complex. This is achieved by creating abstractions as a 

means of structuring systems and will be a theme throughout the book. By this means a system can be 

comprehended as a whole at a high level of abstraction but we can focus on any component part at any level of 

detail required at lower levels of abstraction.

How to design modular software is the first topic in Chapter 2. Since the object paradigm has gained wide 

acceptance as a basis for designing systems this model is developed in some detail. We then set up the concepts 

of process, thread and protocol in order to reason about how systems are executed dynamically. Operating 

systems are themselves large concurrent systems as well as supporting such systems and we spend some time 

on their design and functionality throughout Part I.

In Chapter 3 we study the hardware–software interface: how hardware is controlled by program and how hardware

supports system structure such as the protection boundary between the operating system and the software it

supports. A concept that is emphasized is the need for hardware–software synchronization. Chapter 4 shows 

how processes and threads are supported by operating systems and also by language systems and Chapters 5

and 6 give background in operating system functions: memory and file management.

Chapter 7 extends Chapter 2's general discussion of system architecture to distributed systems. We focus on the 

fundamental properties as background to an integrated approach to system design. Chapter 8 covers security in 

centralized and distributed systems.

 2 System structure and dynamic execution

 3 The hardware interface, I/O and communications

 4 Support for processes

 5 Memory management

 6 File management

 7 Fundamentals of distributed systems

 8 Security
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Chapter 2. System structure and dynamic execution

2.1 System structure: Conceptual views

2.2 System structure: Implementational views

2.3 The process concept

2.4 Operating system functions

2.5 Operating system invocation and protection

2.6 Operating system structure

2.7 Object structuring within and supported by operating systems

2.8 Distributed object systems, platforms and middleware

2.9 Security and protection

2.10 Summary

Computer scientists must comprehend, design and build large software systems. A high-level view of how a system is structured and 

how its components work together dynamically is essential for this purpose. We establish a context of modular software structure as a 

framework for looking at software systems and then progress to considering the dynamic behaviour of systems. The classical concept 

of process is introduced and is refined to accommodate multiple threads of execution within a single application.

Operating systems are themselves large, concurrent software systems as well as supporting such systems. We therefore consider their 

internal structure, the functions they provide and how these functions are invoked. We sketch how an object model can be applied in the 

design of operating systems and in the software they support, including distributed software. Issues such as naming, sharing and 

protection are introduced.

A high-level view of how a software system is structured and how its components work together is essential for understanding the design 

and implementation of large systems. In all scientific disciplines, the usual approach to making large systems comprehensible is to split 

them up into more manageable parts, or modules. This process of division is called modularization. Software consists of programs 

written in some programming language but it has long been recognized that attempting to understand a large software system by looking 

at program code is an extremely difficult task. Therefore, we require a higher-level description of the system that helps us understand its 

composition and behaviour. The idea that there could be several views of a software system is also helpful when building new software. 

We can describe the software in terms that we understand then convert this description into program code known as an implementation. 

Thus, we must always keep in mind the difference between thinking about a problem that involves understanding the problem domain 

which has nothing to do with programming languages and leads to a conceptual view of the solution, and implementing the solution to a 

problem in a particular programming language that requires a knowledge of the syntax and semantics of that language, and leads to an 

implementational view of the solution.

A word of caution is appropriate at this time: the vocabulary that we use to describe these views is often very similar in the two cases so it

is important to be clear about which view one is describing. For example, the idea of modularization is common to all views, but a module

could refer to a unit of program code in the implementational view (such as a method, procedure or subroutine – depending on the

programming language) or an operation in the conceptual view. In what follows, we shall try to ensure that we make it quite clear which

view we are discussing.
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2.1 System structure: Conceptual views

2.1.1 Types and abstract data types

When analysing a problem it is possible to identify collections of items in the problem domain with similar properties, for example, 

employees in a firm, for which it is useful to invent a collective name, such as 'employees'. It is then possible to discuss the type 

'employee' which is the set of employees in the firm. This implies that certain items have the property of being an employee whereas other 

items are not employees. Thus, some items are in the set, others are not. We end up with the following definition of type:

Type is a word given to a named set of items having some property in common.

A useful way of defining the property which the elements of the set have in common, is to list the operations that they can carry out and to 

use the term behaviour to stand for this collection of operations. This leads to the idea of an abstract data type:

An abstract data type (ADT) is a set of items defined by the collection of operations that they can carry out. The 

elements of such a set are usually referred to as values.

An example of an ADT is a set of bank accounts. Suppose we name such a set Account. Being an ADT, all the instances of Account, that 

is, all the individual bank accounts that make up the set, respond by means of the same set of operations. That is, the instances exhibit the 

same behaviour when invoked. So, for example, there might be an operation that sets the balance of an account named setBalance, 

another operation named getBalance that returns the current balance of an account, an operation to withdraw money from an account 

might be called debit, and so on. In other words, all the instances of Account are characterized by the same collection of operations – any

object that responds to the same collection of operations would be considered a bank account.

If we were interested in building payroll software that would transfer money from a firm's bank account into the accounts of its employees, 

we could begin by describing the various bank accounts as instances of the ADT Account. In addition, we would need to describe the 

firm's employees in a similar way. That is, we would need an Employee ADT having suitable operations related to the amount of pay 

received by an employee (getPay and setPay), the frequency of payment (getFrequency and setFrequency), certain details of the 

employee's bank account (such as getAccountNumber, setAccountNumber) and their personal details (getName and setName). Of course, 

in this application we would only be interested in those attributes and operations of an employee that relate to the payment of salaries; we 

would not want to deal with the multitude of other operations that relate to an employee. The process of identifying the operations that are 

appropriate to the problem being solved is known as abstraction because we need to concentrate only on the features of real-world 

objects that are essential to solve the problem: we ignore all other features. We end up with a definition of an abstract data type, which is a 

model of the real thing at a level of abstraction appropriate to the problem being solved.

Clearly, to define an ADT means defining its operations (its possible behaviours). An operation is defined in terms of syntax and 

semantics. The syntax of an operation tells you what must be written down to describe an application of the operation, and this includes:

the name of the operation;

the arguments of the operation (a definition of the data that the operation works upon);

the result of carrying out the operation.

Typically, the arguments and the result are values (instances of other abstract data types). For example, the syntax of the Account

operation debit could be defined as follows:



name: debit

argument: an instance of the ADT Money

result: an instance of the ADT Boolean

which says that the operation, debit, must operate on an instance of the ADT Money (an amount) and returns either true or false depending 

upon whether the debit was successful or not (an Account may not be allowed to become overdrawn and so the operation may not 

succeed). This information is collectively known as the signature of the operation.

The semantics of an operation is a description of what the operation does (often given in terms of what it does to its arguments in order to 

produce its result). Whilst it is possible to define the semantics of an operation in a formal way, we shall simply use English prose.

2.1.2 Interfaces

It is important to realize that the only way to interact with an instance of an ADT is by invoking one of its operations. That is, the only 

aspects of an instance of an ADT known externally are its operations. Therefore, we speak of the set of operations that define an ADT as 

an interface. How an operation carries out its task is of no concern to any other ADT that uses the operation. These ideas are illustrated in 

Figure 2.1 where the interface for the Account ADT is shown. We have used the same operation names as for the examples in Part III. 

There, the bank account objects are assumed to be stored in a database, whereas in these introductory examples we are programming 

objects in main memory. The implementation of the operations is therefore not identical here and in Part III.

Figure 2.1. The interface of the ADT Account.



2.1.3 State

In our ADT example, Account, if we wanted to explain what its interface operations do (you cannot use an operation successfully without 

knowing what it does), one way would be to describe an instance of Account in terms of its state. That is, in terms of a set of values that 

describe it. For example, an account might have a balance (an instance of the ADT Money). We could then describe the meaning of the 

account operations in terms of the effect they have on balance. Thus, the operation credit would take an amount of money and increase 

balance. The operation debit would reduce balance by a given amount (but only if the account's overdraft limit were not exceeded) and 

addInterest would increase balance by adding interest to it. Figure 2.2 repeats Figure 2.1 but this time shows the instances of the ADTs 

which make up the state of an Account (balance and overdraftLimit are both instances of the ADT Money).

Figure 2.2. The state of the ADT Account.

In a complex system, there will be many instances of a variety of ADTs and the invocation of an operation of one ADT will require further 

invocations of the operations of others.

In the Account example, the operation credit must change the value of balance, but it can only do this by invoking an operation of the ADT 

Money.

Thus, an ADT normally has two roles:

a supplier of services (another ADT can make use of its operations); and

a client (a user of the services provided by other ADTs).

As a supplier, an ADT makes its interface known to other ADTs; as a client it uses the facilities offered by other ADTs (as described by 

their interfaces).



If ADTs are designed carefully, they should be general enough to be reused as components in new models.
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2.2 System structure: Implementational views

We shall now turn our attention to how the ideas behind ADTs can be incorporated into a programming language. There are a variety of 

kinds of programming (often referred to as programming paradigms), but in this book we shall concentrate on the object-oriented 

programming paradigm and will illustrate the concepts in the language Java. Strictly speaking, the correct English term is 

'object-orientated' but 'object-oriented' is almost universally used.

2.2.1 Object-oriented programming

An application written in an object-oriented programming language is structured as a community of objects, each of which provides

services that are used by other objects of the community when they are activated. That is, an object can perform a number of actions,

which can be used by other objects. Objects are defined by their behaviour – the collection of actions that they can carry out. In

object-oriented programming it is usual to refer to an action that an object can carry out as a method and an object as an instance of a 

class. That is, a class is a set of objects with the same behaviour (the same set of methods). Thus, a class is a collection of objects and 

the objects are defined by a set of methods.

There is a close correspondence between, on the one hand, ADTs and their instances, and on the other hand, classes and objects. 

Classes can be used to implement ADTs, and an object (of a class) corresponds to an instance of an ADT.

It may appear at first sight that there is little difference between ADTs and classes and indeed they are very similar. However, there is 

more to classes and objects than straightforward ADTs and their values. Confusingly, problem analysts find that it is useful to describe 

real-world entities as objects and define classes for them. We then end up with notions such as real-world objects that are similar to, but 

sufficiently different from, programming objects that we have to be very clear whether we're dealing with conceptual or implementational 

views of software. In this section we shall confine ourselves to looking at objects in a programming sense and will introduce a notation for 

manipulating these objects that will be used in the remainder of the book.

Historically, the term module has been used to mean a program unit (part of a program) that is used exclusively through an external 

interface. In the object-oriented paradigm, however, an object is used exclusively through its external interface, and the code that defines 

that interface (the object's methods) resides in a class. Whilst the two scenarios are different, the same principle applies: code is used only 

through a well-defined interface.

2.2.2 Interfaces

In our discussion of ADTs we drew an important distinction between an interface and implementation. Because clients of an ADT only 

need to know about its interface (an interface is the public face of an ADT), there is no need to know about how the operations carry out 

their task.

In many object-oriented languages this distinction, between the interface of a class and the way in which its methods are implemented, is 

made explicit. For example, in Java, we can write down an interface for a class that represents the Account ADT as follows.

interface AccountInterface {

   float getBalance ();

   void setBalance (float anAmount);

   void setOverdraftLimit (float anAmount);

   void credit (float anAmount);



   boolean debit (float anAmount);

   void addInterest (float interestRate);

}

The elements within parentheses are known as arguments and signify what values (objects) are needed by the method in order to give a 

result (normally another object). Here we have used float values (decimals) rather than objects from the class Money as the latter is not 

built into Java (although it would be possible to build a suitable class, but we shall not pursue this here). Thus, the method named 

getBalance requires no arguments and returns a float value. The operation credit requires a float value as an argument but does not return 

an object (indicated by the use of the keyword void). The method named addInterest requires one argument (a float, that represents a 

percentage rate of interest to be applied to balance) and returns no value. The method debit attempts to reduce balance and returns a 

boolean value (true if the debit was successful, and false otherwise).

Hence, each method in an interface is described by a heading consisting of three components: the name of the class of the return object 

(or void), the name of the method and any arguments (in parentheses). The heading of a method corresponds to the signature of an 

operation in an ADT.

2.2.3 Implementation

Having defined the interface of a class (and hence identified the methods that can be invoked on the objects of that class) we must define 

the processing that is to be carried out when each method is invoked (executed). We describe the process of defining what a method does 

as implementing the method. Once the tasks carried out by the methods in the interface have all been defined, we say that the class has 

been implemented and we have constructed an implementation of the class. For example, here is a class named Account that implements 

AccountInterface and defines the services provided by bank account objects.

class Account implements AccountInterface {

   float balance;        // an attribute

   float overdraftLimit; // an attribute

   float getBalance () {

      return balance;

   }

   void setBalance (float anAmount) {

      balance = anAmount;

   }

   void setOverdraftLimit (float anAmount) {

      overdraftLimit = anAmount;

   }

   void credit (float anAmount) {

      balance = balance + anAmount;

   }

   boolean debit (float anAmount) {

     boolean success;             // local variable

     if(anAmount <= balance + overdraftLimit) {

        balance = balance – anAmount;

        success = true;

     }else
        success = false;

     return success;

   }

   void addInterest (float interestRate) {

     balance = balance *(1 + interestRate/100);



   }

}

The two quantities named balance and overdraftLimit are conventionally known as attributes and together constitute the state of an object 

from this class. In other words, every object from the class Account contains two values named balance and overdraftLimit. Some methods, 

such as getBalance and debit not only perform some useful service but in so doing return a value (an object). The value returned is 

specified in the return statement and the class of the returned object is shown preceding the name of the method.

An important principle of object-oriented programming, taken from ADTs, is that the state of an object should be hidden from users of the 

object. This means that one object should not be able to access directly the values in the state of another object. If there is a need for an 

object to access the state of another object, then this must be done using a method designed specifically for the purpose. Clearly, such a 

method must be part of the object's interface. In our example, the methods getBalance, setBalance and setOverdraftLimit are used to 

access the state of an object from the class Account. This principle is known as encapsulation. The principle is important because it 

provides controlled access to the state of an object. If one object were to access the balance of an account directly, it could change (either 

by accident or design) balance to a value that exceeded the overdraft limit and leave the account object in an invalid state (in 

well-regulated circles, such situations should not exist). Ensuring that all attempts at withdrawing money from an account can only occur by 

invoking the debit method enables us to control this process and avoid objects becoming invalid (we also say inconsistent). As we shall 

see in Part III, even with encapsulation, operations such as getBalance and setBalance must be used with great caution.

A major problem in software construction is the continual need to amend the software either to repair it (fix bugs) or to extend its 

capabilities. Amending software is a major source of error. Separating an object's interface from its implementation means that it becomes 

possible to change its attributes or alter the implementations of its methods (provided that there is no resultant change to the interface) 

without affecting any other object that invokes its methods. That is, the effects of any change are localized and errors are more easily 

rectified. Of course, any change to an interface will affect other parts of a program and great care needs to be taken. However, a compiler 

will detect whenever one object attempts to invoke a method of another object incorrectly, that is, not according to its interface 

specification.

2.2.4 Object interactions

An application written in an object-oriented programming language is structured as a community of interacting objects, each of which 

provides services that are used by other objects of the community. We discuss in Section 2.3 how such interactions are started.

A service is initiated by an object invoking the appropriate method of the object responsible for providing the service. The notation for 

denoting the invocation of a method varies from one programming language to another, but a common device is to use a full stop between 

the name of the object that provides the service (sometimes called the receiver) and the name of the method to be invoked. For example, 

to denote that an amount of £246.50 is to be credited to a bank account object named myAccount, we shall write:

myAccount.credit (246.50) 

The construction credit (246.50) denotes the method invocation in which the identifier credit is the name of a method mentioned in the 

interface of the Account myAccount and 246.50 is an actual argument (a decimal value used by the method to provide the service). A 

service is defined by some programming code known as a method. For example, the credit method increases the balance of an account 

and has been implemented as follows:

void credit (float anAmount) {

  balance = balance + anAmount;

}

In this example, the balance attribute is updated by adding the amount anAmount to it. We call anAmount a formal argument, that is, a 

place holder for the actual argument, the value that is specified in the invocation.

Here is a sequence of invocations of the same Account object named myAccount which make a deposit, add interest to the account (at a 

rate of 6.5%) and finally print out the balance of myAccount:

myAccount.credit (250.0); 

myAccount.addInterest (6.5);

screen.print (myAccount.getBalance ());



The identifier screen refers to an object that represents the computer screen and offers a service named print. Invoking the method 

getBalance () on the object myAccount returns a float value which is then provided as an argument to the print method to be printed on the 

screen.

The style of programming used here is usually referred to as procedural. That is, you write a sequence of instructions which are carried 

out one at a time in the order they are written down (although the order of execution can be modified by the use of conditional and loop 

statements). In the object-oriented paradigm, the predominant type of instruction is a method invocation (also known as a procedure call) 

in which a method of a specific object is executed. Thus, a program execution consists of a sequence of method calls, and each invocation 

of a method will often result in further method calls.

A significant point in procedural programming is that, in a sequence of method calls, a call cannot commence until the immediately 

preceding call has finished. This is known as synchronous processing. This may seem an obvious or even trivial point, and you may be 

wondering why we have invented a new term to describe it. The significance will become clearer once we look at concurrent processing 

when we allow one call to start before the previous one has finished. Figure 2.3 illustrates what we mean by synchronous processing in 

which an invocation of method A makes calls to methods B and C. You can view the execution of method A as the execution of a 

sequence of instructions in which a call to method B is made. Method B is executed and, when it is finished, a return is made to executing 

A's instructions. Later, a call is made to method C. The main point in synchronous processing is that the instruction in A's code that calls 

method B does not finish until a return is made from executing method B's instructions. This implies that A's instructions that follow the call 

to B will not be executed until a return is made from B.

Figure 2.3. A thread of control.

In Figure 2.3, the arrows drawn through the instructions show the order in which instructions are carried out. Such an order is known as a 

thread of control. We return to this concept in Section 2.3.

Terminology

In some programming languages, notably Smalltalk, a synchronous method invocation, such as

myAccount.credit (250.0); 

is called a 'message send'. It is said that the 'message' credit (250.0) is 'sent' to the object myAccount. As such method invocations are 

synchronous, such a 'message send' generally results in a value being returned. In this book, we are concerned with system design, 

including distributed systems. In this wider context the term message indicates a collection of data that is transferred from one place to 

another and there is no implication that a return value is sent. A message is simply a one-way, point-to-point transfer of data. You can then 



view a method invocation as (1) the sending of a call message from the caller to the receiver, (2) the execution of the receiver's 

instructions, and (3) the sending of a return message from the receiver back to the sender. In synchronous communication, the caller 

cannot continue having sent a call message until it receives the return message. We shall discuss asynchronous communication later.

2.2.5 The life-cycle of an object

Objects have a life-cycle by which we mean that they are created, enter into collaborations with other objects and eventually die (although 

some objects will be stored in persistent memory and are, unsurprisingly, known as persistent objects). A non-persistent object has a 

lifetime that is restricted to the time that the program which created it is being executed. A persistent object exists beyond the execution of 

the program that created it.

Thus, an object-oriented program must have a notation for creating objects. In this book, we shall use the keyword new to indicate the 

creation of a new object. For example, to create a new bank account object we would write:

new Account (350.0, 500.0); 

where the arguments (the values 350.0 and 500.0 enclosed in parentheses) is used to initialize the object (that is, the new account has an 

initial balance of 350.0 and an overdraft limit of 500.0). This begs the question of how the process of initialization is effected. In Java, there 

is the notion of a constructor, a kind of method used to initialize the state of an object when it is created. In the case of an Account object, 

we would wish to create a new account with an initial balance and an agreed overdraft limit. A constructor that does this is:

Account (float initBalance, float limit) {

  balance = initBalance;

  overdraftLimit = limit;

}

This constructor simply initializes the attributes of a new Account object. It would be placed in the Account class along with the definitions 

of the methods that apply to objects of this class.

In order to be able to refer to this new object later in a program we need to associate it with an identifier so that we can keep track of it and 

distinguish between all the objects that might be created in a program. Typically we would write:

myAccount = new Account (350.0, 100.0); 

yourAccount = new Account (600.0, 250.0);

which creates two separate objects (both from the class Account) referred to by different identifiers. In fact, the identifiers myAccount and 

yourAccount stand for variables. The main property of a variable is that it can refer to different objects at different times during the 

execution of a program. Figure 2.4 illustrates how we distinguish between a variable and an object (we've numbered the objects simply to 

distinguish them).

Figure 2.4. Variables referring to objects.



In our notation, the symbol = stands for the operation known as assignment. Assignment means associating a variable with an object and 

great care must be exercised when using it. For example, having created the two Account objects and assigned them to the variables 

myAccount and yourAccount as above, if you were then to make the assignment,

myAccount = yourAccount; 

the result would be as shown in Figure 2.5.

Figure 2.5. Dangers of assignment.

In Figure 2.5, both variables refer to the same object (we have created aliases for the same object). However, unless there is another 

variable that refers to object 1, there is no way to refer to it again, and it is effectively dead (most programming languages would remove 

the object from main memory, a process commonly known as garbage collection).

Some programming languages are said to be strongly typed which, for our purposes, means that each variable has a 'type', which 

restricts the kind of object to which it can refer. For example, writing (in Java syntax),

Account myAccount; 

Account yourAccount;

restricts the variables to refer to objects from the class Account (and, as you will shortly see, objects from classes that inherit from 

Account). Any attempt to use these variables to refer to objects from different classes will result in an error.

2.2.6 Specialization and generalization

It frequently happens that one kind of object is closely related to another kind of object and we can take advantage of the relationship in a

variety of ways. For example, it is common for banks to offer different kinds of account such as current accounts, savings accounts and

high interest accounts. Such objects have many things in common – they're all bank accounts, after all – but they also have differences:

one may not permit overdrafts, another may not provide interest and so on. We would like to capture both the similarities and the

differences, and the mechanism usually used is known as inheritance. For example, suppose that a current account is an object from the 

class CurrentAccount, a savings account object is from the class SavingsAccount and a high interest account object is from the class 

HighInterestAccount. Because these objects are all bank accounts they should behave like objects from the class Account. That is, the 

methods defined in the class Account also apply to these more specialized objects.

Suppose that objects from the classes SavingsAccount and HighInterestAccount both provide interest, but current accounts do not, and 



that current accounts are the only kind of bank accounts to permit overdrafts. We can capture these relationships in an inheritance 

diagram as shown in Figure 2.6.

Figure 2.6. The inheritance relationship between different kinds of bank account.

We say that objects from the classes CurrentAccount and InterestAccount are specializations of objects from the class Account, and objects 

from SavingsAccount and HighInterestAccount are specializations of objects from InterestAccount. Conversely, an object from the class 

Account is a generalization of objects from the classes CurrentAccount and InterestAccount, and so on.

The significance of inheritance is that it becomes possible, for example, to define the class InterestAccount in terms of the class Account as 

illustrated below:

interface InterestAccount extends Account {

   float getInterestRate ();

   setInterestRate (float rate);

}

That is, objects from the class InterestAccount have the same behaviour as objects from the class Account (that is, they have the same 

methods) but in addition, they also have two further methods named getInterestRate and setInterestRate. We say that an object of class 

InterestAccount inherits the methods of class Account.

In general, depending upon the programming language, inheritance can be used to remove and replace inherited methods as well as to 

add new methods. In some languages it is possible for a class to inherit methods from several classes and this is known as multiple 

inheritance.

2.2.7 Composition

An object can encapsulate data in the form of attributes. In general, an attribute is itself an object, illustrating that objects can be composed 

of other objects. For example, our Account objects would be better modelled with a balance that was an amount of money rather than a 

float. In other words, an Account object would have an attribute (balance) from the class Money, say. The objects of class Money would, in 

all likelihood, contain two attributes, both integer objects, representing pounds and pence (or dollars and cents, or whatever, depending on 

the currency being modelled).

2.2.8 Object collaboration



An object-oriented program is often described as a collection of collaborating objects in which objects offer services to one another. A 

service is requested by one object invoking a method of another object. The invocation causes the object to carry out the service. When 

modelling an object system, a useful design tool is a class diagram which shows the relationships between classes. For example, Figure 

2.7 shows the relationships between some of the classes that might be found in a banking system.

Figure 2.7. A class diagram.

The figure shows two kinds of relationships between classes: inheritance, as we have already seen, and association, which is shown by 

straight lines with symbols attached. The symbols attached to the association lines denote multiplicities. A multiplicity indicates the number 

of objects from each of the two classes in the association. For example, each InterestAccount object will, in general, be associated with 

many (denoted *) StandingOrder objects and each StandingOrder object will be associated with precisely one (1) InterestAccount object. In 

this model, a StandingOrder object is a kind of Transaction object (shown with an inheritance association). A Transaction object is an object 

that causes some action to be performed on Account objects (crediting or debiting amounts of money, for example). A standing order 

transaction will result in an amount of money being transferred from one customer's account to another. In general, each Account will be 

associated with many Transaction objects.

Another useful diagram is a collaboration diagram, which shows how objects interact by invoking each other's methods. For example, 

suppose that I want to give you £100: a Transfer transaction named aTransfer (a type of Transaction that transfers amounts between 

Account objects) would ensure that £100 would be debited from myAccount and subsequently credited to yourAccount. There are three 

objects involved in this activity and their interactions can be shown on a UML-like sequence diagram (Figure 2.8). The vertical dashed 

lines represent the passage of time (increasing downwards), with the vertical rectangles indicating an activation of the object. When it is 

active, the object can invoke methods of other objects. In Figure 2.8, aTransfer invokes debit(100.0) on myAccount and, at a later time, 

invokes credit(100.0) on yourAccount.

Figure 2.8. A sequence diagram.



In a programming language, the same transfer might be represented as:

myAccount.debit (100.0); 

yourAccount.credit (100.0);

which would be a set of instructions in a method belonging to the object aTransfer.
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2.3 The process concept

The style of modular specification outlined above gives a description of the components of a system and gives the intuition that the 

components interact as the system executes dynamically. We know that methods are invoked on objects and that the object's set of 

methods defines its possible behaviour. In Figure 2.3 we saw a thread of control pass from the object containing method A to the object 

containing method B and back, then to the object containing method C and back, when methods were invoked. We now focus on the 

dynamic execution of a system: the events that cause method invocations and the order in which invocations take place.

As well as an object model, a computational model is therefore required with a notion of active elements or activities which may call 

interface procedures or invoke methods on objects in order to carry out a computation. Active elements have been given a variety of 

names in systems: activities, processes, tasks or threads. We shall use the classical term 'process' for an abstract entity which executes a 

program on a processor; but see Section 2.3.2 for further discussion of multi-threaded processes.

A process must follow a protocol in order to use an object correctly, that is, a set of rules which define the order in which the object's 

interface operations may meaningfully be invoked. For example, a protocol for an existing file object is likely to be that the file is opened, a 

succession of reads and writes are then allowed, after which it is closed. If the protocol is not followed the invoker of the object may be 

given an error return, such as 'incorrect argument' if a file's pathname is given where an open file identifier is expected. In the case of a 

stack object an error might be 'attempt to pop from an empty stack' if pop is invoked before push.

Again, the point should be made that the syntactic specification of the interface of an object is necessary for correct use of the object but is 

not sufficient, in itself, to convey the meaning (or semantics) of the object's functionality. In the case of the file object, we require that the 

bytes we read from it are the same bytes that we previously wrote to it. The specification of a protocol is another means by which some of 

the intended semantics of the object is conveyed.

2.3.1 Process by analogy

To introduce the notion of process let us consider some analogies and see how far each can be taken:

The text of a book is comparable with the text of a computer program or the specification of a module. The activity of reading a 

book is comparable with the execution of a program by a process.

Two musicians sharing a score while playing a piece of music are comparable with two processes executing the same program 

on two processors simultaneously. Luckily, they need to turn the pages at the same time as they are playing synchronously.

I start to read a book, make a note of where I have got to and then put it down. My son picks it up, decides it looks interesting 

and starts to read. Over a period of time the two of us cooperate (or compete) over reading the book. This is again comparable 

to two processes executing a program. Since only one of us is reading at one time the analogy is with a program that for some 

reason may only be executed by one process at a time. In the case of the book, we can buy another copy to avoid sharing it.

I am reading a book; the phone rings; I answer the phone and go back to the book. This is comparable with a processor 

temporarily leaving the execution of a program to deal with an event such as a disk controller signalling that it needs attention 

after completing the transfer of some data.

In all cases there are the concepts of the static text and the dynamic process of reading it, which are analogues of the static text (code) of 

a program and the dynamic process of executing that code.

To put these ideas on a more concrete footing, here are some slightly more formal definitions, taken from Brinch Hansen (1973a):

data Physical phenomena chosen by convention to represent certain aspects of our conceptual and real world. The 



meanings we assign to data are called information. Data is used to transmit and store information and to derive new 

information by manipulating the data according to formal rules.

operation A rule for deriving a finite set of data (output) from another finite set (input). Once initiated, the operation is completed 

within a finite time.

computation A finite set of operations applied to a finite set of data in an attempt to solve a problem. If it solves the problem it is 

called an algorithm, but a computation may be meaningless.

program A description of a computation in a formal language.

computer A physical system capable of carrying out computations by interpreting programs.

virtual 

machine

A computer simulated partly by program.

process A computation in which the operations are carried out strictly one at a time: concurrent processes overlap in time. 

They are disjoint if each refers to private data only and interacting if they refer to common data.

In the case of software, the program text specifies objects' methods and they are executed dynamically by processes on one or more 

processors. A process may move from object to object by calling interface methods (see Figure 2.9).

Figure 2.9. (a) A process invoking a method.(b) A process executing code from methods 

belonging to several objects.

A given object may be used by a number of processes simultaneously. In a time-sharing system, for example, users may share a single 

copy of system utilities, such as editors or compilers. Each user has an associated process fetching and executing the instructions of the 



shared code. Figure 2.10 shows two processes executing a compiler. Here the processes are shown as cyclic, since they are likely to 

spend time executing a loop such as 'fetch the next statement and translate it'. There must be different input, output and data areas for the 

two separate compilations.

Figure 2.10. A compiler being executed by two processes.

In this case the processes are disjoint rather than interacting; there is no connection between the different processes executing the 

compiler. Although common code is executed, there is workspace private to each process. A main concern of this book is to study the 

more difficult problem of interacting processes.

2.3.2 Multi-threaded processes

We see from the above discussion that the term 'process' was introduced historically as an 

abstraction to capture the notion of dynamic execution. In modern systems, particularly since the 

advent of window-based interfaces there is often a need for a single program (or application) to 

allow several activities to be in progress at the same time. For example, you may wish to work on 

the draft of an email message but pause to incorporate and read new email coming in, then reply 

to an urgent message before resuming your original draft. The mail application, a single 

'program' or 'package', then has several activities in progress concurrently, see Figure 2.11.

Figure 2.11. Mail: a multi-threaded application.



In this new situation we shall use the term 'process' for the initial activation of a program; the resources needed to activate the program, 

such as memory, are associated with that process. We shall use the term thread or thread of execution for each of the separate activities 

within such a program. The term 'thread' is then used for that entity which runs on a processor: the entity to be scheduled. Systems which 

support this facility typically create a process with a single thread when the program is first activated. Extra threads are created as 

required. Note that although the threads execute independently they share the resources allocated to the process.

We shall use the classic term 'process' to subsume the term 'thread' unless it is necessary to draw out the distinction between abstraction 

and implementation. Process is therefore the general abstraction for a dynamic entity which runs on a processor.
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2.4 Operating system functions

Our aim is to comprehend and build systems. Some, for example transaction processing systems, run on top of (under the control of) 

operating systems of some kind; others are subsystems which form part of operating systems (see Figure 1.12). It is therefore necessary 

to understand what an operating system can provide for any system or application which runs under its control and also to understand 

what the operating system may be hiding or making inaccessible. A study of the subsystems within operating systems fulfils both of these 

purposes: it explains the services they provide for the application level and also some of the details of the lower levels which are hidden 

from the application.

The functions of an operating system are broadly:

To manage resources

The resources are typically processors, devices, disk space for files, memory for loaded 

programs and communications connections to other machines. The operating system is 

responsible for allocating resources, often dynamically on demand, for resolving any 

conflicts that might arise over access to resources and for responding to events associated 

with them. Each resource may be modelled as an object and resources of that type may be 

managed by a type manager; we expand on this idea in Section 2.7.

To provide a service for its clients, which may be utilities, applications or human users

Hardware is difficult to program, and the system and its users must be protected from the errors that would be made if 

uncontrolled access to hardware was allowed. The operating system handles the raw hardware and provides a high-level 

interface to it. In a single-user system a high-level interface is a convenience; in a multi-user system it is essential to prevent 

interference between users. This high-level interface can be described as a virtual machine (a number of virtual resources) 

that is easier to use than the real machine (the real hardware resources); see Figure 2.12.

Figure 2.12. A virtual machine and a real machine.



The operating system manages resources and provides high-level interfaces for their use. An implication of this is that clients of the 

operating system must be prevented from accessing the resources other than through these interfaces. We shall study the protection 

mechanisms that are used to enforce this in Chapter 3. The basic idea is that the operating system is privileged to carry out certain 

functions (such as device handling) and its clients are prevented from carrying out these functions directly. The part of the operating 

system which is privileged is often called the kernel, although, as we shall see below, conventional 'kernels' have become larger than is 

implied by this definition.

If we take a time-sharing system as an example of an operating system there may be many users simultaneously sitting at terminals 

controlling their program executions, typing input to editors and so on. In Chapters 3 and 4 we show how it is possible for more users to run 

simultaneously than there are hardware processors to execute their programs or respond to their commands. In Chapter 3, device 

handling is considered in some detail, followed by an introduction to communications handling. In Chapter 4, sharing the available 

processors between the users is the focus; this is where we see how processes are implemented.

The operating system is also concerned with memory management. It must allocate memory to running programs, both on initial loading 

and when data areas need to exceed their initial storage allocation. It must also interface with memory management hardware, set up the 

hardware and deal with any errors caused by a running program, as we shall see in Chapter 5. In a system with many users or many 

processes per user, the memory management subsystem is itself a concurrent system, since it may at any time be in the process of 

handling more than one request from its clients. Also, throughout the book we shall be concerned with whether memory can be shared 

between components of a system.

Most systems require storage that persists independently of the currently executing programs. The provision of such storage through file 

management functions is described in Chapter 6. Again, the file management subsystem of an operating system is itself a concurrent 

system and will be used as an example throughout the book. Details of the internal implementation of filing systems are given in Chapter 6

and support this example.
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2.5 Operating system invocation and protection

We shall again use the high-level abstraction 'process' to capture the notion of dynamic execution. When we come to implementation 

examples we shall distinguish between 'process' and 'thread'.

There are two ways of invoking operating system services:

a process may make system calls;

a user may give commands to a process running a command interpreter program that causes the process to make system 

calls.

Once a process is executing a program it may request operating system services by making system calls. The set of system calls is the 

interface to the operating system module through which the operating system functions are invoked. Section 3.2 explains in detail how 

this entry into the operating system can be made. Here we shall provide a brief introduction.

First, a process must be created to execute the program. Some main memory must be allocated for the purpose, and the code must be 

loaded (from a file) into that memory. Some processor time must be allocated to the process to run the program. A process executing the 

command interpreter program initiates these activities (by making system calls) in response to a command from a user. It must be part of 

system initialization to ensure that such a process is ready to receive commands. In a multi-user system, we can envisage a process 

executing the command interpreter program on behalf of every active user.

A command interpreter therefore causes system utilities or user programs to be loaded and run. It is concerned with initiating process 

creation (through system calls to the operating system) and with process management.

As we saw in Chapter 1, current workstations and terminals typically have graphical user interfaces (GUIs) or window systems. You 

might type commands in certain windows or you might use a mouse to move a cursor across the screen to indicate an object that you 

wish to use or to select an item from a system menu. Clicking a mouse button is equivalent to giving a command to a command 

interpreter. The GUI interprets your clicks and invokes the command interpreter on your behalf.

For a detailed example, recall Section 2.3.2 and Figure 2.11 where we saw a running email application with a window interface and 

several activities in progress. To initiate the application you would have either typed a command such as exmh in a command window, 

clicked on an icon, or this would have been done as part of your login procedure because email is always part of your working 

environment. The command interpreter, on receiving the command to run the email application, would ask the operating system to 

allocate memory, load the appropriate files and create a process with a single thread of execution. You then may have clicked to request 

an empty mail template and started to type a message. Part-way through you might have noticed that new mail had arrived and clicked 

in the email window on the 'incorporate new mail' button. The GUI would have passed your command to the command interpreter which 

would have created a new thread within the email application with the correct starting point to execute 'incorporate new mail', and so on.

2.5.1 Protection of the operating system

Operating system code may perform highly privileged operations which are central to the correct, reliable running of the entire system. 

Application programs should be prevented from executing such operations and from jumping into operating system code by accident or 

design. The system calls provide the controlled way of invoking an operating system. If this protection and controlled entry cannot be 

enforced then hardware status may be changed by accident or data structures essential to the correct operation of the system may be 

corrupted.

In early operating systems, and more recently in those for PCs, the operating 

system was not protected from application code. Any process could make a simple 



procedure call into the operating system without restriction. It can be argued that if 

you are the only user of a system then if you corrupt your operating system it is 

your own fault, only you are affected, and you will have to reboot it and start again. 

When multi-user systems came along it became necessary to protect users from 

each other and to prevent one user from corrupting the operating system, thus 

affecting other users.

When we study the hardware–software interface in Chapter 3 we shall see that typical processors allow us one major protection 

boundary. Software may run as privileged (or in system mode) or unprivileged (in user mode). Control cannot pass from unprivileged to 

privileged software except under strict control. In the next section we explore the design choices in allocating operating system services 

to these two protection domains.
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2.6 Operating system structure

Early operating systems were monolithic or unstructured, as were those for PCs until very recently. Such systems run without a privilege 

boundary, and arbitrary procedure calls, reads and writes can take place. The first step in providing structure is to use the hardware 

protection boundary to make the operating system privileged and applications unprivileged. The system calls can then be the 

hardware-enforced operating system interface to applications.

An operating system is a very large piece of software; for example, Sun's UNIX kernel (the basic functions described above and shown in 

Figure 2.13) occupies over a megabyte. Figure 2.13 shows some of the internal modules in a conventional closed operating system, such 

as would be found in a personal workstation or a time-sharing system. The system calls can be partitioned into those which invoke file 

storage services, those which request terminal I/O, those which request network communication, and so on. The term subsystem is often 

used for the major internal modules of operating systems. We now examine approaches to providing internal modular structure.

Figure 2.13. A typical closed operating system structure.

2.6.1 Layering

As operating systems grew in size a great deal of research effort was devoted to considering 

how best they should be structured. One proposal was to impose a strictly layered structure on 



the functions introduced above. The idea is that each layer in the hierarchy creates a single 

abstraction. Any layer uses the services provided by lower layers and provides a service for 

layers above it. An advantage is that a change at a given level does not affect lower levels. The 

research systems THE (Dijkstra, 1968) and Venus (Liskov, 1972) explored this design idea. In 

practice, systems have not been designed with their functions in a single strict hierarchy. This is 

because of the difficulty of choosing one specific layering of functions. In THE, for example, a 

memory fault could not be reported to the operator's console because the console manager was 

placed above memory in the hierarchical structure. We consider this example again in Chapter 

11.

Certain modules fall naturally into a hierarchical relationship and this is exploited in system design. For example, a module concerned with 

driving a disk comes naturally 'below' a module concerned with providing a file service. A layered structure is used for communications 

software, as we shall see in Chapter 3.

In the Multics system (Corbato and Vyssotsky, 1965) software was allocated to run in one of a 

number of rings. Originally, 64 rings were envisaged but only eight were used in practice. 

Here we see nine nested protection domains instead of the usual two (privileged and 

unprivileged) provided by modern processors. The most highly sensitive core of the operating 

system is allocated to the innermost ring, and so on. Services developed to run above the 

operating system may run in a ring of higher privilege than their clients. Some DEC hardware 

(PDP-11 and VAX) and operating systems (MVS) have supported three protection domains: 

kernel, system and user.

2.6.2 Microkernels

If a system is to be built on distributed hardware many of the component computers may have very limited functionality. A component of a 

process control system may be dedicated to monitoring the process; a component of a distributed system may be dedicated to providing a 

file storage service or to function as a gateway between networks, concerned only with communications handling. Such components do 

not need to run a complete operating system, neither would the many programming support utilities provided for human users be needed 

there. Figures 2.14 and 2.15 illustrate this point.

Figure 2.14. A file server.



Figure 2.15. A gateway.

For this reason an open operating system structure is advocated (Lampson and Sproull, 1979). The idea here is that those functions which 

are needed universally, by every component of a system, form a minimal kernel, sometimes called a lightweight kernel or microkernel.

The phrase 'kernelization of an operating system' is also coming into use. These names tend to be used now rather than 'open operating 

system', partly to avoid confusion with the term 'open system' which was also coined in the 1970s for use in communications standards. In 

the latter case the term means that a system is open to communication in a heterogeneous world.

To give an example, if a computer has no local disks because storage is provided across the network, then modules concerned with 

storage need not be present in that component of the system. Figure 2.14 shows a dedicated file server with disk handling in the kernel 

and the file service module running at user level. Figure 2.15 shows a dedicated gateway computer; its function is to receive data from one 

network and transmit it on another. In the figure, high-level communications handling is shown outside the operating system, but this might 

not be feasible if very high performance is required. In both cases memory management is shown but this could be very simple for 

dedicated servers.

A small kernel has the advantage of being easier to engineer and maintain. Also, the services that are implemented above rather than 

within the kernel can easily be recompiled and loaded and may therefore be changed (or omitted in certain configurations as we have 

seen). We shall see in Chapter 4 that processes that are executing the privileged kernel functions run at higher priority than user-level 

processes.

There has been a good deal of experimental work on what should be included in a minimal kernel. Every computer has at least one 

processor, some memory and at least one device, for example, a terminal or network connection. The aim is to implement efficient 

mechanisms in the kernel and as much as is reasonable at user level. If you are sure that you always want a particular function to run as 

fast as possible, whatever applications the kernel is to support, you should include it in the kernel. You then give it priority over every 

function you might ever implement at user level. This is a difficult decision to make. There is a trade-off involved between making a service 

part of the kernel, and therefore fast but inflexible, and keeping the kernel as small as possible for maintainability and low overhead. Any 

particular function may provide a slower service when it is located at user level than when it is provided as part of the kernel.

The kernel overhead is the time spent in the kernel between an event occurring and the user-level process that is interested in it being 

scheduled. In real-time systems it is essential to be able to bound this time; the requirement is to be able to express the maximum 

possible delay rather than to obtain high speed as such. A minimal kernel makes this feasible. The requirements of the applications that 

run above a minimal kernel can be expressed by indicating the relative priorities of these user-level processes.

With good design, the minimal functionality of the kernel should lead to low overhead and the potential for high performance, which is 



essential for many network-based server computers. Any inefficiency in a kernel design affects every application, however high its priority.

To summarize, a microkernel-based system has the following potential advantages:

The system configuration can be tailored for dedicated servers.

A small kernel is easier to engineer and maintain.

The services which now run above the kernel are easier to engineer, tune, update and maintain.

The time spent executing the kernel can be bounded.

The kernel provides efficient basic mechanisms; policies are expressed flexibly at user level. Programmers can control the 

relative priorities of user-level software.

A potential disadvantage is that a given service will respond more slowly to its clients if it is implemented at user level instead of inside the 

operating system.

A microkernel should be able to form the basis for a traditional operating system which provides a programming support environment. A 

problem in moving to a new operating system design is that a vast amount of software (so-called legacy software) has been written to run 

above the old operating system. Ideally, a microkernel should provide a set of abstractions from which higher-level services can be built. It 

should be possible to build a conventional operating system interface above a microkernel and run existing software above that. This 

approach has been taken by several microkernel projects, as we shall see in the case studies in Part IV. Figure 2.16 shows the basic idea. 

The UNIX emulation can take UNIX system calls and translate them into calls on the microkernel's services.

Figure 2.16. Emulation of an existing operating system above a microkernel.

Finally, Figure 2.17 shows the microkernel itself split into separate modules, each with its own interface. Application modules are 

implemented similarly and the single hardware-enforced protection boundary has been dispensed with. This model is appropriate for a 

'single address space operating system' (SASOS) where there is no requirement for protection of the microkernel as a separate entity. 

This is the case in an embedded computer system, dedicated to run statically defined software or in dedicated servers where efficiency is a 



primary concern. It is also the model used by personal computers which have run without protection of the operating system until recently.

Figure 2.17. A fully modularized kernel.
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2.7 Object structuring within and supported by operating systems

Because object modelling is accepted as a standard approach to software engineering, many research projects have explored how 

objects might be supported by and used within operating systems. Object support operating systems are designed to support object 

structured software; but their internal structure need not be based on objects. Object-based operating systems use objects as their 

internal structuring mechanism. If the latter approach is taken, objects may be used to represent resources such as files, memory, 

processes, devices. A type manager may be used to manage each resource type and an object to represent an instance of a resource 

of that type. The system calls associated with resources are object invocations.

As well as providing a basis for representing resources uniformly, in terms of attributes and interface operations, there are other benefits. 

Objects may also be named, protected and shared using common mechanisms which are provided as part of general object 

management. That is, once we have learned how to use one resource, such as a file, we know how to use any other resource.

2.7.1 Object naming

It is necessary to identify objects uniquely within a system. This is easier to achieve in a single, centralized system, running a single 

instance of an operating system, than in a distributed system. In Chapter 7 we consider how to design naming schemes that are 

sufficiently general to work for large numbers of widely distributed objects. In general, naming schemes must scale. Here we will outline 

the basic approaches.

A potential user of an existing object must have a name for the object in order to invoke it. For example, a type manager for each object 

type is responsible for creating and deleting objects. Creation is a suitable time for a name to be assigned to an object. Note that such a 

name may be permanent, i.e. persistent: it lives as long as the named object.

Figure 2.18 outlines a fragment of a possible naming scheme which encompasses files and devices and could be extended to include 

other types of object. Instead of the familiar file directories we have object directories. The unique object names are pathnames,

starting from the root of the namespace. Note that such names can be used by client software as a basis for sharing objects. A tree or 

graph structure is therefore one possible approach to assigning unique names to objects.

Figure 2.18. An object naming scheme.



An alternative approach is to say that each object type can be named uniquely in the system and the type manager for that type of object 

can assign an identifier to each object it creates. A unique object name would then take the form:

type-id, object-id-of-that-type 

e.g. type 23, object 456 gives object-id 23456.

This form of name could be more convenient for the type manager to use in its internal data structures and algorithms; it is fixed length 

and numeric.

We have now seen two forms that unique object names might take. From the client point of view a tree-structured namespace with the 

ability to store character-string names in object directories is convenient. From the system point of view fixed-length unique identifiers are 

convenient.

2.7.2 Object protection, invocation and sharing

In this section we are discussing the protection of individual objects by software and not the 

coarse division into privileged and unprivileged protection domains supported by hardware. 

Some research projects and commercial systems have attempted to provide fine-grain 

protection by hardware but the approach was found to be too expensive; the systems ran 

too slowly to compete in the marketplace.

The same access control scheme can be used for all objects: files, devices, processes or memory. The owner of an object may declare 

that processes acting on behalf of specified users, or executing specific programs, may invoke specified object methods. Such 

information may be associated with the object and an access check carried out whenever a process attempts to invoke one of the 

object's methods.

Instead of carrying out such a check on every method invocation, an optimization is usually made as follows. In order to use any object, 

client software must open that object, giving its name and the intended mode of operation as parameters. If the access control check 

succeeds, the object is 'open for use' and the client is returned an object handle which must be used in subsequent invocations. 

Possession of a handle for an open object is taken as sufficient proof that the access control check was carried out successfully. Note 

that the handle is a temporary name which is valid only as long as the object is open for use. An example is the integer 13 in the list 

below.

We have therefore seen three possible kinds of name for objects:

pathname ~jmb/files/CSbook/figures/ADT persistent, global

object-id 23456 persistent, global

handle (for open object) 13 transient, private

Any client can attempt to open an object using its name. The protection information held with an object ensures that only authorized 

processes will pass the access control check and proceed to open it for use. In general, more than one process at a time may have a 

given object open for use; they will each have a different handle for the open object. It may be, however, that such concurrent sharing

is dangerous. We shall study this problem in depth, but an example is that where the object is such that processes must take it in turns 

to make changes to it rather than change it in a free-for-all fashion. In this case, an additional check called concurrency control will be 

needed.



2.7.3 Unified object mechanisms

We have seen that object type managers will support the same mechanisms, whatever the object type, for naming, access control, 

concurrency control, opening (closing) and invoking via handles. The type managers can inherit software to carry out these general 

object management functions thus avoiding the need to reimplement them for each object type. Alternatively, any specific object type 

manager may invoke more general objects as appropriate.

Most operating system designs contain elements of the object-oriented approach outlined above. In Chapter 6, for example, we see how 

files and file directories can be handled in this way. But the object approach is not adopted universally. Some systems support objects 

but their internal structure is not based on objects; others were designed before object concepts became widely accepted.
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2.8 Distributed object systems, platforms and middleware

We have seen above that objects can be used to build an operating system; by implication, a single, centralized system. It is well 

established that objects may form the basis of general software system design; for example, we can model a transaction processing 

system in terms of bank account objects or an electronic mail system in terms of mail objects. In general, such systems will be distributed 

and will be required to run on a heterogeneous collection of computers and operating systems. Since the early 1980s a great deal of 

research and development effort has explored how such systems can be supported.

Distributed object systems have similar requirements to centralized ones. Objects must be named 

uniquely throughout the system; access control and concurrency control must be applied before an 

invocation can go ahead. An additional requirement is that a named object must be located within 

the system. We cannot expect all operating systems to be rewritten to support exactly the same 

object model. Instead, a layer of software, called middleware or a middleware platform runs 

above the underlying operating systems to provide the unified support. Figure 2.19 gives the 

general idea. Platforms such as ANSA (1989), Comandos (Horn and Krakowiak, 1987), CORBA 

(see Chapter 29) and Tina-C have used an object model.

Figure 2.19. A middleware platform.

Although distributed systems are probably the most commonly used style of system, we must study a number of different topics before we 

can understand them in detail. We lay down the fundamentals of distributed systems in Chapter 7.
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2.9 Security and protection

The topic of security is huge and includes all aspects of controlling access to computers, networks and the information stored, processed 

and transferred in computer systems (Anderson, 2001; Schneier, 1996). In outline, security comprises:

External controls –security classifications

A general framework for classifying computer systems is given in the above references. A framework may relate only to internal 

mechanisms or may cover the classification of information into 'top secret', 'secret', etc. The people using the computer system 

are then tagged according to which categories of information they may read, write and transfer. The system must be able to 

enforce such specified policies.

Encryption

The idea of encryption is to transform information so that it cannot be understood by unauthorized parties but can be recovered 

by decryption. Encryption is often used when data is to be transferred across networks. Data may also be stored in encrypted 

form. Passwords are usually stored in encrypted form rather than as clear text.

Authentication –'you are who you say you are'

The use of a login procedure and a password is part of authentication. The idea is to establish the identity of a principal

involved in any computational procedure. A principal can be thought of as a process running a program on behalf of a 

logged-on user. Identity is typically based on knowledge of a secret, such as a password, or possession of an object, such as a 

swipe card. The latter may have an associated secret such as a PIN (personal identity number).

Authentication in distributed systems is more complex than in centralized systems because secret information, such as a 

password, needs to be transferred across a network. A principal may own encryption keys for use in transforming data to and 

from an encrypted representation. A principal may use a private key, known only to itself, to encrypt the data. The recipient of 

such data can be sure that the data originated from the expected principal because that principal's publicly available key 

transforms the data back to an intelligible form. That is, the private and public keys form a pair for use by the algorithms which 

encrypt and decrypt the data. The login procedure associates the human user with the registered user who owns items such as 

encryption keys.

Authorization, protection or access control

An authorization policy specifies which principals may access an object and in what way. The system must have mechanisms 

which can enforce the policies.

The concept of principal is used because greater generality than 'user' is often required. For example, we may wish to express 

'anyone running program X may access file Y' or 'if a principal with rights to a file which include read issues a command to 

printer software to print that file then the printer software is "delegated" the right to read that file (but no other files of the 

principal) until the print command has been carried out'.

Validation of imported software

The access control policies and mechanisms outlined above may be subverted by the injudicious use of unchecked software. If 

you acquire and run a program, that program runs with all your access rights. It could read, overwrite or delete your files. For 

this reason it is desirable that the source of software can be authenticated.

These are some of the issues we shall be discussing in more detail in Chapter 8.



2.9.1 An object model for access control

A general protection model is achieved by forming a matrix with rows representing principals, columns representing objects, and entries 

representing the access rights of the principal to the object. In addition we assume that objects are typed, that the rights are associated 

with the object type and can be enforced by a type manager, see Figure 2.20.

Figure 2.20. An access matrix.

In practice, such an access matrix would be sparse and would be held in a partitioned representation. For example, with each object could 

be associated a list of the principals with access rights to the object together with their specific rights. This is a list of the non-null entries in 

the column associated with the object. For objects of type file such a list is known as an access control list (ACL).

Alternatively, with each principal could be associated a list of the non-null entries of the corresponding row, that is the objects the principal 

can access together with access rights. Each component of such a list is known as a capability.

Both ACLs and capabilities have been used in system designs and will be defined in detail when we study specific object management 

functions.
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2.10 Summary

We need a way to think about complex software systems. The basic functionality of a system can be described in terms of modular

software structure. By distinguishing between the interface and implementation of a module it is possible to create abstractions, that is, 

to focus on what a module does rather than how it does it. A specification of the modules of a system does not tell us how it is executed 

dynamically, a computational model is also needed.

The concept of process was introduced as the means by which dynamic execution of software is achieved. A process performs its 

computation by invoking the interface operations of modules. A protocol defines the correct orderings of operation invocations. An 

outline of some typical operating systems' modular structure was given and major functions, or subsystems, were highlighted. A 

conventional closed operating system structure was compared with an open structure based on a minimal kernel or microkernel.

The potential advantages of a microkernel-based system were outlined and we discussed the criteria for deciding what should be 

included in a microkernel. Existing operating systems' interfaces can be provided above the microkernel so that existing application 

software can continue to be used.

Although object modelling is well established as a basis for software engineering, for example using the Unified Modelling Language 

(UML) (Booch et al., 1999), and has been used to design research operating systems, it does not yet pervade operating system design. 

We saw in outline how each system resource type can be modelled as an object type, thus allowing resources to be named, invoked, 

protected and shared in a uniform way. We then explored how objects could be used as a basis for distributed systems, typically running 

above a heterogeneous collection of computers and operating systems. A layer of software (or middleware platform) creates the 

environment of object naming, location, protection, invocation and sharing.

In this chapter we have deliberately taken a high-level, abstract view of systems. In the rest of Part I we study the implementation of the 

abstractions that have been introduced here.

Study questions

S2.1 What is an interface, and how is it specified?

S2.2 What is the advantage of separating a module's interface from its implementation?

S2.3 What is a process? Why is this concept needed?

S2.4 What is a protocol?

S2.5 Distinguish between a process and a thread.

S2.6 What are the two broad functions of an operating system?

S2.7 What are the resources managed by an operating system?

S2.8 Who or what are the clients of an operating system?

S2.9 Early operating systems were monolithic and unstructured. What was the first step in structuring an operating system?



S2.10 What is a layered structure? What is its chief advantage? What is its chief disadvantage?

S2.11 What requirements do centralized and distributed object systems have in common?

S2.12 What is middleware and what is it used for?

S2.13 Distinguish between authentication and authorization.

S2.14 What is the difference between encryption and decryption?

Exercises

2.1 What are modules, abstract data types and objects?

2.2 What is a process? What is a multi-threaded process?

2.3 Describe how a program, comprising a number of object code files, is loaded and run by an operating system. Which 

operating system functions are invoked in order to create the required environment for the program to run?

2.4
What are the main functions of operating systems in general?a.

What functions would you expect to be present in operating systems for:

A process control computer with a sensor for monitoring, an actuator for control and a network 

connection for reporting to and receiving commands from a control centre?

i.

A dedicated, network-based filing machine or 'file server'?ii.

A computer dedicated to controlling the communications passing between two networks, that is, 

a 'gateway' computer?

iii.

An autonomous personal computer?iv.

A single-user workstation with services available across a network?v.

A machine dedicated to managing and answering queries on a database?vi.

b.

2.5
What is meant by a closed operating system structure?a.

What is a microkernel?b.

What are the advantages and disadvantages of closed operating systems and microkernel-based systems?c.

2.6 Relate the definitions of modules and processes to the structure of operating systems. How might modules be used? 

How might processes be used?

In a strict hierarchy of modules a process executing in a module at a given level may invoke only lower-level modules. 



Is it possible to arrange the operating system functions we have encountered so far into a strict hierarchy? What are 

the advantages and disadvantages of a layered structure? (Section 11.2 describes the strictly layered structure of the 

THE operating system and Exercise 11.1 describes the layers of the Venus operating system.)

2.7 List the resource types managed by your local operating system, e.g. files, directories, memory, devices, processes, 

etc. Consider how they might be implemented as objects. Give the interface operations for each object type and outline 

the interactions involved in using each object.

2.8 Why is a global naming scheme required for objects within an object-based system? Discuss the pros and cons of 

naming schemes based on hierarchical names and global identifiers (e.g. of 64 bits). How can such identifiers be 

constructed so as to be unique?

Distinguish between access control and concurrency control when a process requests to open an object for use. 

Distinguish between object handles and object names.

Discuss the circumstances under which an object can be closed but retained, and deleted.
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Chapter 3. The hardware interface, I/O and 

communications

3.1 Overview

3.2 Device interfacing
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3.1 Overview

The kinds of hardware on which a concurrent system might be built were outlined in Chapter 1. In most application areas we do not have 

to program devices directly but are likely to use an operating system in each component of the system. An operating system provides a 

high-level interface to the hardware which abstracts away from the specific details of how each device is programmed. This makes life 

easier for the programmer, but as designers of concurrent systems we have to take care that nothing crucial is lost in this process: that 

the interface we use gives us the performance and functionality we require. For example, if a hardware event must have a response 

within a specified time we need to understand all that can happen in the software system that responds to the event. Some operating 

system designs make them unable to guarantee to meet timing requirements. For this reason, a concurrent system designer needs to 

know the basics of how devices are controlled.

Some devices are dedicated to a particular task, such as the terminals allocated to individual users, or sensors and actuators for 

monitoring or controlling industrial processes. Others, such as disks, printers and network interfaces, are shared among users. Both 

types are managed by the operating system. We consider the low-level interface between devices and the software which controls them. 

This study forms the basis on which software design decisions can be taken, in particular, the allocation of processes to modules 

concerned with device handling. Hardware events are one source of concurrent activity in a system; we need to study the precise 

mechanisms involved.

When a program is loaded and runs it may contain errors which are detected by the hardware. For example, the arithmetic logic unit 

(ALU) may detect a division by zero or an illegal address; the address of a data operand may be at an odd byte address when an even 

one is expected. Whenever such a program runs it will cause the same errors at the same point in the execution. These can be classified 

as synchronous hardware events.

In Chapter 5 we shall see that a program may not all be in main memory. When a 'page' that is not in memory is referenced the 

hardware signals a 'page fault'. Page faults are synchronous events because they are caused by running programs and must be handled 

before the program can continue to run.

When a program runs, events may occur in the system that are nothing to do with that program. The disk may signal that it has finished 

transferring some data and is ready for more work; the network may have delivered a packet of data. Such events are asynchronous

with program execution and occur at unpredictable times.

These aspects of the interaction of a process with the hardware are considered in detail, as is the system call mechanism through which 

a user-level process may request use of a device.

The network connection of a computer may be considered at a low level as just another device. However, it is a shared device and

computer–computer communication can generate a large volume of data associated with multiple simultaneous process interactions.

The communications-handling subsystem is therefore a large concurrent system. The design of communications-handling software is

introduced in the later sections of the chapter, although a complete study would require a book in its own right (Comer, 1991; Halsall, 

1996; Tanenbaum, 1988).
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3.2 Device interfacing

In this section the basics of how devices are controlled by program are given. Figure 3.1 gives an operating system context for all the 

levels associated with I/O handling.

Figure 3.1. Device-handling subsystem overview.

In Section 2.5 it was pointed out that programs running above the operating system must be prevented from programming devices directly. 

This section will show how this restriction can be enforced and how users may request input or output by making a system call, since they 

are not allowed to program it for themselves (see Section 3.4). Figure 3.1 indicates this difference in privilege between the operating 

system and the user level. It is clear that when a system call is made a mechanism is needed to change the privilege from user 

(unprivileged) to system (privileged).

Three interfaces are indicated. The lowest-level interface is with the hardware itself. Only the operating system module concerned with 

handling the device needs detailed information on its characteristics, for example, the amount of data that is transferred on input or output. 

The operating system creates a higher-level interface, creating virtual devices that are easier to use than the real hardware. This interface 

is language independent. Finally, the language libraries offer an I/O interface in the form of a number of procedures that are called for 

doing I/O. These may differ from language to language and from the operating system's interface. Each language system must invoke the 

operating system's system call interface on behalf of its programs.

Processes are required to execute these modules. This is discussed in detail in Chapter 4; in particular, Figure 4.1 shows processes 

allocated to the modules of Figure 3.1.



In Chapter 27, on Windows 2000, we see a more complex (and flexible) I/O architecture in which multiple, layered device drivers may be 

used.

In Figure 3.1 an interface between the device hardware and the operating system software is shown. Figure 3.2 focuses on this interface 

and shows a hardware component and a software component. Section 3.2.3 describes one form of hardware interface to a device and 

Sections 3.2.4–3.2.8 introduce the lowest level of software interface and the mechanism by which it is invoked by hardware.

Figure 3.2. Hardware–software interface.

3.2.1 Processor and device speeds

It is important to realize that devices are, in general, very slow compared with processors. This was always the case, and the gap has 

widened, since processor speeds have increased faster than device speeds and are likely to continue to do so. Consider a user typing ten 

characters a second to an editor and suppose the processor executing the editor executes an instruction in a microsecond. The disparity 

in these speeds becomes more obvious if we scale them up. If we scale one microsecond up to one second then on this scale the user 

types a character once a day while the processor executes an instruction every second. Current processors would be more likely to be 

executing a thousand instructions per second on this scale whereas users keep on typing at the same speed. Another way of appreciating 

the speed of processors is to quantify the number of instructions executed per second. In 1980 a processor would execute about 400 000 

instructions per second and in 1990 about ten million. In 2002 a PC may have a processor which operates at a clock frequency of 1.5 GHz 

and which, with carefully written code, can execute several instructions in each clock cycle; the number of instructions per second is 

therefore greater than 1500 million. In addition, processors that support simultaneous multi-threading (SMT) are becoming commodity 

items. A single SMT processor can execute instructions for several threads, switching between them in hardware.

Current workstations and terminals typically have graphical user interfaces which have been made possible by these increases in 

processor speeds and memory sizes. As you type to an editor which is displaying a page of your text in a window, your screen changes 

significantly as you type. There is a good deal of processing to be done as a result of the input of a character.

In many concurrent systems disk storage is needed. Although disk density has doubled every three years for the past twenty years, disk 

access time is limited by the electromechanical nature of the device and only increased by a third between 1980 and 1990. An example 

illustrates the increase in capacity and performance and decrease in cost:



In 1963 an 80 megabyte storage system on 32 cartridges cost £100,000. The data rate was 50–100 kilobits per second and it

took 50–200 milliseconds to position the heads.

In 1986 a 765 megabyte storage system on 8 cartridges cost £1000. The data rate was 2 megabits per second and it took 2–35

milliseconds to position the heads.

In 1992, the HP C3010 had a formatted capacity of 2000 megabytes on 19 surfaces, an average seek time of 11.5 

milliseconds, a transfer rate of 10 megabits per second from the disk buffer to a SCSI-2 bus. The cost was US$3.75 per 

megabyte.

In 1997 the Seagate Elite 23 disk drive had an unformatted capacity of 29.6 gigabytes and a formatted (512 byte sectors) 

capacity of 23.4 gigabytes. It had 6880 cylinders, average seek time of 13.2 milliseconds (read) and 14.2 milliseconds (write). It 

rotated at 5400 revolutions per minute and had an average latency of 5.55 milliseconds. The controller had a 2048 kilobyte 

cache, the internal transfer rate varied from 86 to 123 megabytes per second and the transfer rate to/from memory varied from 

20 to 40 megabits per second. The cost was about 16 pence (25 US cents) per megabyte.

In 2002, an example of a modern Seagate drive is the BarracudaATA IV which is 80 gigabytes in size, has a maximum burst 

transfer rate of 100 megabytes per second and costs around £80: £1 (US $1.50) per gigabyte.

Section 3.2.8 shows how disks are programmed.

Many computer systems are network based. Current networks in widespread use, such as Ethernet, typically operate at 100 megabits per 

second, but 1000 megabit through to gigabit networks are becoming available. We shall consider communications handling later in this 

chapter, but it is clear that an operating system has less time to handle communications devices than peripherals.

For a comprehensive coverage of the characteristics and performance of processors, memory and I/O see Hennessy and Patterson 

(2003).

3.2.2 CISC and RISC computers

Throughout the 1980s there was a move towards simpler processors. If the instruction set is simple and instructions are of equal length, 

techniques such as instruction pipelining can more easily be used to achieve high performance. If the processor is simple, the chip 

fabrication time and therefore time to the marketplace is faster. There may also be space on the chip for cache memory or address 

translation (see Chapter 5).

When real programs were measured it was found that the complex instructions and addressing modes, designed to support specific data 

structures, are rarely used by compiler writers. Their complexity implies inflexibility and they are never quite right for the job in hand. The 

virtual disappearance of assembly language programming means that the machine instruction set need not be high level and attempt to 

'bridge the semantic gap' between the programmer and the machine. Compact code is no longer an aim, since current machines have 

large address spaces, typically 32 bits for a 4-gigabyte address space, and physical memory is cheap.

These arguments have led computer design from Complex Instruction Set Computers (CISC), which were in the mainstream of 

architectural development until the early 1980s, to the current generation of Reduced Instruction Set Computers (RISC), mentioned in 

Section 1.3.2. An excellent treatment is given in Hennessy and Patterson (2003). Some aspects of RISC designs are similar in their 

simplicity to the minicomputers of the 1970s and the early generations of microprocessors. Other aspects, such as the address range, 

have outstripped early mainframes.

3.2.3 A simple device interface

Figure 3.3 shows a simple device interface which has space to buffer a single character both on input and on output. An interface of this 

kind would be used for a user's terminal, for some kinds of network connections and for process control systems. In the case of a user 

terminal, when the user types, the character is transferred into the input buffer and a bit is set in the status register to tell the processor that 



a character is ready in the buffer for input. On output, the processor needs to know that the output buffer is free to receive a character and 

another status bit is used for this purpose. The processor can test these status bits and, by this means, output data at a speed the device 

can cope with and input data when it becomes available.

Figure 3.3. A simple device interface with (a) interrupts disabled and (b) interrupts enabled.

3.2.4 Polling and interrupts



Device programming can be done by testing status bits in the interface (Section 3.2.3), in which case the interface sits passively, with the 

bits indicating the device's status, and the processor must test these bits to determine when to transfer data to the interface on output or 

from it on input. This is called polling the device. The device management subsystem could test each device in turn or perhaps test some 

devices more frequently than others. This is a very simple and reliable method and could be the best way to handle devices in small 

systems; an outline of a program of this kind is used as an example in Section 4.15. Polling is a bad method for time-critical systems 

because an event could occur immediately after its device had been tested and would not be seen until that device was tested again. Also, 

it is not a good use of processor time to cycle round all the devices, periodically testing which ones are ready for attention.

An alternative is to use interrupts if the mechanism is available in the hardware. Figure 3.3(b) shows interrupts enabled in the control 

register in the device interface. If this is done, the interface will actively signal the processor as soon as data is in the input buffer on input 

and as soon as the output buffer becomes free for the next item of data on output. This permits the fastest possible response to devices 

but is more complex to program than polling. We assume that the interface, when sending an interrupt signal to the processor, can identify 

itself and indicate the priority level that has been assigned to it (see Section 3.2.5).

Now suppose that the processor is fetching and executing instructions from an arbitrary program when it receives an interrupt signal from 

a device. Assuming that handling the device is more important than continuing to execute the program, an interrupt should occur from the 

program to an interrupt service routine (see Figure 3.4). It must be possible to resume the interrupted program, and this implies that the 

program counter (at least) must be saved before it is set up for the interrupt routine. Also, the contents of any processor registers that are 

used by the interrupt routine must be saved before they are used and subsequently restored. In general, we say that the processor state

of the interrupted program is saved on the interrupt so that the processor can be used by the interrupt routine. The saved state must be 

restored by the time the program is resumed.

Figure 3.4. An interrupt.

All computers have hardware to effect this transfer, and a typical CISC mechanism is described in the following sections and illustrated in 

Figure 3.5. The program counter (PC) and processor status register (PSR) are saved by hardware. At the end of the routine, assuming we 

are to return immediately to the interrupted program, a special return instruction will restore both the PC and the PSR. Any other registers 

that are used by the interrupt service routine are saved at the start of the routine and restored at the end of the routine by software. Note 

that the hardware mechanism may cause writes to memory in order to store the PC and the PSR.

Figure 3.5. The interrupt mechanism. (a) Before the interrupt is taken. (b) After the interrupt is 

taken.



3.2.5 Interrupt handling: Priorities

Computer systems typically have a large range of device types. Some must be handled with great urgency, for example, a sensor reading 

from a nuclear reactor which signals a danger level. Others should be handled promptly to keep the system running smoothly, for 

example, file transfer from disk. We have seen in Section 3.2.1 that a system has no difficulty in keeping up with a human typing 

characters on a keyboard.

Each source of interrupt signal is therefore assigned a priority. Not only can a normal program be interrupted by the arrival of an interrupt 

signal, but execution of a service routine for a low-priority interrupt may be interrupted by the arrival of a higher-priority interrupt signal. The 

processor status register indicates the priority level at which the processor is executing. An interrupt signal with a higher priority causes an 

interrupt; an interrupt signal with a lower priority is held pending until the higher-priority interrupt service routine has finished, that is, until 

exit from its service routine. Nested interrupts are handled by using a stack structure; the PC and PSR are stored on a stack each time an 

interrupt occurs and restored from the stack when a return from interrupt instruction is executed.

3.2.6 Interrupt vectors

Each device has an associated interrupt service routine. When an interrupt is to take place (on a priority basis) the address of the correct 

interrupt routine must be set up by hardware in the program counter. A dedicated area of main memory is used to hold these addresses. 

The device interface identifies itself when sending an interrupt signal to the processor, and this allows the correct service routine address 

to be selected from the table. This table is shown in outline in Figure 3.5 and Figure 3.6 gives more details.

Figure 3.6. Device interrupt handling and interrupt vectors.



As well as the addresses of device interrupt service routines the addresses of all exception-handling routines are held there (see Section 

3.3). Notice that, although the transfer of control from the interrupted program to the interrupt service routine is carried out by the hardware 

interrupt-handling mechanism, this table access is another reference to main memory and adds to the expense of the mechanism.

3.2.7 The RISC approach to interrupt handling

The exception-handling mechanism described above aims to support the requirements of operating systems. A good deal of mechanism is 

provided and has to be used whenever an exception occurs. A large table in main memory is indexed on every exception to extract the 

appropriate exception-handling routine address; the program counter and processor status register are saved on a stack in main memory. 

The approach described is based on that used in the Motorola 68000 series, the DEC VAX series, the Intel Pentium and other CISC 

machines.

In the area of exception handling a fresh look at the real requirements of the operating system is in order. It is argued that a fast, simple 

mechanism may be more appropriate than a very general one, and that complex cases can be handled by software. One obvious way of 

achieving speed-up is to avoid saving the state in main memory and instead to use processor registers. Another is to avoid accessing main 

memory to find the address of the exception-handling routine.

Avoiding the saving of state in memory

It is very often the case that the interrupted program is not resumed after the exception is serviced; a fatal error might have been signalled 

by the exception in which case control passes to a user-level library routine to give an error message and abort the program; or an 

interrupt may have made a high-priority process runnable and the interrupted process is temporarily suspended. If the state of the 

interrupted process has been put on a stack in memory it will have to be copied elsewhere in memory (see Chapter 4) rather than set up 

again in the hardware. It would surely be better for a small amount of state to be saved in registers and copied from there by the 

exception-handling routine when necessary. Special registers could be provided to hold a small amount of state, such as the interrupted 

program counter and the previous processor status register.

Avoiding table lookup of an interrupt routine address



Table lookup can be avoided by having a 'first-level interrupt handler': a single exception-handling routine that is executed in response to 

every exception. Such a routine can determine the cause of the exception by testing values in processor registers, etc. Interrupt decoding 

is therefore carried out by software instead of by hardware. This first-level interrupt handler may handle a simple exception and return 

control to the interrupted process with minimum overhead. Alternatively, it may be necessary to pass control to another routine. In this 

case it might be necessary to enable interrupts selectively; that is, the routine may be executed at some appropriate priority interrupt level. 

This approach was taken in early computers.

The address of the first-level interrupt handler can be set up in the PC as part of the hardware interrupt mechanism, thus avoiding a table 

lookup in memory. Also, interrupts will be disabled as part of the hardware interrupt mechanism. If the handling of the exception requires 

another routine to be called (see above), or processor registers to be used, then state can be saved as necessary. This can be done 

safely because interrupts are disabled.

Figure 3.7 shows the support for exception handling in the on-chip system control coprocessor of the MIPS R2000/3000. The cause, 

status and exception program counter (EPC) registers are relevant to this discussion and are shown in more detail in the figure. The status 

register contains a three-level (six-bit) stack; each level has a processor status bit (privileged, unprivileged) and a global interrupt 

enable/disable bit.

Figure 3.7. Exception handling in the MIPS R2000/3000 coprocessor 0.

On an exception, the exception-handling mechanism:

puts the resume address for the interrupted process in the EPC register;

pushes a new two-bit entry onto the six-bit stack. This sets the processor status to privileged and disables interrupts globally;

sets up the PC to the address of one of three exception-handling routines. Except on reset and certain memory management 

exceptions this is the address of a general routine. These addresses can be known to the hardware.



The return from exception (RFE) instruction pops the status stack by two bits. This can follow, and be executed indivisibly with, a transfer 

of control to the required address: the normal arrangement for pipelined branch instructions.

This discussion has highlighted those aspects associated with making the interrupt mechanism as fast as possible. A complete description 

of the registers and the handling of specific exceptions for the MIPS processor is given by Kane and Heinrich (1992).

3.2.8 Direct memory access (DMA) devices

A simple interface has been used as an example in the above sections. An interrupt is associated with the transfer of every character. 

Some device interfaces will transfer a block of data into or out of memory and will interrupt the processor only after the whole transfer is 

complete. This requires a more complex interface and a simple processor is dedicated to the task of controlling the data transfer. Devices 

of this kind are called direct memory access (DMA) devices. This kind of interface is often used in communications: a whole packet of 

data coming in from the network is placed in memory. Another example is a disk controller.

A disk controller is a simple processor with registers for holding the disk address, memory address and amount of data to be transferred. 

After this information has been passed to it by a central processor, together with the instruction to proceed with the disk read or write, the 

disk controller transfers the whole block between disk and main memory without any intervention from the central processor (see Figure 

3.8). When the block transfer is complete, the disk controller signals an interrupt. The processor can execute some other program in 

parallel with the transfer.

Figure 3.8. Direct memory access.



During the transfer the disk controller is transferring data to or from memory at the same time as the processor is fetching instructions from 

memory and reading and writing data operands in memory. The memory controller ensures that only one of them at once is making a 

memory access. The disk controller may access memory between an instruction fetch and a data access which is part of the instruction 

execution; this is called cycle stealing. DMA slows down the rate at which the processor executes instructions.

A hardware-controlled cache for holding recently used instructions and data (or a separate cache for each) will help to reduce this 

contention. Instructions and data can be accessed in the cache at the same time as the disk controller accesses main memory. In Chapter 

5 we take a closer look at the memory hierarchy in a computer system, including hardware-controlled caches.

Modern disk interfaces have become more sophisticated than that described above. A technique called scatter-gather allows the 

programmer to specify a number of blocks of data to be written to one place on the disk by a single command (gather), or a single area of 

disk to be read into a number of memory locations (scatter). This is particularly useful when a logically contiguous area is dispersed in the 

physical memory when paged memory management is used (see Chapter 5). A similar technique is described for a network interface in 

Section 3.7.

3.2.9 Memory-mapped I/O

In the above sections we have assumed that we can transfer data to a device. There are two approaches to achieving this: by a special 

set of I/O instructions or by memory-mapped I/O. The latter approach is used in modern machines. The idea is that physical memory 

addresses are allocated to device interfaces, and input, output, status checking and control are achieved by reading and writing these 

memory locations. No extra instructions are needed for these purposes. The simple interface described in Section 3.2.3 would have 

memory addresses assigned for the single-byte input, output, status and control registers.

3.2.10 Timers

Timers are handled among the devices of a computer system. They are available as programmable chips and are almost always used with 

interrupts enabled, although some programmable timers allow a polling mode of use. Other devices signal an interrupt to indicate that data 

is ready on input or more data can be output. Timers are used just to generate timing information, usually in the form of interrupts.

A timer interface may be programmed to generate an interrupt after some specified period of time, then do nothing until further instructed. 

Alternatively, it may be set up to generate interrupts periodically. We can count them and use them, like clock ticks, as a basis for all timing 

in a system. The rate at which interrupts are generated is programmable and some of the uses that are made of timers require a fine time 

grain. The range of rates at which timing interrupts can be arranged to occur depends on the specific device and is typically from 1 

microsecond to 65 milliseconds.

Examples of the use of timers in a system are as follows:

Time of day

Systems which perform functions for human users, such as printing and filing, are expected to maintain the correct date and 

time. This can be based on the clock ticks described above. Typically, the system maintains a count which is decremented on a 

timer interrupt. The size of the count is such that it decrements to zero after a second's worth of clock ticks. A time of day 

counter which is maintained to a one-second granularity from some base value can then be incremented. A 32-bit counter at 

one-second granularity would overflow after 136 years.



An alternative way of maintaining the time of day is to arrange to receive a signal from an external radio station or satellite. 

Transmission is typically once a second at an accuracy of the order of a millisecond. This is likely to improve, and processors 

are likely to have the capacity to receive a more frequent signal in the future (see Chapter 16).

Managing the time for which processes run on processors

A timer interrupt is a mechanism for stopping a running process.

Accounting for CPU usage

Clients may be charged for their use of a processor.

Providing an alarm clock service for processes

Processes can then delay for a specific length of time or until some time of day arrives.

For monitoring the system and its clients

For example, a profile of the amount of time being spent on various tasks can be built up by noting the value of the PC at 

regular intervals.
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3.3 Exceptions

The above section has introduced device programming and has placed this function within the operating system. The interrupt mechanism 

is used to transfer control from any running program (inside or outside the operating system) to an interrupt service routine which is part of 

the operating system. The processor state is set to 'privileged' by the interrupt mechanism and the minimum necessary processor state 

(the PC and PSR) is saved so that the interrupted program can be resumed later.

The operating system is entered by this means when a device signals that it needs attention. The mechanism can be generalized to be the 

standard means by which the operating system is entered.

Note that the interrupt signal from the device has, in general, nothing to do with the program that is running when it occurs. Such interrupts 

occur asynchronously at unpredictable times.

3.3.1 Exceptions caused by a running program

When a program runs it may cause a number of error conditions to be generated in the hardware. All of these conditions may be signalled 

as interrupts, as described above for devices, and handled by interrupt service routines. The more general terms exception and 

exception-handling routine tend to be used to include device and other types of interrupt. Examples are:

The ALU may detect a division by zero, or two's complement overflow on addition or subtraction.

The addressing hardware may be given an odd byte address for an instruction fetch when instructions must be aligned on even 

byte boundaries.

An illegal bit pattern may be found for an operation code by the instruction decode logic.

Memory outside the range of the available physical memory may be addressed.

All of these are caused by the program that is running. If the program was restarted, they would occur again at the same point; unlike 

device interrupts they are predictable. In almost all cases the program cannot continue after the error condition has occurred. The error 

handling is synchronous with the program execution. Device interrupts are asynchronous and might or might not be handled immediately 

they occur, depending on the relative priorities of the running program and the interrupting device.

In Chapter 5 we shall see that a program may not all be in main memory. When part of a program (a 'page') is to be accessed for a data 

operand or an instruction, the addressing hardware signals that it is not present in memory (a 'page fault' interrupt). This kind of hardware 

event is caused by the running program, but will not necessarily occur at the same point of every program execution. When the program is 

run on another occasion, the operating system may have space for more of its pages, or different pages, to be in memory, so the same 

page faults may not occur. That is, the points at which page faults can occur are predictable to the operating system, but whether they 

occur or not on a given run depends on which pages are in main memory.

When a page fault does occur it must be handled before the program can continue; that is, the page that is being referenced must be 

transferred into memory by the operating system. The program execution can then continue from the instruction which caused the page 

fault. The page fault handling is synchronous with the running program.

Another source of exception associated with a given program is an attention interrupt or break. The user has decided to abort the program 

run and has pressed the attention key. In this case, the program execution could continue for some time before being aborted. The event 

is asynchronous.

3.3.2 System (privileged) mode and user (unprivileged) mode



Suppose a call for an operating system service (a system call) is implemented as a simple procedure call. A user process would simply 

enter the operating system and start to execute system code. The system code might well go on to program devices or change the 

contents of hardware registers. Assuming the system code is correct there is no problem. Notice, however, that privileged actions are 

being carried out by a user process. Now suppose that a user process executes similar privileged actions when executing an application 

program at user level. How can we allow the former but not the latter? That is, how can we prevent a process from executing privileged 

actions when it is executing an application but allow it to execute privileged actions when executing the operating system?

For this reason, processors are designed to run in at least two modes or states. In user mode certain privileged instructions, such as 

enabling and disabling interrupts, are forbidden. If code executing with the processor in user mode attempts to execute a privileged 

operation the processor generates an exception. A privilege violation of this kind is synchronous with program execution. The associated 

exception-handling routine handles this error. If the processor is executing in privileged or system mode the execution of the same 

instruction proceeds without interruption. It is therefore necessary to arrange for operating system code to be executed in the privileged 

state. We have seen how this is achieved for exception-handling routines: the exception mechanism sets the state to privileged.

It could be argued that in a single-user system there is no need to protect the operating system or hardware from corruption. The user 

suffers but the program can be debugged and run on a rebooted system. (One hopes that the program errors have not corrupted the filing 

system!) A similar argument can be applied to dedicated server computers or embedded systems, that is, any system that runs a single 

application. In these cases the same software runs indefinitely and it may be argued that once this has been developed and tested then 

the overhead of protection checks is unnecessary. However, large software systems will have residual bugs, and protection checks can 

help to locate and confine them. Most non-trivial systems benefit from protection from error and malice.

3.3.3 The system call mechanism

When a user requests a service which requires privileged actions to be carried out it is necessary to switch the processor state from user 

mode to privileged mode. The exception mechanism is usually employed for this purpose: we force a system call to generate an exception. 

Instructions called software interrupts or traps are designed specifically for this purpose. The fact that such instructions cause an 

exception has the side-effect that the processor state is changed to privileged as part of transferring control to the interrupt service routine. 

The interrupt service routine can then pass control to the required system call procedure.

The mechanism just described is usually the standard method for entering the operating system on a machine where privileged state is 

used. In this case, a system call is like a procedure call with a change of state; in an unprotected system, a system call is just a procedure 

call. In general, if the processor has only two states, the system designer must choose which modules should run under privileged state 

and which need not.

3.3.4 Summary of the use of the exception mechanism

Figure 3.9 shows the table of addresses of exception-handling routines for the Motorola MC68000 processor; the Intel Pentium is similar. 

This example brings together the various types of exception we have discussed.

Figure 3.9. Example of exceptions from the Motorola MC68000.



Figure 3.10 shows a sequence of events which illustrate nested interrupt handling and trap handling. A user program is running when an 

interrupt from a device at priority level 3 occurs (1). The service routine for that device is entered (2). As part of the transfer mechanism the 

PSR and PC of the user program are saved and then set up for the interrupt service routine; the PC is loaded from the table of addresses 

of interrupt service routines; the status register is set to level 3 and privileged state. Part-way through execution of this interrupt service 

routine a higher-priority device interrupts (3). Its service routine is executed (4). This completes and the interrupted PC and processor 

status are restored to return to the interrupted level 3 routine (5). This completes and we return to the interrupted user program (6). The 

user program makes a system call and a trap instruction is executed by a library routine (7). The trap service routine is executed. The 

priority level in the PSR is not changed but the state is set to privileged. The routine completes and control is returned to the interrupted 

user program (8).

Figure 3.10. An example showing nested interrupts.



3.3.5 User-level exception handling

In the above discussion we have seen the low-level mechanism for detecting certain errors and the first stage of dealing with the errors in 

an exception-handling routine. In many cases the error will be fatal and the process will be aborted, but before this happens an error 

message should be given to an on-line user or written to a log file. This is not a high-priority activity and should not be done by the 

operating system (and certainly not by an interrupt routine!). Error handling should be done in the context of the user process that caused 

the error. Error-handling routines are typically provided as part of a programming language library and their addresses are made available 

to the operating system so that control can be transferred to the correct place when an error occurs. When a process is created and 

initialized the address of its normal start and the address of an initial error-handling routine are recorded (see Section 4.3.1 and Figure 

4.4).

UNIX signals are an example of a mechanism for signalling exceptional conditions; see Section 24.7. A signal is a flag which is set in the 

kernel and detected on return to the application. Also, some programming languages have an exception facility to allow users to name 

certain error conditions and to supply procedures for handling them. The language library can then pass control to the user's routine when 

appropriate.

[ Team LiB ]  



[ Team LiB ]  

3.4 Multiprocessors

The discussion so far has considered only a single processor. We should consider how exceptions and interrupts are managed on 

multiprocessors.

When a program runs on a processor, any exceptions it causes are signalled to that processor. These include errors, system calls and 

page faults, all of which are synchronous.

The handling of asynchronous exceptions, such as those caused by interrupts from a peripheral device, will depend on the details of the 

multiprocessor configuration. An installation may include dedicated devices, such as user terminals, shared devices such as disks, and 

possibly system management devices, such as an operator console. One option is that each hardware device is allocated to a single 

processor, which issues all instructions to control that device. Interrupts generated by the device are always signalled to that same 

processor. A lot of multiprocessor systems are based on this model for I/O.

In a shared-memory multiprocessor the action of a DMA device is essentially independent of the processor that initiates a particular 

transfer. Provided that each processor has a private stack for saving the processor state, an interrupt signalling the end of a DMA 

transfer may be handled on any processor. A system configured so that shared devices may be controlled by any processor is more 

flexible than one in which a process requiring access to a given peripheral device must be run on a particular processor.

The IBM System/370 mainframe architecture provides for multiprocessor configurations that share main memory. Each processor has a 

dedicated page of memory which is used for such purposes as saving the processor state on interrupt, and interrupts may therefore be 

handled without interference between processors. In the first version of the System/370 architecture introduced in 1970 each peripheral 

device was allocated to a single processor. As technology advanced the original design was found inadequate in various ways, and in 

1982 the System/370 Extended Architecture (XA) became available. There were two major changes for XA, both recognizing that 

processors at the top end of the range had become limited by the architecture. First, there is a 31-bit addressing mode in addition to the 

previous standard of 24-bit addresses (see Chapter 5). Secondly, the configuration for peripheral devices was modified so that any 

processor may control any device (see Figure 3.11). I/O devices are usually configured so that there is more than one path to a shared 

peripheral, such as a disk drive.

Figure 3.11. IBM's System/370 XA configuration.



There are other considerations to be taken into account in a multiprocessor system. If a user aborts a program by depressing the escape 

key, the processor that takes the interrupt must be able to interrupt the processor on which the program is running; there is a 

requirement for inter-processor interrupts.

We saw in Section 3.2.10 that a timer is a particular kind of device that can be set to generate interrupts. Two types of timing service are 

needed, one based on the time in the world outside the computer ('real time'), the other measuring the computation time of a given 

process. The real-time clock in any processor should tick provided the processor is alive, regardless of whether it is performing any 

computation. The timer resolution (the length of a tick) will depend on the processor design. Either the operating system or an 

application program may require action to be taken at a particular time; it is important that the act of informing the program of the time 

carries a low overhead. In a uniprocessor system the timer will interrupt the processor on which the program runs. In a multiprocessor 

system a given processor may take timer interrupts, update various counts in the operating system's data structures and detect whether 

any time limits have expired. In this case, the processor running a program which needs to take action must be interrupted; an 

inter-processor interrupt mechanism is again required. Alternatively, each processor may have its own timer, and the interrupt will occur 

on the processor on which the program runs. In the latter case it will be necessary to synchronize the timers on the various processors, 

and there should be system support to achieve this.

Timing individual processes in execution is essential in many applications, and it can also be useful when debugging. Most processors 

have an interval timer which can be read from within an executing process, usually by entering a trap routine. It is also possible to 

interrupt a process after a specified computation time has elapsed. This interval timing service may or may not be provided by the same 

clock that maintains the real time.
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3.5 User-level input and output

Low-level mechanisms for performing input and output have been described in some detail. Application programs are, in general, not 

allowed to program at this level, and must ask the operating system to do I/O on their behalf. We now consider this top-down 

application-driven view of I/O programming, shown in Figure 3.12.

Figure 3.12. Top-down invocation of I/O.

A general point is that I/O statements should be made as general as possible. Ideally, a given program should be written with I/O 

statements that can be bound to different devices for a given execution. The language-level I/O is in terms of logical devices which can 

take or deliver arbitrary amounts of data. A stream facility is often provided by languages as well as single character and string I/O. An 

application can set up a number of named input and output streams and send or deliver arbitrary numbers of bytes to or from them.

The operating system interface is used by the language libraries. This is likely to support the input or output of a single character or a string 

of characters. A detailed example for a specific operating system is given in Chapter 24.

3.5.1 Buffers and synchronization

The application level can request input or output of an arbitrary amount of data; the device concerned can transfer a fixed amount. Data 

buffers are needed between the I/O modules which are invoked by the application (top-down) and those which are executed in response 

to device events (bottom-up). Figure 3.13 shows the general idea. The top-down software can place the data to be output in one or more 

buffers. We then need a mechanism for telling the lower levels that there is work to do. Similarly, when a device delivers data it is placed in 

one or more buffers by the low levels and the high levels must be told there is work to do. We are seeing a requirement for processes to 

synchronize with each other.

Figure 3.13. I/O buffers.



There is likely to be a buffer area for user terminals, one for disk blocks, one for network communications, and so on. Figure 3.13 shows 

the data buffers as abstract data types or objects. We assume interface operations such as acquire-buffer, release-buffer, write bytes into 

buffer and read bytes from buffer. We are not concerned here with the details of buffer space allocation, but rather to draw out the 

requirement for synchronization between processes.

A general point is that the device handler should be able to start work as soon as possible on a large amount of output, before the top level 

has put it all into a number of buffers. Similarly, on input the high level may be able to start taking data from a buffer as soon as one is full. 

Care must then be taken that the processes synchronize their accesses to the buffers. Chapters 10, 11 and 12 discuss this problem in 

general and solutions are given there.

In the case of characters input from terminals, the device handler must look at each character before deciding whether to put it into a 

buffer. The character might indicate that the program should be aborted or that output to the screen should be halted until further notice.

This chapter emphasizes the general structure of an I/O handling subsystem in terms of modules and processes. Chapter 24 gives an 

example of how terminal handling and disk handling are done in one particular operating system.

3.5.2 Synchronous and asynchronous input and output

When a user-level process makes a request for input or output, the following may be the case:

The request can be satisfied by a transfer of data from or to a buffer in memory. For example, a previous DMA transfer may 

have delivered a block of data and the user may request a few bytes at a time. In this case there is no need for the process to 

be delayed. Control can be returned to it with the data on input, or with the transfer to the device scheduled to take place on 

output.

The request cannot be satisfied immediately. For example, the required data may not already be in a buffer in memory and it 

may be necessary to perform physical device input. On output, the system's policy may be such that a limited amount of buffer 

space can be allocated to a single process and physical output must be performed before the whole output request can be 

satisfied.



System designs differ in the options available to the user-level process when a delay is necessary. A synchronous I/O policy indicates 

that the user-level process is blocked when a delay is necessary until the request can be satisfied. An asynchronous option means that, if 

a delay is necessary, control can be returned to the user-level process, which can proceed with its work and pick up the requested input or 

acknowledgement of output in due course. In some systems, user-level processes can specify whether they require synchronous or 

asynchronous I/O when they make a request.

The original UNIX system offered only synchronous I/O, often referred to as 'blocking system calls'. The IBM System/370 allows the 

user-level process to select synchronous or asynchronous I/O as required, as do modern UNIX designs, along with Microsoft's Windows 

NT and Windows 2000.
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3.6 Communications management

Distributed systems running on computer networks were introduced in Section 1.1.2 and local area network (LAN) topologies and wide 

area networks (WANs) were introduced in Section 1.3.7. An operating system for a computer with a network connection must have a 

communications-handling function. The network connection of a computer may be considered at a low level as just another device. It has 

an interface and is handled by device-driving software. The characteristics of the network interface will depend on the network concerned. 

Each network is designed to deliver packets of data to its attached computers via their network interfaces. Sometimes the packets are of 

variable size, up to some maximum size, while sometimes the data arrives in fixed size cells. Section 3.7 gives examples of packet sizes 

and interfaces.

Communications handling differs from the device-handling function we considered above because the network connection is shared and 

networks are often faster than devices. We considered terminal handling where one user process has one device and there is a duplex 

connection between them. We considered disk DMA interfaces. In this case many processes share the use of a filing system on a number 

of disks and there can be several outstanding data transfers in progress, initiated on behalf of different processes. In Section 3.2.1 we saw 

an example of a disk with a data transfer rate of 2 Mbits per second. It is commonplace for networks to operate at 100 Mbits per second 

and rates of 1000s of Mbits per second are coming into use. Disk speeds are unable to increase dramatically because of the 

electromechanical nature of the device.

In the case of communications handling, the network connection is shared. Several local processes can request to communicate with

external processes and their requests may be in progress simultaneously. Also, external processes may autonomously request to

communicate with local processes. Computer–computer communication can generate a large volume of data associated with these

multiple simultaneous process interactions. The communications-handling subsystem is therefore a large concurrent system. It must

handle simultaneous inputs and outputs for very large volumes of data. The subjects of data communications, networks and protocols

merit complete books, but we need an overview of this function if we are to understand how processes on different computers can

cooperate to achieve the goals of a concurrent system. Also, specialized texts on communications do not cover how these systems may

be implemented in terms of processes.

In some distributed systems a network connection may be the only peripheral a computer has. In others, a workstation may have a local 

keyboard and screen, but may use the network for file access. Yet another arrangement is for a workstation to have a local disk and filing 

system augmented by a network file service. Also, applications may be implemented as concurrent processes spread across a number of 

computers.

Processes on different machines may need to communicate with each other. A client process 

may invoke a server function or peer processes may need to exchange information. Figure 3.14

shows the basic requirement, with process A on one machine and process B on another. The 

virtual communication, shown as direct between process A and process B, may in practice be 

achieved by a system call to the operating system which organizes data transfers across the 

network: the real communication shown in the figure. Section 16.4 describes the socket 

interface.

Figure 3.14. Communication between processes on different machines.



We now look at the low-level aspects of communications networks, those concerned with network interfaces and drivers. We then proceed 

to the higher levels of communications software in Section 3.8.
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3.7 Communications networks, interfaces and drivers

A given computer might be connected to a local area network (LAN) or a wide area network (WAN). Perhaps the most common (and most 

general) topology is that of interconnected LANs connected by WANs to form an internetwork. Figure 1.9 shows local networks of 

workstations and servers with WAN connections. For generality, it also shows some host computers directly attached to the WAN. Some 

concurrent systems span large-scale or even global networks, for example, electronic mail systems, information retrieval services and the 

private networks of companies with widely dispersed branches.

A computer's network connection is handled by the operating system in much the same way as a device. The network has an interface 

and the operating system contains a driver for the interface. Aspects of relevance to the network connection are the method that is used to 

access the network medium and the interface between the network hardware and the attached computer (see Figure 3.15). For example, 

some networks require active connections which participate in the transmission of packets from one network link to the next, whereas in 

others the network connection is just a passive tap. These issues are not relevant to the concurrent software structures we are considering 

here. We discuss interfaces briefly in Section 3.7.3.

Figure 3.15. Medium, access method and interface.



Table 3.1. Characteristics of LANs.

Ethernet
10 Mbit s

-1 Variable size packets with up to 4 kbytes of data

IEEE 802.4 token bus
10 Mbit s

-1 Variable size packets, 96 bytes to 8 kbytes

FDDI token ring
100 Mbit s

-1 Variable size packets, typically 96 bytes

Cambridge Ring (CR)
10 Mbit s

-1 Fixed cell size with 2 bytes of data

Cambridge Fast Ring (CFR)
100 Mbit s

-1 Fixed cell size with 32 bytes of data

Cambridge Backbone Ring (CBR)
1 Gbit s

-1 Fixed cell size with 32 bytes of data

Standard ATM
155 Mbit s

-1 Fixed cell size with 48 bytes of data

Above the driver are higher levels of software implementing communications services and protocols. There are system calls to give the 

operating system's clients an interface to the communications service. The basic structure is similar to that of the I/O subsystem, with 

communications initiated both top-down and bottom-up and with the requirement for data to be buffered.

Some examples of LAN characteristics are given in Table 3.1. These examples illustrate two major approaches to LAN design: the bus and 

ring topology. Their access methods and some interfaces for them are described briefly below. A complete description can be found in 

Hopper et al. (1986) and Halsall (1996). Some network interfaces use DMA; they deposit an assembled block of data into main memory 

then signal an interrupt. Others interrupt the processor every time a packet arrives at the network interface.

We shall not discuss the packet structure in detail. In all cases we assume that the packets that are transmitted onto the network have 

control information as well as data so that the source and destination of the transmission can be determined by the network hardware and 

errors can be detected and recovery procedures invoked. Our main concern is the software systems in the attached computers. As 

network users we need to be aware of the data transmission rates they can sustain and with what guarantees.

3.7.1 Ethernet

Ethernet is a LAN designed at Xerox's Palo Alto Research Center (PARC) (Metcalfe and Boggs, 1976) and a prototype was operational 

there in 1976. It is a broadcast bus type of network whose medium is a coaxial cable named the 'ether'. The access method (for an 

attached computer) is carrier sense multiple access with collision detection (CSMA/CD). In this scheme a potential transmitter listens 

to the communications medium to determine whether there is already a transmission in progress on the network. If the ether is quiet the 

transmission goes ahead. Since it is possible that another station initiates a transmission at the same time, a packet collision can occur. In 

order to detect this, each station listens to the transmission of its packet and if corruption is detected the transmission is aborted. To avoid 

transmissions which have collided being retried in phase, a random back-off period is used before retransmission takes place. This period 

increases exponentially on repeated collisions.

Ethernets were originally intended for 'office' applications, but became widely used during the 1980s. In practice they work well at light 

loads, typically 10% of capacity. As processors continue to increase in performance and multiprocessors become more widely used 

Ethernets will become more heavily loaded. As load increases, so does the chance of contention and the possibility of delay. The network 

is monopolized while a transfer takes place, which, together with the probabilistic nature of the access mechanism, means that timing 

guarantees cannot be made for applications that need them.

3.7.2 Ring-based LANs



Several ring-based networks have been developed over the years. One method of controlling access to the ring is to employ a unique 

circulating token. When a computer receives the token from the ring it may delay transmitting it until it has placed its own packet onto the 

ring. Only one computer may be transmitting at one time. IBM Zurich have developed a token ring (Bux et al., 1982); another is FDDI (fibre 

distributed data interface) (Burr, 1986; Ross, 1986).

The Cambridge Ring networks are based on the slotted ring principle (Hopper and Needham, 1988). The first was operational in 1976 at 

the University of Cambridge Computer Laboratory. A ring of given length can carry a fixed number of cells, constantly circulating. Each 

carries a leading bit indicating full or empty. A station assembles a cell it wishes to transmit and inserts it into the first available empty 

packet. A packet makes a complete circuit of the ring and the destination station copies the cell and marks it as received. Other responses 

may also be indicated. When the cell returns to its sender, the response is noted and the packet is marked empty and passed on. Notice 

that the sender may not reuse this packet. This is called an 'anti-hogging' mechanism and ensures that all stations have an equal chance 

of using the medium. This allows timing guarantees to be made.

If a small fixed packet size is used, a given piece of data to be transferred is split for transmission and reassembled after reception. 

Software immediately above the interface must handle this; that is, higher-level protocols implemented in software manage the 

transmission of larger packets (see below). If a larger, variable packet size is used, as in Ethernet, some communications can be achieved 

by the transfer of a single packet. It will still be necessary to split some 'messages' into packet-sized portions and reassemble them at the 

destination. This is called 'segmentation and reassembly'.

3.7.3 Examples of network interfaces

Because of the commercial success of Ethernet in a wide variety of applications, a great deal of effort has been expended on producing 

high-performance interfaces for it. Examples are the DEQNA (DEC, 1986) and LANCE (AMD, 1985) interfaces. Both employ a ring of 

transmit descriptors and a ring of receive descriptors in main memory. The transmit descriptors indicate buffers containing data to transmit 

as packets and the receive descriptors indicate buffer space to use for incoming packets. Transmission and reception is done by DMA 

from and to these buffers defined by the descriptors in the rings. An interrupt may be generated on the emptying or filling of a buffer by the 

interface. Concurrent access by the interface and the host computer to the descriptor rings could cause errors, and a protocol is employed 

to ensure correct access. By using large packets and a suitable memory system a host can, in theory, achieve close to 100% utilization of 

an Ethernet with one of these interfaces.

The Cambridge Fast Ring and Cambridge Backbone Ring were used primarily in a research environment. No interface supporting DMA 

access was built for the CFR so all data had to be moved between the host memory and the interface using processor cycles. The CFR 

could buffer only one 'cell' of 32 bytes. Only a single type of interface (for the VME bus) was built for the CBR (Greaves et al., 1990). It 

contained four transmit FIFO buffers and one receive FIFO buffer. Each buffer had a capacity of 256 cells of 32 bytes per cell. It could be 

programmed to interrupt on every cell received or only when a cell containing an end of frame bit was detected. A version offering DMA 

was designed.
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3.8 Communications software

A communications protocol is a set of rules for controlling communication. It may define a particular, ordered sequence of messages to be 

used in a communication. The order is agreed by convention between the communicating entities to satisfy their requirements. A simple 

example, taken from a different context, is:

message: 'Hi beta, this is alpha, are you receiving me? OVER'

reply: 'Yes alpha, this is beta, I'm receiving you. OVER'

The above two messages implement a connection establishment protocol.

An example of an application protocol (see Figure 3.16) is a client's interaction with a file server, for example:

file-id = open (filename, write-mode)

data-bytes = read (file-id, byte-range)

 close (file-id)

Figure 3.16. Service interface and protocol.

The client must obey certain rules for interacting with the file server. The operations must be invoked in the right order and the correct 

arguments must be passed. In this example the client must open a file before reading it. The server replies with a file-id for subsequent use 

by the client. The client passes the file-id when it wants to read data from the file.

Communications software implements services and protocols to allow information to be transmitted between computers. A service 

interface to the communications software is specified so that its clients may indicate which services and protocols they require. Figure 3.16

shows this scheme.

This simple picture does not express the many functions of communications software. The communications service shown in Figure 3.16

must have a great deal of internal structure and is always described in terms of layers with functions associated with each layer. The 

lowest layer is concerned with the physical network and the highest with applications concerns. The next section gives a standard 



definition of the various layers of communications functions.

3.8.1 The ISO reference model for Open Systems Interconnection

The International Standards Organization's (ISO) reference model for Open Systems Interconnection (OSI) (see Figure 3.17) provides a 

framework for discussion and comparison of communications software. Standard protocols and service interfaces have been specified for 

some of the levels. The reference model is itself a standard: ISO-7498 (see ISO, 1981 and Zimmerman, 1980).

Figure 3.17. The ISO reference model for OSI.

The network architecture shown in Figure 3.17 is deliberately all-embracing and most networks map onto a subset of it. It may represent a 

network comprising any number of connected LANs and WANs. The two end systems indicate a source and sink of communication and 

the communications subnet may comprise any number of intermediate (gateway) computers which cooperate to transfer information 

between the end systems.

The reference model provides a framework for modular, layered software. Each layer provides a service interface to the layer above and 

protocols for communicating with the corresponding layer in other systems. Figure 3.18 gives the general idea. Figure 3.19 shows how 

data to be transmitted is passed down the layers. At each level a header, and possibly a trailer, is added as defined for the particular layer 

protocol to be used. At the receiving end system each layer strips off its header and trailer and passes the data up to the layer above. The 

highest level interprets the data according to an application protocol. Figure 3.20 shows a simple example of a small amount of data to be 

transmitted between two application processes. By the time it has reached the lowest level and is ready for transmission to the network it 

has accumulated a protocol header from each layer (and possible also a trailer). The figure assumes a network which allows this data to 

be transmitted as a single packet.

Figure 3.18. Protocols and service interfaces.



Figure 3.19. Data packaged for transmission by a protocol.

Figure 3.20. Example of data packaged for transmission.



Figure 3.18 shows the protocols between the seven reference model layers and the service interface for each layer. The layers were 

chosen to give useful abstractions; a brief definition of the function of each layer is given below.

The physical layer is concerned with transmitting uninterpreted bits across a communication channel from one computer to another and 

with managing the connection.

The data link layer is mainly concerned with taking a raw transmission facility and turning it into a link that appears to be free from errors.

The network layer is concerned with transmitting data from a source to a destination across (possibly a number of heterogeneous) 

networks. It must determine a route for the data packets and must attempt to avoid congestion in the network by controlling the number of 

packets transmitted.

The transport layer is concerned with transmission from end system to end system. It provides hosts with a standard service. A number 

of different qualities of service are appropriate to this level. One major distinction is between a connection-oriented service and a 

connectionless service. The transport layer is usually the highest level of communication service in the operating system and the session 

layer provides an interface to the operating system's communication service (see Figure 3.21).

Figure 3.21. ISO reference model layers in a typical operating system.

The session layer allows clients of an operating system on one machine to estab-lish and use sessions with clients of an operating 

system on another machine.

The presentation layer is concerned with the representation of data. In the extreme case, the communicating end systems may run on 

different hardware, with different operating systems and with different implementations of language systems. Even in this case, a standard 

data representation allows arguments such as strings, integers, etc. to pass from a client to a service. Some more homogeneous 

examples are considered in Chapter 16.

The application layer contains a number of standard protocols that are of general use. The remote procedure call (RPC) protocol 

discussed in Chapter 16 is an example. We shall study an RPC package that contains application, presentation and session layers. Other 



examples are file transfer protocols, electronic mail, remote login, remote job entry, virtual terminals and many others. Any service 

program may define an application protocol that its clients must use when invoking it.

3.8.2 Connection-oriented and connectionless communication

There are two fundamentally different kinds of service that a layer can offer to the layer above it: connection-oriented and 

connectionless. In a connectionless service a data item being transmitted by a protocol is sent as a separate unit, unrelated to any 

previous communication at that level. The data is sent as a so-called datagram which contains full addressing information.

A connection-oriented service requires that a connection or virtual circuit is set up between the communicating entities. In this case data 

items are sent along the connection, and are identified only by the virtual circuit concerned and not by full addressing information.

There are variations of both styles of service. In outline, the trade-offs are as follows:

It takes longer to decode a datagram to determine which process it should be delivered to.

It takes time to set up and tear down a connection. If a communication consists, for example, of a single request followed by a 

single reply the overhead of a connection is unnecessary.

Use of a virtual circuit implies that the computers implementing communications must retain state about the connections that 

have been set up. Several computers might be involved if communication is taking place across interconnected LANs or WANs. 

A problem is that if any computer fails, the connections that are routed through it will have to be re-established.

For some applications, such as client–server interactions, connections seem to be unnecessary. We shall see a request–response

protocol implemented above a datagram service in Chapter 16. For other applications, such as the transfer of a voice or video stream from 

a server to a workstation, a connection seems to be essential. The time for each packet to be decoded afresh is likely to be prohibitive.

In the past, connection-oriented services, X.25 for example, were notorious for being heavyweight and therefore inappropriate for a large 

number of distributed applications. New protocols are now in use which implement lightweight virtual circuits (McAuley, 1989). Techniques 

that achieve efficiency are:

The circuit is not set up by a separate connection establishment protocol, including an end-to-end acknowledge before data 

can be sent along it. As soon as the first hop is ready the data can go.

A circuit can easily be broken and re-established.

There is no multiplexing above the datalink level; each application-level process-to-process connection has a separate virtual 

circuit.
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3.9 Communications handling within and above an operating system

Figure 3.21 gives an example of how the ISO layers might be provided in a typical operating system.

There are a large number of different protocol hierarchies. Taking a local example, the UNIX systems at the University of Cambridge 

Computer Laboratory are configured with over 20. It is therefore important for operating systems to allow their clients to select the protocol 

hierarchy they require. Figure 3.22 shows a commonly used protocol hierarchy in relation to the ISO layers in an Ethernet-based UNIX 

system. Section 16.4 shows how network communications are set up and used in this system.

Figure 3.22. The ARPA protocols in an Ethernet-based UNIX system.

We have seen the need for synchronization between user-level processes requesting to send or receive data and the hardware carrying 

out physical I/O. We also discussed the use of I/O buffers on input and output (see Figure 3.13). Similar synchronization and buffering 

arrangements are needed for network I/O.

Figure 3.23 shows examples of application-level protocols within an overall communications 

architecture. The mail application is using a specialized protocol, SMTP (simple mail transfer 

protocol); the web browser is using HTTP (hypertext transfer protocol). Other examples of 

special-purpose application protocols are FTP (file transfer protocol) and NNTP (network news 

transfer protocol). The details of two general-purpose application-level protocols, RPC (remote 



procedure call) and Java RMI, will be developed in Chapter 16.

Figure 3.23. Application-specific protocols.
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3.10 Summary

The hardware is one source of events, and therefore of concurrent activity, in a concurrent system. We have seen how the hardware 

may signal an event, such as the arrival of a unit of data, and how events are handled by software. Hardware events may be classified 

as those which are caused by (and must be handled synchronously with) a running program and those which are external and may be 

handled asynchronously.

Some concurrent systems may need to meet timing requirements. For such systems it is necessary to understand how events arrive and 

the mechanism for handling them. It is also important to realize that, although the hardware may be fast enough to meet timing 

requirements, software policies could make it impossible to guarantee them. We shall see more of this in Chapter 4. So far, we have 

seen that an operating system provides a convenient, high-level interface for device handling, and therefore hides the details.

In a concurrent system processes may need to interact with devices and communicate with other processes which may be across a 

network. The communications subsystem must handle simultaneous requests from local users and interleaved communications data 

arriving across the network. Other computers are likely to generate more data than local peripherals. Because of this potential volume 

and complexity, careful modular structuring is required. The most general case is when unlike systems need to communicate, and the 

ISO OSI standards are designed to address this. The ISO reference model is used to describe and compare all communications 

software.

In Chapter 4 we see how the processes we introduced as an abstraction in Chapter 2 are implemented by the operating system. We can 

then study how processes may be used to handle devices and run users' programs.

Exercises

3.1 By looking in Hennessy and Patterson (2003), for example, find out the following:

The execution times of typical instructions of CISC computers such as the VAX series, the IBM System 

370, the Motorola 68000 series, the Intel 8086 and 80x86 series.

a.

The execution times of typical instructions of RISC computers such as the Motorola 88000, the SPARC, 

the MIPS R4000 and the Intel 860.

b.

In both cases note the instruction lengths and their functionality.

Now find out the rate at which networks and peripherals, such as terminals, printers, disks and RAM used as disks, 

can accept or deliver data and also the unit of data that is accepted or delivered.

3.2 What are the advantages and disadvantages of handling devices by a polling scheme compared with an 

interrupt-driven approach? In what kinds of system does the application dictate which approach must be taken?

3.3 How many memory accesses are made without and with the RISC exception-handling hardware described in Section 

3.2.7? Estimate the total time to achieve the transfer of control from the interrupted program to the exception-handling 

routine in both cases.

3.4 You have hardware support for seven priority interrupt levels. On what basis would you assign these priorities?



3.5 What is direct memory access (DMA)? How can (a) a single block and (b) several blocks of data be transferred 

between main memory and a disk or network?

3.6 Processors are usually designed to execute in one of two (or more) privilege states, for example, user and supervisor 

mode.

When and how is the state change from user to supervisor mode made?a.

When and how is the state change from supervisor to user mode made?b.

Which instructions would you expect to be privileged (executable only in supervisor mode)? What is the 

mechanism for preventing them from being executed in user mode?

c.

3.7 An application should be able to send an arbitrary amount of data to be output to a device. Devices transfer a fixed 

amount. How is this achieved?

3.8 Error conditions are often detected at a low level in a system, such as in an exception-handling routine. Why should 

they not be dealt with immediately? Devise a method to allow error handling at user level within the context of the 

application that caused the error.

3.9 How are exceptions handled in a shared-memory multiprocessor?

3.10 Compare and contrast peripheral I/O and network I/O.

3.11 Define wide area networks and local area networks (see also Section 1.3.8).

3.12 Compare and contrast the Ethernet with a ring-based LAN. Which design type will guarantee bandwidth between 

connected systems? What kind of applications need such guarantees? Are the guarantees usually made to the 

application level?

3.13 What is meant by connectionless and connection-oriented communication?

3.14 Which of the ISO layers would you expect to be implemented inside an operating system?

3.15 How do you think the ISO layers might be implemented in terms of the modules and processes introduced in Chapter 

2? Try this question again after reading Chapter 4.
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Chapter 4. Support for processes

4.1 Use of processes in systems

4.2 Processes and processors

4.3 Process state

4.4 Synchronizing with the hardware: Events and the WAIT operation

4.5 The process data structure

4.6 Scheduling: General approaches

4.7 Scheduling for shared-memory multiprocessors

4.8 Process scheduling to meet real-time requirements

4.9 Process abstraction and implementation

4.10 Operating system structure and placement of processes

4.11 Multi-threaded process implementation

4.12 Processes in languages, runtime systems and operating systems

4.13 Process state in language systems and operating systems

4.14 Sequential programs with system calls

4.15 Evolution of concurrency in programming languages

4.16 Implementation of processes in language systems

4.17 Thread package architectures

4.18 Java threads and exceptions

4.19 Summary

In the previous chapters we have considered a static description of a software system as a number of modules and the functions of some 

of the major operating system modules. The concept of 'process' as an active element which causes the modules to be executed 

dynamically was introduced briefly. We now return to and develop this concept in order to satisfy the requirement, established in Chapter 

1, that separate activities should be supported in systems. This support, as provided by operating systems, is now examined in detail. 

We show that one function of an operating system is to create the abstraction of a set of concurrent processes. Having created this 

abstraction, processes may be used to execute both operating system and application modules.
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Terminology

Recall that we are using the classical term process to indicate an active element in a system. Many current systems denote their 

practical unit of scheduling as a thread. Before Section 4.11 the term thread can be used interchangeably with process for the unit of 

scheduling. Later sections discuss the implementation of concurrent programs and need to distinguish between the unit of resource 

allocation (process) and the unit of scheduling (process or thread, depending on whether the system supports multi-threaded processes).
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4.1 Use of processes in systems

The designers of early operating systems solved the problems of concurrency and 

synchronization in an ad hoc way. It was always necessary to support synchronization between 

programs doing input or output and the corresponding devices, to take account of the great 

disparity in processor and device speeds. During the 1960s the concept of process came to be 

used explicitly in operating systems design, for example in Multics (Corbato and Vyssotsky, 

1965), THE (Dijkstra, 1968) and RC4000 (Brinch Hansen, 1970).

One aspect of designing a system is to decide where processes should be used. A natural assignment is to allocate a process wherever 

there is a source of asynchronous events. In an operating system, for example, a process could be allocated to look after (synchronize 

with) each hardware device. If a user switches on a terminal and presses the escape key, an operating system process is waiting to 

respond. In an industrial control system a process could be allocated to each monitoring sensor and controlling actuator.

Another natural allocation of processes is to assign at least one process to each independent unit of work comprising a loaded program, 

data and library. Such a process will make system calls on the operating system to request service, for example, to request input, output, 

use of a file, etc.

Figure 4.1 shows two active processes assigned to execute the static modules of Figures 3.12 and 3.13. One executes the user program 

and makes library and system calls to do I/O; the other programs the device, taking requests from user programs and transferring data to 

or from the device. We have made an assumption in the figure: that a user process enters the operating system (with a change of privilege 

as discussed in Section 3.3.2) and executes the top level of the operating system. This is only one way in which the operating system 

might be designed (see Section 4.10).

Figure 4.1. Part of a device-handling subsystem showing processes.



We have assumed that processes exist in a system and have outlined how they might be used. We now focus on how they are supported 

and managed by the operating system. We assume that there is a process management module within the operating system which 'knows 

about' a number of processes, such as those handling devices and those executing users' programs.
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4.2 Processes and processors

There are often far fewer processors than the processes we should like to use in a system. If this was not the case we could dedicate a 

processor permanently to each process. When the process has something to do, it executes on its processor; when it has nothing to do its 

processor idles. In practice, the operating system must perform the function of sharing the real processors among the processes. We shall 

see that this function can be regarded as creating virtual processors, one for each process; that is, the operating system is simulating 

one processor per process.

In Section 3.2.5 we saw that interrupts from devices may be given a priority ordering and that the handling of a low-priority interrupt is 

temporarily abandoned if a high-priority interrupt arrives, and is resumed after the high-priority interrupt has been handled.

This idea can be applied to processes as well as to the interrupt routines which are entered by a hardware mechanism. A user process 

may be busily inverting a large matrix when an interrupt arrives (and its service routine is executed) to say that a block of data that was 

requested from the disk is now in memory and the disk is free to accept further commands. The disk-handling process should run as soon 

as possible (to keep a heavily used resource busy), and then maybe the matrix program should resume or maybe the data from disk was 

awaited by some more important user process which should run in preference to the matrix program. We assume that the operating 

system process management function will implement a policy such as that outlined here.

Consider two processes in detail: Figure 4.2 is a time graph and shows two device handler processes (such as the one shown in Figure 4.1) 

sharing a single processor. It also shows when their respective devices are active and when the associated interrupt service routines 

(ISRs) run on the processor. We assume, in this example, that an ISR does not run as part of any process.

Figure 4.2. Time graph of two device handler processes, running on one processor.



Initially, process A runs, starts its device then gets to a point where it can do no more until the device completes its activity. It must be 

possible for the process to indicate this fact to the process management function, shown here as WAIT. When a process executes WAIT it 

changes its state from running to blocked. Process B is then run on the processor, starts its device then WAITs. If only A and B are

available for running then the system becomes idle. In practice, there may be some other process that can be run. The next event shown

in the graph is that A's device signals an interrupt which is taken by the processor and A's interrupt service routine is entered. This makes

process A able to run again – its state changes from blocked to runnable and then to running when it is selected to run on the processor. 

While process A is running, B's device signals an interrupt which is taken by the processor, interrupting process A. B's interrupt service 

routine is executed and finishes at time T, shown in the graph.

A policy decision must be made over what should happen at time T. In some operating systems, the policy is that process A must resume 

whatever the relative priorities of A and B are. The justification is that A has not voluntarily executed a WAIT and should be allowed to 

continue until it does so. This is called non-preemptive scheduling: processes only lose control of the processor on a voluntary basis.

The UNIX operating system schedules kernel processes (those executing the operating system) in this way. The advantage is simplicity –

a process can be assumed to have tidied up its data structures, and not be hogging some valuable resource if it is allowed to finish its

current task. The disadvantage is slow response to hardware events. Non-preemptive scheduling is useless if fast response to

unpredictable events is required; for example, alarm signals or other events in hard real-time systems.
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4.3 Process state

The discussion of Section 4.2 highlights that a process may be in a number of distinct states, illustrated in Figure 4.3:

running on a processor: RUNNING state;

able to run on a processor: RUNNABLE state;

unable to run on a processor because it is awaiting some event and cannot proceed until that event arrives: BLOCKED state.

Figure 4.3. States and state transitions of a process.

The transition from running to runnable occurs when the process does not voluntarily give up its processor (by asking to be blocked while 

waiting for an event to occur) but is forcibly preempted from its processor either because it has used up its allotted time and must make 

way for another process or because some higher-priority process has become runnable as a result of an interrupt. This approach is known 

as preemptive scheduling.

4.3.1 Saving process state

If a process can be preempted from its processor at any instant, it is the responsibility of the operating system to make sure that it can be 

resumed in exactly the same state. The contents of the memory allocated to the process will be unchanged but the contents of any 



processor registers must be saved, since they will be used by the processes which run subsequently.

The operating system keeps a data block, often called a process descriptor, for each process that it supports. When a process is 

preempted or blocks voluntarily, the processor state, which includes the program counter and contents of registers, is saved in the process 

descriptor. Other information is also held here, such as the process's state (blocked or runnable) and its start address (see Figure 4.4). 

Information on the memory allocated to the process may be held here in a simple system or elsewhere if large page tables are involved 

(see Chapter 5). Other information such as that associated with open files and other resources allocated to the process may be kept here 

or in a second process environment data structure at user level. This kind of information is only needed when the process is running and is 

quite large and variable in length. Information that must be in the process descriptor is that which is needed when the process is not in 

main memory (for example, a record of event(s) the process is awaiting). We are now seeing the detailed implementation of the process 

abstraction.

Figure 4.4. A process descriptor.

4.3.2 Context switching

The process of saving the state of a process and setting up the state of another is called context switching. The instructions that are 

executed in performing these operations and the frequency at which context switching happens are an overhead at the lowest level of a 

system. When we consider alternative ways of supporting communication between processes in Part II we shall consider the context 

switches that are necessary to implement the various methods. Context switching overhead is relevant to many aspects of system 

structuring.
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4.4 Synchronizing with the hardware: Events and the WAIT operation

We have seen above that the operating system's support for processes must include the provision of a WAIT operation to allow processes 

to synchronize with the hardware. The term 'event' will be used to include the arrival of an interrupt signal from a device.

This operation might be provided as a WAIT for one specific event, for any one event or for any one of a selected set of events. (The 

logical possibility of waiting for all of a set of events makes little sense: interrupts need to be processed rapidly.) Possible hardware events 

are relatively small in number and are known at system design time. This set of possible events can easily be encoded as an integer, 

representing a bit-map. As shown in Figure 4.4, the process descriptor could encode the reason the process is blocked and the events of 

interest to this process that have occurred, see below. Figure 4.5 shows one way of implementing process–event synchronization. The

assumption here is that it is well known which system processes will wait on which events. An example is a dedicated device handler that

synchronizes with a single device (see Figure 4.1). For consistency, Figure 4.5 represents process descriptors as objects, although within 

most operating systems, a purely procedural, not an object-oriented, approach is taken.

Figure 4.5. Process synchronization with events.

Figure 4.5 shows the process level and the implementation level for a WAIT for a specific event. When the process invokes OS.WAIT 

(anEvent), control is transferred to the operating system method WAIT. The operating system object, OS (not shown), in turn invokes WAIT 

(anEvent) on the process descriptor for the current process. Asssuming that the event of interest has not already occurred, the process 

state is set to blocked and the event it is waiting for is recorded in the 'events awaited by process' slot. Some other process is then run. 

When the event occurs, we assume that a method SIGNAL (anEvent) is invoked on the process descriptor which causes the process state 

to be set to runnable and the reason for waiting to be removed. The process will be selected to run again in due course. This assumes that 

the system design is such that a single, well-known process waits for each event so SIGNAL (anEvent) is invoked on the appropriate 



process descriptor. Section 4.4.2 takes a more general approach.

An event might arrive while the process that would be interested in it is still busy on some previous task, and hasn't yet got around to 

waiting for it. Another possibility is that the process sets a device in motion, but was preempted from its processor before it could execute 

OS.WAIT (anEvent) in order to synchronize with the device. It is essential that the operating system should not unset the interrupt and 

ignore the event if no process is waiting for it. This was a 'feature' of some early operating system designs. In Figure 4.5 the operating 

system notes that the event has occurred in the 'record of events' slot. This is sometimes called a 'wake-up waiting'. When the process 

requests to wait for the event it can continue running and need never enter the blocked state.

4.4.1 Race conditions

Consider the following sequence of events:

A process (via the operating system) executes WAIT (anEvent) on a process descriptor:

The WAIT method checks that the event is not already recorded.

The hardware signals an interrupt to indicate the event has occurred.

The interrupt handler invokes SIGNAL (anEvent) on the process descriptor.

The SIGNAL method checks that the process is not waiting for the 

event.

The SIGNAL method records that the event has occurred ('wake-up 

waiting').

Interrupt processing terminates and the WAIT method resumes execution.

The WAIT method records the awaited event and sets the process state to BLOCKED.

The sequence of actions recorded here is an example of a 'race condition'. A race condition exists whenever the relative timing of a set of 

events affects the outcome. This, as in our example, often indicates a problem that needs solving.

Following our race condition:

the process is BLOCKED, waiting for the event to be SIGNALLED;

the event has been SIGNALLED, and is recorded as a 'wake-up waiting'.

The process will wait indefinitely for the event if this is allowed to happen. For this reason the WAIT and SIGNAL process desciptor 

methods must be imple mented as indivisible, atomic, or primitive operations by some means. We shall discuss how this might be done in 

Part II.

4.4.2 Event and process objects

The design described above has encoded hardware event information in the process descriptors, assuming that specific processes are 

dedicated to handling the various events. A more general approach is to separate the event objects from the process descriptors.



An event object comprises an internal data structure representing an event plus methods SIGNAL () and WAIT (), as shown in Figure 4.6. 

The figure also shows process objects with methods to BLOCK and UNBLOCK a process.

Figure 4.6. Event and process objects.

When a process executes OS.WAIT (anEvent), the operating system object OS (not shown) in turn invokes WAIT () on the event object. 

The process identifier is recorded in the event data structure and the BLOCK () method is invoked on the relevant process descriptor, 

causing the representation of the process state to be changed from running to blocked. A SCHEDULE method (not shown) could then be 

called to decide which process to run next. Process scheduling is discussed in the next section.

When an event occurs, the SIGNAL () method is invoked on the event object. If one or more processes are recorded as waiting for the 

event, one of them (or perhaps all of them, depending on the system policy) can be made runnable by invoking the UNBLOCK () method 

on the relevant process descriptor object. Again, scheduling is invoked after this. If no process is awaiting the event its occurrence is 

recorded as a wake-up waiting in the event data structure.

Windows 2000 has an object-oriented design with process objects, thread objects and event objects. A process may have the right to use, 

and have a handle for, an event object in which case any of the process's threads may synchronize with the event via the event 

operations.
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4.5 The process data structure

The operating system must handle many processes and will maintain a data structure holding their descriptors. This could be set up in a 

number of ways. The aim is that the operating system should be able to choose and run the highest-priority process as quickly as possible. 

Selecting a process to run on a processor is called process scheduling. The selection policy determines which process will be selected 

and is effected by the scheduling algorithm. Setting up a process state in the processor's registers is called dispatching. Figure 4.7

shows one possible data structure: an array or table of process descriptors; many alternatives are possible.

Figure 4.7. A possible process structure.
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4.6 Scheduling: General approaches

When a free processor is available the operating system must select a runnable process (if one exists) to run on it. The scheduling policy

of the system deter mines which process is selected.

The mechanisms to effect this policy must be as efficient as possible since they are an overhead on every process, however urgent. The 

design of the data structures representing processes and the algorithms for inserting and removing processes into and out of them is 

therefore important. In this section, scheduling policies appropriate for meeting the requirements of systems of different types are 

discussed.

4.6.1 Unary, binary and general scheduling

In certain cases the selection of the next process to run can be simplified.

Unary scheduling: in the case where the system is idle (all processes are blocked, waiting for events) and an event occurs which makes

some process runnable then that process is clearly the one that should run. No others need be considered and scheduling can be 

bypassed.

Binary scheduling: when a process is running it is by definition the most important, highest-priority process. If that process does

something to make another process runnable then the choice of which one to run is between the two processes concerned. No others 

need be considered. Similarly, if an event occurs while a process is running which makes another process runnable, the choice is, again, 

between the two processes.

General scheduling: when the process that is running terminates or blocks, waiting for some event, a general schedule must be carried

out.

4.6.2 Process behaviour and priority

Operating system processes have known function and duration, and in many systems are put into a permanent, static fixed-priority

ordering. Figure 4.7 gives an example of how the information on processes might be held in a process management module and shows 

system processes handled separately in this way. They are in fixed-priority order and the operating system's scheduler will first search 

from the top of the table for a runnable system process.

In some application areas, such as process control, the function and duration of all processes may be known at system design time and it 

may be appropriate to assign them a static fixed-priority ordering. It may be possible to analyse the timing requirements of all processes 

and pre-specify a schedule which meets them. This kind of system is discussed further in Section 4.8.

In a multi-user system, the nature of application processes is unknown to the operating system and their behaviour will change during a 

typical program run, for example, from a data input phase to a processing phase to an output phase. In interactive systems, one user 

cannot be kept waiting while another indulges in a long bout of number crunching, so a time slice is allocated to a process when it begins 

to run. The process descriptor may indicate the length of the time slice to be allocated to this process and will have a record of the time left 

to this process on this run. This time must be decremented every time the clock interrupts and when it reaches zero the process is out of 

time. There may also be some indication of process priority.

Figure 4.7 shows one way of recording all the processes in a system. One or more queues of runnable processes may be chained through 

the user processes in this table, using the link fields in the process descriptors, as indicated in Figure 4.8. When a process becomes 



runnable it is added to the end of the appropriate queue.

Figure 4.8. Run queues through the process structure.

Processes doing input or output usually become blocked very soon and do not get to the end of their time slices. They may also be using 

shared system resources, such as the filing system's disks, which should be kept running to the greatest extent possible. Figure 4.9 gives 

an alternative view of a high-priority and a low-priority run queue. When a process becomes runnable after being blocked it is allocated to 

the high-priority run queue. If it continues to block before using up its time slice it will always be scheduled from the high-priority queue. If a 

process runs to the end of its time slice it is moved to the end of the low-priority queue. Only if a high-priority queue is empty is a 

low-priority queue examined. In practice, processes may stay blocked for long periods (see Section 3.2.1) and the high-priority queue is 

often empty.

Figure 4.9. Run queues with priority based on recent activity.



In summary, system processes have highest priority and are scheduled according to a static fixed-priority scheme. User processes which 

have blocked and have become runnable again are next highest and user processes which run to the end of their time slices are lowest.

Figure 4.10 shows a refinement of this general idea.

As before, system processes are of highest priority and are handled in static, fixed-priority order. They are not shown in the 

figure.

There is a high-priority queue for user processes that blocked, waiting for certain events such as a page fault, see Section 5.5, 

and are now runnable.

There is a medium-priority queue for user processes that were blocked, waiting for resources which are less critical for system 

performance (for example, devices such as dedicated terminals or tape drives), and are now runnable.

The low- and lowest-priority queues are for processes that use up their time slice. Two queues allow for an allocation of two 

priority levels for processes when they are not doing I/O. More queues could be used if required by the applications supported 

by the system. Alternatively, a single queue, ordered according to process priority (instead of first come first served) could be 

constructed. Process priority may be assigned statically (in response to application requirements) or computed dynamically, 

depending on recent CPU usage.

Figure 4.10. More run queues with priority based on recent activity.



The idea of multiple queues can be extended as required in a system, for example, NT has provision for 32 priority levels (16 real time and 

16 normal).
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4.7 Scheduling for shared-memory multiprocessors

Section 1.3.3 introduced shared-memory multiprocessors and Chapter 3 discussed the allocation of devices to processors and interrupt 

handling. Chapter 5 describes the memory hierarchy in a computer system, including a hardware-controlled cache and an address 

translation unit. In a shared-memory multiprocessor each processor has a separate cache and address translation unit.

A given processor may have a local run queue for the device handlers of any dedicated devices it might have. There are also likely to be 

one or more global run queues. A possible approach is that a processor, on becoming free, should execute code such that it first 

examines its local run queue and, if that contains no run-nable process, should take a process from the global run queue(s). Note that 

the global run queues are writeable data structures and adding or removing a process will involve more than one read or write of 

memory. It must be ensured thatthese data structures remain correct in the presence of simultaneous attempts to update them. This is 

important in all systems, but requires particular attention in a multiprocessor. Mechanisms to ensure this are the subject matter of Part II.

In the introductory chapter we saw that an application might best be programmed as a number of concurrent processes. Later in this 

chapter we consider how the component processes of a concurrent program might be specified and supported by the language runtime 

system and the operating system. A general point is that an application should be able to indicate to the operating system that it has a 

number of processes and to give their relative priorities for scheduling purposes. It is then possible to run them simultaneously on the 

processors of a multiprocessor.

Recall that in Section 3.4 we discussed the need for an inter-processor interrupt. An example of its use is that a process A running on a 

processor P makes a process runnable which is of lower priority than A but of higher priority than the process which is running on 

processor Q. An inter-processor interrupt from P to Q can start off the required context switch.

Scheduling algorithms for multiprocessors form an active research area. One approach to process scheduling for shared-memory 

multiprocessors is to allocate the process at the top of the run queue to the first processor that becomes free. This policy ignores the fact 

that a process may have run very recently on a particular processor and may have built up useful state in both the cache and the 

address translation unit. It might have blocked for a high-priority event and be runnable again in a very short time. If a process has been 

blocked for some time then its state is likely to have been superseded by that of more recent processes. In the case of a page fault, for 

example, the process should clearly continue to run on the same processor.

It might be appropriate to allow a process to 'busy wait' on a page fault. This will be described in more detail in Chapter 10, but the idea is 

to keep the process scheduled and running instead of blocking it and doing a context switch to another process. The waiting process 

might execute in a tight loop, or 'spin', until it is interrupted by the arrival of the required page.

Another factor to take into account is the relationships between groups of processes. If certain processes are designed to work closely 

together then the ideal arrangement may be for them to be scheduled simultaneously on the multiple processors of the multiprocessor. 

Bad performance could result from ignoring this kind of relationship; for example, a process runs, then tries to communicate with a 

partner. The partner is runnable but not scheduled. The first process is blocked and the partner is scheduled on the same processor. It 

picks up the pertinent information from the first process, acts on it then tries to send back an answer. Its partner is not scheduled, and so 

on.

The counter-argument is that if the processes are sharing data it is better for them to run on the same processor so that the same cache 

is used. If they run on separate processors and are sharing writeable data the overhead of keeping the caches coherent will be 

introduced.
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4.8 Process scheduling to meet real-time requirements

Although preemptive scheduling with carefully chosen process priorities may ensure optimum use of resources it may not be sufficient to 

ensure that a number of processes meet their timing requirements in a real-time system.

Real-time systems were introduced in Section 1.1. There we defined two kinds of real-time process: those which are periodic and carry out 

some cyclic activity like data sampling and analysis, and those which must respond to unpredictable events in a specified time. A real-time 

scheduler must ensure that all processes satisfy their timing constraints.

Another example was introduced in the discussion on multimedia workstations in Section 1.1.1. A video and voice stream must be 

delivered to a workstation so that the voice is synchronized with the moving lips of the person in the picture. Although video generates far 

more data than voice, and is therefore likely to be managed at higher priority, the voice stream must be allowed a small proportion of time 

periodically. Conventional scheduling might well allow the voice to fall behind.

It is relatively easy to schedule a number of periodic processes, see below. It is more difficult to incorporate response to unpredictable 

events. Should the system designer allow for the worst possible case of all events arriving at the same time (or very close together) or take 

some probabilistic model of when they might arrive and live with a low probability of bursty behaviour?

A model of an aperiodic process is that it becomes ready to run when a particular event occurs, it must then compute for a known length of 

time and, in competition with other processes, it must complete in some specified time. We assume that the system has process 

preemption.

Figure 4.11 shows two processes A and B each with a known computation time (workA and workB) and a known length of time in which the 

work must be completed. The graph shows this as a deadline (D), work time (W) and slack time (S) for each process. The first graph in 

Figure 4.12 shows one possible sequence of events for the two processes. First process A's event occurs and process A is scheduled. 

Before process A's work is complete, process B's event occurs. The scheduler now has to decide whether to schedule A or B. The 

scheduler has the information to compute the deadlines of A and B and the remaining slack time of A and B.

Figure 4.11. Processes in a real-time system.



Figure 4.12. Real-time scheduling.

An earliest deadline first policy would cause process B to be selected. B then completes before its deadline by the value of its slack time. 

If a third process then comes along the option of using up some of B's slack time (by delaying B) has been lost.

An alternative strategy is to schedule first the process with the least remaining slack time, provided that they can both meet their 

deadlines. The third graph of Figure 4.12 shows this least slack first policy for A and B. The fourth graph shows the event for a third 

process C occurring. It is left as an exercise for the reader to compare the two policies with respect to work done and slack time left for A 

and B at time EC. We now consider periodic scheduling in more detail, then discuss how dynamic events might be incorporated into the 

system.

Periodic schedules

A real-time system often consists of a known number of periodic processes. A schedule can be determined when the system is designed, 

based on the values of the work time of each process and the frequency at which this work must be done (the period). A suitable value for 



the scheduling period must be chosen and this will be the minimum value of all the processes' frequencies. Designing the schedule then 

involves creating a list of processes to be run to completion in each scheduling period. Some processes will not need to run every period 

but, for simplicity, time is usually left for all tasks to execute in every period, that is, some parts of each period will be unused. When the 

system is designed, enough processing power is put in for this to be possible.

Rate monotonic scheduling

Rate monotonic scheduling (RMS) is a scheduling scheme in which each periodic process is allocated a priority proportional to its 

frequency. High-frequency processes are assumed to be of higher priority than low-frequency processes. The scheduler selects the 

highest-priority runnable process and each process runs until its work time is completed for that period. RMS is simple and does not waste 

processor time to the extent we saw above for the cyclic schedule. It is therefore cheaper to implement. RMS is designed to ensure that, 

on average, each task will meet its deadline but it does not cope well with overload or with bursty behaviour. Also, the assumption that high 

frequency indicates high priority may not hold for some types of system.

Combining periodic and aperiodic processes

The earliest deadline first (EDF) and least slack first (LSF) algorithms described above may also be used for periodic processes, the 

deadline being taken as the end of the current period and the slack computed from this value. If processes are periodic, EDF will tend to 

execute high-frequency processes in preference to low-frequency ones, depending on the point at which the decision is made. This can 

cause priority inversion, as discussed for RMS.

This discussion does not take into account that any scheduled process may not be able to 

run to completion but may be delayed, waiting for a resource. At this point the process's 

slack time begins to elapse and a new process is scheduled. For a system that can be 

analysed statically (at design time) it may be possible to compute a bound on the potential 

delay for each process, taking into account the resources it uses, its priority and the relative 

priorities of other processes which compete for these resources, see also Section 10.6.2.

The aim here is to introduce the issues that are involved, and some approaches that are taken, to scheduling in real-time systems so that 

the reader has a basis for evaluating any operating system that is claimed to be 'real time'. It is important to note that the conventional 

system of the near future will have multimedia capabilities and scheduling will need to move in this direction. Here, the deadlines are not 

hard, as in many process control systems, and the periodic processes do not exist for the lifetime of the system but arrive dynamically in 

response to users' requests. It may be that a user has to notify the system in advance that continuous media will be required and book a 

guaranteed share of processor time, so-called quality-of-service (QoS). In the case of a multi-user video con-ference it is possible to 

degrade the picture quality of existing members to free resources for a new member. For further study of real-time systems see Burns and 

Wellings (1989), Levi and Agrawala (1990), Gomaa (1993), Selic et al. (1995), ACM (1996) and Joseph (1996).

4.8.1 System structure and response to events

The ability to meet the requirement for a process to be scheduled in some bounded time after an event occurs is affected by the overall 

operating system design as well as the specific scheduling algorithm it employs. Some operating systems are executed 'procedurally'; that 

is, operating system code is executed 'in-process'. When a user process makes a system call it becomes a system process and enters the 

operating system. Such systems tend to have very few dedicated system processes and much of the work that is done by one process 

may be on behalf of others.

An example is that in UNIX an interrupt is serviced in the context of whatever process is running when it occurs. Another example from 

UNIX is when a process waits in the kernel for an event, the event occurs and the process is about to return to user mode to respond to 

the event. Before returning to user mode the process executes system code to determine whether any process is due to be woken up after 



asking to be delayed for a certain length of time. A high-priority process could therefore be required to act as an alarm clock for any 

number of low-priority processes between receiving the event for which it was waiting and responding to it.

This style of system design makes it difficult to compute how quickly a process can be guaranteed to run after an event occurs. There is 

an indeterminate amount of system code that may be executed as part of any process. The alternative design approach is to have the 

operating system executed by dedicated processes and to request service from them. System structure is discussed further in Section 

4.10 and in Part II.
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4.9 Process abstraction and implementation

The above sections have shown the details of how processes may be implemented. Figure 4.13 shows two layers: the high-level process 

abstraction and the layer supporting the abstraction. The function of the support layer is to provide an environment in which concurrent 

processes may exist. The support layer can be thought of as being at a low level within an operating system, so that processes may be 

used to execute operating system functions, such as device handlers and the memory management subsystem. Figure 4.14 gives an 

alternative view of Figure 4.13, showing the process management module as an abstract data type, located within an operating system, 

see also Figure 4.6. The representation of processes (the various process data structures) is hidden and the interface contains operations 

on processes.

Figure 4.13. Supporting concurrent processes.

Figure 4.14. Process management module, alternative view.



Figure 4.15 highlights the general idea that a single operation at the process level may be implemented by a method at the level below. 

The invocation mechanism might be a simple procedure call from within the operating system to the process management module or a 

system call from an application process running above the operating system. At the process level, the operation appears to be a single 

indivisible instruction. An operation of this kind is sometimes called a 'primitive': for example, the WAIT () method on events could be 

referred to as a synchronizing primitive. In this case the implementation of the operation must be atomic, to avoid the race conditions 

discussed in Section 4.4.1. If the operation invocation blocks the process there will be a delay, indicated in the figure by a blob in the 

process path, before the process continues.

Figure 4.15. Implementation of operations.

There has been no indication in the above discussion that the processes supported are other than completely independent of each other. 

In Chapter 9 the need for processes to communicate will be motivated and mechanisms for achieving inter-process communication (IPC) 

will be described throughout Part II.
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4.10 Operating system structure and placement of processes

We can now put together the notions of static modules of code and their dynamic execution. We shall use an operating system as an 

example. We have seen how one operating system function is to support processes. We now consider how processes might be used in 

the implementation of an operating system. Figure 4.16 shows the major components of a traditional, closed operating system and gives a 

possible placement of processes to achieve dynamic execution of the system. Processes are allocated as follows:

A single process is allocated to each user-level activity: a user program execution or a command execution. This assumes that 

each of these activities is a single sequential process. We shall consider concurrent programs in the following sections.

A process is allocated to handle each device instance. Such a process will wait for and respond to device interrupts and be 

given work to do by the high level of I/O management (see Sections 3.5 and 4.1). Data will be passed between the high and 

low levels via buffers (see Section 3.5).

Some memory management processes are indicated to respond to address translation faults, to allocate main memory to 

processes, and to move processes into and out of main memory as necessary (see Chapter 5). A process which is concerned 

with swapping other processes between main memory and backing store must be guaranteed to be resident in main memory 

itself.

Certain modules are shown with no permanent allocation of processes. It is assumed here that the code is executed in the 

context of the user process as a result of a system call. In this case, a state change from user state (unprivileged) to system 

state (privileged) is necessary, as discussed in Section 3.3.2.

Section 9.1 discusses different ways of using processes within a module such as a filing subsystem. An alternative that could 

have been shown here is a number of permanently allocated processes.

The process management module cannot itself be implemented as processes (see Section 4.9).

Figure 4.16. Outline of OS modules with processes.



The UNIX operating system takes an extreme position and minimizes the number of processes which are bound to modules. There are no 

device handler processes and virtually the whole kernel is executed 'in-process'. Interrupt handling is executed in the context of whatever 

process happens to be running when the interrupt occurs. Exercise 4.10 discusses one aspect of this further.
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4.11 Multi-threaded process implementation

In the discussion in Section 4.10 we saw that a number of processes might execute in a single module of the operating system. In the 

following sections we shall see a number of processes executing a concurrent program at user level.

These are commonly called user threads when we are discussing implementation. The user 

threads share the address space of the application and all the resources allocated to the 

application by the operating system at runtime, such as memory and open files. We have 

two separate concepts here:

the unit of execution (the unit of scheduling by the operating system);

the unit of resource allocation: memory and other resources with which the unit of execution is associated.

So far, we have shown how processes, the units of execution, can share a processor. The process descriptor contains the processor 

state, including the program counter. The memory allocated to the process might be recorded in the process descriptor or elsewhere, for 

example, as a page table associated with the process.

Some operating systems allow user threads to be registered with them as schedulable kernel threads. Such operating systems are said 

to support multi-threaded processes. Note that the operating system's thread management must create and maintain a separate 

descriptor for every such thread since each thread will have its own values of processor registers, including the program counter. The 

memory management information and other resources, such as open files, will be common to all the threads of the process. The context 

switching overhead is relatively low since there is no need to change the memory management or other resource information on a 

context switch.

Some operating systems do not support multi-threaded processes and each process is defined to have a separate address space. Such 

systems are said to have a heavyweight process model because the overhead on a context switch is high. If an operating system is to 

run on a shared-memory multiprocessor it is important that multi-threaded processes are supported. The separate threads of a process 

can then be scheduled to run simultaneously if processors are free.

Most microkernels and recently designed operating systems run on multi-processors and support multi-threaded processes. There is a 

great disparity in the terminology used for these concepts; see Table 4.1. The process supported by traditional operating systems is 

equivalent, in this terminology, to an address space with one thread, a task with one thread, a process with one thread, etc.

Table 4.1. Microkernel terminology.

Microkernel Unit of execution Unit of resource allocation

Mach Thread Task

Chorus Thread Actor

Mayflower Lightweight process (LWP) Domain

V Thread Team

Amoeba Thread Cluster

Windows NT/2000 Thread Process

Sun OS Lightweight process Address space

A widely used threads package, specified in IEEE POSIX 1003.4a (pthreads), is described in Section 11.8 and thread packages are 

discussed in general in Section 4.17. We first look in detail at how threads may be defined and supported within an application.
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4.12 Processes in languages, runtime systems and operating systems

System software is almost invariably programmed in a high-level language. We now consider how concurrency can be programmed and 

implemented by runtime systems and operating systems. First, we review relevant runtime system aspects of the execution of a program 

by a sequential process. Then we consider how concurrency might be supported within a language.

When a sequential programming language is used, one operating system process is created to run the program (Figure 4.17(a)). When a 

concurrent programming language is used the programmer, explicitly or implicitly, may set up a number of concurrent processes (to be 

implemented as user threads); see Figure 4.17(b), (c). If these user threads may be made known to the operating system as kernel 

threads, through a system call, we have the situation shown in Figure 4.17(c). We saw in Section 4.11 that modern operating systems are 

likely to support threads as well as processes, that is, multi-threaded processes. Processes are then the unit of resource allocation and 

(kernel) threads the unit of scheduling.

Figure 4.17. Implementation of concurrent processes. (a) Sequential programming language. (b) 

Concurrent programming language without operating system support. (c) Concurrent 

programming languages with operating system support for user threads as kernel threads.



The programs indicated in Figure 4.17(a), (b) and (c) will run as operating system processes, each in a separate address space. If the user 

threads can be registered with the operating system as kernel threads, they are scheduled independently and can WAIT for synchronous 

I/O separately. While one blocks, waiting for I/O, another thread of the same process can run. This is essential if the concurrent program is 

to run on a multiprocessor.

For a real-time system to be able to make timing guarantees it is certainly necessary for threads to be scheduled preemptively and it may, 

in addition, be necessary for special priority-based or deadline-based scheduling to be used (see Section 4.8).

When designing a concurrent system in a concurrent programming language it is necessary to know about the operating system and 

hardware on which the system will run. We now explore in more detail how processes are programmed in concurrent programming 

languages and implemented by their runtime systems.
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4.13 Process state in language systems and operating systems

In earlier sections we have defined the state of a process as far as the operating system is concerned, that is, the information stored on a 

process by the process management module of the operating system. It includes the value of the program counter and the contents of 

other hardware registers; information about any ongoing interaction of the process with the hardware, such as events the process is 

waiting for and events of interest to the process that have already occurred; the files a process has opened; and the memory that has been 

allocated to the process.

A process which is executing a program, originally written in a high-level language, also has a language-level state comprising the values 

of variables which are accessible to the process at a given time. These are stored in data areas in the memory allocated to the process. 

One simple arrangement (Figure 4.18) is that a process has a code segment, which includes the runtime support and library code as well 

as the user-level code, and two data segments, one for the static data and the heap and one for the runtime stack. The use of these data 

areas is discussed in more detail below.

Figure 4.18. A common storage arrangement for a single process.

This level of the process state is of no concern to the operating system, as it is stored safely in the memory allocated to the process and, 

unlike processor registers, is not used by any other process. Rather, it is the concern of the runtime system which is responsible for 

managing the dynamic execution of a program by a process. Figure 4.19 gives an overview; the user-level code runs within a framework 

provided by the runtime system. The runtime system code manages the storage needed by the user program when it is executed. Note 

that there is a single thread of control within which the runtime system and the user level code is executed. For example, when the 

program is loaded and the operating system passes control to the process, this is likely to be to the runtime system code in the first 

instance. When the runtime system has initialized its data structures, etc., it will pass control to the user code. When the user code runs, it 

calls into the runtime system for service.

Figure 4.19. One program, one process: runtime system support of user-level program.



We now examine the language-level process state in some detail. It is assumed that the reader is familiar with a high-level sequential 

language such as Pascal, Modula-3 or Java and has already encountered the basic ideas of language implementation, such as the 

allocation of storage for variables on a runtime stack. This section revises these ideas and highlights the essentials of the state associated 

with a process in a language system.

4.13.1 Activation records and the runtime stack

Activation records were originally defined for procedural languages, as described below. The same mechanisms are used in the runtime 

support for object-oriented languages. 'Procedure call' and 'method invocation' are interchangeable in this section. The main point is to 

understand the need for a runtime stack.

The programs or modules (or objects) defined in Section 2.1 have a finer-grained structure which may be defined in terms of procedures 

(or methods). When a procedure is called at runtime it must be allocated storage space for local variables, etc. One function of the 

language runtime system is to acquire storage space from the operating system (if a data segment needs to grow in size) and to allocate 

this space as required by the running program.

Programming languages vary over where variable declarations can be made and the degree of nesting of declarations that is allowed. We 

shall assume for simplicity that storage space is associated with modules and procedures and that procedure declarations are not nested. 

Chapter 7 of Aho et al. (1986) gives a comprehensive treatment of this topic.

At compile time the variables declared in each module or procedure are noted and an activation record is created for each procedure 

which defines the data space that will be needed when the procedure is called. When the module is entered, by procedure call at runtime, 

a stack frame containing control information and storage space for the variables is set up from the associated activation record. For any 

procedure activation, storage must be available as follows: for the call parameters before the call; for the return address at call time; and, 

during the procedure execution, for local variables, any further procedure call parameters and the return parameters for this activation.

At runtime, some specific sequence of module entries and procedure calls is followed and the stack structure reflects this dynamic 

sequence, as shown in Figure 4.20. The variables become accessible (addressable) by the process when the stack frame containing them 

is set up.

Figure 4.20. Modules, procedures and the runtime stack.



When the process exits from the procedure by executing a return instruction the stack frame associated with that procedure is removed 

from the stack. The frame pointer is reset to the stack frame of the calling procedure. The calling procedure may pick up return parameters 

from the stack. Note that all the state associated with the procedure activation is lost on exit from it; indeed, the space on the stack will be 

reused if the process calls another procedure from its current context.

4.13.2 The heap and garbage collection

The classes described in Section 2.1 maintain the state of their data objects independently of any of the operations being called. A stack 

structure is therefore not appropriate for the storage of such objects, since stack storage disappears on procedure exit. A data structure 

called a heap is used for the storage of such long-lived objects. A client may create a new object of the type and will receive a reference 

to the object for use as a parameter for subsequent calls. Object references may be placed on the stack as input and output parameters in 

the usual way.

It may also be convenient to use a heap for the storage of large objects or where it is impossible to determine the size of an object at 



compile time; that is, if the language allows data structures to be created dynamically and their size may depend on some runtime 

calculation or input data. In these cases a reference to an object may be put on the stack in place of the object itself. The language CLU 

took this approach to an extreme in that all data was stored in the heap and the stack contained only references; the language was said to 

have pointer semantics. Java has followed this approach.

Whenever storage space is allocated from the heap there is a problem over reclaiming it when it has fallen out of use. In some languages 

it is the responsibility of the programmer to deallocate unwanted storage. The problem here is that programmers make errors and may 

forget to deallocate storage. Storage allocation and deallocation is one of the most common sources of programming errors. Continuously 

running programs (that is, systems of some sort) are particularly susceptible to this form of error, which is called a storage leak and is a 

common cause of system crashes.

Another example is that storage may be deallocated when there are still references to it. Any use of such a reference is an error.

The alternative policy is that the language system automatically reclaims storage space by detecting when variables can no longer be 

reached. This is called garbage collection. It may be carried out synchronously, in which case execution halts until garbage collection 

completes, or asynchronously (also called on-the-fly) in parallel with program execution. There are heated debates in the systems area 

about whether it is worth putting up with your program going away to (synchronous) garbage-collect from time to time to avoid the 

possibility of a crash due to a storage leak. This is a choice that has to be made when a system implementation language is chosen. The 

ideal of efficient, transparent, asynchronous garbage collection is difficult to achieve.
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4.14 Sequential programs with system calls

We have seen how a single process, supported by the operating system, is used to execute a single user-level application. This model is 

assumed in the discussion on language systems presented in Section 4.13. Each user-level process is typically independent of all others 

and needs only interact with the operating system (by means of system calls). Section 4.4 showed how the operating system allows a 

process to synchronize with the hardware by means of a WAIT primitive and event signalling. This interaction with the hardware is 

typically done by an operating system process (that is, a process executing operating system code) acting in response to a request by a 

user process. In a concurrent system it may also be necessary for user-level processes to synchronize and share information with each 

other.

In Chapter 1 a range of systems was described, and an aim of the book is to show how to write software to implement them. For some 

applications it may be appropriate to use a sequential programming language. Each unit of the system may be a single sequential 

process and the operating system may provide system calls to allow interaction with other processes in addition to the system calls 

for requesting operating system service.

The characteristics of the systems for which this approach is appropriate are that the units to be run concurrently are relatively large; the 

concurrency is coarse grained rather than fine grained. Also, interactions are likely to be relat-ively infrequent: perhaps an occasional 

synchronization rather than frequent cooperation involving extensive use of common information. That is, the processes are likely to be 

loosely coupled rather than tightly coupled.

A problem with the approach is portability of the system. The processes have made use of an operating system interface (a number of 

system calls) that has been provided to allow interactions between processes. If the system is to be able to run on any other operating 

system it is necessary for the same interface to be present. Syntactic differences can be allowed for when the code is ported, but 

semantic differences between operating systems are likely to occur in this area.

We shall revisit this approach after looking at the evolution of concurrent programming languages. Many systems are built from 

sequential languages such as C and C++ that have been extended to support concurrency. A standard library package such as 

pthreads provides the extensions. Details are given in Part II; in this chapter we focus on how more than one thread of control might be 

supported in a concurrent program.
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4.15 Evolution of concurrency in programming languages

We now explore the support for concurrency that might be provided by a concurrent programming language. We take the extreme 

position that an entire system is to be written as a single concurrent program. For generality, we take the model that the system to be 

programmed is to run above a minimal operating system and explore the resulting requirements on the runtime system and the operating 

system for different types of application. In practice, some of the examples below are likely to be implemented as special-purpose systems 

with integrated operating system functions.

4.15.1 Examples

We consider some examples (A–D below) of systems and attempt to see how they could be programmed as a single concurrent program

running above a minimal operating system. An important conclusion that will be drawn is that it is not sufficient to write a system in a

concurrent programming language without knowing how the operating system on which the program is to run supports concurrency.

A file server is to run on a dedicated uniprocessor machine available to its clients across a network. It takes requests from 

clients and can be working on a number of requests at the same time. For example, it may need to wait for the disk to be read 

on behalf of one client, so starts work on behalf of another. Figure 4.21 shows the static modular structure. Refer to Figure 2.14, 

Chapter 6 and Section 9.1 for background and related information.

Figure 4.21. A: a dedicated file server.

A.



A simple operating system must control a number of devices, and a device-handling subsystem (Figure 4.22) is to be written in 

some appropriate programming language. A device handler may finish its immediate task and may need to wait for more data to 

be input or output. It must not lose track of what it was doing, however. If it was filling a buffer with characters coming in from the 

network, the buffer and associated counts and pointers should still be there when that device is serviced again.

Figure 4.22. B: a device-handling subsystem.

B.

Figure 4.23 shows a computerized control system for a chemical plant which carries out periodic data gathering, analysis and 

feedback, as described in Section 1.1.1. The computer system should also respond to alarm signals which are infrequent and 

unpredictable, but of very high priority.

Figure 4.23. C: a chemical plant controller.

C.



A shared-memory multiprocessor is available and a parallel algorithm is proposed to search for a particular value in a large 

amount of stored data. Parallel activities should execute code to search a partition of the data, see Section 1.2.1. A 

management activity is needed to start off the correct number of parallel searches, allocate partitions of the data to them and be 

ready to receive the result and stop the searches when the result is found.

D.

4.15.2 Concurrency from a sequential language

Although many procedures (methods) may be active at any time, because of nested or recursive invocations, there is only one thread of 

control, one stack and one heap when a program that was written in a sequential programming language is executed (Figure 4.24).

Figure 4.24. Sequential language, separate activities in user-level code.

It is therefore difficult, and unnatural, to write independent subsystems (collections of related objects or modules) within a single program 

or to manage simultaneous activation of such code on behalf of a number of clients. There is no assistance for implementing a subsystem 

which may get to a point where it must wait for an event, remember where it got to and resume later (as discussed in Section 4.4). In 

particular, it is not possible to freeze the runtime stack at some point and go back to it later. There is a single runtime stack which is used 

on behalf of whatever computation succeeds the computation that can no longer run.

It would be extremely tedious to attempt to program A, B or C as a single sequential program and D would revert to a sequential algorithm 

running on a single processor. At any point where a wait was required, state would have to be saved by the programmer and resumed 

correctly at the appropriate time. There would be no chance of achieving a fast response to events (which C must have) as there is a 

single thread of control and the operating system sees only one process. If an interrupt occurs, the state of the process is saved, a 

wake-up waiting is recorded and the process is resumed. Whatever the desired effect of the interrupt might be within the concurrent 

program, there is no immediate transfer of control. The program could be written to test from time to time to see which events had 



happened, using a polling system with interrupts disabled. Alternatively, it could execute a system-provided WAIT (set of events) primitive 

and transfer control accordingly.

It would therefore be out of the question to use such a scheme for C (because timing requirements could not be guaranteed to be met) and 

highly undesirable for A and B, even if they are to run on a uniprocessor.

It would be impossible to exploit a multiprocessor with such a computational model. Since any internal structuring is transparent outside 

the program and there is only one thread of control it is only suitable for execution as one process on one processor.

In summary, if separate activities are implemented within a single program written in a sequential programming language:

There is no assistance from the runtime system or the operating system for managing them as separate activities.

If one activity must be suspended (because it cannot proceed until some event occurs) and another resumed, the user-level 

code must manage state saving and (later) restoring.

There is no possibility of making an immediate response to an event by a transfer of control within the user-level code. After an 

interrupt, control returns to exactly where it was within the process.

4.15.3 Coroutines

Some programming languages, for example Modula-2 and BCPL, provide coroutines for expressing independent subprograms within a 

single program. The motivation for having a single program with internal coroutines is that data can be shared where appropriate but 

private data is also supported: each coroutine has its own stack. The language provides instructions to create and delete a coroutine and 

to allow a coroutine to suspend its execution temporarily but retain its state. Control may be passed explicitly from the suspending 

coroutine to another. Alternatively, control may be returned to the caller of a coroutine when it suspends. Figure 4.25 gives an overview of 

how coroutines are supported.

Figure 4.25. Language support for coroutines.



When a coroutine activation is created, the name of the associated code module, the start address and the space required for the stack 

are specified.

co-id = coroutine-create(name, start address, stack size);

A stack is initialized and a control block is set up for the coroutine activation which holds the stack pointer and the start address. At this 

stage, the coroutine is in the suspended state at the main procedure entry point. Later, when the coroutine is suspended, the control block 

will hold the address at which execution will resume. An identifier co-id is returned for use in subsequent references to this coroutine 

activation.

kill (co-id)

frees the space occupied by the activation. The coroutine scheme must specify who can execute kill. It is likely that it is illegal for a 

coroutine to terminate itself, and that one cannot kill a dynamic ancestor. We assume that an active list is maintained by the coroutine 

management system of the dynamic call sequence of coroutines, see below.

At any time at most one of the coroutine activations can be running. Two types of control flow can be used:

call (co-id) // pass control to the activation co-id at the address specified in its control block. co-id is deemed to be a child of the 

caller and is added to the active list.

suspend // pass control back to the parent of this child on the active list. Remove the executor of suspend from the active list.

resume

(co-id)

// remove the executor of resume from the active list, pass control to the activation co-id and add it to the active list.

Figure 4.26 shows these alternatives. Note that to use call (co-id) repeatedly would cause the active list to grow indefinitely. We assume 

that suspend or resume is executed when a coroutine cannot proceed until some condition becomes true. Note that this supension is 

voluntary; that is, the coroutine executes until suspend, resume or another call.

Figure 4.26. Alternatives for management of transfer of control in a coroutine system. (a) A parent calls coroutines in 

turn, which pass control back to it by suspend. (b) A parent calls a coroutine. This resumes a coroutine at the same 

level which replaces it on the active list.



Programming the examples using coroutines

We can program example A by creating a coroutine activation for each client of the file server. The same code may be executed for each 

client and they may share system data but each will have a separate stack for private data. The arrangement of a main loop which decides 

which coroutine to call, followed by suspend in the coroutine (Figure 4.26(a)), is appropriate for this application provided that immediate 

response to events is not required and that the operating system offers asynchronous (non-blocking) system calls.

Example B could be programmed using a coroutine scheme. However, there is only one thread of control through the program and the 

sequence of control is programmed explicitly; that is, the device handlers are called in an order that does not depend on whether they 

have work they can do. Figure 4.27 shows a coroutine associated with each device and a polling loop in which the coroutines associated 

with the devices are called in turn and the devices are polled from within the coroutines.

Figure 4.27. Coroutines for a device-handling subsystem.



Such a scheme could be used with device interrupts disabled. In this case, data could be lost if a device was not polled often enough and 

a second data item arrived before the first had been detected and transferred from the interface.

If interrupts are enabled, the interrupt service routine for a device could transfer a small amount of data onto the stack associated with the 

corresponding coroutine or could set a flag to indicate that a block of data had arrived in memory. A ring of buffers can be exploited by 

some interfaces (Section 3.7.3). After execution of the interrupt service routine, control returns to the interrupted instruction.

It can be arranged that the devices with the shortest critical times or the highest throughput are polled more frequently than other devices. 

It is impossible to respond instantly to any particular device.

It is impossible to program the monitoring and control activities of example C using coroutines. An interrupt service routine would be 

entered automatically (Section 3.2) but after that we would return to our predefined sequence of control, no matter how high the priority of 

the interrupt, since the operating system is aware only of one process and not of its internal coroutine structure. The chemical plant might 

blow up before we tested to see whether an alarm signal came in. The only way to take effective action on an alarm would be for the 

interrupt service routine to do all the work. This might be appropriate in a crisis situation, but is unsuitable as a general approach for 

achieving timely response.

A multiprocessor cannot be exploited using coroutines since there is only a single thread of control. D cannot be programmed as a 

concurrent algorithm to exploit a multiprocessor.

In summary, if separate activities are implemented as coroutines within a single program:

The runtime system supports creation of coroutine activations, shared and private data and transfer of control between 

activations.

The scheduling of the coroutine activations must be implemented in the user-level code. Explicit transfer of control takes place 

at user level.

There is a single thread of control. Scheduling of coroutines and execution of coroutines takes place within this single thread.

There is no possibility of making an immediate response to an event by a transfer of control within the user level code. After an 

interrupt, control returns to exactly where it was within the process.

Suspension is voluntary; control stays with a coroutine (except for interrupt and return) until it executes suspend or resume. It 

may therefore be assumed that any shared data structure that is accessed by a coroutine is left in a consistent state by it; it 

cannot be preempted part-way through updating a data structure.

Transfer of control between coroutine activations involves very little overhead, typically of the order of ten machine instructions. 

The address for resumption is stored in the control block and the activation list is managed. There is no need to save data.

The Tripos operating system (Richards et al., 1979) was written in BCPL and has a coroutine structure. A filing system (example A) and 

device handling (example B) were included. Tripos was designed as a single-user system and a single shared address space is used for 

the operating system and applications.

4.15.4 Processes

Some programming languages, such as Java, Modula-3, Mesa, Concurrent Pascal, Pascal Plus and occam, support processes within a 

program. Again, as described above for coroutines, a program may be written to contain independent sub-programs. Each subprogram is 

now executed by a separate application process, or user thread, as defined by the runtime system. Like coroutines, each user thread has 

its own stack, but unlike coroutines, control is managed by an out side agency, the runtime system, and is not programmed explicitly within 

the subprograms (Figure 4.28).

Figure 4.28. Runtime system support for processes.



A user thread may need to wait for a shared application resource (such as a shared data structure) or for another user thread to complete 

a related activity. A wait operation is provided and will be implemented as a call into the runtime system. Another user thread will then be 

selected to run.

A major question in system design is the relationship between the user threads, created by the runtime system, and the processes or 

kernel threads scheduled by the operating system. It might be that the operating system can support only one process for one program. 

The processes within the program are then managed as user threads by the runtime system which effectively reimplements a scheduler. 

The runtime system is multiplexing one operating system process among user threads known only to itself.

The scheme is similar to a coroutine scheme, but the application programmer does not have to program the transfer of control between the 

user threads since their scheduling is provided by the runtime system.

A problem with this scheme is that if any one of the user threads makes a system call to the operating system to do I/O and becomes 

blocked then no other user thread in the program can run. Recall that an operating system might only provide system calls for I/O which 

are synchronous (Section 3.5.2). This is operating system dependent; for example, UNIX system calls are synchronous, IBM MVS or 

Windows 2000 calls may be synchronous or asynchronous. Even if the user threads were to use the runtime system as an intermediary for 

the purpose of making a system call, a blocking system call made by the manager will still block the whole process. This is a fundamental 

problem if the operating system does not support multi-threaded processes.

If the user threads defined in a program may be made known by the runtime system to the operating system they become separately 

schedulable, operating system processes or kernel threads. They are then scheduled by the operating system to run on processors and 

may run concurrently on the separate processors of a multiprocessor. In Figure 4.28 the runtime system's create routine would include an 

operating system call to create a thread (which would return a thread identifier), its wait routine would include a system call to block the 

thread and its signal routine would include a system call to unblock the thread. Each thread may then make operating system calls that 

block without affecting the others.

Programming the examples using processes

Processes not known to the operating system (user threads only)

For A each client's request is handled by a user thread which executes the file service code. In B each device handler is a user 

thread, as shown in Figure 4.29. The way in which the threads might be used is as discussed above for coroutines.

1.



Figure 4.29. Language-level processes (user threads) for a device-handling subsystem.

The scheme is inadequate for example C, where instant response to an alarm is essential, and for D which requires the user 

threads to be scheduled to run on separate processors of a multiprocessor. The only difference between coroutines and user 

threads is that scheduling is provided by the runtime system, whereas coroutine scheduling must be written by the application 

programmer.

Processes known to the operating system (kernel threads)

Now let us suppose that the runtime system registers each user thread with the operating system as a kernel thread, and 

consider whether C and D can now be programmed. The parallel search activities of D can be programmed as threads which 

may run on separate processors. For C we have further requirements on the operating system. Suppose the data gathering 

process is running. An interrupt arrives to indicate that an alarm condition has developed; the interrupt service routine passes 

control to the thread manager to change the state of the control thread from waiting to runnable. It is a high-priority thread and 

therefore should run immediately, preempting the data gathering and analysis. The operating system must support this.

The scheduling policy of the operating system is therefore crucial. If the scheduling algorithm is non-preemptive a thread may 

continue to run until it blocks. Even if an interrupt occurs and the corresponding interrupt service routine is executed, control 

passes back to the interrupted thread. The scheduling algorithm is only invoked when the current thread blocks, in spite of the 

fact that a high-priority thread may have been made runnable. It might be the case that the requirements of A and B could be 

met with non-preemptive scheduling, but it is essential to have preemptive scheduling for C, as described in Section 4.3. Even 

this may not be sufficient for implementing real-time systems in general, see Section 4.8.

2.

4.15.5 Issues arising

The issues that have been highlighted in the above discussions are:

Blocking, synchronous calls to the operating system

If an operating system provides only synchronous system calls and a concurrent program runs as a single operating system 

process, then no component of the program can run while the operating system regards the process as blocked.

1.

Response to events, the need for preemption

A system which does not need rapid response to events may choose to use polling, with interrupts disabled, rather than being 

2.



event driven.

Suppose we are running with interrupts enabled. Suppose a user thread (which has a kernel thread) invokes WAIT (anEvent) on 

the operating system and is blocked, waiting for the event to occur. When the event occurs, rapid response to it can only be 

achieved if the thread is scheduled immediately by the operating system, preempting whatever thread was running when the 

interrupt occurred.

It is important to have a thread dedicated to waiting for any high priority event such as an alarm. Suppose a user thread (which 

has a kernel thread) is running at user level, and an interrupt indicating an event of interest to it occurs. A record of the event is 

made (in the thread descriptor or an event data structure) and the thread resumes where it left off. A response to the event can 

only be made when a WAIT (anEvent) invocation is made on the operating system.

Voluntary suspension and integrity of shared data structures

If a coroutine or user thread can run until it suspends voluntarily (apart from interrupt and return) then it can be arranged that the 

shared data structures that it accesses are left in a consistent state before it suspends. A simple way of ensuring data integrity 

is therefore achieved at the expense of prompt response to events.

If a thread can be suspended at any time we can no longer make the assumption that data structures are in a consistent state

on a switch. The concurrent program might run on a multiprocessor, in which case separate threads might access shared data 

structures at the same time. If the concurrent program runs on a uniprocessor the same problem arises if we have preemptive 

scheduling.

3.

Thread switching overhead

There is more overhead on a switch, even between threads of the same process, if the operating system is involved. We saw 

that a switch between coroutines or between user threads without kernel threads involves very little overhead: a procedure call 

into the runtime system. A switch between user threads which have kernel threads involves an entry into the operating system, 

and the saving of state such as the contents of processor registers.

4.
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4.16 Implementation of processes in language systems

4.16.1 Specification, creation and termination

In some languages a special kind of procedure call indicates that a new process should be created to execute the call and should run in 

parallel with the caller, sharing the address space of the caller. The modular software specification does not indicate which modules will 

be executed in parallel. Processes are created dynamically to execute the modules of the system. Mesa, Modula-3 and CCLU (see 

Chapter 16) follow this style.

Figure 4.30 shows an example of syntax that may be used to create a process to perform a specific function, after which it is deleted: 

FORK, for procedure call with process creation, and JOIN, for child process deletion and return. Note that the parent and child will need 

to synchronize at JOIN; that is, one will get there first and must be able to wait for the other. In some cases the child process will need to 

pass the results of its work to its parent and the parent may need to interact with the child. How this is done is the subject matter of 

Chapters 10–12. This use of FORK should not be confused with the UNIX fork system call which causes a new process, with its own 

separate address space, to be created by the operating system.

Figure 4.30. Process creation and termination using FORK and JOIN.

An alternative approach to achieve process creation is to allow a new kind of module to be declared as a process; that is, a process is 

defined as a syntactic unit in a program. For example, a device driver for devices of a particular type might be programmed in general 

and specific device drivers for specific devices created as process activations.

process iodriver (dev:device, buffer-size:integer)

// a routine to transfer characters to the device from a buffer on output

// a routine to transfer characters from the device to a buffer on input



…

end iodriver // this specifies a general device driver

We now need to set up a separate process for each device. We assume in this example that this is done at system initialization, that the 

processes will run indefinitely and are not managed by their creator; a process-id is not returned. Process creation is achieved here by 

what looks like a normal procedure call to the process module. For example:

iodriver (dev1,1000) // this creates a device handler process for dev1

iodriver (dev2,50) // this creates a device handler process for dev2

We now have two device driver processes, each with its own stack and input parameters specifying the name of the device to be 

handled and a buffer count for data input or output. The processes are created and are candidates for scheduling. When control is 

passed to such a process it runs from its start address.

A more general scheme, allowing for process management through use of the process identifier, might be as follows:

p1-id = process-create (iodriver, dev1, 1000) // to create a device handler process for dev1

p2-id = process-create(iodriver, dev2, 50) // to create a device handler process for dev2

Subsequent calls may make use of the returned process id. For example:

kill (p1-id)

signal (p2-id)

Languages may allow dynamic process creation at runtime as in the examples above. The first approach allowed dynamic creation 

and removal of processes; the second showed specification of a process in a program with dynamic instantia-tions of it at runtime.

A language system may insist on knowing the number of processes that will run in a given program and may create them statically. 

occam is an example (Inmos, 1984).

A general classification of styles of concurrent programs is that modules may be passive and processes may call procedures to execute 

the module code, as in the first example above, or modules may be active and have permanent, internally bound processes, as in the 

second example above. We shall explore these alternative structures throughout Part II. Section 4.18 describes the approach taken in 

Java with examples.

4.16.2 Parental control of processes

A design issue is the degree of control or influence a creator (parent) process should have over a process it creates (child). Once a 

process is created it is likely to be independent of its parent for scheduling purposes and may be able to outlive its parent. If a 

child-process-id is returned when a process activation is created, this can be used to control the process.

If the system has the notion of process priority then it is necessary to indicate the priority of a process when it is created. Obviously, 

safeguards are needed if this is in the hands of normal users and the priority specified is likely to be relative to that of the creator and its 

other children. The implementor of a system will have a view of the relative priorities of its component processes.

We have seen in Section 4.16.1 that it might be appropriate for a process to terminate on completion of its work and for its parent to 

receive the results of the work. It might also be necessary or desirable in certain circumstances to kill a running process. A debugging 

process may detect that the system being debugged is acting erroneously and its execution should be terminated. A command 

interpreter process which has loaded a program and has created a process to execute it may detect, or be told by the operating system, 

that an error state has arisen in its child; or the human user that started a program execution may abort it. In example D above, a 



number of processes are searching for a single solution to a problem. As soon as one of them finds the solution all the others should be 

terminated. There is therefore a general need for external control of running processes, and a mechanism to achieve this should be 

provided.

Processes known to the operating system can be controlled. The interrupt mechanism starts the removal of control from a running 

process. For example, a break character typed by the user may be interpreted as a command to abort the current user program 

execution. The act of typing the character forces an interrupt service and the break character indicates that the process associated with 

that user should not be restarted from where it was interrupted but should be aborted. In the case of example D an inter-processor 

interrupt (see Section 3.4) is needed to achieve immediate termination of the searching processes once the result is found.

For application processes which are not known to the operating system (user threads which do not have kernel threads), external control 

of running processes is more difficult. Each process may need to be programmed to 'check in' with a manager periodically so that it can 

be stopped.

A universal requirement is the ability to synchronize with a created process. The process was created to do work in parallel with the 

creator. Mechanisms for finding out that the work has been done and for acquiring the results of it are needed. It is often necessary to 

combine the partial solutions to a problem that have been obtained by parallel processes, for example. This is part of a more general 

requirement discussed throughout Part II.

4.16.3 Exception handling in programming languages

User-level exception handling was introduced in Section 3.3.5. The idea was that error-handling routines which output error messages to 

the user or write them to a log should run in the context of the program causing the error rather than as part of the operating system. We 

saw that a compiler could pass not only the start address of a program to the operating system but also the address of an 

exception-handling routine. In Section 4.3.1 we saw that the process descriptor could contain such an address.

As well as error routines, typically provided as part of a library, the application may name exceptions and provide handlers for them. This 

is another means by which transfer of control from one part of a program to another can be achieved as a result of the occurrence of 

some event or condition. Some programming languages offer an extensive exception-handling facility. Examples are Java, CLU (Liskov 

et al., 1981), and Modula-3. A simple example of the use of exceptions in Java is given in Section 4.18.

4.16.4 Storage allocation for language-level processes

Section 4.15.4 discussed language-level processes and Figure 4.28 gave a simple representation of a process management module 

within the language system and a stack associated with every process. We assume that the concurrent program runs in a single address 

space and that instead of a single 'runtime stack' we now have a number of stacks.

In a system with a storage allocation model, such as that shown in Figure 4.18, it is likely that the process stacks will be allocated in the 

stack segment and that all processes will share the heap segment. The convenience of an easily extensible single stack growing 

towards a heap, as used for a sequential program implementation, has been lost with this arrangement. An alternative is to use the heap 

for the process stacks. In every case a maximum stack size will need to be specified explicitly (or implicitly as a default value) on process 

creation. If this size is exceeded because of a greater depth of procedure call nesting than foreseen, the multiple stack data structure will 

have to be adjusted or a new, larger stack allocated for that process in the heap.

Language-level storage allocation schemes will not be studied in depth in this book and for more information the reader should consult, 

for example, Aho et al. (1986).
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4.17 Thread package architectures

We have studied, in general terms, how processes and threads are supported by operating systems and language runtime systems. We 

now look at some specific thread packages. We have established that an operating system may support only one process per address 

space (Figure 4.17(b)) or it may support many (Figure 4.17(c)). In the latter case we have assumed implicitly that every user thread will be 

registered as a kernel thread. We now describe and evaluate various alternative approaches. The discussion is based on Pham and Garg 

(1996).

User threads without kernel threads (Figure 4.17(b))

Thread switching at user level is fast since it does not involve a call into the operating system. Since each application may run with its own 

copy of the runtime library it may choose the most suitable scheduling policy and is not constrained to use the single policy embedded 

within the operating system's scheduler. It is difficult to manage time slicing however. If preemptive scheduling is required, the thread 

library must register with the kernel that it wishes to receive timer signals. The mechanism is that which we have seen for exceptions and 

is often termed an upcall. When the timer interrupt occurs (interrupting some thread), control returns to a routine in the thread library which 

can then decide whether the thread is out of time.

A major problem that must be solved by the implementors of a user-level threads package is how to deal with blocking system calls; if any 

thread makes such a call the whole process is deemed by the operating system to be blocked. If the operating system provides 

non-blocking versions of the blocking system calls, the threads library may use these instead. Since all system calls are made via library 

routines, the safest approach is to rewrite the blocking system calls. A non-blocking call can be made from the thread library to effectively 

poll the resource. If the call returns successfully the result can be passed to the calling thread which may continue. If the call returns with a 

pending status the library may block the calling thread and schedule another one. When the non-blocking call completes, the calling thread 

may be made runnable again and the result made available to it in the usual way.

Another problem is that the libraries may have been written on the assumption that they are invoked 

serially by a single thread rather than in parallel by multiple threads. The problems we study in Part II

may then occur – of uncontrolled access to shared data structures. We may have to enforce serial

execution of sensitive routines.

Also, the operating system may return control to a per-process exception or upcall routine if an error has occurred; we would now like to 

have per-thread routines for this purpose. This can be solved, with difficulty, by keeping per-thread data on exception handling. The first 

level of exception handling is always in a general library routine. That routine then determines whether the exception relates to the current 

thread or some other.

Finally, multiple processors cannot be exploited since the operating system sees only one process.

Examples are DEC's CMA threads, OSF's Distributed Computing Environment (DCE) threads and Xerox PARC's Portable Common 

Runtime (PCR) system (Weiser et al., 1989).

Kernel threads (Figure 4.17(c))

The problems discussed above do not arise if the user threads are registered with the operating system as kernel threads. A kernel thread 

is created for each user thread and all scheduling is carried out by the kernel, according to only one scheduling policy. The blocking and 

unblocking of threads is carried out by the kernel and occurs when the thread waits for I/O, when the event subsequently occurs and 



makes the thread runnable again, and in response to block and unblock calls from the thread library when thread state changes for 

application-level reasons.

The main disadvantage of kernel threads is the context switching overhead: all thread switching is carried out via the kernel and typically 

takes about ten times as long as user-level thread switching. It is likely that the libraries for such operating systems will have been made 

re-entrant, thus avoiding the problems described above; an exception is the X Windows system. More subtle problems relate to the 

management of the number of kernel threads each address space may use. So far, we have assumed that kernel threads may be created 

without limit.

Examples of systems which support kernel threads are Windows 2000, MACH, Chorus and OS/2.

User threads multiplexed on kernel threads (Figure 4.31)

It seems like a good idea to combine the two approaches described above to give flexibility and maximum potential performance to the 

application writer. Figure 4.31 illustrates the approach:

user threads u1 and u2 may run in kernel thread k1;

user thread u3 maps directly onto kernel thread k2;

user threads u4 to u7 may run in either of kernel threads k3 or k4.

Figure 4.31. Multiplexing user threads on kernel threads.

When making the static assignment of user threads to kernel threads, the application writer must take into account how many processors 

are available, which threads should run in parallel on separate processors, which threads will potentially make blocking calls and when the 

efficiency of having only user threads should be exploited. When a kernel thread blocks, none of its user threads can run; user threads 

that should run on separate CPUs must have different kernel threads and so on.



SunOS provides this scheme, calling kernel threads 'lightweight processes' (LWPs) and user threads just 'threads'.

Scheduler activations

Ideally the application writer should be able to use threads without having to be aware of the distinction between user and kernel threads. 

This can be achieved if the operating system is designed to interact with user thread libraries to a greater extent than we have seen. So far 

we have assumed that create, kill, block and unblock comprise the operating system's thread interface operations. If, in addition, the 

operating system notifies the thread library of events relating to its kernel threads then the thread library can deliver a uniform thread 

abstraction to the application programmer and make correct and efficient use of kernel threads. Moreover, the kernel may ensure that a 

given number of kernel threads per application are runnable at all times. Research to design and evaluate various schemes can be found 

in (Anderson et al., 1992; Li, 1993; Barton-Davies et al., 1993). The first of these is as follows:

The kernel provides a virtual multiprocessor abstraction to each thread library; the number of virtual processors may be 

changed by the kernel as the application runs.

The thread library has complete control over which of its threads are running on the virtual processors, termed 'scheduler 

activations'.

The kernel informs the thread library of every event affecting it: when a thread blocks or wakes up in the kernel; when the 

number of scheduler activations allocated to it changes; when a thread is preempted in the kernel. Note that such events are 

notified at exactly those points where a scheduling decision would normally be taken by the kernel.

The thread library informs the kernel when it wants more or needs fewer processors. It also informs the kernel of the subset of 

thread events that might affect processor allocation decisions. The vast majority of user-thread events are not relevant to 

kernel scheduling (see Part II for more detail).

A scheduler activation has three roles:

It serves as an execution context for running user threads (exactly as a kernel thread does).

It notifies the thread library of a kernel event.

It provides space in the kernel for saving the processor context of the activation's current user thread (when the thread blocks 

or is preempted).

The crucial difference between scheduler activations and kernel threads is that once an activation's user thread is stopped by the kernel, 

the thread is never resumed directly by the kernel. Instead, a new scheduler activation is created to notify the thread library that the thread 

has been stopped. The thread management system then copies the state of the thread from the old activation, tells the kernel that the old 

activation can be reused and then decides which user thread to run on the processor. By this means, the kernel is able to maintain the 

invariant that there are always exactly as many running scheduler activations (contexts for running user threads) as there are virtual 

processors assigned to the address space.

Nemesis

The Nemesis research operating system at the University of Cambridge, UK (Roscoe, 1995; Leslie et al., 1996) uses scheduler activations 

combined with a priority ordering based on 'earliest deadline first' scheduling to meet the requirement of applications which may include 

continuous media. The system's structure comprises a minimal microkernel, and the majority of the operating system runs in user space: is 

'vertically partitioned'. Each partition is called a scheduling domain and may schedule its internal threads as appropriate. A scheduling 

domain requests resources as a tuple (p, q) where p is the period and q the resource requirement within p, e.g. (30 ms, 200 ms). The 

domain scheduler then orders the domains for execution based on an ordering derived from EDF scheduling; other policies are being 

investigated.
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4.18 Java threads and exceptions

In Java, threads are created from a class which either inherits from the class Thread or implements the interface Runnable. In either case 

we specify the activity to be carried out by providing a run method. In the case of a thread inheriting from the Thread class, the run

method overrides the run method of Thread, which otherwise has an empty method body. Producing threads via the mechanism of 

implementing the interface Runnable allows us to produce a class which can be used to create threads whilst still being able to inherit 

from some class other than Thread. Java only has single inheritance.

The program in Figure 4.32 explicitly creates two threads, using a thread that specializes Thread. The program in Figure 4.33 shows an 

alternative approach based on extending the Runnable interface. In both cases two thread objects are created (in the main method), 

referenced by variables a and b. The threads are made active by applying the method start, this causes the run method to execute as a 

separate thread. These new threads are in addition to a thread that always exists in Java, whose task is to execute the main method.

Figure 4.32 Specializing Thread.

public class PrintThread1 extends Thread {

   String message;

   public PrintThread1 (String m) {

      message = m;

   }

   public void run () {

      for (int i = 0; i < 100; i++) {

          try {

              this.sleep (100);

          }

          catch (InterruptedException e) {

             System.out.println ("Thread Interrupted in sleep");

          }

          System.out.println (message);

      }

   }

   public static void main (String args[ ]){

      Thread a = new PrintThread1 ("a");

      Thread b = new PrintThread1 ("b");

         a.start ();

         b.start ();

         try {

             a.join ();

         }

         catch (InterruptedException e) {

            System.out.println ("Main method Interrupted whilst joining a");

         }

         try {

             b.join ();

         }

         catch (InterruptedException e) {

            System.out.println ("Main method Interrupted whilst joining b");

         }



         System.out.println ("c");

      }

   }

Figure 4.33 Implementing the Runnable interface.

public class PrintThread2 implements Runnable {

   String message;

   public PrintThread2 (String m) {

      message = m;

   }

   public void run () {

      for (int i = 0; i < 100; i++) {

          try {

              Thread.sleep (100);

          }

          catch (InterruptedException e) {

             System.out.println ("Thread Interrupted in sleep");

          }

          System.out.println (message);

      }

   }

   public static void main (String args[ ]) throws InterruptedException {

      Thread a = new Thread (new PrintThread2("a"));

      Thread b = new Thread (new PrintThread2("b"));

      a.start ();

      b.start ();

      a.join ();

      b.join ();

      System.out.println ("c");

      }

   }

The behaviour of Java threads varies according to the operating system of the host platform. In particular, on some systems Java 

threads are scheduled preemptively and on other systems they are non-preemptive.

It is often useful to be able to make a thread delay execution for a period of time. This might be useful for example where a thread 

controls some animation in order to ensure that the relevant movements don't happen too quickly. The Java thread class has two sleep

methods which allow for a delay, the sleep period can be specified in milliseconds or in milliseconds and nanoseconds. Examples of the 

sleep method are illustrated in Figures 4.32 and 4.33. Whilst in Figure 4.33 our PrintThread2 class does not inherit the method sleep from 

Thread, we are still able to make use of the sleep method by invoking it as Thread.sleep ().

The sleep method invocations in Figures 4.32 and 4.33 also illustrate Java's exception-handling mechanism. In Java there are classes to 

represent exceptions. Exceptions can be dealt with as in Figure 4.32 by using the try{...} catch () {...} construct that Java provides. In 

Figure 4.32, if an exception belonging to class InterruptedException occurs whilst the thread is sleeping, the catch clause will be 

executed. Alternatively we can specify that a method should terminate when particular exceptions occur, deferring responsibility to the 

invoking method. The syntax for this is illustrated in Figure 4.33, where the method main is declared as throwing an InterruptedException. 

Java provides classes defining a range of exceptions, and programmers are free to extend the existing hierarchy of these.

A thread can wait for the completion of some thread t by applying the join method to t, i.e. t.join(). The example uses the join method to 

make the main thread delay its execution until firstly thread a terminates and then thread b terminates. The join method invocation once 

again illustrates Java's exception-handling mechanism, the details being similar to those described above.

Java threads have priorities associated with them. Threads of higher priority are given preferential treatment over threads of lower 

priority. A thread's priority can be set using the thread method setPriority and determined by using the thread method getPriority. The 

Java threads class provides a number of other methods, some of which we will encounter in later chapters.
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4.19 Summary

In Chapter 1 we established the requirements for implementing system software:

Support for separate activities.1.

Support for the management of separate activities.2.

Support for related activities to work together.3.

The ability to meet timing requirements.4.

Support for composite tasks.5.

At this stage the reader should understand:

the concept of process;

how the process abstraction is supported by language runtime systems and operating systems;

the relationship between these process implementations and the implications of this relationship.

The requirement to support separate activities (1) has therefore been explored in detail. The reader should now be able to think of a 

software system in terms of a set of concurrent processes.

The requirement for the management of separate activities (2) has been discussed. We have seen how a process activation may be 

created from a process specification. We have discussed the need for process termination.

The support for the related activities to work together in a system (3) has been motivated, but has yet to be addressed systematically. 

We have seen that a coroutine or process scheme where only user threads are implemented may allow simplifying assumptions to be 

made about the consistency of shared data structures on a coroutine or process switch. This also holds for kernel threads when they are 

scheduled non-preemptively, but only if the system runs on a uniprocessor. We discuss the problem in general in Part II.

The ability of a system to meet timing requirements (4) must obviously depend on hardware characteristics. It has been shown that this 

ability also depends on the support for concurrency provided by the operating system. If this basic level of support is not given, a 

real-time system cannot be programmed. It is therefore necessary to know whether the operating system schedules its processes 

preemptively. If not, critical timing requirements cannot be guaranteed to be met. Preemptive scheduling is a necessary condition for 

timing guarantees to be met, but is by no means sufficient. It is also necessary to know a bound on the time that can be spent executing 

the operating system. Scheduling algorithms were discussed, both for general-purpose and for real-time systems.

We have explored the options for implementing systems. Either components are written in sequential programming languages and 

system calls are provided to support their interaction or a concurrent programming language is used.

In the former case there is a potential portability problem. Systems developed in this way can only run on operating systems which have 

compatible system calls for this purpose. Standard library packages have been developed to provide a convenient interface for some 

programming languages on some operating systems.

In the latter case we have examined the possible relationship between the processes (or coroutines) specified in a concurrent 

programming language and the processes supported by the operating system. This was shown to be operating system dependent.

The overhead involved in switching between the separate activities of a concurrent system should be taken into account. This is lowest 

for coroutines and language-only processes, highest for operating system (heavyweight) processes (when each has a separate address 

space), and intermediate for switching between kernel threads of the same process.

An important issue emerges from the discussion in this chapter. Even if a system is to be written in a high-level language it is necessary 

to have knowledge of:

the relationship between the language runtime system and the operating system;



details of the operating system support for processes;

some aspects of the hardware on which the system will run; for example, is it a uniprocessor or a multiprocessor?

Study questions

S4.1
Give two methods of allocating processes.a.

What is the purpose of a process management module?b.

S4.2
What is a virtual processor?a.

Why must a process be able to execute a WAIT (anEvent) operation?b.

Distinguish between the process states called blocked, runnable and running.c.

What is meant by non-preemptive scheduling? Under what circumstances is it useless?d.

S4.3
Under what circumstances will a process relinquish a processor?a.

What is a process descriptor and why is it needed?b.

What is a context switch?c.

S4.4
What actions are taken by the method that implements the WAIT (anEvent) operation on process 

descriptors?

a.

What causes the SIGNAL () operation to be invoked?b.

What actions are taken by the routine that implements the SIGNAL () operation on events?c.

Why is a record of events kept in a process's descriptor?d.

Under what conditions does a race condition occur?e.

What is an atomic operation? Why must WAIT () and SIGNAL () on events be implemented as atomic 

operations?

f.

S4.5 Distinguish between the process level and the process implementation level for the support of concurrent processes.

S4.6
Distinguish between a lightweight and a heavyweight process.a.

What is a multi-threaded operating system?b.



S4.7
Describe in your own words what is being represented in the three figures shown in Figure 4.17.a.

Use Figure 4.17 to illustrate what is meant by the statement that processes are the unit of resource 

allocation.

b.

Why is it necessary to know whether or not language-level processes are known to the operating system?c.

S4.8
What three segments are usually found in the memory allocated to a process?a.

Distinguish between an activation record and a stack frame. What is contained in a stack frame? How long 

does a stack frame last?

b.

S4.9
What is a synchronous system call?a.

What problem is caused if an operating system provides only synchronous system calls, and runs as a 

single operating system process?

b.

Why must an operating system that supports interrupts allow the preemption of processes?c.

What problem arises if a process is forcibly suspended, i.e. not voluntarily?d.

Exercises

4.1 Discuss how you would wish to allocate processes in the systems that were described in the Introduction, for example:

an industrial process control systema.

a multi-access (time-sharing) computerb.

a powerful personal workstationc.

a transaction processing systemd.

a parallel searching algorithm to run on a shared-memory multiprocessore.

a multiphase compiler to run on a shared-memory multiprocessor.f.

4.2 How would you simulate one processor per process in a uniprocessor and a shared-memory multiprocessor?

4.3 List everything that might be considered part of the state of a process. Which of these items must always be in main 

memory and which could be swapped out to backing store when the process was not running?

4.4
Design a method of implementing synchronization between a peripheral and a single process which is 

dedicated to managing it.

a.



Design a method of implementing synchronization between a peripheral and a process which is currently 

waiting for it to deliver data but is not dedicated to this task.

b.

Design a method of implementing synchronization between any hardware device and one or more 

processes.

c.

4.5 Design a data structure which implements the representation of the processes known to an operating system. You 

should consider whether your system has a significant number of dedicated system processes and, if so, whether they 

will be held separately from user processes. What operations would you expect to provide at the interface of a process 

management module?

4.6
When does a general schedule need to be carried out in a multi-access system?a.

How can a process in a multi-access system be scheduled differently when it is in a compute-bound phase 

from when it is doing input or output?

b.

How many processes would you expect to be active in a single-user workstation, a dedicated gateway 

computer and a dedicated file server?

c.

How would you expect processes to be scheduled in a multimedia workstation (see Section 1.1)?d.

4.7 How does scheduling for real-time systems differ from scheduling for multi-access systems?

4.8 What approaches can be taken to scheduling for shared-memory multiprocessor systems?

4.9 Recall the layered communications software described in Chapter 3. Consider the situation when several user 

processes have made requests for network input or output.

How might the layers be executed by processes?a.

How might synchronization between user-level processes and the arrival or transmission of data at the 

network be arranged?

b.

Where might network buffers be located with respect to the ISO layers?c.

Why would it be a bad idea to have a process execute each of the ISO layers?d.

4.10 For a given modular operating system structure, what is the minimum set of dedicated, resident system processes that 

can be used? How does the rest of the operating system get executed in this case?

How would you design to maximize the number of dedicated system processes?

For both of the approaches indicated above, discuss where a separate address space could be used for protection 

purposes. Assume that the system provides a mechanism for a process to make requests of the operating system. We

have studied one such mechanism in Section 3.3.2. We shall expand on this in Part II.

4.11 In what circumstances might it be advantageous to use several threads of control within a single process?

4.12 Section 4.9 introduced a process management module and pointed out that, as this module implements the process 

abstraction, it cannot itself be implemented in terms of processes.

Within an operating system, the interface operations of the process management module may be called as simple 

procedures. In Section 4.4, for example, we saw the WAIT () operation on events invoking the BLOCK () operation on 

processes.



In Section 4.10 it was mentioned that an operating system might be executed by a set of system processes taking 

users' requests or might instead be executed 'in-process'. For both of these models of execution, discuss how the 

invocation of process management can be incorporated into the model. (The problem to address is, if you are 

executing the operating system yourself, what happens when you block yourself?)

4.13 What aspects of the state of a process are of concern to an operating system and a language system?

4.14 Discuss how a sequential programming language can be used to implement a concurrent system. What assistance 

would you expect from a library package and operating system? What are the advantages and disadvantages of using 

a concurrent programming language?

4.15 What is the essential difference between coroutines and processes? If a concurrent program is to run on a 

uniprocessor machine, what advantages are there in using a language which supports processes? When might 

coroutines offer an advantage?

4.16 What are the potential problems of using a language-level 'threads package' when the operating system sees only one 

process? Why might such a scheme be inappropriate for a shared-memory multiprocessor?

4.17 What are essential requirements for real-time response to be achieved?

4.18
What is meant by a static specification of processes in a programming language?a.

How would you expect a static approach to be reflected in the syntax of a language?b.

How can dynamic process creation and deletion be supported in a concurrent programming language?c.

How might a parent process determine properties of a child process it creates, such as its name or identifier?d.

How might a parent process be given control over a child process once it has been created?e.

4.19 You are working in an environment where application developers need to be able to use different scheduling 

algorithms. Which thread architecture would be most suitable and why?

4.20 Are there any disadvantages arising from using only kernel threads in an application?

4.21 Discuss the pros and cons of multiplexed threads compared with scheduler activations.

4.22 Discuss why soft real-time requirements, such as those that involve dynamically arriving continuous media, might best 

be met with a combination of user-level and kernel-level threads.
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Chapter 5. Memory management

5.1 Memory management

5.2 The memory hierarchy

5.3 The address space of a process

5.4 Segmented virtual memory

5.5 Paged virtual memory

5.6 Combining segmentation and paging

5.7 Operating system data structures

5.8 An example of a memory management unit (MMU)

5.9 Memory management in system design

5.10 Summary

One of the main functions of the operating system is to supply the resources that applications need during their execution. In Chapter 4

we saw how this can be done for CPU processing time by using a scheduler to switch between processes, giving each the illusion of 

continuous execution. In this chapter we consider the other main physical resource associated with process execution: the memory used 

to hold its code and data.

Typically, processes will be initiated through a graphical interface, or a character-based tool, which receives a command to run a 

program and causes the operating system to create a new process to execute it. At some stage memory must be allocated to hold the 

program that is being executed; subsequently more memory might be required beyond this initial allocation for the data structures that 

the process creates during its execution. The operating system must keep track of free physical memory, recording the allocations it has 

made to each process and allowing that space to be reclaimed when the process exits. As well as sharing the physical memory between 

processes, we see how the operating system can give the illusion that there is more memory available than is actually fitted to the 

computer.
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5.1 Memory management

We first take an architectural view of main memory in the context of the storage hierarchy of a computer, and then go on to study issues 

such as protection and sharing which are relevant to concurrent systems design. We are concerned with two distinct kinds of memory 

management: first of all the logical address space that is available to a particular process and then the physical memory or main 

memory of the machine on which that process is running.

Instructions must be in main memory in order to be fetched and executed by a processor. Any data operand referenced by an instruction

must be in main memory for the instructions to execute successfully. Our expectations of what 'a reasonable amount of main memory' is

have changed over the years and will continue to do so, roughly: 1970, 64 kbytes; 1980, 1 Mbyte; 1990, 16 Mbytes; 2000, 1 Gbyte; 2010,

… ? There are already 4-gigabit main memory DRAM devices available and many different options for high capacity disk storage.

Incidentally, although the size of memory expected in a desktop computer has risen dramatically, the cost of the usual amount to fit at

any one time has remained broadly constant.

From a system designer's point of view an important property of main memory is that it is in general volatile; that is, if there is a power 

failure the information stored there is lost. This is a daunting prospect if one has 512 Mbytes of it! Disk storage, on the other hand, is 

non-volatile and much system design effort is concerned with writing sufficient information safely out to disk to guard against loss of main 

memory on a crash. We return to this topic in Chapter 15, and throughout Part III. Although specialized non-volatile memory units are 

available, they are much more expensive than conventional memory and are not usually part of commodity systems.

The appendix gives some examples of early operating systems' use of memory management and the system case studies will show the 

approach taken in current systems.
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5.2 The memory hierarchy

Figure 5.1 shows a typical computer system's memory hierarchy. There is a trade-off involved in using storage devices which involves 

size, speed and cost. The CPU registers are the fastest but smallest store. A large proportion of the machine's instructions will access data 

from CPU registers and compiler writers must organize their use to optimize program execution time. The detailed design of the processor 

and the hardware-controlled cache are not our concern here but as system designers we need a broad view of current and projected sizes 

and speeds. An excellent summary is given in Hennessy and Patterson (2003).

Figure 5.1. The memory hierarchy.

In outline, the cache is small and fast compared with main memory and acts as a buffer between the CPU and the memory. It contains a 

copy of the most recently used memory locations: address and contents are recorded there. Every address reference goes first to the 

cache. If the desired address is not present we have a cache miss. The contents are fetched from main memory into the CPU register 

indicated in the instruction being executed and a copy is retained in the cache. Most software exhibits temporal locality of access, 

meaning that it is likely that the same location will be used again soon, and, if so, the address will be found in the cache, in which case we 

have a cache hit.

Transfers between the main memory and the cache occur at the granularity of cache lines rather than individual bytes or machine words. 

A cache line is typically around 32 or 64 bytes in size. 'Burst transfers' of this kind receive hardware support and exploit spatial locality of 

access to the cache; future accesses are often to addresses near to previous ones.

Cache designs vary according to how writes are managed. In a write-through system the update must always be generated to main 

memory as well as the cache. In contrast, a write-back cache allows the cache to hold the update and to propagate it to main memory at a

later time – this is useful if the location is likely to be updated several times in succession, but can impose a delay upon eviction of an 

updated cache line.

In a uniprocessor operating system the cache can be considered as transparent to processes. However, the designer of an operating 

system for a shared-memory multiprocessor needs to know how the CPUs' caches operate. It might be that more than one processor has 

the same writeable data value cached, for example. The current trend is towards cache coherent multiprocessor systems in which the 

cache remains transparent to the software layer, but may present non-uniform memory access times if particular sections of physical 

memory are associated with separate processors. In any system the interaction between memory caches and DMA devices must be 

considered: usually memory that is subject to a DMA transfer must not be simultaneously held in any cache. Internally, the hardware 

cache is usually a hierarchy of modules, each progressively larger but slower to access than the last.
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5.3 The address space of a process

When accessing memory, a process is said to operate within an address space, meaning the association between the range of 

addresses available to the process and the data items that are accessible at those addresses. We make use of this concept throughout 

the book. It is important for naming (addressing), protection and system structure and we need to examine it in some detail.

In a RISC-style processor, only certain machine language instructions contain addresses, for example:

LOAD a specified processor register with the contents of an address;

STORE the contents of a processor register at an address;

CALL a procedure at some address;

JUMP or BRANCH to an address.

The instructions have an address field which contains a representation of a memory address. The number of bits allocated to an address 

is an architectural decision. Many early computers' instruction sets had only 16-bit address fields, which allowed just 64 kbytes of memory 

to be addressed directly. A typical figure is now 32 bits which allows 4 gigabytes (Gbytes) to be addressed. We say that such an 

architecture gives a virtual address space of 4 Gbytes. The amount of physical memory configured into a given computer system is still 

likely to be smaller than this.

5.3.1 Address binding

Although an address used in an instruction can be anywhere within the virtual address space, it must be bound to a physical memory 

address if the operation is to be carried out successfully. This idea underpins most schemes for memory management: the process is 

concerned only with its virtual address space and the operating system is concerned with managing the bindings.

The instructions that make up a computer program are produced by system software: a compiler and/or an assembler. Any realistic 

program should be developed as separate modules which are then linked and loaded into memory. When the compiler or assembler is 

translating a single module, it does not know (except in very simple systems) where the module will be loaded in the physical memory of 

the computer. Translators must therefore adopt a convention about the addresses to use in the code they output. Let us assume that 

translators output code for each module as though it would start from address zero in memory. A linker can take a sequence of such 

modules and create a single composite module by adjusting the (relative) addresses in all but the first module. The addresses in this 

resulting module are still relative to its start. The basic principle is illustrated well by this simple example, using address zero as the start of 

a single program module. However, a compiler has the whole virtual address space at its disposal and modern compilers have more 

elaborate conventions for use of the virtual address space.

Figure 5.2 extends the system structure to include one way of performing address translation. The PC will contain a virtual address which

must be translated to a real address before an instruction is fetched. When the processor decodes an instruction, extracts an address field

and computes the address of an operand, this is a virtual address. Before it can be used to read or write memory it must be translated to a

real address – in this case the translation is shown using dynamic binding performed by the hardware at runtime. We return to this 

scheme in Section 5.3.3 after briefly considering static binding at the time that the program is loaded.

Figure 5.2. Address translation in a memory hierarchy.



5.3.2 Static binding

Let us now consider what happens in a simple system when a module is to be loaded into 

physical main memory. The operating system is responsible for managing memory and we 

assume that it will give the loader a base address from which to load the module, having 

identified a region of physical memory that is sufficiently large to contain the program. The 

important question is whether the loader should adjust all the relative addresses in the module, 

converting them to absolute physical addresses, before loading it. This is called static 

relocation or static binding. If this was done, then once a program was loaded into memory 

the addresses in it would be fixed and the code or data at these addresses could not be 

moved in memory without further relocation. The only flexibility available to an operating 

system would be to move the program out to backing store and then later move it back into 

main memory into exactly the same place. Some early IBM systems divided physical memory 

into partitions, and programs were allocated to run in a given partition. It would be possible to 

move a module to a different place in main memory only if the relocation information (the 

location of relative addresses within the module) was retained with the module and the 

translation from relative to absolute addresses was carried out by software every time the 

module was moved.

In a system which is dedicated to a single task, such as monitoring an industrial process or providing a service, it might be the case that 

once a program is loaded in memory it runs there indefinitely. In this case the static binding of addresses (at load time) just described 

might be appropriate. All the processes executing in such a system would share the same physical address space. They are all using 

the absolute machine addresses of the available physical memory. They would not be protected from each other, should addressing errors 

occur, nor would any operating system code be protected from application-level processes, unless some additional hardware was 

provided.

5.3.3 Dynamic binding

We now consider the possibility of keeping the loaded addresses relative to the start of a process and using some other mechanism to 

translate from the virtual address space of the program to the physical address space of the computer. The advantages of doing this are:

a given program can run anywhere in physical memory and can be moved around by the operating system; all of the 

addresses that it is using are relative to its own virtual address space and so it is unaware of the physical locations at which it 

happens to have been placed;

it might be possible to protect processes from each other and the operating system from application processes by whatever 

mechanism we employ for isolating the addresses seen by processes.

To realize these advantages we must have a mechanism to bind the virtual addresses within the loaded instructions to physical addresses 

when the instructions are executed. Much of the remainder of this chapter is concerned with how to do this.



Figure 5.3 illustrates the concept we have just introduced, that of the virtual address space of a process. The process sees an environment 

in which it uses addresses starting from zero. The real machine is shared by a number of processes, and we see the virtual memory of the 

process occupying a portion of real physical memory. The way in which the virtual address space is mapped to the physical memory must 

therefore be changed each time the operating system switches from one process to another.

Figure 5.3. Virtual memory and real memory.

5.3.4 Hardware-assisted relocation and protection

Dynamic binding must be implemented in hardware because it introduces translation as part of every memory access. If the virtual 

address space is organized as in Figure 5.3 then the basic requirement is for modules to be held contiguously in physical memory and to 

contain addresses relative to their first location. We call the physical address of this first location the base of the process. Suppose that an 

instruction is fetched and decoded and contains an address reference. This address reference is relative to the base, so the value of the 

base must be added to it in order to obtain the correct physical address to send to the memory controller. The simplest form of dynamic 

relocation hardware is a single base register and a memory management unit (MMU) to perform the translation. The operating system 

must load the base register as part of setting up the state of a process before passing control to it.

This simple relocation mechanism does not provide any protection between processes: simply adding a base address to each address 

accessed by a program does not help to confine those address references to the memory allocated to the program. However, it is natural 

to combine the relocation and protection function in a single set of registers by introducing a second register (we shall call it the limit 

register) that delimits the upper bound of the program. Figure 5.4 shows a typical instruction execution cycle augmented with protection 

checks and address relocation.



Figure 5.4. Instruction execution with protection checks and relocation.

Dynamic relocation hardware, for translating from a virtual address to a real address at runtime, was first used in the early 1960s. Before 

relocation hardware came into use protection registers had already been provided for many computers. Various forms were available, but 

the basic idea was usually to check each address reference against values set up in hardware registers. For example, when a process 

was selected to run, the operating system would load its upper and lower physical memory bounds into two registers for this purpose and 

the CPU would check that every memory access was within those bounds.

Nowadays only simple processors for embedded systems use this basic scheme with a single base register and limit register. In Sections 

5.4–5.7 we introduce the hardware mechanisms that are used by contemporary processors and operating systems.
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5.4 Segmented virtual memory

In practice it is not very useful for a program to have to occupy a single contiguous range of physical addresses. For instance, such a 

scheme would prevent two processes from sharing the code of a compiler (the example used in Figure 2.10). The difficulty is in arranging 

for the two executions of the compiler to access different data areas while still being able to share the same code. This can be achieved if 

the system has two base registers and two limit registers, thus allowing two separate memory ranges or segments per process. Figure 5.5

shows two processes sharing a compiler and Figure 5.6 shows relocation (and protection) hardware to realize this scheme. Notice the 

impact that this change has on the virtual address space of the processes: the most significant bit of an address is now taken as a 

segment identifier with 0 indicating the data segment (segment 0) and 1 indicating the code segment (segment 1). If this bit is 0 then base 

register 0 is used for relocation. If it is 1 then base register 1 is used. Aside from the need to organize virtual addresses into these two 

segments the translation scheme remains transparent to the program.

Figure 5.5. Two processes share a code segment but have private data segments.

Figure 5.6. Relocation and protection hardware for two segments.



With two separate segments it is easy to implement a more sophisticated protection scheme than access/no-access to physical memory. 

We can implement different modes of access to the segments and set these up for each individual process when it comes to run. The 

system might support separate read, write and execute rights, for example. Any process sharing a code segment could be set up to have 

only execute rights to it. A process would have read and write rights for its own data segment. Instruction execution would then include a 

check of the type of access required.

Within a single program it is usual to have separate areas for code and data, for example, code, stack and heap. Language systems have 

conventions on how the virtual address space is arranged and a common scheme is shown in Figure 5.7. Here we see a code segment, 

which will not grow in size, followed by a data area which may well grow. At the top of the virtual address space we see the stack growing 

downwards in memory.

Figure 5.7. A common convention for using virtual memory.



To realize an arrangement of this kind with one segment only, the stack would have to be very much closer to the heap than indicated 

here or we should not have enough physical memory to load the segment, even though most of it is the empty gap between the heap and 

the stack. There would be no possibility of sharing the code (or any of the data) and no possibility of performing different kinds of access 

checks on the separate parts. As the two data areas grow they might well collide and this would require software to create more space by 

moving the data. If we had only two segments we would probably use one for the code and heap (and be unable to protect them 

differently) and the second for the stack. This would at least allow the two data areas to grow without colliding. Three segments would be 

preferable.

It is easy to generate examples where it would be nice to have four or more segments per 

process. The segment is the unit of protection and sharing, and the more we have, the more 

flexible we can be. In the evolution of mainframe computers the provision of large numbers of 

segments per process was an early aim; Multics is one example (see Bensoussa et al., 1972; 

Saltzer, 1974).

5.4.1 Segmented virtual addresses

There are two different ways in which segmented virtual addresses can be organized. Figure 5.8 shows the first of these, in which a virtual 

address is split into a segment number and a byte offset within the segment. The number of bits used to indicate the segment number will 

usually be fixed by the CPU designer.

Figure 5.8. A virtual address for a segmented system.

The alternative scheme used on some systems is to supply the segment number separately from the offset portion of the address. This is 

done on the Intel Pentium: by default, instruction fetches are performed from a designated code segment, data accesses from a data 



segment and stack operations from a stack segment (Messmer, 1995). Separate instructions are used to select which segment number 

will fulfil each of these roles. This additional indirection between the purpose of a segment (i.e. 'code', 'date' and the like) and the one 

chosen for use can be important when executing shared code: in a system supporting a large number of segments per process the 

particular segment to access for some purpose may have a different number in different processes.

5.4.2 Address translation

Compared with a basic two-segment scheme, the hardware support for dynamic address translation is quite extensive. The operating 

system must keep a segment table for each process in which the location of each segment is recorded. These tables need to be in fast 

memory, perhaps pointed to by a processor register.

If a process can have many segments, only those currently being used for instruction fetch and operand access need be in main memory. 

Other segments could be held on backing store until they are needed. It might be that some segments need never come into main 

memory on a given program run, for example, those containing error-handling routines might not be needed.

To achieve this we must decide how a segment is brought into main memory when it is needed. For example, what should happen when a 

transfer of control is about to be made to a segment that is not in main memory? It is not desirable for the compiler to attempt to foresee 

the need for such transitions. Only the operating system, at runtime, knows how much main memory is available and where it has chosen 

to place the segments of the currently active process.

If an address is presented for a segment that is not present in main memory then the address translation hardware generates an 

addressing exception. This is handled by the operating system, possibly with hardware assistance, causing the segment to be fetched 

into main memory and the process restarted. Of course, this may require an existing segment to be evicted from main memory in order to 

make space. The general concept here is called virtual memory. A program's segments are located throughout the memory hierarchy 

and the operating system, in response to addressing hardware exceptions, effects the necessary segment transfers. We shall explore this 

concept again in the next section in the context of paging.

5.4.3 Segmentation: Summary

Details of memory management hardware that supports segmentation are not given here, but examples are the Burroughs B5000 

(Siewiorek et al., 1982), the PDP-11 series, the Intel 80286 (Ciminiera and Valenzano, 1987; Hennessy and Patterson, 2003) and, more 

recently, the Intel Pentium (Messmer, 1995).

In summary, the advantages of segmented virtual memory are:

The virtual address space of a process is divided into logically distinct units which correspond to the constituent parts of a 

process.

Segments are the natural units of access control, that is, the process may have different access rights for different segments.

Segments are the natural units for sharing code and data objects with other processes.

The disadvantage is that it is inconvenient for the operating system to manage storage allocation for variable-sized segments because 

each segment that is held in physical memory must be contiguous. After the system has been running for a while the free memory 

available can become fragmented. This is known as external fragmentation because although the total free memory might be far greater 

than the size of some segment that must be loaded, it might be that there is no single area large enough to hold it. This problem can be 

solved by moving segments that are not needed out to disk and moving them back if they come into use again. The segments of 

processes that are not running, perhaps because they are blocked, waiting for lengthy I/O, are obvious candidates for rejection to backing 

store. This is called swapping.
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5.5 Paged virtual memory

In Section 5.4 we introduced hardware-supported segmentation in which a process views its virtual address space as a number of 

individual segments, each with an associated length and access-control settings. However, the need to keep each loaded segment 

contiguous in physical memory poses a significant disadvantage because it leads to fragmentation and complicates the physical storage 

allocation problem. A solution to this is called paging. Blocks of a fixed size are used for memory allocation so that if there is any free store 

it is of the right size. Memory is divided into page frames and the user's program is divided into pages of the same size.

Typically each page is a reasonably small size, such as 4 kbytes, and so in a paged system each process would require many pages. 

Figure 5.9 illustrates paging for a process. In this example, although there is no hardware-supported segmentation, the process has still 

organized its virtual address space so that it uses a contiguous block of addresses starting at 0. All the pages in this example are shown in 

main memory.

Figure 5.9. Paging.

In systems where program sizes are unpredictable and programs are loaded dynamically, the limited size of physical memory can cause 

problems. As outlined above for segmented systems, a portion of the disk storage (or a separate, dedicated, high-speed device) can be 

used as an extension to main memory and the pages of a process may be in main memory and/or in this backing store. The operating 



system must manage the two levels of storage and the transfer of pages between them. It must keep a page table for each process to 

record this and other information.

5.5.1 Address translation

Dynamic relocation hardware (paging hardware) is needed to translate from a virtual address to a physical address at instruction execution 

time. Figure 5.10 shows the general idea of virtual to physical address translation by a memory management unit. Before a page can be 

addressed it must have an entry set up by the operating system in the hardware table shown. This table, known as the translation 

lookaside buffer (TLB), is searched associatively as part of every address reference.

Figure 5.10. Outline of the paging hardware function.

The virtual page number is extracted from the virtual address and an associative lookup is initiated. If there are multiple processes then 

care is needed to ensure that pages from one process's virtual address space are not confused with another's. The solution shown here is 

to include the process's identifier in the entries held in the table and to use this as part of the lookup. An alternative solution is to clear the 

contents of the TLB each time a context switch is performed.

If a match is found an access check is made, based on the information recorded in the flags; for example, is a write being attempted to a 

page where the access is read only? If all is well, the physical page base, taken from the matched table entry, is appended to the offset 

from the virtual address to form the complete physical address. The 'flags' field will indicate the access rights allowed and other 

information; see Section 5.8 for an example.

If an address reference is made to a page which is present in main memory but which does not have an entry in the TLB, the address 

translation fails. A table entry must be made for that page. Memory management hardware differs in the assistance it provides to the 

operating system to achieve this. Again, Section 5.8 will provide a concrete example.

If an address reference is made to a page which is not present in main memory the address translation will again fail. No match will be 

found in the table, and the addressing hardware will raise an exception, called a page fault. The operating system will handle the 

exception.

In order to be able to handle a paging exception, and make the required entry in the hardware TLB, the operating system must keep track 

of where the pages of every process are located in main memory and/or on backing store. In small, early systems a page table per 

process was feasible; for each virtual page of the process the page table entry recorded the address in main memory (if it was present) 

and the address on backing store together with access control and usage flags per page. The virtual page number could be used as a 



simple index into this table.

Such a single-level page table becomes unfeasible for systems with even a moderate virtual address space because a separate table is 

needed for each process and each table requires an entry for every virtual page, irrespective of whether that page is in use or not. Section 

5.7 will describe alternative page table structures.

Notice that virtual memory can readily be integrated into a paging scheme. There is no need for an entire program to be loaded in main 

memory, indeed a program can be larger than physical memory. When a new page is addressed, to fetch an instruction or access a data 

operand, it is brought into main memory on demand. This is called demand paging. An alternative approach is to attempt to predict which 

pages will be needed by a process (its current working set) and to load them in advance. An algorithm is also needed to decide which 

page should be rejected from main memory to make space for a new page which is to be brought in as a result of a page fault, and so on.

5.5.2 Copy-on-write paging

It is often the case that a copy of a writeable data area of one process is required by another. We shall see examples in Part II, when we 

consider how information is transferred between cooperating concurrent processes, and in the case studies in Part IV. Often, both 

processes are allowed write access to private copies of the data, that is, the data is initially the same but any updates made by a process 

are not visible to the other processes that have copies of the data. One way of implementing this in a paged virtual memory is simply to 

copy the data to a new frame in physical memory. New page table entries will be set up for these pages for the process with the copy. The 

two processes now have separate physical copies of the pages and separate page table entries for them.

Often, in practice, it is unlikely that either process will write to the data area, or perhaps each will write to a very small portion of a large 

data area. An example is that when a new process is created in the UNIX operating system, a replica of the address space of the creating 

process is made for the created process. The first thing the created process does usually is to discard most of its inherited address space 

and run a completely new program, making the copying a waste of time.

Some paging schemes address this problem by providing a 'copy-on-write' option. The idea is that the process which is to receive the copy 

of the data is given new page table entries which point to the original physical pages. Only if either process writes to a page of the data 

area is a new copy actually made. To support this the hardware may have a copy-on-write flag which is set for each page of the copied 

data for both processes. When the 'copy' is made, both processes are given copy-on-write access to all the pages involved. When a write 

is subsequently attempted, an access protection exception is raised and a physical copy of the page is made and entered in the page 

table of the writing process. The access rights of both processes can now be set to write access and the copy-on-write flags unset. The 

same effect can be achieved by setting read-only access in the TLB and copy-on-write in software page table entries.

5.5.3 Paging: Summary

Paging hardware was first used in the UK Atlas computer in 1960 (Kilburn et al., 1962). By using fixed-size pages in the virtual address 

space and fixed-size frames in the physical address space, paging addresses the main disadvantages of segmentation:

External fragmentation is no longer a problem: all of the frames in physical memory are the same size.

Transfers to and from disk can be performed at the granularity of individual pages; it is likely that these are smaller than the 

segments in an alternative system. The smaller size means that transfers are individually faster and that unused sections of a 

program do not have to be held in main memory.

However, there are three main disadvantages of paging. The first is that the page size is a choice made by the CPU or OS designer: it 

may not fit with the size of program data structures. This can lead to internal fragmentation in which storage allocation requests must be 

rounded up to an integral number of pages. The second problem, related to this, is that there may be no correspondence between page 

protection settings and application data structures. If two processes are to share a data structure then they must do so at the level of 

complete pages. We examine these problems in Section 5.6.

The final problem is that supporting per-process page tables is likely to require more storage space for the OS data structures. 

Representing page tables compactly will be the subject of Section 5.7.
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5.6 Combining segmentation and paging

The arguments for having several segments per process (for protection and sharing) still hold in a system which uses paging for physical 

storage management. The two concepts can be combined so that each segment of a process is divided into pages. This means that the 

virtual address space of a process is logically divided into segments but it is no longer necessary for each segment to be contiguous in 

physical memory. Figure 5.11 illustrates the idea for the simple case of two segments per process. Figure 5.12 shows how a virtual address 

may be interpreted when both segmentation and paging hardware are used.

Figure 5.11. Paged segments illustrated for two segments per process.

Figure 5.12. A virtual address for a paged segment.



5.6.1 Hardware-supported segments, hardware-supported pages

The Intel Pentium is an example of a processor that supports both segmentation and paging. As described in Section 5.4.1, a process's 

virtual address space is segmented. A first layer of translation maps addresses within these segments into intermediate linear addresses

within a per-process 32-bit address space. A second layer performs paging to map the linear address space to the physical address space. 

This means that processes can still use a segmented model but that it is only necessary to find contiguous space for a segment within that 

process's linear address space rather than within the entire system. It also means that some parts of a segment can be paged out to disk 

while other parts of the segment are held in memory. In practice few operating systems use these hardware facilities of the processor, 

instead they opt for a simple paged configuration in which all segments are of length 4 Gbytes and map to offset 0 within the linear address 

space.

5.6.2 Software-supported segments, hardware-supported pages

Many systems build software-supported segmentation over hardware-supported paging. In these systems, the page is the unit of physical 

storage allocation and the hardware performs virtual to physical address translation and page-fault generation. Segments are constructed 

entirely at the software level from contiguous regions of the virtual address space. Unlike hardware-supported segmentation, there is no 

longer a maximum number of segments. However, since sharing must be done at the level of complete pages, any software-supported 

segment that is to be shared must comprise a complete number of pages. This scheme is attractive if segments are reasonably large 

(because little space is lost to internal fragmentation). The case studies in Part IV provide UNIX as a concrete example. The memory 

management unit used as an example in Section 5.8 would be able to support this kind of organization.

The compilers in a system and the operating system share conventions on how the virtual address space is used: the virtual addresses at 

which the user code and the data areas start, for example. A single page table for the whole address space would be too large and most 

pages would be unused. The operating system can keep a page table for each segment and can note the access allowed to each page of 

that segment.
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5.7 Operating system data structures

As main memories have become larger, the criteria for designing OS memory management algorithms have changed. An important factor 

on modern processors with vast 64-bit virtual address spaces is that the size of the data structures needed to support memory 

management should depend on the amount of that address space that is in use rather than on its total size. For example, a simple page 

table holding a mapping for each virtual page would be impracticable at such a size.

Realistic algorithms exploit the fact that a process's pages are allocated in clusters which are widely dispersed in the virtual address space 

according to software conventions. The UNIX and Windows case studies in Part IV will show how so-called regions and sections are 

used. In addition to defining a section, Windows NT and Windows 2000 allow a view or portion of a section to be defined to ensure that 

only those pages required for immediate use are recorded in the process page table.

A facility that is now provided as standard is to integrate file I/O and memory management by allowing a file to be mapped into the virtual 

address space of a process and demand-paged into memory rather than read through I/O buffers. Such a file would become a segment, 

region or section. File mapping is motivated and described in Section 6.8.

We have made the assumption that, although all the pages of a process need not be in main memory, its page table(s) will be, so that the 

operating system can locate any addressed page. For a 32-bit address space, half of which is allocated to user space, the maximum 

possible number of pages of size 4 kbytes is 2
19

. By using segments (sections, etc.) we could arrange that a process has a page table per 

segment. Even so, page tables can become very large, for example for image data or memory-mapped files.

In assessing different designs for page table structures it is important to realise that they need to perform two different functions. Firstly, 

when a TLB miss occurs for a page held in main memory, they must supply the address at which that page is located. The overarching 

consideration here is that this information is needed quickly because the process cannot make progress until the TLB miss has been 

satisfied and, unless the TLB is extremely large, accesses may miss at a moderate rate. In many cases the page tables are consulted 

directly by the memory management unit and so their choice is fixed on a particular processor. However, the MMU introduced in Section 

5.8 allows TLB misses to be handled in software by the operating system.

The second requirement for the page table structures is that, when a TLB miss occurs for a page that is not in main memory, they must 

indicate how to locate the contents of that page: typically, in a virtual memory system, by giving the location that it occupies on disk. It is 

less important that these lookups are performed quickly because the time taken by any reasonable scheme will be dominated by the 

subsequent disk access. A more important consideration is that any portion of the page table that remains in main memory for this 

purpose should be compact in order to allow a large number of processes to operate. Even if the processor MMU performs page table 

accesses in hardware, some kind of OS-managed structure is usually needed to keep track of pages that are held on disk.

In this section we introduce a number of alternative page table formats. The selection between these for a particular OS will depend on the 

expected work load and characteristics of the processors that the system will operate over.

5.7.1 Multi-level page tables

A number of simple schemes are based on the idea of building multi-level page tables. For example, using a top-level table which is 

always in memory in which the location of each segment page table is recorded. This could be used with the virtual address space format 

presented in Figure 5.11, allowing the segment page tables to be addressed by the operating system and paged-in if necessary.

We can generalize this by dividing each virtual address into a series of fields, each containing i bits. When the operating system has to 

locate the page table for a given page it strips off the bits, i at a time, starting from the most significant end. The first i bits are used to index 

into the top-level table which has 2
i
 entries (each a pointer to a page table at the level below), to locate the next-level page table. The next i

bits from the address allow this table to be indexed to locate the third-level page table and so on.

Even if the page table is always held in physical memory, a hierarchical scheme may reduce the space that it occupies. Consider the 



example shown in Figure 5.13 in which a non-segmented 32-bit virtual address space is mapped to a 32-bit physical address using a 

two-level page table and pages of size 4 kbytes. The physical address of the first-level page table is given by a page table base register

(PTBR). The first-level mapping is then made using the most significant 10 bits of the virtual address as an index into that table, yielding 

the physical address of the second-level table to use. The next 10 bits index that table, yielding the physical frame number which is 

combined with the last 12 bits. If there are no mappings within a particular second-level table then that table can be removed and an 

'invalid' bit set at the top level. Many paging schemes are constructed so that each first-level or second-level table is itself a page in size so 

that the storage it occupies can be allocated from the same source as the frames used by processes.

Figure 5.13. A two-level page table.

However, the page tables may still be large, with many unused entries, and deeper hierarchies have been proposed comprising more 

page tables, each with a smaller number of entries. Particular problems arise with address spaces that are larger than 32 bits in size or if 

the virtual address space is occupied very sparsely. The alternative of using an inverted page table is described in Section 5.7.3. The 

guarded page table, which aims to avoid storing page table entries for non-existent pages, is first described.

5.7.2 Guarded page tables

As an extension to simple multi-level page tables we can design a scheme in which the depth of the structure can be different for different 

regions of the virtual address space. Liedtke has worked in this area at the German National Research Centre for Information Technology 

(GMD). He observes (Liedtke, 1995) that many of these page tables will have only one entry, because the address space is very sparsely 

used. He defines a variable length guard which is attached to a page table entry. If the guard is length zero, the full hierarchy of page 

tables is used as described above. If the guard is of length i, the i guard bits indicate the only valid next i bits in the address (which is 

checked) and the pointer the guard is attached to bypasses the next level of the hierarchy of page tables and points to the only possible 

page table at the level below. If the guard is of length 2i, two levels are bypassed and the bit pattern of length 2i should be found as the next 

2i bits in the virtual address, and so on. Detailed examples and comparative evaluations can be found in the reference.

5.7.3 Inverted page tables



A further alternative is to manage physical memory using a system-wide inverted page table that maps from physical page numbers to 

virtual page numbers. Notice how this contrasts with the forward mapped schemes from the previous sections in which the mapping is on 

a per-process basis and a translation from virtual page numbers to physical ones. A key advantage of inverted page tables is that their 

size grows in direct proportion to the number of physical pages in the system. Each entry in the table records which page of which process 

occupies that particular page frame of physical memory. The main disadvantage is that an inverted page table requires a search 

mechanism to locate the physical frame (if any) that holds a particular page. This can be done with reasonable efficiency using a hash 

function. A scheme of this kind was used effectively at a time when main memory was small (see Morris and Ibett, 1979), and is currently 

used in Hewlett-Packard's Precision Architecture.

Of course, the operating system will still require some memory management information for each process that is executing, indicating at 

the very least where pages not held in physical memory are located on the backing store. However, the use of an inverted page table 

allows a separation to be made between the information held in the main memory table that is directly needed during a TLB miss and the 

information in these per-process tables that is needed when a page is not in physical memory.

5.7.4 Managing pages in main memory

Let us now consider the steps taken when a process accesses a page that is held in main memory:

A process makes an address reference to a new page which does not have an entry in the TLB (see Figure 5.10).1.

The operating system (or hardware) searches the main memory page table for that page of that process.2.

If the page is in main memory it will have an entry in the main memory page table and is given an entry in the associative 

address translation table. The TLB-entry replacement strategy usually attempts a rough approximation to least-recently-used 

(LRU). Typical schemes are 'not most-recently-used' or even random replacement. Maintaining full usage information to enable 

exact LRU may add an unreasonable overhead for only marginal gain.

3.

The instruction execution is restarted and, this time, the address translation completes. This occurs transparently to the 

process.

4.

Systems vary substantially in the extent to which the operating system is involved with managing the TLB. The MIPS R2000/3000 

processors illustrate one option in which all page table operations are performed in software under the control of the operating system. 

This provides the operating system with flexibility to design its own page table formats, but the translation function must be designed and 

implemented with great care so that it does not degrade performance and so that it operates correctly at whatever point it may be invoked. 

Inverted page tables and guarded page tables are possibilities.

The alternative scheme, typified by the ARM and Intel Pentium processors, is for page table lookup operations to be implemented in 

hardware by the CPU. Simple two-level systems are typical in those environments because they lend themselves to straightforward 

hardware designs. Intel Itanium processors use an intermediate design providing both a software-controllable TLB and an optional 

hardware virtual hash page table implementation (Intel, 2000).

5.7.5 Managing pages on backing store

If the page is on backing store the operating system must consult its memory management tables to find out where it is located. It must 

find, or make, a free page in main memory and must start the transfer into memory of the required page. While this (DMA) transfer is in 

progress, some other process may be scheduled to run on this processor. When the transfer completes, indicated by a disk interrupt, the 

operating system can enter this page in the TLB. When the process which caused the page fault is next scheduled, it must be restarted at 

the instruction which caused the fault, and this time the address will be translated successfully.

This scheme requires some mechanism for mapping, on a per-process basis, from a virtual address to the location on disk of the data that 

should be held there. Recall that the page may be on disk either because it has been paged out to backing store or because it is a file 



which has been mapped into the process's virtual address space.

There are two principal ways in which this information can be managed: either the OS can store it in space reserved in the page tables that 

are used when handling a TLB miss, or it can be held in a separate data structure. The first option is reasonable for simple systems with 

per-process 'forward mapping' page tables, for example with a separate set of multi-level page tables allocated for each process. Note that 

if a page is not held in main memory then the space that that field occupies can be used to indicate its location on disk. Of course, this 

assumes that the identifiers used to indicate the location of paged-out data are sufficiently small to fit into that space.

The second option is to have a separate data structure that describes a process's address space and to use this to record the location of 

pages that are held on disk. Such a scheme is necessary when using an inverted page table because that is a system-wide data structure 

and records only the current contents of physical memory.

Even with forward mapping tables it might be desirable to use a separate data structure since it may allow a more compact representation 

and aid portability of an operating system between processors. For instance, the BSD 4.4 operating system uses a machine-independent 

representation of each process's virtual address space as a series of vm_map_entry structures, each describing a contiguous region of 

that space with the same protection settings and associated with the same software-implemented segment.

5.7.6 Page replacement

When fetching a page from disk into physical memory the operating system needs an algorithm for performing page replacement. As with 

the TLB, mechanisms that approximate least-recently-used are effective if the process exhibits temporal locality of reference. However, 

unlike a TLB miss, the high costs of transferring data to or from disk make it important to make a judicious choice and so it is rare to use 

simplistic schemes such as random replacement.

Even if they service TLB misses in hardware, most processors provide the OS with per-physical-page flags indicating whether that 

memory has been accessed or modified since those flags were last cleared. A non-modified non-accessed page is a good candidate for 

replacement because it does not appear to be in active use and there is no need to write its contents back to disk. A page that has been 

modified, but not recently accessed, is also a candidate for replacement but, in that case, the operating system must record its previous 

contents before it can be reused. Some operating systems perform page cleaning as a background task, writing modified pages back to 

disk so that they can be replaced quickly.

Although single 'accessed' bits do not allow an exact LRU algorithm to be implemented, they can form the basis of an approximation by 

arranging that the OS clears the accessed bits periodically and subsequently observes on which pages they have been set by the CPU. 

The clock algorithm is a popular approximation to LRU. It is so-called because the pages that are candidates for replacement are 

conceptually ordered in a circular list with a 'hand' that identifies the next frame to consider. A frame is selected by advancing the hand 

over each in turn until one is found whose accessed bit is not set. The accessed bits are cleared as the hand moves. This guarantees 

finding a frame within one revolution of the hand and allows a frame to remain continuously allocated so long as it is accessed during the 

time it takes the hand to revolve.

A disadvantage of the basic clock algorithm is that it does not consider whether a frame's contents have been modified and it does not 

scale well to systems with large numbers of frames. The first point can be addressed by making multiple scans, first for unmodified frames 

and then for modified ones. The two-handed clock algorithm addresses the second concern by having an additional 'front' hand revolve 

a fixed number of pages in front of the main hand. The front hand clears the accessed bits, so the main hand is more likely to find a 

suitable frame for replacement. The distance between the hands controls the likelihood of an active page being evicted.
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5.8 An example of a memory management unit (MMU)

Figure 5.14 shows the basic design of the MIPS R2000 (also R3000) chip. As well as a RISC processor there is also a system control 

coprocessor on the chip. This includes a memory management unit which is shown in more detail in the figure. The MMU contains a 

simple TLB with space for 64 entries. Each non-empty entry in the TLB indicates a page in the virtual memory of a process and its 

corresponding location in physical memory (see Figure 5.15). The TLB is managed by the operating system; before a page can be 

addressed it must be in main memory and have an entry in the TLB. The MMU contains four registers: entry-hi, entry-lo, index and 

random. The operating system uses them to insert or replace entries in the TLB; the addressing hardware uses them to perform address 

translation.

Figure 5.14. An example of an MMU: the MIPS R2000/3000.

Figure 5.15. MIPS R2000/3000 address translation.



The virtual memory system supports pages of 4 kbytes, so a 32-bit address is divided into a 20-bit page number and a 12-bit offset. Every 

time a virtual address is to be translated (to fetch an instruction or read or write a data operand), the process number and virtual page 

number are entered in the entry-hi register. They are compared associatively with all the corresponding virtual addresses stored in the 

table (a 'TLB probe') and if a match is found the index register indicates this and the position of the matched entry in the TLB. The 

matched TLB entry is then read and the physical address of the base of that page is then available in entry-lo. The 12-bit offset can then 

be appended to the page base to give the physical address required.

In addition to the basic address translation function described above, there is some support for access control policies to be enforced.

There is basic protection of the operating system from user processes. If the processor is executing in user mode and an 

address reference is made to the operating system's area (the most significant bit of the address is 1; see Figure 5.16) then an 

exception is raised.

Figure 5.16. MIPS architecture virtual address space.



It is possible for a page to be made shareable by all processes, indicated in a global (G) access control bit. In this case all 

process IDs will be deemed to match.

A further bit D (dirty) is for controlling write access. An exception is raised if a write access is attempted to a page which is 

write-protected in this way.

The valid (V) bit is provided for use by the operating system. If everything matches but V indicates invalid then an exception is 

raised. A page may be referenced by another process while being paged in, for example.

The N bit is for mapped access to pages which are not cached: it indicates whether the cache or main memory should be 

accessed for this physical address.

Only 64 pages are mapped at any time by the TLB: the 64 pages accessed most recently by all the processes which have run on this 

processor. As an optimization, many pages need not be mapped. For example, much of the operating system kernel needs to be resident 

permanently in main memory. Such kernel pages must not be 'paged out' and can be mapped directly onto some specified area of main 

memory, bypassing the address translation hardware. Figure 5.16 shows the arrangement of the virtual address space supported by the 

MIPS R2000/3000. The operating system occupies half of every process address space. Operating system code is in a kernel segment 

which is cached but not mapped; device registers and buffers are in a kernel segment which is neither cached nor mapped. Operating 

system data, such as process page tables and data areas, is both cached and mapped, as is the user segment.

The hardware therefore supports a user segment and three operating system segments. When an operating system is implemented on 

this architecture it is likely to support more user-level segments within the one known to the hardware. UNIX supports three user-level 

segments, for example, a code segment and two data segments.
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5.9 Memory management in system design

Is memory management hardware always needed in a computer system? If the system is very small and simple and needs to be very 

cheap, such as a low-end handheld device, a memory management unit may not be justifiable; it consumes space on the CPU, power 

during its operation and memory space for its translation tables.

An alternative to hardware MMU systems is sometimes to use a safe language or execution environment such as the Java Virtual 

Machine to enforce protection between applications. Such systems rely on the type safety of the language in which an application is 

written to prevent it from achieving arbitrary access to system resources. We will see some examples of these systems in Chapter 26.

In some systems, once software is loaded it remains resident and runs indefinitely. The software may have to be resident in main 

memory to guarantee real-time response. The system may be dedicated to a specific function and have nothing equivalent to error-prone 

or malicious user programs. It could be argued that memory management hardware is unnecessary in such cases; there is certainly no 

need for virtual memory. The protection afforded by memory management hardware is useful, however. The memory management 

access controls can be set up so that an instruction which causes an illegal attempt to write or transfer control outside the module in 

which it occurs can be trapped. As software grows in size, this support for debugging will become increasingly important.

In systems where program sizes are unpredictable, programs are loaded dynamically and the system is shared by several users, the 

limited size of physical memory can cause problems. In this case virtual memory is essential. It is also desirable that the various 

independent programs should be protected from each other and the operating system should be protected against them.

For efficiency, swap space may be a device or partition of a device that the operating system writes to directly. In some systems, swap 

space is implemented as a single, large file, accessed via the filing system. Another scheme is to use a single, large, memory-mapped 

file; see Section 6.8.

Memory mapping can be used to avoid the inefficiency of copying data. Examples are: the transfer of data between a network or I/O 

buffer and the address space of a process; the transfer of data between processes; and the copying of an address space on process 

creation. In some cases (when source and destination both need access to the data after the transfer) the copy-on-write facility will be 

useful (see Section 5.5.2); in others a simple transfer of data by remapping is all that is needed.

Single-user networked workstations are now more common than multi-user systems. Workstation operating systems typically have to 

deal with only a small number of processes at any time. Memory technology is such that 512-Mbyte units are available at reasonable 

cost and a 4-Gbyte memory will soon be commonplace. It might be argued that all software will be able to fit in a main memory of this 

size and virtual memory techniques will become redundant. Application program sizes have continued to grow, however, and system 

software such as graphical user interfaces has become very large. Also, we expect to be able to manipulate large audio and video 

streams. It is likely that virtual memory techniques will continue to be needed, but the assumptions on which they are based have 

changed dramatically.

Although disk density has doubled every three years for the past 20 years, disk access time has lagged behind and has only increased 

by a third in the past 10 years. As processor speeds continue to increase, disk access will increasingly be a bottleneck. It is possible that 

new technology such as non-volatile RAM or miniature magnetic storage devices may become used for virtual memory swap space. 

Perhaps a 'memory server' across a high-speed network will support virtual memory better than a local disk can.

In the next chapter we consider massive, persistent disk-based storage systems (filing systems) as opposed to the use of disks as an 

extension to main memory as described above. After that, we consider how file I/O and memory management might be integrated.

[ Team LiB ]  



[ Team LiB ]  

5.10 Summary

Memory management of some kind is necessary in every component computer of a software system. In some cases it can be very 

simple, when embedded software runs indefinitely. In other cases demands on memory are dynamic. Even in the case of permanently 

resident software it is likely that unpredictable demands will be made on data space, for example, for buffer space for packets coming in 

from a network.

Segmentation was considered as a means of structuring a process's address space and of sharing some parts with other processes 

while keeping other parts private. Hardware support was outlined but details were left for further study. Paging mechanisms were also 

discussed. These are transparent to the programmer. A large virtual address space can imply large page tables. Approaches to tackling 

this problem were described and references were given. Combining the logical structure (segments, sections or regions) with paging is 

commonly used, as we shall see in the case studies in Part IV.

Memory management is relevant to the concurrent system designer because it is through memory management that processes may 

share memory. Also, the memory management subsystem is itself a concurrent system. It is invoked on initial program loading to 

arrange physical storage allocation; it has an interface for client programs which need to expand their data areas during a program run; 

and it is entered as a result of hardware events such as page faults.

Exercises

5.1 Outline the basic memory management functions of an operating system.

5.2 Describe how copies of instructions and data are held in the various levels of a memory hierarchy: permanent disk 

storage, backing store for main memory on disk, main memory, cache memory and processor registers. When are 

transfers of data made between the various levels? In each case, indicate whether the transfer involved is controlled 

by hardware or the operating system and explain the interface between the hardware and the operating system.

5.3 What is the virtual address space of a process? How large is the virtual address space for address lengths of 16, 24 

and 32 bits? How does a separate address space per process protect processes from each other and the operating 

system from processes?

5.4 Give examples of why processes might wish to share parts of their address spaces. What kind of memory 

management hardware would support this sharing? How can memory protection be enforced when sharing is allowed?

5.5 What are the advantages and disadvantages of running the operating system in the address space of every process? 

What are the advantages and disadvantages of running the operating system as a separate process with its own 

address space? (Bear this question in mind while reading the rest of the book.)

5.6 Why do systems which use segmented memory management have to solve the problem of fragmentation of main 

memory? Why do segmentation and swapping go together?

5.7 Is segmentation transparent to the application programmer and/or the language implementer? Is paging transparent? 

What service is segmentation hardware designed to provide? What problem is paging hardware designed to solve?



5.8
How can a large data structure which is in the address space of one process be made shareable by some 

other process so that they both see the same copy of the data?

a.

How can a large data structure be transferred from the address space of one process to that of another 

without copying the data?

b.

How can a copy of a large data structure which is in the address space of one process be given to another 

process? If it is unlikely that both processes will write to the same part of the data structure, how could the 

system avoid giving them a copy each?

c.

5.9
How many entries could there be in a process page table in a system with 32-bit addresses and a 1 kbyte 

page size?

a.

How might the processes page tables be organized to avoid a large number of page table entries for a 

sparsely populated virtual address space?

b.

It has been suggested that a main store page table (sometimes called an inverted page table) might be 

used, instead of a page table per process for pages in main store. What are the advantages and 

disadvantages of this approach?

c.

5.10
Explain the structure and operation of a multi-level page table.a.

A computer system uses non-segmented 128-bit virtual addresses mapping pages of size 8 kbytes with 

256 Mbytes of physical memory. Show why a multi-level page table would not be effective here.

b.

5.11 Explain by means of a simplified example the basic idea behind guarded page tables.

Assume an 18-bit virtual address and a page size of 1 kbyte.

Assume that 2 bits are resolved at a time.

How many pages can the process have?a.

How many entries does each page table have?b.

How deep is the hierarchy of page tables?c.

Assume that a process has three clusters, each of two pages (choose their locations in the virtual address 

space) with the rest of the virtual address space unused. Define guards for each page table.

d.

5.12 Consider a computer using the two-level page table structure shown in Figure 5.13 and a software-implemented TLB 

miss handler. Describe the implementation of the exception handler that is triggered by a page fault. You should 

consider three cases:

When the page accessed is present in main memory.a.

When the page accessed is held on disk.b.

When an invalid address is accessed.c.
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6.1 File management

Chapter 2 introduced the major subsystems within operating systems. Every machine within a system has some main memory and at 

least one device, even if this is only a network connection, so some form of memory management and device management is always 

needed. Not every computer needs file management; a dedicated network gateway or a node of a process control system are examples 

of those that do not. Even a workstation might not have a local disk. In this case applications need assistance in retrieving files from 

remote file servers across a network.

The relative and projected performance of processors and disks, described in Section 3.2.1, should be borne in mind throughout this 

section. I/O will become a bottleneck in future systems and very large main memories will be used to compensate for relatively poor I/O 

performance; that is, a great deal of information will be cached in main memory and will therefore usually be susceptible to loss upon a 

crash or power failure.

We shall first discuss file management functions in general terms and then consider them in the context of a distributed system. Finally, 

some current trends towards increasing performance and integrating memory management and file management will be described.
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6.2 An overview of filing system functions

Filing systems provide:

a storage service: clients do not need to know about the physical characteristics of disks, or where files have been stored on

them. The filing system should take steps not to lose a file that has been entrusted to it, even if there are hardware faults or 

software crashes;

a directory service: clients can give convenient text names to files and, by grouping them in directories, show the

relationships between them. Clients should also be able to control the sharing of their files with others by specifying who can 

access a given file and in what way.

Figure 6.1 illustrates a typical interaction between a file service and a client. We shall see later that filing system designs differ, 

particularly when they are serving a distributed system. Interactions between the component modules of the file service are not shown.

Figure 6.1. A client interaction with a file service.

We assume that a file is created with some text name such as exercise1.c or chapter6. The client quotes this name in order to use the file 

again. In (1) the client calls an operation such as open-file with the text name as an argument. Another argument will specify whether the 

client wants only to read the file or both to read and to write. The directory service will carry out an access check to ensure that this 

client is authorized to access this file in the way specified. The directory service is responsible for translating the text name into a form 



which enables the file storage service to locate the file on disk; we call this name resolution. In order to do this it may need to call on the 

storage service, and the storage service may need to call the disk handler to read the disk.

A filing system stores very large numbers of files, only a few of which are in use at any time. At (2) the filing system is ready for the client 

to use this file. It will have set up information about the file in its tables in main memory. It returns a user-file-identifier (user-file-id, or 

UFID) for the client to use in sub-sequent requests to read or write the file, shown at (3). At (4) the storage service returns the portion of 

the file that was requested at (3).

Notice that the initial request must give a filename that allows the file to be identified 

uniquely in the filing system. The user-file-id may be a temporary name for use by the 

process and might be something like 'my open file number 7'.

A potential problem that arises because files can be shared is concurrent requests for access to the same file. Another function of filing 

systems is therefore concurrency control. A crude approach is based on the observation that many clients can safely read a file at the 

same time but only one should be allowed to have write access. A filing system could enforce such a policy by noting whether a file has 

been opened for reading, and if so by how many clients, or for writing, in which case any subsequent requests to read or write would be 

refused. This is called mandatory concurrency control. A file is said to be locked for reading or writing.

Current thinking is that this approach is too inflexible. Many applications, such as distributed database management systems, may wish 

to have write access to different parts of the same file, and it is tedious if the underlying mechanism enforced by the operating system 

prevents it. Indeed, the multiple writers are usually multiple instances of the same program in a distributed system and are designed to 

work together. For this reason, many operating systems now allow simultaneous write access to files. They may, as an optional extra, 

provide a locking service to help the clients cooperate with each other. A client may be able to request a shared lock or an exclusive 

lock on a file and be told whether locks have already been taken out and, if so, by whom. Some systems allow locking of individual 

sections of files. Clients may also be given an advisory warning on a request to open a file if the file is already open for a potentially 

conflicting access mode. Filing systems differ in the concurrency control services they offer. We shall return in Section 6.7 to other ways 

in which a filing system design may differ from that implied by the above interaction.

A filing system is a concurrent system since it may have to handle simultan-eous requests from multiple clients. Consider a computer 

dedicated to providing a file service for clients at workstations on a network and assume that a number of clients' requests are 

outstanding. The server takes a request and starts to work on it. The disk must be read, so, rather than wait for the (electromechan-ical) 

disk to deliver the required data, the server starts to work on another request. We shall now consider some of the internal algorithms and 

data structures so that we can take filing systems as an example throughout the book.
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6.3 File and directory structure

As far as the file storage service is concerned, the objects it stores (files) are unstructured sequences of bytes. The filing system must be 

able to identify each file uniquely in the filing system and, to achieve this, will associate an identifier with a given file (we shall call this the 

system-file-identifier, SFID).

A directory is a structured object and comprises a list of entries, each of which associates a text name with information on the named 

object, including its SFID. The directory service will use the storage service to store directories. A directory is therefore given a SFID by 

the filing system. This is discussed further in Section 6.4, and Figure 6.4 gives an example of a directory object with associated operations.

A very simple filing system could hold the names of all files in a single direct-ory. This was done in some early systems and in some small 

personal computer systems, but it has the following disadvantages:

The directory would be very large and held on disk. Looking up a given filename in it would take the directory service a long 

time.

Different users might use the same text names for their files. Unique text names could be achieved by appending the owner's 

name to each filename. Grouping each user's files into a separate directory is an obvious rationalization. This would give a 

two-level hierarchy. This was provided in some early systems such as TOPS10 for the DecSystem 10.

Users typically store a great deal of information in a filing system and some support for organizing this information is 

desirable. Convenient grouping within a user's files should be supported for easy location and access control; for example, 

users should be able to keep files of different types in different directories and group files that they are likely to use together in 

the same directory.

Therefore, although a directory hierarchy is not essential in theory, it is now provided in practice by most filing systems. Directories are 

created and named by clients of the filing system through requests to the directory service which in turn invokes the storage service. The 

filing system keeps a top-level or root directory whose SFID is discovered through some other mechanism, for example by having a fixed 

value. Figure 6.2 shows a simple example.

Figure 6.2. A filing system.



6.3.1 Pathnames and working directories

In a hierarchical filing system, files and directories are named relative to the top-level root directory, that is, the full name of each file and 

directory is a pathname starting from the root. The examples below use / as a separator between components of a pathname, and a 

pathname starting with / is assumed to start from the root.

/A/AX is the full pathname of the directory AX of Figure 6.2. The SFID for directory AX is recorded in directory A which is recorded 

in the root directory.

/A/AX/a2 the SFID for file a2 of Figure 6.2 is recorded in directory AX whose SFID in turn is recorded in directory A which is recorded 

in the root directory.

A pathname can be long and tedious to use. Most systems have the concept of a current working directory and names can then be 

relative to this as well as full pathnames. For example the name a1 can be used for the file /A/AX/a1 if the current working directory of the 

user has been set to /A/AX. When a user logs in there is usually a procedure for establishing an initial working directory.

6.3.2 File sharing: Access rights and links

A major advantage of a generally accessible filing system is that stored objects (files and directories) can be shared. One means of 

supporting and controlling this sharing is to allow the owner of each object to indicate who may use it and in what way. When a user who 

is not the owner attempts to access the object, the access rights are checked and access is granted or denied accordingly.

An alternative way to support sharing is to allow new directory entries to be set up to point to existing objects. Such entries are called 

links. The idea is that an authorized sharer can give a new name to the object instead of remembering the owner's pathname. A given 

object is no longer defined to have a unique pathname and the naming tree becomes a general directed graph (see Figure 6.3(a)). 

Sys-tems may restrict the use of links so that a link can be set up to a file but not to a directory (Figure 6.3(b)). Figures 6.9 and 6.10 show 

how links are implemented.

Figure 6.3. Graph structured filing systems: (a) General naming graph. (b) Links to files but not 

directories.



6.3.3 Existence control

When links are allowed the system must have a policy about what it means to delete a file or directory. If the owner wishes to delete an 

object but there are links to it from other users' directories, then should the object be deleted or not, and if not, who should pay for its 

storage? The consensus on existence is that an object should be kept in existence while there is a valid pathname for it.

A request to delete an object therefore results in the requester's directory entry for that object being removed, but it does not necessarily 

result in the stored object being removed. A valid pathname might still exist to it because of a link that has been set up. On the other hand, 

if the last directory entry has been removed, the file (or directory and subtree below it) are inaccessible and have become garbage (Figure 

6.3(a)).

This general area is called existence control and is another filing system function. One mechanism for achieving existence control is 

called garbage collection. All the objects that can be accessed from the root of the filing system are marked during garbage collection 

and unmarked objects can be deleted. Cycles must be prevented or detected. This allows the filing system to contain arbitrary links to 

directories, for example a directory may contain a link to itself or to one of its parents.

Another mechanism is called ageing. When an object is touched in any way it is allocated a count which is decremented periodically. If the 

count decrements to zero before the object is touched again, it may be deleted by the filing system (or archived to tape, because in this 

case it may still be accessible from the root). It is the responsibility of the clients of the filing system to touch their objects more frequently 

than the timeout period.

If links may only be set up to files and not to directories then the directory structure is guaranteed to remain acyclic and existence control is 

greatly simplified. It is then possible to keep a reference count for each file and detect when the last reference to it has been removed by a 

delete. We will see this approach in the UNIX case study (see Section 24.6).
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6.4 The filing system interface

In Section 6.3 we introduced the main abstractions used within a typical filing system. In this section we will examine the interfaces 

through which these are accessed. The filing system interface will contain operations such as those listed in Tables 6.1 and 6.2. Filing 

systems differ, however, so this set of operations should not be considered definitive. The operations are given in general terms because 

filing system interfaces may differ in syntax.

UFID is used as an abbreviation for the user-file-identifier introduced in Section 6.2 above and illustrated in Figure 6.1. This may or may not 

be the same as the system-file-identifier, SFID, introduced in Section 6.3. The filing system may return a given user UFIDs 0, 1, 2, 3, etc., 

for the files currently in use, whereas the SFID is unique within the filing system. We assume that the SFID is for internal use and is a 

reference to information on the file or directory, including its location in the storage system; see Figure 6.5.

Table 6.1. Directory service: Operations available to clients of the filing system.

Operation Arguments Returns

Create directory Pathname of directory Done

Delete directory Pathname of directory Done

List directory contents Pathname of directory List of directory contents

Set access rights to file or directory Pathname of file or directory, users/rights specification Done

Create link Pathname of directory, pathname of file or directory Done

Create file Pathname of file Done

Delete file Pathname of file Done

Open file Pathname of file, read/write UFID

Table 6.2. File storage service: Operations available to clients of the filing system.

Operation Arguments Returns

Read file UFID, byte-range, where to put bytes in memory Bytes requested

Write file UFID, byte-range to write, where to find bytes in memory Done

Close file UFID Done

Position pointer UFID, position for pointer in bytes Done

Note that when a file or directory is created its name is recorded in a direct-ory: the pathname argument is intended to indicate both the 

name of the newly created object and the superior directory in which this name is to be recorded.

Error returns are not given, but notice that each of these operations can usually fail for a number of different reasons; for example an 

access control check may forbid the requested operation, the disk may be full (or not possible to be updated) or another process may hold 



a lock on the object in question.

6.4.1 The directory service as type manager

Note that a directory cannot be read and written arbitrarily by clients of the filing system, but can be accessed only through the interface 

operations on directory objects such as list directory contents and create directory. A directory can therefore be regarded as an example of 

an abstract data type with associated operations (see below). We can think of the directory service as the owner or type manager of 

directories which it stores as files on the lower-level storage service. Figure 6.4 gives an example of a directory with associated interface 

operations. Creating a file or directory includes making an entry for it in a superior directory as well as allocating storage for it. Deleting a 

file or directory includes removing a directory entry. The operations on directory objects shown in Figure 6.4 are listed in Table 6.3.

Figure 6.4. A directory object.

6.4.2 The directory service interface

The directory service is concerned with pathname resolution and access checking. Suppose a file is to be opened. To resolve the 

pathname of the file, the directory service must read each component directory in the path in turn in order to locate and read the next 

component. Section 6.5 gives more information on how this is implemented. The file's entry is looked up in the final directory component 

and an identifier for the file (UFID) is returned to the client.



Table 6.3. Operations available on the directory objects of Figure 6.4.

Operation Arguments Returns

Lookup name in directory (for pathname resolution and access checking, see below and 

Section 6.5)

Name, pathname of 

directory

SFID

Add entry to directory (to implement creation of a file or directory) Name, pathname of 

directory

Done

Remove entry from directory (to implement deletion of a file or directory) Name, pathname of 

directory

Done

The directory service will check whether the user is authorized to carry out the specified operation on a file or directory. The access 

allowed is set by the owner. The link operation requests a new directory entry to be made for an existing file or directory, as discussed 

above in Section 6.3.2. Implementation details and examples are given in Section 6.5.1 below.

6.4.3 The file service interface

These operations assume that a file has been opened successfully and the user has been given an identifier (UFID) for use in subsequent 

requests. The arguments for read and write operations must include the position in the file (byte-range) of the bytes that are to be read 

and the main memory location for the bytes to be read to or written from. The byte-range in the file is likely to be specified not as 

start-byte, finish-byte but as start-byte and count. The start position can then be taken as an implicit pointer held by the system which is 

positioned at the start of the file initially. For sequential file access the user need never worry about positioning the pointer but can just 

request to read or write the next n bytes. This style of operation is convenient in a centralized system but can be a problem in distributed 

systems. A request might be repeated because of network congestion or server failure and restart. We shall discuss this in Chapters 15

and 16. The operation position pointer has been included for use by applications which need random access.

The close operation tells the system the file is no longer needed, so any data structures it is holding in main memory on the file can be 

removed after the file and its metadata (information on the file or 'data on the data') are safely recorded on disk.
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6.5 The filing system implementation

In this section we will introduce the key implementation techniques used to support the application programming interface we discussed in 

Section 6.4. Filing systems must keep information on each file or directory, such as where it is stored on disk, who may access it and in 

what way, its time of creation and last access, etc. A typical information block is shown in Figure 6.5.

Figure 6.5. A metadata table for a filing system.

Different filing systems may store this information in different ways. An important point is that it allows several directory entries (links) to 

exist for a given file or directory. The method of storing metadata for the file should ensure that there is only one copy of it. If the 

information was kept with the directory entry, for example, not only would this make directories large but it would also cause the 

information to be replicated when links were set up. The information is needed to locate the file or directory on disk, so that part certainly 

cannot be stored with the file. A common approach is to use a table where each entry is a block of information on a file or directory. We 

shall call this a metadata table because it holds data about the data stored in files and directories. Figure 6.5 shows such a table and Figure 

6.6 makes it clear that the files, directories and metadata table recording information on them are all stored permanently on disk showing 

how the directory service can build on the abstractions presented by the storage service.

Figure 6.6. A filing system on disk.



It is important that the entry on a given file or directory should be located quickly. A good algorithm is needed to convert a SFID into the 

correct entry in the table. The method used in the UNIX system, which is a simple index into the table, is described in Section 24.5. An 

alternative is a hashing function.

Figure 6.7 outlines data structures, typical of those used within filing systems, that are held in main memory when a file is in use. The case 

where two users have opened the same file is illustrated. User A has UFID 3 allocated for the file and user B has UFID 5. The file has a 

single SFID and a single metadata table entry.

Figure 6.7. Data structures used by a filing system.



Two main memory filing system data structures are shown. The system open file table has an entry for each sharer of the file. This allows 

for concurrent sharers of a file to have their own position pointer into it for reading and writing. The active file information table contains 

entries with information similar to that held in the metadata table. Figure 6.8 expands on this. Additional information that is likely to be held 

is the SFID and concurrency control information, that is, whether the file is open for reading or writing and by how many readers and/or 

writers.

Figure 6.8. An active file table in main memory.

Figure 6.7 also shows a buffer area for disk blocks. Recall Figure 3.13 and Section 3.5.1 where I/O buffering was introduced. It is likely that 

this buffer area is also used as a cache. Disk access is slow and the system will aim to satisfy as many read requests as possible from the 

cache.

File systems differ in the semantics of their write operations. A successful write might indicate that the data has been written to disk or 

might mean only that the data has reached the buffers in (volatile) memory. In this case it would be lost on a power failure. File system 



policies differ over whether they attempt to write out the write buffers to disk as soon as possible or whether they attempt to avoid physical 

disk writes by keeping data in memory as long as possible. The advantage of the latter approach is that the data in a disk-block-sized 

buffer may be changed several times in quick succession by user-level writes of arbitrary byte sequences. Data written out may also be 

reread from the cache.

Keeping the data in memory allows a fast response to a write request at the risk of data loss and file system inconsistency on a power 

failure. Another reason to delay a given write is that the disk handler may be able to achieve higher performance if it reorders the writes to 

allow the arms to sweep across the surface of the disk and back instead of moving back and forth in response to requests in the order that 

they arrive.

There is scope for using non-volatile memory as a write cache both to achieve secure, asynchronous writes and to improve disk-head 

scheduling performance. However, this is usually only done in specialized disk controllers rather than as part of commodity systems.

6.5.1 Hard links and symbolic links

The link operation requests a new directory entry to be made for an existing file or directory, as discussed above in Section 6.3.2. If the 

access is allowed the new name is added with the SFID of the existing file. This is called a hard link. Figure 6.9 gives an example.

Figure 6.9. Example of a hard link.

Note that the SFID has been defined as a unique file identifier within a single filing system. The hard link mechanism as described above 

can therefore only be used within a single filing system.

We can create a unique, system-wide identifier for a file as:

filing system identifier, file-identifier within system



that is, filing system identifier, SFID (filing-system-file-identifier). Of course, this requires some mechanism for constructing file system 

identifiers and a policy for how links behave when referencing removable media or when the underlying hardware is reconfigured.

An alternative form of link, called a soft link or symbolic link, involves entering the new name with a pathname for the existing object, 

instead of its SFID. Figure 6.10 gives an example of a symbolic link within a single filing system. A possible implementation of directories 

is shown there which allows an entry to contain either an SFID (or hard link) or a symbolic link.

Figure 6.10. Example of a symbolic link.

In practice, symbolic links are most useful for allowing accesses between different filing systems, in particular to allow access to remote 

filing systems. However, there are some difficulties involved in supporting the file system interface from Section 6.4 when using symbolic 

links: for instance if a create file operation specifies the name of an existing symbolic link then should it overwrite the link itself or should it 

overwrite the file that the link refers to? Different file systems use different policies.

6.5.2 Locating a file on disk

The file storage service creates the abstraction of a file as a sequence of bytes. Storage on the disk is in terms of sectors (blocks). The file 

storage service must allocate space for files and keep a record of the allocation so that any portion of a file can be retrieved.

Locations on physical disks are addressed using a platter-id, surface-id, track-id and sector-id. A higher-level abstraction is provided by 

modern disk controllers: that of an array of blocks; we see a detailed example in Chapter 24. There are also performance optimizations 

concerned with the layout of the blocks of a file on the disk. We leave this topic for further study.

Here we consider the alternative algorithms for recording the blocks alloc-ated to files and the free blocks. Figure 6.11 summarizes.

Figure 6.11. Allocation algorithms: (a) Chaining in the media. (b) Chaining in a map. (c) Table of 

pointers. (d) Extent-based allocation.





Chaining in the media

In this scheme the metadata contains a pointer to the first block of the file. Each block starts with a pointer to the next block. The last block 

is indicated by some distinguished pointer value. The free blocks may also be chained.

The scheme is ostensibly acceptable for sequential access but bad for random access. However, if a block is corrupted, the rest of the file 

is lost. Integrity checks must traverse all the chains to account for consistent allocation; if a cycle has been created this must be detected. 

Another problem is that not all the block is file data and the pointers have to be removed.

The method was used in a very early system: CTSS at MIT in 1963. An improved version was 

used in the Pilot workstation operating system for the Xerox Alto. Here, each block was tagged 

with the file-id and the block number in the file as well as containing both forward and backward 

pointers.



Chaining in a map

Here, a map of the file store is held in memory. It mirrors the block structure of the disk and contains only pointers. Disk blocks now 

contain only file information. Integrity checks are easy in that only the map need be checked. Problems arise from the size of the map, 

which may occupy 1% of the size of the disk, and the fact that the system is sensitive to loss of the map. Note that the copy in main 

memory is lost if the power fails, so updates need to be written out frequently.

Access to parts of the map held on disk could be a bottleneck and separate fast media should be considered, such as non-volatile RAM. 

This scheme was used in the Titan operating system at Cambridge.

Table of pointers

The basic approach is to keep a table of pointers for each file to its blocks. The problem is that such a table is of variable length and 

becomes very large for a large file. Using a variable-length table clearly conflicts with holding metadata as a series of fixed-length records. 

A hierarchy of tables of pointers can be used to solve this. One scheme is to store a number of pointers at the start of the table which point 

directly to disk blocks, thus allowing fast access to small files. After the direct pointers come some number of (single indirect) pointers, 

each of which points to a block which contains direct pointers (an indirect block). The scheme can be extended with a number of double, 

and even triple, indirect pointers (see Chapter 24 for an example (UNIX)). An integrity check can be carried out simply from the tables. A 

free store table of direct pointers would be huge, so indirect blocks or a bit map could be used instead.

Extent lists

An extent is a contiguous cluster of disk blocks. Contiguous storage allows for efficient access and is especially suitable for large files and 

continuous media such as voice and video. An extent table is held per process with each entry recording the start block and number of 

blocks in the extent. A maximum table size has to be coped with and if fragmentation has caused the extent table to be full the system 

must consolidate the fragments.

6.5.3 Storing new media types

The increase in network bandwidth, processing power and disk and memory capacity has given us the expectation that we can use media 

types such as images, voice and video.

These continuous media types put special requirements on all involved components of a system. For example, a video file of five 

minutes' duration typically requires 100 Mbytes of storage and must be delivered at a constant rate of about 3 Mbits/s, through the end 

systems and across the network. There is therefore a quality of service (QoS) requirement on all components of the system end-to-end: 

they must sustain a relatively high data rate and also deliver data on a regular basis. A major difficulty is that the requirements for such 

streams arrive dynamically and there is a limit to the number of simultaneous streams that can be supported. We have discussed the 

implications of the need to process streams with QoS requirements on scheduling within a single system. Here we are concerned with 

storing, for example from a number of live cameras recording a meeting, and delivering from store.

The first attempts at providing continuous media stores were to design them as self-standing, special-purpose systems. There have also 

been designs of storage architectures which integrate continuous media, for example Lo (1995). We shall not consider these designs in 

detail but from our general study we can observe the following for a specialized integrated storage service:



Storage allocation should not be in terms of a fixed block size. Extent-based allocation allows for both small conventional files 

and large continuous media files.

It is reasonable for a contract to be established between components. For example, a storage system may fetch blocks from 

the disk and send them across the network. It should be allowed to pass them on at the agreed rate then reuse the buffer 

space rather than risk being held up by lack of a handshake from the receiving component.

Copying of huge files should be avoided. It should therefore be possible for one file to point to a selected portion of another. 

This leads to the requirement to collect garbage, that is, to detect when there are no longer any pointers to a file.

Naive mapping of a huge file into the virtual address space of a process is inappropriate.

If such a file visits the file system's user-end cache it should be possible to specify that access is sequential; that is, the portion 

used most recently is not likely to be used again. The common least recently used (LRU) algorithm is inappropriate.

Good, basic designs have been published but work remains to be done on how to support a number of streams operating simultaneously 

and starting unpredictably.
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6.6 Modern file system design

In Sections 6.4–6.5 we have examined the interfaces that the file manage-ment subsystem presents to applications and the way in which 

these can be built over a disk that provides block storage. These implementation techniques were used directly in early computer systems 

but they have significant disadvant-ages in terms of flexibility, performaznce and robustness to system crashes or disk failures. In this 

section we will study the techniques that a modern design employs.

6.6.1 Logical volume management

Basic file systems maintain a one-to-one relationship with physical disks; each disk has a separate root directory, separate metadata table 

and separate storage management information. Such designs are natural for removable media such as floppy disks and CD-ROMs 

because they fit with the user's model of storing data onto the medium and transporting it as a physical entity. It is less reasonable to 

require a one-to-one correspondence in the case of the hard drives that provide the main non-volatile storage of a computer: this would 

allow neither an individual file system to expand beyond the size of a particular drive nor a drive to be divided into sections for separate 

management (perhaps by different operating systems that are installed on the computer).

Consequently it is conventional to introduce the concept of a logical volume: a file system is implemented over such a volume which, in 

turn, draws space from partitions of physical disks. Each partition comprises an extent of disk blocks. Rudimentary partitioning schemes 

are ubiquitous and allow a single disk to be divided into a series of sections, each of which holds a single logical volume and, in turn, a 

separate file system. Such designs lend themselves to a straightforward implementation by associating a starting block and length with 

each logical volume. More general designs allow a logical volume to be built by concatenating a number of separate partitions.

It is interesting to compare the principles involved in these two designs with those that we saw in Chapter 5 for memory management. The 

basic scheme is analogous to the relocation of a single segment, contiguous in both logical and physical memory. The general case 

corresponds to building a contiguous logical address space from a number of smaller physical segments. The same problems of internal 

fragmentation (within logical volumes) and external fragmentation (within physical drives) can occur here. Compaction can be performed 

by moving parts of a logical volume, but it requires coordination with other file system accesses.

Care must be taken at the design stage if a file system is to support dynamic changes to the logical volume that hosts it, for example to 

expand the volume if the file system becomes full or to revoke unused space from it. In the 'classical' UNIX file system that we will see in 

Section 24.5 the metadata is held in a contiguous table whose size is fixed when the file system is created. Expanding this table requires 

moving any existing files that occupy the space that it is to grow into. Revoking storage from a file system requires a reverse mapping to 

identify which files occupy a particular range of disk blocks (so that those files can be moved elsewhere) or, if the blocks are not in use, to 

identify the data structures that manage them.

6.6.2 Striping and mirroring

The separation between logical volumes, partitions and physical disks makes it possible, for some workloads, to support file systems with 

higher performance than that of the underlying hardware. This may mean lower latency for accessing the disk, higher bandwidths for 

transfers to or from it or better resilience to hardware failures.

A striped logical volume is one that is built over a number of partitions, pla-cing the blocks of the logical volume on each partition in turn. 

The partitions are located on different disks. Figure 6.12(a) illustrates the case of a volume striped over three partitions. If we assume that 

a file is being read sequentially then this organization means that groups of blocks will be read from each disk. This can deliver an 

aggregate throughput of three times that of a single disk, so long as the disk controllers and I/O subsystem do not become a bottleneck. 



Striping is most effective at the level of groups of blocks, rather than individual blocks, because the disk hardware may internally buffer 

data under the assumption that spatial locality of access is available.

Figure 6.12. Logical volumes built using: (a) striping (b) mirroring over three partitions.

Although a striped volume is stored across a number of disks it does not provide additional resilience to disk failures: if any constituent 

disk becomes unavailable then the entire file system is lost. In contrast, a mirrored volume does provide resilience to disk failures. It 

replicates data across a number of disks so that each holds a complete copy of the logical volume, as illustrated in Figure 6.12(b). This 

imposes a penalty to write operations, since every disk must be updated. However, these updates can usually be performed 

asynchronously and so are only a concern if the overall write load is high. In contrast, if updates are rare, then mirroring can improve 

performance in two ways. Firstly, as with striping, groups of blocks can be read from each disk in turn improving through-put. Secondly, the 

latency of individual reads could be reduced by servicing them using whichever disk has its head closest to the requested block. Although 

that is attractive in principle, it requires either the OS to model the layout and behaviour of the disks or requires the disk controller to 

coordinate the accesses.

Collectively, striping and mirroring are two modes of operating a Redundant Array of Inexpensive Disks, or RAID (Patterson et al., 

1988). Striping is termed RAID-0 and mirroring RAID-1. These are combined in RAID-5 to provide a degree of fault tolerance without the 

high overheads that simple mirroring imposes. RAID-5 augments a striped volume with additional space to hold a parity check for each 

position on the disks. Figure 6.13 shows this in the case of three disks: for each block position two of the disks will hold data and the third 

will hold the exclusive-or of the other two's contents. XOR is selected because it means that if any one disk fails then its contents can be 

recovered by forming the XOR of the remaining two. Of course, this assumes that disk failures are detected by the system and that write 

operations are performed atomically to the two disks involved. Disks hold the parity check information cyclically to avoid any one disk from 

becoming the bottleneck since a parity block must be updated for each write performed. Notice how data blocks are also placed cyclically: 

this balances the load between the disks during sequential operations.

Figure 6.13. A logical volume using RAID-5.



Other RAID levels have been proposed, but these no longer find currency. RAID-2 and RAID-3 bit-interleave data across disks, effectively 

performing striping at an extremely fine granularity. They store error-checking and correcting codes on a number of additional disks 

(RAID-2) or a simple parity check on a single disk (RAID-3). Disks are assumed to operate with synchronized spindles and armatures so 

that the mechanical delays of accessing the array are no worse than a single disk. RAID-4 performs striping at the level of groups of 

blocks, as with RAID-5, but has a dedicated disk of parity information. This forms a bottleneck since it must be updated when any other 

disk is writ-ten to.

6.6.3 Journaling and logging

Notice how a large number of file system operations require several disk blocks to be updated. For example, deleting a file will require an 

update to the direct-ory in which the file is held and the disk blocks which comprised the file to be moved onto the appropriate free-block 

data structure. If the system fails midway through these operations then the file system data structures on disk may be left inconsistent; in 

this example the file may no longer be accessible but the disk blocks not yet marked as free. Using RAID-5 does not provide a solution to 

this problem: it allows recovery from a catastrophic disk failure, but not from the interruption to a series of block updates. In fact, any 

scheme using mirror-ing introduces problems of this kind because of the need to keep the mirrors consistent.

A journaling file system avoids this problem by decomposing each update that it makes into a series of steps. A first step writes a 

non-volatile 'journal entry' setting out the various changes that are going to be made. The second step proceeds to make these updates. 

The final step records, again in non-volatile storage, that the journal entry has been completed. This means that if the system fails during 

the first step then the file system structures have not been modified at all and are therefore still consistent. If it fails during the second step 

then the journal describes the updates that were going to be made; these operations can be performed by a recovery process when the 

system is restarted. The journal can either be held in non-volatile memory or, in commodity operating systems, in a specially-managed file 

or area of a disk. Notice that the interlock between the first and second stages can come to limit performance if all disk updates are subject 

to journaling: it is therefore common to use journaling only for updates to critical metadata. We will look at this problem more generally in 

Part III and see examples in Chapters 24 and 27 of the particular ways in which it is tackled in UNIX and in Windows 2000.

A log-structured file system takes journaling to an extreme by structuring the complete file system as an append-only log. Updates are 

written to the log sequentially and read operations are implemented by examining the log in reverse order to recover the most recent 

version of a required file or directory. Periodically a compactor process traverses the log and removes data which is no longer accessible, 

in general making the remaining data contiguous on disk so that writes to the log remain efficient. The effectiveness of this scheme relies 

on most reads being satisfied from cached data and on index structures being used to aid data retrieval. Log-structured file systems find 

specialized applications in situations where direct updates are either impossible (such as on a non-rewriteable disk) or undesirable (such 

as where a full audit trail of writes is required).
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6.7 Network-based file servers

The previous sections have presented principles that are relevant to filing systems in general: for single-user workstations, centralized 

time-sharing systems or distributed systems. We now focus on the additional special properties of network-based filing systems.

We are not concerned here with how network communication is invoked between the client and the service. We shall discuss this later in 

Chapter 16. Neither are we concerned with how a number of file server machines work together to provide a service. That is the concern of 

a more advanced course on distributed operating systems such as Tanenbaum and van Steen (2002) or Coulouris et al. (2001). Even less 

are we concerned at this stage with the problem of how to manage more than one copy of a file.

A question we should address is where the functions we have discussed above are provided, that is:

naming and pathname resolution

access control

existence control

concurrency control.

6.7.1 Open and closed storage architectures

Figure 6.14 shows two ways in which a network file service can be provided. In the first case, a single file service comprising a directory 

service and storage service is used. The only way to use the storage service is through the directory service: we have a closed storage 

service architecture. This enforces a single naming convention and access control policy on all clients.

Figure 6.14. Storage service architectures: (a) closed; (b) open.

Note that, although the architecture is closed, the service components might be distributed; for example, the storage service component 

might be provided remotely and the directory service in a client workstation, perhaps as a com-ponent of a closed operating system. In this 

case, the user's application invokes the local directory service which invokes the remote storage service. The user does not interact 

directly with the storage service.

In the second case we see the service interface at the level of the file storage service; recall the file service interface operations given in 

Section 6.4. The names used at the interface are SFIDs and not pathnames. This allows a network-based file storage service to support 



different client operating systems, each with its own directory service. It also allows direct use of the file storage service by specialized 

clients. For instance, a mail service does not need to use pathnames for messages and, since the mail service is the owner of all 

messages while they are in transit, it has no need for fine-grained access control. Messages may be taken from and delivered to filing 

systems by the clients of the mail service. Again, as discussed in Section 2.6, we see an open architecture providing a more general and 

flexible service than a closed one.

6.7.2 The storage service interface

We have argued that the interface of a network-based file service should be at the file storage service level and should be open for general 

use. Figure 6.15 extends the simple picture of a closed architecture presented in Figure 6.1 in the light of the implementation details we 

have seen in Section 6.5 so that we can see the implications of separating the directory service from the storage service and of making the 

storage service interface open. Roughly, we see the directory service dealing with pathnames and the storage service dealing with SFIDs.

Figure 6.15. Client interaction with a closed file service.

Figure 6.16 shows a possible interface for a network storage service. Let us assume that the interface that was previously invoked from 

within a closed file service is now both remote and open to invocation across a network by any client.

Figure 6.16. The storage service interface.



6.7.3 Location of function

We should consider the location of filing system functions with this proposed division of functionality.

Naming and name resolution is the responsibility of the clients of a storage service defined at this level. As we have discussed above, an 

open interface allows a number of different naming schemes and access control policies to be supported. Note that a given directory 

service will store its directories on the storage service. The directory service is the owner of its directories. To resolve a pathname the 

directory service will need to fetch each component of the pathname in turn from the storage service in order to look up the SFID of the 

next component in a directory.

The existence control function is closely associated with the naming graph. (Recall that an object should be kept in existence if it is 

accessible from the root of the naming graph.) The storage service level sees only a flat SFID-to-file mapping and has no knowledge of the 

internal structure of the files (including dir-ectories) it stores. This appears to place the existence control function at the directory service 

level; that is, in an open environment each client of the storage service would have to carry out its own existence control.

This model of the world is not fully general. It does not allow for the possibility that stored objects might be shared by different kinds of 

client; for example, a file might represent a video clip and be embedded in a mail message. The owner of the file wishes to delete it. Is its 

SFID still in an active mail message? The Cambridge File Server (Birrell and Needham, 1980) provided both an open interface at the 

storage service level and support for existence control. This was achieved by maintaining a skeletal naming graph within the storage 

service. The CFS interface contained no delete operation and asynchronous garbage collection was carried out periodically.

Figure 6.16 shows a delete operation in the storage service interface. Who should be able to invoke this operation? Recall that to delete a 

file means that a directory entry is to be removed. This interaction is between the directory service and its clients and the directory service 

decides whether the material may also be removed. If there is no sharing between different types of client of the storage service each can 

detect and delete garbage.

An alternative approach is that the storage service ages its objects and can delete (or archive) an object when its time expires. The clients 

of the service should keep their objects alive by touching them within the defined time period. A touch operation could be provided for this 

purpose. A directory service, or any service which uses the storage service, can perform this task on behalf of its clients.



Current filing systems tend to make restrictions which simplify these issues. If only files and not directories can be shared, a reference 

count can be kept with each file. Also, current systems tend not to support the open interface and full generality of sharing we have set up 

here. Users often work within a closed but distributed environment. Future filing systems will need to support a variety of types of objects, 

such as voice, video, database, mail, etc., and more general solutions than those currently in use will be needed.

The concurrency control function cannot easily be placed at the client level since, even within a single client type, there may be many 

instances of the client, such as a directory service, and any one might have opened a file. It would be necessary for all the clients which 

could access a file to communicate to achieve concurrency control. We assume that there is one copy of a given file and a natural place to 

implement concurrency control is where the file is stored. The storage service might provide shared and exclusive locks on files, as 

discussed in Section 6.2. An alternative is to provide a separate lock service which clients are trusted to use. If the storage service is 

stateless it cannot provide this service (see Section 6.7.4).

The storage service does not know about the internal structure of files and is likely to provide concurrency control at the granularity of 

whole files. If a client of the storage service, such as a database management system, requires arbitrarily fine-grained concurrency control 

(that is, locking of components of structured objects), this must be provided above the storage service level, within the client application or 

in some new service.

In a centralized system access control is carried out during pathname resolution, when a file is opened (for reading or writing) or a 

directory operation is invoked. In a distributed system these access checks must still be carried out during pathname resolution.

In a closed, but distributed, system the clients of the storage service are all instances of the client operating system's directory service; 

they may be authenticated as such by the system mechanisms. The storage service is said to have a protected interface. In an open 

system the storage service interface can be used directly by a number of different clients. Access control is therefore needed at the 

storage service level so that the files stored there cannot be read or written by unauthorized clients. We discuss this further in Section 

6.7.6.

6.7.4 Stateless servers: NFS

In the above sections we have made the implicit assumption that a file is opened before it is read or written then closed after use. This 

leads to the requirement that the filing system maintains information on all the files that have been opened by its clients. If this is done in a 

network filing system the server could crash, losing all this information, while its clients continue to run. The problem comes when the 

server restarts. The clients expect to be able to use the server as before but it has lost their open file data. It is possible for the server to 

rebuild this data either by interrogating the clients that invoke it or by multicasting all its potential clients. Clients may also crash, possibly 

while holding locks on shared files, and a stateful server would have the overhead of detecting and dealing with this.

The alternative is to specify the server as stateless. Although such a server may, as an optimization, maintain its clients' metadata and 

have their data ready in a cache for fast response, it does not guarantee to do so. Such a server cannot provide a concurrency control 

function (on any locks held by its clients on their files) nor can it help the clients' cache management by informing them when a file they 

have cached has changed. The crash of a client has no effect on a stateless server.

Sun Microsystem's NFS

Sun's Network File Service (NFS) is specified as a stateless service. Although NFS is commonly associated with UNIX systems it was 

designed to be an open file service: its key interfaces were published in the public domain (Sun, 1989) and the source code made 

available under licence to other vendors. As well as all versions of UNIX, NFS can now be used from many systems which include 

Microsoft Windows 95, Windows NT, Apple Macintosh, DEC VMS and Novell Netware. A design outline can be found in Sandberg et al.

(1985).

It is possible to construct a shared NFS filing system by combining those of workstations but we shall focus on the more typical 

configuration of providing dedicated NFS servers.

API: access transparency. The aim is that the application programmer's interface (API) to an operating system which is a

client of NFS is unchanged by the use of NFS; that is, access transparency is attempted. However, a stateless server cannot 

support identical semantics to a local file system or stateful server; for example the server can fail while the client continues to 

run.



Architecture. Current implementations are for closed operating systems; that is, the file service is provided within the privileged

kernel/executive. A client module for NFS therefore sits inside the operating system; see Figure 6.17.

Figure 6.17. NFS architecture.

Communications protocol. The interaction between an NFS client and server uses Sun's RPC (remote procedure call); see

Figure 6.17. We study RPC in depth in Chapter 16.

Naming. A file system is made available for use by clients when a server exports it. Client operating systems must

remote-mount such a system into their namespace; many directories are mounted automatically. NFS does not impose a single 

view of the namespace on all its clients.

Caching. Both clients and servers use caching to achieve good performance. However, a file may be cached at more than one

client and originally the NFS server, being stateless, cannot help: it does not keep a record of which clients are using which file 

and in which mode. The client system must therefore check each time a file is opened (with a local system call; there is no open

at the server) that the version of the file in its cache is still current. This can lead to a large number of 'get attribute' requests at 

the server from clients reading the 'time last modified' of a cached file. To alleviate the problem, modified file and directory 

blocks are written back to the server periodically, typically every 30 seconds.

Interface operations at the NFS server. Note that open and close are not provided: NFS is stateless. NFS knows about 

directories as well as files and a lookup of a filename in a directory will return a handle for use in subsequent read and write 

operations. Sandberg (1987), in a monitoring experiment carried out at UC Berkeley, reported that 50% of the calls on NFS were 

lookup operations.

Table 6.4 gives the NFS server interface. In the table fh indicates file handle and dirfh indicates directory handle; the operations 

are self-explanatory in general. Note that hard and symbolic links are supported. The cookie argument for readdir is effectively a 

pointer for sequential reading over successive calls; a value of zero indicates the first entry.



Table 6.4. NFS server interface.

Operation and arguments Returns

lookup(dirfh, name) fh, attr

create(dirfh, name, attr) newfh, attr

remove(dirfh, name) status

getattr(fh) attr

setattr(fh) attr

read(fh, offset, count) attr, data

write(fh, offset, count, data) attr

rename(dirfh, name, todirfh, toname) status

link(newdirfh, newname, dirfh, name) status

symlink(newdirfh, newname, string) status

readlink(fh) string

mkdir(dirfh, name, attr) newfh, attr

rmdir(dirfh, name) status

readdir(dirfh, cookie, count) entries

statfs(fh) fsstats

The NFS protocol has now been extended several times to address some of the problems that arise from its original use of purely 

stateless servers (Shepler et al., 2000). In particular, cache management and concurrency control are aided by allowing soft state to be 

maintained in the server and in NFS clients. This information has time-limited meaning; for example, rather than granting a client an 

exclusive lock on a file, the client can be granted a lease until a spe-cified time. The client must continue to renew its lease if it wishes to 

do so. If a client fails then any leases it held will automatically expire. Once more we see the importance of managing and measuring time 

in a distributed system.

6.7.5 Write-mostly functionality and caching

A network-based file server typically serves a large number of workstation clients. The speed of the workstation processor is likely to 

increase disproportionately with the speed of disk access. There is therefore a danger that a file server can be overloaded with client 

requests.

However, workstation memory capacity is likely to continue to increase, as is the workstation's local disk capacity. It is therefore feasible for 

a large amount of file data to be stored at the workstation. Some network file server designs, for example ITC/Andrew then CODA at CMU 

(Satyanarayanan, 1993), use whole file transfer of a working set of files from the servers to their clients and the clients then work locally. 

This has implications for server operation.

The server becomes 'write-mostly'; that is, the proportion of writes to reads is higher than for a file system dedicated to a single 

computer. Techniques which ensure fast response to write requests can alleviate the problem, for example using a 

log-structured file system in which writes are batched.

The workstations have to be aware that some of their cached files may also be in use at other workstations: cache 

management is necessary. As discussed above for NFS, one approach is that the client system must check each time a file is 

used that the version of the file in its cache is still current.



An alternative is that a stateful server takes responsibility for keeping track of which files are cached at which clients and 

guarantees to inform clients when a cached file is changed. As with NFS, soft-state may be preferable.

Another approach, which avoids the problems of cache management, is to deem a file immutable; any update to the file creates a new 

version. Directories, however, must still be mutable since we have to record the version names there. This approach does not solve the 

application-level problem of consolidating possibly inconsistent updates. It also creates a potentially large number of versions and the 

difficulty of knowing when old versions are obsolete.

6.7.6 File identifiers and protection at the storage service level

The network storage service must guarantee to protect the information that is entrusted to it from unauthorized access. We assume that 

the underlying system provides an authentication service so that the storage service has secure know-ledge of who is invoking it. There 

are two basic approaches to access control.

Access control lists

The storage service keeps access control information on each file it stores, as described in Section 6.3.2. The owner specifies 

who may access the file and in what way. Each time a read or write request is made, the storage service checks that the 

initiator of the request has the access rights required, then uses the SFID to locate the file internally.

Note that the directory service represents directories as files stored on the storage service. (Recall Figure 6.4 and the notion of 

the directory abstraction and the directory implementation.) Only the directory services may read and write their directories 

arbitrarily; users of the directory service access directories through their type operations via the directory service. As far as the 

storage service is concerned, a directory service is the owner of its directories. The directory service needs to implement a 

higher-level access control policy for its clients.

A general comment on the access list approach is that we may wish to be able to express fine discriminations on who or what 

may access each file. For example, we may wish to give various groups of people subtly different rights and we may wish to 

exclude certain individuals who belong to those groups from having the group's privilege. Also, a name on an access control list 

may itself represent a list. If this is so, the mechanism does not scale well, and access list checking could become too great an 

overhead, particularly if it is carried out every time a file is accessed and not just once and for all when a file is opened.

1.

Capabilities

In this case, the storage service does not record who may access a file and in what way. Instead, possession of an identifier, of 

a carefully designed form, is taken as proof of the right to access the file. An identifier that is used in this way is called a file 

capability. Figure 6.18 shows a typical format for a capability.

Figure 6.18. A typical format for a capability.

A capability must not be forgeable; that is, it must not be possible to invent a number and use it to access some arbitrary file. For 

this reason, capabilities contain sparse random numbers so that if you invent a number of the right length you are very unlikely 

to hit on one that maps onto a file.

It is possible to encode access rights within capabilities so that the storage service can discriminate read and write access 

rights, for example. It must be impossible for the user of the capability to change the access rights encoded in it. If you change a 

capability in any way it must be rejected by the storage service. Section 16.11 discusses capabilities in a more general context 

and explains how they may be constructed and checked.

We assume that the underlying system is such that it is not possible to eavesdrop on network communication and pick up and 

use capabilities that are being transmitted.

2.

We have outlined how the functions of a storage service can be provided in a distributed environment. Further study should be carried out 

in the context of a discussion of distributed systems architecture.
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6.8 Integrating virtual memory and storage

6.8.1 File mapping

We have seen files used for persistent storage, and main memory for the storage of running programs and data. The most common 

programming language abstraction for stored data is the file; files are named and used explicitly in programs.

We have seen in Section 6.5 that the filing system maintains a cache of buffers in main memory and that users' requests are satisfied from 

those buffers. This means that on a read, data is first written into the system buffers and then copied to the application. On a write, data is 

copied into system buffers, then written to disk. The efficiency of file input and output could be improved if this copying was avoided.

The integration of virtual memory and file I/O is an attractive idea. Memory management is concerned with the organization of the disk 

backing store for running programs and with the transfer of pages between main memory and disk. File management is concerned with the 

organization of the file store and with the transfer of blocks of files between main memory and the disk to satisfy I/O requests. A file 

comprises a number of disk blocks or disk 'pages'; a segment comprises a number of memory pages. There is obvious scope for the 

integration of file management and memory management. As well as rationalizing the system design, performance gains should result, 

since a page is transferred directly into the memory area of a process and not via a system buffer.

Several operating system designs have used this idea (Bensoussan et al., 1972; Lampson and Sproull, 1979; Wilkes and Needham, 

1979). The Multics design unified the concepts of file and segment: when a file was opened it was mapped as a segment into the address 

space of a process. Others have provided an option to map files in virtual memory as well as access them conventionally; for example, 

UNIX BSD 4.3 specified but did not implement this option, while Sun OS extended and implemented this specification. We will return to the 

interfaces provided by UNIX in Section 25.5.

A file-mapping facility is used as follows:

Instead of opening a file a process makes a system call to map the file, or part of the file, into its address space. As virtual 

address spaces are now typically of the order of gigabytes, this is feasible. The process may specify the virtual address where 

the file should be mapped or the operating system may decide and return the address. The operating system creates 

appropriate page table entries, marking the pages as not present in memory initially.

As the file is addressed in memory it is moved in by the memory management mechanisms of the system, such as demand 

paging. The page table entries are filled in with the physical page base addresses in the usual way.

The process may specify whether the file is to be mapped private or shared and will indicate the mode of access allowed, such 

as read, write, execute.

Note that the file store on disk and the backing store for memory management, often an area of the same disk, have been unified. Once 

the mapping is noted by the operating system, pages may be read directly from the file. Updated pages may be written back to the file. An 

insertion or deletion in the middle of a file must be handled in both styles of system. The usual approach is to create a new file.

Although several systems in the past have supported file mapping it has not become popular with programmers, who appear to prefer the 

familiar file abstraction. No consensus has been reached on how to expose interfaces based on file mapping to programmers using a 

high-level language such as Java. However, file mapping is used within modern operating systems for loading binary programs; the 

program is then paged in as required. In Windows NT and Windows 2000 the filing system and memory management system work 

together to achieve file mapping; see Chapter 27. OS/2 (Cook and Rawson, 1988; Kogan and Rawson, 1990) and Mach are amongst other 

systems that provide memory-mapped files.

Large virtual address spaces make the approach feasible and the gain in efficiency through avoiding copying into and out of buffers is 

desirable. There are some limitations and potential problems, however:

The file may be changed in place and paged back to the disk, thus overwriting the original version. System software, such as 

an editor, may have to take a copy of it before allowing it to be used in mapped mode.



Management of the virtual address space has to allow for growth in size of mapped files. An object which grows may overflow 

its allocated range of virtual addresses.

The method assumes a closed, homogeneous world. The bits stored in a file (instruction and data representation) are assumed 

to be correct for the memory the file is loaded into. This is not the case if a filing system is shared by heterogeneous hardware 

and software, which is the standard case.

The technique may therefore be useful within a single system or within a cluster of homogeneous workstations. It is not extensible to an 

open heterogeneous world.

6.8.2 Object mapping

In the previous section we saw that a file could be mapped into the virtual address space of a process. An extension to this idea is often 

used in object-oriented systems. Modules, abstract data types and objects were introduced in Chapter 2. Recall that a data object can 

only be accessed through the operations associated with its type; see Figure 6.19 (and recall Figure 6.4).

Figure 6.19. Persistent data objects.

The following assumptions form the basis of this object-oriented approach to system design:

Typed objects are defined and used in programming languages.

An object may be made persistent and stored in persistent storage. It then exists independently of the running program that 

created it and may be used later by any program that knows its name.

Each persistent object is identified uniquely in a system.

Given an object's identifier it can be located in the persistent storage of the system.

For simplicity, we assume that there is a single copy of a persistent object.

In a system of this kind, programmers may work with a higher-level abstraction for persistent storage than unstructured files: that of typed 

objects. We shall not study such systems in great detail, but it is interesting to note here that the object abstraction may fit very well with 

the desire to integrate virtual memory and persistent storage. When a persistent object is to be used by a process it may be mapped into 

the address space of the process and demand-paged between persistent store and main memory, as described above for files. The 

assumption of homogeneity should again be noted, as for mapped files.



Examples of persistent programming languages and object management systems are PSAlgol (Atkinson et al., 1982; Cockshot et al., 

1984), Texas/C++ (Singhal et al., 1992), and E (Richardson et al., 1993). More recently, Atkinson developed an extended version of Java 

which introduces persistent objects (Atkinson, 1996).
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6.9 Summary

Filing systems may be thought of as a service offered above an operating system kernel rather than a mandatory part of every kernel. 

Network-based filing systems are common and users' workstations may or may not have local filing systems. Traditional centralized 

operating systems, however, offer filing system services as part of a resident kernel and some system designs reflect an evolution from 

centralized to distributed systems.

A filing system is an example of a concurrent system. Many clients may simultaneously have requests outstanding. We shall consider 

how a filing system may have several client requests in progress simultaneously.

The data structures that a filing system is likely to use have also been discussed in some detail. We shall study the problems of 

interference between processes doing work on behalf of different clients simultaneously. We have also considered the data structures 

held permanently on disk and the data structures held in main memory on currently active files. We shall be concerned with the problems 

of updates to data structures in main memory being safely written out to disk. We shall also be concerned with the consistency of the 

data structures held on disk in the presence of concurrency and crashes.

We have studied the basic functions provided by a filing system as part of a storage architecture and have gone on to consider how best 

these functions might be distributed. An open architecture allows many different types of client to be supported. We outlined how we 

might build such an open architecture by distributing the functions of a filing system.

The role of disk-based filing systems is likely to change dramatically as processor performance continues to increase relative to disk 

speed and increasingly large amounts of main memory are used. In the meantime, techniques for improving the efficiency of filing 

systems will be used.

File input and output is inefficient because data is copied into system buffers and again into user space. We discussed the integration of 

virtual memory and storage through mapped files. Several operating system designs have used this idea and, in general, programmers 

have found the storage model presented by this approach rather low-level and complex. A current trend is to provide programmers with a 

model of persistent objects. Objects, rather than files, could then be mapped into the address spaces of processes.

Exercises

6.1 Which kinds of computer and what types of system would you expect to have local disks with associated disk 

management software and filing system software?

6.2 What are the advantages and disadvantages of providing filing system software inside and outside the operating 

system?

6.3 Explain how a directory may be considered as an abstract data type or object.

6.4 How might the modules and processes introduced in Chapter 2 be used to implement a filing system?

6.5 Is a multi-level filing system such as a tree structure essential or just convenient in a multi-user system? How might a 

two-level system be used?

6.6 How can file sharing be supported in a filing system? What additional problems over normal file sharing are introduced 

if directory sharing is also allowed?



6.7 In what ways might a filing system provide concurrency control, that is, control of the simultaneous use of a shared file 

or directory? What are the advantages and disadvantages of the methods you suggest?

6.8 What are the functions of the directory service level and the file storage service level of a filing system?

6.9 File protection is achieved by a combination of authentication and access control (authorization). Describe different 

kinds of access control policies that you might wish to implement. Discuss how these policies could be implemented.

6.10 Contrast the access control list approach to file protection with the capability approach. Could both methods be 

combined in a filing system?

6.11 Sketch an implementation of symbolic links held as separate (small) files. Outline the corresponding directory 

implementation. How many disk read operations would be needed to open a file that is named by a symbolic link?

6.12 In some systems a file must be opened before it is used, and the filing system maintains a context for open files; other 

filing systems are 'stateless'. What are the advantages and disadvantages of these approaches?

6.13 It has been proposed that an immutable filing system should be used. Once a file is named by the filing system it may 

not be changed. A new filename must be generated if a change must be made to a file. Directories are still to be 

mutable. What are the advantages and disadvantages of this approach?

6.14 Filing systems often attempt to hold as much current data and metadata as possible in main memory. The advantage 

is to be able to satisfy clients' read and write requests faster than if a disk had to be read or written. What are the 

possible dangers of this approach? Which application areas could not tolerate it?

6.15 Take the file service operations given in Section 6.4 and work out a modular design with file service interface 

operations and nested modules for directory object management and file object management.

6.16 For each of the allocation algorithms described in Section 6.5.2 work out the best case and worst case access costs 

for a given block n of a file in terms of disk and memory reads.

6.17 Section 6.6 suggests that translation from disk blocks within a logical volume to disk blocks upon a physical disk is 

similar to translation within a virtual memory system. What are the limitations of this analogy? Would it be useful for a 

disk controller to provide the equivalent of a two-level page table?

6.18 A logical volume is held in RAID-5 format over three physical disks. Describe the accesses that will be made to those 

disks when a block in the logical volume is updated. How will the number of accesses involved scale if the number of 

physical disks is increased?
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7.1 Introduction

Since distributed systems have become commonplace we should take distributed software into account at an early stage in our study of 

concurrent software design. In Chapter 2 we took an architectural view of how software systems might be structured by decomposition 

into modules, subsystems and objects and introduced the idea that such components might reside on different computers in a distributed 

system. Each component of such a system comprises an operating system, with internal modular structure, which in turn supports 

modular services and applications.

We saw that a distributed system can even be built above different operating systems running on different hardware. A middleware 

platform might run as a service above the heterogeneous operating systems. The idea is to convert the various operating systems' 

system call interfaces into a higher-level common interface to be used by the higher-level modules of the distributed system.

In Chapter 3 we studied the hardware–software interface and the functionality of communications subsystems within and above

operating systems. We therefore have the basic framework in place: that distributed computations can be built at higher levels, making

use of communications services.

In Chapter 4 we saw how processes and threads are supported by operating systems and therefore understand in detail how modules 

are executed dynamically. We now establish a framework for understanding how a distributed computation comprising distributed 

modules can be executed dynamically by distributed processes.

In Chapters 5 and 6 we considered two operating system functions, memory and file management. The former is the concern of each 

separate computer within a distributed system. File services may be provided in different ways in distributed systems. Each networked 

computer may or may not have its own file service. In most distributed systems a network-based, shared file service is usually provided.

In this chapter we establish the fundamental properties of distributed systems that distinguish them from centralized systems. For the 

rest of the book we look first at the general principles of software systems design and then go on to study the special problems of a 

distributed implementation.

The advent of local area networks in the 1970s provided the motivation for the development of distributed systems. We start this chapter 

by discussing the evolution of distributed systems, first for a professional, workplace environment and then for more recent personal and 

home environments.

Terminology

A number of different names are used in the literature to indicate a single component computer system in a distributed system, such as 

host, node or site. We shall use the term node and also client and server where appropriate.
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7.2 Evolution of distributed systems for the workplace

In the 1970s local area network (LAN) communications technology became available, 

see Chapter 3. The lightweight protocols which exploited the low error rates and high 

bandwidth made it possible to base distributed systems on frequent interaction 

between component systems. A number of design trade-offs were explored in 

research environments. Issues to be decided were what kind of system to put on 

each user's desk and what to provide as shared services, across the network.

Pool of processors plus servers (Figure 7.1(a))

Figure 7.1(a). Distributed system evolution: Pool of processors plus servers.

The Cambridge Distributed System was an early example of a distributed computing environment which was in everyday use throughout 

the 1980s. When it was designed, workstations were expensive so each user was given only a dumb terminal. Work was done by 

acquiring a processor from a pool and requesting an operating system to be loaded into it. The pool was managed by the Resource 

Manager (a server) and other servers existed for filing, printing, bootstrapping, serving the time, gateways and authentication.



Diskless workstations plus servers (Figure 7.1(b))

Figure 7.1(b). Distributed system evolution: Diskless workstations plus servers.

The V system at Stanford (home of the later Stanford University Network which became SUN) provided a diskless workstation on the 

desk. The idea is that code and data can easily be transferred across the network when required and information which needs to be 

shared is naturally held in file servers. System software can be held and maintained remote from the end systems. The workstations can 

be relatively inexpensive.

Workstations plus servers (Figure 7.1(c))

Figure 7.1(c). Distributed system evolution: Workstations plus servers.



At Xerox PARC, the home of Ethernet, the philosophy was to provide a workstation on the desk, even before this was economically 

feasible outside a research environment. The idea was to stimulate the development of next-generation software by providing a 

next-generation environment.

As time went by price/performance trade-offs changed; also workstation software became as complex in functionality as the mainframe 

software it had replaced. Current workstations can function as time-sharing systems if the owner authorizes remote logins. A shared file 

service offered by a number of servers has become the conventional way to share data. The system on the desk will probably have local 

storage but this is likely to be used for system software, temporary storage and space for 'swapping out' programs that are not in 

immediate use rather than functioning as part of a permanent filing system.

Distributed systems have now grown to global scale. The internet-based World Wide Web is an example of a global information service. 

There is currently a great deal of interest in creating a computational grid for compute-intensive applications, in so-called e-science. 

Network-based compute servers are to be made available to run scientific applications and scientific databases are to be made available 

across the net. The intention is that computing should be provided much as electricity is at present. Current problems to be solved are 

therefore associated with large scale and wide distribution.
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7.3 Personal computing

The price/performance ratio of small computers has led to their widespread use as personal and small-business systems. Network 

access for electronic mail and other internet access such as the World Wide Web has become increasingly popular outside professional 

computing laboratories and offices. The computer companies are now looking to the profits that may be made from widespread 

ubiquitous computing, home area networks and the like.

It is interesting to see the trade-offs which were explored for the computing workplace revisited for the home environment. In the mid 

1990s the 'network computer' white paper by Oracle advocated that the end system should be as inexpensive and simple to use as 

possible and SUN's Javastation is based on a similar approach.

Such systems need a network interface, which adds to their cost. A diskless workstation is proposed, with extra processing and all 

storage across the network. Environments in which a single application is run continuously can use a simple system of this kind; for 

example for flight reservation, airport check-in, tax calculation, etc. In the home, an implication of a diskless system is that the user is 

obliged to transfer all programs and data across the network and their use can therefore be monitored and charged. Gigabyte disks have 

become available at low cost and thin clients have continued to occupy a special-purpose niche leaving desktops for the home 

environment.
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7.4 Model and software architecture

Whatever the physical architecture of the distributed system to be used we need to establish principles for designing and engineering the 

distributed software that is to run on it. The following questions raise the basic issues.

Model

What are the entities that comprise the distributed system? How do they interoperate? How is their behaviour specified?

1.

Architecture

How are the components named, located and protected? What system services are needed by all the applications?

2.

Engineering

Is the fact that the system is distributed transparent to the user or the application programmer? How are the non-functional 

requirements such as high performance, reliability and availability achieved?

3.

We defined a system model in Chapter 2. Components might be modules, abstract data types or objects. When the system is operational 

the components must be able to interwork. We saw one approach to providing support for this interworking as a middleware platform or 

layer of software that lies above heterogeneous operating systems and converts their different interfaces to a uniform one. We shall 

study the details of such platforms later. We shall also study the architectural and engineering issues raised above at a later stage.

First, we set down the fundamental properties of distributed software systems which apply whatever the model and architecture.

[ Team LiB ]  



[ Team LiB ]  

7.5 Special characteristics of distributed systems

The distinguishing characteristics of a distributed system may be summarized as follows:

Concurrency

The components of a distributed computation may run at the same time.

1.

Independent failure modes

The components of a distributed computation and the network connecting them may fail independently of each other.

2.

No global time

We assume that each component of the system has a local clock but the clocks might not record the same time. The 

hardware on which the clocks are based is not guaranteed to run at precisely the same rate on all components of the system, 

a feature called clock drift.

3.

Communications delay

It takes time for the effects of an event at one point in a distributed system to propagate throughout the system.

4.

Inconsistent state

Concurrency, failures and communications delay together imply that the view of any state maintained by the distributed 

computation will not be consistent throughout the system.

5.

We are concerned with property 1, concurrent software design, throughout the book. The details of communications protocols are 

outside the scope of this book but it is worth noting that an aspect of their design is to take account of the possibility of failure, property 2. 

We shall take failure into account whenever we consider a distributed implementation of a particular service or algorithm, for example in 

distributed filing systems and later in general distributed algorithms. Property 4, potential delay, makes the detection of failure quite 

difficult; the protocol designer has to distinguish between delay, when components are operating slowly, and failure, when something 

has crashed. Property 5 is a concern of Part III of the book and we postpone an in-depth treatment until then.

For the rest of this chapter we focus on time in distributed systems and discuss how naming schemes, such as those introduced for 

objects in Chapter 2, can be designed for systems which might be large scale and widely distributed.
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7.6 Time in distributed systems

7.6.1 Physical earth time

We should first note that earth time is established only by convention. There is no universal time. Einstein proved that the velocity of light 

is constant for all observers irrespective of their velocity, see Figure 7.2.

Figure 7.2. Time beyond the earth.

Let us assume that our distributed system is earth based so that we can assume some notion of conventional physical time. Standard 



earth time is based on the earth's rotation in terms of days and years but accurate values are now derived from an atomically defined 

caesium clock. This time is (mis)named Universal Coordinated Time (UTC).

It is possible to buy for a computer a device that can receive a UTC signal either from a satellite or from a radio station. Examples of 

satellite services are GPS (Global Positioning Service) and GEOS (Geostationary Operational Environment Satellite). The accuracy 

of time received from these services varies with atmospheric conditions but is typically 10 ms for radio broadcasts and 0.1 (GEOS) to 1 ms 

(GPS) for satellite service. It is not possible to equip every computer with a time receiver but those that are equipped may function as time 

servers to the others.

We can assume that each computer has a programmable timer module based on a quartz crystal oscillator. These devices are 

programmed to interrupt at some interval, typically 10 ms, see Section 3.2.10. The accuracy of these devices is typically 1/10
6
 (1 second in 

11.6 days) and they also vary with temperature, i.e. they are subject to clock drift.

We next consider how applications might make use of time. This motivates the need for drifting local clocks to be kept in synchrony with a 

network time server and we then outline how this may be achieved.

7.6.2 Use of time by distributed processes

The following examples cover possibilities of how time might be used in a range of applications.

Resource reservation, such as airline booking

We may have a specification such as 'if the resource requests of two transactions may each be satisfied, but there are 

insufficient resources for both, then the transaction with the earliest time-stamp wins'.

1.

Banking

The interest calculation program runs after midnight. All transactions made before midnight are attributed to the 

previous day.

a.

Was a credit made to a certain bank account before money was withdrawn from it?b.

2.

Programming environments

Only those files of a related set with time-stamps which indicate they have been edited since the last compilation of the set (for 

example in a UNIX 'make') will be recompiled.

3.

Share dealing

Can it be proved that executive X read certain sensitive information before initiating the transaction to buy or sell 

some shares?

a.

The cost of the shares you purchase will be taken to be their value at the time of your transaction.b.

4.

It should be noted that although we are sometimes concerned with the time at which something happened we are also concerned about 

the order of events. Bearing in mind clock drift and communications delay, event ordering in distributed systems can be difficult to 

establish.

7.6.3 Logical time: Event ordering

Figure 7.3 shows three nodes in a distributed system with a time graph for a process running at each node. Events within a single process 

are defined to be sequential. Let us first consider their behaviour without relating it to physical time. Process X communicates with process 

Y (by sending a message, say). We can assert that the send in process X happened before the receive in process Y. Process Y 

subsequently communicates with process Z. We see that communication imposes a partial ordering on events in the system of processes.



Figure 7.3. Communicating processes in a distributed system.

Using < for 'happened before' we can assert:

Events in region x1 < events in the regions y2 and y3,

Events in region x1 < events in region z2,

Events in region y1 and y2 < events in region z2.

For other regions we 'can't say'. This reasoning must impose constraints on any mechanism for achieving a common view of time in a 

system of communicating processes.

Let us now suppose that the processes each have a local clock which, as we have seen above, may drift. We could use the local clocks to 

time-stamp events within each process and we could agree a convention for resolving who has won when time-stamps are equal, for 

example by appending the process-id to the time-stamp. It seems that a total ordering of events in a system is within reach, provided we 

can ensure that clock drift does not cause the constraints we established above to be violated, for example:

Suppose that process X puts a time-stamp tx on the message it sends to process Y: send (m, tx). When process Y receives the message: 

receive (m, tx), its own clock reads ty; see Figure 7.4.

if ty > tx all is well,

if ty  tx we have a violation of the event-ordering constraint.

Figure 7.4. Message send and receive times.



Process Y could reset its timer to tx plus one increment and all would be well, except that system time would drift further and further ahead 

of real time. We would, however, have a total ordering of events in the system.

In the next section we look at how local clocks can be synchronized with standard earth time while maintaining the event-ordering 

constraints.

7.6.4 Algorithms for clock synchronization

Algorithms for synchronizing with a UTC receiver

First suppose that one computer has a receiver and is functioning as a time server. (At this point you should remember the fundamental 

properties of distributed systems and ask 'suppose it fails?') The other computers (clients) poll the time server periodically (the period 

depending on the accuracy required) to ask for the time. The server sends back the time. On receiving the time message from the server, 

a client may just use this value or may adjust it to allow for communications delay, for example by adding the known minimum delay or by 

adding half the time since the message was sent.

If the value from the time server is greater than local time the local clock can either be set to it or be adjusted to run a little faster for a short 

time to build up gradually to this time.

If the value received is less than local time the local clock is drifting ahead of standard time. We may not put it back because of 

event-ordering constraints but we can adjust the time increments for a period to slow it down, for example from 10 ms to 11 ms.

This algorithm has a single point of failure: the single clock server. For reliability we could have a number of servers, poll them all and use 

the first reply. For further detail see Cristian (1989a, b).

Algorithms which do not rely on a UTC receiver

If no computer has a receiver the participants may attempt to arrive at an average value of the time shown by their various clocks. One 

computer may act as coordinator, ask all the machines for their times, compute the average value from their replies and broadcast this to 

all of them. They can then adjust their clocks as described above. An operator might set the time server manually from time to time. For 

details see Gusella and Zatti (1989).

Algorithms for large-scale synchronization

The algorithms discussed above rely on all participants contacting a server. Such an approach does not scale to a large number of 

participants. An example of a large-scale system is the internet in which the network time protocol (NTP) achieves clock synchronization 

to an accuracy of a few tens of milliseconds (Figure 7.5).



Figure 7.5. Outline of network time protocol (NTP).

A common approach to cope with large numbers is to impose a hierarchy on them. A three-level hierarchy is used by NTP. At the top level 

are a number of primary servers with UTC receivers. Each of these is responsible for propagating this time down a subtree. At the second 

level of each subtree are a group of servers which interact with their primary UTC server as described above. Each second-level server 

then broadcasts its time to the level-3 servers for which it is responsible.

As always in distributed systems we should specify the behaviour under failure. Also, large-scale systems are typically subject to 

reconfiguration, with nodes joining and leaving the system and this should also be taken into account. These and other refinements of the 

basic approach are explained in Mills (1991).
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7.7 Naming

An operating system maintains a namespace for a single system. Examples of the objects it supports are processes, files and I/O 

streams. We saw in Chapter 2 that object-based systems are able to use a unified naming scheme for all objects and sketched how this 

could be defined for a single system. When we consider distributed systems we need to expand namespaces beyond those maintained 

by a single operating system.

Names are defined in a context. It may be that a distributed system design is based on a homogeneous operating system which 

supports a distributed object model. Alternatively, we may have to work in a heterogeneous world and devise a naming scheme for the 

distributed application we wish to build. For example, names may be used only within the context of a distributed file service, mail service, 

news service or bank account management service. It is useful to model this as a type manager naming objects of that type. In all cases 

each object named must have a unique name within the context in which it is used. We now consider how uniqueness may be achieved.

7.7.1 Creating unique names

Uniqueness may be achieved through so-called unique identifiers or by using a hierarchical naming scheme.

Unique identifiers (UIDs)

The namespace is a specified number of bits, so a UID is a number in the range 0  2
N

 - 1 for an N-bit UID. Thirty-two, 64 and 128 

bits are typical choices. A UID is never reused and a given bit pattern either refers to the same object at all times or to no object at all.

Hierarchies

Uniqueness is achievable by using a hierarchy as well as a long bit pattern, for example, puccini.cl.cam.ac.uk is a unique name for a 

computer. A manager of the domain cl must ensure that puccini is unique in that context; the manager of the domain cam must ensure 

that the name cl is unique in that context, and so on.

7.7.2 Pure and impure names

A useful distinction is between a pure name which in itself yields no information and an impure name (Needham, 1993).



Pure names

A pure name yields no information such as the location of the named object, or the context in which the name is to be resolved, i.e. 

looked up. An example is a UID which is interpreted as a flat bit pattern with no internal structure. All we can do with a pure name is 

compare it with other names of that type, for example in table lookup.

The major problem with pure names is therefore to know where to look them up. It might be that a pure name refers to nothing, but how 

do we avoid a global search to be sure that no object with that name exists?

Impure names

An impure name yields information and commits the system to maintaining the context in which the name is to be resolved, for example:

puccini.cl.cam.ac.uk (a computer)

jeanb@alexandria.lcs.mit.edu (a registered user)

jmb@cl.cam.ac.uk (a registered user)

We have examples here of location-dependent names. Note that there is no way of telling 

from the names that they both refer to the same person: jmb is unique within the domain cl; 

jeanb is unique within the domain alexandria. If Jean Bacon from Cambridge spends some 

time at MIT she is registered separately in both places and must arrange manually that any 

interactions with her Cambridge name are forwarded to her MIT name.

host-id, object-id (a form of unique object identifier)

Here we have an interesting point. It may be that the algorithm used to ensure the 

uniqueness of a UID is to append the host-id at which the object was created to a 

monotonically increasing count at that host. It appears at first sight that the object name 

yields location information. System policy must determine whether the name is to be 

treated as a pure or impure name. If pure, the host-id should either be ignored or at most 

be regarded as just a hint about the object's location. If the name is impure we may expect 

the creating host to keep a record of where any object has moved to.

The major problems with impure names are object mobility and the difficulty of restructuring a hierarchical namespace. If an object 

changes its resolution context by moving to a new location then its name also changes. A hierarchical namespace may be designed to 

reflect the structure of an organization. It may be desirable to restructure within an organization, by merging departments or creating new 

ones, or one company may merge with or purchase another. Many names will change if the new structure is to be reflected in the name 

hierarchy. This problem was tackled in the design of the Global Names Service (GNS) (Lampson, 1986).

7.7.3 An example: The internet Domain Name Service (DNS)

An outline of this familiar name service (Mockapetris and Dunlap, 1988) will help to introduce the issues of name service provision. In 

practice, the objects named are computers, mail hosts and domains.

Examples of domain names are:



uk 

ac.uk

cam.ac.uk

An example of a computer name is:

puccini.cl.cam.ac.uk

An example of a mail host name is:

swan.cl.cam.ac.uk

The type of the object named is therefore not apparent from the name itself.

Below a notional root are top-level domain names such as:

com (US companies)

edu (US academic institutions)

gov (US government)

net (network management)

org (organizations)

int (international)

uk (the United Kingdom's root)

fr (the root for France)

… and so on …

Note that the naming scheme has an unfortunate US bias, for example within the UK domain are the nested domains:

ac.uk (UK academic institutions)

co.uk (companies within the UK domain)

and similarly within all countries other than the USA. Although the namespace is badly designed it is impossible for it to be restructured 

without invalidating huge numbers of existing names, for example for all names that end edu to be renamed to end edu.us.

A domain has a manager but the management role may be delegated to subdomains. It is the responsibility of the manager of a domain 

to ensure that unique names are assigned within it.

A directory is a sequence of names, each with an associated list of values (attributes). Users may query DNS to obtain the attributes 

associated with a given name, for example:

computer-name, location?  IP address

user, mail host?  list of computer names ordered by preference



The DNS namespace is huge. Before 1989 a naming database was held centrally and was downloaded into selected hosts periodically. 

When the scale of the internet made this approach impossible, DNS was introduced. The domain database is partitioned (as are all 

large-scale naming databases) into directories and the directories are replicated at suitable locations on the internet.

To resolve a multicomponent name such as puccini.cl.cam.ac.uk:

ac is looked up in the directory for the uk domain

cam is looked up in ac

cl is looked up in cam

puccini is looked up in cl.

If these directories were stored on different computers, four computers would have to be contacted to resolve the name. These 

directories need not necessarily be held at different locations, i.e. heavily used directories may be stored and replicated strategically to 

avoid many computers being contacted to resolve a multicomponent name.

As we have seen, name resolution could be a lengthy process and to increase efficiency a resolved name is likely to be cached by your 

local software. Also, because many users are using DNS simultaneously there is scope for batching queries and responses. Updates are 

made locally by the domain manager. This makes the local copy of that domain directory up to date but all other copies have become out 

of date. Changes are propagated to all copies which will be up to date in due course.

In this example (DNS) we have seen:

the specification (syntax) of unique names within the DNS hierarchical namespace;

management of the namespace;

querying the name service;

partitioning and replicating the naming database because of its large scale;

name resolution;

some efficiency tactics.

We now discuss these issues in general terms.

7.7.4 Naming, name services and binding

Name services provide clients with values (attributes) associated with named objects.

Namespace

A namespace is a collection of valid names recognized by a name service, for example:

a 128-bit UID;

a pathname in a filing system such as /a/b/c/d in UNIX;



a DNS multicomponent name such as puccini.cl.cam.ac.uk.

The structure (syntax) of names must be specified.

Naming (management) domain

A naming domain is a namespace for which there exists a single administrative authority for assigning names within it. This authority 

may delegate name assignment for nested subdomains. For example, we have seen within DNS that the manager of the domain ac.uk

may delegate management of the subdomain cam.ac.uk.

Directories

The values (attributes) associated with the names for a domain are held in a directory for that domain. The name service is offered by a 

number of name servers which hold the naming directories and respond to queries.

Binding or name resolution

This is the process of obtaining a value which allows an object to be used; for example, to determine the network address of a named 

computer or the network addresses of the computers which receive mail (hold the mailbox) for a named individual.

For large-scale systems the naming database is invariably partitioned, replicated and distributed among the name servers, so resolving a 

multipart name is an iterative process which involves navigation among name servers.

It is good programming practice to bind late and to embed unresolved names, not addresses, in programs.

7.7.5 Attributes stored by name services

A name service maintains an information database. The fundamental requirement is to hold the locations of various types of objects such 

as users and resources so that they can be contacted or used. A number of attributes may be associated with a given name and a query 

must specify both the name and which attribute is required.

An alternative form of query, which may or may not be supported by a name service, is the attribute-based query. Here an attribute is 

supplied and a list of names with that attribute is returned. This is sometimes referred to as a yellow pages service, although a naming 

service may have the functionality of both the white pages (directories) and yellow pages services of the telephone companies. We shall 

focus on the white pages or directory function.

Name services have typically held the following types of object and associated attributes:

user: login name, a list of mail hosts for that user, ordered by preference, authenticator, e.g. password (usually held elsewhere)

computer: architecture, OS, network address, owner

service: list of <network address, version #, access protocol>



group: list of names of members of the group

alias: name

(directory: list of computers which hold that directory)

It may be that, as an optimization to avoid several queries, the network addresses of the mail hosts, etc., are stored and returned on the 

first query.

The type of service listed here is likely to be stable, long lived and widely used, such as a mail service. We shall see later that distributed 

programs that are short lived and 'private' will tend to use a special-purpose name service for name-to-location mapping.

A design choice is whether a directory should be treated as just another type of named object or whether directories should form a 

separate structure. In either case, a directory name will resolve to a list of computer names (plus network addresses) which hold that 

directory.

It may be argued that making a great deal of information freely available is bad for system security. It could be useful for a potential 

intruder to be able to look up which OS and which version of a given service are running.

Examples of name services include DNS (Mockapetris and Dunlap, 1988), which was described in Section 7.7.3; Grapevine (Birrell et al., 

1982), an early classic from Xerox PARC; Clearinghouse (Oppen and Dalal, 1983), also from Xerox PARC and on which an early ISO 

directory standard was based; GNS (Lampson, 1986) from DEC; and X.500 (ITU/ISO, 1997). LDAP (Lightweight Directory Access 

Protocol) (Wahl et al., 1997) is a popular, simplified implementation of the full X.500 directory service. Detailed case studies of these 

name services may be found in books specializing in distributed systems (Coulouris et al., 2001; Tanenbaum and van Steen, 2002).
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7.8 Mobile users, computers and objects

7.8.1 Mobile computers

The use of small computers such as laptops and palmtops has increased over the years and internet-enabled telephones are coming 

into widespread use. Developments in technology have made it possible to build laptops with substantial processing power and memory 

and a certain amount of local storage. Increasingly, their owners expect to be able to attach such computers to a network wherever they 

happen to be. The requirement is then to be able to use their home environment from anywhere in the world as well as access general 

network-based services. This requirement raises many questions:

How should a mobile computer be named so that it can be recognized whenever it attaches to a network? The established 

name services were designed before mobility became a requirement.

How should a user's home environment, especially files in the filing system, be kept secure but allow authorized remote 

access, as described above?

Which services should be used when the computer system is reattached? There may be an instance of a service that is 

closer than the one in use before the computer was detached.

If the user was sharing objects with others before detaching, how should the shared objects be restored to a consistent state 

when the user reattaches? The potential problem is that reading and writing by the sharers of the objects may have continued 

without restriction during the detached period.

7.8.2 Pervasive computing

Another scenario is that the computing environment is fixed but users may move around. At present the user has to take explicit action by 

making a connection and logging in from a different system. If she has moved outside her home security domain she may have to make 

special arrangements to be allowed to login from outside.

In the future, we may live in an environment where computers are ubiquitous or pervasive. We may carry many small devices with us 

and may encounter myriad small embedded devices. A current example of this style of computing is that a user may wear a locating 

device such as an active badge. A working environment such as an office or university department will contain a network of sensors so 

that the badges are detected as their wearers move around. The user's computing environment may move with her or she may cause it 

to transfer to any computer by clicking on her badge at a nearby detector.

This approach can be extended for wide area interworking among a number of geographically separated departments but naming, 

location and security issues must first be addressed. More generally, we may have active cities where people may find out about their 

current context (shops or restaurants) or may display the location of a bus or hail a taxi by means of a small personal computing device. 

Mark Weiser's vision of a future of ubiquitous computing is presented in (Weiser, 1993). The IEEE Computer Society's Pervasive 

Computing magazine (IEEE, 2002) is devoted exclusively to this topic.
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7.9 Summary

The aim of this chapter is to make the reader familiar with the special properties of distributed systems at an early stage in the study of 

software system design. Most of the readers of this book will be using a networked computer with a window interface as their working 

environment. Distribution and concurrency are therefore natural properties of everyday systems.

We have looked at time in distributed systems, first emphasizing their fundamental relativistic nature. Current technology allows the 

clocks of our networked computers to be synchronized at a reasonably fine granularity, but we should be aware that software design may 

be based on assumptions about time and event ordering.

Object naming was introduced in Chapter 2, first within a single program and then for operating system services. Here we have shown 

how naming schemes can be designed for large-scale and wide distribution. The next chapter is devoted to security, a topic which has 

been made crucial by the widespread deployment of distributed systems.

Exercises

7.1 What does a model of a distributed system tell you about? What does the architecture of a distributed system define 

and what issues are addressed when a system is to be engineered? Into which category, model, architecture or 

engineering, would you place the following statements:

The distributed system comprises distributed objects.a.

Name-to-location mapping is carried out by means of a name service.b.

Name servers are replicated for high availability.c.

Objects may be made persistent and stored in persistent storage.d.

Objects are invoked transparently of whether they are local or remote.e.

7.2 Criticize the following assertion: 'If every communication is given a time-stamp on being sent then all events in the 

distributed system can be ordered.'

7.3 Why can it not be assumed that distributed system state will converge after any possible communication delay time has 

elapsed?

7.4 How does the fact that components of a distributed computation can fail independently of each other affect the way 

they are programmed? Why does this issue not arise in a centralized implementation?

7.5 What is meant by logical time in a distributed system? If logical time achieves event ordering can it be used without 

reference to physical time?

7.6 What is the average value of a typical computer's clock drift? What is the accuracy that can be achieved by using NTP 

(Network Time Protocol)? How would you estimate a value for the time at a computer with a UTC receiver? How would 

you estimate a value for the time at a computer interacting with a time-server with a UTC receiver?



7.7 How can unique names be defined for a distributed system or application? What is meant by pure and impure names? 

Why is the DNS namespace hard to change? What queries and responses does DNS support?

7.8 If an IP address is bound to a computer, what difficulties do you foresee for a world with large numbers of mobile 

computers?
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Chapter 8. Security

8.1 Scenarios and security requirements

8.2 Threats and risk analysis

8.3 Approaches to encryption

8.4 Algorithms

8.5 Protocols

8.6 Examples

8.7 Summary

In this chapter we consider the security issues associated with the various styles of software interaction we have studied. Centralized 

software systems, both with single and with multiple users, have protection requirements and we discussed in earlier chapters how 

these can be met. The security concerns in distributed software systems are significantly more severe and they are our main focus here. 

We first state some of the problems then describe various techniques that together can be brought to their solution. We explain three 

building blocks that form the basis of most current packages: public key cryptography, private key cryptography and message digest. We

explain how trusted certification authorities are used for key generation and management and for authentication.
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8.1 Scenarios and security requirements

As a focus for the discussion we describe some common scenarios and discuss the range of security requirements that might be 

associated with them. We then go on to list the various styles of threat. A system design should have an associated risk analysis where 

the designers' assumptions of the risks to the system are stated, together with whether they are countered in the design. It should be 

clear which threats a system is supposed to be able to withstand and which are not addressed.

8.1.1 Client–server interactions

A principal invokes a service. This may be in order to access some object which is managed by the service but to which the principal 

may have access rights. The service must authorize the access by means of a mechanism such as access control lists or capabilities, as 

we saw in Section 6.7.6 for files. Examples of service invocation are accessing one's own file on a file server, buying a flight from a web 

server (where online payment is involved), ordering goods needed to support a military campaign, accessing a patient's electronic health 

record, reading stockmarket values and buying shares. Possible requirements are

Mutual authentication

The system which supports the interaction must ensure that the principal and the service are mutually authenticated. The 

service must be assured of the identity of the client and the client must be confident that the intended service is being 

invoked.

1.

Access control or authorization

The service can check that this principal has the necessary rights to carry out the invoked operation on the object, thus 

ensuring the confidentiality of the data. If unauthorized access is allowed, the integrity of the data is threatened by any 

method which can write to the data.

2.

Secure communication

No other principal can see the invocation request or result; confidentiality is required in the communication.

3.

Non-tampering

The request reaches the service as it left the client; the integrity of the communication is assured.

4.

Non-repudiation

After the service is performed, the client cannot claim that it did not make the request or receive the result. The server cannot 

claim wrongly that the client did not pay.

5.

No replay

A third party cannot acquire a copy of any part of the communication and replay it to ill effect.

6.

No denial of service

A malicious third party cannot flood the service or the communication paths to it, thus preventing the legitimate invocation 

from taking place or degrading the performance.

7.

In a standalone system, such as a personal computer, most of the above requirements are redundant. If such a system is used by more 

than one person then authentication by password is commonly used to authenticate the principal to the (trusted) system services. In the 

future, biometrics such as fingerprints or iris recognition may be used. In a distributed system all of the above may be required, 



depending on the environment and the application. We discuss this further in Section 8.2.

8.1.2 Importing source code and object code

Source code may be provided on disk or from a source across a network. Object code or byte code may be downloaded from another 

computer across a network. This includes executable email attachments, Java applets to run in client virtual machines, servlets to run in 

servers and so-called 'mobile agents'. Security requirements may be:

Authenticated source

The installer should be confident of the identity of the provider.

1.

Software functionality

The software should do what it is supposed to do; it should behave according to its published specification, no more, no less.

2.

Non-tampering

The software is not tampered with en route; its integrity is maintained.

3.

Non-repudiation

The receiver cannot claim, wrongly, not to have received the software.

4.

8.1.3 Connection to home

The security within an organization may be less stringent than that for external access. It is often the case that people want to access 

their home-domain computer while travelling. The security requirements may be:

Mutual authentication

The remote user and the home system must be securely identified to each other.

1.

Non-tampering

The connection request reaches the service as it left the client; its integrity is maintained.

2.

Secure communication

No other principal can see the connection request or subsequent data transfers; its confidentiality is maintained.

3.

No replay

A third party cannot successfully replay the connection request.

4.

A primitive connection service might allow a password to be transmitted 'in clear'. This is highly undesirable and could lead to penetration 

of the home domain by an eavesdropper. The organization may operate within a firewall whereby all incoming and outgoing 

communications are intercepted and vetted. For example, incoming service requests might only be legitimate if their destinations are to 

web services. The firewall must be able to distinguish legitimate external connection requests.
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8.2 Threats and risk analysis

The above scenarios have introduced some likely security requirements. We now consider possible threats in more detail, focusing on 

distributed systems.

Masquerade. A principal may attempt to impersonate someone else. A service may pretend to be some other service. A

message may apparently be from a certain IP address when it is in fact from some other address (called IP spoofing).

Eavesdropping. A third party may intercept and obtain copies of network traffic. If the message contents are 'in clear' this

violates the confidentiality of the communication. Other misuses of intercepted messages are covered separately.

Tampering with transmitted data. A message copied by an eavesdropper may be altered and reinjected into the network, thus

violating the integrity of the message. This is often called a man-in-the-middle attack.

Replay. Messages copied by an eavesdropper may later be replayed. This may assist in masquerade or fraud such as

extracting double payment.

Unauthorized access. Some principal gains access to data to which they are not entitled. Not only is confidentiality violated 

but the data is vulnerable to unauthorized change, thus violating its integrity.

Malicious corruption of stored data. This may be as a result of a masquerading principal gaining unauthorized access to data.

It may also occur when imported software exceeds its specified functionality. The code may be running as a process of some 

principal and therefore have access to the objects owned by that principal. A trojan horse is a software component of this 

kind.

Denial of service. A denial of service tactic is to flood a network or service with spurious communications, thus denying

legitimate use or severely reducing performance. If the attack is from a single source it can be stopped, but attacks are often 

more sophisticated than this, arranging simultaneous transmissions from many different sorces. IP spoofing may also be 

used to cause an excessive number of reply messages to be sent to some unfortunate network address after messages 

apparently, but not actually, from that address have been broadcast. Imported software may contain a virus. Virus programs 

may cause an excessive number of processes to be scheduled, an excessive number of emails to be sent, or an excessive 

number of system management messages to be sent. Worm programs are designed to replicate themselves and spread 

across networked computers. The general pattern is to use up resources, thus denying them to legitimate users.

Repudiation. A principal may deny that some interaction took place in order to avoid payment or to claim ignorance of some

item of information.

Once we have a list of possible threats and attacks on a system we can assess the likelihood that each will occur and the damage that 

would result: a risk analysis. Countering security threats costs money, computing resources and performance and a judgement must be 

made about the appropriate trade-off between these factors for the given system. For example, within a firewall-protected, LAN-based 

domain, messages might not be encrypted by default, but individuals may choose to encrypt their messages if they wish. A company 

building with strict control on who enters and where colleagues are well known to each other and trust each other may need little internal 

security. A hospital may have a community of trusted colleagues but the computer systems are vulnerable to casual access by members 

of the public who can easily enter.

To address these problems we now study how encryption can be carried out in computer systems and how it can be used. Encryption 

can be integrated with authentication. Authentication is based on what you are (biometrics) or what you know (a password). A secret 

encryption key is another example of a secret that you know.

Anderson (2001) gives a comprehensive treatment of how the engineering of distributed systems is and should be approached.
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8.3 Approaches to encryption

Encryption has been used for millennia. For an entertaining description, see Singh (1999) which starts with stories of techniques used in 

military campaigns in classical history and progresses through to computerized methods. Our concern here is encryption for distributed 

systems and this chapter gives an introduction to basic components which together are used to build secure systems. Schneier (1996) is 

an encyclopaedic reference on the subject and should be consulted for expansion and further references.

Definitions

A message originates in plaintext or cleartext. The process of encoding it to make it unreadable in transit is called encryption and the 

process of transforming it back into the original message is called decryption. The encoded text is called ciphertext. In a computerized 

system the plaintext is binary data, as is the ciphertext. An encryption function operates on plaintext to produce ciphertext and a 

decryption function operates on ciphertext to produce plaintext. A cryptographic algorithm or cipher is the mathematical function 

embodied in the encryption and decryption functions as encryption and decryption algorithms. All modern encryption algorithms use 

keys which are fixed-length bit-patterns, for example 64 or 128 bits. The range of possible values of a key is called the keyspace. A key 

used to encrypt a message is called an encryption key and one used to decrypt a message is called a decryption key.

Figure 8.1 shows the process pictorially, and in mathematical notation we have:

P = plaintext C = ciphertext

E = encryption function D = decryption function

K = encryption key K´ = decryption key

EK (P) = C

DK´ (C) = P

So that

DK' (EK(P)) = P

Figure 8.1. Encryption for secure communication.



8.3.1 Secret key encryption

One of the two general forms of key-based algorithm is based on a shared secret key. In these symmetric algorithms the decryption key 

is equal to or easily derived from the encryption key. Security depends on the secrecy of the key and key distribution is a major concern. 

Keys are sometimes distributed out-side the computer system, perhaps by motorcycle courier. In some environments keys are held in 

tamper-proof boxes. It also assumes that the sharers of secrets can be trusted not to reveal them deliberately, perhaps to repudiate some 

communication. We look at protocols based on secret key encryption in Section 8.5 and outline the algorithmic approach in Section 8.4. 

Note that as well as ensuring the confidentiality and integrity of the transmitted data, the ownership of a secret key can be used to aid 

authentication; if only two principals know a secret key, their communication is authenticated. Data Encryption Standard (DES) is a 

symmetric algorithm and is the most widely used encryption algorithm.

8.3.2 Public key encryption

In public key cryptography one key is kept secret (the private key) and the other is freely available (the public key) and may be distributed 

widely. As above, the holder of a secret key is trusted to keep it secret. Suppose a message is encrypted with a public key and sent to the 

holder of the corresponding private key. The sender knows that only the intended receiver, the holder of the private key, can decrypt the 

message. Now suppose that a message is encrypted with a private key. Anyone who decrypts the message with the public key is assured 

that the sender holds the private key. Note that in both cases, the private key is serving as an authenticator. This technology is useful for 

authentication as well as for ensuring the confidentiality and integrity of the message. Figure 8.2 summarizes.

Figure 8.2. Secret and public key encryption. (a) Secret key encryption. (b) Public key 

encryption: authenticated receiver. (c) Public key encryption: authenticated sender.



An analogy is useful: the distribution of public keys is similar to distributing open padlocks with the same key, or open combination locks 

with the same combination. Whatever is to be sent is packed in a box and secured by the lock. Only the key or combination holder can 

open the box. Now suppose that the eventual receiver of the goods wishes to be sure that a particular sender is sending the expected 

goods (rather than an enemy sending a bomb). The receiver puts his open padlock into a box, secures it with the sender's padlock and 

sends it to him. The sender opens the box, inserts the gift, secures it with the receiver's padlock and sends it back to him. The receiver 

opens the box with his key. Here, we have two-way authenticated and secure communication.

8.3.3 One-way functions

We have outlined key-based approaches to computer-based encryption. A different, simpler technique can be used for checking the 

integrity of data. A one-way function is one that is easy to compute but significantly harder to reverse (invert). However, we are usually not 

concerned that an attacker might recreate the original text from the output value of a one-way function but rather that two different inputs 

should not lead to the same output. An example is a one-way hash function which converts an input string to a (usually smaller) 

fixed-length output string. Alternative names are message digest, fingerprint, cryptographic checksum, compression function, data 

integrity check, data authentication code. Hash functions for ensuring data integrity are designed to make it highly improbable that two 

different input strings convert to the same hash value. They therefore give us a technique for checking whether a message has been 

tampered with in transit and, in general, whether two documents are the same.

One-way hash functions may or may not be used with a key. Those without a key can be computed by anybody. A one-way hash function 

with a key is a function which takes both an input string and a key as input. Only someone with the key can compute the hash value. A 

hash with a key held by one person only therefore creates a digital signature for a document; the person is creating a signature for it that 

serves the same purpose as a handwritten signature. The keyholder cannot claim not to have signed the document. The remaining 

question is, how can the digital signature be checked if there is only one person in possession of the key? We shall see in Section 8.5.1

that a trusted third party, a certification authority, can fulfil this role by issuing such keys, by being the second keyholder and by verifying 

the signature. A second approach is to hash first then encrypt the result with the signer's private key. Anyone can decrypt the signature 

with the sender's public key then check the hash value by reapplying the digest function to the message that was signed.

We saw another example of the use of a digest function with a secret key in Section 6.7.6 where a server issues a capability giving access 

rights to an object. The capability is signed with what we called a 'check digits' field. This is generated from the fields of the capability and a 

secret (a secret key) held by the server. The holder of the capability presents it with each request to access the object. The server 

recomputes the digest function of the secret, together with the fields of the capability (other than the check digits) and compares the result 

with the check digits stored in it. If they are the same the access is allowed. If not, the capability has been tampered with and the access 

request is rejected.
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8.4 Algorithms

Cryptographic algorithms traditionally substituted characters for one another or transposed characters. Successful algorithms typically did 

multiple substitutions or transpositions. Computerized algorithms work on bits instead of characters but the algorithms still employ 

substitution and transposition.

8.4.1 Substitution ciphers

In a simple substitution cipher each character in the plaintext is replaced by another character to form the ciphertext. Decryption is 

simply the reverse substitution. In the Caesar cipher, each character is replaced by the character three places to its right, mod 26, in the 

alphabet. In UNIX systems ROT13 replaces each character by that 13 places to the right, mod 26, in the alphabet.

Figure 8.3 shows a Vigenère table for our alphabet of 26 characters; each row gives the encoding scheme for a shift of 'key' places. For

example, using a key of five and reading from row 5, CONCURRENT translates to HTSHZWWJSY. For decoding, reading along row 21

(26–5) HTSHZWWJSY translates to CONCURRENT; the decryption key is easily derivable from the encryption key. Substitution ciphers

based simply on rotation are trivially easy to break, especially with the aid of a computer; the number of possible keys is the number of

letters in the alphabet.

Figure 8.3. A Vigenère table for our 26-letter alphabet.



The scheme is made a little more difficult to break by translating first using a codeword then performing the rotation. For example, using 

the word CODEWORD, and writing it without repeated letters, we have:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

C O D E W R A B F G H I J K L M N P Q S T U V X Y Z

The word CONCURRENT first becomes DLJDTPPWKS. It can then be enciphered using a row of the Vigenère table. The codeword must

be shared between sender and receiver, giving a key distribution problem. For security it should be changed regularly and this leads to the 

publication of code books where the 'code for the day' can be looked up. If such a book falls into the hands of the enemy, and is 

recognized as such, it gives a big step towards breaking the cipher. This happened in the Second World War when the British found the 

Enigma code book in a captured German submarine. (A recent US film reinvented that particular piece of history by showing the 

Americans making the discovery.)

Note that in the substitution ciphers above a given letter of the alphabet always translates to the same (different) letter of the alphabet. 

When this is the case, the properties of the natural language in which the original message is thought to be written can be used to break 

the cypher. The most commonly occurring letters are known, and their frequencies of occurrence in large pieces of text, as are commonly 

occurring groups of letters such as TH, RR or ION in English.

Elaborations on this simple approach are as follows. A homophonic substitution cipher allows a single character of plaintext to map to 

one of several characters to form the ciphertext. A polyalphabetic substitution cipher uses multiple simple substitution ciphers; the 

selection depends on the position of the character in the plaintext. In a polygram substitution cipher characters are encrypted in groups 

of fixed size; the encryption algorithm must specify all character combinations and their replacements. Another variation is to use a second 

piece of (secret) text to encrypt the plaintext in a running key cipher.

8.4.2 Transposition ciphers

Here, the letters in the plaintext remain the same but they occur in a different order. An anagram is an example. In a columnar 

transposition the text is written in rows of fixed length and the ciphertext is read off down columns. The order in which the colums are read 

is the key of such a cipher. Transposition may be combined with substitution but, since transposition requires a lot of memory and may 

require messages to be a multiple of the row length, substitution ciphers are more common.

8.4.3 Rotor machines (e.g. Enigma)

In the twentieth century various mechanical devices were invented to automate encryption. A mechanical wheel (rotor) with 26 positions is 

wired to perform a character substitution; when one character is typed on a keyboard, another is output. For decryption, typing the output 

character regenerates the input. One rotor performs a simple Caesar cipher, so multiple, connected rotors were used. The Enigma 

machine, used by the Germans in the Second World War, is the most famous example of this style of machine, with some enhancements. 

A codeword was first transmitted to indicate how the rotors should be initialized for the message to follow. The codebreakers at Bletchley 

Park in England, among whom was Alan Turing, broke the cipher of Enigma. Bletchley Park is now a museum located a few miles from 

the Open University.



8.4.4 Encryption by computer

It is beyond the scope of this book to describe cryptographic algorithms and their underlying mathematics. Schneier (1996) gives an 

excellent overview and many references to sources. We give a brief outline of the approaches taken in some of the widely used 

algorithms.

Secret or symmetric key algorithms (e.g. DES and IDEA)

The two basic approaches used by secret key algorithms are stream ciphers and block ciphers. Stream ciphers operate on a single bit 

at a time; block ciphers operate on groups of bits. An example of a block cipher is DES, which has been an international standard since 

1981. Sixty-four-bit blocks of plaintext are encrypted to produce 64-bit blocks of ciphertext. The encryption is based on substitution and 

permutation, using a key of length 56 bits. The key is extended to 64 bits by including a parity bit for each 8 bits. Only standard arithmetic 

and logical operations (such as XOR) are used, making it feasible for late 1970s hardware. The process is carried out 16 times (called 16 

rounds). The repetitive nature of the algorithm makes it suitable for implementation on a special-purpose chip.

The security of the algorithm has been a source of controversy; especially the relatively small key size. Government agencies have the 

resources to build computers capable of cracking the algorithm and there is speculation as to whether such computers exist. Some DES 

implementations use triple DES for greater security. Here the plaintext is encrypted with one key, decrypted with a second key and 

re-encrypted with the first key. For even greater security, three independent keys could be used for three separate encryptions. The 

choice of algorithm depends on the length of time the data is to remain secret (even data encrypted with a 56-bit key takes significant time 

for an attacker to recover) and whether the feared attackers are governments.

IDEA (the International Data Encryption Algorithm)

A block cipher to improve on DES was proposed by Xuejia Lai and James Massey (Lai and Massey, 1990) and, with some improvements, 

became IDEA (the International Data Encryption Algorithm) in 1992. IDEA operates on 64-bit plaintext blocks, 16 bits at a time, using a 

128-bit key and employing only algebraic operators (rather than permutations) in eight rounds. These are XOR, addition modulo 2
16

(addition ignoring overflow) and multiplication modulo 2
16

 (multiplication ignoring overflow). The same algorithm is used for encryption and 

decryption. IDEA is efficient to implement and is as fast as DES while being more secure.

Public key algorithms (e.g. RSA)

Public key algorithms are based on the theory of large numbers and, in particular, the computational expense of finding their prime factors. 

As we saw in Section 8.3, keys come in pairs, an encryption and a decryption key, and it must be infeasible to generate one key from the 

other. The concept was invented by Whitfield Diffie and Martin Helman, and presented in 1976 (Diffie and Helman, 1976), and 

independently by Ralph Merkle (Merkle, 1978). The first public key algorithms became public at the time that DES was being proposed for 

standardization and, at that time, they were often seen as competing rather than complementary approaches. The fastest public key 

algorithms will always be much slower than secret-key algorithms; Schneier (1996) suggests a factor of 1000. Public key cryptography is 

therefore not used for bulk data encryption. It is typically used for small amounts of data and its use for key distribution solves the problem 

of how secret keys can be distributed.

Many variants of the basic algorithmic approach have been proposed over the years but RSA (Rivest et al., 1978) is the easiest to 

implement and most popular. RSA is named after its inventors Ron Rivest, Adi Shamir and Leonard Adleman. The public and private keys 

are functions of a pair of large prime numbers, which must both remain secret. The RSA algorithm had been invented secretly about four 



years earlier than 1978. Clifford Cocks was put to work on the problem when he arrived, fresh from studying number theory at Cambridge, 

at the UK's Government Communications Headquarters (GCHQ) in Cheltenham. His contribution caused a breakthrough in solving the 

problem, but the work was not allowed to be published.

One-way hash algorithms (e.g. SHA, MD)

Again, there are many one-way hash algorithms. The US National Institute of Standards and Technology (NIST) together with the US 

National Security Agency (NSA) designed the Secure Hash Algorithm (SHA) for use with the Data Signature Algorithm (DSA). The 

standard is the Secure Hash Standard (SHS). SHA is an extension of Rivest's MD4 (Message Digest) of 1990. Rivest went on to design 

MD5 which has some extensions to MD4 in common with SHA. SHA produces a 160-bit hash value.
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8.5 Protocols

We now show how the styles of algorithm described above can be used in practice in distributed systems. In order to communicate 

securely the participants must agree to follow a protocol. A convention has arisen for naming the parties involved in security protocols. 

When two parties are involved they are called Alice and Bob. Participants three and four, if they exist, are named Carol and Dave. We 

are concerned with various threats and Eve is the name of an eavesdropper, Mallet is a malicious attacker with computing resources at 

his disposal and Trent is a trusted third party or arbiter. In some cases we will name a Server. We give a selection of basic protocols and 

assume in each case that a cryptosystem has been agreed in advance by the parties involved rather than stating or negotiating it as part 

of the protocol. Protocols that are used in practice may have to be more complex than the ones in this section to resist a wider range of 

possible attacks. Section 8.6 describes some that are used in practice.

8.5.1 Secure communication

Secret key

Based on the discussion in Section 8.3 we can attempt to design protocols for secure communication. Using secret key cryptography:

Alice and Bob agree on a key KAB.1.

Alice encrypts her message M with the key and sends it to Bob

Alice  Bob: EKAB(M) = C

2.

Bob decrypts the message using the key

Bob: DKAB(C) = M

3.

This protocol depends on step 1 being carried out in secret. It also assumes that Alice and Bob trust each other not to disclose the key 

KAB. Although the protocol achieves confidentiality of the communication it is vulnerable to replay attacks and corruption by 

man-in-the-middle attacks. The message can be signed digitally to ensure its integrity as follows:

Alice and Bob agree on a key KAB.1.

Alice applies a one-way function to her message F(M) = H and appends the resulting hash value to it M, H.2.

Alice encrypts the resulting message with the key and sends it to Bob

Alice  Bob: EKAB(M, H) = C

3.

Bob decrypts the message using the key and extracts the hash value,
4.



Bob: DKAB(C) = M, H

applies the one-way function to the remaining message F(M) = H' and checks the resulting hash value against that 

transmitted.

If they agree (H = H') the message arrived as it was sent.

We discuss replay attacks later.

Public key

Using public-key cryptography:

Bob sends Alice his name and public key

Bob  Alice: Bob, KB-PUB

1.

Alice encrypts her message M with Bob's public key KB-PUB and sends it to Bob

Alice  Bob: EKB-PUB(M) = C

2.

Bob decrypts Alice's message with his private key KB-PRIV

Bob: DKB-PRIV(C) = M

3.

This apparently solves the problem of secure key distribution in step 1 of the secret key protocol since the key is public and available to 

anyone. As above, the message may be signed digitally to ensure its integrity and replay attacks will be discussed later. It is, however, 

vulnerable to substitution; Mallet may substitute his own public key for Bob's, giving:

Mallet sends Alice Bob's name and Mallet's public key

Mallet  Alice: Bob, KM-PUB

1.

If Alice does not know Bob's location in advance, or if Mallet is using IP spoofing, Alice may communicate with Mallet, thinking that she is 

communicating with Bob.

Certification

The solution is to use a Key Certification Authority or Key Distribution Centre (KDC) which is responsible for key management. The 

KDC holds a certificate for each principal comprising its name, public key and any other required information on that principal. The KDC 

signs this certificate with its own private key. We now have:

Alice gets Bob's certificate from the KDC and extracts Bob's public key KB-PUB from it. (The interaction between Alice and 

the KDC is left as an exercise for the reader, as is Alice's verification of the contents of the certificate using the KDC's public 

key.)

1.

Alice uses Bob's public key to encrypt her message and sends it to Bob
2.



Alice 

Bob decrypts Alice's message with his private key KB-PRIV

Bob: DKB-PRIV(C) = M

3.

As before, the message may be signed digitally by Alice and we discuss replay attacks later.

Public key cryptography is significantly slower than private key cryptography and in practice is used to secure and distribute keys which 

are used with symmetric algorithms to secure communication. This is called a hybrid cryptosystem. Also, in the public key approach 

each user has a pair of keys, whereas in the secret key approach a key is needed at least for every pair of users. In practice, a new 

session key is generated for each conversation.

8.5.2 Session keys in hybrid protocols

Using a fresh secret key for each session is obviously more secure than requiring pairs of communicating parties to store and manage 

secret keys over long periods of time. The time in which replay attacks can be made is limited by the end of the session; we discuss 

improvements below. In all cases, the message may be signed digitally. We first assume that Alice is capable of generating a session 

key KAB. A possible protocol is as follows:

Alice gets Bob's public key KB-PUB from the KDC.1.

Alice generates a random session key, KAB, encrypts it using Bob's public key and sends it to Bob

Alice  Bob: EKB-PUB(KAB) = C

2.

Bob decrypts Alice's message using his private key to recover the session key

Bob: DKB-PRIV(C) = KAB

3.

Alice and Bob use the session key KAB to encrypt their conversation.4.

The management of keys is complex. It is argued that users cannot be trusted to generate session keys and this should be done by a 

secure, trusted server. We therefore introduce a trusted third party Trent into the protocol. Trent's function is both as a certification 

authority and as a session key generator. Trent's public key is well known.

Alice requests a session key from Trent to communicate with Bob.1.

Trent generates a random session key KAB. He encrypts two copies, one in Alice's public key and one in Bob's and sends 

both copies to Alice. Trent also encrypts information about Alice with Bob's public key and sends it to Alice. Trent sends to 

Alice:

Trent  Alice: EKA-PUB(KAB), EKB-PUB(KAB), EKB-PUB(Alice-info)

2.

Alice decrypts her copy of the session key KAB.3.

Alice sends Bob his copy of the session key and her encrypted identity information

Alice  Bob: EKB-PUB(KAB), EKB-PUB(Alice-info)

4.

Bob decrypts both, retrieves the session key KAB and determines who Alice is.5.

Alice and Bob use the session key KAB to encrypt their conversation.6.



8.5.3 Authentication

For authentication Alice traditionally enters a password to prove her identity. If passwords are stored in a computer system for checking, 

the password file is an obvious target for attackers. However, all that is needed is a mechanism which can tell whether or not this is 

Alice's password. One-way functions of passwords may be stored instead of the passwords, and the following protocol may then be 

used:

Alice enters her password.1.

The computer system performs a one-way function on the password2.

– and checks that the result of the one-way function is the value stored in Alice's record.3.

Although the one-way function cannot be reversed to recover the passwords the password file is vulnerable to a dictionary attack

(password guessing). In early UNIX systems, passwords were encrypted like this and the encrypted password file could be copied freely 

and worked on at leisure by an attacker. Mallet may generate many thousands of possible passwords, apply the known one-way function 

to them and compare the results with the password file. Any match gives him a password. Stoll (1989) describes a major penetration of 

this kind.

Salting or seeding

The solution is to concatenate a random bit-string, held securely within the computer system (called a salt or seed) with the password 

before applying the one-way function. The longer the salt, the better the security.

Challenge–response

If Alice's password is transmitted across a network in the above protocol it is vulnerable to eavesdropping. Eve may see the login 

sequence 'in clear' and then impersonate Alice. Public key cryptography can be used as follows:

Alice requests login by the server.1.

The server sends Alice a random string R.2.

Alice encrypts the string with her private key KA-PRIV and sends it back to the server

Alice  Server: EKA-PRIV(R) = C

3.

The server looks up Alice's public key and decrypts the message with it

Server: DKA-PUB(C) = R'

4.

If the decrypted string matches the one it sent to Alice (R' = R) the server logs Alice in.5.

This challenge–response interaction ensures that Alice does indeed know the private key associated with her public key. ISO 9798

(ISO/IEC 9798, 1992) is a challenge–response protocol. In the above example, Alice requests to be authenticated by the server. In



general, it is a bad idea to use your private key to encrypt something sent to you by an unknown party and return it to them. This could

be used against you in many kinds of fraud. In the examples in Section 8.6 we see several alternative approaches to authentication and 

key exchange.

Authenticating the source of a document: Digital signatures and MACs

We saw in Section 8.3 that the output from a digest function applied to a document, when associated with it, can verify its integrity. We 

also saw that using a digest function with a key creates a digital signature for the document; only a keyholder could have created the 

signature. Using public key cryptography, Alice signs a message with her private key and sends the message plus the signature to 

Bob. Bob can check the signature using the well-known digest (hash) function and Alice's public key. Spelling out the protocol, and 

assuming the hash function to be used is agreed between Alice and Bob, we have:

Alice applies the hash function F to her message M, F(M) = H.1.

Alice encrypts the hashed message using her private key KA-PRIV

EKA-PRIV(H)

2.

Alice appends the hashed encrypted message to the original message as its signature and sends it to Bob, encrypted under 

Bob's public key KB-PUB

EKB-PUB(M, EKA-PRIV(H)).

3.

Bob decrypts the message using his private key, KB-PRIV.4.

Bob extracts the signature component and decrypts it using Alice's public key KA-PUB.5.

Bob applies the hash function to the message component and checks it against the decrypted signature.6.

Secret key encryption can also be used for creating and authenticating digital signatures. Only a secret known to Alice alone can be 

used to generate the equivalent of a handwritten signature. But a secret known to Alice alone could not be verified by anyone but Alice. If 

only two parties, Alice and Bob, are involved, a secret key shared between them could be used. Alice is then required to trust Bob 

absolutely; Bob could give away the secret, put words into Alice's document that she did not write, etc. If many parties are involved, 

allowing them access to Alice's secret key is out of the question so we use a trusted third party: a certification authority (CA). Alice 

uses a secret known only to her and the CA; the CA must then verify the document's signature. A possible scenario is as follows:

Alice and Trent (the CA) share a secret key KAT. One of Trent's functions is to issue such keys and to keep a secure record 

that this key belongs to Alice.

1.

Alice signs a document with a hash function, agreed with Trent, and KAT.2.

Alice publishes the signed document in a digital library.3.

Anyone can check with Trent that the document was signed by Alice. No one can tamper with the document and put words 

into Alice's mouth. Alice cannot claim she did not write what is in the document.

4.

A name for a digital signature that is created as described above and used to sign a message is a Message Authentication Code

(MAC).

8.5.4 Replay attacks and 'nonces'



We have not yet considered replay attacks explicitly, although the use of session keys instead of long-lived, persistent, secret keys limits 

the time in which these attacks can be effective. In general, guarding against replay at a short time-granularity adds further complexity to 

the protocols. The basic idea is to use what is called a 'nonce': a bit string which may be read from a clock or generated by some random 

number procedure. All parties know that the nonce is to be used only for a single interchange. For example:

Alice sends a request to a server, including a nonce N with the request before encrypting it with the server's public key

Alice  Server: EKS-PUB(M, N)

1.

The server decrypts the request and recovers the nonce.2.

The server includes the nonce with the reply M', encrypts it with Alice's public key and sends it to Alice

Server  Alice: EKA-PUB(M', N)

3.

Alice decrypts the message, recovers the reply and the nonce, and is assured that this reply is in response to the request she 

just made.

4.

If Alice receives a replay of the server's reply message she knows it is stale, because she has already had the matching reply. If the 

server receives a replay of Alice's request message it will be rejected as stale: it has already replied to the message containing that 

nonce. Nonces add another source of complexity to encrypted communications: they must be detectable as fresh or stale by all parties. 

One way to achieve such a check is to use a component with an increasing count in the nonce such as a time-stamp. If time is used as a 

check on freshness, the clock synchronization tolerance must be taken into account and it has been suggested that the clock 

synchronization protocol could be attacked to create a window of opportunity.
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8.6 Examples

In this section we describe some well-known and widely used security protocols and packages. The basic building blocks, discussed in 

general above, are used as required in these packages and may be thought of as a 'security toolkit'.

8.6.1 X.509 certification

X.509 is the most widely used standard form for certificates (CCITT, 1988b). It was originally designed as part of the X.500 standard 

(CCITT, 1988a) which addresses the construction of directories of names and attributes for large-scale distributed systems. X.500 

defines globally unique names, a topic we discussed in Section 7.7. X.509 certificates have come to be used in cryptography for 

self-standing certificates. An X.509 certificate's primary role is to bind a public key to information that identifies an individual uniquely. It 

contains the following information:

Subject Distinguished name, Public Key

Issuer Distinguished name, Signature algorithm,Signature

Period of validity Not before date, Not after date

Administrative information Version, Serial number

Extended information  

Distinguished name (DN) is the X.500 term for a globally unique name. The subject is the individual or organization, etc., to be certified; 

the issuer is the certification authority (CA), for example, Verisign. Anyone requiring certification must submit satisfactory evidence of 

their identity to the CA. All certificates are signed by the CA, using the specified algorithm and anyone using a certificate for 

authentication should verify the signature. Certificates have a specific period of validity. When a certificate expires it should be removed 

from the CA's public directory but the CA should keep a copy so that it can resolve any dispute that arises.

If there were a single CA, the procedure, as implied above, would be quite simple. In practice, certificates are signed by different CAs 

and the CAs themselves are certified (as organizations) with other CAs. A chain of verifications can be needed for two parties to verify 

each other's certificates.

The extended information field may be used in two ways. Firstly (relating to the owner) to provide additional information on the certificate 

and its owner. Typically this is application specific. Secondly (relating to the user) to constrain the user of the certificate or to give 

warnings to anyone using the certificate. There are many problems with X.509, some relating to the absence of the assumed X.500 

naming and directory infrastructure. Revocation is another problem that has not been solved. It is assumed that certificate revocation 

lists (CRLs) will be checked by applications and there is no provision for notification of revocation.

8.6.2 Simple Public Key Infrastructure (SPKI)

X.509 uses distinguished names that are supposed to be globally unique. At the 1996 USENIX Security Symposium, Ellison questioned 

the need for globally unique names and certification authorities. He argued that global naming is impractical and that instead, names 

should be made unique by reference to other people and organizations. An analogy in a non-computerized context is that a driving 



licence, a utility bill or a bank account, each of which contains our name and address, are often accepted as proof of identity.

SPKI was proposed by Ellison and others in 1999 (Ellison et al., 1999). Under SPKI, companies and organizations may manage naming 

and certification of their employees by supporting sets of publicly available certificates. SPKI supports certificate verification through a 

chain of certificate providers. Each provider is certified by the next provider in the chain. The process continues until verifiers reach a 

provider they can trust or until they decide to reject the certificate in question.

8.6.3 Authentication and key exchange

With the advent of distributed systems it became necessary to provide encrypted authentication. For example, the very early Grapevine 

message delivery system (Birrell et al., 1982), invented at Xerox PARC and used internally by Xerox, provided registration services as 

well as message delivery. Authentication was originally based on simple password checking. Two of the designers of Grapevine, Roger 

Needham and Michael Schroeder proposed an authentication protocol in 1978.

Needham–Schroeder (secret key)

The protocol assumes that an authentication server shares a different secret with each of its users. Alice wishes to communicate with 

Bob:

Alice sends a message to Trent comprising her name, Bob's name and some random value RA

Alice  Trent: Alice, Bob, RA

1.

Trent generates a random session key KAB. He encrypts KAB and Alice's name using the key KB he shares with Bob to form 

a message C

Trent: EKB(KAB, Alice) = C

He encrypts RA, Bob's name, the key KAB and the message C using the key KA he shares with Alice, and sends her

Trent  Alice: EKA(RA, Bob, KAB, C)

2.

Alice decrypts this message and extracts KAB. She checks that RA is the value she sent Trent in step 1. She then sends Bob 

the message C that Trent encrypted

Alice  Bob: EKB(KAB, Alice)

3.

Bob decrypts the message and extracts KAB. He generates another random value RB, encrypts it with KAB and sends it to 

Alice

Bob  Alice: EKAB(RB)

4.

Alice decrypts the message with KAB, computes RB - 1, encrypts it with KAB and sends the message to Bob

Alice  Bob: EKAB(RB - 1)

5.

Bob decrypts the message and verifies that it is RB - 1.6.

RA and RB are 'nonces' to guard against replay attacks as we discussed above. Alice knows that Trent's reply is in response to her 

specific request containing RA. Bob knows that Alice's reply is to his specific request containing RB, and that Alice also knows the key 

KAB.



The consensus about the security weakness of this protocol is that old session keys are valuable. Any secret that is long lived gives an 

adversary time to work on cracking the cipher or penetrating where it is stored. Suppose Mallet gets access to an old KAB. He replays 

step 3 of the protocol, which is the first Bob hears from Alice.

Mallet sends Bob a replay of EKB(KAB, Alice).1.

Bob extracts KAB, generates RB and sends to 'Alice' EKAB(RB).2.

Mallet intercepts the message, decrypts it with KAB, and sends Bob EKAB(RB - 1).3.

Bob now believes he is communicating with Alice. This problem was corrected in several subsequent protocols. The details may be 

found in Needham and Schroeder (1978).

Kerberos (secret key)

Kerberos was implemented at MIT as part of the Athena project to provide networked computing facilities throughout the MIT campus. 

Detail of the total system design can be found in Steiner et al. (1988). Kerberos version 5, see Kohl and Neuman (1993), is widely used 

and is part of the OSF Distributed Computing Environment (DCE) and the Windows 2000 operating system. The basic Kerberos version 

5 protocol, which again assumes that Trent shares a secret key with each of his users, is as follows:

Alice sends her identity and Bob's identity to Trent

Alice  Trent: (Alice, Bob)

1.

Trent generates a message with a time-stamp T, a lifetime L, a random session key KAB and Alice's identity. He encrypts this 

using the key KB he shares with Bob. He then encrypts the time-stamp, the lifetime, the session key and Bob's identity using 

the key KA he shares with Alice. He sends to Alice

Trent Alice: EKA(T, L, KAB, Bob), EKB(T, L, KAB, Alice)

2.

Alice decrypts the first component and generates a message containing her identity and the time-stamp, encrypted using 

KAB. She sends this to Bob together with the second component from Trent

Alice  Bob: EKAB(Alice, T), EKB(T, L, KAB, Alice)

3.

Bob decrypts the second component and retrieves KAB. He decrypts the first component using KAB and computes T + 1

which he sends to Alice, encrypted using KAB

Bob  Alice: EKAB(T + 1)

4.

This protocol is free from the attacks we have discussed so far. A possible weakness is that it assumes that all clocks are synchronized 

with Trent's. This can be resolved by ensuring that clocks are synchronized to within an interval of a secure time server and checking for 

replays within that time interval.

8.6.4 Pretty Good Privacy (PGP)

PGP is a public domain encryption program designed by Philip Zimmermann and published in 1992. PGP assumes no key certification 

authorities. All users use PGP to generate and distribute their own public key. A user can sign another's public key, as a gesture of trust, 



adding confidence to the key's validity. When someone receives a public key they can examine the list of 'introducers' who have signed it 

and make an informed decision (or take a calculated risk) on whether to trust the key.

PGP uses RSA for key management and MD5 as a one-way hash function. It uses IDEA (Lai and Massey, 1990) as the symmetric 

algorithm for data encryption instead of DES. PGP gets an initial random seed from the user's keyboard latency while typing, in 

generating the random 128-bit IDEA key. Alice sends a message to Bob (as we have seen in our basic building block protocols) as 

follows:

Alice hashes the message using MD5.1.

Alice encrypts the hashed message using RSA and her private key KA-PRIV.2.

She appends the hashed, encrypted message to the original message.3.

She compresses (zips) the message.4.

She generates the 128-bit IDEA key KAI.5.

She encrypts the compressed message using IDEA with KAI. She encrypts KAI using Bob's public key KB-PUB and appends 

the result to the encrypted message.

6.

She encodes the message as ASCII characters using base-64 and sends it.7.

To decrypt the message, Bob does as follows:

Bob reverses the base-64 encoding.1.

Bob decrypts KAI using his private RSA key KB-PRIV.2.

Bob uses KAI with the IDEA algorithm to decrypt the message.3.

Bob decompresses the message using unzip.4.

Bob can now read the plaintext message (the first component). He can authenticate it by using Alice's public key KA-PUB to 

decrypt the signature (the second component). He now applies MD5 to the first component and checks the result against the 

decrypted signature (second component).

5.

PGP encrypts the information in message headers as well as in their contents. The only thing an eavesdropper can learn from a 

message in transit is the intended recipient. Only after the recipient has decrypted the message is it apparent who signed it.

8.6.5 Secure Socket Layer (SSL)

The SSL protocol was developed by the Netscape Corporation in 1996. An extended version of SSL has been adopted as an internet 

standard as the Transport Layer Security (TLS) protocol. SSL is supported by most web browsers and web servers and is widely used in 

internet-based commerce. It is designed to work with existing application-level protocols such as HTTP, Telnet, FTP, etc. It is layered 

between the application and the transport service, which is usually TCP.

SSL is an implementation of authentication and key exchange based on public key cryptography. As such it has similarities with the 

protocols described in Section 8.5 and in this section. Its unique feature is that it allows negotiation of the particular cryptographic 

algorithms to be used for key exchange, message content encryption and message digest. We saw that PGP has a fixed selection for 

these three purposes: RSA, IDEA and MD5. SSL allows the communicating parties to negotiate in order to select the algorithms (the 

'cipher suite') they will use from those they each support and approve.

After agreeing on the cipher suite they optionally authenticate each other by exchanging signed, public key certificates in X.509 format. 

These may be obtained from a Certification Authority or may be generated locally. However this mutual authentication is carried out, at 



least one public key is needed for the interaction to proceed.

One party then generates a 'pre-master secret' and sends it to the other party encrypted with that party's public key. A pre-master secret 

is a large random number that is used by both parties to generate two session keys (called 'write keys'). The parties now have a chosen 

cipher suite, their public and private keys and two shared secret keys. Encrypted communication then proceeds as we have seen in 

several examples above.

SSL therefore does not depend on the availability of any particular algorithm. It depends only on public key certificates that are 

acceptable to both parties. Commercial and public domain implementations are widely available in the form of libraries and browser 

plugins.
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8.7 Summary

It is important to explore the security requirements of a distributed software system as part of the design process. Some large research 

projects have had security cut from their budget on the grounds that it is separable, a specialist field, and can be added later. Retrofitting 

security may not be possible without major redesign. A risk analysis should therefore be carried out as part of the design process of a 

distributed system. For example, UK Government edict is that electronic health records will be transferred across networks. Threats may 

be from journalists, insurance companies, estranged family members. Penetration might be by interested parties walking into hospitals, 

undetected among legitimate visitors, rather than by wire-tapping heavily encrypted network communication. The human element in 

security provision may often be the weakest link, and if security measures are complex they will tend to be ignored.

A brief outline of cryptographic algorithms was given, sufficient to convey a general feeling for their complexity and likely performance. 

We left the details for further study.

We established the basic elements in a security toolkit: secret and public key cryptography and message digest. We saw that public key 

cryptography is of the order of a thousand times slower than secret key. Practical protocols for other than small amounts of data 

therefore use public key cryptography to set up the secret keys needed for secret key cryptography. We studied authentication in 

general, how it might be achieved through the certification of key ownership, and in the context of digital signatures. The simple basic 

protocols have to be extended to counter various styles of threats and risks such as man-in-the-middle, replay and repudiation.

Finally, we described some examples taken from the literature, from implemented systems and from freely available and widely used 

packages.

Exercises

8.1 Discuss the severity of the problems associated with authentication and access control for centralized and 

network-based systems.

8.2 Suppose an eavesdropper captures the complete (unsecured) interaction between a client and each of the following 

services. Discuss the possible implications.

Purchase of an item from a web service.a.

An interaction with a health adviser (such as the UK's NHS Direct).b.

8.3 What is meant by a firewall? How can people connect to their computers that are located behind firewalls? How can 

web services be provided? How can peer-to-peer sharing be provided?

8.4 What are the main problems associated with each of secret key and public key encryption? How are secret and public 

key encryption commonly used together to achieve the best of both worlds?

8.5 How can encryption keys (initially designed to achieve secure communication) be used for authentication?

8.6 What is meant by a digital signature? How are digital signatures created? How do they support non-repudiation and 

prevent tampering?



8.7 What is meant by a 'nonce' and what problem does the use of a nonce attempt to solve?

8.8 What is meant by a session key? Why are session keys used? How can a session key be shared securely?

8.9 What is the idea behind SPKI?

8.10 What is the role of certification authorities and services?
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Part II: Concurrency control in main memory

In Chapter 1 requirements for implementing system software were established, among which were:

Support for distinct activities.1.

Support for management of these activities.2.

Support for correct interaction between these activities.3.

We have already seen how the first requirement above can be met. Chapter 4 showed how independent activities 

are supported as operating system processes. If only coarse-grained concurrency is required it might be sufficient 

for the operating system to support synchronization and sharing of information between processes; a sequential 

language might be augmented by a number of system calls for this purpose. The problem is that the same system 

calls might not be available on another operating system; we went on to study how separate activities might be 

programmed and supported in a high-level language system. If concurrent processes in a language system are to 

be more than just a structuring convenience it is necessary for the operating system to support multi-threaded 

processes.

As discussed in Chapter 2 a software system may be described in terms of its functional modules and their 

interfaces. When we wish to understand its dynamic behaviour we need a model for how the operations of the 

modules are executed by processes. The set of concurrent processes which execute a software system cannot be 

assumed to exist in steady state. We have to consider where they should be placed, how they come into being, 

how their execution is started and stopped and how and when they are deleted: requirement 2 above. In Chapter 

4 we saw alternative mechanisms that might be provided in concurrent programming languages to achieve 

process creation and deletion. We now go on to explore how these mechanisms can be used.

System software may be considered as a set of concurrent processes. If the processes are unrelated and never 

need to interact in any way our problems are over. More typically, the processes need to work together to achieve 

the goal of the system: partial solutions to a problem, generated by distinct processes, may need to be combined; 

a user process may need to request service from a system process. Support for interaction between processes is 

invariably required. Part II addresses this requirement in detail.

It is helpful to define a framework for considering the problems that can occur when processes execute 

concurrently. This allows the subject to be presented as simply as possible and in a coherent order. We first study 

how a 'single action', carried out by a process, can complete correctly without interference from the activities of 

any other concurrent process.

The notion of a single action is informal and may be related to the modular structure of systems. A process can 

read or write a single word of memory without fear of interference from any other process since such a read or 

write is made indivisible by the hardware. In practice, a programming language variable or a useful data 

abstraction, such as an array, list or record, cannot be read or written in a single hardware operation. It is the 

access to such shared abstractions by concurrent processes that is the main concern of Part II; the discussion 

focuses on the execution of a single operation or method invocation on a single data abstraction.

First, Chapter 9 establishes a context for this detailed study by taking a high-level view of the software structure of 

systems. A broad classification can be based on whether processes execute in memory which they share with 

other processes, in particular, whether shared data objects can be invoked. Alternatively, each process may 

execute in a separate address space, disjoint from that of all other processes or perhaps sharing only immutable 

code. In this case processes must cooperate without the benefit of directly addressable shared data objects. The 

need for both styles of system is justified by a number of examples.

The model of computation underlying Chapters 10 through 14 is that a concurrent program is loaded, proceeds to 

execute, and builds up state in main memory. The concurrent method invocations we consider are on data objects 

in main memory and we do not, at this stage, focus on persistent data that is independent of any running program. 



At the end of Part II we extend the discussion to consider concurrent method invocations on persistent data. In this 

case it is necessary to consider system crashes in which main memory is lost, the concern of Chapter 15.

In Chapter 16 the issues which are peculiar to distributed systems are revisited; in particular, that parts of a 

distributed computation and the connections between them may fail independently. We again restrict the 

discussion to a single method invocation but now on a remote object.

 9 System structure

 10 Low-level synchronization: Implementation

 11 Low-level synchronization: Algorithms

 12 IPC with shared memory

 13 IPC and system structure

 14 IPC without shared memory

 15 Crash resilience and persistent data

 16 Distributed IPC
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Chapter 9. System structure

9.1 Processes sharing an address space

9.2 Processes in separate address spaces

9.3 Sharing the operating system

9.4 Summary of process placement in the two models

9.5 Requirements for process interaction

9.6 Types of process interaction

9.7 A process interaction

9.8 Definition of single concurrent actions

In Chapter 5 the concept of the virtual address space of a process was introduced and we saw how virtual addresses are mapped onto 

physical addresses. We also saw that the virtual address space of a process may be divided into segments and that it may be possible 

for a given segment to be shared by many processes. It is straightforward for the code of a compiler, for example, to be shared by any 

number of processes while each sharer has a private data segment. We are concerned here with shared data.

An important distinction to be made in Part II is whether the processes being considered in a given interaction can access shared data 

objects directly. They may share an entire address space, and can therefore make use of shared data, as we saw in Chapter 4. They 

may execute in separate but segmented address spaces in which segments may be shared. If data segments can be shared by 

processes, again we need to consider how processes should access shared data objects.

If the processes' address spaces are completely disjoint, for example on separate machines, or are such that they cannot share data 

segments, we must consider how processes can share information without having access to shared data objects. Examples are now 

given to illustrate that both arrangements have their place in system design.

The system software designer has to decide how to use processes, how many to use and where to place them. Some alternative design 

possibilities are examined. After this system context is established we go on to explore the support required for process interactions.
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9.1 Processes sharing an address space

A file management system might be provided as a subsystem within a closed operating system for a centralized time-sharing system or a 

personal workstation. Alternatively, it might be provided as a service above a microkernel for local clients or it might run in a dedicated file 

server machine across a network from its clients.

Examples of possible clients of a file service are: an application process requiring to read or write a data file; a command interpreter, 

acting in response to a user's command to run a program, initiating its loading into memory from the file store; or a compiler creating an 

object code file.

We assume that the module which is to implement the service has an interface which offers operations such as open a file for reading or 

writing or read or write part of an open file, etc.

We can envisage a structure as shown in Figure 9.1 with the following components:

clients of the service;

a module concerned with looking up the names of files and checking whether the client making the request is in fact authorized 

to use the file in the way requested: the file directory service;

a module concerned with locating the required piece of the file on disk, or perhaps in a buffer in main memory if there have 

already been some operations to read data from the file: the file storage service;

a module concerned with handling the disk and with synchronizing with disk interrupts.

Figure 9.1. A subsystem showing modular structure.



Recall that there is a great deal of system data in main memory recording the location of files and free storage on disk and the transactions 

in progress (the filing system's metadata). We assume that system data in main memory is available as shared data structures to any 

process which executes the file system code.

9.1.1 Placement of processes within the subsystem

As discussed in Chapter 4 it is natural to place a dedicated process in the disk-handling module. It is natural to place a process (at least 

one) with each client. The question of interest here is how processes should be located in the intermediate module offering the directory 

and file storage service. There are a number of options.

Use no processes at all. Allow the client processes to enter the service module by calling procedures (invoking methods). Note 

that if more than one client at once enters the module, problems could occur when they read and write shared system data (see 

Section 9.7.1). This is the essence of the problem to be solved in Chapters 10, 11 and 12.

1.

Use a single file manager process which takes one request for service at a time from a queue of messages. Suppose this 

process starts to work on behalf of one client. All other clients' requests have to wait until the file manager gets around to them. 

This is a wholly inappropriate arrangement for a multiprocessor. Even on a uniprocessor, the file manager might find that 

serving one client involved a delay while waiting for data to be retrieved from disk. It would not be a good idea to keep all the 

other clients waiting while the (electromechanical) disk rotated. It would be better to start work in parallel on behalf of another 

client. To do this within a single process it would be necessary to keep track of where it had got to with client 1 while beginning 

to service client 2. This would effectively reimplement process management and create a multi-threaded server process.

2.

Associate a set of dedicated processes with the module. The number could be chosen to reflect the number of processors 

available or some arbitrary, soft limit. A sensible arrangement would be to have an interface, or listener, process and a set of 

worker processes to carry out requests. The job of the interface process is to take new requests, one at a time, from a queue of 

messages requesting service, and to assign a worker process for each. This should be done as quickly as possible so as to 

free the interface process for handling the next request. The set of worker processes need to share an address space in order 

to share file system data. This may lead to problems as mentioned in (1) above.

3.

Initially, a single process is associated with the module and listens for a request. When one arrives it creates a new process to 

listen in its place, carries out the request and then terminates. It might be necessary to limit the number of processes that are 

created and delay some incoming requests. Again, the processes need to share an address space.

4.

We have argued the need for simultaneous execution of the file service code by many processes. Such processes need to access 

common data structures associated with the file service as well as private data of relevance only to one specific client. The most suitable 

arrangement is that the processes share an address space. Whether processes enter the (passive) service module by calling the interface 

procedures or whether there are internally bound processes is a question of system design style. The trade-offs are discussed later.
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9.2 Processes in separate address spaces

In many systems there is a requirement for memory protection. In a multi-user system one user must not be allowed to write to or read 

from another user's memory indiscriminately. Also, in a multi-user system any corruption of the system software affects all users and not 

just the culprit and there is therefore a stronger protection requirement than in a single-user system. To satisfy this protection 

requirement it must be possible to control the access a process has to memory, in particular, to be able to prevent write access.

Let us first consider a process running in an address space that is disjoint from that of any other process; that is, it shares no code or 

data with any other process. Such a process can only fetch and execute an instruction or read or write a data operand from its own 

address space. This is the case if processes run on separate machines in a distributed system. It may also be arranged in a shared 

system, if memory protection hardware is available.

Shared code segments

Let us now suppose that memory protection hardware supports a segmented address space and that certain code segments (such as 

compilers or editors) can have 'execute only' access enforced; that is, any attempt to read or write an address in the segment would 

cause a protection error. The segment is protected from corruption and it can therefore be shared by many processes. To achieve this 

sharing the segment must be in each sharer's virtual address space and be mapped onto the same pages of physical memory for each 

of them. The mechanism is a system convenience to avoid wasting memory on multiple copies of identical, immutable code and is 

irrelevant to any consideration of a process at an abstract level. We shall consider processes which share user-level code in this way as 

effectively running in separate address spaces. The issue is whether it is possible for processes to share writeable data segments.

It could be argued that only system code will run in a dedicated server machine, such as a file server, and there is therefore no strong 

requirement for protection. However, any software may have bugs and memory protection may be useful for containing their effects. The 

idea is to confine an erroneous process to its own address space by using memory relocation and protection hardware. An error in the 

communications system should not be able to corrupt the file system, for example. There is no need for communications processes and 

file server processes to have access to each other's data structures and enforcing this separation by hardware can trap an error before 

its effects spread around the whole system. We have to pay for protection of this kind by not being able to share memory when it would 

be convenient, for example, when data read from a file has to be transferred across the network. We shall see how this problem is 

solved in Chapter 14 and in the case studies in Part IV.

Distributed processes

As mentioned above, an example of processes occupying separate address spaces is when they run on different machines. In this case 

any communication between them takes place across the network via network hardware interfaces. We assume that a network (device) 

handler process will be allocated to synchronize with data arriving via the network interface. The network handler will alert a higher-level 

process that data has been transmitted. As discussed in Chapter 3, we have synchronization between the low-level and high-level 

communications software and exchange of data by means of a shared buffer.

When a request to synchronize with some local process arrives from a process across the network, a system process implementing a 

communications protocol will decode the request and decide which local process to signal. We have therefore reduced synchronization 

between processes on separate machines to synchronization between local processes.

Shared data segments



Memory segmentation schemes often allow only code segments to be shared at user level, as discussed above.

The most general segmentation scheme allows many segments per process with arbitrary 

sharing. With such a scheme it would be possible for some data areas to be shared (for 

example, shared system tables and communication areas), but others to be private (for 

example, work space for a single client). This generality of sharing was a design aim of some 

early systems such as Multics (Saltzer, 1974), but recent systems have tended to be more 

restricted.

In Part II we are concerned with the problems that can arise when data is shared directly in memory by concurrent processes and with 

the arrangements that must be made for sharing information when there is no shared memory.
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9.3 Sharing the operating system

In order that a process can easily make system calls to request system services, it is often arranged that the operating system code and 

data occupy the same part of every process's address space, typically one half of it. UNIX is structured in this way, as shown in Figure 9.2. 

When a process is executing in user mode it may be separate from all other processes (as in UNIX). When it requests system service by 

making a system call, it enters a region which is shared with all other processes. Operating system code accesses shared operating 

system data. When concurrent processes access shared data the problems of interference mentioned in Section 9.1.1 can arise.

Figure 9.2. UNIX structure.

Example

Figure 9.3 shows the arrangement of the virtual address space of the MIPS architecture; the Intel Pentium has a similar arrangement. Half 

the virtual address space is for user code and data, half for the operating system. Much of the operating system must be resident in 

memory, that is, it must not be swapped out to backing store and need never be moved around in memory once loaded. It is possible to 

make these parts of the operating system directly mapped onto physical memory, thus avoiding the need for address translation for 

references to them. The address translation table is a scarce resource since it has room for only 64 entries (see Section 5.8), and this is a 

good way of conserving it. There is also provision for some parts of the operating system not to be cached. This is for memory-mapped I/O 

and data areas used by DMA devices (see Section 3.2).

Figure 9.3. MIPS architecture virtual address space.



As discussed in Chapter 5 and above in Section 9.2, if a system supports segmentation it is possible to arrange for arbitrary segments of 

user-level code or data to be shared. It is common for code to be shared, for example, editors, compilers and libraries. It is less common 

for a system design to allow data segments to be shared, even if the hardware makes it possible. Figure 9.2 shows the original UNIX 

design with three segments at user level, one for code (the text segment) and two for data. Although the text segment could be shared, it 

was not possible to share any data areas. Recent versions of UNIX support shared data (see Chapter 25).
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9.4 Summary of process placement in the two models

The above sections have discussed the placement of processes in relation to system structure. Figure 9.4 (a), (b) and (c) illustrates these 

cases.

Figure 9.4. Process placement within systems. (a) Many processes (threads) per address space. 

(b) One process per address space, same machine. (c) One process per address space, 

separate machines.

Some fundamental points are:

Processes (often called threads in this context) may share the same address space, as described in Section 9.1 above and 

illustrated in Figure 9.4(a). Here we have a multi-threaded process (recall Section 4.11). The process is the unit of resource 

allocation and threads are the unit of execution and scheduling and the active entities which need to communicate.

Processes may run in separate address spaces on the same machine; see Section 9.2 and Figure 9.4(b). Here we have a 

heavyweight process model where the process is both the unit of resource allocation and the unit of scheduling and execution.



User processes may run in separate address spaces on the same machine. System processes on this machine may share an 

address space. It might be that user processes become system processes when they make system calls and enter the 

operating system; see Section 9.3 and Figure 9.4(b).

Processes may run in separate address spaces on different machines; see Section 9.2 and Figure 9.4(c).

To complete the picture, it should be pointed out that a thread of one multi-threaded process may need to be aware of and interact with a 

thread of another multi-threaded process, as shown in Figure 9.5.

Figure 9.5. Multi-threaded processes within systems.

To avoid confusion in terminology we shall continue to discuss inter-process communication (IPC) throughout Part II. In systems where 

threads are the active entities, scheduled by the operating system, it would be more correct to use the term inter-thread communication.
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9.5 Requirements for process interaction

Bearing these structural points on process placement in mind we now look in more detail at why processes might need to interact and how 

their interactions might be supported in a system.

Processes may need to cooperate to carry out some task

Specifically, one process may need to make a request for service of some other process and eventually may wait for the 

service to be done. An example from Section 9.1 is a request from a process in the file management module to a disk-handler 

process to read the disk and to wait for the required data to be available in memory before proceeding.

We have already seen in Section 3.2 that the disk-handler process synchronizes with the disk in a similar way. It issues the 

commands which cause the required section of the disk to be read into memory, then waits for the DMA transfer to finish. The 

hardware signals an interrupt when this has happened and the process control module changes the state of the disk handler 

from blocked to runnable as a result. We have studied synchronization between a process and the hardware; we now have a 

requirement for synchronization between processes.

It may also arise that one process reaches a point where it must ensure that some other process has carried out a certain task 

before continuing, for example, that one process has written some data to a file before another process can process it. An 

example occurs in a pipeline of processes, such as the pipelined compiler shown in Section 1.2. Each processing phase must 

wait for the previous phase to complete. Another example is that the process requesting I/O must synchronize with and share 

buffer space with a process-handling device I/O, as shown in Section 3.5.

We are seeing a general requirement for synchronization. A process may need to WAIT in order to synchronize with some 

other process, just as a process may need to WAIT to synchronize with the hardware.

There is also the associated requirement for sending a request or signalling that some task has been carried out. When one 

process WAITs, something should, in due course, cause it to proceed again.

In summary, cooperating processes need to synchronize with each other and to do this need to be able to WAIT for each other 

and SIGNAL to each other.

This basic requirement is independent of whether they share the same address space.

1.

Processes may compete for exclusive use of services or resources

Many clients may make simultaneous requests for some service; several processes may attempt to use a resource at the same 

time. The system implementation must manage this competition; order must be imposed, making the processes take turns, 

waiting where necessary, and a choice must be made between processes making simultaneous demands for resources which 

must be used serially.

Competing processes need to WAIT to acquire a shared resource and need to be able to SIGNAL to indicate that they have 

finished with the resource.

2.

These two requirements may be summarized as follows:

Condition synchronization.1.

Mutual exclusion.2.

Support for process interaction



Figure 9.6 shows interacting processes, and the implementation of support for the interactions, in some of the process placement 

diagrams. The term inter-process communication (IPC) is used in the figure to include the types of interaction discussed above. We now 

consider process interactions in more detail.

Figure 9.6. Inter-process communication (IPC) and its implementation.
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9.6 Types of process interaction

We have seen how to implement a system as a set of concurrent processes and have seen a system context for the placement of 

processes. We have established a requirement for processes to interact in order to cooperate together or compete for resources in order 

to meet the design goals of the system.

We now focus on what is interacting with what. There was an implicit assumption that two processes were involved in the interactions 

described in Section 9.5. If we examine the interactions more closely, we see that in some cases, specific processes are involved in an 

interaction. An example is a pipeline of processes (see Section 1.2) in which a given process will always need to synchronize with the 

same processes, those preceding and succeeding it in the pipeline. It may know their names in advance and happily WAIT for or 

SIGNAL to the appropriate process. In other cases a process may have no idea in advance which processes will require to interact with it 

and therefore cannot synchronize with specific, named processes.

A general classification of process interaction is described below.

One-to-one

The type of system in which this arrangement is appropriate is one which has a static configuration of interactions between individual 

processes. A process control system where a process reads a sensor or controls an actuator associated with the physical environment is 

likely to fit this model. These processes send their data to or receive commands from other known management processes. A pipeline 

structure is another example. The interactions which will take place are known in advance; in particular, the names of the processes 

involved are known.

Any-to-one

The most common example of this type of interaction is multiple clients of a single server. In this case a server process offering the 

service will accept a request from any potential client process. In a given interaction one client invokes one (possibly well-known) server. 

The server cannot know which potential client will next invoke it and needs to be able to WAIT for 'anyone' to make a request.

The ability for a system to support this style of interaction in general requires a naming problem to be solved. This is relatively easy for 

well-known system services: the server process name can be made known in advance to all clients.

One-to-many

This style of communication may be used to notify a set of interested parties that an event has occurred. The term broadcast is used if a 

communication is sent out to 'everyone' and there is usually no record of who has and who has not received it.

A multicast implies that a communication is sent to a specific set of recipients. There may (in a reliable multicast) or may not (in an 

unreliable multicast) be an indication as to whether each individual has received it. In this case the interaction is genuinely 'one-to-many'.

It might be that the system does not support multicast directly and forces the one-to-many interaction to be implemented as a series of 



one-to-one interactions. This could be very slow if a response from a recipient had to be received before the next one-to-one 

communication could be made. Protocols have been developed to avoid this cost.

Again, naming is relevant to a discussion of multicast. At the level at which processes are interacting, a group name might be supported 

to indicate a list of individuals. An example of a slow version of this style of interaction is sending an electronic mail message to a 

distribution list. In this case the system guarantees to buffer the message until it can be delivered to its recipients.

One-to-many communication may also be used in fault-tolerant systems where a given task must be carried out by more than one 

process; for example, three processes might compute a result and vote on its value. If one process fails, the other two can still agree on 

the result.

Any-to-(one of) many

A given service might be provided by a number of anonymous processes. A client needs to request service from any free service 

process rather than one particular named process. The servers may execute shared service code and data concurrently, as in some of 

the schemes described in Section 9.1.1, or may run on separate computers in a computer network.

This communication pattern is included for completeness, but it may in practice be reduced to the cases already discussed. The problem 

may be solved as a naming problem; the required server may be selected by a name lookup (see Chapter 16). Alternatively, a multicast 

protocol may be used first to request the service. One responding server is selected and we then have one-to-one communication.

Many-to-many via shared data

Finally, as we have seen in Section 9.1, processes may be able to share writeable data. Any number of processes can communicate 

through a shared data structure.

We shall bear these broad categories in mind in subsequent chapters, although many refinements and alternative methods of 

implementation exist for each type of interaction.
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9.7 A process interaction

We now consider the interactions between processes in more detail, bearing in mind the broad categories of cooperation and competition 

and the architectural distinction of shared data and no shared data.

9.7.1 Problems when processes share data in memory

If processes share an address space, the system designer may make use of shared data objects to effect cooperation or manage 

competition for resources. If shared data objects can be written as well as read by concurrent processes, problems can arise.

Consider an airline booking system, for example. The database of flight bookings will be held on disk, but read into main memory for 

reading and update. Let us consider the data in main memory. Suppose that the seats of a particular flight are marked as free or booked 

and that each process, acting on behalf of a client, has to find a free seat and book it. If the concurrent processes run on a multiprocessor, 

or if preemptive scheduling is used, two processes could find the same seat free at the same time and both could proceed to mark it as 

booked. The problem arises from uncontrolled concurrent access to shared data. (We assume that, even if the airline has an overbooking 

policy, booking should be implemented in a controlled way and that booking errors should not occur by accident.)

More realistically, booking might proceed on the basis of a count of the number of seats which remain unbooked on a given flight, rather 

than causing specific seats to be reserved. A booking process might invoke a method to book a seat on a given flight and execute code 

which includes a statement such as:

if unbooked-seats > 0

then unbooked-seats = unbooked-seats - 1;

If several processes execute this code simultaneously, overbooking can still occur. First, the value of unbooked-seats is read into a 

processor register (several processes could read the same value), then the value in the register is tested, then (if the value is greater than 

zero) the decremented value is written to memory.

Figure 9.7(a) shows two processes executing on two processors of a multiprocessor. Both read the value of unbooked-seats into a register 

(either from their caches or from main memory) and find the value is 1. There is one seat left! They each proceed to book it.

Figure 9.7. Interference between processes which share data. (a) Two processes running on 

two processors of a multiprocessor. (b) Two processes running on a uniprocessor with 

preemptive scheduling.



Figure 9.7(b) shows two processes running on a uniprocessor with preemptive scheduling. Process A reads the value of unbooked-seats

into a register and is then preempted in favour of process B. The saved state of process A includes the values stored in the processor 

registers. Process B reads the value of unbooked-seats into a register, finds there is one seat left and books it. When process A runs again 

its saved state is set up in the processor registers; it finds there is one seat left and proceeds to book it.

The problem arises from uncontrolled access to shared data, but, more specifically, because the implementation of the high-level 

language statement given above requires several machine language instructions. This is discussed in more detail in Chapter 10.

There are many examples of systems based on a shared memory model and problems which might arise from shared data. For instance:

In a process control environment, a count of the amount of material produced might be incremented by many processes which 

monitor production and decremented by processes which organize the loading and transportation of the material.

In an operating system, a data structure might be set up to hold requests for service by some system process. In order to make 

a request, a process must write an entry into the data structure, managing the associated pointers and counts. In order to 

service a request, the system process must read an entry and manage the associated pointers and counts.

We have focused here on the problem that a single logical operation may not be implemented as a single machine-level operation. In 

Chapter 15 we return to the example discussed above, of booking a seat, with a different focus. Figure 9.7 showed the statement 'output 

confirmation of booking and exit'. In practice, this must not be done before the fact that the seat is booked has been safely recorded in 

persistent memory. If a crash occurs, and main memory is lost, a record of the booking must persist.

9.7.2 Problems when processes do not share data in memory

Here, the problem is how to support the sharing of information, which is necessary if processes are to work together to achieve some goal.

A system in which processes do not share memory requires information to be passed between processes as well as the WAIT–SIGNAL

synchronization requirement established in Section 9.5 above. It is possible to support the transfer of data around the system from 

process to process.



The problems associated with this are:

Naming: the processes involved must know each other's names in order to communicate.

 In a single centralized system we can assume that the operating system will extend the namespaces 

of the processes it supports so that they can communicate. We return to the need for a system-wide naming scheme in 

Chapters 13 and 16 when we look in more detail at inter-process communication in distributed systems.

The time to copy data between address spaces or to move it across a network.

Chapter 14 and the case studies in Part IV show how this time can be minimized by using memory management hardware.

The time to context-switch between processes running in separate address spaces and the number of context switches 

involved (see Section 4.3.2).

At first sight it appears that no problem of concurrent access to shared data can arise if processes share no memory. However, it might be 

that a process is managing some data that is of interest to other processes and will carry out operations on it for them on request: the 

process is encapsulating a data structure. For all the reasons discussed in Section 9.1.1, the process may work on more than one such 

request simultaneously. We have rediscovered the need for a multi-threaded server process.

9.7.3 Granularity of concurrency

The size of a process, that is, the number of operations it comprises, is system-or application-dependent. For example, it might be 

appropriate to use a separate process to carry out operations on each element of a vector or array. This is fine-grained concurrency and 

would typically be used to achieve a highly parallel solution on a special-purpose architecture such as a vector or array processor. An 

example of coarse-grained concurrency is the use of one process for each user job in a time-sharing system.

The systems addressed by this book tend to require processes that fall between these two extremes.

For some systems, shared memory is highly desirable, so that data structures can be shared, and processes (threads) do not each bear 

the overhead of separate memory management. In this case it is relatively easy to create new processes dynamically to achieve parallel 

computation. A new address space, with associated memory management tables, is not needed on process creation and switching 

between processes does not require a switch between memory management tables.

There is often a limit to the number of processes and threads that an operating system, running on a given hardware configuration, can 

support. This typically depends on the space allocated for process management data structures, memory management tables, etc., and 

the time taken to execute the algorithms which access these data structures.

As we have seen in Chapter 4, many lightweight processes known only to the language system may be multiplexed into a single 

heavyweight process known to the operating system. Switching between these language-level processes involves less overhead than 

switching between threads that are known to the operating system.

For some applications, a separate address space per process is mandatory or desirable. Many systems include subsystems of both types.

The system designer must analyse the application to determine the best decomposition in terms of:

the number of separate activities;

the frequency of interaction between them;

the extent to which they need to access shared information and the granularity of access;

the need for protection between them;



the extent to which they need to make potentially blocking system calls.

It is important, for performance and other reasons, to decide where processes known to the operating system must be used, where 

threads known to the operating system are appropriate and where processes known only to the language system are sufficient. As we 

established in Chapter 4, it is necessary to know (or choose) the properties of the hardware and the operating system on which the system 

will run.
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9.8 Definition of single concurrent actions

We now attempt to define a 'single' action that might be carried out by a process. As stated in the introduction to Part II, such a definition 

must be somewhat arbitrary and is made in order to divide the material to be presented so that we can focus on it in a coherent order. 

We could define a single action to be a single read of main memory or a single write to main memory. There is no problem arising from 

such operations being carried out by concurrent processes, since each operation is guaranteed by the hardware to be indivisible or 

atomic. This definition of a single operation would not help us to focus on the problems.

Rather, we are concerned with a higher-level or logical operation which involves more than one read or write of memory. The examples 

in Section 9.7 are relevant here. To book a seat is a single logical operation and involves a read, test and write of a count. A request to 

an operating system process to carry out some service may require a record to be written into a data structure and a pointer to be 

updated. In these cases we need to execute more than one machine instruction on data in main memory and to exclude other processes 

from that specific data abstraction until the abstract operation is complete.

The motivation given above is driven by requirement; a top-down view is taken. Andrews (1991) uses the following definition, which 

focuses on implementation; a bottom-up view is taken to arrive at the same intuition:

An atomic action is a sequence of one or more statements that appears to be indivisible; i.e. no other process 

can see an intermediate state. A fine-grained atomic action is one that can be implemented directly by an 

indivisible machine instruction. A coarse-grained atomic action is a sequence of fine-grained actions that appear 

to be indivisible.

It is helpful to relate the notion of a single logical operation, or Andrews' coarse-grained atomic action, to the modular structure of 

systems, and in particular to the abstract data types and objects introduced in Chapter 2. A single operation or method invocation on a 

data abstraction is the intuition required throughout Part II.

This simple model of a single, logical operation carried out on a data structure in the main memory of a single computer is sufficient for 

most of Part II. In Chapter 15 system crashes are considered; computer systems crash and main memory can be lost. If you tell a client 

that a seat is booked then you must have noted the booking in persistent memory or a crash could erase the record that the booking took 

place. We must therefore consider operations which involve data objects stored in persistent memory.

We extend the definition of an atomic operation to include the property that any permanent effects of a completed atomic operation 

should survive a crash and that either the entire operation is done or none of it is. If there is a crash part-way through an atomic 

operation, no intermediate state created by it may persist. We discuss how this can be achieved in Chapter 15.

In Chapter 16 an operation invocation across a distributed system is discussed. Here again the effects of an operation are visible beyond 

the main memory of a single system and we have to consider the possibility of crashes in the systems involved and the network 

connecting them.

Part III considers how several Part II-style operations may be combined into a higher-level operation. An area of concern is multiple 

related operations within main memory, but the main emphasis in Part III is the problem of multiple related operations on data held in 

persistent memory (for example, in a database or file store on disk).

Study questions

S9.1
In your opinion, which of the four suggested options for locating processes within a file service 

a.



implementation is the preferable one in a system supporting multiple processes? Explain why. What is the 

major disadvantage, if any, of your option?

Assuming that one adopts a solution involving a separate process for every client seeking to use the file 

service, what might be the best arrangement regarding the processes and their address spaces?

b.

S9.2
Under what circumstances is it preferable to have processes in separate address spaces?a.

Why does the use of shared code segments allow processes to be viewed as effectively running in 

separate address spaces?

b.

In a distributed system do processes share address spaces? How is communication achieved between 

processes running on separate machines? How is synchronization achieved between distributed 

processes?

c.

S9.3
What are the three varieties of process placement?a.

What does IPC mean?b.

S9.4
What are the two basic reasons why processes need to interact?a.

What are the two basic operations needed to synchronize the actions of two interacting processes?b.

S9.5
What is the major problem when processes share data in memory?a.

Why should a client not be informed that a booking (e.g. for an airline seat) has been made before a 

record of the booking has been stored in persistent memory?

b.

What are the problems when communicating processes do not share data in memory?c.

Can the problem of concurrent access to shared data arise when processes do not share data in memory?d.

S9.6
What is an atomic action? What is its significance?a.

What is the difference between fine-grained and coarse-grained atomic actions?b.

What mechanism guarantees that fine-grained and coarse-grained atomic actions are atomic?c.

Define the concept of a single concurrent action.d.

Atomic actions must appear to be indivisible. What additional requirement is necessary to take into account 

the possibility of a crash during an atomic operation?

e.

Exercises



9.1
Why is a single process inadequate to implement a dedicated service such as a file server?a.

Why are multiple processes each in a separate address space inconvenient for such an implementation?b.

For what kinds of system would you expect to use a separate address space for each process?c.

To what extent can memory management techniques be used to achieve the kind of data sharing that is 

needed in the implementation of a service?

d.

9.2 Consider the file service implementation given in Chapter 6. Which data structures must be accessed on behalf of 

every client of the service? Which data is private to an individual client? Could memory management techniques, 

introduced in Chapter 5, be used to achieve shared service code, some shared data and some private data? (Consider 

the programming language storage allocation scheme outlined in Chapter 4. Assume that each process has a separate 

stack and that they share a heap.)

9.3 Give examples of interactions between processes that require one-to-one, many-to-one, one-to-many and 

many-to-many interactions.

For each example other than one-to-one, consider whether you could use a sequence of separate one-to-one 

interactions or whether you genuinely need an interaction involving many processes simultaneously.

9.4 Give examples of problems that can arise from uncontrolled access by concurrent processes to shared writeable data.

9.5 In Figure 9.3 explain why the different regions within the virtual address space of the operating system have different 

requirements for caching and address mapping.
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Chapter 10. Low-level synchronization: 

Implementation

10.1 Process synchronization compared with event signal and wait

10.2 Mutual exclusion

10.3 Hardware support for mutual exclusion

10.4 Semaphores

10.5 Styles of use of semaphores

10.6 Implementation of semaphore operations

10.7 Summary

Concurrent processes need to work together in order to achieve the goals of the system they comprise. They may need to synchronize 

and to access common information. We now look at how this requirement for interaction is met. As specified in Section 9.5:

Condition synchronization: Cooperating processes need to synchronize with each other and to do this need to be able to

WAIT for each other and SIGNAL to each other.

Mutual exclusion: Competing processes need to WAIT to acquire a shared resource and need to be able to SIGNAL the fact

that they have finished with a shared resource.

To avoid the problems that can arise when two or more processes attempt to access a shared data structure, a mechanism must be 

found that permits only one process to access the shared data at any time. Section 10.1 briefly explores why the event SIGNAL () and 

WAIT () operations are unsuitable as general synchronization mechanisms. In Section 10.2 we introduce the concept of critical regions: 

the code which each process executes when accessing a shared (writeable) item of data. A range of mechanisms can be provided such 

that only one process at a time is allowed to execute its critical region for a given item of shared data, thus guaranteeing mutual 

exclusion; that is, exclusive access to the shared data. In practice, these mechanisms are built on top of hardware-enforced 

mechanisms such as forbidding interrupts or certain machine instructions. How mutual exclusion can be enforced without hardware 

support can be found in Section A.4 of the appendix.

In Section 10.4 semaphores are introduced, which provide a general software approach to solving the mutual exclusion problem whilst 

also addressing the synchronization of processes. Semaphores are objects providing semWait () and semSignal () methods. A range of 

ways in which semaphores can be used is explored in Section 10.5.

In Section 10.6 we consider how semaphores should be implemented. Semaphores can be used for synchronization between processes 

executing in a shared address space or in separate address spaces. The names (identifiers) of processes in separate address spaces 

will be known to the operating system. They may be executing code that was originally written in a sequential programming language, in 

which case the semaphore operations are likely to be provided as system calls (see Section 4.14).

Processes sharing an address space are likely to be part of a single concurrent program originally written in a high-level, concurrent 

programming language. The language runtime system will implement the processes as user threads and, if the operating system 

supports multi-threaded processes, may make them known to the operating system as kernel threads; see Section 4.12. If the user 

threads are not registered with the operating system as kernel threads, semaphores will be provided by the language runtime system 

only, in order to support application-level mutual exclusion and condition synchronization. If they are known to the operating system, 



semaphores will still be provided by the language runtime system in the first instance. Section 10.6 gives details of how semaphores are 

implemented and how the runtime system must interact with the operating system.

Chapter 11 develops some semaphore-based concurrency control algorithms. Chapter 12 shows high-level language constructs that 

achieve similar effects but are easier for programmers to use. Chapters 13 and 14 focus on synchronization and exchange of information 

between processes in separate address spaces.

[ Team LiB ]  



[ Team LiB ]  

10.1 Process synchronization compared with event signal and wait

Section 4.4 introduced an implementation mechanism which allows an operating system process to synchronize with a hardware event, 

typically the arrival of an interrupt signal. In Section 9.5 a requirement was established that a process should be able to synchronize with 

another process as well as with the hardware.

We shall first consider whether the familiar WAIT (), SIGNAL () mechanism on events is suitable for process synchronization. Some 

characteristics of an event synchronization mechanism are:

In the case of hardware events, a complete list of events of interest may be specified at system design time. We are now 

moving on to consider general inter-process synchronization 'events'. A system might have a small, static number of 

processes, but in general we should consider a large number of processes with dynamic process creation and termination.

When one process synchronizes with one hardware device, simplifying assumptions can be made. It is not necessary to allow 

for simultaneous execution of WAITs by processes or SIGNALs by the device. The possibility of simultaneous WAIT () and 

SIGNAL () should be allowed for, but many (uniprocessor) operating systems avoid the possibility of race conditions by 

forbidding interrupts for a short time while a process executes WAIT ().

These two points, the naming of the processes involved in a communication and the possibility of concurrent use of the mechanism by 

processes, must be considered when a general inter-process synchronization mechanism is to be designed.

There is usually a requirement for interactions which are more general than one-to-one specifically named processes. One process 

should be able to WAIT for a SIGNAL from any other process. Also, a number of processes may need to synchronize their accesses to a 

shared data structure. A given process must WAIT for the data structure to be free if it is in use. Suppose a process has finished its 

access to the shared data. How should it indicate this to any processes that might be waiting to use it? Again the requirement is for one 

process to SIGNAL several others which are not known to it. In Section 10.4 we see that the solution to the mutual exclusion problem 

yields a mechanism that can also be used for condition synchronization.
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10.2 Mutual exclusion

In a system many processors are simultaneously fetching and executing instructions of stored programs. The following facts relating to the 

conventional machine level of a computer can be asserted:

reading a memory location is indivisible or atomic (see Section 9.8);

writing a memory location is atomic.

There can be arbitrary interleaving of machine instruction execution from concurrent computations and therefore arbitrary interleavings of 

memory accesses. The possibility should be considered that between any two instructions of one computation, any number of machine 

instructions of any other concurrent computation could be executed. It should also be noted that a high-level language statement, even a 

simple increment x++, may be compiled into a number of machine instructions.

Now consider two processes sharing a data structure. We assume that within each process there is at least one sequence of instructions 

which accesses the data structure. We also assume that at least one of the processes will write to the data structure and that more than 

one memory location is written. An example is inserting a new object into a queue: several references must be updated before the data 

structure reaches a consistent state. Figure 10.1 shows two processes, each with a critical region of code for the same data structure. 

Figure 10.2 gives a more realistic, modular representation of the way operations on shared data would be programmed in practice. 

Processes A and B invoke methods to operate on the shared data and within these methods are critical regions where the data must be 

accessed exclusively.

Figure 10.1. Two processes with critical regions for the same data structure.

Figure 10.2. Modular representation of Figure 10.1.



The problem to be solved is how a process can be given exclusive access to a data structure for an arbitrary number of reads and writes. 

A first attempt at a solution might be to associate a boolean variable with the data structure to indicate whether it is free or busy. The two 

processes agree, by convention, that they will test the variable before entering their critical regions associated with the data structure and 

will only enter if the region is free; Figure 10.3 shows this scheme informally; Figure 10.4(a) shows the scheme in operation for two 

processes running on a multiprocessor; and Figure 10.4(b) shows two processes preemptively scheduled on a uniprocessor.

Figure 10.3. Two processes with critical regions for the same data structure: First attempt at 

control by a boolean.

Figure 10.4. Failure to protect a critical region with a boolean. (a) Two processes running on two 

processors of a multiprocessor. (b) Two processes running on a uniprocessor with preemptive 

scheduling.



The problem here is that there are several instructions involved in entering the region safely (and several memory accesses) and only a 

single memory access is atomic. Process A could read the boolean, find the region free, set the boolean to busy using a write instruction 

and proceed into its critical region. Process B could read the boolean between process A's read and write, apparently find the data 

structure free and also proceed to set it to busy and enter its critical region. We are no nearer a solution.
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10.3 Hardware support for mutual exclusion

Many computers have instructions which perform read, conditional modify and write of a memory location within a single bus cycle; that is, 

they provide an atomic, conditional update of a memory location. With such an instruction we can implement mutual exclusion on a 

multiprocessor. One example is a test-and-set (TAS) instruction which is typically of the form:

TAS BOOLEAN if the boolean indicates that the region is free

then set it to indicate busy and skip the next instruction

else execute the next instruction

If the boolean was free it is now set to busy and the process enters its critical region. If the boolean was busy, the next instruction in 

sequence is executed (see Figures 10.5 and 10.6). The next instruction can simply jump back to try the test and set again, this is called a 

busy wait or spin lock, or can jump to some other place where a WAIT which blocks the process is implemented. This is discussed in 

detail in Section 10.4. Other instructions of this kind are discussed below.

Figure 10.5. Two processes with critical regions for the same data structure: control by 

indivisible test-and-set of a boolean.

Figure 10.6. Protecting a critical region with an atomic test-and-set instruction. (a) Two 

processes running on two processors of a multiprocessor. (b) Two processes running on a 

uniprocessor with preemptive scheduling.



A boolean and a TAS instruction may also be used to implement synchronization, as shown in Figure 10.7, but only between two 

processes. A boolean, to be used as a synchronization flag, is initialized to busy. Process A executes TAS when it needs to synchronize 

with process B. Process B sets the flag to free. There must only be one possible signaller to set the flag to free since only one signal is 

recorded.

Figure 10.7. Two-process synchronization using TAS.



In uniprocessor systems the technique of forbidding interrupts while small sections of critical code are being executed to completion is 

often used within the operating system. With interrupts disabled, a process will continue to run indefinitely on the single processor. No 

other process can do anything. This is because the interrupt mechanism is the basis of timing and preemption as well as external device 

handling. The technique will not work for multiprocessors, since processes are running simultaneously. Ensuring that interrupts are 

disabled on one processor, to allow one process to run on its processor without interruption, does not prevent another process on a 

different processor from accessing the same memory locations.

Multiprocessors

If a composite instruction is used in a multiprocessor it is preferable, for performance reasons, that the instruction is such that processes 

read in the period when they are waiting to enter a critical region and write only once on entry. This is the case in a TAS instruction which 

reads, tests then writes only if the test is successful, for example, if the critical region is free. This is because each processor is likely to 

have a hardware-controlled cache (see Section 5.2); a read can take place from the cache alone whereas any value written to data in the 

cache must be written through to main memory so that all processors can see the up-to-date value. There would be severe performance 

penalties if several processes were busy waiting on a flag and the busy waiting involved a write to memory.

When a number of processes are busy waiting on the same flag and are scheduled on different processors, each processor's cache will 

contain a copy of the flag. A test-and-set on a boolean in a cache alone would not, of course, achieve concurrency control. The hardware 

cache control mechanisms must prevent the use of out-of-date values.

A standard mechanism is that when a memory location is written, all cached entries of that location are invalidated and the new value must 

be fetched from memory by the next read instruction. A more lightweight mechanism is the 'snoopy cache' designed for the DEC Firefly 

multiprocessor (Thacker et al., 1987) which is based on the VAX CISC architecture. In this case each cache controller is designed to 

monitor the memory bus for addresses that it has cached in order to detect whether another processor has written a new value to any of its 

cached data and, if so, to pick up the updated value.

Examples of instructions that support mutual exclusion

Current processors typically provide either atomic compare-and-swap (CAS) or load linked/store conditional (LL/SC). The simplest 

instruction for supporting mutual exclusion is a read-and-clear operation which can be used as shown in Figure 10.8.

Figure 10.8. Use of read-and-clear to achieve mutual exclusion.



After the read-and-clear instruction is executed the destination register contains the value of flag before it was cleared. If the destination 

register contains zero the data structure was already busy, in use by some other process, but the read-and-clear instruction has done no 

harm. The executing process must not access the shared data and must test the flag again. If the destination register contains a value 

other than zero the data was free and the executing process has claimed the shared data by clearing the flag. The PA-RISC processor 

provides this instruction. Note that it executes as a single memory to register transfer and is compatible with a load-store architecture. 

RISC and CISC architectures were discussed in Section 3.2.2.

CAS, compare-and-swap is a more complex instruction than read-and-clear. CAS compares the value of flag with some value 'old' and, if 

they are equal, atomically sets flag to some value 'new'. This instruction requires both a memory read and write and is therefore typical of 

a CISC rather than a RISC (load-store) architecture. It is provided by IBM/370, IA-32, SPARC, Motorola 68000 architectures and WG94. A 

simpler register-to-memory swap is provided by the ARM processor.

The general idea of LL/SC is to split the read–modify–write idiom of CAS into two components. A load-linked (LL) from a location by 

processor i is recorded as 'read by i'. Subsequent invocations of store conditional (SC) succeed if and only if it was marked thus by the 

writing processor and all existing marks by other processors on that location are then cleared. The Alpha, MIPS32 and PowerPC 

implement variants of this general approach.

In summary, shared data can be accessed under mutual exclusion by:

forbidding interrupts on a uniprocessor;

using a hardware-provided composite instruction.

In practice, we expect to be able to use one of these mechanisms. In the early days of processor design such instructions were not 

provided and a great deal of work was done on algorithms to ensure mutual exclusion without hardware support.

Section 10.4 describes a general mechanism, the semaphore data type and associated operations, which can be used to support both 

synchronization and mutual exclusion and which incorporates the blocking of waiting processes.

10.3.1 Mutual exclusion without hardware support

In the early days of computer system design the hardware was simple and limited in scope. The instructions sets often did not provide 

composite instructions but while uniprocessors were the norm forbidding interrupts could be used to achieve mutual exclusion. As soon as 

multiprocessors came on the scene forbidding interrupts could no longer be used. A great deal of research effort was directed towards the 

mutual exclusion problem before processor designers routinely provided instructions on which mutual exclusion can be built. Since ths is 

now largely of historical and educational interest we cover this topic in the appendix where various aspects of computer systems evolution 

are discussed.
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10.4 Semaphores

In 1968 Edsger Dijkstra published a paper on the design of a small but carefully structured operating system called THE, which is 

described in Section 11.2. The design was based on a small, static number of concurrent processes which synchronized with each other 

and with the hardware by means of a mechanism called a semaphore.

A semaphore is an object with operations semSignal () and semWait (). The attributes of a semaphore are typically an integer and a queue 

(Figure 10.9). The definitions of the semaphore operations are as follows:

semWait () If the value of the semaphore's integer is greater than zero then decrement it and allow the process to continue, else 

suspend the process (noting that it is blocked on this semaphore).

semSignal 

()
If there are no processes waiting on the semaphore then increment the integer; else free one process, which continues 

at the instruction after its WAIT instruction.

Figure 10.9. A semaphore object.

We can envisage semaphores as a class which may be located in the operating system (for semaphores of concern to the operating 

system) and also in the language runtime system (for semaphores which are not of concern to the operating system); see Section 10.6.3.

We will assume that a semaphore class which implements the interface below is available to us. We will see how we can implement this 

interface later on. In general, we will require a constructor for any class implementing Semaphore which allows an initial integer value to be 

specified.

public interface Semaphore { 

  public void semWait();

  public void semSignal();

}

A typical usage is as follows, to declare a semaphore called lock and initialize it to 1:

Semaphore lock = new SemaphoreImplementation(1); 

an example of use of a semaphore:

lock.semWait(); 

access data

lock.semSignal();

We shall now cover some examples of the ways in which semaphores may be used and then look in more detail at systems implications of 

their implementation.
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10.5 Styles of use of semaphores

Semaphores can be used for a range of purposes. In the following sections we will see that they can be used to achieve (1) mutual 

exclusion; (2) synchronization of cooperating processes and; (3) management of multiple resource allocation. These different usages are 

achieved through varying the initial integer value of the semaphore as well as working with different orderings of the semWait () and 

semSignal () methods.

10.5.1 Mutual exclusion

A semaphore initialized to 1 may be used to provide exclusive access to a shared resource such as a data structure.

MyClass DataStructure // shared data structure 

Semaphore lock = new SemaphoreImplementation(1);

To use a semaphore:

non-critical instructions 

lock.semWait();   // start of critical region

   access shared-data-structure

lock.semSignal(); // end of critical region

non-critical instructions

Figure 10.10 shows one possible time sequence for three processes, A, B and C, which access a shared resource. The resource is 

protected by a semaphore called lock, which is initialized to 1. Process A first executes lock.semWait () and enters its critical code which 

accesses the shared resource. While A is in its critical region first B then C attempt to enter their critical regions for the same resource by 

executing lock.semWait (). Figure 10.10 shows the states of the semaphore as these events occur. A then leaves its critical region by 

executing lock.semSignal (). B can then proceed into its critical code and leave it by lock.semSignal (), allowing C to execute its critical code.

Figure 10.10. Processes accessing shared data protected by a semaphore.



In general, A, B and C can execute concurrently. Their critical regions with respect to the resource they share have been serialized so that 

only one process accesses the resource at once.

Note that an assumption has been made about the scheduling of processes waiting on the same semaphore, namely that the first process 

to be queued on semWait () will be the first to be freed on semSignal (). This is an implementation decision. An alternative implementation 

is to free all waiting processes and make them execute semWait () again when next they are scheduled to run. In this case the scheduling 

algorithm of the operating system is used to select which process should proceed. Yet another alternative is to implement a scheduling 

policy for the semaphore queue based on some notion of process priority made available to the semaphore implementation. This is 

discussed further in Section 10.6.

10.5.2 Condition synchronization

We started the chapter with the requirement that two processes should be able to synchronize their activities. A semaphore can be used 

for this purpose. Consider two cooperating processes such that when A reaches a certain point it should not proceed until B has performed 

some task. This synchronization can be achieved by using a semaphore initialized to zero on which A should semWait () at the 

synchronization point and which B should semSignal (). Figure 10.11 shows the two possible situations that can arise when a process (in 

this case, A) must wait for another (in this case, B) to finish some task. Part (a) covers the case where A reaches the waiting point before

B signals it has finished the task. Part (b) shows what would happen if A arrives at its waiting point after B has signalled that the task is 

finished. Notice how in this scenario, one process (A) only executes semWait (), while the other executes semSignal (). This is different 

from Figure 10.10, where each process first executes a semWait () followed by a semSignal ().

Figure 10.11. Two-process synchronization: (a) semWait () before semSignal (). (b) semSignal () before 

semWait ().



This use of semaphores can be generalized to many signallers of process A's semaphore. Semaphores used in this way have been called 

private semaphores: only one process may semWait () on the semaphore, while any number may semSignal ().

10.5.3 Multiple instances of a resource

Previously, we have considered the situation in which exclusive access to a resource is required. There are cases where we may wish to 

allow more than one process to access a resource simultaneously, but want to limit the number of simultaneous accesses. For example, a 

computer system may have two similar printers and it may not matter which one is used by any particular process. Thus we can think of 

these printers as a single printing resource that can be accessed by up to two processes at a time. In such an example, an appropriate 

semaphore would be initialized to 2 to indicate the degree of accessibility of the resource. For mutual exclusion (i.e. single use), a 

semaphore is initialized to 1.

Every time a process Pi requests access to the resource, and the value of its associated semaphore is greater than zero, the value is 

decremented by 1. When the value of the semaphore reaches zero it is an indication that subsequent attempts to access the resource 

must be blocked, and the process is queued. When a process releases the resource, a check is made to see whether there are any 

queued processes. If not, the value of the semaphore is incremented by 1; otherwise, one of the queued processes is given access to the 

resource.

This use of semaphores is based on the idea that, if there are several processes which require access to a resource (more than the 

resource can accommodate simultaneously), the semWait () operation causes the processes to queue. Whenever a process releases the 



resource it executes an exit protocol consisting of semSignal ().

Hence access to a resource that must be limited to a fixed number of processes should be programmed with an entry protocol consisting 

of lock.semWait () and an exit protocol consisting of lock.semSignal () where lock is the name of a semaphore that is used to protect the 

resource. Each such resource will be protected by its own semaphore.

To protect the two-printer service mentioned above we could declare a semaphore named lock and initialize it to 2:

Semaphore lock = new SemaphoreImplementation(2); 

and then protect the service by writing:

lock.semWait(); 

   printerService ();

lock.semSignal ();

Allocation on demand of multiple instances of a resource can be managed by a semaphore initialized to the number of instances 

available. A process requests a resource instance by executing semWait () on the associated semaphore. When all the instances have 

been allocated, any further requesting processes will be blocked when they execute semWait (). When a process has finished using the 

resource instance allocated to it, it executes semSignal () on the associated semaphore. This method could be used for dynamic allocation 

of devices to processes, for slots in a shared data structure, etc. Figure 10.12 shows a snapshot of a semaphore class with a number of 

semaphores in use in the ways described in this section.

Figure 10.12. A semaphore class in use.
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10.6 Implementation of semaphore operations

Section 10.5 gave an overview of the different ways in which semaphores can be used and showed their representation as data structures. 

We now focus on how the operations on semaphores are implemented.

The possibility of concurrent invocation of semaphore operations by processes must be considered. This will certainly happen on a 

multiprocessor and will happen on a uniprocessor unless restrictions are imposed to avoid the possibility.

Approaches to scheduling the queue of processes waiting on a given semaphore are then considered.

There are system design issues concerning where the semaphore class should be located and how it interacts with process management. 

We first assume that IPC is incorporated together with process management in the operating system and examine the problem of 

concurrency.

10.6.1 Concurrency in the semaphore implementation

In Section 10.2 the use of an atomic test-and-set instruction on a boolean variable was shown to be sufficient to implement mutual 

exclusion; that is, to implement a lock on a shared resource. By this means, a data structure can be locked and a number of operations 

carried out on it without interference from any other process. If the boolean indicates that the shared resource is busy then the process 

must busy wait until the resource becomes free. Busy waiting may be acceptable on a multiprocessor for short periods of time.

The definition of semaphore operations in Section 10.4 assumes that a process's state can be changed from running to blocked by the 

operating system if the resource is busy when it executes semWait (). Also, the state of some process may be changed from blocked to 

runnable when the semaphore is signalled. In the former case it is added to the semaphore queue; in the latter it is removed.

The implementation of the operations semWait () and semSignal () on semaphores therefore may involve both changing the value of the 

semaphore and changing the semaphore queue and process state. These changes must be made within an atomic (indivisible) operation 

to avoid inconsistency in the system state; all must be carried out or none should be.

In any multiprocessor implementation and any unrestricted uniprocessor implementation, arbitrary numbers of semWait () and semSignal 

() operations on the same semaphore could occur at the same time.

The requirement for mutually exclusive access to shared data therefore applies to the semaphore implementation. 

The operations semWait () and semSignal () contain critical regions with respect to the data structure representing the 

semaphore. But semaphores were introduced to SOLVE the mutual exclusion and synchronization problems!

It appears that we could be in danger of creating an infinite regression of semWait () operations: the semWait () method which may 

eventually block the process contains a critical region and a process may therefore have to wait before executing it. How should this latter 

wait be implemented? Again, the options are:

Forbid interrupts on a uniprocessor over the semWait () or semSignal () operations.

Use a test-and-set or equivalent instruction (on a uniprocessor or multiprocessor) together with a boolean. One possibility is that 

a single boolean is associated with the module that manages all semaphores. Processes either change the boolean atomically 

(and proceed) or busy wait on it if another process is already executing in the module. This enforces single-threaded execution 

of the whole of semaphore management. Alternatively, a boolean can be associated with each semaphore as shown in Figure 

10.13. Processes then busy wait on the boolean if another process is executing semWait () or semSignal () on the same 

semaphore.

Figure 10.13. Process and implementation level of semaphores.



Execute an algorithm which implements a protocol to ensure exclusive access to a given semaphore while the semWait () and 

semSignal () operations are executed; see Sections 10.3.1 and A.4 in the appendix.

Having arranged that the semWait () and semSignal () operations are atomic it must be ensured that they will complete once they start, 

and hopefully without undue delay. Testing and changing the value of a semaphore will not cause delay. Changing the state of the process 

involves access to the process descriptor, possibly through a call to a separate module to BLOCK or UNBLOCK the process. It might be 

that the process descriptor is being accessed on behalf of another process, for example, to record the occurrence of a hardware event 

signal. If we can assume that BLOCK and UNBLOCK are guaranteed to complete in a bounded time (i.e. within some limited period of 

time) then semWait () and semSignal () can be given similar guarantees.

This is a difficult and crucial area of system design; for example, it must be proved that deadlock cannot occur dynamically as a result of 

cyclic calls between the semaphore and process classes (see Chapter 18 for further discussion). When we have built atomic and correct 

semWait () and semSignal () operations which are guaranteed to terminate we can build the rest of the system above them.

10.6.2 Scheduling the semWait queue, priority inversion and inheritance

Section 10.5.1 indicated that processes waiting on a given semaphore might be scheduled first come first served (FCFS). Two problems 

can occur:

A low-priority process which has acquired a semaphore holds up all processes waiting on it, however high their priorities, until it 

signals the semaphore. It is scheduled at low priority and may be preempted while holding the semaphore, thus increasing the 

delay experienced by the waiting processes. This is called priority inversion.

1.

Low-priority processes may be ahead of high-priority processes in the semaphore's queue.2.

A simple scheme which solves the second problem for uniprocessors is to free all waiting processes on semSignal (). It must be arranged 

that each will execute semWait () again. This can be achieved by storing the appropriate value of the program counter in the process 

descriptor when a process is blocked. The highest-priority process is then the first to be scheduled and the first to acquire the semaphore. 

The disadvantage is the system overhead in repeatedly blocking and unblocking processes; a given process may have to wait several 

times before acquiring the semaphore.

This approach does not solve the problem for multiprocessors. In this case a number of the freed processes may be scheduled to run on 

separate processors and it cannot be guaranteed that the highest-priority process will be the first to execute semWait () and acquire the 

semaphore.

FCFS scheduling might be appropriate for certain types of system:



if real-time response is not required;

if the processes that wait on a given semaphore typically execute at the same priority;

if semaphore queues are expected to be very short.

A system in which real-time response is required typically allows application processes to be allocated a priority. Process priority could be 

used to order the semaphore queue and this would solve the second problem. It would be necessary, of course, for the process priority to 

be made known to the semWait () routine.

The priority inversion problem can be solved by allowing a temporary increase in priority to a process while it is holding a semaphore. Its 

priority should become that of the highest-priority waiting process; it can be said that it runs at the priority of the 'head waiter'. This is called 

priority inheritance. A process runs at an effective priority which is the greater of its assigned priority and its inherited priority.

Process (or thread) scheduling for real-time systems and for multiprocessors is an active area of research. In a real-time system the time 

taken to respond to an event must be bounded. A process may be delayed while waiting for a resource which is protected by a 

semaphore. It is important to be able to bound this delay.

Some real-time systems may be analysed statically when the system is designed. In this case it is 

known which processes use which resources. For a given semaphore it is therefore known which 

processes may acquire it and, in particular, the highest-priority process that may ever acquire it. 

This is called the priority ceiling of the semaphore. The priority ceiling protocol (Goodenough 

and Sha, 1988) may be used to bound the delay of a process in such a system. The protocol limits 

the delay which results from waiting for lower-priority processes to a maximum of one critical 

section of one lower-priority process. The basic idea is that, even if a semaphore is free, it may only 

be acquired by a process if all the other semaphores that are currently held by processes have 

lower-priority ceilings than the priority of this process. A summary of this area may be found in 

Davari and Sha (1992).

10.6.3 Location of IPC implementation and process (thread) management

In this section we need to distinguish between processes that are created as user threads and managed only by the user-level runtime 

system and the user threads that the runtime system makes known to the operating system as kernel threads. Recall Figures 4.17, 4.28

and 4.31 and the related discussion. Figures 10.14 and 10.15 illustrate the location of IPC and process (thread) management in the two 

cases. Here, we are not concerned with the synchronization of kernel threads over access to operating system data structures (when user 

threads make system calls and execute operating system code). Rather, we are concerned with the synchronization of user threads over 

user-level data structures.

Figure 10.14. Semaphore and user-thread management.



Figure 10.15. Semaphore and kernel-thread management.

A user thread which requires to access a shared resource, or needs to synchronize with another user thread, can call the semSignal () and 

semWait () operations in the semaphore class in the runtime system. If the semaphore value indicates that the shared resource is free the 

user thread executing semWait () can continue; there is no call to block the thread.

If the resource is busy then the thread must be noted as waiting for the resource in IPC management, then blocked, and another thread 

must be scheduled. In the Figure 10.14 scenario the blocking and scheduling is done in the user-level runtime system and the operating 

system is not involved. The single application process that the operating system sees has remained runnable throughout the switches 

from user thread, to IPC, to process management, to user thread. In the Figure 10.15 scenario the operating system must be called to 

block the kernel thread corresponding to the blocked user thread.

When a user thread executes semSignal (), if there is no waiting thread the semaphore value is incremented and there is no call to 

process management. If processes are waiting on the semaphore, one is selected and removed from the semaphore queue and a call is 

made to unblock it. In the Figure 10.14 scenario this call is to user-level process management. In the Figure 10.15 scenario this call is to 

the operating system. In both cases the signalled thread's status is changed from blocked to runnable.



The above discussion has assumed that one kernel thread is created for each user thread. As we saw in Section 4.17, thread packages 

may use more complex arrangements than one-to-one, but the basic scenarios are as discussed above.
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10.7 Summary

We started with the requirement for synchronization between processes to achieve both condition synchronization and mutual exclusion. 

Chapter 4 has shown how a process can synchronize with hardware events and we took this as a starting point. Operations such as 

WAIT and SIGNAL on processes were considered and were shown to be inadequate as the basis for a general IPC scheme because of 

the statically determined interactions they embody.

We studied how to enforce exclusive access to shared data, that is, how to make the operations on the shared data atomic. We defined 

critical regions within processes and specified that a process must obey an entry protocol before executing critical code and an exit 

protocol on leaving. We considered hardware-supported implementations of these protocols. A composite instruction can be used both 

on a uniprocessor and a multiprocessor; forbidding interrupts for a short time while a flag is tested and set can only be used on a 

uniprocessor. Modern software exploits the availability of hardware-provided instructions which support concurrency control. The 

appendix A.4 shows algorithms for ensuring mutual exclusion between a known number of processes for their historic and educational 

interest. These algorithms are a good illustration that concurrent programming is difficult. Concurrency control lies at the heart of our 

software systems and its correctness is crucial to their operation.

We defined semaphores and found that their semWait () and semSignal () operations could be used with greater flexibility and generality 

than the process-based WAIT and SIGNAL operations discussed in Section 10.1. We saw semaphores used not only for synchronization 

between two processes but also for synchronization between a single waiting process and many signalling processes, to guard shared 

data and to manage resources. In these latter two cases many processes can wait on a semaphore. The semaphore acts as an indirect 

name between processes and allows more general patterns of synchronization than one-to-one (named process to named process). 

Semaphores can be used for synchronization both when processes share and do not share data.

Study questions

S10.1
How are the semaphore operations semWait () and semSignal () used by:

cooperating processes?i.

competing processes?ii.

a.

Interacting processes use the semWait () and semSignal () operations provided by either the language 

runtime system or the operating system. Which would it be in the following situations?

The processes have separate address spaces.i.

The processes share an address space.ii.

b.

What are the two main requirements of an inter-process synchronization mechanism that the event 

mechanism does not support?

c.

S10.2
What is a critical region?a.

What is meant by the term mutual exclusion?b.



In general, why is a simple boolean variable not able to ensure mutual exclusion?c.

How is mutual exclusion guaranteed on a uniprocessor without preemptive scheduling?d.

How does a hardware test-and-set instruction help in ensuring mutual exclusion?e.

How can interrupts be used to protect critical regions on a uniprocessor? Why should this mechanism 

only be used with small sections of critical code? Why will this technique not work for multiprocessors?

f.

S10.3 What is a semaphore? How are semaphores implemented?

S10.4
In Section 10.5.1, we made the statement that 'In general, A, B and C can execute concurrently. Their 

critical regions with respect to the resource they share have been serialized [our italics] so that only one 

process accesses the resource at once'. What is meant by the italicized part of this quote?

a.

If there are several processes waiting to access a resource that is protected by a semaphore and the 

resource becomes free, explain how the next process to gain access to it is chosen.

b.

What are the three different approaches to the scheduling of processes waiting on the same semaphore?c.

Figure 10.11 shows two processes synchronizing their actions. In (a) process A is forced to wait until 

process B signals that it has reached a specific point in its computation. In (b) neither process waits: 

explain why. Explain the value to which the semaphore must be initialized for this scheme to work.

d.

In what three ways can semaphores be used?e.

S10.5 What is the major difficulty in implementing semaphores, and what are the options for solving it?

Exercises

10.1 Support for synchronization between processes and hardware was described in Section 4.4. Concurrent processes

also need to synchronize with each other. Discuss the approach of extending the methods described for

process–hardware synchronization to encompass process–process synchronization. What kinds of interaction could,

and could not, be supported by the designs you devise?



10.2 Examine the processor handbooks of your local machines. Explore any composite instruction definitions with a view to 

using them to implement semaphore operations, in particular, semWait ().

You may find composite instructions in the instruction sets, such as:

TAS (test-and-set a variable)

INC (increment a value and set a condition code register)

CAS Register1, Register2, Memory (compare and swap: if the contents of Register1 and Memory are the same 

then Memory is overwritten by the contents of Register2. If they are not the same then Register1 is 

overwritten by Memory. A condition code is set to indicate which of these took place.)

Write the entry and exit protocols for a critical region using each of the above instructions.a.

Show how the instructions may be used to achieve condition synchronization so that a process may delay 

until a condition becomes true.

b.

You may assume that processes cooperate: that some other process which exits from the critical region or makes the 

desired condition true will take action to inform the delayed process.

10.3 The semSignal () and semWait () operations, provided as primitives by a kernel, are defined to be atomic. Discuss 

how this atomicity can be implemented. Consider the following cases:

hardware which provides a test-and-set or other composite instruction;a.

a uniprocessor, both when a composite instruction is available and when none is available;b.

a multiprocessor with no composite instruction (refer to Section A.4 in the appendix).c.

10.4 The semaphore operations can be described as follows.

public void semWait () { 

  if(value > 0)

     value = value – 1;

  else {

     add this process to the semaphore queue;

     block the process;

  }

}

public void semSignal () {

  if(queue.isEmptyQueue ())

     value = value + 1;

  else
     remove a process from the semaphore queue;

     enable the process to continue its execution;

  }

}

Show that, if the semWait () and semSignal () operations are not executed atomically, mutual exclusion can be violated.

10.5 In Section 10.6 we discussed the implementation of semaphore operations. Section 10.6.1 concluded: 'This is a difficult

and crucial area of system design … When we have built atomic and correct semWait () and semSignal () operations 

which are guaranteed to terminate we can build the rest of the system above them.' Discuss how the algorithms 

presented here could be used to implement atomic semWait () and semSignal () in the kernel of a multiprocessor 



based on hardware without support for concurrency control. Is the overhead involved in executing the algorithms 

acceptable for this purpose? Is the overhead acceptable for implementing user-level semaphore operations?
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11.1 Introduction

In the previous chapter we studied how to implement synchronization primitives for a single computer system with multiple processors. 

We now show how those primitives may be used to solve concurrent programming problems; we shall need to use several semaphores, 

for example. On analysing the requirements for solutions we shall investigate:

which data structures are shared and writeable and must therefore be accessed under mutual exclusion;

how to manage the waiting for access and the waking up of waiting processes;

how to manage different categories of processes;

how to allow several processes to read at the same time while achieving exclusive access for a writing process.

The chapter ends with a more substantial case study (with exercises) to give the reader the opportunity to use the techniques that have 

been introduced.

The essential problem of Part II is how to make a single operation on shared data atomic and how to make the primitives that achieve this 

atomicity available to programmers. In this chapter we are starting to move into the realm of complex problems, for example when 

different categories of process are introduced: readers, writers, producers and consumers of data. We defer a full discussion of fully 

general concurrent systems until Part III where we consider multiple shared data structures accessed by concurrent processes where the 

data may be transient or persistent.

As mentioned in Section 10.3 semaphores were designed initially for the THE system and we now examine its structure and see how 

semaphores were used in it. Note that all processes inhabit a common shared memory.
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11.2 An example of semaphores in system design: The THE system

In the THE system, Dijkstra et al. designed a hierarchy of virtual resources managed by a strictly layered system of processes. A brief 

outline of its structure is as follows; see also Figures 11.1 and 11.2. The lowest level, level 0, creates virtual processors. Above this,

processes exist and may communicate using a semaphore mechanism. The rest of the system may be written using these concurrency

constructs. All interrupts enter at this level, and all but the clock interrupt are handled at higher levels. At level 1, one process provides a

one-level virtual store. It synchronizes with drum interrupts and with requests for store from higher-level processes. At level 2, one process

provides virtual consoles for higher-level processes and synchronizes with their requests. It also synchronizes with console interrupts and

the memory manager process. At level 3, a separate process manages each physical device. Each process synchronizes with its device's

interrupts, with the memory and console manager processes, and with higher-level processes over I/O requests. At level 4, the highest,

reside five user processes. In all cases where data is passed, producer–consumer style message buffering must be used, controlled by

semaphores as described in Section 11.3.

Figure 11.1. Structure of THE.

Figure 11.2. Structure of THE, showing process placement.



In Chapter 2, modular system structure was introduced. A strictly layered system structure is a particular form of modularization. Each 

layer provides an abstract interface for processes at higher levels to invoke. The system can be proved correct from the 'bottom up' 

because processes at a given level cannot invoke operations at higher levels, so there is no problem of circular dependencies between 

modules.

The problems introduced by a strictly layered design are due to the sacrifice of flexibility to achieve layering. In the THE design, for 

example, the console manager can invoke memory management but not vice versa. The memory manager is not able to output a 

message to the operator's console. If memory had been placed above the console in the design this would have been possible, but in this 

case the console process would not have been able to request memory for I/O buffers (Dijkstra, 1968).

The Venus operating system (Liskov, 1972) was another strictly layered design which used semaphores as the basic synchronization 

mechanism (see Exercise 11.1). Although strict layering makes it easier to reason about the behaviour of a system it is difficult in practice 

to choose the ordering of the layers, and most systems do not follow this model.
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11.3 The producer–consumer, bounded buffer problem

11.3.1 Use of buffers

In Section 3.5 we saw the need for synchronization and data exchange between user-level processes requesting I/O and device 

handlers taking output or delivering input. A user-level process should be able to make a request for an arbitrary amount of data to be 

output or input. The device takes or delivers a fixed amount. A data buffer allows these device-dependent characteristics to be hidden from 

the user level. It also allows irregular bursts of user-level processing or device activity to be smoothed out. A process engaging in a burst 

of activity can continue until the buffer is full.

The synchronization conditions on accesses to the buffer are as follows. If a user-level process requests input and the buffer is empty it 

must block until input arrives. If a device handler process finds there is no more data in the buffer for output it must block until more data 

arrives. If a fixed amount of space is allocated for the buffer, the user-level process must be blocked when it has filled the buffer on output 

until the handler has freed some space. Similarly, the device must be stopped on input until the user-level process has freed some buffer 

space by reading from the buffer. Access to the buffer data structure to read or write will require more than a single memory access, so 

atomic read and write operations must be implemented (as critical regions for example).

Terminology: There is ambiguity in the way the term 'buffer' is used in the literature and in system design. In the main example in this

section we shall discuss a single 'buffer' with a number of 'slots'. An alternative use of the term buffer is to indicate a single block of data in 

a 'pool of buffers'. This latter usage is often found in I/O, communication and file buffer management schemes.

There are many uses for buffers between processes. A possible use of the cyclic buffer structure we shall discuss in this section is to hold 

requests for filenames to be spooled to a printer. A server process takes requests from the buffer and organizes the printing of the files. 

Any process which invokes this service (by a system call) causes a request to be entered into the buffer. We are implementing a queue of 

requests in an array of fixed size.

In general, buffers may be used between user-level processes according to the needs of the application: between system-level processes 

or between user-level and system-level processes.

Buffers might be implemented in a number of different ways. In this section we study a cyclic or bounded buffer implementation (a 

classic problem in the literature on concurrency).

11.3.2 Definition of a cyclic or bounded buffer

A cyclic (or bounded) buffer is a data structure with many of the characteristics of an array. That is, it is a fixed collection of N data items, 

indexed from 0 to N – 1 such that, when a cursor (an integer variable containing an index value) that currently refers to the last item is 

incremented, it moves back to index 0. This kind of structure is sometimes referred to as a circular array, as pictured in Figure 11.3, which 

shows:

the index values ranging from 0 to N – 1;

some slots are occupied by data items (indicated by data); others are empty, indicated by shading;

two cursors (variables holding a valid index value) named in and out, the purposes of which are, respectively, to indicate the 

first available empty slot and the next data item that can be taken from the buffer.

Figure 11.3. A circular array with two cursors.



If you were to implement a circular array in Java, you would begin by creating an array (here we have a buffer with five elements):

static final int BufferSize = 5;             // constant holding size of the buffer 

Object [ ] buffer = new Object [BufferSize]; // new Object array referenced

                                             // by 'buffer'

together with two cursors:

int in = 0; 

int out = 0;

The cursors can be incremented by writing, for example,

in = (in + 1) % BufferSize; 

The operator %, called the modulus operator (or mod for short), returns the remainder after integer division. Thus 8 % 5 is 3 and 10 % 5 is 0. 

Hence, if in is less than 4 given that an array in Java runs from 0 to (arraysize – 1), the expression (in + 1) % BufferSize simply results in 1

being added to in; but when in is 4, the expression yields 0, which achieves the necessary behaviour for a cursor using a Java array.

We now study the management of a cyclic buffer and, in particular, the concurrency control that is necessary for its correct use.

A producer process continually adds new items to the buffer, each new item being placed at the position referenced by the cursor in. 

However if the buffer is full the producer process must be blocked when it attempts to add an item. The blocked process should be allowed 

to complete its operation when space becomes available. After adding an item the producer increments cursor in. A consumer process 



continually removes items from the buffer. After removing an item the consumer increments the cursor out. If the buffer is empty a process 

which attempts to take something out of it is blocked. When a fresh item becomes available, the consumer should be allowed to resume 

operation.

The algorithms given below focus on the problems associated with access to such a buffer by concurrent processes. We consider two 

general problems:

A single producer process sends information, in blocks of a specified fixed size, to a single consumer process.1.

A single circular buffer is used between a number of producer processes and a number of consumer processes.2.

11.3.3 Algorithm for a single producer and a single consumer

Figure 11.4 gives a high-level view of a solution to the single producer, single consumer problem. The problem would be programmed in 

practice in a modular style by defining a buffer class. This general scheme is shown in Figure 11.5. The processes must synchronize over 

the state of the buffer. The producer must delay if the buffer is full and the consumer must delay if the buffer is empty.

Figure 11.4. Producer–consumer outline.

Figure 11.5. Modular representation of the producer–consumer problem.



Figure 11.6 illustrates a solution in outline, and below we give the complete code using two semaphores, items and spaces; items is 

initialized to 0 indicating there are no items in the buffer initially, spaces is initialized to BufferSize, the number of slots in the buffer. Each 

time the producer inserts an item it executes items.semSignal(), thus incrementing the item resource count managed by the items

semaphore. Each time the consumer removes an item it executes spaces.semSignal(), incrementing the space resource count managed 

by the spaces semaphore. When the buffer is empty, items has value zero and the consumer will block on items.semWait(). When the 

buffer is full, spaces has value zero and the producer will block on spaces.semWait(). Note that for a single producer and single consumer 

the buffer is not accessed under mutual exclusion since they are accessing different parts of the buffer (using different cursors). The 

synchronization of the processes ensures that they block before attempting to access the same slot in the buffer.

import Semaphore.*; 

public class Buffer {

  static final int BufferSize = 5;            // constant holding size of the buffer

  Object [] buffer = new Object [BufferSize]; // new Object array referenced

                                              // by 'buffer'

  int in;

  int out;

  Semaphore items, spaces;

  public Buffer() {

    in = 0;

    out = 0;

    items = new SemaphoreImplementation(0);

    spaces = new SemaphoreImplementation (BufferSize);

  }

  public void insert (Object item) {

    spaces.semWait();

      buffer[in] = item;

      in = (in+1) % BufferSize;

    items.semSignal();

  }

  public Object remove () {

    Object item;

    items.semWait();

       item = buffer[out];

       out = (out+1) % BufferSize;

    spaces.semSignal();

    return item;

  }

}

Figure 11.6. Single producer, single consumer.



11.3.4 Algorithm for more than one producer or consumer

Figure 11.7 illustrates a solution in outline, and below we give the complete code for a solution for many producers and a single consumer. 

The many producers must access the buffer under mutual exclusion as they are using the same cursor to insert items. For many 

producers and many consumers, the consumer code must be similarly extended to enforce exclusive access to the buffer between 

consumers. One producer and one consumer could access the buffer concurrently, provided producers and consumers use different guard 

semaphores, such as pguard and cguard.

import Semaphore.*; 

public class Buffer {

static final int BufferSize = 5;            // constant holding size of the buffer

Object [] buffer = new Object [BufferSize]; // new Object array referenced

                                            // by 'buffer'

int in;

int out;

Semaphore items, spaces, guard;

  public Buffer() {

    in = 0;

    out = 0;

    items = new SemaphoreImplementation(0);

    spaces = new SemaphoreImplementation (BufferSize);

    guard = new SemaphoreImplementation (1);

  }

  public void insert (Object item) {

    spaces.semWait();

    guard.semWait();

      buffer[in] = item;

      in = (in+1) % BufferSize;

    guard.semSignal();

    items.semSignal();

  }

  public Object remove () {

    Object item;

    items.semWait();

       item = buffer[out];

       out = (out+1) % BufferSize;

    spaces.semSignal();

    return item;

  }

}



Figure 11.7. Multiple producers, single consumer.
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11.4 Safety and liveness properties

We have begun to move from the definition of basic mechanisms for synchronization and mutual exclusion to the design of concurrent 

algorithms. This book does not cover the theory of concurrency but an outline of the factors relevant to proofs of correctness of 

concurrent programs is in order. The following discussion is taken from Andrews (1991) where the topic is studied in depth.

A property of a program is an attribute that is true of every possible history of that program. There are two fundamental properties: 

safety and liveness. A safety property asserts that nothing bad happens during execution; a liveness property asserts that something 

good eventually happens. In sequential programs the key safety property is that the final state is correct; the key liveness property is that 

the program terminates.

For concurrent programs we have argued intuitively the need for mutual exclusion; this is a safety property. Another is absence of 

deadlock, which occurs when processes are waiting for conditions that can never be satisfied.

We study the problem of deadlock in systems and concurrent programs in Chapter 18. In Section 18.5, the dining philosophers problem, 

a classic concurrent programming problem posed by Dijkstra, is introduced. It illustrates the danger of deadlock occurring in concurrent 

systems, especially when n processes each execute an identical program. Exercise 18.5 suggests approaches to solving the problem.

An example of a liveness property of a concurrent program is that a process that is waiting (for a shared resource or to synchronize with 

another process) will eventually be signalled and be able to proceed.

The scheduling policy of the operating system has an effect on liveness properties in that it selects which runnable process should next 

run on a processor. Liveness properties depend on fairness which is concerned with guaranteeing that a process will get the chance to 

proceed regardless of how other processes behave. Starvation is when a runnable process is overlooked indefinitely by the scheduler: 

although it is able to proceed in theory, in practice it is never chosen.

It is beyond the scope of this book to prove the safety and liveness properties of the concurrent programs we develop. It should be noted 

that concurrent programs are notoriously difficult for humans to reason about; further study on proofs of correctness is highly desirable for 

anyone who is to work in this area professionally.
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11.5 The multiple readers, single writer problem

A style of competition between processes which is more complex than simple mutual exclusion arises when many processes may be 

allowed to read a resource simultaneously (since they make no change to it) but writers must have exclusive access. Any solution to this 

problem must make an assumption about relative priorities. Here we shall assume that as soon as a writer wishes to write, all current 

readers are allowed to finish reading but any subsequent request to read is held up. This priority scheme is appropriate when it is 

important that readers read information which is as up to date as possible.

Semaphores are used to manage the situation where processes need to block:

Semaphore R = new SemaphoreImplementation (0) is used to count outstanding requests to read when a writer is writing and 

readers are blocked on R;

Semaphore W = new SemaphoreImplementation (0) is used to count outstanding requests to write when readers are reading 

and writers are blocked on W;

Semaphore WGUARD = new SemaphoreImplementation (1) is used to enforce exclusive access by writers;

Semaphore CGUARD = new SemaphoreImplementation (1) is used to enforce exclusive access to the various counts which 

keep track of how many readers and writers are active:

ar is the count of active readers

rr is the count of active readers which are also reading (i.e. reading readers)

aw is the count of active writers

ww is the count of active writers who have proceeded to the writing phase (i.e. writing writers), but only one of 

them can actually be writing at once.

Figures 11.8 and 11.9 show the basic structure of the code which must be executed by reader processes and writer processes. To acquire 

or release the resource, shared counts must be accessed under mutual exclusion. The fact that writers must write under mutual exclusion 

is indicated. Figure 11.11 shows this code structured in a more realistic modular fashion.

Figure 11.8. Structure of code executed by readers and writers.



Figure 11.9. Code executed by readers and writers in more detail.

Figure 11.10 gives the algorithm in detail. Priority is given to waiting writers over waiting readers, since active readers only go on to 

become reading readers if there are no active writers. The various counts are accessed under mutual exclusion, protected by the 

semaphore CGUARD. Processes wait to read or write on semaphores R or W respectively. The complexity of the code derives from the 

management of these two semaphores. R and W are given 'wake-up-waiting' signals in the acquire procedures if there are no active 

writers (for R) or no running readers (for W). Releasing the resource may involve sending synchronizing signals to waiting readers and 

writers; the last reading reader wakes up any waiting writers, the last active writer wakes up waiting readers.

Figure 11.10. Algorithm for readers and writers.



Figure 11.11 shows a modular structure for the solution. The resource is managed using a class with methods to acquire and release it for 

reading and writing. All delay involved in waiting on semaphores is hidden within this class.

Figure 11.11. Modular structure for readers and writers.



We now give the code for a Java class to implement the above approach to the readers and writers problem:

import Semaphore.*; 

public class RWProtocol {

Semaphore    R,         // outstanding read requests

             W,         // outstanding write requests

             WGUARD,    // exclusive write access

             CGUARD;    // exclusive access to counts

int ar = 0,             // active readers

    rr = 0,             // reading readers

    aw = 0,             // active writers

    ww = 0;             // writing writers

public RWProtocol() {

  R = new SemaphoreImplementation (0);

  W = new SemaphoreImplementation (0);

  WGUARD = new SemaphoreImplementation (1);

  CGUARD = new SemaphoreImplementation (1);

}

public void readAcquire() {

  CGUARD.semWait ();

  ar = ar + 1;

  // acquire read access if no active writers otherwise

  // will have to wait on R

  if (aw == 0) {

      rr = rr + 1;

      R.semSignal ();

  }

  CGUARD.semSignal();

  R.semWait();

}

public void readRelease() {

  CGUARD.semWait ();

  rr = rr – 1;

  ar = ar – 1;

  // if no longer ANY reading readers, make all active writers

  // writing writers



  if (rr == 0) {

      while (ww < aw) {

        ww = ww + 1;

        W.semSignal();

      }

  }

  CGUARD.semSignal();

}

public void writeAcquire() {

  CGUARD.semWait ();

  aw = aw + 1;

  // become a writing writer if no reading readers otherwise

  // will have to wait on W

  if (rr == 0) {

      ww = ww + 1;

      W.semSignal ();

  }

  CGUARD.semSignal();

  W.semWait();

  // even though now a writing writer, still need to ensure

  // we write under mutual exclusion

  WGUARD.semWait();

}

public void writeRelease() {

  WGUARD.semSignal();

  CGUARD.semWait ();

  ww = ww – 1;

  aw = aw – 1;

  // if no longer ANY writing writers, make all active readers

  // reading readers

  if (aw == 0) {

      while (rr < ar) {

        rr = rr + 1;

        R.semSignal();

      }

  }

  CGUARD.semSignal();

 }

}
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11.6 Limitations of semaphores

In Section 10.1 we started by considering a synchronization facility such as WAIT() and SIGNAL() on events. We have now seen that 

semaphores provide more generality and flexibility than a one-to-one (named-process to named-process) scheme. semWait () can be 

used by many processes to wait for one or more signalling processes. semSignal () can be used by many processes to signal one 

waiting process. We have shown examples of how semaphores can be used to solve a range of realistic problems of systems.

Suppose the semaphore type was available in a language as the only basis for IPC. We should consider some of the concepts which are 

lacking in semaphore operations that might be important, at least for some types of system. Typical problems with the use of 

semaphores are:

Their use is not enforced, but is by convention only. It is easy to make mistakes in semaphore programming. It is not easy to 

remember which semaphore is associated with which data structure, process or resource. It is easy to forget to use semWait 

() and accidentally access unprotected shared data, or to forget to use semSignal () and leave a data structure locked 

indefinitely.

The operations do not allow a test for busy without a commitment to blocking. An alternative to waiting on the semaphore 

might be preferable. We shall see that creating a new process so that one process may continue processing while the other 

waits is a standard solution which avoids this restriction.

It is not possible to specify a set of semaphores as an argument list to a semWait () operation. If this were possible, 

alternative orderings of actions could be programmed according to the current state of arrival of signals. Such a facility would 

be difficult to implement and would introduce overhead. Again, process creation might solve the problem.

The time for which a process is blocked on a semaphore is not limited, in the definition we have used here. A process blocks 

indefinitely until released by a signal.

There is no means by which one process can control another using semaphores without the cooperation of the controlled 

process.

If semaphores are the only IPC mechanism available and it is necessary to pass information between processes, in addition

to simple synchronization processes must share (part of) their address space in order to access shared writeable data

directly. A scheme such as producer–consumer buffering is required. The semaphore value could be used to convey minimal

information but is not available to processes.

In general, if concurrency is to be made available to application programmers, it is desirable to enforce modularity and correct use of 

concurrency constructs wherever possible. This is the subject of the next chapter.
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11.7 Eventcounts and sequencers

The data types eventcount and sequencer have been proposed (Reed and Kanodia, 1979) as an alternative to semaphores. The 

operations on them are designed for any combination of concurrent execution. The notion of counts of event occurrences, increasing 

indefinitely from the time the system is started, is used. The fact that the 32nd and 33rd occurrences of a given event are distinguished 

feels better, intuitively, for a multiprocessor implementation than, for example, semaphore values 1 (event 32 occurs), 0 (handled), 1 

(event 33 occurs), 0 (handled), or 1 (event 32 occurs), 2 (event 33 occurs), 1 (event 32 handled), 0 (event 33 handled). Also, the values of 

these counts are made available to processes through the operations defined on them, and these values can be used by processes, for 

example, to order their actions.

Eventcounts can be represented by positive integers, initialized to zero, and have the following methods defined on them:

advance() increment by one and return the new value;

read () return the current value;

await (int value) delay the executing process until the value of the event is greater than or equal to value.

In using the values returned by advance () and read (), processes must take into account concurrent use by other processes.

Sequencers are used for ordering the actions of concurrent processes. Sequencers may be represented by positive integers, initialized to 

zero. There is a single operation available on them:

ticket () return the current value of and increment by one.

Examples are now given to show the distinct uses of eventcounts and sequencers.

11.7.1 Use of eventcounts for synchronization

A process specifies which occurrence of an event it is waiting for, rather than just the next event of that type. We therefore introduce a 

local count i within the process for this purpose (Figure 11.12).

Figure 11.12. Synchronization using an eventcount.



11.7.2 Use of a sequencer to enforce mutual exclusion

Figure 11.13 shows a process competing with others to use a resource protected by the eventcount GUARD. The approach is analogous 

with taking a ticket when you enter a bakery or shoe shop. Customers are served in the order of the number on their ticket. The process 

first acquires a ticket, which in this example is stored in its local variable myturn. It then attempts to enter its critical region by executing 

GUARD.await (myturn). The critical region of this process is executed after those of processes with lower values returned by turns.ticket (), 

that is, the order of execution of critical regions is determined by the values returned by turns.ticket ().

Figure 11.13. Mutual exclusion using a sequencer and an eventcount.

11.7.3 Producer–consumer, bounded buffer with eventcounts and sequencers

For a single producer and a single consumer all that is needed is synchronization. The producer must delay when the buffer is full; the 

consumer must delay when it is empty. They may access the buffer at the same time since the solution to the synchronization problem 

ensures that the consumer does not read the ith item until the producer has written it and the producer does not write into the ith slot until 

the consumer has read the i-Nth item from it.



Figure 11.14 outlines the solution. The eventcounts in and out count the items put in by the producer and taken out by the consumer.

Figure 11.14 Single producer, single consumer with eventcounts.

public class Buffer {

   static final int BufferSize = 5;            // constant holding size of the buffer

   Object [] buffer = new Object [BufferSize]; // new Object array referenced

                                               // by 'buffer'

   EventCount in, out;

   int i;

   public Buffer() {

     i = 0;

     in = new EventCount ();

     out = new Eventcount ();

   }

   public void insert (Object item) {

     for (int i=1; true ; i++) {

         out.await (i – BufferSize);

         buffer[i % BufferSize] = item;

         in.advance ();

     }

   }

   public Object remove () {

      Object item;

      for (int i=1; true ; i++) {

          in.await (i);

          item = buffer[i % BufferSize];

          out.advance ();

      }

   }

}

When there are multiple producers and consumers, a sequencer tp must be used to order the accesses to the buffer of producers and one 

tc for that of consumers. Figure 11.15 outlines the solution.

Figure 11.15 Multiple producers and consumers with eventcounts and sequencers.

public class Buffer2 {

   static final int BufferSize = 5;            // constant holding size of the buffer

   Object [] buffer = new Object [BufferSize]; // new Object array referenced

                                               // by 'buffer'

   EventCount in, out;

   Sequencer tp, tc;

   int myturn;

   public Buffer2() {

     myturn = 0;

     in = new EventCount ();



     out = new Eventcount ();

     tp = new Sequencer ();

     tc = new Sequencer ();

   }

   public void insert (Object item) {

     for (int i=1; true ; i++) {

         myturn = tp.ticket ();

         in.await(myturn);

         out.await (myturn – BufferSize + 1);

         buffer[myturn % BufferSize] = item;

         in.advance ();

     }

   }

   public Object remove () {

      Object item;

      for(int i=1; true ; i++) {

         myturn = tc.ticket ();

         out.await(myturn);

         in.await (myturn+1);

         item = buffer[myturn % BufferSize];

         out.advance ();

      }

   }

}

11.7.4 Implementation of eventcounts and sequencers

The advance () and ticket () operations must be implemented to allow any number of concurrent executions. The simple way to do this is to 

use a suitable instruction along the lines of a 'test-and-set' (TAS) described in Section 10.2, that is, one which offers a read–modify–write

bus cycle. An example is a compare-and-swap (CAS) instruction. For example:

CAS Register1, Register2, Memory

If the contents of Register1 and Memory are the same then Memory is over-written by the contents of Register2. If they are not the same 

then Register1 is overwritten by Memory. A condition code is set to indicate which of these took place.

This is used to implement a secure increment, assuming Memory contains the value to be incremented, as follows:

Read Memory into Register1.1.

Write Register1+1 into Register2.2.

Execute CAS.3.

If no other processes have written to Memory it will be as it was when it was read into Register1 and will have been incremented by the 

CAS.

If Memory has been written since it was read into Register1 the swap will not take place and the new value of Memory will be in Register1,

ready for a retry.



11.7.5 Discussion of eventcounts and sequencers

Eventcounts and sequencers were designed with multiprocessor implementations in mind. Reed and Kanodia (1979) give further 

examples and alternative implementations. The fact that the operations can be executed concurrently is an important property. The fact 

that the values are strictly increasing helps both in implementing and using them correctly. Another advantage of the operations is that a 

process could be given the right to read an eventcount but not to write it.

However, a process must be trusted to provide the correct value as the argument for the await () operation. It is in the interest of 

cooperating processes to do so, but competing processes might attempt to jump the queue by using a lower value than that returned by a 

ticket () operation or an error could result in a wrong value being passed. Another problem is the potential delay or deadlock if a process 

acquires a ticket and then delays or terminates before executing the associated await ().

Eventcounts and sequencers are, like semaphores, low-level concurrency control operations and are subject to similar difficulties to those 

listed for semaphores in Section 11.6. There is a great deal of experience in the use of semaphores in systems but, as yet, little 

experience with eventcounts and sequencers.
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11.8 POSIX threads

IEEE set up the POSIX committee to specify a standard UNIX core. Applications that run above a POSIX compliant UNIX should run 

above any other. POSIX has been adopted widely and here we focus on the threads package and its support for synchronization. More 

detail may be found in the IEEE POSIX 1003.4a (pthread) standard. An example of a specific implementation is DECthreads, Digital's 

Multi-threading Run-Time Library for OSF/1.

POSIX threads execute within (and share) a single address space. Mutexes and condition 

variables, see below, are provided for synchronization.

11.8.1 Objects, handles and attributes

An object, such as a thread, mutex, condition variable, queue or attributes object, is referred to via a handle which is returned when the 

object is created.

Threads, mutexes and condition variables have associated attributes objects. A thread's 

attributes object contains the thread's scheduling inheritance, scheduling policy, scheduling 

priority, stack size and stack guard size. A thread may be created with default values for these 

attributes or the creator may specify them. It is also possible to change some attributes after 

thread execution starts. The inherit scheduling attribute specifies whether a newly created 

thread inherits the scheduling attributes (scheduling priority and policy) of the creating thread 

(the default) or uses the scheduling attributes stored in the attributes object. The scheduling 

policy attribute describes how the thread is scheduled for execution relative to the other threads 

in the program. The scheduling priority attribute specifies the execution priority of a thread. 

The stacksize attribute is the minimum size (in bytes) of the memory required for a thread's 

stack. The guardsize attribute is the minimum size (in bytes) of the guard area for the stack of a 

thread (a reserved area designed to help prevent or detect overflow of the thread's stack).

11.8.2 Synchronization

Threads may synchronize by executing wait and signal operations on synchronization objects. A thread may also wait for a specific 

thread to complete its execution using pthread_join. When the specified thread terminates, the joining thread is unblocked and continues 

its execution.

Two synchronization objects are provided: the mutex (a binary semaphore) and the condition variable. Condition variables are used to 

build higher-level functionality similar to that of monitors, which we shall study in Chapter 12. The operations provided allow the 

programmer to avoid mandatory blocking on a locked mutex and to delimit the blocked time on a condition variable.

Mutexes

A mutex (mutual exclusion) is an object that multiple threads use to ensure the integrity of a shared resource that they access, most 

commonly shared data, by allowing only one thread to access it at a time. A mutex has two states: locked and unlocked. For each piece 



of shared data, all threads accessing that data must use the same mutex: each thread locks the mutex before it accesses the shared 

data and unlocks the mutex when it has finished accessing that data. If the mutex is locked by another thread, the thread requesting the 

lock either waits for the mutex to be unlocked or returns, depending on the lock routine called.

Each mutex must be created by pthread_mutex_init. On creation an attributes object, including the mutex type (fast, recursive or 

non-recursive) may be specified.

A fast mutex (the default) is locked exactly once by a thread. If a thread attempts to lock the mutex again without first 

unlocking it, the thread will wait for itself to release the lock and will deadlock.

A recursive mutex can be locked more than once by a given thread without causing a deadlock. A recursive mutex is useful 

if a thread needs exclusive access to a piece of data, and it needs to call another routine (or itself) that needs exclusive 

access to the data.

A non-recursive mutex is locked exactly once by a thread, like a fast mutex. If a thread tries to lock the mutex again without 

first unlocking it, the thread receives an error. Also, if a thread other than the owner tries to unlock a non-recursive mutex, an 

error is returned. Non-recursive mutexes are useful during development and debugging and can be replaced by fast mutexes 

when the code is put into production use.

The mutex synchronization operations are:

pthread_mutex_lock

If the mutex is locked, the thread waits for the mutex to become available.

pthread_mutex_trylock

This returns immediately with a boolean value indicating whether or not it was able to lock the mutex. Based on this return value, the 

calling thread can take appropriate action.

pthread_mutex_unlock

When a thread has finished accessing a piece of shared data, it unlocks the associated mutex by calling pthread_mutex_unlock. If 

another thread is waiting on the mutex, it is placed in the ready state. If more than one thread is waiting on the mutex, the scheduling 

policy and the scheduling priority determine which thread is readied, and the next running thread that requests it locks the mutex. The 

mutex is not automatically granted to the first waiter. If the unlocking thread attempts to relock the mutex before the first waiter gets a 

chance to run, the unlocking thread will succeed in relocking the mutex, and the first waiter may be forced to reblock.

Condition variables

A condition variable allows a thread to block its own execution until some shared data reaches a particular state. A condition variable is a 

synchronization object used in conjunction with a mutex. A mutex controls access to shared data; a condition variable allows threads to 

wait for that data to enter a defined state. The state is defined by a boolean expression called a predicate.

Cooperating threads check the predicate and wait on the condition variable. For example, in the producer–consumer program (Section 

11.3) consumers could wait on a condition variable called work-to-do. When a producer thread produces an item, it signals the 

work-to-do condition variable.

A condition variable is used for tasks with coarse granularity; a thread can wait on a condition variable for long periods. A mutex is used 

for synchronization with fine granularity and should be held only for short periods of time.

It is essential to associate a mutex with a condition variable. A thread locks the mutex for some shared data and then checks whether or 

not the shared data is in the proper state. If it is not in the proper state, the thread waits on the appropriate condition variable. Waiting on 

the condition variable automatically unlocks the mutex. It is essential that the mutex be unlocked because another thread needs to 

acquire the mutex in order to put the data in the state required by the waiting thread. When the thread that acquires the mutex puts the 

data in the appropriate state, it wakes a waiting thread by signalling the condition variable. One thread comes out of its wait state with the 

mutex locked (the thread relocks the mutex before returning from the wait); other threads waiting on the condition variable remain 

blocked.



It is important to evaluate the predicate in a while loop. This ensures that the program will check the predicate after it returns from the 

condition wait and guards against the predicate becoming false again as the waiting thread completes the wait.

pthread_cond_wait

Causes a thread to wait for a condition variable to be signalled or broadcast.

pthread_cond_timedwait

Causes a thread to wait for a specified period of time for a condition variable to be signalled or broadcast.

pthread_cond_signal

Wakes one thread that is waiting on a condition variable.

pthread_cond_broadcast.

Wakes all threads that are waiting on a condition variable.

11.8.3 pthread operations summary

Table 11.1 gives each pthread operation with a short description of its functionality. The 

discussion above has set the context and should allow most of the descriptions to be 

understood. A global lock is provided by the OSF/1 package because some library routines 

that are called from the pthreads package are not designed to be executed concurrently.



Table 11.1. A summary of pthread operations.

Operation Function

pthread_attr_create Creates a thread attributes object

pthread_attr_delete Deletes a thread attributes object

pthread_attr_getguardsize Obtains the guardsize attribute of the specified thread attributes object

pthread_attr_getinheritsched Obtains the inherit scheduling attribute of the specified thread attributes object

pthread_attr_getprio Obtains the scheduling priority attribute of the specified thread attributes object

pthread_attr_getsched Obtains the scheduling policy attribute of the specified thread attributes object

pthread_attr_getstacksize Obtains the stacksize attribute of the specified thread attributes object

pthread_attr_setguardsize Changes the guardsize attribute of thread creation

pthread_attr_setinheritsched Changes the inherit scheduling attribute of the specified thread attributes object

pthread_attr_setprio Changes the scheduling priority attribute of thread creation

pthread_attr_setsched Changes the scheduling policy attribute of thread creation

pthread_attr_setstacksize Changes the stacksize attribute of thread creation

pthread_cancel Allows a thread to request that it or another thread terminate execution

pthread_cleanup_pop Removes the cleanup handler at the top of the cleanup stack and optionally executes it

pthread_cleanup_push Establishes a cleanup handler to be executed when the thread exits or is cancelled

pthread_condattr_create Creates a condition variable attributes object that can be used to specify the attributes of condition 

variables when they are created

pthread_condattr_delete Deletes a condition variable attributes object

pthread_cond_broadcast Wakes all threads that are waiting on a condition variable

pthread_cond_destroy Deletes a condition variable

pthread_cond_init Creates a condition variable

pthread_cond_signal Wakes one thread that is waiting on a condition variable

pthread_cond_signal_int Wakes one thread that is waiting on a condition variable. This routine can only be called from interrupt 

level

pthread_cond_timedwait Causes a thread to wait for a condition variable to be signalled or broadcast for a specified period of 

time

pthread_cond_wait Causes a thread to wait for a condition variable to be signalled or broadcast

pthread_create Creates a thread object and thread

pthread_delay Causes a thread to wait for a specified period of time before continuing execution

pthread_detach Marks a thread object for deletion

pthread_equal Compares one thread identifier to another thread identifier

pthread_exit Terminates the calling thread

pthread_get_expiration Obtains a value representing a desired expiration time



Operation Function

pthread_getprio Obtains the current priority of a thread

pthread_getscheduler Obtains the current scheduling policy of a thread

pthread_getspecific Obtains the per-thread context associated with the specified key

pthread_join Causes the calling thread to wait for the termination of a specified thread

pthread_keycreate Generates a unique per-thread context key value

pthread_lock_global Locks a global mutex if the global mutex is unlocked. If the global mutex is locked, causes the thread 

to wait for the global mutex to become available

pthread_mutexattr_create Creates a mutex attributes object that is used to specify the attributes of mutexes when they are 

created

pthread_mutexattr_delete Deletes a mutex attributes object

pthread_mutexattr_getkind Obtains the mutex type attribute used when a mutex is created

pthread_mutexattr_setkind Specifies the mutex type attribute that is used when a mutex is created

pthread_mutex_destroy Deletes a mutex

pthread_mutex_init Creates a mutex

pthread_mutex_lock Locks an unlocked mutex. If the mutex is locked, causes the thread to wait for the mutex to become 

available

pthread_mutex_trylock Locks a mutex. If the mutex is already locked, the calling thread does not wait for the mutex to 

become available

pthread_mutex_unlock Unlocks a mutex

pthread_once Calls an initialization routine that can be executed by only one thread, a single time

pthread_self Obtains the identifier of the current thread

pthread_setasynccancel Enables or disables the current thread's asynchronous cancellability

pthread_setcancel Enables or disables the current thread's general cancellability

pthread_setprio Changes the current priority of a thread

pthread_setscheduler Changes the current scheduling policy and priority of a thread

pthread_setspecific Sets the per-thread context associated with the specified key for the current thread

pthread_testcancel Requests delivery of a pending cancel to the current thread

pthread_unlock_global Unlocks a global mutex

pthread_yield Notifies the scheduler that the current thread is willing to release its processor to other threads of the 

same or higher priority
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11.9 Summary

We have used the basic mechanisms of Chapter 10 to solve a number of problems that arise in systems design. First, we assumed that 

the data to be passed between processes comprises fixed-size records and we designed a cyclic buffer with space for a number of 

records. We discussed how to achieve mutually exclusive access to the buffer and how the two categories of process, those that put a 

record in and those that take a record out, synchronize their activities. Another problem tackled was how several readers could be 

allowed to read shared data while writers could be given exclusive access. Eventcounts and sequencers were introduced as an 

alternative to semaphores and the problems were reprogrammed using them.

We noted that a study of concurrent algorithms as such should include formal proofs of correctness. We outlined how such proofs might 

be approached and recommended formal study for anyone to be involved professionally with concurrent program design. More general 

algorithms involving persistent and distributed data are considered in Part III.

We explored the problems that can arise if semaphores are the only mechanism provided for concurrent programming. Programmers 

can easily make mistakes when using them and even the most rudimentary support for ensuring correct use is absent. We explore how a 

compiler might assist in the next chapter.

Finally an overview of the pthreads package from the POSIX standard was given. Extra operations have been provided compared with 

those for semaphores so that mandatory and indefinite blocking can be avoided. There is also flexibility in how a signal is implemented: 

the programmer may specify whether all blocked threads should be unblocked or just one. We did not explore the support for thread 

priority in detail. We saw limited assistance for preventing deadlock in the provision of recursive and non-recursive mutexes as well as 

fast mutexes. Correct concurrent programs, involving condition variables and mutexes, are difficult to achieve. In the next chapter we 

shall see how the functionality achievable by using condition variables and their associated mutex has been provided in various 

programming languages.
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11.10 Case study with exercises: Management of a disk block cache

11.10.1 Disk read and write and the requirement for buffers and a cache

We shall assume a conventional file I/O model rather than files mapped into virtual memory. A read or write request from a client of a filing 

system typically specifies a byte sequence. Let us assume that such a request has been converted by the filing system into a request to 

read or write a subsequence of bytes from or to some disk block. In practice a requested byte sequence may span more than one disk 

block, but we can generalize to this from the single block case.

It is necessary to have buffers to hold blocks of information on their way to or from the disk. The client program requires a subsequence of 

a block, DMA transfers between disk and memory deliver a block. We therefore assume a pool of disk buffers is available, each one with a 

data area large enough to hold a disk block and a header to hold information about the block. A block could be delivered directly into user 

space, but for several reasons it is more usual for the filing system to maintain a pool of buffers.

Once a disk block is read into a buffer for some client program, a number of read requests might be satisfied from that buffer. Having read 

from a buffer, the client may wish to change the data and write it back. The filing system may detect that the disk block needed for the 

write is still available in a buffer. Also, files can be shared, so it is possible that read and write requests from any client program might be 

satisfied from a buffer already in memory. We are moving towards using our pool of buffers as a cache.

Case study exercise

11.10.1 What are the advantages and disadvantages of having a system-maintained cache of disk blocks in volatile main 

memory?

In more detail, on a client read or write:

The cache is searched to see if the required block is already there. If so the request is carried out via the cache. Note that 

when a cache block has been modified by a write the data on disk is no longer up to date, and the cached block must at some 

point be written to disk.

On a read:

If the required block is not in the cache a free buffer must be acquired and filled by a disk read.

On a write:

If the required block is not already in the cache a free buffer must be acquired. If that block of the file already exists it must be 

read from disk so that the subsequence of bytes may be written into it, to change some existing bytes or to append to the end 

of a previously written area. If the block does not already exist it is sufficient to acquire a new buffer.



Having outlined the client requirements we now focus on the buffer management that is needed to satisfy them.

11.10.2 Allocated and free buffers

As a first attempt at buffer management let us propose:

An available list which contains buffers that do not hold any valid data. When a new buffer is needed it is taken from the head 

of this list. When a buffer is no longer required it is put back at the head of the list. This requires only a singly linked list data 

structure. We extend this definition after the discussion below.

An in-use data structure which provides access to buffers which hold valid data. Whenever a client issues read or write this 

structure must be searched to determine whether the disk block is in the cache, so access must be efficient. A simple solution 

is to use an open hash table: we hash on the disk block number to find the bucket that would contain the buffer. Hash table 

slots use little memory compared with a disk buffer, so it is fair to assume that there are about as many buckets as buffers. On 

this assumption it is efficient to organize each bucket as a simple list.

In the previous section we argued that the buffer should be used as a cache for data on disk, and we do not release buffers as soon as 

each transfer is complete. In this case, we must decide on a policy for recovering blocks that are in-use. An obvious case is when a file is 

closed by a client and no other client has the file open. Any of its buffers in-use can be added to the available list. Any that contain new 

data must first be written out to disk.

We also have to solve the problem of what to do if there are no free buffers when we need one. A reasonable strategy is to attempt to find 

buffers that have fallen out of use. We can implement an approximate 'least recently used (LRU)' policy over all the blocks in the buffer 

pool. It is proposed that the available list should be defined as follows:

Any free block and any buffer that is allocated but not locked should not be on the available list. The hash lists of the in-use

data structure contain buffers that are both locked and unlocked. They also contain blocks that have fallen out of use in the 

cache, for example when a file is closed, but have not yet been reassigned. When a buffer is locked for use by some process it 

is detached from the available list. When a buffer is no longer required by any process and is unlocked it may be replaced in the 

available list, at the head if it does not hold valid disk data, at the tail if it does. When a new buffer is needed it is taken from the 

head of the available list; it will either be free, or it should be LRU.

To implement such a policy requires that we organize the available list as a doubly linked list. We must be able to determine the status of 

the data held in the buffer from information kept in the header. It may be that the data in a buffer in the available list has not been written 

out to disk. This must be done before the buffer can be reused, and the write to disk is initiated. In the meantime we continue the scan 

from the head of the list in search of a buffer that can be used immediately.

11.10.3 The structure of a buffer

A disk buffer comprises a header and a data field which is sufficiently large to hold a disk block. A disk block is identified uniquely by the 

identifier of a filing system and its number within that filing system. This information is held in the buffer header. We shall use a simple 

integer to identify each block in the examples.

Figure 11.16 shows the contents of a buffer header. The disk block held in the buffer is identified; two pointers link the buffer in the available

list, and a further one indicates the next buffer in the same bucket of the in-use data structure.

Figure 11.16. A disk buffer header.



The status field indicates the current status of the buffer. Several of these conditions may hold at a given time:

The buffer is locked (so that a change to the header and/or data can be made). The lock operation must be atomic.

The buffer contains valid data. It could be that the buffer is allocated to a certain block but the block has yet to be read into it.

The data area must be written to disk before the buffer is reused. This is sometimes referred to as a 'dirty' condition; the data 

has been changed since being read from disk.

The buffer's data area is in the process of being written to disk or read from disk by a DMA transfer.

A process is waiting to use this buffer.

In general, processes should be able to WAIT for a specific buffer or for any, as appropriate, and must be SIGNALled when a buffer is 

unlocked.

Case study exercise

11.10.2 Outline the procedure for reading data into a newly acquired buffer. Assume that a process has found a free buffer. 

What information should it record in the header, and in what order, to achieve a read without interference? Can you 

ensure that two processes do not acquire a buffer for the same block at the same time?

11.10.4 Outline of the algorithms for buffer access

Figure 11.17 shows the overall data structure. Once a buffer has been allocated for a specific disk block it is added to the list of blocks 

in-use in the appropriate bucket. If the data it holds becomes invalid (for example, if it is part of a file that is deleted) then it is moved to the 

head of the available list. Otherwise it will be removed from the in-use data structure only if the buffer is acquired for reallocation under the 

LRU strategy.

Figure 11.17. An example of hash queues of buffers allocated to blocks.



The following situations might arise when a buffer is to be accessed:

The block is in-use and is not locked. The process may lock the buffer, detach it from the available list and proceed to use it.1.

The block is in-use but is locked. The process must WAIT for this specific buffer.2.

The block is not in-use and the available list is not empty. Provided that the buffer does not contain dirty data, the process may 

use the buffer at the head of the available list. The buffer is removed from the available list and reassigned within the in-use data 

structure.

If the data is dirty, the buffer must be written out to disk. This is initiated and the process continues its search of the available 

list.

3.

The block is not in-use and no free buffer is found in the available list. The process must WAIT for any buffer.4.

Event handling: WAIT and SIGNAL

Alternative policies for managing processes waiting for one specific or any buffer are as follows:

When a buffer is unlocked:

If there are processes waiting for this specific buffer, select one of them and SIGNAL to it. It awakens and proceeds 

to use the buffer.

i.

or

If there are processes waiting for this specific buffer, awaken all of them. The scheduling algorithm of the system 

determines which process acquires the buffer.

ii.

If there are no processes waiting for this buffer but there are processes waiting for any buffer, awaken one (i) or all (ii) of them 

as above.

a.

When a buffer is unlocked: awaken all processes that are waiting for this specific buffer or for any buffer.b.



The choice of policy depends on the mechanisms available for waiting for events and signalling events. It may be that it is only possible to 

specify 'waiting for a buffer'. In this case, every process waiting for a specific buffer which is not the one that has become unlocked will 

also be awakened.

Concurrent execution

We assume a multi-threaded file server or procedural execution of file service codes by user processes. It is therefore possible that the 

algorithms for accessing the buffer pool are executed concurrently. We have implied a degree of concurrency control in the above 

discussion. The following issues are relevant to concurrent execution of the algorithms:

A lock in the buffer header is provided so that only one process at once may use a given buffer. That is, exclusive access is 

assumed, rather than a multiple reader, single writer policy. The lock operation must be atomic.

The in-use data structure and the available list are shared, writeable data structures. It is necessary to ensure that they are 

manipulated under mutual exclusion.

An interrupt might occur at any time to indicate that a DMA transfer between a buffer and disk is complete. The interrupt may 

free a waiting process at a time when the cache is being accessed by some other process.

The exercises below invite further consideration of these issues.

Case study exercises

11.10.3 Sketch the event handling mechanisms that are needed to support policies (a) and (b) above.

11.10.4 Evaluate the policies, taking into account the possibilities of unfair scheduling and starvation.

11.10.5 We have discussed the implementation of the in-use and available shared writeable data structures. Define 

interfaces for these data objects. Specify the concurrency control requirements on execution of the interface 

operations.

11.10.6 A file may be open either for reading only or for reading and writing. In the former case access at file level is shared, 

and it seems reasonable to allow simultaneous read access to a buffer which holds a block of that file. Outline how 

this facility could be incorporated into the buffer design and the access algorithms.

11.10.7
Outline a design for a buffer management module. What is the interface of this module? Assuming that 

multi-threaded execution is supported, where can concurrent execution be allowed and where must single 

threading be enforced? What happens when a process must WAIT within the module?

a.

Consider any race conditions that may arise because of concurrent execution of the buffer management 

module. Assume that any process may run out of time or be preempted from its processor at any time.

b.

Consider the possibility that, at any time, an interrupt may occur which may free a waiting process. 

Suppose that the system's scheduling policy is such that it is possible that this process may run 

immediately, preempting some process that was accessing the cache. Describe in detail when and how 

this could cause problems.

c.



When a process runs again after waiting for a specific buffer does it need to retest the buffer identifier 

before proceeding to use it? Can errors occur if a process proceeds, when it is awakened, on the 

assumption that it now has a specific buffer?

d.

11.10.8
In the design outlined above buffers are written to disk only when a file is closed, unless the buffer 

reaches the head of the available list and is detected as dirty when required for reassignment. What are 

the advantages and disadvantages of this policy?

a.

Sketch an alternative design in which a separate scribe process is responsible for writing all cache buffers 

to disk. When any file is closed a message is sent to the scribe, which in addition scans the available list 

from head to tail looking for dirty buffers. What should be done when some other process issues a read

or write request for a buffer while the scribe is writing it to disk? What steps might be taken to reduce 

contention of this kind?

b.

Study questions

S11.1
Section 11.1 identifies two problems involving concurrent access to shared data. What are they?a.

What different categories of process are identified?b.

S11.2
What is a buffer? What are buffers used for?a.

What are the synchronization conditions on access to a cyclic buffer?b.

In the cyclic buffer shown in Figure 11.3, what do the cursors in and out point to? To what values would you 

initialize these cursors?

c.

In the Java code given for solving the single producer, single consumer problem, what functions do the 

semaphores spaces and items each perform? To what values are these semaphores initialized?

d.

For a single consumer and single producer the buffer is not accessed under mutual exclusion since they 

are accessing different parts of the buffer (i.e. using different pointers). Why, then, are semaphores used?

e.

In the Java code given for solving the single producer, single consumer problem, can the producer and the 

consumer access the buffer concurrently? Is there a problem?

f.

In the situation involving many producers and one consumer, what problem arises and how is it solved?g.

S11.3
Distinguish between the safety and liveness properties of a program.a.

In a sequential program name the key safety property and the key liveness property.b.

In concurrent programs, are mutual exclusion and the absence of deadlock safety or liveness properties?c.

Distinguish between fairness and starvation. What sort of property is starvation?d.



Complete the summary table given below by allocating the following to one or more of the entries in the 

table.

terminationi.

correct final stateii.

mutual exclusioniii.

absence of starvationiv.

absence of deadlock.v.

e.

Type of program Safety properties Liveness properties

Sequential programs (including an individual process)   

Concurrent programs (i.e. many processes executing together)   

S11.4 In the multiple readers, single writer problem, what priority scheme is conventionally chosen? How many writers can 

there be in this problem? How many readers can be reading concurrently?

S11.5
How can the misuse of semaphores lead to problems with safety and liveness?a.

Give an example of a situation where one process might wish to control another. Why is it not possible with 

semaphores to enable this to happen without the cooperation of the controlled process?

b.

The semaphore operations do not allow a test for busy without a commitment to blocking. Why is this a 

problem? What is the standard solution to this problem? Why is it a problem if the time for which a process 

is blocked on a semaphore is unlimited?

c.

Exercises

11.1 What are the problems of designing a system with a strict hierarchical structure? What are the advantages?

The Venus operating system (Liskov, 1972) had the following levels (bottom-up): 0: hardware; 1: instruction interpreter; 

2: CPU scheduling; 3: I/O channels; 4: virtual memory; 5: device drivers and schedulers; 6: user processes. Does this 

choice of layers solve the problems encountered in the THE system (Section 11.2)?



11.2 A buffer object manager is to be implemented. Buffers are to be managed as a pool of fixed-sized objects. A producer 

process first acquires an empty buffer, then performs a number of write operations into it until it is full. A consumer 

process first acquires a full buffer then performs a number of reads from it until it is empty.

Each object has a header part, for holding information on the use of the buffer (such as a count and a pointer), for links 

so that the buffers can be chained, etc., and a body part for holding data. A chain of empty buffer objects and a chain of 

full buffer objects are to be maintained. The object manager detects when a buffer becomes full.

Interface operations are proposed as follows:

buffer = pool.acquire-empty-buffer () // executed by producers

buffer = pool.acquire-full-buffer () // executed by consumers

return-code = buffer.write-buffer (bytes) // executed by producers

bytes = buffer.read-buffer (byte-count) // executed by consumers

 buffer.free-buffer () // executed by consumers

Discuss the following:

use of the proposed interface operations and possible modifications;a.

the information that might usefully be kept in each buffer header;b.

how a full buffer, on writing, and an empty buffer, on reading, should be detected and indicated to the invoker;c.

how exclusive access to a buffer object might be ensured;d.

how the various chains might be updated correctly, secure from concurrent access;e.

how the scheme compares with a cyclic buffer (see Section 11.3) for concurrent accesses by producers and 

consumers.

f.

11.3
In the Java code for a producer given in Section 11.3.4, is there any significance in executing 

spaces.semWait() before guard.semWait()?

a.

Write down, in the manner of the code in Section 11.3.4, the consumer's algorithm when there are several 

consumers (assume that there are several producers).

b.

11.4 The classic sleeping barber problem is given in Exercise 12.10. Consider solving this problem using semaphores. 

Assume that you are given the following shared variables:

static final int chairs = 20; 

int waiting = 0;        // shows customers waiting – can be checked to see

                        // whether a new customer should wait or go away

Semaphore guard = new SemaphoreImplementation(1);

                  // guards critical region to update variable 'waiting'

Semaphore customers = new SemaphoreImplementation(0);

                  // provides count of customers and barber must

                  // wait if value is 0

Semaphore barber = new SemaphoreImplementation(1);



                 // provides mutual exclusion to barber (value is 1

                 // when barber is available to cut, and 0 when

                 // barber is cutting)

and the following customer process:

guard.semWait();           // wait to access variable 'waiting' 

if (waiting < chairs) {

    waiting = waiting + 1;

    customers.semSignal(); // increase the count of customers

    guard.semSignal();     // give up exclusive lock on 'waiting'

    barber.semWait();      // wait for the barber to be free – queue as though

}                          // waiting on chairs

else
    guard.semSignal();      // customer effectively goes away because

                            // no chairs available

Provide the code that executes the barber process.

11.5 The classic dining philosophers problem is described in Section 18.5 and Exercise 18.5. Attempt the suggested 

solutions using semaphores.
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Chapter 12. IPC with shared memory

12.1 Critical regions in programming languages 

12.2 Monitors 

12.3 Synchronization at the granularity of operations 

12.4 Summary 

Throughout this chapter processes are assumed to be executing in a shared address space and therefore are able to share data.

When discussing the limitations of semaphores (Section 11.6), the difficulties in programming low-level synchronization primitives 

correctly was highlighted. In this chapter we investigate different ways in which support can be given to the programmer. In particular, we 

describe how the low-level operations, described in Chapter 11, can be made available through a high-level language. That is, the 

compiler of a high-level language can enforce restrictions on the access to shared data and the correct entering and exiting of critical 

regions. Clearly, for the compiler to be able to offer this kind of assistance, the programmer needs to specify:

which data is shared by processes in the program;

which semaphore (for example) is associated with which shared data;

where the critical regions for accessing the shared data are located in the program.

The compiler could then check and enforce that:

shared data is only accessed from within a critical region;

critical regions are entered and left correctly by processes.

In the following sections we shall see different programming constructs which help the programmer organize the shared data and the 

processes acting on it, thus ensuring correct use of the low-level primitive operations.
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12.1 Critical regions in programming languages

We discussed earlier the general concept of the critical region, as that section of code where shared data is accessed. Here we show a 

possible implementation of the concept. A critical region construct requires syntax such as the following to be added to the high-level 

language:

declaring a data type to be shared, such as:

shared DataType someSharedData 

a region declaration such as:

region (someSharedData) { ....} 

For each shared data declaration the compiler could create a semaphore, for example crSem. Then, at the start of any critical region 

construct for that data it could insert a crSem.semWait() operation and a crSem.semSignal() at the end. If the Java syntax included this 

facility, it would look like the code in Figure 12.1.

Figure 12.1 Critical region construct.

shared DataType someSharedData

// Here the compiler creates a semaphore, for example, crSem, and initializes it to 1.

// It is associated with someSharedData

    .

    .

    .

region (someSharedData) {

    // compiler inserts crSem.semWait();

        .

        .

    // compiler inserts crSem.semSignal();

}

Guarding access to shared data is one requirement of the constructs provided for systems programming. This is an example of 

arbitration between processes competing for a resource. Assistance is also needed for cooperation between processes. An example is 

synchronizing over the state of a shared resource (condition synchronization). A producer process cannot put data into a shared buffer if 

it is full and needs a mechanism to allow it to wait() until there is space in the buffer and to allow consumer processes access to the 

buffer, in order to make space there, while it is waiting.

During the evolution of concurrent programming languages (see Brinch Hansen, 1973b), a proposal for this kind of synchronizing 

primitive, in addition to the critical region constructs described above, was for conditional critical regions with an associated 

(condition).await() primitive. In the form proposed this was difficult to implement since (condition) could be any conditional expression, for 

example, (count > 0).await(). It is difficult to establish whether the many conditions involving programming language variables awaited by 

processes have become true.

Figure 12.2 shows a solution for the readers and writers problem using conditional critical regions. An active writer is one that is either 

waiting to access or accessing the shared data. A reading reader is a reader that is currently accessing the shared data.

Figure 12.2. Algorithm for readers and writers using conditional critical regions. (The problem 

is described in Section 11.5.)



In the code executed by writers, once a writer has completed its execution of the first critical region it cannot gain access to the shared 

resource if a previous writer has access, that is, mutual exclusion to the shared resource is required. One might think that the region in 

which this is done should begin with something similar to:

region (sharedResource) { ... } 

where sharedResource had been declared as:

shared DataTypeSharedResource sharedResource 

Instead, the actual writing to sharedResource is within a region associated with a boolean variable named writelock. The reason is that it 

would be usual to insist that, having declared some data as shared, the data should only be accessed within a critical region. In this 

example, this would be inappropriate for the readers, as several readers are allowed to read at the same time. Therefore, in order to 

ensure mutual exclusion for writers, an additional shared boolean, writelock, has been introduced to prevent more than one writer at a 

time accessing sharedResource. In this sense, the boolean is providing a lock on the shared data although there is no need for any 

manipulation of it.

Notice that the solution in Figure 12.2 is much simpler (for the programmer) than the semaphore solution given in Figure 11.10, although 

similar in structure. The programmer has only to be concerned with when to await(). When to unblock (wake up) a process is the problem 

of the implementation.

An implementation of such a primitive would have the overhead of re-evaluation of the conditions on which processes were waiting each 

time any process left a critical region in which the shared data might have been changed. This is an unacceptable overhead, in general, 

in a part of the system which should be efficient. An alternative synchronizing primitive was provided in the context of monitors, as 

shown in the next section, but this brought back the requirement on the programmer to manage explicit signalling.
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12.2 Monitors

The critical region construct, in itself, has no way of enforcing modularity and a program might be structured as shown in Figure 12.3. That 

is, critical region statements performing operations on the shared data, may be dispersed through-out the program. Therefore, if one 

wanted to check how a particular piece of shared data is used, the programmer would have to go through the entire program to find all the 

critical regions related to that shared data.

Figure 12.3. Possible program structure with conditional critical regions.

A solution to this problem is to use a monitor, where a monitor has the structure of an abstract data object. In a monitor the shared data 

and the operations manipulating it are encapsulated. As in object-oriented programming, this ensures that there is no uncontrolled access 

to the data, since it is only accessible through a well-defined interface. In addition, the monitor implementation must ensure that several 



processes wishing to access the same shared data at the same time are prevented from doing so; that is, the monitor operations are 

executed under mutual exclusion. This is illustrated in Figure 12.4. Compared with Figure 12.3, the critical region statements in the 

program have been replaced by calls to monitor procedures. The monitor implementation must ensure that only one process is active in 

the monitor at any time. As Figure 12.4 shows, there is therefore a potential delay for mutual exclusion and a commitment to wait, if 

necessary, on calling a monitor procedure. To implement this mutual exclusion the compiler associates a synchronization mechanism (for 

example, a semaphore) with each monitor. Any call to a monitor procedure would involve a wait() on this synchronization mechanism and 

return (exit the procedure) would include a signal() on it.

Figure 12.4. Enforced program structure with monitors.

Mutual exclusion is not sufficient for programming concurrent systems. In most of the problems 

solved in Chapter 11, for example, condition synchronization is also needed (the resource may 

be busy when you want to acquire it; the buffer may be full when you want to put something 

into it). This is provided in most monitor-based systems by a new type of variable called a 

condition variable. The programmer declares the condition variables that are needed by the 

application and the monitor implementation manages them as synchronization queues (see 

below). The operations on condition variables are again, wait() and signal(). A process may 

delay itself by executing conditionVariableName.wait(). It is freed subsequently by some other 

process executing conditionVariableName.signal(). Figure 12.5 shows a typical structure of a 

simple monitor procedure. On entry, the process tests whether it can proceed to operate on the 

shared data or whether it must wait for some condition on the data to be satisfied (for example, 

for the buffer to have a space for inserting an item).

Figure 12.5. Condition synchronization under exclusion in a monitor procedure.



The definition of condition variables used in this chapter follows those given in the original monitor proposals (Hoare, 1974; Brinch 

Hansen, 1973a, b).

Whereas a semaphore is implemented as an integer and a queue, a condition variable is implemented only as a queue. That is, a 

condition variable does not have a value, it has 'no state', and the wait() operation always queues the execut-ing process. The definition of 

signal() is that if there are any waiting processes then one of them is freed. If there are no waiting processes there is no effect.

It is possible to use this simple definition because the signal() and wait() operations on condition variables take place within monitors under 

mutual exclusion. It is therefore possible for a process, under the protection of guaranteed exclusive access, to test the value of some 

variable, say count, referring to a count of items in a buffer, and to decide to block itself on the basis of the value of the variable, as shown in 

Figure 12.5. Note that there are two types of variables here, a normal variable which has a value (e.g. count), and a condition variable which 

is a queue. No other process can be accessing the count variable at the same time nor signalling the condition variable between the test 

and the wait(). That is, the fact that only one process is active in a monitor at any time ensures that there are no race conditions.

A process must not be allowed to block while holding a monitor lock. If a process must wait for condition synchronization the 

implementation must free the monitor for use by other processes and queue the process on the condition variable, as shown in Figure 

12.6 where process A finds it has to wait for condition cond-v1 to become true, and is therefore added to the back of the queue for the 

condition variable cond-v1. Whatever synchronization mechanism was used by the compiler to implement exclusive access to the monitor 

must now be signalled so that another process is allowed to enter the monitor.

Figure 12.6. Condition variable queues.

In some monitor implementations semaphores are used as the synchron-ization mechanism to enforce mutual exclusion and the compiler 

inserts the appropriate semaphore operations in the code. We could thus view the monitor as a 'higher' level construction, which is easier 

to use for the programmer.

Figure 12.7 is another snapshot of the same monitor showing process A now on the queue for condition variable cond-v1 and process B 

signalling that variable. The discussion continues in Section 12.2.2 after Java monitors have been introduced.

Figure 12.7. Signalling a condition variable.



12.2.1 Java: Synchronization overview

In this section we discuss how monitors are provided in Java. Given that Java is an object-oriented language, some of the monitor issues 

discussed, i.e. the encapsulation of shared data, and the controlled access to data through monitor operations, come quite naturally to any 

class defined in Java. What is required though, is to ensure that the operations (or methods) of an object execute under mutual exclusion, 

as well as some way of implementing condition synchronization. We will see that the monitor mechanisms are available through the use of 

the following Java primitives: synchronized, wait(), and notify() or notifyAll(). By using the example of a simple Buffer object which has a 

get and a put method, we will show how these primitives can be used to construct monitors which enforce mutual exclusion and enable 

condition synchronization.

The Java thread life-cycle

First of all, recall that in Java, separate threads are created as objects of type Thread (or more usually, as objects instantiated from some 

user-defined class that extends Thread). Once the new Thread object has been created, its execution is started by invoking the start

method on it. Execution begins in the new thread in its run method which is usually the one overridden when defining a subclass of Thread. 

These threads are sometimes termed lightweight processes because, unlike ordinary processes provided by the operating system, they 

operate within the same address space.

Thread termination is less straightforward. The traditional Java application programming interfaces (APIs) do not provide a mechanism for 

terminating threads explicitly. Instead, applications are expected to use threads in a cooperative manner in which each thread performs 

periodic tests of whether it should exit. The Thread class provides two methods which are conventionally used for this purpose. Invoking 

t1.interrupt() on a thread t1 requests that thread to exit. The target thread does not usually notice the request automatically, but is expected 

to make regular calls to Thread.isInterrupted() and to exit should that method ever return true. As we see below, if the target thread is 

blocked when it is interrupted then, for most operations, it is made runnable again and the operation fails with an instance of 

InterruptedException.

Why does Java not allow threads to be terminated explicitly? One reason is that supporting uncontrolled termination would make it 

impossible to write most data structures in a way that is safe for concurrent use: a thread may be terminated part-way through an update 

to the data structure. The cooperative model allows an interrupted thread to continue until it has reached a safe point to exit.



Methods for thread management

We will now introduce the methods provided on the Thread class through which the application can manage the threads that are running:

start, which when applied to a thread launches it and calls the thread's run method;

isAlive, which when applied to a thread returns true if the thread has been started and has not yet terminated;

join, which suspends the calling thread until the target thread finishes. For example, t1.join () suspends the thread in which this 

call is made until t1 completes. This method throws an exception of type InterruptedException if the calling thread is interrupted 

while waiting;

setPriority, which takes an argument and when applied to a thread resets its priority to the value of the argument;

getPriority, which when applied to a thread returns its priority;

sleep, which causes the calling thread to sleep for a number of milliseconds specified by the argument. This is a static method, 

affecting only the caller, and so it is invoked directly on the Thread class rather than on a particular object;

yield, which causes the caller to give up control to other threads of the same or higher priority. Again, it is a static method defined 

on the Thread class.

Methods for thread synchronization

As we have seen above, the methods defined on the Thread class provide facil-ities for managing threads, but do not provide the facilities 

that are required for synchronization between them, that is, for supporting critical regions and condition synchronization. In Java these 

come from the synchronized keyword that indicates where mutual exclusion locks must be acquired and from three methods wait, notify

and notifyAll that are defined on the class Object and are therefore inherited by every other class.

We will study these facilities in detail in subsequent sections, but in outline each Java object has a mutual exclusion lock and a single 

condition variable associated with it. If a method is marked synchronized then the caller must acquire the object's mutual exclusion lock 

for the duration of the method's execution. The three methods allow simple kinds of condition synchronization to be implemented:

wait, which when invoked on an object inside a synchronized method of that object, causes the calling thread to release the lock 

it holds on the object to become blocked and to be added to a set of threads waiting on the object. This method throws an 

exception of type InterruptedException if the calling thread is interrupted while waiting;

notify, which is a method of the class Object that, when invoked on an object inside a synchronized method of that object, causes 

an indeterminate thread (if there is one) currently waiting on the object to be made runnable again;

notifyAll, which is similar to notify except that it causes all the threads (if any) waiting on the object to be made runnable again.

Thread states

The operating system is responsible for looking after (i.e. creating, scheduling and eventually destroying) threads. In a manner similar to 

the diagram of the state transitions of processes in Figure 4.3, a diagram of the life-cycle of threads can be constructed, which shows the 

result of executing the various methods listed above that change the state of a thread. In Figure 12.8, the ovals represent the states that a 

thread can be in and the arrowed lines show the 'event' that causes a thread to move from one state to another. (Notice that the term 

'READY' also means 'RUNNABLE'.)



Figure 12.8. The life-cycle of a thread.

Note in Figure 12.8 that the yield and interrupt methods (coming from the RUNNINGstate) both cause one thread to stop running and 

another thread to move from the READY state to the RUNNING state. Figure 12.8 is based on Figure 15.1 of Dietel and Dietel (2002).

12.2.2 Java: Critical regions

If we want an object to have certain methods that operate under mutual exclusion, then we need to declare the methods that access the 

shared data as synchronized. Once a thread has gained access to a synchronized method, it will finish the method before any other 

thread is allowed access to that or any other synchronized method for that object. Any thread that must wait is placed in a wait set

associated with that object. Remember that the wait set does not necessarily operate a first-in-first-out queuing discipline: a class must use 

other mechanisms (typically using condition synchronization in combination with synchronized methods) if it wishes to ensure a particular 

ordering.

An object with one or more synchronized methods therefore acts as a monitor on all or part of its data, provided that this data is accessed 

via the synchronized methods alone. Methods in the interface of an object that are not synchronized may be invoked by another process at 

the same time as a synchronized method is being executed. Therefore, for an object to act as a monitor, the data accessed by its 

synchronized methods must not be accessed by its non-synchronized methods. Looking at it another way, an object can be thought of as 

locked as far as synchronized methods are concerned but not locked with regard to methods that are non-synchronized.

If we refer back to Figure 12.4, then by declaring the methods (shown as operations on data in the figure) as synchronized, we have 



defined Java syntax for 'wait to enter', with possible delay for mutual exclusion.

12.2.3 Java: Condition synchronization

We discussed conditional critical regions and condition variables earlier; these are both associated with achieving condition 

synchronization, where a thread cannot continue until some condition, set by another thread, becomes true. At the time that the thread 

finds that it cannot continue, it will be executing a synchronized method belonging to a particular object and will call the method wait on this 

object (inherited from the class Object) from within this method. This causes the thread to be placed in the wait set associated with the 

object, and is therefore equivalent to the object having a single condition variable. Note that this 'conditional' wait set is not the same as the 

one on which threads are placed if they cannot get access to the synchronized method itself. In terms of Figure 12.4, this conditional wait 

set is associated with the second 'blob' for potential delay in the monitor.

When a thread is waiting on a condition, it will only be able to proceed when the condition changes. Clearly for this to happen, the data 

upon which the condition is based must change in some way. For example, if the condition involves an empty buffer, then the condition 

should change when an element is added to the buffer. Since the thread that has been caused to wait, because the buffer is empty, 

cannot do anything to change the buffer's state (it is not running), one or more other threads must be responsible for the change. Such 

threads must be made to execute either a notify or a notifyAll (both inherited from the class Object) when they change the buffer's state.

The method notify causes an arbitrarily chosen thread to be removed from the wait set whereas notifyAll causes all threads in the wait set 

to be removed. Once removed, the selected thread or threads are not immediately scheduled to run, but must again 'compete' for the 

synchronized method it was executing when it was forced to wait on the condition. However, once it has regained exclusive access to this 

synchronized method, it will resume at the point immediately after its call to wait. By incorporating this wait call in a suitable while loop that 

tests whether the condition is true, the thread can be made to retest the condition before it is allowed to enter into the critical region.

When should a program use notify and when should it use notifyAll? The former can be used when exactly one thread out of those waiting 

on a condition should become runnable and it does not matter which is chosen; for example in the resource allocation class in Section 

12.2.6. The latter should be used either when multiple threads should become runnable or when the choice of exactly which thread is 

resumed is important: it will cause all of the threads waiting on the condition to be resumed and each can then acquire access to the 

synchronized method and, by executing the next iteration of the enclosing while loop, test whether to continue or whether to invoke wait

again. The buffer class we will define in Section 12.2.4 must use notifyAll.

Note that the wait method throws an exception of type InterruptedException if the calling thread is interrupted while waiting. The call to wait

must therefore either be used within a try statement that handles the exception or, more usually, it must propagate the exception to a point 

at which it may be handled. The exception is usually used to indicate that the calling thread should exit. Both wait and notify must be used 

within synchronized methods, since they can only be invoked in relation to locked objects, otherwise an IllegalMonitorStateException will be 

thrown.

The wait method comes in two varieties. One has no parameters and simply causes a thread to wait indefinitely. Another has a single 

parameter, an integer representing the maximum length of time (in milliseconds) for which a thread is prepared to be blocked. This is 

known as a timeout. The caller cannot automatically distinguish between a wait operation that times-out and one that completes normally; 

if such a distinction is important then it must be made explicitly based on the values of the fields of the object in question.

12.2.4 Java monitors: An example

We now look at the concrete example of a simple Buffer class, which has put and get methods that store and retrieve integer values. A first 

attempt, enforcing only mutual exclusions between these operations, might be as in Figure 12.9.

Figure 12.9 A simple Buffer class.

public class BufferTrial {



private int value = 0;   /*0 means empty */

public synchronized int get () { int result = value; value = 0; return result;}

public synchronized void put (int a) { if (value == 0) { value = a; } }

The use of the synchronized keyword means that a thread calling either of these methods must acquire a mutual exclusion lock on that 

particular buffer. Remember that each object in Java has an associated mutual exclusion object; there is nothing to prevent separate 

threads calling the get method at once so long as they are doing so on different buffers. Notice how the value field has been declared 

private so that it cannot be accessed externally, circumventing the use of the locks.

We have had to reserve a special value, '0' in this case, to indicate when the buffer is empty. A get operation resets the value to 0 

indicating that it has consumed the contents of the buffer whereas a put operation avoids writing to the buffer if it finds it non-zero: 

otherwise that original value would be lost. This solution has several disadvantages. It means that the buffer itself cannot store the value 0 

because there is no way to distinguish between that value held as the contents and that value representing an empty state. More seriously 

it means that a thread must continue polling the buffer if it wants to receive the next value from it. A more natural interface would be for the 

get method to block until an integer value is ready to read while the put method will block until the previous integer has been removed.

To do this we will need to use condition variables in addition to mutual exclusion locks. Figure 12.10 shows the new design which 

highlights a number of general techniques to use when implementing concurrent data structures of this kind in Java. The first is that we've 

separated the information that the data structure holds from the information that is needed to coordinate access to it, in this case by having 

a separate full field that is set to true whenever the buffer contains a value. This means that we do not have to reserve any values and so 

the buffer can contain arbitrary integers.

Figure 12.10 Buffer class with condition synchronization.

public class Buffer {

   private int value = 0;

   private boolean full = false;

   public synchronized void put (int a)

                                    throws InterruptedException {

      while (full)

         wait();

      value = a;

      full = true;

      notifyAll();

   }

   public synchronized int get()

                                    throws InterruptedException {

      int result;

      while (!full)

         wait();

      result = value;

      full = false;

      notifyAll();

      return result;

   }

}

Secondly, notice how each of the methods can be divided into three sections: a first section that loops calling wait until it is safe for the 

particular operation to proceed; a second section that updates the state of the object being accessed; and then a final section that calls 

notifyAll. Remember that these wait and notifyAll operations are ones that are inherited by the Buffer class from Object and that they act on 

the condition variable that Java associates with each object created. Therefore, when one thread calls wait on a particular buffer it is 

blocking itself until some other thread invokes notifyAll on that same buffer.

Although we are using wait and notifyAll to coordinate blocking and unblock-ing threads according to the buffer state it is still important to 



make the methods synchronized so that only one thread can be running in them at any time for a particular object. This is required so 

that when a thread is performing, say, a get operation it continues to hold the mutual exclusion lock on that buffer between its last check of 

the full flag, its subsequent access to the value field and its final update of full.

Notice that the method calling wait must be declared to propagate InterruptedException because that may be thrown if the thread is 

interrupted during the call to wait. The alternative would be to enclose the wait within a try statement and to discard the exception: however, 

that would prevent cooperative thread termination.

The final point to observe for this Buffer class is why we have selected to use notifyAll instead of notify since, after all, only one thread can 

continue after each update to the buffer. The reason is that the choice of which thread is unblocked from its wait operation is significant: a 

thread performing a put must release a thread performing a get and vice versa. It is only when a completely arbitrary choice is acceptable 

that notify can be used.

Figure 12.11 shows how the Buffer class can be used as part of a multi-threaded program. In this case instances of PutThread attempt to 

store the integers 10, 20, 30 into a buffer while instances of GetThread attempt to remove six integers and output them. The example 

creates two instances of PutThread operating on a buffer with a single GetThread: we would therefore expect output such as 10, 10, 20, 30, 

20, 30 in which the numbers entered by one PutThread may be mingled with those from the other, but overall exactly six numbers are 

retrieved containing two subsequences 10, 20, 30.

Figure 12.11 Classes providing threads which use the Buffer class.

// A class providing threads that are initialized with a buffer and attempt 

// to place the values 10, 20 and 30 into the buffer in order.

public class PutThread extends Thread {

   Buffer buf;

   public PutThread(Buffer b) {buf = b; }

   public void run(){

      try {

          buf.put(10);

          buf.put(20);

          buf.put(30);

      } catch (InterruptedException e) {

          System.out.println ("Thread interrupted: exiting without performing puts");

      }

   }

}

// A class providing threads that are initialized with a buffer and attempt to 

// read six values out.

public class GetThread extends Thread {

   Buffer buf;

   public GetThread (Buffer b) { buf = b; }

   public void run(){

      try {

          for (int I = 0; I < 6; I ++) {

               System.out.printIn (buf.get());

          }

      } catch (InterruptedException e) {

          System.out.println ("Thread interrupted: exiting during gets");

      }

   }

}

// A class providing the main method that creates a buffer, two threads



// writing to it and one thread reading from it.

public class BufferExample {

   public static void main(String[] args) {

      Buffer buf = new Buffer();

      Thread p1 = new PutThread (buf);

      Thread p2 = new PutThread (buf);

      Thread g1 = new GetThread (buf);

      // launch the threads

      p1.start();

      p2.start();

      g1.start();

   }

}

The scenario provided by the class BufferExample in Figure 12.11 allows us to follow step-by-step what would happen to the buffer, given 

that three threads are trying to access it. Assuming that thread p1 will be the first to execute, the following could occur:

p1 calls the put method and because there are no other threads using the put or get methods on that buffer object, p1 is granted 

access to it.

The put method observes that the full field is false and therefore stores the value 10 in the buffer, sets full to true and invokes 

notifyAll. There are no waiting threads and so this has no effect. The call to put now completes; p1 releases the mutual 

exclusion lock on the buffer and continues.

Suppose that p1 continues to execute and invokes put again, passing the value 20. As before it can acquire the mutual 

exclusion lock. However, this time full is set to true and so p1 calls wait on the buffer. This blocks p1 on the condition variable 

associated with the buffer and releases the mutual exclusion lock that p1 held on that object.

If g1 is now scheduled then it may invoke get. It acquires the mutual exclusion lock, sees that the buffer is not empty, reads the 

value stored there (10) and sets the full field to false to reflect this.

Thread g1 now calls notifyAll on the buffer. Thread p1 is waiting on that object and so it is unblocked from the buffer's condition 

variable. Notice that p1 cannot run immediately because it must reacquire the mutual exclusion lock on the buffer before it can 

resume its execution within the put method.

Now g1 can return from get and in doing so release the mutual exclusion lock that it held on the buffer. This allows p1 to continue 

its execution within put.

Of course, this is only one possibility: the exact behaviour at runtime will depend on the thread scheduler and is likely to vary between 

implementations of the Java Virtual Machine (JVM), or even between successive execution of the same application on the same machine.

12.2.5 Some further issues relating to monitors

Whether using Java or another language, it is essential that a process should leave the monitor data in a consistent state before executing 

condition.wait(). It might be desirable to enforce that a process can only read (and not write) the monitor data before executing wait(). Notice 

how this pattern is followed in Figure 12.10. Alternatively, software support might be possible to ensure that the data is in a consistent 

state by allowing an invariant to be associated with the shared data and for assertions that the invariant is satisfied to be checked at every 

monitor exit point. This opens up the field of how to prove programs correct, which is outside the scope of this book.

The implementation of condition.signal() has a potential problem, as shown in Figure 12.7. The signalling process, process B in the figure, is 

active inside the monitor and a process freed from a condition queue, process X in the figure, is potentially active inside the monitor. By 

definition, only one process can be active inside a monitor at any time. One solution is to enforce that a signal() is immediately followed by 



(or combined with) exit from the procedure (and monitor); that is, the signalling process is forced to leave the monitor. A compiler could 

check for and implement this. If this method is not used, one of the processes must be delayed temporarily and resume execution in the 

monitor later.

Let us suppose that the signaller, B, is allowed to continue and the signalled process, X, must wait. One way of achieving this without a 

separate mechanism is to transfer the signalled process from the condition variable queue on which it is waiting to the head of the queue 

of processes waiting to enter the monitor. The saved process state would ensure that the process would continue execution from the 

correct point when next scheduled. We are assuming that the queue to enter the monitor is scheduled first come first served, so that no 

other process can overtake this one, enter the monitor and possibly invalidate the condition. This may not always be the case, for example 

if priority inheritance is in use (see Section 10.6.2). The monitor operations must be such that the signaller exits without making the 

condition that it previously signalled false.

If instead the signalled process X runs, the signalling process B may be put at the head of the monitor wait queue. In this case there is no 

problem about the condition signalled remaining true but the monitor data must be in a consistent state before a signal () is executed. The 

waiting process has already had this constraint imposed upon it before executing wait ().

The approach in Java is as follows. Every object has a lock, and by declaring methods as synchronized the effect is that only the thread 

that holds the object's lock is allowed to execute that method. When a thread is selected using notify (or when all threads on the condition 

variable are selected by notifyAll) it will not be able to start executing until the thread invoking the notify method has given up its hold on the 

lock of the object. It is even possible that a woken thread from the wait set might not be able to get hold of the object's lock, because 

another process got hold of it first. The process with the lock will be allowed to execute. For a detailed discussion of Java's locking 

mechanism, see Lea (1999). For a discussion of pthreads (POSIX threads) see Section 11.8.

The above discussion indicates that the monitor mechanisms must be implemented with great care; also, that the programmer of the 

monitor procedures must be aware of the constraints imposed by the mechanisms.

12.2.6 Single resource allocator

In Chapter 10 a single semaphore, initialized to 1, was used to allocate a single resource. Processes execute wait() on that semaphore to 

reserve the resource and signal() on that semaphore to release it. If monitors are the only concurrency construct available, a single 

resource allocator would be built as a monitor with operations to reserve and release the resource. The shared data encapsulated by the 

monitor is in this case a boolean busy, initialized to false, representing the state of the resource: free or allocated. A condition variable free

is declared and is used to allow processes to wait() if the resource is already assigned to some other process. On releasing the resource, a 

process must both set busy to false and execute free.signal(). Figure 12.12 outlines the monitor and shows a process making use of it.

Figure 12.12. Monitor to allocate a single resource.

A Java implementation of the monitor shown in Figure 12.12 could be as shown in Figure 12.13, where the queueing on condition variable 

free is replaced by calls to wait() and notify() within synchronized methods.



Figure 12.13 Java implementation for monitor to allocate a single resource.

public class Allocator {

protected boolean busy = false;

   public Allocator(boolean used) {

   busy = used;

   }

   public synchronized void reserve() throws InterruptedException{

   while (busy)

      wait();

   busy = true;

   }

   public synchronized void release(){

   busy = false;

   notify();

   }

}

Note that in this example the resource itself is not encapsulated by the monitor, only the variable busy which records whether the resource 

is currently in use. It is therefore still up to the programmer to make sure that the entry and exit protocols are used before and after use of 

the resource. This is different from the Buffer example we saw earlier, where the value was encapsulated.

12.2.7 Bounded buffer manager

The semaphore solution to the producer–consumer, bounded buffer management problem is given in Section 11.3. The shared buffer 

together with associated counts and pointers may be encapsulated in a monitor. Notice that exclusive access to the buffer is always 

enforced by the monitor, even if there is only one producer process and one consumer process.

Synchronization over the state of the buffer is needed. A producer process needs to wait() if the buffer is full and a consumer process 

needs to wait() if the buffer is empty. Two condition variables, notFull and notEmpty, are therefore used. Figure 12.14 outlines the monitor 

structure and call sequences.

Figure 12.14. Monitor to manage a bounded buffer.



The monitor with its operations put and get as represented in Figure 12.14, can be implemented in Java as shown in Figure 12.15. Note 

again that there are no condition variables, but that the calls to the wait() and notifyAll() methods have the same effect. It is also interesting 

to note that in Java it is not possible to indicate exactly which condition variable needs to be signalled, i.e. there is no notEmpty.signal(), 

but a more crude notify or notifyAll. As before, it is therefore neces-sary to place the wait() method within a while loop testing the required 

condition.

Figure 12.15 Java implementation of monitor to manage a bounded buffer.

public class BoundedBufferMonitor {

   private Object[] buf;        // the buffer, declared as an array of objects

   private int in = 0;          // index of the next place where an item can be added

   private int out = 0;         // index of the next item that can be removed

   private int count = 0;       // count of the number of items in the buffer

   private int size = 5;        // number of slots in the buffer

   public BoundedBufferMonitor() {

      buf = new Object[5];      // actual buffer can hold 5 objects

   }

   public synchronized void put(Object obj) throws InterruptedException {

                                // implement conditional synchronization

      while (count==size) {

         wait();

      }

         buf[in] = obj;         // place object into buffer at index 'in'

         + + count;             // increment count of number of items in buffer

         in = (in + 1) % size;  // increment index 'in'

         notifyAll();           // update of shared data completed

      }

   public synchronized Object get() throws InterruptedException {

                              // implement conditional synchronization

      while (count==0) {

         wait();

      }

      Object obj = buf[out];     // get object from buffer at index 'out'

      buf[out] = null;

      – – count;                 // decrement number of items in buffer

      out = (out + 1) % size;    // increment index 'out'

      notifyAll();               // update of shared data completed

      return (obj);

   }

}

12.2.8 Multiple readers, single writer



The readers and writers problem is described in Section 11.5 and a semaphore solution is given there. In Figure 12.2 the solution was 

presented using the critical region construct. In Figure 12.16 we now see the procedures required in a monitor solution. In this case the 

resource to be read or written is not part of the monitor data since the monitor would enforce exclusive access, preventing multiple 

simultaneous reads. This was also discussed in relation to the need for the variable writelock in Figure 12.2. In many ways, the use made 

of the monitor is similar to that given in Figure 12.12 for the single resource allocator, in that the monitor operations are essentially the 

entry and exit protocols for the protected region, and it is still the programmer's responsibility to remember to use these protocols. The data 

that is being encapsulated by this monitor are the variables that keep track of the number of active readers and writers and whether the 

resource is currently being accessed.

Figure 12.16. Monitor outline for multiple readers, single writer.

A reader process calls startRead. This may involve delay getting into the monitor because another process is currently executing one of 

the monitor operations, and a possible further delay on the condition variable, because a writing process is waiting for or using the 

resource. When all active writers have finished, reader processes read the resource together. After each reader has finished reading it 

calls endRead (which, as always, may involve delay getting into the monitor). The last reader to call endRead signals a waiting writer. Writer 

processes call startWrite (which may involve delay getting into the monitor and delay getting the resource). They then write the resource 

(one at a time is enforced by the monitor) and call endWrite (which may involve delay getting into the monitor).

The readers and writers problem has variants which require different priority schemes. If writing is relatively infrequent or it is very 

important that the informa-tion read is up to date then priority should be given to a new writer which should write as soon as all current 

readers have finished reading. This is implemented in the solution given in Figure 12.16. If writing is frequent and old data is better than no 

data for readers then a scheme which allows waiting readers in after one writer finishes may be preferable. The choice depends on the 

application requirements.

In the solution in Figure 12.16, when a writer finishes writing, and if there are no other writers waiting to write, it wakes up one waiting 

reader by freeToRead.signal(). Readers may all read together, however, so that a reader wakes up another reader before leaving the 

startRead procedure. Each reader wakes up one more reader until no more are waiting.



An invariant on the monitor is

if busyWriting then rr = 0 

The invariant expresses the condition that when busyWriting is true (i.e. when a writer has exclusive access to the shared resource), the 

variable rr (that shows the number of reading readers) must be zero. In other words, there must be no reading readers while writing is in 

progress. The invariant has thus captured an important part of the semantics (i.e. rules governing the operation) of this particular monitor. 

If the language in which the monitor is written allows the programmer to express this invariant, and the runtime system checks it, first, 

when the monitor is initialized, and thereafter whenever a monitor operation com-pletes its execution, this will contribute to the correct 

working of the monitor.

12.2.9 Discussion of monitors

Exclusion: monitors are a crude concurrency mechanism, enforcing a restriction that whole operations on shared data are executed under

exclusion. If monitors are the only available concurrency construct it can happen that programmers define shared data abstractions 

unnaturally in order to make the exclusive opera-tions as small as possible. As we have seen in the examples above, we can arrange that 

the shared data is the condition data only, rather than the condition data plus the shared resource, if we wish to allow controlled 

simultaneous access to a resource (for example, multiple readers, single writer). In the language Mesa the exclusion requirement was 

alleviated to some extent by only enforcing atomic execution of those procedures explicitly declared as mutex. This allows operations 

such as 'read the size of the buffer' to be invoked concurrently with monitor operations. As we saw above, this was followed in the design 

of Java.

Synchronization over the state of the resource occurs within a mutually exclus-ive operation, in contrast with the flexibility available in 

semaphore programs. This allows simplifying assumptions to be made by the implementation. There is no need to allow for wake-up 

waiting signals and a process is always blocked when it executes wait() on a condition.

The language CCLU was developed at the University of Cambridge Computer Laboratory, UK (Bacon and Hamilton, 1987) from CLU 

(Liskov et al., 1981) and originally provided monitors. CCLU was intended for use as a systems programming language and, for this 

purpose, monitors were found to decrease performance unacceptably in some circumstances. The language was redesigned to retain its 

modular structure based on abstract data types but to use critical regions within the operations when exclusive access to data objects was 

needed.

As with semaphores, a process calling a monitor procedure is committed to wait if the monitor is in use and then wait if the resource 

managed by the monitor is not available. If the language provides dynamic process creation, for example by means of a FORK primitive 

which creates a child process to run in parallel with the parent process, a child can be created to call the monitor operation and the parent 

can proceed in parallel. This is discussed further in the next chapter and illustrated in Figure 13.10.

Section 10.6.2 discussed how processes waiting on a semaphore might be scheduled. The same arguments apply to processes waiting to 

enter a monitor. Priority inversion might happen if a low-priority process is executing in a monitor and higher-priority processes are waiting. 

Priority inheritance could be used to solve this problem; that is, the monitor code could be executed at the priority of the highest-priority 

waiter.

In Java, we are not dealing with queues, but with wait sets, from which a thread is arbitrarily chosen when notify() is used. When notifyAll()

is used all the threads in the wait set are unblocked and the operating system's scheduling algorithm then takes over. This allows the 

threads' priorities to be taken into account at the expense of imposing repeated blocking and unblocking overhead. For a full discussion of 

these issues see Lea (1999).

[ Team LiB ]  
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12.3 Synchronization at the granularity of operations

In Chapter 11 we programmed a cyclic buffer between many producers and many consumers. In the solution, producers first checked 

whether a slot was free, and consumers whether an item was available; then exclusive access to the buffer was ensured among 

producers or among consumers. One producer and one consumer could access different parts of the buffer at the same time.

The development from critical regions to conditional critical regions and then to monitors combined concurrency control and 

encapsulation. In order to carry out an operation on a shared object a process first calls a monitor procedure, which may involve a delay, 

waiting to enter the monitor. Once inside the monitor the process may again be delayed if the state of the shared data is such that it 

cannot proceed. The operations on the condition variables used for this purpose are low-level primitives, equivalent to event or 

semaphore operations, and just as difficult to program correctly. Also, by putting synchronization over the state of the shared data inside 

the monitor procedure the need for a convention has been reintroduced. The convention of ensuring that the data is in a consistent state 

before a wait() on a condition variable is executed must be observed. There might also be a convention that signal() must immediately 

precede exit from the monitor, as discussed in Section 12.2.

An attractive idea is to allow an operation on an object to go ahead only if the object is in a state such that the operation can complete. 

For example, a call to put an item in a buffer should only start if there is an empty slot. Thus, a delay before starting to execute the 

operation would replace both a delay to enter a monitor and a synchronization delay within it. We now explore two approaches to 

achieving this: path expressions and active objects.

12.3.1 Path expressions

It is possible to specify the order in which operations may be invoked on an object in the form of a path expression (Campbell and 

Haberman, 1974). The language Path Pascal (Campbell and Kolstad, 1980) used this approach. A path expression involves only the 

names of the operations. The default is that they are not executed under mutual exclusion, so the path expression must express this 

requirement. The code of the operations no longer has to express synchronization constraints.

path name1, name2, name3 end // the separator is a comma(,)

indicates that name1, name2 and name3 may be executed in any order and any number of instances of each may be executed together.

path first; second; third end // the separator is a semicolon(;)

indicates that one execution of first must complete before each execution of a second can start, and similarly for second and third.

Concurrent executions of first, second and third are allowed provided that this restriction is followed.

path 2:(device-type-handler) end

restricts the number of concurrent executions to 2.

path 1:(op1, op2, op3) end

means that only one of the three operations can be active at any time. They are critical regions for the same single resource (managed 

by a monitor-like structure).

path 1:(op1), 1:(op2) end

indicates that a maximum of one op1 and one op2 can execute concurrently.



path setup; [spooler] end

[ ] are used to indicate that when one instance of spooler has started, any number of other instances can start.

path 6:(5:(op1), 4:(op2)) end

indicates that as many as five invocations of op1 can proceed together and as many as four of op2, provided that the limit of six 

invocations is not exceeded.

For an N-slot buffer we can write:

path N:(1:(insert); 1:(remove)) end

which indicates that inserts are mutually exclusive, removes are mutually exclus-ive, each remove must be preceded by an insert and the 

number of completed inserts is never more than N times the number of completed removes.

Because the code of the operations no longer expresses synchronization constraints we cannot express synchronization that depends 

on input parameters or the state of a monitor. For example, we may wish an input parameter to indicate the priority of the caller and use 

this value to order processes waiting to invoke a certain operation. Path expressions are therefore less flexible than conventional 

monitors for many problems.

As monitors are passive structures the code associated with a path expression must be executed by the caller. Only one process at once 

may execute this code. More concurrency could be achieved if, instead, an active process managing a monitor-like structure could 

decide which operations could go ahead.

12.3.2 Active objects

An active object is an object with an internally-bound process. An active object can be used to manage shared data, thus creating a 

monitor-like structure. In a normal monitor, which is a passive structure, the code for a client of the monitor will include procedure/method 

calls to the monitor operations. All the code that is necessary to ensure mutual exclusion and condition synchronization will be part of the 

monitor procedures being called. As a result, the system will ensure that the concurrent processes executing such code are managed 

according to the rules of the monitor. For an active object which manages shared data the associated process must ensure that the 

shared data is manipulated correctly by or on behalf of the external sharing processes.

This process may carry out a number of functions. First, it can be made aware of outstanding calls from clients and can control the 

scheduling of these calls by the runtime system. It can therefore implement condition synchronization at the granularity of operations. 

Secondly, it can execute the operations on behalf of the clients, although in the most widely known implementation of active objects, Ada, 

it is not defined (so is left to the implementation) whether the caller or called process executes the called procedure/method. Thirdly, it 

can execute some of the housekeeping tasks associated with operations, such as updating buffer pointers and counts. This means that 

the time during which the client process is waiting for the operation to be carried out on its behalf can be reduced, thus freeing it to 

enable it to get on with other tasks. (This point is only significant for a shared memory system that runs on a multiprocessor since, in a 

uniprocessor implementation, it has no impact on efficiency to shuffle tasks between processes.)

This style of concurrency control for shared-memory systems is based on Dijkstra's guarded commands (Dijkstra, 1975). A scheme of 

this general kind (but without the assumption of shared memory) was proposed by Brinch Hansen (1978) for a language called 

Distributed Processes. The implementation of a procedure call, or method invocation, other than within a single address space is a large 

subject which we discuss in Chapters 13, 14 and 16. Ada (Welsh and Lister, 1981) implements this method of concurrency control for 

shared memory systems (where the processes inhabit a single address space).

An example of an active object in the form of an Ada task will shortly be shown.

The Ada rendezvous and mutual exclusion



The Ada programming language achieves mutual exclusion via a mechanism known as the rendezvous. Shared data is encapsulated 

with a managing task (an active object as described above) which defines a number of entries. Processes wishing to access the shared 

data make entry calls to the manager. An entry is similar to a monitor procedure (method) and an entry call is similar to the invocation of 

a monitor method. For example, if the name of an Ada task is resource1-manager, and one of the entries is named claim an entry call by 

a client will have the form:

resource1-manager.claim(); 

An entry takes the form of a procedure or method preceded by the accept keyword. In our example the manager task responds to an 

entry call to claim by executing the accept statement associated with claim:

accept claim() do 

   // some code

end claim;

When the client has made an entry call and the manager task has accepted the call by starting the execution of the corresponding 

accept statement, the two tasks are synchronized and the rendezvous begins. If the manager task is not ready to accept the entry call, 

the client must wait. If no client has made some specific entry call and the manager task reaches the associated accept statement, the 

manager task will wait. Both the client and the manager task are delayed while the code forming the body of the accept statement is 

being executed by one of them (Ada does not specify which executes this code). Once the code in the body of the accept statement has 

finished, the rendezvous is complete and the two processes (the client and the manager task) proceed independently of one another.

Non-deterministic selection for condition synchronization

Conventional if statements and switch (or case) statements are used to select between two or more courses of action. Each option is 

selected on the basis of a boolean (in the case of an if statement) or the value of a variable (in the case of a switch statement). Such 

constructs are said to be deterministic because, given the current state of the variables involved in the boolean condition or switch 

variable, it can be determined precisely which action is to be performed. However, if a situation arose in which the choice of action was 

immaterial, that is, any of the courses of action would be acceptable, then a new programming construct would be required to express 

this need for a non-deterministic (random) choice to be made. Such a structure is available in Ada. This is known as the select

statement and has the following syntax.

select 

   when <condition1>

   // some code ...

or

   when <condition2>

   // some code ...

or

   when <condition3>

   // some code

else
   // an else statement is optional

end select

The select statement has any number of when parts, each of which has an associated condition known as a guard. If a guard is true, the 

associated statement could be executed. However, it is possible for more than one guard to be true simultaneously and a choice must be 

made of which of the associated actions to execute. In the select statement, the choice is made non-deterministically by the runtime 

system. If select and accept are combined a condition can be associated with each entry call (accept statement) so a manager task has 

the ability to select non-deterministically from a number of existing entry calls with true conditions. As noted above, a call can only be 

accepted when the associated condition is true which gives us a way to program condition synchronization at the granularity of entire 

operations. If there are no existing calls the manager will either execute the code associated with an else statement, if one exists, or will 

wait at select until an entry call with a true guard is made. The structure is then of the form:

select 



   when <condition1>

   accept entry1 () do
   // some code

   end accept;

   // some housekeeping code

or

   when <condition2>

   accept entry2()do
   // some code

   end accept;

   // some housekeeping code

else
   // some code;

end select

Note that Java does not have an equivalent mechanism although Chapter 4 of Lea (1999) discusses how a form of guarded wait can be 

programmed.

The bounded buffer task in Ada

We now use the bounded buffer manager as an example to illustrate how select and accept are used together to achieve mutual 

exclusion and condition synchronization at the granularity of whole operations. An Ada task is defined in two parts: a task specification 

(similar to an interface) and a task body (the implementation of the task specification). The definition of the producer and consumer tasks 

is as follows:

task producer;          // a task specification 

task body producer is   // a task body

   c: character;        // a local variable

begin

   loop
      produce (c);

      buffer-manager.insert (c);

   end loop;

end producer;

task consumer;          // a task specification

task body consumer is
   c: character;

begin

  loop
      buffer-manager.remove (c);

      consume (c);

   end loop;

end consumer;

Both the producer and consumer execute indefinite loops (the code between the keywords loop and end loop). The former produces a 

single character and then passes it to a buffer-manager task to place it in the buffer. The consumer asks the buffer-manager for a 

character which it then 'consumes'.

The specification of the buffer-manager is:

task buffer-manager is 

   entry insert (c: in character);

   entry remove (c: out character);

end buffer-manager;



Thus the task buffer-manager has two entries named insert and remove. The corresponding implementation of buffer-manager is:

task body buffer-manager is 

   buffer-size: constant := 2560;               // initializes an integer constant

   buffer: array (1..buffer-size) of character;

   count: INTEGER range 0..buffer-size := 0;    // initializes an integer variable that

                                                // must always remain in the range

                                                // 0 to buffer-size

   inptr, outptr: INTEGER range 1..buffer-size := 1;

begin

   loop

      select

         when count < buffer-size = >           // guard: if the buffer is not full

                                                // = > is a single symbol that can be

                                                // read as 'then'

           accept insert (ch: in CHAR) do
             buffer (inptr) := ch;              // := is the assignment symbol

           end insert;

         inptr := inptr mod buffer-size + 1;    // mod is equivalent to Java's %

                                                // operation

         count := count + 1;

      or

         when count > 0 = >                     // guard: if the buffer is not empty

           accept remove (ch: out CHAR) do
             ch := buffer (outptr);

           end insert;

         outptr := outptr mod buffer-size + 1;

         count := count – 1;

      end select;

   end loop;

end buffer-manager;

In this implementation, the buffer is an array of character values whose size is specified by the constant buffer-size (2560). In Ada it is 

possible to specify the range of values that an integer variable is restricted to using a range expression. For example, the number of 

items in the buffer is recorded in the variable count, which can take any integer value in the range from 0 to buffer-size inclusive; initially, it 

is set to 0. The indexes in and out are also restricted to a range and are initialized to 1.

The buffer-manager task executes as follows. When it first starts, it immediately encounters a loop statement, which means that it will 

repeat the body of the loop indefinitely. It then executes the select statement which selects from the entry calls with guards that evaluate 

to true. If the buffer is empty only a call to insert can be accepted. If the buffer is full only a call to remove can be accepted. If both guards 

are true, and there are calls to both insert and remove, a non-deterministic selection is made. Suppose it selects a call to the first accept

statement:

accept insert (c: in char) do 

  buffer (inptr) := char

end insert;

The manager makes a rendezvous with a calling producer. When this occurs, the argument (a character) provided by the producer is 

copied to the formal argument of the accept statement, and the body of the accept statement is executed. This consists of placing the 

character into an appropriate place in the buffer. Once the body of the accept statement has been completed, the producer can 

continue its execution as can the manager which executes the remainder of the chosen part of the select statement:

inptr := inptr mod buffer-size + 1; 

count := count + 1;

and then it repeats the loop.

As in a monitor implementation of a shared, bounded buffer, the external callers call a procedure (invoke a method) to insert or remove 

an item. In Ada the buffer manager is an active task and, by means of the select statement, can arrange only to accept for execution 



those calls that are able to complete. Having selected a call the manager makes a rendezvous with the selected caller by executing an 

accept statement. We therefore have an implementation of the active object paradigm with condition synchronization at the granularity 

of operations.
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12.4 Summary

We aim to make system issues clear and then discuss how they may be programmed. We have established the areas of systems where 

the model of processes sharing memory is appropriate: at the application level, where lightweight processes share an address space, 

and at the implementation level for any type of system. Chapters 10, 11 and 12 followed the development of concurrency constructs in 

high-level languages for shared-memory-based systems.

We have discussed the critical region construct, as one of the earlier forms of concurrency support. Its advantage is that the compiler 

supports the programmer by adding entry and exit protocols. However, it lacks modularization.

A monitor protects a single shared data object, by encapsulating the data and the operations acting on it. Essentially, the concept of the 

critical region is implemented through monitor operations which are mutually exclusive. It was shown that in Java the mechanisms of the 

monitor can be implemented through the primitives: synchronized, notify(), notifyAll() and wait(). In Java, a lock is associated with each 

object, and only the thread that holds the object's lock is able to execute. We considered synchronization at the granularity of whole 

operations. The motivation is to avoid a wait for exclusive access to shared data followed by another wait if the shared data is in a state 

such that the desired operation cannot proceed (for example, the buffer is full). Path expressions have been suggested to achieve this for 

passive structures such as monitors. Active objects can achieve the effect by executing some form of guarded command. It was shown 

how the rendezvous mechanism in Ada combines synchronization with mutual exclusion. We now return to system architecture and 

trace the development of support for concurrency when processes do not share memory.

Study questions

S12.1 In addition to marking the beginning and end of a critical region, what other information must be supplied to the 

programming construct that delineates a critical region? Explain.

S12.2 In the solution to the multiple readers, single writer problem given in Figure 12.2, where, and for what purpose, are 

the conditional critical region constructs used? What is the writelock variable used for?

S12.3 Compared with the semaphore solution, what is the main advantage of the conditional critical region solution to the 

multiple readers, single writer problem?

S12.4 What is the structure of a monitor? How does a monitor deal with shared data? What rules do the operations of a 

monitor obey?

S12.5 What replaces a critical region when monitors are used?

S12.6 When a monitor operation is invoked, why is the calling process not guaranteed immediate access to this operation?

S12.7 What happens if, during the call of a monitor operation, a process is blocked on some condition variable?

S12.8 Why is it essential that a process should leave the monitor in a consistent state before executing a 

(condition).wait()? What is meant by this statement?



S12.9 Why does making a method synchronized not ensure mutual exclusion? How can the synchronization mechanism 

ensure mutual exclusion?

S12.10 In Figure 12.12, why has the shared boolean busy been introduced? In other words, why is the condition variable 

free not the only variable that is necessary?

S12.11 In Figure 12.10, the wait call has been put inside a while loop that tests the condition. Explain why a simple if

statement such as

if (full) { 

   wait ();

}

would not have been appropriate.

S12.12 Suppose that a reader has been granted access to the readers/writer monitor shown in Figure 12.16, and begins to 

execute the procedure startRead. Describe the execution of startRead.

S12.13 What is the attraction of allowing an operation on an object to go ahead only if the object is in a state such that the 

operation can complete?

Exercises

12.1 How would a compiler use semaphores to implement critical regions in a concurrent programming language?

12.2 Why is it inefficient to implement condition synchronization within a critical region using an expression involving 

programming language variables?

12.3 Rewrite the readers and writers solution using conditional critical regions to include writers waiting to write in the first 

critical region for writers.

12.4 In Hoare (1974) it was proposed that the scheduling of processes waiting on a condition variable in a monitor could 

be priority based rather than just first come first served: a 'scheduled wait'. Syntax such as wait(condition-name, 

priority) could be used to indicate the ordering of waiting processes on a condition queue.

Using this construct, write an alarmclock monitor with methods wakeMe(int n) and tick(). The tick() method is invoked 

on a timer interrupt at regular intervals to maintain a value of system time. The wakeMe method is to allow a process 

to request that it should be blocked for a number of units of time and then woken up again. The process's 'priority' is 

to be used to order the time at which the process is awakened.

12.5 The process priority described above for Exercise 12.4 can also be used to wake up processes in a suitable order for 

writing to the cylinders of a disk. Assume that a sweep or 'elevator' algorithm is to be used to control the disk heads: 

that is, the heads are to move across the surface to the outermost required cylinder in one direction then are to move 

back in the opposite direction. The heads sweep smoothly across the surfaces and back, stopping at cylinders en 

route for processes to make data transfers.

Write a monitor with a method to request that the heads be moved to a given cylinder and to block the invoking 

process until its required cylinder is reached, and a method that is called by a process after it has finished making a 

data transfer to a given cylinder.



12.6 Rewrite the readers and writers monitor operations to give priority to waiting readers over waiting writers. The 

application is such that it is better to read stale data quickly than to wait for up-to-date data.

12.7 Sketch pseudo-code for the monitor examples given in Java for single resource allocation, producer–consumer and

readers–writers, using the traditional monitor facility where any number of condition variables can be used. Compare

your solutions with those in Java for convenience and clarity for the programmer and implementer.

12.8 Why is 'synchronization at the level of operations' desirable? How might this approach be supported in a concurrent 

programming language? Consider the cases of both passive modules (or objects) and active modules (or objects).

12.9 Discuss how dynamic process creation can be used to avoid unnecessary delay in a monitor-based system.

12.10 The sleeping barber problem; see Figure 12.17 (We assume that the barber and his customers are male.)

Figure 12.17. The sleeping barber problem.

A barber provides a hair-cutting service. He has a shop with two doors, an entrance and an exit. He spends his time 

serving customers one at a time. When none is in the shop, the barber sleeps in the barber's chair.

When a customer arrives and finds the barber sleeping, the customer awakens the barber and sits in the barber's 

chair to receive his haircut. After the cut is done, the barber sees the customer out through the exit door.

If the barber is busy when a customer arrives, the customer waits in one of the chairs provided for the purpose. If all 

the chairs are full he goes away.

After serving a customer the barber looks to see if any are waiting and if so proceeds to serve one of them. 

Otherwise, he sleeps again in his chair.

Write a solution to the problem for the barber process and the customer processes.

Notice that the problem is set up with a single (active) server process and many client processes. The clients 

rendezvous with the barber who cuts their hair while they sit. The barber can sweep up after each customer has left.

We could envisage a do-it-yourself barbershop with a single pair of scissors and book of instructions. The clients 

would take it in turns to use these shared resources then sweep up before leaving. This would model a monitor-like 

approach to having a service done.



We could also envisage a number of equivalent barbers offering the service in the shop, each with a barber's chair 

but with a single queue of waiting customers. If the solution is to be written in a language which provides active 

objects, such as the Ada tasks described briefly in Section 12.3.2, the problem is trivial. The barber provides a single 

operation cutHair which customers call. No select statement is needed (because there is only one operation) and the 

accept statement takes a waiting customer, if any, for service. The language implementation does all the work.

If we are to solve the problem, as set, in a language which provides only monitors, or semaphores, we have to 

program the client and server process's rendezvous using only these tools. A solution might start from the following:

a monitor barberShop

exported methods getHaircut which clients call and getNextCustomer which the barber calls

various condition variables such as barberAvailable.

The problem as formulated above is not matched exactly by a solution along these lines. It would be necessary to 

specify that the barber entered the shop to see if there were waiting customers and, if not, left the shop and slept in a 

back room until signalled (by a bell ringing perhaps). Andrews (1991) gives several alternative solutions.

12.11 The following code fragment is a first (wrong) attempt to implement the startRead operation for the readers and 

writers problem.

CGUARD.semWait () 

ar = ar+1

if (aw != 0) {R.semWait () } // wait until all writers have finished

rr == rr + 1

CGUARD.semSignal

Its logic appears to be the same as that for the implementations we have seen in this chapter for conditional critical 

regions and monitors. Why is it wrong?

12.12 Figure 12.10 shows a simple Buffer class that can store a single element and supports blocking operations acting on 

integer values. The example use the notifyAll method to wake threads that have blocked waiting to perform get or put

operations. Reimplement the buffer so that it uses notify instead. What are the advantages and disadvantages of 

your solution? (Hint: recall that in Java there is a single mutual exclusion lock and a single condition variable 

associated with each object and that the wait notify and notifyAll methods can only be invoked by a thread on an 

object for which it already holds the mutual exclusion lock. Your solution will require several objects to be 

instantiated.)

12.13 Reimplement the Buffer class a second time so that it uses the resource allocator from Figure 12.13 instead of 

performing concurrency control internally.
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13.1 Styles of inter-process communication

The general theme of Part II is inter-process communication (IPC). In Chapter 9, Part II was introduced by considering system structure 

and the placement of processes within systems. We saw that it is often desirable for processes to share memory. For example, a server of 

many clients is implemented most conveniently as multiple server processes (or threads) sharing an address space.

Chapters 10, 11 and 12 developed the inter-process communication primitives that processes sharing memory might use when 

programmed in a high-level language. The underlying system primitives may be based on semaphores, event queues or eventcounts and 

sequencers, but the high-level language programmer need not be aware of them. The compiler can create and initialize any required 

semaphores, for example, and can include semaphore operations at the beginning and end of modular constructs such as critical regions 

or monitor procedures. The development we followed through Chapter 12 is outlined in Figure 13.1, on the left.

Figure 13.1. Examples of IPC primitives.

Processes which comprise a concurrent system yet which run in separate address spaces, sharing no data, still need access to common 

information in order to work together or compete for resources; that is, IPC is also required for systems of processes with no shared 

memory. Two approaches to sharing information are as follows:

Data is passed from process to process; an example of this style of process cooperation is a pipeline of processes (see 

Section 1.2.2).

The common information is managed by a process. In this case the managing process will carry out operations on the data it



encapsulates on request from other processes. This is called the client–server model.

In both approaches the IPC mechanism must support the transfer of data between processes which share no memory. In the first 

approach, the data itself is passed around. In the second approach a request must be passed to the server which contains information on 

which operation is to be invoked on which server-managed data item. We discuss these approaches throughout the chapter. IPC 

primitives that may be provided in systems without shared memory are also outlined in Figure 13.1 (on the right).

Primitives for both shared-memory and no-shared-memory systems must provide synchronization. Synchronization is all that is provided 

by the low-level primitives taken as the starting point in Figure 13.1. In systems with shared memory, processes can synchronize their 

access to shared data by using these low-level primitives, although, as we have seen, higher-level constructs are safer and easier to use. 

In systems without shared memory, the IPC primitives must not only support synchronization, but also support data transfer.

One of the simplest forms of cross-address-space IPC is a pipe or synchronized byte stream: one process can send bytes in an 

unstructured stream into the pipe, another can read bytes from the pipe. If an attempt is made to read more bytes than have been written 

into the pipe, the reading process is blocked until more bytes are available. Note that this method conveys no information about the 

structure of the byte stream nor of the data types that are being transmitted between the processes. The applications which use the 

mechanism can, of course, interpret the byte stream as structured, typed data. For example, if data is transmitted in the form of file or 

device I/O through a library stream package, then at the application level this data could be interpreted as a stream of records, each with 

typed fields. However, the point is that the byte stream mechanism does not provide support for this.

Another form of cross-address-space IPC, message passing, is more akin to transferring information in the form of typed arguments on a 

procedure call or method invocation. A message is constructed with a header indicating the destination of the information and a body 

containing the arguments. There may or may not be support for type checking the arguments, as we shall see in Chapter 14. A pipe is an 

example of connection-oriented communication between two processes; once the pipe is set up any number of writes and reads can 

be made to it. Message passing is an example of connectionless communication; each message needs to be addressed to its intended 

recipient. We first encountered connection-oriented and connectionless communication in Section 3.8.2.

An issue to consider, as with shared-memory IPC, is the assistance that can be provided to the programmer within a high-level language, 

and this will be covered in Chapters 14 and 16. The rest of this chapter is concerned with the system structures and system design issues 

associated with the two styles (with shared memory and without shared memory) of IPC.
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13.2 System structure and IPC with shared memory

A typical design approach for a system of concurrent processes which share memory is shown in Figure 13.2. A process is associated with 

each source of asynchronous events, in this example an application and a device. The application process outputs data to the device by 

means of a buffer manager, in the form of a monitor. A dedicated system process handles the device. It invokes a monitor method to 

acquire a unit of data of the correct size, waits on the 'device free' event, and transfers the data to the device. The scenario is that shown in 

Figure 4.1 where the application process has called down into the operating system (thus acquiring system status temporarily) to do some 

output. The application process, the device handler process and the I/O buffer (managed by a monitor for concurrency control) share the 

same address space.

Figure 13.2. System structure and IPC within a shared address space.

The monitor calls are synchronous, as are all object invocations, and are also subject to potential delay, as indicated in the figure. The first 

possible source of delay (mutual exclusion) is to enter the monitor, since only one process at a time may execute in a monitor. The 

second (condition synchronization) is when the state of the buffer makes it impossible for the process to proceed. We have an example

of the familiar producer–consumer problem. For systems programming, such as the I/O example illustrated in Figure 13.2, it is important 

that these delays are short.

How processes are used and how they communicate with each other is an important design issue. In particular, we can see that the 

monitors are passive structures and that the active processes thread their way through them, by invoking methods, to get those things 

done which involve cooperation or competition with other processes.
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13.3 System structure and IPC without shared memory

In the model of system structure where there is no shared memory, each process runs in a separate address space. There is no shared 

data and we cannot therefore build passive structures independent of processes to encapsulate shared data. Figure 13.3 shows the same 

functionality as Figure 13.2, but now for a system without shared memory. The IPC implementation in the operating system must provide a 

mechanism for a process to send some data to another process and for the intended recipient to synchronize with its arrival. For example, 

in Figure 13.3, a client process will send a request for an operation to be done on its behalf by a server process and, in due course, will 

wait for the result to come back, or an acknowledgement that the request has been carried out. In the figure, possible delays are shown, as 

usual, by a blob. The processes are actually delayed when they WAIT for a message before it is sent. Conversely, if a message is sent 

before the recipient executes WAIT, the message must be buffered in the operating system as part of the message transport service. 

Then, when the recipient executes WAIT the message is delivered to it from the buffer.

Figure 13.3. System structure with no shared memory.

Note that we have seen exactly these synchronization scenarios for semaphore operations. Figure 10.11 shows both semSignal before 

semWait and semWait before semSignal. Similarly, Figure 10.13 shows the process level and implementation level for the semaphore 

operations semSignal and semWait. We have a similar situation for the process and implementation levels of message passing, with the 

addition of message buffer management in the message service.
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13.4 Systems where shared-memory communication is appropriate

It may be appropriate for a programmer to write a concurrent program in a language which provides shared-memory IPC for the following 

kinds of system:

An unprotected system such as those implemented for many early PCs. All processes and the operating system run in a 

single shared address space or may use the real, unmapped addresses of the machine.

A system in which the language runtime system functions as a simple operating system. This is the case in many real-time 

process control and embedded control systems.

A system in which multi-threading is provided at the application level by the language runtime system. An example is a server 

serving simultaneous clients.

The program may implement a subsystem within an operating system. As we saw in Sections 1.4 and 9.3, many calls from 

user-level processes may be in the process of being serviced by the operating system at a given time. An operating system is 

a multi-threaded server at a coarse grain, as are its subsystems at a finer grain. The program may run on a uniprocessor or a 

shared-memory multiprocessor and a given program may exhibit very different behaviour and performance in these different 

environments. The systems programmer should be aware of this.
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13.5 Systems where shared-memory communication is not appropriate

Some areas where the programmer may find shared memory undesirable or impossible to use are as follows:

In protected systems, such as multi-user systems, where processes run in separate address spaces. This includes

client–server communication above a microkernel.

Between processes on different computers, such as within certain process control systems or general-purpose 

network-based systems.

In systems where it is desirable to retain flexibility over where processes are loaded. Here, it is assumed that we want to 

defer the decision of which processes to load into which computers until system configuration time. Processes which use 

shared-memory IPC are constrained to be loaded into the same computer. IPC which does not rely on shared memory can 

be used between processes on the same machine or on different machines.

In systems which have a process migration facility to achieve load balancing. The idea of a process migration facility is to 

keep open the option of moving a process from one machine to another when the system is running. Shared-memory IPC 

would prevent this, as it assumes that processes reside on the same machine, sharing the same address space.
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13.6 Examples from classical UNIX

The UNIX process structure was described briefly in Section 9.3. Each process runs in a separate address space, but the UNIX kernel 

occupies part of every process's address space. When a process makes a system call and enters the kernel its status changes from user 

mode to system mode and it begins to execute kernel code, as shown in Figure 13.4. A process is quite likely to wait for an event while in 

the kernel or to access some system data structure. At any time a number of (system mode) processes may have entered the kernel. The 

shared memory methods of IPC discussed in Chapters 10, 11 and 12 are relevant here; that is, UNIX processes cannot share data when 

they are in user mode but they can share data when they are in system mode.

Figure 13.4. Processes in UNIX, system-mode communication.

System processes are scheduled non-preemptively in UNIX. If an interrupt occurs when a process is executing in the kernel the interrupt 

service routine is executed in the context of that process and control is always returned to the interrupted process. It can continue to run 

until it voluntarily chooses to WAIT for an event. It may also forbid interrupts for a short time if it is about to access a data structure that 

could also be accessed by an interrupt service routine. Thus many of the problems discussed in Chapters 10, 11 and 12 are avoided and 

the kernel design is kept simple. The price to be paid for this simplicity is that UNIX cannot guarantee real-time response to events and is 

unsuitable for running on a multiprocessor.

Processes executing in user mode in UNIX may need to cooperate over some task. Figure 13.5 illustrates the IPC facility provided for 

these processes which share no memory. Two processes may arrange to have a 'pipe' set up between them. A pipe is a synchronized 

byte stream; one process writes bytes into the pipe and the other takes them out. If the pipe is empty, the reader is delayed. If the pipe has 

become too 'full' for the system to hold it conveniently in main memory, the writer is delayed. There is no support for separating the byte 

stream into separate, structured communication. The facility is described in more detail in Sections 14.3 and 24.7.

Figure 13.5. Processes in UNIX, user-mode communication.



Finally, the writer of an application which is to run under UNIX may wish to use concurrent 

processes but may wish them to share data structures; the typical requirement for 

implementing a server process with many clients. In this case a coroutine or process 

package may be used as described in Section 4.15 and illustrated in Figure 13.6. The 

language runtime system supports many light-weight processes or 'threads', whereas the 

underlying operating system sees only one process for scheduling, blocking, waking up, etc. 

A disadvantage of this arrangement is that if a blocking system call is made, no thread may 

run in the application; as far as the operating system is concerned, the process is blocked. 

Again, a multiprocessor could not be exploited.

Figure 13.6. Multi-threading over UNIX.
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13.7 Overview of inter-process communication

Shared-memory mechanisms for IPC were the concern of Chapter 12. IPC for systems with no shared memory has been introduced here 

and is discussed in more detail in Chapter 14. Figure 13.7 gives a high-level view of both styles of mechanism: parts (a) and (b) show the 

two basic approaches to the shared-memory (shared-address-space) IPC we discussed in Chapter 12; (c) and (d) show two different 

approaches to cross-address-space message passing for systems with no shared memory; (c) is the asynchronous or buffered message 

passing introduced in Section 13.3.

Figure 13.7. Summary of high-level IPC mechanisms.

The IPC implementation must support the transfer of information and the synchronization of the processes involved in the transfer. Figure 

13.7(a) and (b) show two approaches to shared memory IPC. In both cases the initiating process invokes a method and the transfer of 

information is in the form of call and return parameters. In (a) the invocation is to a passive module, a monitor. Section 12.2 and Figure 

12.5 show the detail of how the possible synchronization delays are managed. In (b) the invocation is to an active object/component where 

the internally bound process selects a call to accept. Section 12.3.2 gave the detail of how synchronization delays are managed using the 

select and accept statements.

Message passing is the main topic of Chapter 14; in this chapter we are concerned with architectural issues, contrasting IPC within and 

across address spaces. In (c) the asynchronous or buffered message passing which was introduced in Section 13.3 is illustrated. A 

sending process is not delayed and the system must buffer information in transit if the receiver is not ready for it. In Figure 13.7(d) we see 



synchronous or unbuffered message passing where the communicating processes must both reach their synchronization points, the 

SEND and WAIT instructions, in order for the information to be passed directly from sender to receiver. There is therefore potential delay 

on both SEND and WAIT operations.

Note that Figure 13.7(a) and (b) illustrate synchronous method invocation; that is, the caller/invoker cannot carry out processing in parallel 

with the call. In (a) this is natural since the caller process moves from module to module to achieve its goals, synchronizing with other 

callers of monitor methods when necessary. In (b) the Ada rendezvous is illustrated, which is based on Dijkstra's guarded commands 

(Dijkstra, 1975). Although, as in (a), the invoker and the invoked active object inhabit the same address space, in (b) it seems less obvious 

that the invocation has to be synchronous, and block the caller, since another process is available to take and execute the call. 

Nevertheless, the invocation is synchronous and the Ada specification does not indicate whether caller or called process should execute 

the invoked operation; it is left as an implementation decision. We shall see in Chapter 16 that remote procedure call (RPC) provides 

cross-address-space procedure call. In this case the call and return arguments are packaged into messages to be transported between 

address spaces and the calling process is blocked until the called process executes the called procedure and replies.
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13.8 Duality of system structures

A question which comes to mind is whether the functionality provided by same-address-space and separate-address-space system 

designs differ fundamentally. Are there some things you can do in one type of system but not in the other?

Lauer and Needham (1978) claim that the two basic system structures are duals: that any problem that can be solved in a shared-memory 

system has a dual solution in a non-shared-memory system, and vice versa. We shall see that the argument holds but only if certain 

process management and IPC primitives are available.

The example we consider is that of a buffer management function, which can either be implemented through a monitor in a 

shared-memory system, or as a managing process using message passing in a non-shared-memory system. Figures 13.8 and 13.9

illustrate one way of achieving this (dual) functionality in the two different system structures. In Figure 13.9 we see how a message can be 

sent to request invocation of a particular method on the data. If the receiving process is not yet ready to receive the request, there will be a 

delay. This potential delay is mirrored in Figure 13.8 by the delay that might occur when trying to enter the monitor. In both cases exclusive 

access to the buffer is achieved, either via the sequential selection of messages by the managing process or via the monitor mechanism.

Figure 13.8. Procedural system structure.

Figure 13.9. Dual functionality using a managing process and message passing.



There is also potential delay for condition synchronization, depending on the state (empty or full) of the buffer. In Figure 13.8 condition 

synchronization is achieved by waiting on one of the monitor's condition variables, which in Figure 13.9 is mirrored by the managing 

process finding that it cannot proceed further, again because there may be no room to add further items, or there are no items to be 

removed. Here, the manager will suspend work on behalf of the current caller, take another message if one exists and start work in 

response.

A difference apparent from the figures is that the calling process in the procedural system is 

committed to wait in the monitor, if necessary, and does not have the option of carrying out 

processing in parallel. However, this option can be made available to the process through a 

FORK primitive (see Sections 4.16, 12.2.9 and Figure 13.10). The parent process forks a 

child process to make the call to the monitor procedure. The child may be delayed in the 

monitor but the parent can get on with other work in parallel. The parent can synchronize 

with the child to obtain the result of the monitor call by executing a JOIN primitive. Assuming 

that the sole purpose of the child was to make the monitor call, it can now terminate by 

executing EXIT. This scheme is feasible because processes are 'lightweight'. They share 

the address space of the parent and require only a small descriptor and a stack. If the FORK 

primitive is not available we cannot have a complete duality mapping.

Figure 13.10. Forking a child to make a call.



Exercise 13.4 invites the reader to work out the duality mapping, again taking a buffer manager as the example, for a shared memory 

system, where synchronization is at the granularity of whole operations, with a message passing system.

The point to emphasize is that there is no intrinsic reason for preferring shared-memory or no-shared-memory based systems. The same 

functions can be provided in each in equivalent structures and the same degee of concurrency can be achieved. There may be 

implementation-dependent factors to consider, which affect performance, such as: to what extent the operating system is invoked to get 

some operation done or how many context switches are involved.

The style of working may be constrained by the hardware that has been purchased for a system or the software that must be used. If the 

primitives described above are available there is functional equivalence between the two styles.
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13.9 Naming

Within a single concurrent program running in a shared address space we can assume that the processes know the names of the 

procedures to call, or methods to invoke, in order to access shared data, and the semaphores or condition variables to use for 

synchronization. We can also assume that how to call for operating system service is well known, for example, through the specification 

of a system call interface.

For IPC between processes in separate address spaces to take place, a process initiating 

communication must know the name of the destination of the communication. Let us first 

assume that the processes are running in separate address spaces on the same machine. The 

machine has a single operating system which has full knowledge of all the processes it supports 

and their attributes. We can assume that system services, such as mail, which run above the 

operating system, also have well-known names. The operating system is able to map the name 

to the appropriate object to be used for IPC.

If a concurrent application is to run as a number of separate processes on the same machine it is necessary for each process to know 

the name of the others. When a process is created, by requesting that a named file should be loaded and a process created to execute 

the loaded program, the process's name (identifier) is returned by the operating system to the creator. The creator of the processes of 

the concurrent application may make the names available to all components.

Within a single machine, we can assume that the operating system will manage any namespaces that are relevant to more than a single 

address space. The operating system can be seen to be extending the address space of a single process by making names available to 

it to be used for communication.

We defer considering the problem of naming for cross-machine IPC until Section 16.11. The issue was discussed in general terms in 

Chapter 7.
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13.10 Summary

In Chapter 9 we considered system structures based on shared memory and no shared memory and established where each type of 

structure might occur in a system. We considered how processes should be placed and used in both kinds of system. In this chapter we 

have taken the same theme and have extended the discussion to inter-process communication.

We have seen that any task that can be accomplished using the IPC facilities of one style of system can also be accomplished with the 

IPC facilities of the other style of system. This has been called the duality property of the two styles of system structure when a mapping 

between specific primitives is applied.

We have already studied how concurrent processes can use shared data to achieve their goals. In Chapters 10, 11 and 12 a number of 

different concurrency facilities that have been used in programming languages and operating systems were studied. In this chapter an 

outline of IPC without shared memory was given. In the next chapter we study this topic in detail.

We considered briefly the issue of naming. Within a single computer the operating system was seen to extend the namespace of the 

processes it supports to allow them to communicate. Naming in distributed systems in general is considered in Chapter 7, and for IPC in 

Chapter 16.

Study questions

S13.1 What is a synchronized byte stream? What is the main problem in using byte streams for IPC?

S13.2 What are the essential differences between the shared-memory design shown in Figure 13.2 and the message 

passing design shown in Figure 13.3?

S13.3 What sorts of system are appropriate for shared-memory communication?

S13.4 What sorts of system are appropriate for non-shared-memory communication?

S13.5 In Figure 13.7, what are the essential differences between the mechanisms labelled (c) and (d) that use message 

passing in a non-shared-memory environment?

S13.6 In asynchronous message passing, why must messages be buffered?

S13.7 In synchronous message passing, why are messages not buffered?

S13.8 What are the differences between the use of a monitor and the use of a process for IPC in a shared-memory 

system as illustrated in Figure 13.7?

S13.9 Is there any intrinsic reason for preferring shared-memory over non-shared-memory based systems?

S13.10 In an asynchronous message passing system, the process that sends a message can continue processing in 

parallel with the process that receives the message. How can the same functionality be provided in a procedural 

(shared-memory) system?



Exercises

13.1 To what extent can processes which run in separate address spaces make use of kernel-provided semaphores to 

support their cooperation? To what extent can processes which share an address space or part of an address space 

make use of this facility?

13.2 How would you expect a user-level process to request a service from an operating system in a procedural system and 

in a non-procedural system? How might the hardware constrain or support the choice of system structure? When do 

context switches take place in both cases?

13.3 Explain all the possible causes of the potential delay shown (as blobs) in Figure 13.7(a), (b), (c) and (d). Which delays 

are to achieve mutual exclusion and which are for condition synchronization?

13.4
What is meant by the assertion that shared-memory (shared-address-space) systems and systems without 

shared memory may be viewed as duals of each other?

a.

Give the duality mapping of: monitor, monitor procedure, condition synchronization on a condition variable 

in a monitor, process, monitor procedure call, dynamic process creation.

b.

Outline how the monitors given as examples in Chapter 12, including the exercises, may be rewritten as 

processes. (Details of how to do this are given in the next chapter.)

c.

(d) Work out the duality mapping for a shared-memory system where synchronization is at the level of 

whole operations with a message passing system. Use a buffer manager as an example, as in Section 

13.8.

d.
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14.1 Introduction

It is often necessary for processes to access common information in order to achieve the goals of the system they comprise. If processes 

do not share any part of their address spaces, in particular writeable data space, some other approach must be taken. In this chapter we 

first discuss alternative approaches to providing cross-address-space IPC in general terms, without reference to implementation. Many of 

the mechanisms are suited to distributed implementation and this major topic is left for Chapter 16. In this chapter, when implementation 

is discussed, it relates to IPC within a single computer.

A first attempt at a solution might be to put the common data in a file and allow access to the file by a number of processes. This 

approach has been used successfully in many applications, but is shown in Section 14.2 to be inadequate as the only system 

mechanism for concurrent processes to share information.

The UNIX operating system supports pipes between processes, as outlined in Section 13.6. The mechanism is designed to support the

pipeline model of computing; a pipe is an unstructured, synchronized byte stream between two processes. It is not able to support

many-to-one, client–server interactions, which are often required. Details are given below in Section 14.3.

Cross-address-space message passing is the main topic of this chapter and it is covered in general terms, applicable to both centralized 

and distributed implementations. It is important because distributed implementations are a natural extension to cross-address-space IPC 

on a single computer. Message passing may be asynchronous, where messages are buffered by the message passing mechanism, or 

synchronous, where no buffering is provided. In practice, buffering is likely to be implemented at the application level if a synchronous 

system is used.

Support for process interactions which are more general than one-to-one may be provided by message passing systems. Alternative 

approaches are presented and evaluated in Section 14.5. Group naming schemes and indirection through named channels or mailboxes 

are included.

The implementation of asynchronous message passing within a single computer is covered. The details of integrating IPC with 

communications services to give a distributed implementation are left until Chapter 16. A potential efficiency problem is the need to copy 

data between address spaces. Methods of avoiding this are discussed. In practice, message passing is likely to be used in distributed 

systems and the mechanism will then be integrated with communications services. This aspect of an implementation is deferred until 

Chapter 16.

Synchronization with the hardware by event signalling was covered in Section 4.4. If a system is to be based on message passing then 

event signalling can be unified with message passing.

Integration of message passing into a programming language may be achieved by providing primitives to send and receive a message. 

Instead, a higher level of abstraction might be created. The novel approach, used in the occam programming language, of making 

message passing look like an assignment which is distributed between two processes is described in Section 14.8.1. Although occam 

programs might reside on a single transputer, they are also intended to be written for systems comprising many transputers. The Linda 

high-level abstraction of a shared-memory-like tuple space is also described. Here, we apparently have content-addressable messages.

The premise of this chapter is that processes do not share writeable data. We shall assume, in the first instance, that processes are 

single-threaded rather than multi-threaded. Multi-threaded processes are considered in Section 14.9.

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

14.2 Use of files for common data

Processes do not need to share memory in order to be able to access shared files. File access is slow, however, compared with 

accessing data in main memory. This method of sharing information is therefore only appropriate where high-speed inter-process 

interaction is not required. A pipelined compiler is likely to use this method of sharing information. In this case the concurrency is coarse 

grained: a great deal of work is done in each phase and the output is naturally placed in a temporary file. All that is required as an IPC 

mechanism is a means by which the phases can synchronize.

Some operating systems only provide for a file to be open for exclusive writing or shared reading. Again, this is appropriate for 

coarse-grained interactions. For example, a process opens a file for writing, writes data to it then closes the file. Other processes may 

read it concurrently with each other. We have seen how an operating system could implement such a 'multiple readers, single writer 

interlock' by a semaphore program in Section 11.5 and by a monitor in Section 12.2.8. This method of sharing information could involve 

long delays, but this might not be important if the waiting process had nothing else to do, such as in a pipeline of processes. In other 

applications simultaneous write sharing might be a natural way for the application to operate.

Other operating systems provide advisory locking of files and issue a warning if a lock is requested which conflicts with an existing lock. 

Applications are allowed to ignore such warnings.

It might be that a large amount of data is located in a file and that a number of processes are to cooperate over processing it. In this 

case, the application could require that all the cooperating processes should have the file open for writing simultaneously. The application 

ensures that they will each process a different part of the data in the file and therefore will not interfere with each other. For this reason, 

operating systems designers now tend to provide shared locks and exclusive locks rather than read locks and write locks (see also 

Chapter 6). It is usually left to the application software to organize correct use of the files.

An alternative scheme to allow concurrent write sharing is for a data management subsystem to be implemented above the operating 

system. This client of the operating system would itself have many higher-level clients. It would manage files on their behalf and would 

cause data to be moved between disk and main memory in response to their requests. The function of such a subsystem is to manage 

requests for data from application processes and to ensure that reads and writes to the data do not interfere. It might also provide a 

higher-level view of the data, superimposing type information on the data, which the operating system stores and interprets only as a 

sequence of bytes.

Persistent programming languages and database management systems provide this kind of service. Here, the clients may be humans 

waiting for information, in which case there is all the time in the world (at the level of machine instruction execution time) to satisfy the 

request. The database management system does, however, have to handle concurrent requests from clients and ensure the correctness 

both of the stored data (the database) and the information output to clients. This topic is covered in Part III.

Part II is concerned with high-speed, relatively fine-grained inter-process interactions that cannot be achieved through file I/O. A 

mechanism for moving information between running processes is required.
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14.3 UNIX pipes

We have seen that access to normal files is too slow for them to be used as a general mechanism for inter-process communication. The 

pipe in UNIX is designed to be used like a file but implemented to allow more efficient transfer of information between two processes. 

When a file is opened by a process a small integer file identifier is returned by the system for subsequent use when reading or writing the 

file. For example:

file-id = open (filename, access required)

[bytes] = read (file-id, byte-range-within-file)

 write (file-id, number and location in memory of bytes to write to file, where to write bytes in file)

A pipe is created by a special system call, but a normal file identifier is returned to the creating process. This identifier may be made 

available to another process as described below and the pipe is subsequently read or written, in the same way as shown for files, by 

means of this ID. The processes must be programmed so that one writes to the pipe and the other reads from it.

 write ((pipe)file-id, number and location in memory of bytes to be written to pipe)

[bytes] = read ((pipe)file-id, number of bytes to be read)

The implementation ensures that a pipe stays in main memory rather than being written out to disk. For this reason there is a notional, 

system-dependent, maximum size for a pipe. When the pipe contains this number of unread bytes the writing process is blocked on any 

further attempt to write until the reading process removes some bytes. The reading process is blocked if it attempts to read from an 

empty file. A pipe may therefore be seen as a synchronized byte stream between two processes.

An obvious difference between a pipe and a file is that there is no notion of selecting where to read from or write to in a pipe. One reads 

the next bytes that arrive, or writes some more bytes to the pipe. The pipe is therefore a stream of bytes flowing from one process to 

another, whereas a file is a sequence of bytes. There is no operating system support for any structuring of the information represented 

by the bytes of the file or the bytes passed in the pipe.

A process is created in UNIX by means of a fork system call which causes a new address space to be created. The address space of 

the parent is replicated for the child. Any files the parent has opened, or pipes the parent has created, become available to its children. 

The children can be programmed to communicate via the pipes they inherit. The processes which may use a pipe are therefore the 

children, grandchildren or descendants in general, of the process that created the pipe. Figure 24.16, in the case study on classical 

UNIX, gives an example of a pipe in use by two processes.

The pipe mechanism described above has been criticized as too restrictive in that processes must have a common ancestor in order to 

use a pipe for communication. For this reason, some later versions of UNIX have introduced named pipes. In this case a text name with 

the same structure as a normal filename is associated with a pipe. Such a pipe has a permanent existence in the UNIX namespace and 

can be opened and used by processes under the same access control policies that exist for files. There is no longer the requirement for 

a family relationship between the processes.

14.3.1 Use of pipes by UNIX: Command composition

As indicated by the name 'pipe', the model of concurrent programming that the UNIX designers had in mind was the pipeline of 



processes. Applications programs may create and use pipes as described above. The system programs which implement UNIX 

commands are written so that the output from any command may be piped as input to another. Commands may be composed into 

sophisticated programs.

For example, a text file could be piped to a program which removes punctuation and creates a list of words as output. This could be 

piped to a program which sorts the words into alphabetical order. This could be piped to a program to remove adjacent identical words. 

This could be piped to a program to compare the words with those in a dictionary file and to remove words that match the dictionary. The 

remaining words could be output to the user's terminal: we have a spelling checker.

14.3.2 Evaluation of the pipe mechanism

There is no system support for structuring the byte stream into separate packets of information. Processes using a pipe may, of course, 

implement application-level protocols, above the pipe mechanism, to control their interaction. It would be possible in theory for many 

descendants of a common ancestor to use the same pipe, for example if they agreed to use fixed length messages, but it would be 

difficult to program in practice.

A pipe tends to be used as a one-way, one-to-one IPC mechanism, to support pipelines of processes. Two pipes are needed to support 

two-way communication between two processes. Although a process can set up a number of pipes it is impossible to test whether one 

pipe is empty and, if so, to read from another. One is committed to block if one reads from an empty pipe.

Section 9.6 discussed the types of process interactions that are required in systems. Pipes do not support the (one of) many-to-one 

interactions needed to implement a server with many potential clients. Nor do they support one-to-many or many-to-many interactions.

We now proceed to study a more general and flexible IPC mechanism.

[ Team LiB ]  



[ Team LiB ]  

14.4 Asynchronous message passing

Message passing as an IPC mechanism has been in use since the late 1960s, at the same time that Dijkstra used the semaphore 

mechanism in the single-address-space THE operating system. Examples of the use of this mechanism within a single computer are the 

MU5 design at Manchester University (Morris and Detlefsen, 1969; Morris and Ibett, 1979) and the operating system for the RC4000 

(Brinch Hansen, 1970). Message passing was used in distributed systems from their earliest days, as a natural mechanism for 

cross-address-space IPC when the address spaces are on different computers. In this chapter we study message passing in general 

terms, both for centralized and distributed implementations. In Chapter 16 we consider its integration with communications services.

A typical message is shown in Figure 14.1. The system makes use of the message header in 

order to deliver the message to the correct destination. The contents of the message, the 

message body, are of no concern to the message transport system. The contents must be agreed 

between sender(s) and receiver(s). Application protocols associated with specific process 

interactions determine how messages should be structured by a sender in order to be interpreted 

correctly by the receiver.

Figure 14.1. A typical message.

The source of the message is likely to be inserted, or at least checked, by the system. This is a kind of security check, as it prevents one 

process masquerading as another as the source of a message and means that we can be sure that the message was sent by the 

specified process. Figure 14.1 shows a field in the message header for 'type of message'. This might be used to indicate whether the 

message is an initial request for some service or a reply to some previous request; it might be used to indicate the priority of the message; 

or it might be a subaddress within the destination process indicating a particular service required. The header may contain additional fields 

to those shown, particularly if a message must be transported across a network (see Chapter 16). There has been an implicit assumption 

here that the source and destination fields of the message will each indicate a single process. This might be the case, but a more general 

and flexible scheme is often desirable, as discussed below.

Figure 14.2 gives an outline of a message passing mechanism. Process A wishes to send a message to process B. We assume that each 

knows an appropriate name for the other. Process A builds up the message then executes the SEND primitive with parameters indicating 

to whom the message should be delivered and the address at which the message can be found (in a data structure in process A's address 

space). Process B reaches the point in its code where it needs to synchronize with and receive data from process A and executes WAIT 

(or perhaps RECEIVE) with parameters indicating from whom the message is expected and the address (in process B's address space) 

where the message should be put. This assumes that:



each knows the identity of the other;

it is appropriate for the sender to specify a single recipient;

it is appropriate for the receiver to specify a single sender;

there is an agreement between them on the size of the message and its contents (an application protocol). We shall see that 

language-level type checking could be helpful here.

Figure 14.2. A message passing system.

We also assume that (in asynchronous message passing) the sending process is not delayed on SEND; that is, there is no reason why its 

state should be changed from runnable to blocked. This implies that the message passing implementation must buffer messages, as 

shown in Figure 14.2, in the case when the destination process has not yet executed a WAIT for that message. The message acts as a 

wake-up waiting signal as well as passing data. A process which executes WAIT will have its state changed to blocked if there is no 

appropriate message waiting for it in its message buffer. When a message arrives subsequently it is delivered to the process, assuming 

that it satisfies the conditions specified in the WAIT primitive, and the process becomes runnable again. Figure 14.3 illustrates this 

synchronization delay in more detail using the representation of Chapter 13.

Figure 14.3. Synchronization delay in a message passing system.



The above discussion implies that the message is copied from the sender's address space into the receiver's address space, if necessary 

via a buffer maintained by the message passing service. Message passing primitives support both synchronization and data transfer. It is 

argued that, even in a system structure based on shared memory, processes synchronize in order to exchange information and that 

supporting both in the low-level system primitives allows complex buffer management at the process level to be avoided. The 

counter-argument is that complex buffer management must then be done in the implementation, which is an overhead on all processes. If 

processes cannot access shared data structures, a system mechanism must be provided to pass data between them. Section 14.6

discusses the implementation of asynchronous message passing in more detail, and Section 14.7 discusses synchronous message 

passing.
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14.5 Variations on basic message passing

A message passing service may be provided with variations on the scheme described above, in order to satisfy the requirements of the 

systems which will use it. The reasons for these variations include the following. Note that the process address spaces may be on the 

same or on different computers.

The communicating parties may not know, or need to know, each other's names (Sections 14.5.1, 14.5.4, 14.5.5).

A process may need to be able to send a message to more than one process (Section 14.5.6).

Support for discriminating between different messages that arrive for a process is desirable (Sections 14.5.2, 14.5.3).

Processes may not want to commit to an indefinite WAIT for a single, specific message (Sections 14.5.2, 14.5.3, 14.5.8).

Messages may become out of date in certain environments (Section 14.5.9).

It may be appropriate for a reply to a message to be sent to some process other than the sender (Section 14.5.7).

14.5.1 Receiving from 'anyone'

In the message passing scheme outlined above we assumed that communication was one-to-one. It is often reasonable to assume that 

the sender knows the identity of the receiver (the receiver may be a well-known system service), but in many applications a process may 

wish to receive messages 'from anybody' in order to participate in many-to-one communication (see Section 9.6). The implementation 

should provide a means for a potential receiver process to specify 'from anybody', either as a default if no sender is specified or as a 

distinguished identifier. An alternative is to use indirection so that messages are sent and received via what have variously been called 

channels, ports or mailboxes (see later subsections).

14.5.2 Request and reply primitives

The message system may distinguish between requests and replies and this could be reflected in the message passing primitives. For 

example:

SEND-REQUEST (receiver-id, message)

WAIT-REQUEST (sender-id, space for message)

SEND-REPLY (original-sender-id, reply-message)

WAIT-REPLY (original-receiver-id, space for reply-message)

A typical interaction is illustrated in Figure 14.4. After sending the request the sender process is free to carry on working in parallel with the 

receiver until it needs to synchronize with the reply. It has been suggested that it might be better to enforce that the SEND-REQUEST, 

WAIT-REPLY primitives should be used as an indivisible pair, perhaps provided to the user as a single REQUEST-SERVICE primitive. 

This would prevent the complexity of parallel operation and would avoid context switching overhead in the common case where the sender 



has nothing to do in parallel with the service being carried out and immediately blocks, waiting for the reply, when scheduled, as shown in 

Figure 14.5.

Figure 14.4. Message-based client–server interaction.

Figure 14.5. Alternative message-based client–server interaction.

There is an obvious dual with a procedural system here, as discussed in Section 13.8, in that REQUEST-SERVICE corresponds to a 

procedure call. This is the only mechanism provided in the Amoeba message passing kernel (Tanenbaum et al., 1990). The designers 

argue that any communication they require can be built from these primitives and that having a single simple mechanism imposes 

minimum overhead.



If processes are single threaded, the requesting process blocks until a reply is returned. If processes are multi-threaded, and threads can 

be created dynamically, a new thread may be created to make the request for service. We reconsider this option in Chapter 16 in the 

context of distributed systems.

14.5.3 Multiple ports per process

We have seen above that the primitives provided may allow a process to dis-tinguish between request and reply messages. Let us 

assume a system design that does not use a single REQUEST-SERVICE primitive (which is a composite of SEND-REQUEST and 

WAIT-REPLY) and that a process may continue after SEND-REQUEST. Such a process may reach a point where it can either start on 

some new work, by taking a new message (if any) using WAIT-REQUEST, or can take the reply (if any) to its previous request for service 

using WAIT-REPLY. Suppose the process executes WAIT-REPLY and blocks until the reply arrives. A new request message might be 

available and work could proceed on it. It seems desirable that a process should be able to test whether a message of a given type is 

available (that is, 'poll' its message buffer(s)) before committing to a WAIT. If such a facility is not available, we do not have the flexibility 

we need and may as well use the composite REQUEST-SERVICE.

Extending the idea of allowing a process to select precisely which messages it is prepared to receive and in what order it will receive them, 

it may be possible for a process to specify a number of ports on which it will receive messages. With this facility, a port could be 

associated with each of the functions a process provides as a service to other processes and a port could be allocated to receive replies to 

requests this process has made, as shown in Figure 14.6. With this scheme we have come very close to the dual model discussed in 

Section 13.8. Each function offered on a port of a service process is the dual of a procedure exported by a monitor in a procedural system.

Figure 14.6. Example showing use of ports for message selection.

Again, unnecessary blocking must be avoided. This may be achieved either by allowing a process to poll its ports, in order to test for 

waiting messages, or by supporting the ability to specify a set of ports on which it is prepared to receive a message. A priority ordering 

may be possible, or a non-deterministic selection may be made from the ports with messages available. This is equivalent to a process 

(task) in Ada selecting which of its entry calls it is able to accept (see Section 12.3.2).



14.5.4 Input ports, output ports and channels

Within a given module a message may be sent to a local entity (named as a local program variable), which may be called an output port or 

a channel within a given language. Only at configuration time is it specified which other process's input port is associated with this output 

port or which other process is to receive from this channel. Such a scheme gives greater flexibility when a large system is to evolve. 

Reconfiguration can be carried out without changing the internal code of the modules concerned.

Such a scheme also allows type checking to be extended to cross-address-space communication. An output port could be declared as 

accepting a particular type of message structure and any SEND to that port could be type-checked against the port declaration. For 

example, a message would typically be declared as a record with appropriately typed fields: a string for a name, an integer for a size, etc. 

An output port would typically be a structure such as an array of such records. An input port could similarly be typed and messages 

received from it type-checked against it. Thus type checking of messages against input and output ports is achieved statically at compile 

time.

At configuration time, a configuration language could be used in which one or more typed output ports could be bound to a typed input port 

and type checking could again be carried out. This scheme is used in the CONIC system developed at Imperial College, UK (Sloman and 

Kramer, 1987). Figure 14.7 illustrates the basic idea with a binding of a single output port to a single input port. Figure 14.8 shows a 

many-to-one binding.

Figure 14.7. Input ports and output ports.

Figure 14.8. Many output ports bound to one input port.



14.5.5 Global ports

A free-standing entity called a global port or mailbox may be used to achieve (one of) many-to-(one of) many communication. Figure 14.9

illustrates the basic idea. Any number of processes may send to it and receive from it. Such an object can be used so that equivalent

server processes may take request-for-work messages from it. A new server can easily be introduced or a crashed server removed. The

same effect is achieved as with many-to-many producer–consumer buffering using a monitor (see Section 12.2.7), or programmed with 

semaphores (see Section 11.3). In the case of a global port the system is supporting a named object which is known to many processes. 

Naming schemes for global objects are discussed in Chapters 7 and 16.

Figure 14.9. A global port.

The Intel iAPX432 hardware supported global ports for process dispatching as well as for inter-process message passing. An idle 

processor could look for a runnable process at a dispatching port. If none was found the processor could wait there. Similarly, a runnable 

process could look for a free processor at a dispatching port. If none was available the process was added to the run queue implemented 

there.

The cross-address-space type checking described in Section 14.5.4 could be extended to global ports if each named global port was 

defined to accept messages of some specific type. Compiletime type checking of messages against the typed input and output ports of a 

single process could be carried out as before. A separate configuration phase could bind processes' ports to global ports after checking for 

type consistency.



14.5.6 Broadcast and multicast

Input ports, output ports, channels and global ports were introduced so that inter-process interactions other than one-to-one could be 

supported. They can all be viewed as introducing indirect naming. A message is sent to an intermediate, named object rather than to 

some specific process.

It is possible to achieve 'from anyone' (many-to-one) or 'to everyone' (broadcast) without introducing this indirection, simply by using a 

special name in the message header. What is achieved by channels, etc., is the ability to receive mess-ages from a specific group of 

processes, selected at system configuration time. What is achieved by global ports is the ability to send to a group of anonymous, 

identical processes. Global ports also support the ability to receive messages from 'anyone', or from a selected group, depending on how 

the name of the global port is used and controlled.

An alternative approach is to support the naming of groups of processes in a system as well as individual processes. The semantics of 

sending to a group name and receiving from a group name must be defined very carefully. In the previous discussion a send to a global 

port implied that one anonymous process would take the message and process it. This is a common requirement: for example, when a set 

of like servers offer a service. A different requirement is indicated by the term multicast. In this case the message should be sent to every

process in the group. Figure 14.10 illustrates this distinction. The Isis system at Cornell University (Birman, 1985) and the V system at 

Stanford (Cheriton, 1984; Cheriton and Zwaenpoel, 1985) both have multicast as a basic primitive. Other systems have implemented an 

efficient multicast without group naming, for example, the Coda file system at Carnegie-Mellon University (Satyanarayanan et al., 1990).

Figure 14.10. Global port contrasted with multicast.



14.5.7 Message forwarding

Message forwarding is more appropriate for distributed systems, but is mentioned here for completeness. A message may be delivered to 

a process which is one of a set of processes offering the required service but which no longer has the object required. An example is that a 

file may have migrated from the file server which created it to some other file server. Any request associated with the file may, for a time, 

still be delivered to the birthplace of the file.

On receiving the request and detecting that the required object has moved, the original destination process wishes to forward the request 

to the correct destination but to have the reply sent to the original sender. If such a forwarding service is not offered, a great deal of data 

could retrace the path of the original request in the reverse direction. Message forwarding can be useful, but is not so crucial, in a 

centralized system.

14.5.8 Specifying WAIT time

It might be appropriate to WAIT for a specified time only for a message rather than commit to an indefinite wait. Again, this facility is 

important in a distributed system, where a destination machine might have crashed or the network might be down or congested.

If such a timeout facility is available it can be used to poll for a message on a given port (using a zero timeout), or to enforce crisis times for 

event handling and to take action if some deadline is not met. The general point is that a timing facility can be put to good use, particularly 

in a hard real-time system.

14.5.9 Discarding out-of-date messages

It might be that a message contains information that should be superseded by a later message. A large industrial process could be 

monitored by many sensors, or some object's position could be tracked. In such cases, time would be wasted if an early message was 

received and processed when a more recent message was already available.

A method of achieving this is to support the declaration of input ports of finite size. A port of size 1 would thus hold only the most recent 

message of that type, previous messages being discarded.
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14.6 Implementation of asynchronous message passing

If asynchronous message passing is used in a distributed system it must be integrated with communications services; we cover this topic 

in Chapter 16. In both centralized and distributed implementations buffer management is an issue.

In a shared-memory system, processes manage their own data transfers through producer–consumer buffering, supported by underlying

mechanisms which bear little implementation overhead. The processes have to do more work for themselves to achieve IPC but only the

processes involved in the IPC are affected by this overhead (the overhead is in the context of the processes using the mechanism).

In a system with no shared memory, messages may need to be copied twice: from process address space to system buffer, then from 

system buffer into destination process address space. There may be several context switches. All processes in the system are affected 

by this overhead and not just the processes involved in the IPC. More processor cycles are spent executing the underlying system if a 

complex message buffer has to be managed.

If a single large message buffer is used it is a shared data structure and synchronized access to it must be implemented using one of the 

methods explained in Chapters 10, 11 and 12. Shared-memory techniques are necessary in the implementation of no-shared-memory 

techniques!

Operating system designers attempt to make the resident kernel data structures fixed in length. For example, there is likely to be a 

maximum number of processes the operating system can manage, each one represented by a fixed length descriptor. Space can 

therefore be allocated statically to the process structure.

In the design of the data structures for a message passing system the following must be considered:

Messages

What do messages look like? Early systems had fixed length messages and there is still likely to be a maximum message 

size for data that is passed by value; for example, the Chorus limit is 64 kbytes. It is unacceptable to make such a restriction 

visible at the user level. Messages at the language level should be variable length and typed, allowing type checking against 

a channel or port.

1.

Message buffers

What form do the message buffers take? Fixed or variable length slots may be used.

Early systems had many restrictions, such as a maximum number of messages outstanding (sent but not received) from any 

one process, in order to control the space used. Mach and Conic employ a scheme of this kind, but each process message 

buffer is specified as having a maximum size. A buffer slot used for a request message was sometimes reserved for the 

associated reply message to avoid contention (Brinch Hansen, 1970).

The amount of memory required is less of a problem now than in early systems which had both a small virtual address space 

and a small amount of physical memory. Current systems use a great deal of buffer space for communications messages as 

well as messages between local processes. Communications protocols are designed to take account of lost messages: if 

there is no space a message can be discarded and a reliable protocol will detect this and resend the message.

An alternative to a large shared system buffer is to keep messages in the address space of processes, for example, in output 

ports. Problems here are that this part of the process address space should not be swapped out to disk and that the process 

should not be able to change a message after sending it. Copy-on-write memory management can be used here (see below). 

If messages are held at the process level it is easy to acquire more memory for the data structures which hold them by 

making a system call. If messages are held in a buffer in the kernel, the space allocated for this purpose may become 

exhausted.

2.

Memory management techniques

Can memory management techniques be used in order to transfer large amounts of data between processes without 

copying? Within a single system a segment name could be passed in a message and the segment could be mapped out of 

3.



the sender's address space and into the receiver's. Alternatively, the segment could be mapped into both address spaces and 

the processes could synchronize their accesses to it by the shared memory techniques described in Chapters 10, 11 and 12. 

This was available in the UK GEC 4000 series in the 1970s.

Another possible scheme is for the system to manage a number of pages which can be mapped into the address spaces of 

processes. In advance of creating a message a process asks the system for a page or pages. These pages are temporarily 

mapped into the sender's address space while the message is created. On SEND, the pages are unmapped from the sender 

and mapped into the receiver's address space. This technique is an efficient means of sending data to a network interface for 

transfer to a remote machine as well as for cross-address-space inter-process communication.

Copy-on-write techniques may be used to implement message passing. For example, when a message is sent its pages may 

be mapped copy-on-write in both the sender's and the receiver's address space. The physical pages are not copied. If either 

process makes a write access to a message page a new physical copy of that page is made and each process is then given 

read/write access to a separate copy of the page.
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14.7 Synchronous message passing

A message system in which the sender is delayed on SEND until the receiver executes WAIT avoids the overhead of message buffer 

management. Such a system is outlined in Figure 14.11. The message is copied once (or mapped) from sender to receiver when they 

have synchronized. The behaviour of such a system is easier to analyse since synchronizations are explicit. Figure 14.12 illustrates 

possible synchronization delay for Figure 13.7(d).

Figure 14.11. Implementation of synchronous message passing.

Figure 14.12. Synchronization in synchronous message passing.



In practice, explicit synchronization is not feasible in all process interactions. For example, an important system service process must not 

be committed to wait in order to send a reply to one of its many client processes. The client cannot be relied on to be waiting for the reply. 

A device handler, for example, must get rid of its data quickly in order to be free to respond to the device. It cannot wait for a high-level 

client to ask for the data.

Processes with the sole function of managing buffers are often built to avoid this synchronization delay in synchronous systems. We have 

removed message buffering from the message passing service only to find it rebuilt at the process level. The advantage of this is that the 

kernel has less overhead than in asynchronous systems and the time taken to manage message buffers is used only by those processes 

that need them, thus avoiding system overhead for others. See Exercise 14.4 for an alternative approach.

An outline for a buffer management scheme is given in Figure 14.13. Clients interact with the server through an interface process which 

manages two buffers, one for requests to the server, one for replies from the server. The interface process answers to a well-known 

system name for the service. Although the interface process must synchronize with the server process and its clients it never commits itself 

to synchronization with a specific process, and takes any incoming message. It might be possible for server messages to be given priority 

over client messages in the primitives provided, as discussed above in Section 14.5. Since the real service is carried out by a process 

which is anonymous to its clients, this scheme could be used to allow a number of server processes to perform the service, each taking 

work from the interface process.

Figure 14.13. Server buffering in a synchronous message passing system.
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14.8 Message passing in programming languages

So far we have concentrated on the implementation and interface of the message passing system rather than on a high-level language 

view of message passing.

Software that is to run in a single address space is likely to be developed as separate modules and to require linking, often into a single 

load module. The linking phase involves type checking of the parameters for inter-module calls. When processes execute in a single 

address space their presence and interactions need not be visible at linking and loading time since the data passed between processes is 

type-checked as part of the normal module linkage procedure. In shared-memory systems, this data is just procedure call arguments.

In a system where processes run in separate address spaces, the load module for each one will be created as described above. The data 

passed in the bodies of messages in this case passes between address spaces and we should consider whether it is type-checked.

Recall that the input ports and output ports of CONIC, described above in Section 14.5.4, were assumed to be declared in the CONIC 

programming language. A message sent to or received from a port is type-checked against the port declaration. A configuration language 

is used to set up links between ports which must be of the same type. Type checking of the data contained in messages is therefore done 

both at compile time and at configuration time. Chapter 16 discusses this issue for cross-machine IPC.

Message passing can be incorporated in a high-level language directly, in the form of any of the variations of the SEND and WAIT 

primitives we have discussed above. We now consider two approaches which give the programmer different abstractions for message 

passing.

14.8.1 occam channels for synchronous communication

The concurrent programming language occam is based on synchronous communication, and processes do not share memory. occam 

evolved from the earlier language specification and formalism CSP (Communicating Sequential Processes) (Hoare, 1978). In CSP, named 

processes are the source and destination of a communication. In occam, communication takes place via a named channel.

In occam, IPC is equivalent to assignment from one process to another. An assignment statement

variable := expression

is distributed between two processes: one holds the variable, the other evaluates the expression. The value of the expression is 

communicated along a channel known to both processes.

Destination process Source process

channel ? variable channel ! expression

For example, x:= y+z could be distributed as:

channelA ? x channelA ! y+z

These three kinds of statement (input, output and assignment) may be composed sequentially or in parallel using SEQ and PAR 

respectively. A small example is as follows (see Figure 14.14).



Figure 14.14. occam example.

Declare a non-terminating procedure which takes a value from channel source and outputs its square on channel sink:

PROC square (CHAN source, sink)=

WHILE TRUE

VAR x:

SEQ

source ? x

sink ! x x x

and use the procedure, for example to create a pipeline:

CHAN comms:

PAR

square (chan1, comms)

square (comms, chan2)

occam is intended to be a simple language with few constructs, after the philosophy of William of Occam. It is often called a high-level 

assembler for the transputer rather than a high-level language. It enforces a static declaration of processes and is therefore applicable to 

embedded systems rather than general-purpose systems. Many examples can be found in Dowsing (1988), Burns (1988) and Inmos 

(1984).

14.8.2 The Linda abstraction

Linda was developed in the early 1980s (Gelernter, 1985) as a concurrent programming model which aims to give a high-level, abstract 

view of IPC. Linda is not a complete new programming language, but a set of primitives that may be used to augment a sequential 

programming language, such as C, C++ or Fortran. Carriero and Gelernter (1989) evaluate Linda in comparison with other concurrent 



programming paradigms and give examples and references on its use. Andrews (1991) includes Linda in his overview of concurrent 

programming languages.

In message passing systems, the message passing mechanism is only concerned with the message header, and not the internal structure 

of the message (see Section 14.4). The header is used to indicate the destination(s) of the mess-age. In Linda, tuples are used instead of 

messages to communicate information between processes.

A tuple is a series of typed fields. Unlike messages, tuples are data objects within the programming language. An example is:

('tag', 15.01, 17, 'a string')

where each field is either an expression or a formal parameter of the form ? var, where var is a local variable in the executing process. The 

'tag' field is a string literal which is used to distinguish between tuples.

Tuples do not need to have a recipient's name appended as part of a header (following system-defined rules), but instead are deposited 

into and extracted from 'tuple space' (TS). Depositing a tuple into TS is a non-blocking operation.

A process that wishes to 'receive' a tuple does not need to know who sent it. TS is logically shared by all processes and tuples are 

received by an associative search mechanism; that is, a process can extract a tuple by giving a template of what it requires to have 

matched in the various fields, as illustrated below. The application programmer can decide, for example, whether one process or any 

process of a given type or any process that knows about a particular tag in a field of a tuple, etc., should pick up the message. A receiver 

blocks if there are no matching tuples.

Tuples exist independently of the processes that created them and a multituple data structure in TS may have been created by many 

processes.

The Linda primitives are:

out causes a tuple to be generated and deposited into TS;

in removes from TS a tuple that matches a specified template;

rd reads a tuple that matches a specified template but does not remove it from TS;

eval causes a new process to be created. The process executes an assigned routine and, on termination, generates a tuple in TS.

For example, the tuple generated by:

out ('tag', 15.01, 17, 'a string')

can be read by:

rd ('tag', ? f, ? i, 'a string')

where f is a real variable and i is an integer variable in the executing process.

The eval primitive can be used by a parent to offload work onto a child and later to pick up the result in the form of a tuple. Alternatively, a 

child can be created in order to generate a tuple to communicate with some other process.

Exercise 14.9 invites the reader to compose a client–server interaction using the Linda primitives. In this case a server must be concerned

with who deposited a tuple to make a request for service in order to return a reply tuple.

More examples can be found in the Bibliography but the flavour tends to be of small-scale computations rather than large-scale systems.

Potential problems are in the following areas:

Naming in the form of simple, unstructured strings is used to discriminate between tuples.

Protection is a potential problem in that all processes share TS. Any process can read or extract any tuple it can match. This is 

acceptable within a small-scale application but not for programming a general system, where processes do not necessarily trust 



each other.

Efficient implementation is difficult to achieve, even in a centralized system. The implementation needs to be concerned with 

the contents of the various fields of the tuples and not just a message header, as in a message system. The distinction 

between a message header, of concern to the system, and a message body, of concern to the application, is clean at the IPC 

implementation level if inflexible to the applications above it.

It is not clear how distributed implementation of a global shared TS abstraction would be achieved.

The tuple space paradigm has been used for JavaSpaces within Jini, see Section 29.2.3.
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14.9 Multi-threading in clients and servers

When we considered shared-memory-based IPC in Chapter 12 we found that the possibility of dynamic process creation should be taken 

into account. A child can be created to invoke the service (by procedure call) and the parent can, later, synchronize with the child to 

receive the results. The parent process can carry out work in parallel. The same arguments apply in message passing systems if 

multi-threaded processes are supported and threads may be created dynamically. A child may be created to invoke a service (by 

message passing) and the parent can continue with work in parallel. This may make simple message passing primitives feasible which 

are too inflexible for use by single-threaded processes.

A common requirement in system design is the server that can serve many clients simultaneously; the example of a file server was taken 

in Chapters 4 and 9. Even if such a server receives requests for service in the form of messages, we have the same need for multiple 

internal threads of control: the work for one client may come to a temporary halt and work should proceed on behalf of another. All such 

threads may need to access the same system data structures and the shared-memory model of lightweight thread creation and access 

to shared data by shared-memory techniques is desirable within the server.

Multi-threading may be used to solve the problem described above in Section 14.8; in a synchronous message passing environment a 

heavily used system server must not be delayed, waiting for a client to synchronize in order to receive a reply. With multi-threading, the 

server can create a thread to handle each reply, even if a separate thread has not been used to serve each client.

A system design should therefore support shared-memory techniques as well as cross-address-space message passing.

Further reading on the implementation and use of threads may be found in Anderson et al. (1992), Birrell (1991), McJones and Swart 

(1987), Nelson (1991) and Pham and Garg (1996). Ousterhout et al. (1980) are early in discussing the requirements for threads.
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14.10 Summary

Asynchronous message passing was motivated as a general mechanism suitable for cross-address-space IPC. A number of variations in 

the primitives and in the detailed design and use of messages were described. Various naming schemes for the sources and 

destinations of messages were also considered.

Implementation was discussed in some detail. The overhead introduced into the system by buffer management and message copying 

can be alleviated by the use of memory mapping. Alternatively, by using ports associated with the particular processes concerned in a 

message exchange, the space and time overhead may be allocated to the processes using the facility.

Synchronous message passing avoids copying messages into system buffers at the expense of delaying the sender of a message as 

well as the receiver. Buffering processes have to be implemented to avoid important server processes being delayed, waiting for less 

important client processes. A synchronous system is easier to model mathematically than an asynchronous one.

The Linda approach was introduced briefly and compared with message passing. Although the Linda primitives may be convenient and 

flexible for the writers of concurrent applications, there are many systems issues, such as naming, protection and distribution, to be 

addressed before Linda can be considered as a basis for systems in general.

Message passing is a general mechanism which can be implemented with many subtle variations to satisfy the specific requirements of 

the system that is to use it. It can be incorporated into the programming language level and, in this case, type checking of the message 

contents can be carried out with the same generality as in the languages for shared-memory systems. Flexiblity in system development 

can be offered in that the binding of modules to machines can be deferred until configuration time or even until runtime.

In a system based on message passing we still need multi-threaded server processes which can work on behalf of many clients 

simultaneously. The internal implementation of such a server is best done in terms of shared-memory-based communication; a system 

should support both shared-memory and message-based IPC. The availability of multi-threaded processes affects the choice of 

message passing primitives. Simple primitives may suffice in a system with multi-threaded processes and dynamic process creation, 

whereas more complex primitives might be required to do the same job in a single-threaded environment.

Message passing extends naturally to distributed systems and many of the examples given here have been taken from distributed 

operating systems. To discuss distributed message passing properly we need to consider how network communication is used. Also, 

processes may fail independently of each other in distributed systems. These issues are addressed in Chapter 16.

Study questions

S14.1 What is an application protocol, and where is it used?

S14.2 What parameters do the SEND and WAIT primitives usually have? What are the purposes of the parameters?

S14.3 What mechanism is used to enable asynchronous message passing (in which the sender is not blocked on SEND)?

Exercises



14.1 Contrast the UNIX pipe facility for same-machine, cross-address-space IPC with message passing.

14.2 Suggest ways in which memory management hardware could be used for passing large messages between processes 

in separate address spaces. Consider both the case when the message is available to both sender and receiver after 

the message is sent and the case when the send involves only a transfer from one address space to another. Which 

semantics do you think should be the default and why?

14.3 Suggest two ways in which the handling of message passing between processes may be unified with process–device

interactions.

14.4 What problems do you think would arise if synchronous message passing was used to implement interactions 

between client processes and heavily used servers?

(a) How might multi-threading be used in the server to solve this problem?

(b) How might a separate process be used to solve the problem?

(c) What are the advantages and disadvantages of (a) and (b)?

14.5 How can language-level type checking be included in a message passing system?

14.6 In what ways can the naming of a specific destination process be avoided in a message system design? Why is this 

desirable?

14.7 What is meant by multicast? What kind of naming service would be needed to support multicast?

14.8 Why might it be important to be able to specify a limit on the time that one is prepared to wait for a message?

14.9 Use the Linda primitives introduced in Section 14.8.2 to program the interaction between a single centralized file 

server and its many clients. Generalize your solution to many file servers offering a file service.
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Chapter 15. Crash resilience and persistent data

15.1 Crashes

15.2 A model of a crash

15.3 Crash resilience or failure transparency

15.4 Idempotent (repeatable) operations

15.5 Atomic operations on persistent objects

15.6 Implementation of atomic operations

15.7 Non-volatile memory

15.8 A single operation on persistent data

15.9 Database management systems' requirements on operating systems

15.10 Summary
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15.1 Crashes

Part II is concerned with the execution of a single action by one process concurrently with and without interference from the execution of 

related actions by other processes. So far we have not considered that a system might crash at any time. In this chapter we consider this 

problem in relation to the execution of such a single concurrent action. In Part III higher-level actions comprising multiple lower-level 

actions are considered. Figure 15.1 shows an operation invocation. We are not concerned with the means by which the invocation takes 

place, for example, by procedure call or by message passing.

Figure 15.1. An operation invocation.

We also assume that the action of invoking the operation takes place in the same machine as the execution of the invoked operation. In 

this case a crash causing the loss of the contents of main memory causes all the computations to fail together. Invocation from one 

machine of an operation on another machine will be considered in the next chapter.

Figure 15.2 shows that a single operation invocation might have externally visible effects. It might read input, do output, cause a write to 

persistent storage or communicate with another process. A crash might happen after one or more of these effects have occurred but 

before the end of the operation. What, if anything, should the system do before the invocation is repeated? From the point of view of this 

chapter we shall consider that communication with another process brings us into the management of sets of related actions and will leave 

that issue for Part III. We shall therefore consider only those externally visible actions of concern to this process.

Figure 15.2. An operation invocation with externally visible effects.



For example, take a transaction processing (TP) system, which involves large persistent stores (e.g. databases), which may be accessed 

concurrently by many transactions (i.e. client requests) on the database. Suppose a client of such a TP system invokes a credit operation 

on a bank account, as part of an electronic funds transfer, and the system replies 'done' if the credit has been performed correctly or 'not 

done' if there is some error such as an unknown account name. There are two externally visible effects: the updated value of the account 

and the response to the user. In this example these effects are related: if you tell your client you have done an operation you must first 

have recorded its results in persistent memory.
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15.2 A model of a crash

A simple model of a crash will be taken initially, a fail–stop model. We shall assume that a crash happens at some instant rather than 

over a period of time. It results in the instantaneous loss of volatile state: the processor registers, the cache and memory management 

unit, and the (volatile) main memory. Any changes that have been made to persistent state, for example in any non-volatile memory and 

disk-based storage, are assumed to be correct, but may be incomplete. By making this simplifying assumption we avoid considering how 

incorrect system software may behave before finally causing a crash. In Section 15.7 we take a more realistic look at the likely behaviour 

of failing software.

Schlichting and Schneider (1983) discuss the fail–stop model. For further reading, Lamport et al. (1982) present an approach to 

reasoning about failing distributed systems which has become the classic 'Byzantine Generals Problem'.
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15.3 Crash resilience or failure transparency

If a program runs on a single machine and a failure occurs we assume that all the memory is lost; that is, all the data structures of the 

program are lost. If no externally visible effects have been caused by the program it is as though it had never run and it can simply be 

restarted. In practice, every program will eventually perform output or cause some change of permanent state or communicate an 

intermediate result. If a crash occurs during a program run and after such an externally visible action, we consider how to restart after 

the crash.

An aspect of system design is the extent to which an application is offered support to recover from system crashes. Another name for 

crash resilience is crash or failure transparency. In this chapter methods of achieving crash resilience are outlined. A general point is 

that there is a high overhead associated with these methods and some applications will not require them. Crash resilience should 

therefore, in most systems, be an optional extra rather than being imposed on every application.
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15.4 Idempotent (repeatable) operations

In certain simple cases it is possible to ensure that an operation can be repeated without causing any errors or inconsistencies. When 

deciding how certain operations should be specified, for example the form their arguments should take, it may be possible to choose an 

idempotent implementation. For example, the repeatable method of writing a sequence of bytes to the end of a file is to specify the 

precise byte position at which the new bytes should be written and make this an argument of an 'append' operation. If an append 

operation is relative to a system-maintained pointer, the bytes could be written more than once if the operation was repeated. It is not 

always possible to achieve repeatable operations.

This point becomes more important in distributed systems, when a congested network may cause a reply message saying 'operation 

done' to be greatly delayed or lost. The invoker does not know this and repeats the request when the operation requested has already 

been carried out.
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15.5 Atomic operations on persistent objects

The concept of an atomic operation is necessary for a systematic approach to analysing and solving the problem of making an operation 

repeatable. An atomic operation invocation is defined as follows:

if it terminates normally then all its effects are made permanent;

else it has no effect at all.

Note that this definition (which focuses on crash resilience) does not take into account the fact that the persistent data being accessed 

might be shared with other processes (that is, concurrency control is also needed). In this case we should add:

if the operation accesses a shared data object, its invocation does not interfere with other operation invocations on the same 

data object.

It is essential to provide atomic operation invocations in some transaction processing systems, as argued in Section 1.1.4. They are 

called transactions, that is, the term transaction implies atomicity. Examples are banking and airline booking systems.

A programming language which supports atomic operations will provide a means of defining the start and end of a given transaction. If 

the operation completes successfully it is said to commit (and its effects are guaranteed to be permanent); if it does not complete it 

aborts. The system must make sure that all the effects of an aborted transaction are undone, as though it had never run. The result of 

an invocation, commit or abort, is usually notified to the invoking client (a human user or other software).

Suppose, again, that a client of a TP system invokes a credit operation on a bank account as part of an electronic funds transfer, and the 

system replies 'done' if the credit has been performed correctly or 'not done' if there has been some error such as an unknown account 

name. Suppose the system crashes after the invocation has started but before 'done' or 'not done' is sent to the client. The record in 

persistent store of the value of the bank account might or might not reflect the credit.

If credit is an atomic operation then the invocation which did not complete correctly must be undone; effectively it never happened. When 

the system comes up again the client repeats the operation. This invocation updates the account correctly and 'done' is received by the 

client. There is no possibility of multiple, and therefore incorrect, credits (or debits). Also, once the client has received 'done' the credit 

must persist, even if there is a head crash on the disk on which the account is stored.

General points are therefore:

Computer systems crash, data in main memory is lost.

If the system tells a client (human user or software) that an atomic operation has been done then the changes made by it 

must have been recorded in persistent store.

15.5.1 Volatile, persistent and stable storage

We established above that an atomic operation must write its results to persistent store before it commits. We also emphasized that this 

record must persist, even if there is a medium failure such as a bad block or a head crash which destroys the surface of a disk. For this 

reason an abstraction called stable storage has been established.

A single write to persistent store does not guarantee that the information written will persist. In practice, the information is typically written 

to at least two independent places in persistent store, so that if one copy is lost the other can be used. The phrase 'write to stable 



storage' is used as a shorthand for such a replicated write.
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15.6 Implementation of atomic operations

Figure 15.3 illustrates the essentials for implementing an atomic operation on a persistent object. When the execution causes a write to 

persistent store, both the old value and the new value of the data must be recorded in some form, together with the identifier of the 

transaction that carried out the update. This is so that if a crash occurs before the operation completes, the old value can be restored. This 

is sometimes referred to as rolling back the state recorded in persistent store or undoing the operation.

Figure 15.3. A potentially atomic operation invocation.

This is a very general outline of atomic operations. In the context of Part II, a single operation invocation could be defined as involving only 

a single read, modify and write of a persistent object, and rolling back seems unnecessary at first sight.

However, if a crash occurs after the operation's single write to disk and before the operation returns, the invocation could be repeated. The 

final state recorded in persistent store could be affected by the first, abortive invocation, as in the credit example of Section 15.1.

Could rolling back be avoided? Input could be recorded and reused. Depending on the application, any output might be done again if the 

operation is repeated, or the output that has been carried out may be recorded and repeats avoided.

A great deal of overhead is associated with implementing atomic operations. The persistent store may be disk, in which case each write 

would require an acknowledged disk transfer. In some operating systems, for example UNIX, an apparent write to disk is merely a transfer 

into a cache in main memory and this would clearly not be good enough to implement atomic operations.

There are two basic approaches which may be used to support rollback: these are logging and shadowing.

15.6.1 Logging

When logging is used the persistent store is changed (updated in place) and a record is kept in a log. The log entry must contain an 

identifier for the transaction, the old data value and the new data value. The log will contain a number of records for each transaction, for 

example, a record indicating a new transaction, a number of update records and an end of transaction (or commit) record.

After a crash the log is processed in order to restore the persistent store to a consistent state. 

Any partially executed transaction can be undone; that is, the persistent store is rolled back to 

its state at the start of the transaction using the old values recorded in the log.



An important practical point is that the log must be written to persistent store before the data in the persistent store is changed. If these 

operations were carried out in the reverse order, a crash could occur before the log was written and after the data was changed and the 

old data values would be lost. The log must therefore be a write-ahead log.

Details of algorithms for log processing are considered further in Chapter 21.

15.6.2 Shadowing

An alternative mechanism is to leave the persistent data unchanged until the transaction is committed but to build up a shadow data 

structure which will replace it on successful termination (when the transaction is committed).

An essential technique here is to make the final switch between the old and new data structures achievable in a single operation, for 

example by changing one pointer. A crash can then occur only before or after the switch and not in the middle.

The implementation of shadowing may be built at the level of disk pages: a shadow paging mechanism. This is because the disk is written 

in units of fixed-sized blocks or pages. This technique can be used in filing systems where the data structures kept by the file storage 

service (which themselves are stored in disk pages) map the disk pages in use for storing files, directories and so on.

Figure 15.4 gives an example of one way in which a shadow paging scheme might be used. Here we see a representation of an old and 

new version of a given object. The figure shows the stage at which all the object's data is safely written to the disk, as are the pages 

containing the old and new version of the metadata. The figure illustrates a scheme where a certain disk block contains a mapping from an 

object's name to the location of its metadata. The change from the old version of the object to the new one is achieved by overwriting this 

block with one containing the new pointer.

Figure 15.4. An example illustrating shadow paging.



We can make the simple assumption that the write of a single disk block is atomic. Either the new block is written, in which case we have 

switched to the new version of the object, or it isn't, in which case we still have the old version. If we are not prepared to make this 

assumption and there is a crash during the write of this page we can read it back on restart and examine the pointer. If the crash took 

place before this pointer was transferred we still have the old version; if afterwards, we have the new version. This assumes that writing a 

single pointer is atomic.

An alternative scheme is that the object's name maps onto a particular metadata location on disk. In this case, having written the data 

pages to disk, we can overwrite the old metadata with the new.
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15.7 Non-volatile memory

Non-volatile RAM (NVRAM) costs about four times as much as normal RAM and has become available in increasingly large units, 

currently up to about 10 megabytes. A cheaper alternative is battery-backed RAM. There are many potential uses for non-volatile 

memory, for example:

for caching data in a file storage service. This allows fast response to write requests, but gives the assurance that the data is 

stored securely, normally achieved by an acknowledged write out to disk;

to hold the file service's data structures. When a change is made it need not be written out immediately, to achieve 

consistency of the stored filing system;

to accumulate requests for writes to disk and to order them for use by an efficient disk-arm scheduling algorithm;

if NVRAM is available to high levels of system software which have knowledge of the semantics of data at a fine granularity, 

then shadowing can be implemented at a finer granularity than disk pages. When the new data structure is complete it can be 

written to the disks of the storage service in its entirety.

A good discussion of the options and technology is given in Baker et al. (1992).

In practice, a system may not fail in the fail–stop manner described in Section 15.2. Wild addresses might be generated while the system 

is failing, causing writes to areas of memory that were not intended. This behaviour might cause the data we are carefully preserving in 

non-volatile memory to be corrupted. Also, we may be taking advantage of the availability of NVRAM to hold more data in main memory 

and deliberately delaying its write to disk. Have we made our system more vulnerable to this kind of failure behaviour by using NVRAM?

Because a very specific protocol has to be followed for writing to disk it is unlikely that failing software will write all over the disk by 

accident. In this respect, NVRAM is more vulnerable than disk.

Recall from Chapter 6 that filing systems may keep data in a volatile cache in memory. In some systems data may not be written out as 

soon as possible, but may be kept in memory until the buffer space it occupies is needed. Also, the filing system's metadata is changed 

in volatile main memory before being written out to disk. There is therefore the possibility that failing software might corrupt these items 

before they are written out. This is equally true for volatile and non-volatile memory, although we are likely to keep more data in memory 

for longer if we have NVRAM. To achieve crash resilience we should not only store this data in NVRAM, but also protect the NVRAM 

from corruption. If this is possible we shall have achieved both better response to write requests and better protection of data and 

metadata through using NVRAM.

One approach to protecting NVRAM is to require a simple protocol to be followed in order to write to it (Needham et al., 1986). Another is 

to use memory management hardware to protect it. It is unlikely that failing software would accidentally change the memory 

management tables correctly and give itself access to NVRAM by accident.
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15.8 A single operation on persistent data

For most of Part II we have considered the case where the data structures accessed by concurrent processes reside in main memory. In 

order to consider the effects of crashes we have started to look at the externally visible effects of operations. We have therefore begun to 

focus on persistent store. Figure 15.5 shows an operation (specified as part of a module's interface) operating on persistent data. An 

example is an implementation of an airline booking system, as used in Section 9.7.1, where we focused on the value in main memory of 

the variable unbooked-seats. In fact, the information on a particular flight would be retrieved from persistent memory before being tested 

and updated in main memory:

if unbooked-seats > 0

then unbooked-seats = unbooked-seats - 1;

Figure 15.5. An operation on persistent data.

The result would then be written back to persistent memory. The single operation therefore involves a read, modify, and write of persistent 

memory.

An obvious concern is whether another concurrent process could access the same data object in persistent store at the same time. In the 

next section we consider one approach to solving this problem. The basic model there is that an application-level service, such as a 

DBMS, manages the persistent data of the application. We assume that any service of this kind is likely to be multi-threaded; that is, 

several threads will be executing the service code at a given time, on behalf of different clients.

The persistent data is assumed to be stored in files and the operating system 

provides file-level concurrency control (see Sections 6.2, 6.7.3). The application 

service reads any required data from the relevant files into main memory. The 

application service is therefore in a position to carry out any fine-grained 

concurrency control that is required; that is, a given data object which is stored as a 

component of an OS file may be locked by and within the application service on 

behalf of a client.

In general, a concurrent program may need to access persistent data objects that are stored within operating system files. Let us first 

assume that the program is seen by the operating system as a single, possibly multi-threaded, process. The OS sees the process as the 



unit of resource allocation and will allow any thread of that process to open the files to which it has access rights. The situation is as 

described above for an application service.

If the system comprises several (heavyweight) processes, these are seen as separate units of resource allocation by the operating system. 

The access rights associated with OS files may be set up so that any of the processes comprising the application may read, write and so 

on. It is the responsibility of the system developer to organize any required sharing of data objects stored in these files.

The next section highlights the points raised in this discussion. A system may need to access persistent data stored within OS files and 

may need to implement atomic operations. Its developer must know in detail how certain functions of the operating system on which it will 

run are provided.

[ Team LiB ]  



[ Team LiB ]  



15.9 Database management systems' requirements on operating systems

When a system which must provide transactions (such as a DBMS) is implemented above a general-purpose OS, the following must be 

considered:

the file buffer management policy of the OS;

the concurrency control facilities provided by the OS.

When the DBMS makes a file-write request, and the OS says 'done', the data must have been written to persistent memory. It is not 

sufficient for the data to get as far as an OS buffer in volatile main memory. A crash could occur and the data could be lost. In the 

meantime, the DBMS has told its client that the operation is committed and has no means of effecting this.

As we saw in Chapter 6, a file management system provides facilities for its clients to specify who can use a given file and in what way. 

Assuming that several users have write access to a given file and are running processes simultaneously, there could be simultaneous 

requests to open the same file for writing. If the file system has mandatory concurrency control (see Section 6.2), then a multiple reader, 

single writer policy might be enforced, making concurrent write access, or simultaneous read and write access, impossible. The first 

process to open the file for writing has exclusive access to all of it.

In a centralized system this might work well enough. A client of the filing system that wished to manage a database (the client is a DBMS), 

and make it available to its own users in turn, would own the files holding the data and would take out a write lock on them. It would then 

take concurrent requests from users and manage any sharing of small parts of the data. Figure 15.6 shows such a centralized DBMS.

Figure 15.6. A DBMS using an operating system.

It might be difficult to implement a distributed DBMS in this way, since the several DBMS components would be perceived by the operating 

system as competing rather than cooperating users of its files. If the filing system has a more enlightened concurrency control policy it 

might allow its clients to build systems in which concurrent write access is allowed. Operations which lock files might be provided separate 

from the normal file operations. Shared locks and exclusive locks could be provided without any association with reads and writes. 

Distributed DBMS components could take out a shared lock and cooperate to ensure that concurrent clients did not access the same part 

of the data at the same time.

Operating systems may support shared or exclusive locks on whole files, but do not support fine-granularity locking on small portions of 

files. This is done by the DBMS.



Database management systems are discussed in greater detail in Part III.
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15.10 Summary

Computer systems crash and main memory is lost on a crash. If a single operation invocation takes place in the main memory of a single 

computer and has no externally visible effects then there is no need for crash resilience. If the operation has written to a persistent object 

we have to decide what to do if there is a crash before it completes. We should design operations to be idempotent (repeatable) if it is 

possible to do so, but this is not always possible.

We defined atomic operations on persistent objects as a basis for studying the more general case. An atomic operation either 

completes successfully, in which case its results are guaranteed to persist, or the system state is restored as though the operation had 

never been invoked. If you tell a client an operation is done (by output, which is one form of externally visible effect of an operation) then 

its results must first have been written to persistent memory.

There is a great deal of overhead associated with supporting atomic operations on persistent objects. The system must be able to undo 

an incomplete operation. Approaches to achieving this were outlined, but more detail will be given in Part III.

We considered what is meant by a 'single operation' on persistent data. In Section 9.8 a read–modify–write sequence of operations on

data in main memory was shown to comprise a single operation, such as 'book a seat'. The point made there was that several reads and

writes of data in main memory may be necessary to achieve a change to a data object. The additional point made in this chapter is that

unless the result of the operation is recorded in persistent memory a crash might destroy any record that the operation ever took place

(even though the client has been notified that the seat is booked). Computers crash, so we must use persistent store to implement

atomic operations on persistent data.

Access to persistent data is likely to be via an operating system and concurrent write sharing of OS files (introduced in Chapter 6) was 

revisited. The DBMS will manage fine-grained component locking within a file whereas the OS is concerned only with whole file locking. 

If atomic operations are to be supported, the DBMS must know when data has been written to persistent memory by the OS.

The final chapter of Part II discusses a single operation invoked from a remote machine. In this case it is necessary to consider the 

possibility that either the invoking system or the system containing the invoked operation might crash at any time.

Study questions

S15.1 What is an externally visible effect? Explain, giving an example, why such effects are significant when a crash occurs.

S15.2 What is the fail–stop model of a crash? Why is such a model inadequate?

S15.3 If a program runs on a single machine, a failure occurs and no externally visible effects have been caused, the 

program can simply be restarted. Why?

S15.4 What is an atomic operation invocation on a persistent object in a concurrent setting?

S15.5 For crash resilience, what must be done when an atomic operation aborts?

S15.6 In logging, what might happen if log information is written to the persistent store after the data updated by the atomic 

operation is written there?



S15.7 What is shadowing? What essential feature is required to ensure that shadowing is implemented successfully?

S15.8 A DBMS will normally 'sit on top' of an operating system. What is the main problem that occurs in this situation?

S15.9 If an operating system supports mandatory concurrency control, what difficulty occurs in the implementation of a 

distributed DBMS? What might be an answer to this problem?

Exercises

15.1
How do you think an operating system which has bugs and is about to crash might behave differently from

the fail–stop model described in Section 15.2?

a.

Why is it unlikely that an operating system that is about to crash will write all over the disks it manages?b.

Is it more likely that an operating system that is about to crash will write all over main memory? Note that 

such erroneous writes may be to non-volatile memory that is being used as a cache for data and metadata 

waiting to be written to disk. How could it be made less likely that a non-volatile cache would be corrupted 

in this way?

c.

15.2 Define 'idempotent operation' and 'atomic operation'. Give examples of operations that can and cannot be made 

idempotent. How can an operation that cannot be made idempotent be made atomic? Consider objects that reside 

only in memory and objects that reside in persistent memory.

15.3 How would you support atomic operations in a system which updates persistent data values 'in place'; that is, the new 

values overwrite the old values in the persistent store?

15.4 What is meant by a shadow copy of a portion of a filing system?
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16.1 Introduction

In Chapter 2 we set up a context of modular software. In Chapter 7 we studied distributed systems in general terms, introducing the model 

of a distributed software system, its architecture and how it might be engineered. In Chapter 13 we explored IPC and system structure, 

contrasting the style of system design where processes inhabit separate address spaces, and IPC is via cross-address-space message 

passing, with that where processes share an address space and synchronize their activities via monitors. We saw that in general terms the 

functionality that can be built with one style of system design can also be built with the other. Chapter 29 gives a broad coverage of the 

design of middleware and currently available middleware systems. In this chapter we will discuss some of the issues that arise when a 

modular software system is distributed over several computers and the active processes that execute it need to interoperate.

Figure 16.1 gives the general context of a number of clients invoking a service across a network. The questions that arise from the figure 

are:

 How should the service be implemented in terms of concurrent processes? Ideally, for a substantial 

service, we should like to use a multi-threaded process with threads that are known to the operating system.

How should the distributed service invocation be implemented? In previous chapters we have studied methods of service 

invocation without specifically relating them to a centralized or distributed implementation. We now focus on distributed IPC.

How is the IPC integrated with the lower levels of communications service provided by the operating system?

Figure 16.1. Client–server interaction in a distributed system.



In this chapter we attempt to answer all of these questions.
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16.2 Special characteristics of distributed systems

In Section 7.5 we discussed the fundamental properties of distributed computations: concurrent execution of their components, 

independent failure modes, lack of global time and inconsistent state. The issue of main concern in this chapter is that a component of a 

distributed computation may fail while other components continue to run, or a component may be unreachable because of a connection 

failure. In a centralized implementation the whole system fails together.

In a distributed system a process on one node may invoke an operation on another which, in turn, may invoke an operation on a third 

node, as shown in Figure 16.2. Any one of these nodes may crash independently of the others at any stage in the invocations. Also, the 

network connections between the nodes may fail while the nodes continue to run. When programming distributed software it is therefore 

necessary to allow for the fact that a call to a remote system may never return, if the system or connection has failed, or may take a long 

time if the system or connection is congested.

Figure 16.2. A nested invocation.
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16.3 Distributed IPC: Message passing

16.3.1 Distributing IPC

Figure 13.7 summarizes the styles of inter-process communication mechanism that can be used for operation invocation. Chapter 12

discussed in detail the shared-address-space mechanisms illustrated in parts (a) and (b) of the figure and Chapter 14 expanded on parts 

(c) and (d). It is easy to see how to distribute the cross-address-space IPC of Figure 13.7(c) and (d): the address spaces of the 

communicating processes may naturally reside on separate computers and the messages that pass between them must be sent via 

network communications services.

In this book we do not attempt to distribute Figure 13.7(a) and (b) directly, although it is possible to create the illusion of a single large 

address space spanning several computers. A number of 'distributed shared memory' (DSM) systems have been built by research teams; 

an internet search will yield a large number of projects. Instead, as well as distributed message passing, we will study the more general 

remote procedure call (RPC) mechanism which has led to international middleware standards and products. For RPC we assume an 

address space, on one computer, for the calling process and another address space, on a different computer, for a process managing the 

called procedure. The procedure call and return arguments are packaged into messages by the RPC service, which exists on every 

computer hosting the distributed system, and the messages are sent via cross-network communication. Details of RPC, including the 

handling of failures, are given in Section 16.7.

A design decision for a distributed IPC scheme is whether the fact that processes are distributed is transparent to the application, by which 

we mean that a process which communicates with another process does not have to know whether it is on the same machine or not. If 

distribution transparency is not provided another design decision relates to location transparency; that is, whether the location (host 

address) of the recipient of IPC must be known by the sender. The example in Section 16.5 illustrates a scheme which is not location

transparent. We now consider how a distribution-transparent message passing mechanism might be designed.

16.3.2 Distributed, asynchronous message passing

Figure 14.2 shows asynchronous, cross-address-space message passing on a single node, indicating an implementation level with 

routines to effect the SEND and WAIT primitives and a data structure for buffering the messages sent to process B. In a single node we 

can assume that the IPC implementation knows the name of the destination of any message and can deliver the message. We now 

develop a distributed message passing system, starting from this centralized design.

Figure 16.3 shows one approach to implementing distributed asynchronous message passing. The IPC management function is extended 

to invoke network communication. Process A now runs on node 1 and SENDs a message to process B which is on node 2. Process B 

WAITs for a message from process A. We assume that the IPC implementation on node 1 can detect that process B is not a local process 

and either knows or can find out that process B resides on node 2. There are several ways in which this naming and location function

can be provided in a distributed system, and we return to the topic in Section 16.11.

Figure 16.3. Distributed message passing.



The implementation of a SEND message on node 1 can invoke network communication software to transmit the message to node 2. The 

network communication software on node 2 can receive the message from the network, and pass it to the IPC mechanism for delivery to 

the message buffer of process B. Figure 16.4 gives a higher-level view of the same procedure, showing virtual communication at the 

process level being implemented by real communication through the supporting levels and across the network. Recall that network 

communications software was discussed briefly in Chapter 3.

Figure 16.4. Virtual and real communication paths.



The basic approach illustrated here may be used to distribute any form of IPC transparently to the application. Here we have assumed that 

the kernel IPC implementation determines that a communication is to a non-local process and itself takes action to locate the destination. 

An alternative approach is used in the Accent and Mach kernels, where the kernel detects a non-local communication and passes the 

message to a local process which is responsible for all network communication, the NetServer process. The basic idea is illustrated in 

Figure 16.5. The IPC implementation now handles only local communication and the NetServer process acts as an indirection for remote 

communication. An advantage of this approach is that the kernel is kept simple. A disadvantage is the extra context switching and 

message passing between user-level processes (A and the NetServer) that is needed to send a message to a non-local process. 

Incoming messages are passed by the communications software to the NetServer process, which can use a local SEND to deliver them to 

their intended destination.

Figure 16.5. Using a process to handle remote communication.

[ Team LiB ]  



[ Team LiB ]  



16.4 Integration of IPC with communications

16.4.1 IPC above sockets

A socket is the operating system provided interface to communications services. In this section we see the system calls that any IPC 

support package, for example java.net, makes on behalf of the distributed system programmer. An example of Java socket programming 

is given in Section 16.5. In later sections we see how higher levels of abstraction are provided for the programmer.

The basic concepts at the operating system interface for integrating IPC with communications software are:

socket: an endpoint of communication;

domain: within which sockets are named and communication takes place. A socket operates in a single domain and the

address format of the socket depends on that domain. Each domain employs a single protocol suite.

Many domains are possible, for example, the internet domain (AF-INET) in which protocols such as TCP and UDP over IP are used (see 

Section 3.9). The address formats are internet addresses comprising a 32-bit host identifier and a 16-bit port identifier.

There are several types of socket. Each type may or may not be implemented in a given communication domain. Our Java socket example 

uses the stream socket.

A stream socket provides a reliable duplex data stream, a 'virtual circuit' in communications terminology. There are no record 

boundaries within the byte stream. In the UNIX domain a pipe may be implemented as a pair of sockets of this type (two 

communication endpoints). In the INET domain the TCP protocol supports this socket type.

A sequenced packet socket is used in the NS domain, supported by the sequenced packet protocol. These sockets are like 

stream sockets but, in addition, record boundaries are provided.

A datagram socket will transfer a message of variable size in either direction. This is an unreliable datagram service; that is, 

there is no guarantee that the order of sending will be preserved on receipt and a datagram might be lost. This type is 

supported by UDP (the user datagram protocol) in the internet domain.

A reliably delivered message socket is defined to provide a reliable datagram service and guarantees delivery of a message.

A raw socket allows direct access by processes to the protocols that support the other socket types. This is intended for use in 

developing new protocols. For example, a new protocol suite to support lightweight connections (a service between streams 

and datagrams) for multimedia working could be developed above the Ethernet protocol.

A socket is used via a descriptor which is created by:

socket-descriptor = socket (domain, socket type, protocol)

The newly created socket must have a name for another process to use it, for example, a port number.

bind (socket-descriptor, pointer to name, length of name in bytes)

The close system call closes a connection and destroys a socket, whereas the shutdown call allows one direction of the duplex connection 

to be closed. There are other calls such as getsockname, getsockopt and setsockopt.

We now look at how connection-oriented communication may be set up. We first show a connection between two processes and then 

show how a server may have simultaneous connections to a number of clients. After that we show how connectionless communication 



can be set up using sockets.

Pairwise connection

Two processes which wish to communicate must each create sockets and bind names to them. To establish connection:

connect (socket-descriptor, pointer to name, length of name in bytes)

indicates a local descriptor and remote socket name. When both processes have executed connect the communication can proceed.

An example of a one-to-one communication is as follows:

ProcessA:  

sA-id = socket (AF-INET, stream, default-TCP)

 bind (sA-id, <A-socket-name>)

ProcessB:  

sB-id = socket (AF-INET, stream, default-TCP)

 bind (sB-id, <B-socket-name>)

ProcessA:  

 connect (sA-id, <B-socket-name>)

ProcessB:  

 connect (sA-id, <A-socket-name>)

Client–server interaction via connection-oriented communication

In the case of a client–server interaction, the clients will know the name of the server, for example, a well-known port number, but not vice

versa. Two additional system calls are provided:

listen (socket-descriptor, queue-length)

which the server executes to tell the kernel that it is ready to accept calls for service. It also indicates how many requests the kernel should 

allow to accumulate.

new-socket-descriptor = accept (socket-descriptor)

which allows the server to take a single request for connection from a client. A new socket is created for that client.

An example of a client–server interaction is as follows:



Client processC:  

sC-id = socket (AF-INET, stream, default-TCP)

 bind (sC-id, <Client-socket-name>)

Server processS:  

sS-id = socket (AF-INET, stream, default-TCP)

 bind (sS-id, <Server-socket-name>)

ProcessC:  

 connect (sC-id, <Server-socket-name>)

ProcessS:  

 listen(emphasis>sC-id, <quece-length>)

sN-id = accept (sS-id)

Figure 16.6 shows a client–server interaction. The server creates and binds a name to a socket to function as the 'well-known' address of

the service. A client connects to that well-known name. An example of such a name is port 80 at the host's IP address on which web 

services conventionally listen.

Figure 16.6. Client–server interaction using sockets.



Connectionless communication

For connectionless communication, datagram sockets are used as follows:

byte-count = sendto (socket descriptor, data-buffer-pointer and length,

address-buffer-pointer and length)

byte-count = recvfrom (socket descriptor, data-buffer-pointer and length,

address-buffer-pointer and length)

The number of bytes transferred is returned in each case. The address buffer contains the destination address, for example the host IP 

address and the port number, on sendto and the source address is supplied by the system on recvfrom.

Any style of process interaction can be built above connectionless communication. For client–server programming it avoids the restriction

on the number of clients a server may handle simultaneously. Nevertheless, connections are often set up for the purpose of a single

client–server, request–response interaction, after which they are torn down; the example in Section 16.5 is like this. A well-known example 

is given in Chapter 28 where we see the HTTP protocol built above TCP connections.
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16.5 Java's sockets and streams

In this section we give an example of client–server programming in Java over connection-oriented communication. We see how the

java.net package supports the development of such systems; the full detail of connection management, as described above in Section 16.4, 

is done on behalf of the programmer. The programmer is aware of the socket abstraction but is shielded from some of the detail of socket 

programming.

Figure 16.7 shows a client and server program (application) executing on two different host machines, communicating with each other via 

layers of standard networking software and a physical connection. Note that for each host machine, the other machine will be considered a 

remote machine (or remote host). The server's name is a port name plus its host name (either a name under which the machine is 

registered in the DNS or an IP address that has been assigned to it). This name is bound to the server's socket and a two-way connection 

is set up between client and server, as decribed in Section 16.4. The connection provides an input and output stream for both client and 

server to enable data to be transferred between them. Figure 16.11 gives a high-level view.

Figure 16.7. An abstract architecture for a client–server system.

We will now discuss a very simple client–server system from the world of bank accounts, in which clients can receive information about

the latest rate of interest. In this system:



the server, which runs indefinitely, called InterestRateServer waits for a client to connect, and then sends it the current interest 

rate obtained from an object of the class InterestRate. The server is a simple sequential server and does not create separate 

threads to deal with different clients; each interaction is very short.

a client connects to the InterestRateServer, reads the message it receives back from the server and prints it to the screen. Note 

that the client does not send an explicit request to the server: the server is programmed to react to the setting up of the 

connection. After the interest rate is sent the connection is closed by the server.

The code for the server and the client is provided in Figures 16.8 and 16.9 respectively. In Figure 16.10 we show the code for the class 

InterestRate in this client–server system. Note that this is a very simplified example, and that in a real banking system matters would be

organized very differently.

Figure 16.8 Code for InterestRateServer, using sockets.

import java.net.*;

public class InterestRateServer {

//...

//...

static final public int portNumber = 4200;

InterestRate currentRate = new InterestRate(5.5);

   public InterestRateServer()throws IOException {

      ServerSocket server = new ServerSocket(portNumber);

      while (true) {

         Socket sock = server.accept();

         OutputStreamWriter out =

            new OutputStreamWriter(sock.getOutputStream());

         String message ="Current Interest Rate ="+ currentRate.getCurrentRate() ";

         out.write(message);

         out.close();

      }

   }

}

Figure 16.9 Code for InterestRateClient, using sockets.

import java.net.*;

public class InterestRateClient {

//...

//...

   static final public int portNumber = 4200;

   public InterestRateClient()throws IOException {

      Socket sock = new Socket(InetAddress.getByName("202.213.239.39"), portNumber);

      Reader isread = new InputStreamReader(sock.getInputStream());

      BufferedReader input = new BufferedReader(isread);

      System.out.println("message is " + input.readLine());

   }

}

Figure 16.10 Class InterestRate.



public class InterestRate {

   double currentRate = 0;

   public InterestRate(double cr) {

      currentRate = cr;

   }

   public void setCurrentRate (double sr) {

      currentRate = sr;

   }

   public double getCurrentRate (){

      return currentRate;

   }

}

The computers on which the client and server reside have been excluded from Figure 16.11 since the focus is on the connection being 

made between the client and server programs. The figure shows pictorially how the client and server are connected by 'plugging' together 

(joining) their respective sockets. It also indicates the way in which the message is sent from the server to the client via the two shaded 

streams (i.e. the output stream of the server's socket and the input stream of the client's socket). Section 16.4 has already introduced the 

system calls associated with sockets. Exercise 16.5 invites the reader to explore how an application-level abstraction of socket connection 

is implemented by calls to the client and server's operating systems.

Figure 16.11. Abstract view of connection between client and server.

Each program has a socket and each socket is associated with two streams: one for output and the other for input. In Figure 16.11, the 

server is shown using its socket's output stream (shaded) to write the message. The client, in turn, uses its socket's input stream (shaded) 



to read the message. The client then outputs this message to the screen (not shown).

When the server sends a message to the client (or vice versa), you should think of it as a two-stage process. The server uses its output

stream to send the message to a sink (not shown in Figure 16.11). The client in turn must use its input stream to fetch the message from 

this sink (which, for the client, is now a source). This sink/source can be thought of as a 'pigeon-hole' or 'mailbox' into which the server 

drops a message and from which the client retrieves it. Communication in the opposite direction will work in exactly the same way, but with 

a separate pigeon-hole. All the details needed to implement such a model are, of course, hidden from the programmer.

16.5.1 The java.net package

The java.net package is relatively large, and here only a few of the classes will be examined, those used for building connection-oriented,

client–server systems. It is interesting to compare these Java classes with the socket system calls provided by the operating system and

described in Section 16.4. The InterestRate client–server system relies on Socket, ServerSocket, and InetAddress. A few additional 

remarks about these classes should be helpful.

InetAddress

An object of this class is used to represent an internet address. It has no public constructors. Instead it uses public static

methods that return an internet address when used anywhere in a program. The method getByName (String host), returns an 

InetAddress object representing the address of the host specified by name. Note that this method throws 

UnknownHostException if the name presented to it cannot be resolved to an internet address; it must be used within a suitable 

try statement.

Socket

An object of this class is used to establish a connection (sometimes referred to as a socket connection) between client and 

server processes. Its constructor methods (it has more than one) associate a new socket (sometimes referred to as a 

connection socket) with a specified host (IP address) and host port. The client and the server must each construct a socket, 

so that the connection can be thought of as being made by these two sockets joining together.

In Java, a socket object is also associated with both an input and an output stream to enable data to be communicated via the 

connection. This means that the client process, say, can send data to the server via the output stream associated with the 

client's socket, which the server can receive via the input stream associated with the server's socket, and vice versa.

ServerSocket

An object of this class (not to be confused with the class Socket) is used by a server to 'listen' for connection requests from 

clients, and then establish a socket connection with each client. A ServerSocket object must be associated with a port (in 

Figures 16.8 and 16.9 this is 4200) where it can listen for a request using the method accept (). The method accept () has a dual 

function: it not only listens for a client request, but when this is received, returns a socket (of type Socket) for the server, which 

is connected to the client's socket. Note that accept () throws an exception and therefore must be called within a try statement.

It is easy to confuse the various terms associated with the above classes, in particular, a ServerSocket object with the server's Socket

object. The former does not have input and output streams: its role is to provide the facilities to listen for a client's request and then to 

create the server's Socket object, which is connected to the client's Socket object.

16.5.2 The InterestRate client (Figure 16.9)

To connect to the InterestRateServer shown in Figure 16.8, the client program shown in Figure 16.9 attempts to create a connection socket 

associated with the host (with IP address "202.213.239.39", assuming that that is the server's IP address) at port 4200. If there is a server 

'listening' at this port to accept the request, the input stream associated with this socket will be used as the basis for inputting the server's 

interest rate message, and outputting it to the terminal.



16.5.3 The client–server mechanism and asynchronous message passing

The example above has shown how a distributed, client–server architecture can be built using asynchronous message passing, similar to

Figure 13.7(c). We gave a simple example in which only a single message passes: that from the server to the client. Also, the message 

passing was built above connection-oriented communication, with sockets as communication endpoints and input and output streams at 

the client and server. A connection must be set up between each client and the server.

If a connection is set up for a single request–response interaction, after which it is closed, this is a heavyweight mechanism. In general,

once a connection is set up it can be used for any number of interactions. It is a design issue whether a server can support long-lasting

connections to all its clients, depending on the number of clients and the nature of the service. Connectionless communication is an

alternative, as discussed in Section 16.4.

Once a connection is set up the communication along it is asynchronous: a sending process can write data at any time without checking 

the status of the receiver, and does not have to wait for the response until it is ready. The receiving process may be doing some other task 

at the moment the data is transmitted, and may read the message later when it is ready to do so. Although we do not see it explicitly, the 

socket mechanism provides for message buffering at the recipient. The server must indicate how many outstanding client calls are to be 

buffered as part of connection set up. Notice that the server's name, the port and host IP address, is location dependent.
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16.6 Distributed programming paradigms

16.6.1 Synchronous and asynchronous communication

An advantage of the asynchronous communication style is that when a process makes a remote service request it is not blocked, but it can 

continue with other processing in parallel until it requires a reply message. A disadvantage of this style of communication is that it is 

difficult to get right, and prone to errors especially when implemented above connectionless communication, unlike the above example. In 

the following sections we will discuss synchronous communication, where the process that invokes the method is blocked, as in a local 

method invocation. This is generally considered to be easier to use as it is at a higher level of abstraction, akin to method invocation in a 

programming language.

We can have the best of both worlds if we have a FORK primitive available: that is, the ability to 

create a new process dynamically. A child process can be forked to make the remote invocation 

and WAIT for the result, after which it can synchronize with its parent in the usual way to pass 

the result; see Figure 16.12. The parent can proceed with parallel work which might include 

forking more children to make more remote invocations. Note that it is necessary for the 

application to run on a kernel which supports multi-threaded processes to achieve concurrent 

execution of the parent with the blocked child. This is because if the kernel does not support 

multi-threaded processes, and one of the threads (i.e. a child process) belonging to a parent 

process were to block for remote communication, the operating system would consider the 

parent process (including all its threads) to be blocked as well.

Figure 16.12. Forking a child to make a synchronous call.



A way of viewing this model is that concurrency and distribution issues have been separated. Concurrency has been achieved by having 

two processes: the parent and the child it creates using the FORK primitive. Distributed programming is carried out by the child forked for 

the purpose.

16.6.2 Procedural versus message passing style

The processes involved in a remote invocation are certainly running in separate address spaces as they are on different machines. One 

might therefore assume that message passing of some kind would be the best programming model for distributed IPC. We have just 

argued, however, that a synchronous model is preferable for manageable remote communication. This could be achieved by enforcing that 

a SEND request is immediately followed by a WAIT reply, perhaps by inventing a single primitive which combines them. This is done in the 

Amoeba distributed operating system and is the only communication paradigm supported in that system.

An alternative is to remain within the procedural system structure, and to support a procedure call to a remote procedure. In a local 

procedure call (or method invocation) the calling process passes data to the procedure via the procedure's arguments, the procedure is 

then executed, and the results are passed back to the caller, which then continues its execution. In a remote procedure call, the call is 

made to a procedure located on a machine that is different (remote) from the machine from which the call was made, yet the arguments 

can be type-checked as before. This is an attractive notion, since procedural programming languages are in widespread use. A facility for 

distributed sequential programming could be offered by this means for those users who do not have a requirement for concurrent 

programming but who need to make use of remote services. It can be incorporated into a concurrent programming language, as outlined 

above in Section 16.6.1.

A further attraction of such remote procedure call (RPC) systems, is that they provide the programmer with a higher-level mechanism, 

which is much easier to use. Compared with the use of sockets and unstructured data streams, or even asynchronous message passing, 

a call to a method or procedure which happens to be remote is much less problematic.

For these reasons a great deal of effort has been directed towards RPC systems. Several became available as products as early as the 

1980s, such as Xerox Courier and Sun RPC. Some, such as ANSA (1989), led to standards to run above a wide variety of operating 

system and communications services (ISO, 1992). Others were part of research projects and were integrated into high-level language 

systems, such as CCLU RPC, developed at Cambridge University, UK (Bacon and Hamilton, 1987). More recently, emerging from within 

the object-oriented paradigm, Java's Remote Method Invocation (RMI) mechanism is becoming increasingly popular in business and 

industry.
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16.7 Remote procedure call (RPC)

An RPC system consists of a communications protocol, which typically sits on top of a transport-level service, such as the ARPA 

(TCP-UDP)/IP hierarchy, and language-level routines concerned with assembling the data to be passed by the protocol. It is also 

necessary to provide a mechanism for binding remote procedure names to network addresses. This is the requirement for a naming and 

location function that we saw when we distributed a message passing system in Section 16.3.1. An overview of a typical RPC system will 

now be given, followed by a discussion of alternative ways in which this service might be provided.

16.7.1 An RPC system

Figure 16.13 outlines system components that are invoked when a remote procedure call is made. Binding remote procedure names to

addresses is not shown. A request–reply–acknowledge (RRA) protocol is assumed. An alternative is

request–acknowledge–reply–acknowledge (RARA). In the former case it is assumed that the reply is likely to come back sufficiently

quickly to function as an acknowledgement of the request.

Figure 16.13. An RPC system.

Before looking at the details of Figure 16.13, we note that the system structure is similar to that described for Figure 13.7(b), but now in a 

distributed context. That is, the calling process (located on one machine) has to wait until the response from the procedure call comes 

back (from the process on the other machine), before it can continue processing. Given that the system structure is now distributed, the 

possibility of delay has increased, as the procedure call may experience all kinds of network problems.

First the operation of the RPC protocol when client, server and network are performing well will be described. In this case a procedure call 

is made which is detected (by some means, which will be discussed in Section 16.8) to be a remote procedure call. Arguments are 

specified as usual. Control passes to point A in the diagram.



At point A:

the arguments are packed into a data structure suitable for transfer across the network as a message or packet;

an RPC identifier is generated for this call;

a timer is set.

The data is then passed to lower protocol levels for transportation across the network. Typically, this is done by making a system call into 

the kernel, as described in Section 16.4. At the called system the lower levels deliver it up to the RPC service level.

At point B:

the arguments are unpacked from the network buffer data structure in a form suitable for making a local procedure call;

the RPC identifier is noted.

The call is then made to the required remote procedure, which is executed at C. The return from the procedure is to the calling 

environment in the RPC system, point D.

At point D:

the return arguments are packed into a network buffer;

another timer is set.

On arrival at the calling system's RPC service level, point E:

the return arguments are unpacked;

the timer set at point A is disabled;

an acknowledgement is sent for this RPC ID (the timer at D can then be disabled).

16.7.2 The RPC protocol with network or server congestion

The systems involved in the RPC may be performing badly or the network may be congested or suffer a transient failure, causing the 

timers at A or D to expire. The RPC service level at the calling system, point A, may retry the call a few times without involving the 

application level. If the problem was network congestion the request may or may not have got through to the called system, depending on 

the service offered by the lower-level protocols. The RPC ID is used by the called system to detect a repeated call. If the call is still in 

progress it need take no action. If a reply has been sent it can be resent in case of loss. The actions described here can be called 

'EXACTLY ONCE RPC semantics' in the absence of node crashes or prolonged network failure. That is, EXACTLY ONCE RPC semantics 

ensures that, in the absence of failures, a request is carried out once and only once. It is the nature of distributed systems that failures can 

occur and sometimes it is impossible to make remote calls. In this case an exception return is made.

In some RPC systems the user is given a choice of RPC semantics. 'AT MOST ONCE semantics' means that as soon as the timeout at A 

expires, control is returned to the application level. The protocol does not retry, although the application level is likely to do so. If the 

application repeats the call, several copies of the same message may arrive at the called system, but with different identifiers and 

therefore not detectable by the RPC service as the same. The application has caused this situation and must deal with any repeated 

replies and any effects at the server.



16.7.3 The RPC protocol with node crash and restart

In a local procedure call, caller and called procedures crash together. In a remote procedure call the following possibilities must be 

considered (the node containing the call is referred to as the client, that containing the called procedure, the server).

Client failure (see Figure 16.14)

Figure 16.14. Client crash.

The client may fail after sending the request; see Figure 16.14. The remote call will go ahead (termed an orphan), as will any further 

related calls that it may make (more orphans), but the timer at D will expire and no acknowledgement will be received on prompting. The 

server, and other invoked servers, may have made permanent state changes as a result of the call. Some server operations can be made 

repeatable (idempotent), recall Section 15.4.

The application-level client, on being restarted, may repeat the same call but the repeat cannot be detected as such by the RPC service 

and a new ID will be generated.

Most RPC systems aim to provide an efficient communication facility and make no attempt to exterminate orphans. Software at higher 

levels may provide atomic transactions with checkpointing and rollback facilities, as discussed in Chapter 15. The performance penalties 

associated with such a service can be high and should not be made mandatory for all applications.

Server failure (see Figure 16.15)

Figure 16.15. Example of a server crash.



The server may fail before the call is received or at some point during the call; see Figure 16.15 (in all cases the client timeout at A will 

expire):

after the RPC service receives the call but before the call to the remote procedure is made, point B;

during the remote procedure invocation, C;

after the remote procedure invocation but before the result is sent, D.

In all cases the client might repeat the call when the server restarts. In cases C and D this could cause problems since the server could 

have made permanent state changes before crashing. Again, most RPC systems do not attempt to handle rolling back state changes 

associated with incomplete RPCs before accepting further calls. To do this it would be necessary for the RPC service to retain RPC IDs 

through crashes. Some form of stable storage could be used or a time-stamp could be included in the ID so that the server could 

distinguish pre- and post-crash calls and could undo incomplete pre-crash calls.

16.7.4 An example: CCLU RPC call semantics

The CCLU RPC programmer has a choice of call semantics. The default is the lightweight MAYBE:

t: a_type = call a_remote_proc (<args>) 

If the alternative 'reliable' EXACTLY ONCE (in the absence of node crashes) is required, the keyword zealously is appended to the call. 

For example:

call logger ('kernel running low on heap') zealously 

The keyword timeout, followed by an integer expression representing a time in milliseconds, may be appended to any remote call. For 

MAYBE calls, this represents the time after which the call should be abandoned. For EXACTLY ONCE calls it represents the 

recommended interval between retries.

If an error occurs during execution of a remote call, the RPC will signal either the hard_error or soft_error exception, together with an error 

code. soft_error is only signalled by the MAYBE call mechanism and indicates that an error has occurred, such as a timeout or apparent 

congestion at the remote node, but that a retry may succeed. hard_error is signalled by both the MAYBE and EXACTLY ONCE options 

and indicates that an apparently unrecoverable error has occurred, for example, failure to contact the server node or denial by the server 



node that the called a_remote_proc is to be found there.

An exception handler for the MAYBE protocol would have the form:

begin 

     .

  t: a_type = call a_remote_proc (<args>) timeout 2000

     .

end except

      when problem ( p: problem ):

      . . .  // exception signalled by the remote procedure

      when hard_error ( why: int ):

      . . .  // not worth retrying

      when soft_error ( why: int ):

      . . .  // worth retrying a few times

      end

where problem is an exception signalled by the remote procedure, for example, because of an incorrect argument value. An example of a 

remote procedure declaration which includes this exception is given in Section 16.8.1.

16.7.5 RPC and the ISO reference model

Communications protocols were introduced in Chapter 3. Section 3.9 showed a typical division of the ISO layers between an operating 

system and the applications it supports. The transport level and below were located in the operating system. Similarly, in Figures 16.13, 

16.14 and 16.15 the lower-level protocols are assumed to be those at transport level and below. The discussion above has assumed that 

the RPC protocol is built on an unreliable transport service such as ARPA's UDP rather than a reliable connection-oriented protocol such 

as TCP. Figure 16.16 shows an RPC protocol in relation to the ISO layers.

Figure 16.16. RPC in relation to the ISO reference model for OSI.

The RPC protocol described above has provided a session-level service: client and server were synchronized for request, reply and 

acknowledgement by the use of timers. We now go on to consider the application and presentation levels associated with RPC.
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16.8 RPC–language integration

The previous section has described an RPC protocol in some detail. The advantage of an RPC system is that, when integrated into a 

conventional programming langauage that uses procedure calls, the system developer can use the familiar procedural mechanisms to 

program in a distributed setting. In other words, the system developer does not need to know the details of how the remote call is made 

since it is carried out automatically by the underlying implementation. We now discuss the issues involved in integrating an RPC service 

with a programming language.

16.8.1 Distribution transparency

A design issue is the extent to which the fact that some procedures are remote is made transparent to the application. One approach is to 

acknowledge that remote calls are likely to take substantially longer than local ones and that parts of a distributed program may fail 

separately. It may be argued that distribution transparency should not be a goal. In this case changes can be made to the language, in the 

syntax for procedure declaration and call, to distinguish procedures that may be called by remote processes and indicate when they are 

being invoked.

The non-transparent approach

An example of the non-transparent approach taken in CCLU is as follows. The definition of a procedure which may be called from a 

remote node contains the keyword remoteproc replacing proc in the header. Other aspects remain the same.

a_remote_proc = remoteproc (<args>) 

   returns ( a_type )

   signals ( problem )

   .

   .

end a_remote_proc

A new syntax, the call expression, is used for performing RPCs. The keyword call precedes the invoked procedure's name and a number 

of control keywords (resignal, zealously, timeout, at) may follow the invocation's arguments; for example:

v : a_type = call a_remote_proc (<args>) resignal problem 

where problem is an exception signalled by the remote procedure, shown in the procedure declaration. (A CLU procedure, both when 

returning normally and signalling an exception, may return an arbitrary number of results of arbitrary type.)

The transparent approach

The transparent approach means that the compiler (or a preprocessor) must detect any call to a non-local procedure. Such a procedure 

may be remote or non-existent, indicating an error. In order to determine which is the case it is necessary to support a naming service in 

which procedures available for remote call are registered and can be looked up. For each remote procedure called, a stub (sometimes 



called a proxy) is generated so that a local call can be made to it, as shown in Figure 16.17. Thus the RPC support level is called 

transparently at runtime.

Figure 16.17. Implementation of transparent RPC.

The functions carried out by the stub are required by both transparent and non-transparent RPC systems. The only difference is that when 

transparency is needed the stub is called as a local procedure with the same name as the remote procedure. The stub controls the 

assembling of arguments (more on this is given below) and invokes the RPC protocol.

Even if transparency is achieved to this extent the call semantics for remote procedures may have to be more restricted than local calls. 

Some potential problems with transparent semantics are as follows:

What would it mean to pass a reference parameter? In practice, RPC systems have implemented call by copy. (A brief 

discussion of the way object references are handled in object-oriented systems is given in Section 16.8.3.)

If the language is such that several concurrent processes may have pointers to an object, and a reference to the object is 

passed as an argument in a local procedure call, all processes see any change that procedure makes. If the object is copied as 

an argument for a remote procedure, and the remote procedure changes the object, this is not seen by the local processes. 

Nor is any change made by a local process during the RPC seen by the remote process. The semantics of the language have 

been changed by the introduction of RPC.

Should a call argument that is changed by the remote procedure be passed back as well as the results?

A question that is separate from transparency issues concerns large objects. It might be that only a small part of the object is used by the 

called procedure. In a local environment a reference parameter would typically be used in these circumstances. Should the whole object 

be copied and shipped across to the remote node or should it be fetched piecemeal on demand? RPC systems have tended to implement 

the former, but see below for object systems.

16.8.2 Argument marshalling



Figure 16.18 shows the general approach to packing, flattening or 'marshalling' arguments into a form suitable for transmission via a 

network buffer. The arguments are data objects that reside in the calling process's stack and heap (see Chapter 4). They must be copied 

into a data structure that the transmission system handles as a flat byte sequence. Any internal cross-references must be preserved so 

that the data can be restored at the called node. This is call by copy semantics. Pointers (main memory addresses) within the objects 

must therefore be translated into pointers that are meaningful within the buffer. Any data object that is pointed to more than once need 

only be copied once into the buffer.

Figure 16.18. Arguments for local and remote procedures.

As well as the built-in data types of a language, programmers can generate their own types. Should the language allow such user-defined 

types to be passed as arguments and, if so, how does the system know how to pack them? Many RPC systems only allow the built-in 

system types to be transported. The Cambridge CCLU system allowed almost all types, including user-defined types, to be passed as 

RPC arguments. This is possible because each user-defined type can be broken down successively until its component system types are 

reached, and the system has library routines for marshalling the language's built-in types.

When user-defined types which are to be passed as RPC arguments are declared in CCLU, the user must include a marshal and an 

unmarshal operation for each such type. All that is necessary is to decompose the type into lower-level components on marshalling and 

compose it on unmarshalling. An example of an abstract data type (a cluster) thing with an internal representation in terms of lower-level 

types (rep) and marshal and unmarshal operations is as follows:

thing = cluster . . .  // abstract data type thing 

   rep =               // the representation of thing in terms of lower-level

                       // (eventually built-in) types and type constructors

      record [v: thing_value,

              l: lock



                     ]

      .

      .

   marshal = proc ( t: thing )             // how to marshal thing for RPC

        returns ( thing_value )

      .

      .

      end marshal;

   unmarshal = proc ( tv: thing_value )    // how to unmarshal on return4

      returns ( thing )

      .

      .

   end unmarshal

end thing;

16.8.3 Object-oriented systems

So far, we have followed a client–server model, in which objects are created and named by a

server and stay within the address space of the server. The server carries out operations on the

objects in response to requests from clients. In the more general object model, objects are named

globally (system-wide) and are invoked directly; that is, operations are carried out on them directly

rather than via a server. Ideally, objects should be able to migrate from node to node but in current

middleware object names are location dependent, see Chapter 29.

It is relevant to the discussion in Section 16.8.1 to note that object names are meaningful globally and therefore can be passed as 

references. It is no longer necessary to make a copy of an object which has a global name in order to pass it as an argument.

Suppose that an object-oriented (OO) system contains an object repository for storing typed objects. Suppose that a process at one node 

in the system invokes an object which is not in use elsewhere. Typically, that object is mapped into the address space of the invoking 

process. This involves converting the representation of the object into the form expected by the language system from the form in which it 

was stored. (Preparing a data object for storage is similar to marshalling it as an RPC argument; see Section 16.8.2.) In addition, the type 

operations of the object must be associated with it. They are no longer provided by a managing server.

If a process at another node in the system invokes this object, several approaches are possible:

Only one process has an object mapped. The process which has the object mapped acts as object manager and accepts 

RPCs to invoke operations on the object. This was done in the Comandos system (Balter et al., 1993).

Any number of processes may have an object mapped. These copies of the object are regarded as cached copies of the 

persistent object and a cache coherency protocol is followed by the processes. There must be a policy on how the processes 

may use the object. It may be that only one at a time may write to the object, or concurrent writes to different parts of the object 

may be allowed.

This short discussion is included to show that there have been more recent approaches to passing object references than the call by copy 

semantics described in Section 16.8.2. Also, it should be noted that RPC may still be used within an object-oriented system, as we shall 

see when discussing Java's RMI in Section 16.9. A case study on the Object Management Group's (OMG) common object request broker 

architecture (CORBA) is given in Chapter 29.

16.8.4 Type checking and consistency checking

A language may have static, compile-time type checking, in particular of procedure call arguments. Can this be extended for an RPC 

system? To do so it is necessary to have a specification of any procedure which can be called remotely available for the compiler to look 



up. A name server or library might be used (see Section 16.11). Many systems have the concept of an interface specification where an 

interface contains a number of procedures.

A final point concerns the engineering and maintenance of large systems. Any component of a distributed system might be changed and 

recompiled. It might be that a call to a remote procedure becomes out of date and inconsistent with the new version of the procedure. This 

can be checked by identifying the version of the remote procedure specification that a given call was type-checked against, keeping this 

identification with the call and having the system check it at runtime.

16.8.5 Data representation for a heterogeneous environment

The above discussion is based on the implicit assumption that the client and server are written in the same language and run on nodes 

which use the same internal data representations. We have packed the RPC arguments in the client node and expect the bits to mean the 

same when they arrive at the server node. This may not always be the case, particularly in large-scale distributed systems. At the lowest 

level of built-in language data types, from which other types are constructed, we may find differences:

Integers may be represented differently. In CCLU one bit is used to distinguish between pointers and data. CCLU integers are 

therefore 31 bits in length, in two's complement representation, instead of the usual 32.

The floating point formats may differ for different hardware floating point units.

Characters may be represented differently: although most systems use the ASCII code, some may use Unicode.

Strings are stored in words in a different order on different machines. For example, using a 32-bit word, the string 'Gulliver's 

Travels' could be stored either as:

- Gulliver's Travels (with so-called big-endian byte ordering), or as

- lluGreviT s'evar sl (with little-endian byte ordering).

If a filename is to be transferred from a client to a file server in a heterogeneous world, the presentation layer must be able to carry out 

byte reordering when necessary.

A number of external data representations have been defined, for example, Sun's XDR (eXternal Data Representation), Xerox's Courier, 

and the ISO standard, Abstract Syntax Notation 1 (ASN.1) (ISO, 1986). The idea is to encode a standard set of data types in a way that 

can be recognized by all systems. Since we are not concerned here with large-scale heterogeneous systems we shall leave this topic for 

further study.
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16.9 Java's RMI: RPC in the general object model

The object model of IPC exploits the object-oriented paradigm in which objects invoke the methods of other objects, including those 

residing on remote machines. Java provides the facilities to implement the object model through a mechanism called remote method 

invocation (RMI). In this section we will discuss the object model through the RMI facilities (contained mainly in the java.rmi package) and 

show how they can be used to develop a simple system based on the object model. We will thus see an example of an RPC system of 

distributed IPC.

16.9.1 RMI and the general object model

Section 16.4 discussed how Java's streams and sockets can be used to build a client–server model of distributed IPC. The clients are

processes (running programs) which reside on one or more host computers, and are able to communicate with a server process running a

Java program on its host (which in general is different from the client hosts). The communication between clients and server in this model

takes place to a port of the server with client and server sockets as communication endpoints. The messages that make up the

communication take the form of streams of data. An application protocol must be established between client and server so that the server

knows how to respond to these messages. This means that the messages from the client are not method invocations in the OO sense, but

rather a stream of data that must be interpreted by the server before it can invoke methods on the objects it manages.

In the OO paradigm, a client object invokes an object located on a (remote) server host. In fact, the execution of the method takes place

on the remote host where the remote object resides. The difference between a client–server model as described above and the OO

paradigm might seem slight but it is significant. It is a non-trivial task to program the setting up of communication between clients and a

server involving the creation of socket connections and the use of input and output streams. Consider how much easier it would have been

in the InterestRate example discussed in Section 16.5, if the application programmer could simply have invoked an object of type 

InterestRate (even though it was a remote object). This is what the RMI mechanism seeks to achieve, so that developers can remain within 

the object-oriented paradigm rather than having to concern themselves with sending messages using streams.

Conceptually, what we want to achieve through RMI is represented in Figure 16.19. This shows a client process made up of many 

communicating local objects. The local object O3 is shown invoking the remote object remO. The three objects named O1, O2 and O3 have 

been created as part of the client process running on Host A (indicated by the dotted lines that associate the client process with the three 

objects) whereas remO has been created as part of the server process running on the remote host, Host B (as shown by the dotted line 

from the server process). The arrows between objects indicate the direction in which one or more method calls are being made. For 

example, in the figure, object O2 is shown as calling a method or methods of object O3. Note that, although the method call is shown as 

flowing in one direction (in this case from O2 to O3) the data flow between the objects is likely to be bidirectional, with input data flowing 

from O2 to O3, and return data resulting from the call flowing from O3 to O2; as is always the case in (synchronous) method invocation.

Figure 16.19. A client process composed of a set of communicating objects.



16.9.2 RMI mechanisms

The conceptual view shown in Figure 16.19 brings up the following questions about the implementation:

How are the remote objects created and named?1.

How do the clients learn the names and locations of remote objects?2.

How are invocations made from a local object to a remote object?3.

The answer to these questions involves a number of mechanisms, some of which the developer needs to be aware of and others that go 

on 'below the surface'. An overall view of these mechanisms is shown in Figure 16.20, where all the new objects needed for implementing 

Figure 16.19 are shown unshaded, and the mechanisms not visible at the application level are shown in the shaded areas. The virtual 

communications between components are shown dashed (not to be confused with the dotted lines associating objects with each process); 

they indicate that, as far as the application is concerned, invocations are made directly on the objects at the other end of the link. However, 

the implementation of these virtual communication links by means of real communication links will be via layers that are not visible to the 

application. Note that there is a strong resemblance with Figure 16.17, where we discussed the issue of RPC being transparent or not.

Figure 16.20. Implementation view of the model in Figure 16.19.



Figure 16.21 extends Figure 16.20 to show the mechanism by which a client can discover where a remote object is located, that is, via the 

RMI registry. The registry is a Java program that keeps a record of where remote objects are kept (it is informed by the server) so that 

clients can access this information. In general, the registry can be on a third host. In Figure 16.21, one of the application objects (O1) of the 

client process is shown as calling (shown as a virtual method call since it is to a remote machine) the RMI registry in order to obtain a 

reference to the remote object remO.

Figure 16.21. RMI registry.

Figure 16.21 is best explained by showing how it answers the three questions posed above.

Before a remote object can be created:

its operations must be specified in an interface which extends the interface Remote from the java.rmi package;a.

the remote object's class, RemObjImpl say, must then be defined by implementing this interface and extending the 

class UnicastRemoteObject (in the java.rmi.server package).

b.

For a discussion on interfaces and their implementation as used in Java, see Sections 2.2.2 and 2.2.3. An object of the class 

1.



RemObjImpl, remO say, can then be declared and created. To make remO available to clients, it must be registered in an RMI

registry using a string name as an identifier. This registry can either be located on the same host as the remote object or, as 

shown in Figure 16.21, on another host.

Clients find out about remote objects by looking in the RMI registry, where each server will have placed information about the 

remote objects it has created. The RMI registry is itself a remote server-object. Typically, the RMI registry is accessed via the 

methods of the Naming class. To find a remote object, the developer of a client application must know:

the location of the RMI registry;a.

the string name of remO.b.

In order to obtain a reference to remO, the client application can invoke an operation on the RMI registry using the string name 

as a key. Provided remO is in the registry under this name, a reference to it will be returned.

2.

In fact, the reference which is returned by the RMI registry is to a stub object, a copy of which must be placed on both the 

client's machine and the server's machine. On the client host, this stub object acts as a proxy for the remote object, and the

method invocations that the client thinks it is making on the remote object are in fact calls to the stub. The stub on the client, in

turn, communicates with a similar stub object on the remote machine. It is the stub on the server's machine that then

communicates the call to the remote object itself. One of the important tasks of stubs is to marshal and unmarshal the

arguments in the remote call and the return value sent back by the remote object. The stubs use Java's client–server

mechanism involving sockets and input and output streams but this is invisible to the developers of the client and server

processes.

3.

In Figure 16.21, objects called security managers are shown. Similar to the security systems that control applets, RMI security managers 

control what remote objects and their clients can do.

16.9.3 RMI: An example

We shall now see an example of RMI through the construction of a simple system, again based on the InterestRate example discussed in 

Section 16.5, where a client can be informed of the latest interest rate. Given that we are working on exactly the same problem, it should

be possible to draw some clear comparisons between the client–server approach as built in Section 16.5, and the RMI approach.

In the previous section (under point 1) it was outlined that when using remote objects, we need to separate the object into its interface and 

the implementation of that interface. The idea is that a client (a user of a remote object) needs only to know about the interface of the 

remote object's class whereas the server (the implementor of the remote object) needs to know about both the interface and the 

implementation of the class.

The class InterestRate, as shown in Figure 16.10, can be rewritten as shown in Figures 16.22 and 16.23.

Figure 16.22 The interface for class InterestRate.

import java.rmi.*;

public interface InterestRate extends Remote{

public void setCurrentRate (double sr) throws RemoteException;

public double getCurrentRate() throws RemoteException;

}

Figure 16.23 The implementation for Remote Object InterestRate.

import java.rmi.*;

import java.rmi.server.*;



public class InterestRateImpl extends UnicastRemoteObject implements InterestRate {

   double currentRate = 0;

   public InterestRateImpl(double cr) throws RemoteException{

      currentRate = cr;

   }

   public void setCurrentRate (double sr) throws RemoteException {

      currentRate = sr;

   }

   public double getCurrentRate () throws RemoteException{

   return currentRate;

   }

}

The stub classes that a client uses to access a particular server must usually be generated using facilities provided by the development 

environment. The exact way in which this is done varies between systems, but usually a tool such as rmic must be used. The next step is 

to ensure that the remote object is created and registered with the RMI registry. This is the task of the server, as shown in Figure 16.24. In 

particular the line:

Naming.rebind ("rmi://aServerName/CurrentInterestRate", ir); 

has the effect of registering the object ir, under the string name CurrentInterestRate, at the location specified. Here we have used an 

example URL, aServerName, for the host name.

Figure 16.24 The server registers the remote object with the RMI registry.

import java.rmi.*;

public class InterestRateServer {

   public static void main(String[] args) {

      InterestRateServer irs = new InterestRateServer();

   }

   public InterestRateServer() {

      try {

          InterestRate ir = new InterestRateImpl (5.5);

          Naming.rebind ("rmi://aServerName/CurrentInterestRate", ir);

          System.out.println("Remote object registered");

      }

      catch (Exception e) {System.out.println("Trouble: " + e);}

   }

}

On the client side we can see how the remote object can be found through the RMI registry, as shown in Figure 16.25.

Figure 16.25 Client can look up remote object in RMI registry, and use it.

import java.rmi.*;

public class InterestRateClient {

   public InterestRate ir;



   public InterestRateClient() {

      try{

      ir = (InterestRate)

          Naming.lookup("rmi://aServerName/CurrentInterestRate");

      System.out.println("Current Interest Rate = " + ir.getCurrentRate());

      }

      catch (Exception e) {System.out.println(e);}

   }

   public static void main(String[] args) {

      InterestRateClient irc = new InterestRateClient();

   }

}

When looking for a remote object, the client program must know what the string name is by which the object is known. Here this is 

CurrentInterestRate. It must also know where the RMI registry is located, in this case on the local machine. Having found the object, the 

client can use it as if it were on the local machine, and invoke its methods. The line starting with System.out.println is very important in that 

it contains ir.getCurrentRate(), which is a clear example of a method invocation on an object that is remote.

16.9.4 Comparison of RMI with stream and socket programming

RMI is at a higher level of abstraction than socket-level programming. It enables the details of sockets and data streams to be hidden. 

Although we have not explicitly mentioned it, RMI uses a hidden multi-threading system that would otherwise have to be implemented in a 

socket layer.

RMI clients can invoke a server method directly but socket-level programming allows only values to be passed that must then be decoded 

and turned into a method call by the server. This decoding is performed automatically by RMI stubs (marshalling).

RMI programs are much easier to maintain than socket-level programs. An RMI server can be modified or moved to another host without 

the need to change the client application (apart from resetting the URL for locating the server).

RMI is implemented using socket-level programming. Socket-level programming is low level and prone to error, and RMI should be used in 

preference. This is similar to the relationship between semaphores and higher-level constructs such as monitors.

The RMI mechanism supports the idea of callbacks in which the server invokes methods on the client. This facility enables interactive

distributed applications to be developed. The equivalent behaviour can be built using message passing; most easily if the message

passing is built above connectionless communication. If a client–server system is built using streams and sockets then complex interaction

protocols between the client and server are difficult to program. However, both synchronous and asynchronous communication can be

programmed using streams and sockets, whereas RMI is synchronous.
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16.10 Critique of synchronous invocation

We argued in Section 16.6 that a blocking primitive is more manageable than a non-blocking one for implementing remote operation 

invocation. Two such primitives, RPC and RMI, were discussed in detail. We saw how to implement an RPC and an RMI, both of which are 

synchronous, blocking calls.

An implementation issue is the number of calls (RPCs or RMIs) that can be in progress at any time from different threads of a given 

process. It is important that a number of processes on a machine should be able to initiate calls and, in particular, that several threads of 

the same process should be able to initiate calls to the same destination. Figure 16.26 shows a common scenario which illustrates this 

issue. Server A is employing several threads to service requests from different clients. Server A may itself need to invoke the service of 

another server, server B. It must be possible for one thread on server A to initiate a call to server B and, while that call is in progress, 

another thread on server A should be able to initiate another call to server B.

Figure 16.26. Clients, servers and RPCs.

We have seen that distributed procedure call or method invocation is easy to program, being an extension to conventional programming 

languages. A system design issue is whether this synchronous call (RPC or RMI) paradigm is sufficient to meet the communications needs 

of applications. We have seen that a blocking call is typically implemented, by the lower level service, as message passing: a call is turned 

into a message from caller to called, the reply is a message from called to caller. Synchronous communication can therefore be built 

above asynchronous message passing.

Some have argued that a simple, efficient RPC or RMI protocol can be used as a basis for all requirements. Others feel that a selection 

should be available. Examples of alternative styles of communication are:

A simple message-send for event notification with no requirement for a reply. Many application areas are emerging where 

event notification is the main requirement, including mobile and pervasive computing.

A stream protocol (based on a connection between source and destination) for users at terminals, general input and output, 

and transport of bulk data, including real-time voice and video.

A version of RPC (asynchronous RPC) which asks the server to carry out the operation but to keep the result for the client to 

pick up later. An example taken from the ANSA system is given in the next section. The client continues as soon as the 



invocation has been made. The client may proceed with local work or may do more asynchronous RPCs. If these are to the 

same server it may be important for the application that they are carried out in the same order in which they were sent. This 

proposal does not apply naturally to RMI.

Some systems have a real-time requirement for the transfer of massive amounts of data, for example, multimedia systems with real-time 

voice and video. It is unlikely that RPC will be sufficient for this purpose. RPC requires all the data to be received before the operation 

commences and is likely to have some maxi mum data size well below that of a typical video stream. Also, the overhead of marshalling is 

not needed for this kind of data. We do not want the RPC system to interpret a video stream as a byte sequence and to marshal the 

carefully counted bytes, one at a time into a buffer. We have typically obtained a block of data from a file or an on-line device and we want 

it sent uninterpreted (and fast).

Further reading on RPC may be found in Bershad et al. (1990) and Birrell and Nelson (1986). Chapter 29 surveys middleware and we see 

that many standards and packages that started from synchronous object invocation have seen the need to offer a wider range of services.
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16.11 Naming, location and binding

So far we have assumed that a process that wishes to engage in communication with a remote process is able to name the destination of 

the communication. For a single centralized system we assume that the operating system knows the names of all processes and any 

associated communications endpoints such as ports. A process that wishes to engage in IPC will do so via the operating system. Chapter 

7 discussed naming in distributed systems in general terms and a case study (DNS) for objects such as users, mail lists and machines was 

studied. Here we are concerned with supporting distributed programming where the objects concerned are more dynamic, being 

associated with currently active processes. One example of a small-scale, distributed programming system was given in Section 16.5, 

including use of the Java RMI registry. Here we discuss the issues in general terms.

There are a number of issues to be addressed for IPC in a system which might be large scale and widely distributed.

What entities are to be named?

What do names look like?

How does a potential user of a named entity find out the name of that entity in order to use it?

When is a name bound to a network address?

Is the communication controlled? (Who is allowed to invoke a given object?)

We shall use the term 'object' in the following sections to indicate anything that might be named in distributed programming, for example, 

service, process, port, persistent data object, etc. Chapter 29 gives examples of the use of some of the methods outlined below in current 

middleware.

16.11.1 Naming the objects used in IPC

A convention is needed so that any object in a distributed system can be named unambiguously. A simple scheme that comes to mind is 

as follows.

Assume that each node has a unique network address. A naming scheme for objects, for example processes, is to name each object by 

(node number, object number at that node). Although this scheme is often used it is inflexible because an object is permanently bound to a 

node. If the node crashes or if it is desirable to move the object to another node, its name must be changed and all interested parties 

notified. This example establishes the desirability of a global naming scheme comprising location-independent names.

Now suppose that we decide to name objects by simple integers that are unique 

system-wide and location independent. Access control is a possible problem here. 

Anyone might send a message to process number 123 to request a service or invoke an 

operation on data object number 456. This could be solved by keeping a list with each 

object of the processes that are allowed to access it, like the access control lists used for 

files. This would allow the object to reject an unauthorized access, but would not stop 

communications being sent to it.

An alternative to using access control lists stored with objects is to use a special kind of name that includes access rights, called a 

capability or protected name. Figure 16.27 gives an example. A number of different capability schemes have been used in distributed 

systems. The idea is that possession of a capability is taken to be proof that the possessor has the rights indicated in the capability to the 

object named in it. Possession of a capability has often been likened to having a ticket for a concert. If you can present a ticket, you can go 

in. The capability can be used any number of times, however (so it is more like a season ticket).

Figure 16.27. An example of a capability and checking procedure.



What is to stop the possessor of a capability changing the name of the object or the rights stored in it? These are protected by encryption 

techniques; one scheme is as follows. When an object is created, a secret (random number) is generated and stored with the object. An 

encryption function, such as a one-way function, is available to the object storage service. When a capability is issued, the object name, 

rights and the secret are put through the encryption function and the resulting number is stored in the capability as check digits (Figure 

16.27). When the capability is presented, with a request to use the object, the object name and rights from the capability and the stored 

secret are put through the encryption function. The resulting number is checked against that in the capability. If the capability has been 

changed in any way, the check fails.

This scheme allows the object name and access rights to be represented 'in clear' in the capability, that is, without encryption at the 

application level. This scheme can be used for file capabilities which include access rights (see Section 6.7.6). Another example is to 

control communication. Suppose that all communication is addressed to ports which are named and protected by capabilities. A process 

must have the 'send right' to send a message to a port. The communications implementation can reject a request to send a message to a 

port if the send right is not present in the capability presented. This prevents erroneous processes flooding the network with messages; we 

assume that erroneous (typically looping) processes do not accidentally give themselves send rights as well as carrying out spurious 

sends. But a malicious process can add a send right to the capability and the communications software cannot invalidate it without having 

access to the secret asociated with the port. A scheme of this kind is used in the Accent and Mach kernels.

16.11.2 Locating named objects

In the previous section we motivated the need for a global naming scheme for various kinds of objects in a distributed system.

Let us suppose that an application process wishes to become a client of a system service and that the application program was written 

with a name for the service such as 'mail-service'. Before the communication can take place, the communications software must know an 

address at which the required service is currently being offered. It is also likely that the communication must be addressed to a process 

number or port number at that network address.

How can this information be obtained? For a centralized system the operating system was assumed to manage names and extend the 

namespaces of the processes it supports in order to allow them to communicate (Section 13.9). The following possibilities come to mind for 

a distributed system:

Every kernel maintains information on all the local objects that can be invoked from other nodes. Each kernel builds a table of all 

remote objects that can be invoked by local processes. The latter would be too large in practice. It would also be impossible to 

keep so many copies of naming data consistent, and out-of-date locations would have to be handled.

Every kernel maintains information on all the local objects that can be invoked from other nodes. When a kernel is asked for IPC 

with a remote object, it locates the object by interacting with other kernels in the system, asking which one of them has the 

object. It is allowed to cache the locations of the objects it finds in this way.

Some systems use methods like this, for example, the Amoeba operating system and the port mapper for SUN RPC. There is a 

danger that cached locations can become out of date and such values are used only as 'hints'. That is, the kernel is prepared for 

failure of communication based on a hint, in which case it will request the location of the required object afresh.

Every kernel maintains information on all the local objects that can be invoked from other nodes. Each message is passed 

around the system in a logical ring. The kernel for which the destination object is local passes the message to that destination.

This method was used in a very early distributed system experiment (Farber et al., 1973). It does not scale to a reasonably large 

number of system components.

A user-level process at each node maintains information on the local objects that can be invoked from other nodes. These 

processes interact with each other to locate any required object, as described above for kernels. They are requested to do so by 



processes attempting remote communication.

A name service is designed for the system. When a service is loaded at a given node it sends its name, location and any other 

information necessary for using it to the name service. When a client wishes to invoke the service, the information necessary for 

communication with the service may be looked up in the name service. Figure 16.28 gives the general idea. The location of the 

name service is assumed to be well known. It can be made available to systems on initial load.

Figure 16.28. A name server in a distributed system.

Many distributed systems use a name service. In a large-scale system the name service is likely to 

be offered by a number of servers. CDCS (Needham and Herbert, 1982), Grapevine (Birrell et al., 

1982), Clearinghouse (Oppen and Dalal, 1983), DNS (Mockapetris and Dunlap, 1988), the DEC 

GNS (Lampson, 1986) and ANSA (1989) (see below), are examples. Many have greater 

functionality than described above. They may be involved in authentication of principals and 

registration of groups, for example. Further reading on naming may be found in Saltzer (1979; 

1982) and Needham (1993).

16.11.3 The ANSA trader

For a full description of the ANSA Advanced Network Systems Architecture, see ANSA (1989). An example is given here to illustrate the 

programmer's view of how a name server, ANSA's 'interface trader', might be used for distributed programming.

ANSA have defined a Distributed Programming Language, DPL, which, as well as a conventional range of data types, includes the types 

Interface and InterfaceRef. DPL provides a framework in which a conventional language (typically C) is embedded and is used for 

programming clients and servers.

Suppose the code of a service, the green service, is to be loaded into a server computer and made available for use by clients. An 

interface specification for green with operations lime and jade is written in an interface definition language (IDL) and made available in an 

IDL file, for example:

green : INTERFACE = 

begin

   lime : OPERATION (arguments) RETURNS (arguments);

   jade : OPERATION (arguments) RETURNS (arguments);

end.

The server must export the interface of the green service to the interface trader. To do this it uses an interface reference for the trader, 

traderRef, and is returned an interface reference, green_exportRef, for subsequent use.

!  USE green 



!  DECLARE [green_exportRef]: green SERVER ansa_interfaceRef

   green_exportRef;

!  [green_exportRef] := traderRef$EXPORT("green","/ANSA/services",

                        \"NAME'green"',NTHREADS)

The server may use the interface reference to withdraw the interface from the trader or change it. Any outstanding interface reference to 

that interface held by a client would then become invalid.

!  traderRef $withdraw ( green_exportRef ) 

A client which knows about and wishes to use the green service (its public name is green) will first import the green interface from the 

trader:

!  USE green 

!  DECLARE [green_importRef]: green CLIENT ansa_interfaceRef

   green_importRef;

!  [green_exportRef] := traderRef$IMPORT("green","/ANSA/services",

                        \"NAME'green"')

The interface reference returned by the import request to the trader can then be used to invoke the operations of the green interface at the 

server.

!  [result] := green_importRef $ lime (arguments) 

It is also possible to initiate an operation asynchronously and pick up the result later by using a voucher data type.

voucher v; 

!  [v] := green_importRef $ lime (arguments)

!  [result] := green_importRef $REDEEM (v)

A preprocessor replaces the statements which are preceded by ! with calls to the runtime system to marshal arguments and invoke 

communications software.

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  



16.12 Summary of Part II

We have considered how an operation that is invoked on a data object as part of a concurrent system may be guaranteed to occur 

without interference from other concurrent actions. A number of methods of implementing this are available. They fall into two basic 

categories depending on whether the potentially interfering processes access data objects in shared memory. This formed the basis of 

Chapters 9 to 14. At this stage we had not considered the possibility that a system might crash at any time, causing main memory to be 

lost. Chapter 15 introduced crash resilience for a single system for a single operation invocation.

Chapter 16 has shown how the inter-process communication mechanisms discussed in Chapters 9 to 14 might be distributed. We saw 

how IPC software and network communications software might be integrated. Once an invocation arrives from a remote system, the 

techniques for achieving non-interference with other invocations, both local and remote, are as described in Chapters 9 to 14. Crash 

resilience was included in the discussion since distributed systems are such that parts of a program can survive crashes of other parts. It 

is there- fore important for the programmer to be aware of the possibility of crashes. A brief introduction to the naming and location 

infrastructure required to support IPC in a distributed system was given. Having mastered the material necessary for understanding 

single concurrent actions we now proceed to Part III in which higher-level actions comprising a number of lower-level actions are 

considered.

Study questions

S16.1 Why is the failure of the system even more of a problem in a distributed system than in a centralized one?

S16.2 Describe what a port and what a socket are. What is the difference between them?

S16.3 Describe how the connection between a client and server is made. How do a client and server communicate, once 

this connection is set up?

S16.4 How can asynchronous communication be implemented in a system that uses blocking primitives and hence 

synchronous communication?

S16.5 In Figure 16.13, at point A, an RPC identifier is generated and a timer is set. Why are these two actions taken?

S16.6 Distinguish between 'exactly once' RPC semantics and 'at most once' semantics.

S16.7 What is an orphan? What problems can arise when an orphan is created? Why can the use of RPC identifiers not be 

used to overcome these problems? What actions can be taken to overcome these problems?

S16.8 Why is RPC communication not particularly well suited to real-time systems requiring massive amounts of data to be 

transferred (e.g. video streams)?

S16.9 What are the essential steps in creating an RMI system?

Exercises



16.1 Compare and contrast a client–server model of distributed computation with an object model. Could a pipeline be

said to adhere to either model? How would you implement a pipelined compiler in a world based on client–server

interactions or object invocations?

16.2 How can the components of a distributed system agree on a value to use for system time? Under what 

circumstances might such a value be needed?

16.3 A process on node A invokes an operation on node B in a distributed system. How might the fact that the nodes, and 

the network connecting them, may fail independently of each other be taken into account in the design of the 

distributed invocation at the application level and at the communications level? Can you think of examples where it is 

desirable that the clocks at node A and node B should be kept in synchronization?

16.4
For the styles of IPC studied in Part II, explain how the mechanism might be expanded for inter-node IPC.a.

Consider how the network communication software and the local IPC support might be integrated.b.

Focus on the naming schemes that are used by the centralized IPC mechanisms. Consider the problem 

of naming when the mechanisms are extended for distributed IPC. When might the name of a remote 

operation be bound to a network address? How could this binding be supported at kernel, local service, or 

dedicated remote service level?

c.

16.5 Figure 16.11 gives a high-level view of a connection between a client and a server using sockets. Sketch an 

implementation-oriented view along the lines of Figures 3.14 and 16.6 and outline the operating system calls that are 

needed to set up and use a socket connection.

16.6 Security involves both authentication and access control (when you invoke a remote operation you should be able to 

prove that you are who you say you are (authentication) and there should be a check that you are authorized to 

invoke that operation on that object (access control)). Consider how both of these functions are supported in a 

centralized, time-sharing system and in a single-user workstation. What infrastructure would be needed to support 

these functions in a distributed system?

16.7
How can compile-time type checking be supported in an RPC system?a.

How can an RPC system check that you are not attempting to call a remote procedure that has been 

changed and recompiled since your program was compiled and type-checked against it?

b.

16.8 Can RPC be used in a heterogeneous environment?

16.9 How could you contrive to program an application in which massive amounts of data are to be transferred according 

to a 'stream' paradigm in a system which supports only RPC for distributed IPC? You may assume that 

multi-threaded processes and dynamic thread creation are available.

16.10 Is distribution transparency fully achievable in an RPC system? What software components can be used to provide 

this illusion? How could the independent failure modes of system components be handled in an RPC system where 

distribution transparency was a design aim?

16.11 Is it desirable that an RPC system should provide support for client, network and server crash and restart? 

Distinguish between 'exactly once' semantics in the absence of crashes and restarts and in their presence. What are 

the implications on the application level of providing universal 'exactly once' semantics? What are the likely 

implications on the performance of all RPCs?



16.12 Extend the Java example in Section 16.15 as follows:

Make the client send an initial message to the server requesting the current interest rate, to which the 

server responds.

a.

Make the server send a further message to notify the client every time the interest rate changes.b.

16.13 Discuss how programming in Java at the level of streams and sockets compares with using Java RMI.

[ Team LiB ]  



[ Team LiB ]  

Part III: Transactions

The issues addressed in Part II are associated with the correct execution of a single abstract operation by a 

sequential process which executes as part of a concurrent system of processes. We now assume this problem 

solved by means of the techniques described in Part II and move on to compose higher-level abstract operations. 

The notion of a 'high-level' operation is, again, an informal one and can be thought of as an abstract operation 

consisting of a number of lower-level abstract operations.

An operation hierarchy may be located entirely within the main memory of a single computer; it may span the main 

memories of computers in a distributed system; it may span main memory and persistent memory of a single 

computer; or it may span main memory and persistent memory throughout a distributed system. Chapter 17 gives 

examples from systems and applications.

Chapter 17 motivates concurrent execution of composite operations as desirable to give good system 

performance, such as fast response to clients. The potential problems of concurrent execution are introduced.

One of the problems that arises when processes must compete for exclusive access to a number of resources or 

objects is that deadlock could occur. Processes may hold on to objects while waiting for other objects, held by 

other processes, to become free. In certain circumstances a set of processes can reach a situation where they will 

wait indefinitely unless the system is designed to recognize or prevent the problem. This is discussed in Chapter 

18.

Chapter 19 is concerned with the fact that a system crash could occur part-way through a composite operation. In 

some application areas users require that either the whole operation is done or none of it is done. The definition of 

an atomic operation, first discussed in Chapter 15, is developed as a basis for study of systems which support this 

all or nothing style of composite operation execution.

Chapters 20 and 21 are concerned with methods for implementing atomic composite operations. It is necessary to 

be able to put the system state back to its value prior to the start of such an operation. If the system can do this it 

can recover from crashes. The same mechanisms can also be used to control concurrent execution of atomic 

operations: if interference has happened, act as though the system had crashed!

The treatment given applies equally to centralized and distributed systems. Chapter 22 discusses techniques 

specific to distributed systems.

Finally, Chapter 23 takes a general view of computations with distributed components.

 17 Composite operations

 18 Resource allocation and deadlock

 19 Transactions

 20 Concurrency control

 21 Recovery

 22 Distributed transactions

 23 Distributed computations
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Chapter 17. Composite operations

17.1 Composite operations

17.2 Composite operations in main memory

17.3 Composite operations involving main memory and persistent memory

17.4 Concurrent execution of composite operations

17.5 Potential problems

17.6 Crashes

17.7 Summary
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17.1 Composite operations

Figures 17.1 and 17.2 show composite operation invocations: first, a simple nested invocation; then a general hierarchy of operations. We 

are no longer concerned with the detailed mechanism for invocation of the operations and protection of the data objects operated on. We 

assume that each operation is part of a concurrent system and will therefore have concurrency control associated with its invocation as 

discussed in Part II.

Figure 17.1. A nested invocation.

Figure 17.2. A hierarchy of operation invocations.

Figure 17.1 shows a simple nested operation invocation in some detail. Figure 17.2 shows a high-level operation comprising a hierarchy of 

operations. The top-level operation (0) is invoked. Its execution involves the invocation of two operations (1 and 2), each of which involves 

the execution of two further operations (1.1, 1.2 and 2.1, 2.2).

The problem we address in Part III is the correct execution of general abstract operations, which decompose into suboperations, in the 



presence of concurrency or crashes.
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17.2 Composite operations in main memory

Consider a number of processes sharing an address space and assume that a number of monitors (or objects with synchronized 

methods) are available to them as the means by which shared data is protected or shared resources are allocated exclusively. The 

specification of the operations may be such that a process may acquire a monitor (or object) lock, then, while executing an operation of 

the monitor (or a synchronized method), make a nested call to another monitor (or object) (Figure 17.3). Process A has invoked 

operation W, assumed to be a monitor operation (or synchronized method), and has made a nested invocation of operation Y in another 

monitor. Process B has invoked X and made a nested invocation of Z, at which point both hold two monitor (or object) locks. At this point 

process A invokes Z and process B invokes Y and both will wait indefinitely unless there is system intervention. This is an example of a 

situation called deadlock which is the subject matter of Chapter 18.

Figure 17.3. Concurrent invocation in main memory.

Figure 17.3 also shows process C attempting to invoke X. The issue of whether process B should continue to hold the lock of the monitor 

(or object) containing X while making a nested invocation of Z must be addressed.

The situation shown in the figure is not exclusively the problem of shared-memory-based systems which use monitors (or synchronized 

objects) for concurrency control. The objects involved could be located in separate address spaces in main memory throughout a 

distributed system and invoked by remote procedure call or remote method invocation.
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17.3 Composite operations involving main memory and persistent 

memory

Examples of areas in which composite operations involve both main memory and persistent memory are database management 

systems and operating systems. Both have to handle multiple simultaneous activities.

17.3.1 Examples from operating systems

Many examples of composite operations arise within the file management subsystem of an operating system. In order to satisfy a 

request to write a sequence of bytes to a file an operating system might have to send more than one write request to the disk manager. A 

crash could occur between these associated writes.

Certain file operations require associated directory operations, as outlined in Chapter 6. When a file is deleted, the disk blocks it 

occupies may be made free (if there are no other paths to it) and its directory entry and metadata should be removed. A crash could 

occur at any time, including between these operations. If the operations were carried out in the order indicated above, the directory entry 

and metadata could remain, but blocks of the file would be on the free list. A number of difficulties might then arise. The disk blocks 

which had comprised the file might be allocated to some other, newly created file. The file system has become inconsistent (and 

incorrect). An important part of file system design is to avoid or detect and correct inconsistencies, particularly after a crash has occurred.

Another example is that creation of a new file has an associated directory operation to add a new entry to a directory. Disk blocks might 

be acquired for the file, but a crash might occur before the directory entry is made. The blocks might be lost to the filing system unless 

action is taken to detect this.

In a file management subsystem we are concerned with the transfer of data and metadata between main memory and persistent 

memory. There are many examples where a change is made to a file, such as extending it with new blocks, and these changes are 

recorded in file system tables in main memory. Suppose that at the time of the change the data blocks are written to disk and the new 

disk blocks used are recorded in tables in main memory. This metadata must also be written to disk for the persistent store to be in a 

consistent state, but a crash could occur at any time. Care must be taken in the file system design and in crash recovery procedures that 

the file system can be restored to a consistent state, with minimum loss of data. In this example consistency could be achieved after a 

crash by detecting that the newly written blocks are not recorded as part of any file and returning them to the free list. The unfortunate 

user would have to repeat the work.

These examples have emphasized that a crash can occur between the component operations of a logical operation at a higher level. 

Concurrent execution of component operations can have similar effects, and we shall see that it can be advantageous to consider 

possible actions to guard against the effects of crashes, together with those for concurrency control.

17.3.2 An example from a database system

An example of a high-level operation is to transfer a sum of money from one bank account to another:

transfer (account-A, account-B, £1000)

Two separate operations have to be invoked to achieve this. One is to access the source account, account-A, in order to read that there 

is sufficient money in there and to write the debited amount back as the new value of the account, a typical Part II-style operation. The 



second is to credit the destination account, account-B, with its updated value, another Part II-style operation.

The constituent low-level operations are therefore:

debit (account-A, £1000)

credit (account-B, £1000)

The techniques of Part II ensure that each of these separate operations can be done correctly, but do not address their composition into 

a correct, single high-level operation.
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17.4 Concurrent execution of composite operations

There is scope for concurrency in the execution of high-level, composite operation invocations.

Several high-level operations, invoked by different processes, could be run in parallel, their lower-level operations being 

interleaved.

1.

It might be possible to invoke the suboperations of a single high-level operation in parallel.2.

Method 2 cannot be carried out automatically without regard to the semantics of the computation. It might be the case that some of the 

operations have to be invoked in a specific order. For example, debit might only be allowed after a check-balance operation but credit and 

debit can be carried out in parallel.

Current database programming languages tend to specify a strict sequence of operations. It can be argued, as with imperative 

programming languages, that the sequencing is often overspecified. To move to parallel execution of the operations of a single 

transaction, which is desirable for multiprocessor or distributed execution, it would be necessary to specify and enforce any necessary 

orderings on the operations.

Method 1 provides more obvious scope for automatic provision of concurrency. Resource contention problems are likely to arise.

17.4.1 Desirability of concurrent execution

Before looking at mechanisms for achieving concurrency we should consider whether concurrent execution is a goal worth striving for at 

the expense of additional complexity in the system. One approach to supporting high-level operations would be to regard them as 

indivisible: to acquire exclusive use of all the objects needed for the entire set of constituent operations and then to carry out the 

high-level operation. There are several drawbacks to such an approach:

It could take a long time to acquire all the objects required, introducing unpredictability of service and (possibly indefinite) delay.

All the objects would be held for the duration of all the constituent operations. This would prevent other processes from using 

them, even when the objects were idle and no errors could result from their use.

A number of logically distinct operations are effectively being combined into a single large operation. Knowledge of all the 

objects invoked in suboperations is needed at the outermost level.

Deadlock could occur if the objects were acquired piecemeal (as discussed below and in Chapter 18).

In applications where it is unlikely that two processes would require simultaneous access to the same resource, either because of light 

use or because accesses are known to be scattered widely across a large data space, this might be a suitable approach. An example is 

personal data in a social security, medical or taxation database. The same individual is unlikely to be the target of multiple simultaneous 

queries.

In a heavily used system with frequent contention the performance could be unacceptably slow and we should aim to achieve a higher 

degree of concurrency. Good performance while serving multiple clients is a sufficiently widespread goal that it is important to strive for 

maximum concurrency in many systems.

It is worth studying the techniques for achieving concurrent execution of composite operations in order to be able to decide whether and 

how to provide for it in a given system design. The mechanisms that are needed for crash resilience (failure transparency) are similar to 

those for some methods of concurrency control, and it is desirable to consider both together.
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17.5 Potential problems

We shall use the simple example of Section 17.3.2 to illustrate the problems that can occur during concurrent execution of composite 

operations and some approaches to their solution. Suppose:

process P executes transfer (account-A, account-B, £1000)

process Q executes transfer (account-B, account-A, £200)

In more detail:

P: debit (account-A, £1000); credit (account-B, £1000)

Q: debit (account-B, £200); credit (account-A, £200

Showing more detail of a possible implementation for P (Q is similar):

P: debit (account-A, £1000);

read the value of account-A

check whether the debit can be made (value  £1000), if not give an error response, otherwise write the debited value as the

new value of account-A

P: credit (account-B, £1000);

read the value of account-B,

add £1000 to the value,

write the new value into account-B

17.5.1 Uncontrolled interleaving of suboperations

Figure 17.4 shows a hierarchical decomposition for the transfer operation down to the granularity of treating individual read and write 

operations on account records as separate operations. Consider the possible consequences of having no concurrency control whatsoever. 

The following sequence of operations could occur:

Q: complete the whole debit operation on account-B

P: read the value of account-A

Q: read the value of account-A



P:
check value  £1000 and write back the original value minus £1000

Q: write back the original value plus £200

P: credit account-B with £1000

Figure 17.4. A possible hierarchy of operations for 'transfer'.

The debit of £1000 made by process P to account A has been lost, overwritten by process Q's credit to the original value of the account. 

This illustrates that the debit and credit operations should be treated as abstract operations, indivisible in the sense of Part II. Their 

implementation in terms of individual reads and writes should not be visible to the client of the transaction system. The reads and writes to 

persistent store can be thought of in the same way as the individual reads and writes to main memory in Section 9.7.1. The data object 

account-A can be considered as an abstract data type with operations which include debit and credit, as shown in Figure 17.5. We assume 

that a mechanism such as a lock on a data object is available to implement exclusive access to an object for those operations which 

require it.

Figure 17.5. Account objects.



We shall develop a model along these lines in Chapter 19. Much database concurrency control theory in the past has been presented in 

terms of read and write operations only, but current thinking is that object orientation, taking into account the semantics of the operations, 

is a better approach. Returning to our simple example, this does not solve all our problems because interleaving operations at this level 

can also lead to incorrect results, as shown in the next example.

17.5.2 Visibility of the effects of suboperations

Suppose process R is calculating the sum of the values of accounts A and B, and consider the following interleavings:

P: debit (account-A, £1000);

R: read-balance (account-A);

R: read-balance (account-B);

P: credit (account-B, £1000);

In this case, each of the suboperations of the transfer operation is carried out correctly by process P but the value computed by process R

for the sum of accounts A and B is incorrect. The problem arises because another process has been allowed to see the accounts affected 

by the transfer operation between its two suboperations. This is a Part III problem. Its solution is addressed in Chapters 19 and 20.

17.5.3 Deadlock

If we attempt to solve the problem of Section 17.5.1 by allowing accounts to be 'locked' we could have the following interleaving of 

operations:

P: lock (account-A);

P: debit (account-A, £1000);

Q: lock (account-B);

Q: debit (account-B, £200);

P: lock (account-B)

This can't be done as Q already holds the lock on account-B. Let us assume that process P is obliged to wait for the lock, for example on a 

condition variable in a monitor.

Q: lock (account-A)

This can't be done as P already holds the lock on account-A. Let us assume that process Q is obliged to wait for the lock.

If this situation is allowed to arise, processes P and Q will wait indefinitely. They are said to be 



deadlocked. This is a Part III problem. Its solution is addressed in Chapter 18.
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17.6 Crashes

In Chapter 15 we considered the effects of crashes and mechanisms that would provide crash resilience for a single operation invocation. 

Figure 17.6 reiterates the basic approach. In Chapter 16 we considered an operation on one host being invoked from another host in a 

distributed system and considered the possibility of crashes both in the invoking and invoked systems. We now generalize these ideas.

Figure 17.6. A potentially atomic operation invocation.

Suppose, in the simple example introduced in Section 17.5 above, that a crash occurs after the debit operation, which must have written its 

result to persistent store in order to complete, but before the credit operation. The fact that a transfer operation was in progress was lost, 

with main memory, in the crash and £1000 has been lost from the recorded values in persistent store. A system design clearly needs to

take account of such a possibility.

Figure 17.7 shows the more general case of a composite operation, indicating that any component operation may involve a write to 

persistent memory. Suppose that a crash occurs, as indicated, during operation 2.1. We have seen from Chapter 15 how that operation 

might be rolled back and restarted. We now have to consider what to do about operations 1, 1.1 and 1.2, which apparently completed 

successfully although the crash occurred during operation 0, the high-level invoking operation. Chapters 19 and 20 consider these issues. 

We should also consider a distributed implementation of such a composite operation. In this case the nodes on which the operations 

execute need to cooperate. This is considered in Chapter 22.

Figure 17.7. A crash during hierarchical operation invocation.
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17.7 Summary

We defined composite abstract operations and looked at some examples. In some cases, concurrent execution of the component 

operations of high-level operations is desirable and in others it cannot be avoided. This can lead to problems. In Part III we will study 

these problems and possible solutions to them.

The general problem that can arise as a result of the uncontrolled concurrent execution of component operations is that the system state 

can become incorrect. A related problem is that output may be incorrect (Section 17.5.2), even if the persistent state subsequently 

becomes consistent. A naive attempt to avoid these problems through locking all required resources for exclusive use can lead to bad 

system performance; locking piecemeal can lead to deadlock.

Incorrect system state might result from a crash part-way through a single composite operation or through uncontrolled concurrent 

execution of composite operations. A system must at least be able to detect that this has happened. Minimal action is to restore a 

consistent version of the state, possibly involving loss of information, and to warn the users affected that this has occurred. This is 

acceptable for some systems, typically filing systems for general-purpose operating systems.

Some systems, such as transaction processing systems, guarantee to their clients that, once a transaction is complete, its results will not 

be lost whatever happens. Crashes can occur, and not only must a consistent version of the system state be restored but that state must 

contain the results of all completed transactions. The mechanisms that must be used to achieve crash resilience without loss of the 

information that has been guaranteed to persist might also be used for concurrency control. It is therefore desirable to consider 

concurrency control and crash resilience together.

The topic of dynamic object allocation and deadlock is covered in the next chapter in some detail as general background for the specific 

methods discussed in later chapters.

Study questions

S17.1 What is the essence of a composite operation?

S17.2 In Figure 17.3, deadlock occurs because operation Y is waiting to invoke operation Z while operation Z is waiting to 

invoke operation Y. How has this situation arisen and why do operations Y and Z have to wait?

S17.3 Assuming that operations W and X in Figure 17.3 are associated with different monitors, what would happen if W

invoked X and X invoked W?

S17.4 In Figure 17.3, what happens when process C attempts to invoke operation X while X is already executing (on behalf 

of process B)? Is this always desirable?

S17.5 Other than by incorrect programming, how might a file system become inconsistent?

S17.6 A crash occurring between the component operations (suboperations) of a single high-level logical operation 

(composite operation) is one reason why persistent data may become inconsistent. What is another?

S17.7 Concurrent execution of composite operations means that the suboperations of one may become interleaved with 

the suboperations of another, causing interference. Why is making a composite operation indivisible, so that this 



interleaving cannot take place, undesirable?

S17.8 What is the primary goal for using concurrency?

S17.9 In the example of Section 17.5, assume that account-A and account-B both start off with £1000. What would the

balance of the two accounts be if:

process P is completed before process Q starts;a.

process Q is completed before process P starts;b.

and both processes complete their actions?

S17.10 For the sequence of operations given in Section 17.5.1, what are the resulting balances of the two accounts 

(assuming that, as the final operation, process P completes the whole credit operation on account-B)?

S17.11 Suppose that you and a friend are having tea together and that you both take sugar in your tea. On the table there 

is a single sugar bowl and a single spoon. Assuming that the sugar bowl has to be picked up to take spoonfuls, 

describe a situation in which deadlock occurs. In what ways might you ensure that deadlock would not occur in this 

situation?

S17.12 What is the essential difference between crashes in the case of composite operations and crashes in the case of 

single operations?

Exercises

17.1 What problems might occur if the suboperations of a single high-level operation are started off in parallel (for example, 

for running on a shared-memory multiprocessor)? Give examples. Why is it difficult to automate this approach?

17.2 Find out about the consistency checks your local operating system runs on its filing system on restarting after a crash 

or shutdown (an example is UNIX's fsck maintenance tool). Is it possible for users to lose data? If so, how are they 

informed of this possibility? Why is this approach not possible in a transaction processing system?

17.3 To what extent is it desirable to run the suboperations of different high-level operations in parallel? What are the 

possible problems arising from uncontrolled concurrency? (Give examples of incorrect output and incorrect system 

state.) What are the possible consequences of attempting to solve these problems?

17.4 What are the possible effects of a crash part-way through a single composite operation? What mechanisms must be in 

place to allow for the possibility of a crash at any time in a transaction processing (TP) system? Are these 

mechanisms suitable for handling concurrent execution of composite operations as well?

17.5 Why is it important, when designing a TP system, to have estimates of the likely level of load on the system and the 

probability that requests for simultaneous access to the same data items will occur?

17.6 Consider how you would set up an object model for a TP system. What are possible disadvantages of treating read 

and write as operations on data objects?
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18.1 Requirements for dynamic allocation

We shall use the term 'object' to include resources of all kinds, including data objects, devices, etc. In Chapter 17 some of the problems 

associated with concurrent execution of composite operations were introduced. A basic problem was shown to be how to maintain 

consistent values across a number of distinct objects when a high-level operation may involve related lower-level operations performed 

sequentially on distinct objects.

An obvious starting point for solving such problems is to support exclusive use of objects by processes. This was studied in Part II, 

where several methods for achieving mutual exclusion of processes from shared objects were described.

Object allocation is a common requirement in concurrent systems. Physical resource management is a major function of operating 

systems and many of the managed resources must be allocated dynamically. Typical of these are disk space for users' files, buffer 

space in memory for disk buffers, disk space for spoolers, physical memory, tape drives and other devices which are neither spooled nor 

allocated statically. Certain data objects must also be managed by operating systems. Entries in fixed-length data structures, such as the 

central process table in UNIX, must be allocated and recovered; a new process can only be created if a free slot can be allocated. 

Database management systems have to handle requests from multiple simultaneous users to interrogate and update permanently 

stored data objects. Communications protocols require buffer space in memory for incoming and outgoing packets. It is far more 

common for 'loss of data' to occur through lack of buffer space when systems are congested than through errors on the wire.
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18.2 Deadlock

A simple example of deadlock was given in Section 17.5. In that case, process P had locked object A for exclusive use and went on to 

request object B. Process Q had already locked object B. Deadlock occurs when process Q proceeds to request object A.

Figure 18.1 illustrates this problem. It shows the progress of processes P and Q when they are scheduled to run on a single processor, that 

is, only one at a time can run. Their behaviour is that each acquires one object and, while still holding it, requests the other. Paths i, j, k, l, 

m, n illustrate different possible dynamic behaviours of the two processes. In i and j, process P acquires both A and B before process Q

requests B. In k and l, process Q acquires both B and A before process P requests A. In paths m and n deadlock becomes inevitable for the 

particular dynamic behaviour exhibited in this example when P gets A and Q gets B.

Figure 18.1. Two processes using two resources (objects).

We cannot assume that an object management system knows the semantics of the particular application. The dynamic behaviour might 



have been as illustrated in Figure 18.2. In this case, both processes require both A and B but process P releases A before acquiring B. The 

processes may be delayed, waiting for objects, during some dynamic patterns of resource scheduling, but deadlock cannot happen.

Figure 18.2. Two processes using two objects without deadlock.
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18.3 Livelock and starvation

Before proceeding to further investigation of the problem of deadlock it should be pointed out that processes need not necessarily be in 

the blocked state for there to be no possibility of progress. An example is busy waiting on a condition that can never become true. The 

process loops, testing the condition indefinitely. This condition is sometimes referred to as 'livelock'.

Communications protocols must be analysed to make sure they do not degenerate into an indefinite 'ping-pong' behaviour when 

systems are congested. If communication is attempted between two congested systems, packets are likely to be discarded at both ends 

because buffer space is exhausted. The congestion is worsened by resending messages, replies, acknowledgements and negative 

acknowledgements, and care must be taken that an indefinite loop is not entered (Lai, 1982).

A more subtle form of a near deadlock state is due to resource starvation. A process may have large resource requirements and may be 

overlooked repeatedly because it is easier for the resource management system to schedule other processes with smaller resource 

requirements. It can happen that every time some of the resources the starved process wants become available they are given to some 

other process which can then complete. This is because system throughput looks good if processes with small requirements are 

scheduled and complete. The system's resource allocation policies should ensure that processes with large resource requirements are 

not starved, although it is reasonable to expect them to wait for longer before being scheduled than processes with small resource 

requirements.

An example from databases is that certain portions of the data may be hot-spots: in demand by many processes. Process scheduling 

must take this possibility into account and a given process must not be held up unduly for this reason.

Zöbel (1983) gives a classifying bibliography for the deadlock problem.
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18.4 Conditions for deadlock to exist

If all of the following conditions are true at some time in a system then deadlock exists at that time (Coffman et al., 1971).

A resource request can be refused

The system's concurrency control policy is such that objects can be acquired for exclusive use or some specific shared use. It 

is possible for a process to be refused access to an object on the grounds that some other process has acquired it for 

exclusive use. It is possible for a process to be refused access to an object on the grounds that a group of processes have 

acquired shared access to it for a specific purpose. An example is that a process may request exclusive access to an object 

in order to write to it but is refused because the object is currently locked for shared reading.

1.

Hold while waiting

A process is allowed to hold objects while requesting further objects. The process is blocked if the request cannot be 

satisfied. The assumption is that the process will wait for the resource until it becomes available.

2.

No preemption

Objects cannot be recovered from processes. A process may acquire an object, use it and release it.

3.

Circular wait

A cycle of processes exists such that each process holds an object that is being requested by the next process in the cycle 

and that request has been refused.

4.

The processes in the cycle are deadlocked. Other processes may be able to continue but the system is degraded by the objects held by 

the deadlocked processes. If a process makes a request that must be refused for an object that is involved in the cycle, that process will 

also wait indefinitely. Further cycles could occur if a process in a cycle can have outstanding object requests that are not part of the 

original cycle. This would not be possible if a process had to acquire objects one at a time and was blocked as soon as a request could 

not be satisfied.

18.4.1 Deadlock prevention

All of conditions 1 to 4 above must hold for deadlock to exist. Conditions 1 to 3 are policy statements. Condition 4 is a statement about a 

particular dynamic behaviour of a set of processes. It might be possible to preclude some of the conditions through system policies.

A resource request can be refused

Any concurrency control policy provided by a system to assist the applications that run above it should be as flexible as 

possible.

An example can be taken from the concurrency control that might be provided as part of a file service by an operating system. 

Exclusive write locks and shared read locks were once thought to be what an operating system should provide. They are now 

seen to be insufficiently flexible: they force a particular view of the world on every application. Some applications may wish to 

have concurrent write sharing of files. For example, instances of a database management system may wish to provide their 

own fine-grained concurrency control to access different parts of a file at the same time. The operating system should allow 

them all to have the file open for writing. The provision of an exclusive lock and a shared lock could be provided so that the 

owners of the objects are assisted in using the object correctly in a way appropriate for the application.

Whenever concurrency control is provided, in order to ensure that the values of objects are correct, it is possible that a 

1.



request to use an object in some way will be refused.

Hold while waiting

It may be possible to make a process acquire all the objects it needs at one time. This decreases utilization of, possibly 

scarce, objects. It may also be counter to the aim of a clean modular structure as discussed in Section 17.3. If a computation 

has deeply nested invocations then the outermost level would have to be aware of all the objects used at all levels.

It may not always be possible, for example, if a requirement for an object results from computations based on other objects.

2.

No preemption

It may be possible to preempt an object and roll back the process holding it to the point at which it acquired the object that is 

now required by another process. This could be made transparent to the application. A policy decision is whether this should 

take place after deadlock is detected or at other times, such as when a process holds objects and fails to acquire another or 

when a high-priority process needs an object that a lower-priority process holds. This is a heavyweight mechanism and 

affects many aspects of program and system design. Detecting deadlock and aborting and restarting some processes might 

be simpler.

3.

Circular wait

In certain applications it might be possible to require processes to request objects in a defined order. This would be less 

wasteful of system resources than acquiring all objects at once. This is feasible for some types of objects that are allocated; 

for example, a program may reasonably be required to request input devices before output devices.

An alternative is to enforce an ordering on the processes making the requests. The method of time-stamp ordering for 

concurrency control in database systems is deadlock free for this reason (see Section 20.5).

One method of solving the problem illustrated in Section 18.5 is to force processes to order their requests for resources so as 

to make a cycle impossible.

4.

We use these techniques whenever we can in designing systems. We have to trade off the overhead of detecting and recovering from 

deadlock against the decreased resource utilization or extra complexity arising from the above policies. Knowledge of the likely 

behaviour of the applications to be supported should determine the policies to adopt.
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18.5 The dining philosophers problem

The discussion above is equally appropriate to resource allocation by operating systems and data object management by a DBMS. The 

following example demonstrates its applicability to a small concurrent program.

This problem was posed by Dijkstra (1965) and is a classic of concurrent programming:

Five (male) philosophers spend their lives thinking and eating. The philosophers share a common circular table 

surrounded by five chairs, each belonging to one philosopher. In the centre of the table there is a bowl of 

spaghetti, and the table is laid with five forks, as shown in Figure 18.3. When a philosopher thinks, he does not 

interact with other philosophers. From time to time, a philosopher gets hungry. In order to eat he must try to pick 

up the two forks that are closest (and are shared with his left and right neighbours), but may only pick up one fork 

at a time. He cannot pick up a fork already held by a neighbour. When a hungry philosopher has both his forks at 

the same time, he eats without releasing them, and when he has finished eating, he puts down both forks and 

starts thinking again.

Figure 18.3. The dining philosophers problem.

The conditions for deadlock are set up in the problem: a philosopher acquires each fork exclusively; he must acquire one fork then hold it 

while waiting to acquire the second; a fork cannot be taken from a philosopher once he has picked it up. It may be possible, depending 

on the specification of the philosopher processes, for a cycle to occur when they execute dynamically, in which each philosopher has 

acquired one fork and is waiting to acquire a second: the final condition that must hold for deadlock to exist in a system.



This is illustrated by a first attempt at a solution, which is subject to deadlock. Semaphores are used for fork management:

var fork:array[0..4] of semaphore;

where all the elements of array fork are initialized to 1. Philosopher i may then be specified as:

repeat

WAIT (fork[i]);

WAIT (fork[i + 1 mod 5]);

eat

SIGNAL (fork[i]);

SIGNAL (fork[i + 1 mod 5]);

think

until false;

The problem arises because each philosopher process executes an identical program. One approach is to break the symmetry: make 

one of the philosophers, or each philosopher with an odd identifier, pick up his forks in the opposite order to the others, thus avoiding the 

possibility of a cycle. Another is to introduce a separate fork manager module which implements deadlock avoidance as described in 

Section 18.8 below: a general, and therefore heavyweight, solution. Exercise 18.5 outlines some approaches to solving the problem.

Although the problem is posed to explore the dangers of symmetric behaviour, it extends those we discussed in Part II because two 

specific shared resources must be acquired before the eat operation can be done. At a high level a philosopher could be specified as 

EAT; THINK but EAT is not a single, Part II-style operation. The high-level EAT operation comprises five lower-level operations: acquire 

fork; acquire fork; eat; release fork; release fork.
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18.6 Object allocation graphs

Figure 18.4 shows a graphical notation for describing object allocations and requests. The graph shows object types R1 and R2. The 

dots inside the R1 and R2 boxes indicate the number of objects of that type that exist. The directed edge from the single instance of R1 

to process P indicates that P holds that object. The (dashed) directed edge from P to the object type R2 indicates that P is requesting an 

object of type R2. P is therefore in the blocked state. If a cycle exists in such a graph and there is only one object of each of the object 

types involved in the cycle then deadlock exists (this is the definition of deadlock). If there is more than one object of each type a cycle is 

a necessary but not sufficient condition for deadlock to exist. Examples of object types which may have multiple instances are the tape 

readers and printers that are allocated by a resource management module of an operating system.

Figure 18.4. Notation for resource allocation and request.

A directed graph of this kind can be used as a basis for object management; for resource allocation by an operating system; for data 

management by a DBMS, etc. The components of the graph are the set of processes which either hold or are requesting resources; the 

set of object types with an indication of the number of instances of each type; and a set of edges indicating allocations and requests, as 

described above.

Figure 18.5 shows an example of an allocation graph. Deadlock does not exist at present, but an allocation decision has to be made: 

there is one instance of resource type R2 and two processes are requesting it. Figure 18.6(a) shows the graph if the object of type R2 is 

given to Q. Deadlock does not exist. Figure 18.6(b) shows the graph if the object of type R2 is given to P. A cycle has been created. 

Because there is only one object of each of types R1 and R2 deadlock exists. Figure 18.6(c) and (d) show a similar problem except that 

this time there are two instances of objects of type R2. In (c) a cycle exists but there is no deadlock. Although both objects of type R2 are 

allocated, process T is not deadlocked: it may complete and release its object. In (d) we see process P with both instances of R2. In this 

case there is deadlock.

Figure 18.5. A resource allocation graph.



Figure 18.6. (a) Object of type R2 allocated to Q. (b) Object of type R2 allocated to P. (c) A 

cycle but no deadlock. (d) A cycle with deadlock.

We now consider data structures for holding object allocation and request information and algorithms for detecting deadlock in a system.
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18.7 Data structures and algorithms for deadlock detection

We assume a subsystem that is responsible for allocating certain objects and detecting deadlock. The object types to be managed and the 

number of instances of each type must be specified and the subsystem must record which are allocated and which are available. A matrix 

of processes against allocated objects is a suitable data structure to hold the object allocation information. Let us call it an allocation 

matrix A where aij is the number of objects of type j allocated to process i. A request matrix B of the same structure is suitable for holding 

outstanding requests by processes for objects (see Figure 18.7). We require an algorithm to detect deadlock by processing these 

allocation and request matrices.

Figure 18.7. Data structures for object management.

18.7.1 An algorithm for deadlock detection

The algorithm below marks the rows of the allocation matrix A corresponding to processes which are not part of a deadlocked set.

Mark all null rows of A. (A process holding no objects cannot be part of a deadlocked cycle of processes.)1.

Initialize a working vector W = V, the available objects.2.

Search for an unmarked row, say row i, such that Bi  W (the objects that process i is requesting are 'available' in W). If none 

is found terminate the algorithm.

3.

Set W = W + Ai and mark row i. Return to step 3.4.

When the algorithm terminates, unmarked rows correspond to deadlocked processes.

The algorithm merely detects whether deadlock exists. If the object requests of a process can be satisfied it is not part of a deadlocked 



cycle and the objects it holds are not under contention by the deadlocked set of processes. The algorithm therefore adds them to the 

working pool of available objects for the purposes of the algorithm. The physical justification for this is that the process could complete its 

work and free its objects.

In terms of the corresponding resource allocation graph, the algorithm marks processes that are not part of a deadlocked set. If step 3 

finds a process whose resource requests can be satisfied, step 4 removes the edges of the graph associated with the process; that is, its 

requests are assumed to be granted and the objects it holds become available for allocation.

18.7.2 Example

Figure 18.8 shows an example of a snapshot of object allocation and request at some instant.

Figure 18.8. Example of deadlock detection.

On running the algorithm we have:

Initialize W = (0, 0, 0, 0, 1)

Mark row 4 ( process 4 has no allocated objects)

Mark row 3 (process 3's requests can be satisfied from W and process 3's objects are added to W):

W = (0, 0, 0, 1, 1)

Terminate

Rows 1 and 2 are unmarked, so processes 1 and 2 are deadlocked.

Figure 18.9(a) shows the resource allocation graph for this example. Figure 18.9(b) shows the effect of running the algorithm on (a copy of) 



the graph and (c) shows the cycle of deadlocked processes.

Figure 18.9. Graphs for the example in Section 18.7.2. (a) The graph at the start of the algorithm. 

(b) The graph when the algorithm terminates. (c) The cycle.

18.7.3 Action on detection of deadlock

The simplest action is to abort all the deadlocked processes, freeing all their objects. This could require a complete restart of these 

processes or a rollback to a checkpoint before the objects were acquired if the system supports this. An alternative is to abort the 

processes selectively, but this would require the deadlock detection algorithm to be run again, at least for the remaining processes that 

might still be deadlocked. Another alternative is to preempt the objects over which the deadlocked processes are contending one by one, 

but again the algorithm would have to be rerun.
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18.8 Deadlock avoidance

It may be feasible for a process to specify its total object requirements before it runs. This information could be used by the allocation 

subsystem. Let us assume that a third matrix is now available, Cm,n, giving the maximum object requirements of each process as shown 

in Figure 18.10.

Figure 18.10. Data structures for deadlock avoidance.

For any given request for objects that it is possible to satisfy from the objects available, the allocator can test whether

if this allocation is made (construct A', a hypothetical allocation matrix for testing) and all the processes then request 

their maximum number of objects (construct B', a hypothetical request matrix) would deadlock then exist? (Run the 

detection algorithm given above on A' and B'.) If deadlock would not exist then it is safe to grant the request being 

tested.

This is a worst-case analysis since it is unlikely that all the processes would immediately request objects up to their maximum entitlement. 

It avoids the overhead of recovering from deadlock at the expense of holding an extra matrix C and constructing A' and B' before running 

the algorithm. It also requires this procedure to be carried out for each set of requests that might be granted. This is a matter for 

judgement. It might be possible to satisfy all outstanding requests, but in testing this allocation the chances of finding a potentially 

deadlocked state would be higher than for a more modest allocation. The safest way to proceed is to try to satisfy one process at a time. 

Figure 18.11 gives an example with matrices A, B and C at some instance in a system. Figure 18.12 shows the constructed matrices A' and 

B', supposing that process 1's request was satisfied, and the effect of running the deadlock detection algorithm on A' and B'. In this case, 

satisfying process 1's request would move the system to a state where deadlock did not exist and deadlock could not occur on any 

subsequent request: a safe state.

Figure 18.11. An example for deadlock avoidance.



Figure 18.12. The deadlock avoidance algorithm for the example in Figure 18.11 .

18.8.1 Problems of deadlock avoidance

The avoidance procedure aims to ensure that the system moves from one safe state to another on each object allocation. It could happen, 

however, that the algorithm finds no allocation which is guaranteed to be safe; that is, deadlock could occur when a subsequent request 



was made. In practice, some object allocation might have to be made eventually and the risk of deadlock run.

To carry out this form of deadlock avoidance procedure would therefore not only involve a significant overhead but could not be used in all 

circumstances. A fallback procedure would be needed in case of failure to find a safe state to move to. The system could then move to an 

unsafe state, in the terms of the algorithm.
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18.9 Information on releasing objects: Multiphase processes

We have seen that making information on total object requirements of processes available to the object management subsystem could 

allow deadlock to be avoided rather than merely detected dynamically. There are reservations, however, that the avoidance algorithm is 

over-cautious. It takes no account of the fact that a process might release an object at some time before it terminates. If this information 

could be given to the object management subsystem, a more realistic model of the system could be maintained and used by a deadlock 

avoidance algorithm.

In order to bring in the notion of piecemeal acquiring and releasing of objects by processes we need the concept of steps in the progress 

of a sequential process. At the start of each step a process requests or releases one or more objects. The object management 

subsystem now knows the precise behaviour of the set of processes under its control. It would be possible, in theory, to schedule a 

combination of process steps so that the system proceeds through a sequence of safe states, a system state being defined as a step 

from each process being managed.

The computational overhead of such an algorithm is likely to be large and the approach is unlikely to be applicable to many application 

areas. The model of a distinct set of processes to be run from start to completion is not always appropriate. Some processes may run 

indefinitely, possibly in a cyclic fashion; some processes may terminate; new processes may be created dynamically. One area in which 

the model has been applied successfully is in job scheduling by operating systems. Here it may often be the case that a process will 

require a few resources in a specific order. It is not applicable to the scheduling of large numbers of short transactions.
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18.10 Distributed deadlocks

The resources that are allocated dynamically may reside at different nodes of a distributed system. Requests for use of a resource may 

come from a source outside its home node. We have seen the possible mechanisms for making such requests in Chapter 16; for example 

a message or RPC requesting a resource may be pended by the resource manager until the resource becomes free, thus blocking the 

requesting thread.

In the discussion so far in this chapter we have assumed that global knowledge of the allocation of resources and requests for their use is 

available to algorithms for deadlock detection or avoidance. This can be made the case in a distributed system if we implement a 

centralized resource allocator. All requests have to go to this one service and it must be told when resources are freed. This centralized 

approach does not scale: the resource allocator could become a system bottleneck. The resource allocator is also a single point of failure 

in the system. If it fails, no process may acquire or release resources, even though the processes and resources are on operational nodes.

We saw that one way to prevent deadlock is to assign an integer value to each resource and to enforce that acquisition of resources by 

processes is in increasing order of their identifiers, thus avoiding cycles. This approach can be used in a distributed system, without the 

need for a central resource allocator, if the resources are assigned unique system-wide identifiers. All we need to know is that the process 

does not already hold a resource with a higher identifier, which can be determined locally. As we discussed above, this approach is not 

ideal for capturing the semantics of applications: most resources do not naturally fall into a sequential order.

A similar approach is to prevent cycles by using the process identifier, or a time-stamp issued to the process, to determine whether a 

process should be allowed to wait for a resource to become available or whether it should be aborted if it fails to acquire a resource. We 

shall study this approach, which is called time-stamp ordering (TSO), in Chapter 20 in the context of database transactions.

A pragmatic approach is to abort a waiting process after it has waited for a resource for some specified time.

18.10.1 Distributed deadlock detection

Let us now assume a resource manager (RM) at each node. The RMs have to maintain information:

about local processes and resources as before;

about requests made by local processes for remote resources that are waiting to be satisfied;

about local resources allocated to remote processes.

One possibility is to make each RM attempt to keep a graph representing every process and every resource in the distributed system. This 

approach does not scale for large systems: it involves more data and more messages than the centralized approach. If the graphs are to 

be kept consistent we have a bottleneck at every node instead of a single central bottleneck.

We therefore require each RM to maintain a partial graph. All remote processes requesting local resources can be represented as a single 

process Prem pointing to the local resources concerned. All remote resources being waited for can be represented by a single resource 

Rrem with the waiting local processes pointing to it, see Figure 18.13. We have extended the local resource allocation and request 

matrices by one row (one process) and one column (one resource).

Figure 18.13. Extensions to allocations and requests.



Cycle detection can then be carried out as before for deadlock detection on each node's partial graph. If there are no cycles, all is well. If 

there is a cycle, the node must communicate with the other RMs to determine whether it represents a real deadlock. Figure 18.14 shows a 

simplified resource wait graph which shows only processes that are waiting on each other. We see a cycle distributed over several nodes.

Figure 18.14. A deadlocked cycle of distributed processes.



The communication between the RMs follows the path of the possible cycle. In Figure 18.14, suppose the RM at node A detects that a 

cycle is possible. It sends a message to the RM at node C because a process at node A is waiting on the resources held by a process at 

node C. The message {A3, C2} indicates this. The RM at node C finds that C2 is waiting on a process at node B, B2, so passes the 

information {A3, C2, B2} on to node B. Node B finds that the process in question is waiting on a resource held by a process at node D and 

sends {A3, C2, B2, D1} to node D. Finally, node D communicates {A3, C2, B2, D1, A3} to the RM at node A. The RM at node A receives 

this communication, notes that the cycle is complete and takes action on the deadlock that exists.
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18.11 Summary

Dynamic allocation of objects to processes has to be done in some systems. Operating systems, communications systems and DBMS 

are examples. Dead-lock is possible if objects are allocated dynamically. We saw the four conditions that must hold for deadlock to exist 

in a system: 'exclusive access'; hold while waiting; no preemption; and circular wait. The first three conditions are basic policies of object 

allocation and carefully chosen system policies can go some way to help avoid deadlock. This has to be considered for the specific type 

of object management system to be designed.

The allocation of objects to processes was modelled by a directed graph, and a cycle in an allocation graph was shown to be a 

necessary condition for deadlock to exist. It is also a sufficient condition if there is only one object of the object types involved in the 

cycle. Data structures were shown that could be used to record object allocation and availability and outstanding requests. Simple 

algorithms for deadlock detection and avoidance were given and discussed. These algorithms could be refined for use in specific 

systems.

The reader is now aware of a broad range of approaches that can be considered when resources are allocated dynamically. This 

material will be drawn on as a basis for subsequent chapters. It will also be extended, for example, to allow for shared locks as well as 

exclusive locks. We shall also consider the use of time-stamps for deadlock avoidance.

The flavour of the discussion in this chapter has been that deadlock is a rare and serious business. We shall see in later chapters that it 

could be expedient and desirable to provide an abort operation. If the ability to abort is available it can be built into many aspects of 

system design, including deadlock management.

Study questions

S18.1 What is the basic problem with concurrent execution of composite operations?

S18.2 Give an example of deadlock that is not related to a computer system.

S18.3 If you were in your car waiting at traffic lights and the lights failed in such a way that all lights were on red, would 

that constitute a deadlocked situation?

S18.4 Describe in detail what happens on path n in Figure 18.1 and why deadlock becomes inevitable.

S18.5 Suppose that two processes, P and Q, are executing at the same time. If process P wants resource A and then, 

later, resource B (i.e. it wants both A and B at the same time), but process Q wants resource B and then, later, 

resource A (i.e. it too wants both A and B at the same time), must deadlock ensue?

S18.6 Distinguish between deadlock and livelock.

S18.7 What is starvation and what causes it?

S18.8 Explain how each of the four conditions that must exist for deadlock to occur apply to path n in Figure 18.1 when 

deadlock has occurred.



S18.9 How can deadlock be prevented?

S18.10
What is a centralized resource allocator?a.

What is the basis on which such an allocator works?b.

Why is a centralized mechanism not a good idea?c.

S18.11
What is the most pragmatic approach to deadlock prevention in a distributed system?a.

Which of the conditions for deadlock is being avoided by this pragmatic approach?b.

S18.12 Describe how a local resource allocation graph held by a local resource manager takes account of requests for, and 

allocations of, resources on other nodes.

S18.13 If a local resource manager in a system using the distributed deadlock detection algorithm as described detects a 

cycle that includes either the representative of remote processes or the representative of remote resources, what 

does it do?

S18.14 If, in a system using the distributed deadlock detection algorithm, a node discovers that one of its processes, having 

a resource that a previous node is waiting for, is not itself waiting for a resource on another node, what should 

happen?

Exercises

18.1 Consider a wide range of examples of objects or resources that are allocated by a system to meet the demands of the 

application or applications that it runs. Consider the extent to which these demands are predictable in advance. 

Consider real-time systems, multi-user (distributed) operating systems, database management systems, etc.

18.2 What are deadlock, livelock and starvation? Give examples.

18.3
What are the four conditions that must hold for deadlock to exist in an object allocation system? Which of 

these are system policies? Which is concerned with a specific sequence of events that happens to have 

occurred?

a.

Is it possible to ensure that any of these conditions can be guaranteed not to hold?b.

18.4 Consider the following alternative specifications of the resource requirements of a process. In each case the process 

makes requests dynamically for the objects it needs.

No resource requirements are specified in advance.a.

The total resource requirements are specified.b.

The order in which the resources are required is specified.c.



The order in which resources are acquired and released is specified.d.

Discuss how these levels of information on resource requirements could be used to handle the possibility of deadlock. 

What are the trade-offs involved in deciding on the amount of information to hold and the amount of processing to be 

done on it?

18.5 Devise the following solutions to the dining philosophers problem of Section 18.5:

Take the semaphore program given in Section 18.5 as a starting point. Explore the use of an additional 

semaphore to achieve mutual exclusion, either to ensure that both forks are picked up at once or to 

simulate a room which the philosophers enter one at a time to eat. Adapt this latter solution to allow four 

philosophers at once to enter the room.

a.

Write semaphore programs which break the symmetry. Let odd-numbered philosophers pick up their forks 

left then right and even-numbered philosophers right then left. An alternative is that just one philosopher 

picks up his forks in the opposite order.

b.

Write the monitor 'solution' that is equivalent to our first attempt, given in Section 18.5, that is susceptible to 

deadlock.

c.

Write a solution that simulates a room in which the philosophers eat one at a time.d.

Write a monitor solution that allocates forks so that only four philosophers at once may be attempting to eat.e.

Write a monitor solution such that philosophers request both forks at once.f.

The above solutions are specific to this problem. Explore the use of the general approaches to deadlock 

detection and avoidance described in this chapter. For example, a fork allocator monitor could run a 

deadlock detection algorithm whenever it could not satisfy a request for a fork. Or each process might 

register a claim for the total resources it might ever require before starting to run its algorithm. A fork 

allocator might run a deadlock avoidance algorithm. Note the length of these solutions.

g.

18.6 Investigate the possibility of deadlock in the scenario described in Section 4.4.2 and illustrated in Figure 4.6.
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19.1 Introduction

In Chapter 9 we defined an atomic operation on data in main memory. In Chapter 15 we extended the definition of atomicity for a single 

operation on data in persistent memory, and showed how to make such an operation crash-resilient. In this chapter we extend the 

discussion to composite operations on persistent data. From Chapter 15, a single operation on persistent data is atomic if:

When it terminates normally all its externally visible effects are made permanent (this is the property of durability), else it has 

no effect at all.

If the operation accesses a shared data object, its invocation does not interfere with other operation invocations on the same 

data object. We shall extend this concept into the property of isolation.

If a crash occurs during the execution of an operation that has been defined to be atomic, in a system which supports atomic operations, 

then the system can be rolled back to the state it was in before the atomic operation was invoked and the operation can be restarted.

In Part II it was shown that mechanisms such as semaphores and monitors make a Single Logical Action (SLA) strictly indivisible. While a 

process is executing an SLA, no other process may see or access the data objects the process is working with. What this means is that 

SLAs must run serially, i.e. one after the other. Serial execution, by definition, guarantees indivisibility. This is shown in Figure 19.1.

Figure 19.1. Serialization of conflicting operations on one object.

In Part III we consider composite operations. We could, if we wished, make composite operations (also known as transactions) appear 

indivisible, simply by running them serially. Figure 19.2 shows a composite operation, comprising related, potentially interfering, 



operations on different objects, executed by three processes. In this case the composite operation is serialized as a single operation.

Figure 19.2. Serialization of a composite operation.

However, as discussed in Chapter 17, composite operations may be quite lengthy, and imposing such strict indivisibility would be 

inefficient. We normally therefore allow composite operations to run concurrently, but use mechanisms that make them appear

indivisible, i.e. give the impression of running serially, even though the suboperations that make up the composite operation may actually 

be interleaved, as shown in Figure 19.3. Notice that the conflicting operations on individual objects are still serialized and take place in 

the same order within the composite operation for a given process.

Figure 19.3. An example of interleaved (sub)operations.



In this chapter we address the question of how to make transactions appear indivisible, while allowing the suboperations of transactions 

to be interleaved. We must also ensure consistent system state.
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19.2 Transaction specification and programming

It is useful to extend the concept of atomic operation to include composite operations. We assume that it is the composite operation that 

has meaning to whatever application invoked it; the suboperations are related and all or none of them must be carried out. Recall the 

operation hierarchy of Section 17.1 and Figures 17.4 and 17.7. It is the operation at the outermost level shown in the figures that is 

meaningful to the application; the application may not even be aware of the suboperations carried out by the system. In a banking 

system, for example, to credit an account with an amount, to debit an account with an amount, or to transfer an amount from one 

account to another are all operations that need to be atomic. Assuming that, at the start of processing, the system is in a consistent 

state, then successfully carrying out a meaningful atomic operation (or transaction) takes the system into another consistent state. We 

use the term transaction to indicate a meaningful atomic operation, that may or may not be composite. In general, a meaningful 

composite operation may reside at any level in an operation hierarchy. Also, a transaction at a given level may form part of a transaction 

at a higher level. We do not consider such nested transactions.

This chapter establishes a basis for studying how transactions may be implemented with concurrent execution and in the presence of 

crashes.

The example from Chapter 17, of a transfer transaction, might be programmed in some application-level language as follows:

begin transaction

transfer (account-A, account-B, £1000)

end transaction;

This implies that transfer is defined as a transaction and available to the high-level language programmer. At a lower level, within a 

library or the transaction management system, transfer could be expanded in terms of the operations on bank account objects. Using 

start, commit and abort operations, as well as the operations on bank account objects, a transfer from one account to another could be 

defined as a transaction as follows.

startTransaction();           // creates necessary system information 

if(accountA.read-balance  1000 {

   accountA.debit(1000);

   accountB.credit(1000);

   commitTransaction();       // guarantees debit and credit are durable

}

else{

   System.out.println("Not enough in accountA for transfer");

   abortTransaction();        // guarantees all effects (if any) are undone

}

The start of the transaction is indicated by startTransaction(). Successful termination is called commitment and a successful transaction 

is assumed to terminate with a commit operation. After a successful commit operation, the changes that the transaction has made to the 

system state are guaranteed to persist. This is the durability property of transactions.

We discuss in Section 19.9 whether commitment is also the point at which those changes are allowed to become visible to other 

transactions. If this is the case then the transaction is said to have the property of isolation. It might be desirable in an implementation to 

make them visible earlier, thus achieving greater concurrency, but the effect on long-term system state must be as though the property of 

isolation was enforced.

A transaction management system must be crash-resilient in order to enforce the property of atomicity of transactions: either all or 

none of the operations of a transaction are carried out (see Section 17.6). If a transaction has not been committed it cannot be assumed 

that all its operations are complete. When the system restarts after a crash it must be able to roll back (undo) the effects of any 



transactions that were uncommitted at the time of the crash. This is called aborting a transaction. A transaction is defined to end with a 

commit or an abort operation.

If such a procedure is available for achieving crash resilience it may also be used for concurrency control by the management system. 

Once the possibility of undoing the effects of operations exists in a system we can, optimistically, attempt to achieve greater concurrency 

than is strictly safe and solve any problems that arise by undoing the effects of the operations that have turned out to be wrong.

The abort operation can also be made available to the application level. A transaction may then be coded to read values from a database 

and, depending on the values, proceed to further processing or abort, requiring any previous operations to be undone. An example is 

that a check-balance operation might find that there is insufficient money in an account to proceed with a debit operation.

It is convenient to use a concise notation for transactions and their operations. We assume that a transaction is given a unique 

identifying number i when it starts and that this number is associated with all its operations. In later examples we refer to the transaction 

as a whole as Ti, its start as Si, a commit operation as Ci and an abort operation as Ai. The operations within the transaction will be named 

appropriately, such as debiti (account-A, £1000).

We shall use the example of bank account objects again in the next sections where the operations are discussed in more detail. For 

more complex transactions the application level may require to interact with the transaction manager and it is returned the transaction 

identifier for this purpose.
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19.3 The definition of serializability and consistency

We defined a transaction as a (possibly composite) atomic operation that is meaningful to the application level: a transaction relates to 

some given level in an operation hierarchy. A transaction therefore causes the system to move from one consistent state at this level to 

another. If the possibility of crashes is ignored in the first instance, a consistent system state can be maintained by executing 

transactions serially.

If one process's transaction is executed to completion before any other can start there is no possibility of interference between them. We

would then have made the transaction a single Part II-style indivisible operation (Figure 19.2). Such a procedure (single threading of all, 

even unrelated, transactions) could be bad for system performance, as argued in Chapter 17, and serial execution of all transactions 

could not be contemplated for a multiprocessor or distributed system. We must therefore consider concurrent execution of transactions.

During concurrent execution of composite operations, suboperation executions are interleaved (see, for example, Figure 19.3). In some 

cases (hopefully in most cases), different transactions will access unrelated objects. An example is when transactions are associated 

with the data held about individuals, such as in a social security or tax-related database. The database is massive and processing is 

likely to be widely scattered across it.

The idea that consistent system state is maintained by serial execution of transactions is fundamental. This leads to the following 

definition of serializability:

If a specific interleaving of the suboperations of concurrent transactions can be shown to be equivalent to some 

serial execution of those transactions, then we know that the system state will be consistent, given that particular 

concurrent execution of the transactions.

Further discussion can be found in Korth et al. (1990).

An example illustrates the point. Consider two transactions I and T, each consisting of several operations (as defined in Section 19.6.) as 

follows:

Transaction I:

add-interest-to-balance (account-A)

add-interest-to-balance (account-B)

Transaction T:

debit (account-A, 1000)

credit (account-B, 1000)

A serial schedule of the operations of the transactions may be achieved in two ways (the start and commit operations are not shown 

here):

I before T T before I

I: add-interest-to-balance (account-A) T: debit (account-A, 1000)

I: add-interest-to-balance (account-B) T: credit (account-B, 1000)

T: debit (account-A, 1000) I: add-interest-to-balance (account-A)



I before T T before I

T: credit (account-B, 1000) I: add-interest-to-balance (account-B)

For example, suppose (to make the arithmetic simple and emphasize the point) that interest is computed at the (very high) rate of 0.1% 

per day and suppose account A stands at £10,000, and account B at £20,000. Then, after executing the I before T schedule, account A 

will hold £9010 and account B £21,020. The schedule T before I will result in account A holding £9009 and account B £21,021. The two

sets of solutions are both valid, because in both cases a consistent system state is maintained.

Now consider two possible interleaved executions of the same transactions I and T:

Interleaved execution: schedule 1 Interleaved execution: schedule 2

I: add-interest-to-balance (account-A) T: debit (account-A, 1000)

T: debit (account-A, 1000) I: add-interest-to-balance (account-A)

I: add-interest-to-balance (account-B) I: add-interest-to-balance (account-B)

T: credit (account-B, 1000) T: credit (account-B, 1000)

If we assume the accounts hold the same amounts as before, and that the same interest rate applies, then the results after executing the 

suboperations in the order of schedule 1 are that account A holds £9010 and account B holds £21,020, whereas after schedule 2

account A holds £9010 and account B £21,021. The results for the interleaved execution of schedule 1 are identical to the I before T

schedule, and thus constitute a consistent state. On the other hand, after executing suboperations in the order suggested by schedule 2, 

A holds £9009 and B holds £21,020. The system would be in an inconsistent state as £1 has gone missing. The problem arises because

transaction I is seeing an inconsistent state.

By comparing the end results of an interleaved execution with the end results for a serial execution we can establish whether a system is 

still in a consistent state, and whether the schedule of interleaved operations can be considered to be serializable. In Section 19.6.2 we 

study how to achieve concurrent execution of transactions whilst ensuring that no transaction sees an inconsistent system state.

To summarize the above discussion, we can informally rephrase the earlier definition of serializability as follows:

Suppose two concurrently executing transactions S and T interleave their operations in some schedule. This 

schedule of operations will be serializable if it produces the same result as some serial execution of the same 

transactions S and T.
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19.4 The ACID properties of transactions

Putting together the points made in the discussion above, a transaction may be defined as having the following properties:

Atomicity Either all or none of the transaction's operations are performed.

Consistency A transaction transforms the system from one consistent state to another.

Isolation An incomplete transaction cannot reveal its result to other transactions before it is committed.

Durability Once a transaction is committed the system must guarantee that the results of its operations will persist, even if there 

are subsequent system failures.

Note that these properties relate to the definition of transactions and do not imply particular methods of implementation. The effect on 

system state of running transactions is as defined by these properties.
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19.5 Indicating specific orderings of transactions

We assume a transaction management system with clients who may simultaneously submit a number of transactions. The system is at 

liberty to execute their operations in any order provided that a serializable execution is achieved, since a serializable execution of a set of 

transactions is defined to be correct. All serial executions are assumed by the system to be equally acceptable to the application.

If the semantics of the application require one transaction to be carried out after another they must not be submitted to a transaction 

management system at the same time. For example, it might be that a user must transfer money from a savings account to a current 

account before transferring money from the current account to some external account to make a payment. If they are submitted together, 

the management system may execute them concurrently and the suboperations may be scheduled in any order. The user may be told 

there are insufficient funds for the transfer.

This is a crude method of specifying dependencies between transactions. In Section 19.7 we explore how dependencies between the 

operations of transactions might be expressed, with a view to achieving a serializable execution of a number of transactions. Within a 

single transaction we assume that any two operations on the same object will be carried out in the order specified in the transaction. 

Unrelated operations may be carried out in any order, thus allowing for parallel execution in a multiprocessor environment.
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19.6 A system model for transaction processing

Figure 19.4 shows the example of an abstract data object (a bank account) which we used in Section 17.5. We now use the same 

example to study serializability. Each data object has an associated set of operations, in this case:

create a new account;

delete an existing account;

read-balance takes an account name as argument and returns the balance of the account;

check-balance takes an account name and a value as arguments and returns true if the balance of the account is greater than 

or equal to the argument value, else it returns false;

credit takes an account name and a value as arguments and adds the argument value to the balance. Note that the value of 

the balance is not output to the client;

debit takes an account name and a value as arguments and subtracts the argument value from the balance. Note that the 

value of the balance is not output to the client.

It is assumed here that the client is responsible for checking the balance before doing a debit. For example, the transfer 

transaction would contain:

if check-balance (account-A, £1000) then debit (account-A, £1000) …

set-interest-rate (r%) is used to set the daily interest rate to a given percentage;

add-interest-to-balance is run daily by the system administration (probably at 3 a.m., when, although cashpoints are 

available, not many people will be around doing transactions). This operation computes the interest accrued to the account, 

based on its value at midnight, and adds the interest to the balance.

Figure 19.4. An account object.



19.6.1 Non-commutative (conflicting) pairs of operations

In order to establish serializability, it is important to specify which pairs of operations on a given object do not commute. Operations A and 

B are commutative if, from any initial state, executing A then B results in the same object state and external output values as executing B

then A; the order of execution does not matter. We use the term conflicting as equivalent to non-commutative, relating to a pair of 

operations.

For a given object it must therefore be specified which pairs of operations conflict. Note that it is necessary to include in the pairs each 

operation with itself. An example of an operation which does not commute with itself is write. This operation stores a given value at some 

location, typically on a disk drive. For example:

the order: write (x, 100); write (x, 200) results in the final value 200 for x;

the order: write (x, 200); write (x, 100) results in the final value 100 for x.

Any operation that stores a value and, in doing so, replaces what was there previously does not commute with itself. Assignment is 

another example.

In the case of the bank account object:

credit and debit are commutative (the final value of the account is the same whatever the order of execution and 

there is no external output);

credit and credit are commutative, as are debit and debit;



read-balance and credit are not commutative (the value read and output for the balance is different depending on 

whether it is executed before or after the credit operation; the final value of the account is the same whatever the 

order of execution);

read-balance and debit are not commutative;

read-balance and read-balance are commutative, as are check-balance and check-balance;

check-balance and credit are not commutative;

check-balance and debit are not commutative;

set-interest-rate and set-interest-rate are not commutative (the final value of the interest rate depends on the order 

of execution of two set-interest-rate operations if their arguments are different);

add-interest-to-balance conflicts with credit and debit because the value computed for the interest is different 

depending on whether the credit or debit was done before or after add-interest-to-balance. It conflicts with 

read-balance and check-balance with respect to the value of the account output.

For example, suppose that interest is again computed at the rate of 0.1% per day and suppose account A stands at £10,000:

credit (account-A, £5000) A = £15,000

add-interest-to-balance (account-A) A = £15,015

If the operations are executed in the other order:

add-interest-to-balance (account-A) A = £10,010

credit (account-A, £5000) A = £15,010

The final state is different: the operations conflict.

19.6.2 Condition for serializability

We use this model, defining objects and indicating which of their operations are non-commutative (conflicting), with the following 

assumptions:

Objects are identified uniquely in a system.

The operations are executed without interference (in the sense of Part II); that is, the operations we are considering here are 

at the finest granularity of decomposition visible to the client.

There is a single clock associated with the object which is used to indicate the time at which operations take place and 

therefore their order.

The object records the time at which each operation invocation takes place with the transaction identifier (see Section 19.2) of 

the transaction that executed the operation.

It is therefore possible, for any pair of transactions, to determine the order of execution of their operations (in particular the conflicting 

pairs of operations) on a given object which they both invoke.



In Section 19.3 we presented the fundamental idea that consistency is maintained when transactions are run in some serial order. It follows 

that, if two transactions are interleaved, consistency will be maintained if the result is equivalent to the transactions having been run in 

some serial order. This can be thought of as a definition of what serializability means. The question now arises as to how one can ensure 

that two interleaved transactions are serializable. This is answered by the condition for serializability (Weihl, 1984; 1989):

For serializability of two transactions it is necessary and sufficient for the order of their invocations of all 

conflicting pairs of operations to be the same for all the objects which are invoked by both transactions.

We use this condition as the basis for our study of concurrent execution of transactions. In the next section we generalize from pairwise 

serializability to serializability of a number of transactions. Note that the condition holds for a distributed system where there can be no 

assumption of global time. All that is needed is time local to each object.

Herlihy (1990) takes a more general view of conflict and further work is reported in Badrinath and Ramamritham (1992), and Guerni et al.

(1995).

Example

Consider again (see Section 19.3) the example of two transactions I and T. We saw four possible schedules of suboperations for these 

transactions. The first two were serial:

I before T T before I

I: add-interest-to-balance (account-A) T: debit (account-A, 1000)

I: add-interest-to-balance (account-B) T: credit (account-B, 1000)

T: debit (account-A, 1000) I: add-interest-to-balance (account-A)

T: credit (account-B, 1000) I: add-interest-to-balance (account-B)

the third and fourth were interleaved:

Interleaved execution: schedule 1 Interleaved execution: schedule 2

I: add-interest-to-balance (account-A) T: debit (account-A, 1000)

T: debit (account-A, 1000) I: add-interest-to-balance (account-A)

I: add-interest-to-balance (account-B) I: add-interest-to-balance (account-B)

T: credit (account-B, 1000) T: credit (account-B, 1000)

The conflicting pairs of operations in these transactions are:

add-interest-to-balance (account-A) with debit (account-A, 1000)

add-interest-to-balance (account-B) with credit (account-B, 1000)

In the first serial schedule, labelled I before T, we find that for the conflicting pair of operations on object account-A, that is the 

add-interest-to balance and the debit operation, the order of execution is I followed by T. The next conflicting pair of operations, now on 

object account-B, the add-interest-to-balance and credit operations, are also executed in the order first I then T. So for both pairs of 

conflicting operations, the order of execution is the same at all objects involved in both transactions, and thus the condition for 



serializability holds, and this is a serializable schedule.

For the schedule labelled T before I, we find that all the conflicting pairs of operations on all the objects involved in the transaction 

(account-A and account-B) are executed in the order first T then I, and this schedule of operations is therefore also serializable.

It should come as no surprise that a serial schedule is serializable! After all, in a serial schedule first all operations belonging to one 

transaction are executed, followed by the operations of the next transaction, and thus the conflicting pairs of operations are, by definition, 

executed in the same order at all the objects common to the transactions. It is more challenging to see if the condition for serializability 

can hold for an interleaved schedule of operations.

In the interleaved schedule 1, the order of the conflicting pairs of operations on both objects involved (account-A and account-B) is first I,

then T and thus this schedule will leave the system in a consistent state. However, in schedule 2, the order at object account-A is first T

then I, for the conflicting pair:

add-interest-to-balance (account-A) with debit (account-A, 1000)

and the order at object account-B is first I then T for the conflicting pair:

add-interest-to-balance (account-B) with credit (account-B, 1000)

The interleaved schedule 2 therefore has different orderings at the two objects invoked in the transactions by their conflicting pairs of 

operations, and the schedule does not meet the condition for serializability. In Section 19.3 we were already able to make observations 

about the inconsistent system state using the definition of serializability (by comparing the final values for account-A and account-B with 

those they would have if the transactions were executed in some serial order). We now have an explanation for our earlier observation in 

the form of the condition for serializability.
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19.7 Dependency graphs for transactions

In this section we develop a graphical representation for schedules of operations of transactions. Any necessary ordering of the operations 

within a transaction is indicated in its graph. Figure 19.5 shows the transactions Sum and Transfer where Transfer is as used in the 

previous sections, and Sum is defined as follows:

read-balance(account-A); 

read-balance(account-B);

print(account-A + account-B).

Figure 19.5. Graphical representation of the Sum and Transfer transactions.

Note that the print(account-A + account B) statement is shorthand for 'add the balances of the two accounts, found as the result of 

performing read-balance(account-A) and read-balance(account-B)'.

Taking the Sum transaction as an example, start comes first, the read-balance operations may take place in either order or in parallel (on a 

multiprocessor) but must precede the print operation, and finally there comes the commit operation.

In the next examples we use a more concise notation for the purposes of discussion: P and Q for objects and W, X, Y, Z for operations. 

Figure 19.6 specifies two transactions, both of which access objects P and Q. The operations W and X on object P are conflicting, as are 

operations Y and Z on object Q. In practice, an object is likely to have many operations but we consider a minimal example in order to 

highlight the issues. We focus on pairs of conflicting operations in order to explore the condition for serializability given in Section 19.6.2. 

The graphs show the operations within each transaction in serial order for simplicity. Our concern is to explore how concurrent 

transactions may be represented.

Figure 19.6. A specification of two transactions.



Figure 19.7 shows a serializable execution of the operations of the two transactions:

T1 invokes W on P before T2 invokes X on P (object P: T1 before T2)

T1 invokes Y on Q before T2 invokes Z on Q (object Q: T1 before T2)

Figure 19.7. A serializable schedule of the transactions' operations.

That is, the order of pairs of conflicting operations is the same for all the objects which are invoked by both transactions. In the graph this 

is represented by the two downward arrows, where the direction of the arrow (in both cases from T1 to T2) indicates that there is an 

ordering T1 < T2.

Figure 19.8 shows a non-serializable execution of the operations of the two transactions:

T1 invokes W on P before T2 invokes X on P (object P: T1 before T2)

T2 invokes Z on Q before T1 invokes Y on Q (object Q: T2 before T1)



Figure 19.8. A non-serializable schedule of the transactions' operations.

In this case, the pair of conflicting operations on P (W, X) is invoked in the order T1 then T2. The pair of conflicting operations on Q (Z, Y) is 

invoked in the order T2 then T1. There is no ordering of the transactions that is consistent with the order of operations at both objects.

Figure 19.9 gives an example involving a single object. Since operation W is invoked by both transactions it is necessary to know whether W

commutes with W and, similarly, whether X commutes with X. We specify that W commutes with W and X commutes with X, and so we need 

only consider the single pair of conflicting operations W and X.

(a) T1 invokes W on P before T2 invokes X on P (object P: T1 before T2)

 T1 invokes X on P before T2 invokes W on P (object P: T1 before T2).

The schedule is not only serializable but is, in this case, serial.

(b) T3 invokes W on P before T4 invokes X on P (object P: T3 before T4)

 T4 invokes W on P before T3 invokes X on P (object P: T4 before T3).

The schedule is not serializable.

Figure 19.9. Schedules of transactions' operations on one object.(a) A serializable schedule. (b) 

A non-serializable schedule.



[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

19.8 Histories and serialization graphs

A history is a data structure which represents a concurrent execution of a set of transactions. The directed graphs of Figures 19.7, 19.8 and 

19.9 are simple examples: they show the operations within the transactions, and the order of invocation of conflicting pairs of operations by 

different transactions. Note that the order of invocation of all conflicting pairs of operations on all objects must be shown in the history. 

Figure 19.10 gives a representation of a history in which the details of the objects and operations involved are not shown.

Figure 19.10. An example of a serializable history of three transactions.

A serializable history represents a serializable execution of the transactions. That is, there is a serial ordering of the transactions in which 

all conflicting pairs of operations at each object are invoked in the same order as in the given history.

An object is a witness to an order dependency between two transactions if they have invoked a conflicting pair of operations at that object. 

A serialization graph is a directed graph that shows only transaction identifiers and dependencies between transactions; the vertices of 

the graph are the transactions Ti, and there is an edge Ti  Tj if and only if some object is a witness to that order dependency. For 

example, T1  T2 is the transaction graph for the history in Figure 19.7. The serialization graph for T1, T2 and T3 is shown in Figure 

19.10. A transaction history is serializable if and only if its serialization graph is acyclic.

Figure 19.11 gives examples of possible serialization graphs for four transactions. In both (a) and (b) every pair of transactions has 

conflicting operations executed in the same order (there is at most one edge between each pair of transactions). In Figure 19.11(b) the 

serialization graph has a cycle and the history represented by the serialization graph is not serializable.

Figure 19.11. Examples of serialization graphs. (a) A serialization graph for a serializable 

history. (b) A serialization graph for a non-serializable history.



In general we must ascertain whether a given schedule of the operations within a set of transactions is serializable. We require a total 

ordering of the set of transactions that is consistent with the schedule:

Each object knows which pairs of its operations conflict.

Each object knows which transactions have invoked conflicting operations: it is a witness to an order dependency between 

them.

Provided that the order dependencies are consistent both at each given object and between objects then an ordering is 

determined for each pair of transactions involved. If not, then there is a cycle in the serialization graph, say T1  T2 

T1 as in Figure 19.8, and the transaction history cannot be serializable. This information can be assembled for all the objects 

invoked by the set of transactions, giving rise to the serialization graph.

To find a total ordering of the set of transactions that is consistent with the pairwise order dependencies requires a topological 

sort of the serialization graph. This can be done if and only if the graph is acyclic (Aho et al., 1983).

We can justify the result informally based on simple cases; for example suppose three transactions T1, T2 and T3 operate on a common 

object A, invoking operations which conflict. The object A is witness to a single serial ordering of the transactions and a cycle is impossible. 

Suppose there is no object common to T1, T2 and T3 but T1 and T2 invoke conflicting operations on A, T2 and T3 on B and T3 and T1 on C,

as shown in Figure 19.12. The six possible serial orders of the transactions are shown in the figure and none is consistent with a cycle in 

the serialization graph such as T1  T2  T3  T1.

Figure 19.12. Investigation of cycles in a serialization graph.



Now consider cycles with respect to the implementation of transactions and suppose that the property of isolation is enforced; that is, a 

transaction must seize all the objects it invokes and no other transaction can see the results of its invocations until after it commits. In this 

case a serial order is imposed by the order in which the transactions acquire objects: a cycle is impossible. If isolation is not enforced and 

the invocations on A, B and C were to go ahead in parallel we would create a cycle of transactions each unable to commit until the 

previous transaction in the cycle had committed. This must be prevented.

Suppose that a TP system maintains a serialization graph of the transactions in progress. A new transaction is submitted and the system 

attempts to execute it concurrently with the ongoing transactions. Any proposed schedule of the operations of the new transaction can be 

tested by creating a serialization graph which is the original one extended with the operations of the new transaction. A schedule can be 

rejected if the serialization graph thus extended has a cycle.
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19.9 Dealing with aborts: More about the property of isolation

The theory outlined above does not take into account that the operations of a transaction might be undone due to an abort termination. It 

must be possible to return the system to a consistent state as though the transaction had not taken place. The following problems could 

arise through concurrent execution of transactions, even if a serializable schedule of suboperations had been devised. It is demonstrated 

that serializability is necessary but not sufficient for correct concurrent operation.

19.9.1 Cascading aborts

Figure 19.13 shows a serializable schedule of the transactions T1 and T2 used above in Section 19.7. This time, T1 happens to abort.

Figure 19.13. Example of cascading abort.

Suppose that the transaction scheduler, having noted the order of operations for a serializable transaction, had, in order to achieve 

maximum concurrency, allowed T2 to execute operation X on object P as soon as T1 had completed operation W and similarly for object Q. 

T2 may have seen state or performed output that is now incorrect because T1 has aborted and T2 must also be aborted.

In general, aborting one transaction could lead to the need to abort a number of related transactions, called cascading aborts. This 

behaviour might degrade system performance so badly that it could be advisable to ensure that any state seen by a transaction has been 

written by a committed transaction. In other words, the effects of the suboperations of a transaction are not made visible to other 

transactions until the transaction commits, thus enforcing the property of isolation in the implementation. A schedule of operation 

invocations which enforces this property is called a strict schedule. This approach would cause difficulties in systems where transactions 



could be long and contention was likely, and could be deemed unnecessary if crashes and aborts are unlikely to happen.

19.9.2 The ability to recover state

The discussion here is in general terms. In the next chapter specific methods for achieving correct (serializable) executions of transactions 

are described. Some of the scenarios given below as examples might not in practice be allowed to arise, or some of the theoretically 

possible system actions might be deemed too expensive to implement.

If abort is supported it must be possible to return the system to a consistent state, as though the aborted transaction had not taken place. 

Consider the following interleaving of operations within a concurrent execution of transactions T1 and T2. The operations involved, several 

credit operations on bank accounts, are commutative so there is no problem with serializability. Suppose that initially A = £5000 and B =

£8000.

start1   

credit1 (account-A, £1000) A = £6000  

credit1 (account-B, £500)  B = £8500

start2   

credit2 (account-A, £200) A = £6200  

abort1 (A = £5200 B = £8000 should be achieved)

credit2 (account-B, £600)  B = £8600

abort2 (A = £5000 B = £8000 should be achieved)

This example schedule is not strict, that is, it violates the property of isolation. If this is the case, greater care must be taken on abort or on 

crash recovery than merely restoring each object's state to that prior to the aborted operation. When T1 aborts, T2 has already done 

another credit operation on account-A. The value of account-A cannot simply be put back to that prior to credit1 (account-A, £1000). Neither

can we take no action at all; T2 goes on to abort. We cannot then put the value of account-A back to what it was prior to credit2 (account-A,

£200) (this was the value after the credit by T1 which has already aborted). If we had discarded the value prior to T1's invocation the 

original state would be irrecoverable. Fortunately, we assume that a record of invocations is kept with the object and we have higher-level 

semantics than merely a record of state changes.

We assume that every operation has an inverse or undo operation. When a transaction aborts, each of its invocations must be undone. 

For a given object, if there have been no conflicting invocations since the one that is to be undone then we simply apply the undo

operation to the current state (the order of invocation of commutative operations is irrelevant). In this example, the inverse of credit is debit.

When T1 aborts we can simply debit (account-A, £1000) and remove the record of the original invocation from the object.

If there has been a conflicting invocation since the invocation we require to abort then we must undo all the invocations back to the 

conflicting operation. After we have undone that, we can perform the undo to achieve the abort we require, then we must do the 

subsequent operations again. The following example illustrates this; interest is used as a shorthand for add-interest-to-balance and a (very 

high) daily interest rate of 0.1% is again assumed for simplicity. The point is that we cannot simply apply the inverse of credit1 when T1

aborts, for example: this would leave the account with the value £7008 which is incorrect. Note also that even though non-strict operations

are allowed to go ahead, transactions which invoke them might be delayed when they request to commit because they have seen 

uncommitted state. Suppose that initially A = £5000.

start1    

credit1 (account-A, £1000) A = £6000



start2    

credit2 (account-A, £2000) A = £8000

start3    

interest3 (account-A)  A = £8008

commit3 delay commit?   

start4    

credit4 (account-A, £1000) A = £9008

commit4 delay commit?   

abort1    

 undo credit4 (account-A, £1000) A = £8008

 undo interest3 (account-A) A = £8000

 (note there is no need to undo and redo credit2 (account-A, £2000) because credits commute)

 undo credit1 (account-A, £1000) A = £7000

 redo interest3 (account-A) A = £7007

 redo credit4 (account-A, £1000) A = £8007

abort2    

 undo credit4 (account-A, £1000) A = £7007

 undo interest3 (account-A) A = £7000

 undo credit2 (account-A, £2000) A = £5000

 redo interest3 (account-A) A = £5005

 redo credit4 (account-A, £1000) A = £7005

This is a complex procedure and is the penalty to be paid for relaxing the property of isolation in an implementation and allowing non-strict 

conflicting operations to be invoked. In general, we assume a strict execution of operations to avoid this complexity, although as stated 

above, strictness may not be realistic in some systems. A strict execution can be enforced if each object delays any request to invoke an 

operation which conflicts with an uncommitted operation. An object must then be told when a transaction that has invoked it commits: this 

is assumed to be through a commit operation in the object's interface.

commit (transaction-id)

would cause all state changes resulting in invocations on the object by the transaction to be made permanent and visible to other 

transactions.

We return to this topic in later chapters in the context of specific methods of concurrency control. In the meantime, let us assume that each 

object holds information on the operations that have been invoked on it which includes the transaction identifier of the invoker and the time 

of the invocation (Figure 19.14). It should be emphasized that this is a theoretical starting point: all relevant information is assumed to be 

held. It would not be possible in a practical implementation to hold an indefinite history with every object, and optimizations would have to 



be made. We assume that each object has a commit operation and an abort operation.

Figure 19.14. An object used in a transaction system.
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19.10 Summary

We have extended the definition given in Chapter 15, of an atomic operation invocation in the presence of crashes, to cover atomic 

composite operation invocations (transactions) in the presence of concurrent transactions and crashes. The ACID (Atomicity, 

Consistency, Isolation, Durability) properties of transactions were motivated and discussed.

A system model to be used as a basis for reasoning about all aspects of transaction processing was introduced. The model focuses on 

the operations of a single object and generalizes naturally to distributed objects. Conflicting operations were defined to be those which 

do not commute; that is, the order in which they are executed affects the final state of the object, or the value output by an operation.

We have assumed that each object will hold information on operation invocations that have been made on it, in particular, the time of the 

invocation and the identifier of the invoking transaction. The order of invocation of all operations on an object can therefore be 

determined. We shall see how this information might be used for concurrency control and recovery purposes in later chapters. An 

introductory treatment of serializability was given here, based on this model.

We considered the pros and cons of relaxing the property of isolation of atomic transactions in an implementation, that is, allowing 

non-strict executions. In this case a transaction is able to see system state (values of objects) written by uncommitted transactions. The 

motivation is to allow greater concurrency, but the price to be paid is greater complexity. Cascading aborts can occur and the recovery of 

previous correct system state might involve a complex procedure of undoing and redoing operations. A strict execution (in which the 

property of isolation is enforced in the implementation) seems to be desirable to avoid this complexity. It may not be feasible to enforce 

strictness in practice if long transactions are common, failure is unlikely (crashes or application requested abort) and contention is likely.

Study Questions

S19.1 What is the property of durability?

S19.2 What is the property of isolation?

S19.3 In Figure 19.2, how has the problem of conflicting operations on several objects been overcome?

S19.4 How does the situation shown in Figure 19.3 differ from that shown in Figure 19.2? Why is this allowable? What 

essential features of Figure 19.2 are retained by Figure 19.3?

S19.5 If a transaction has not been committed (perhaps because of a system crash), what cannot be assumed and what 

must happen?

S19.6 What is meant by aborting a transaction and why might this operation be made available at the application level?

S19.7 How is a transaction identified at the application level?

S19.8 During concurrent execution of composite operations, suboperation executions are interleaved. In such a scenario, 

how can we be assured that a consistent system state is maintained?

S19.9 What is a serial schedule of transactions?



S19.10 What is the main assumption made by a transaction management system with regard to the order of processing of 

transactions?

S19.11 Define the term commutative. What is meant by conflicting operations?

S19.12 In Figure 19.7 what information is conveyed by the serialization graph?

S19.13 What does a serialization graph with a cycle represent?

Exercises

19.1 How can a serial execution of a composite operation be guaranteed? What is a serializable execution of a composite 

operation?

19.2 In a TP system a client submits a transaction, which is done and acknowledged to the client. What must the system 

guarantee when that acknowledgement is given?

19.3 What are the ACID properties of atomic transactions and how can they be ensured under concurrency and crashes?

19.4 Relate the system model based on object invocation given in Section 19.6 to the discussion of Section 16.11 on object 

naming, location and invocation.

19.5 How does the graph which represents the history of a set of transactions being executed differ from a serialization 

graph? What property of the serialization graph must hold for the transactions that it represents to be serializable?

19.6 Why might the decision to abort one transaction lead to the need to abort another? Could this happen if the property of 

isolation of atomic transactions was enforced at all times?

19.7 Give some practical examples of conflicting operations on an object.

19.8 Assume that every operation on an object has an inverse or undo operation. Assume that a number of operations have 

taken place on an object. When can an undo operation simply be applied to the current state of an object, even if there 

have been operations on the object since the one that must be undone?

19.9 We have used an object model with object operation semantics to define conflicting operations and serializability. 

Some earlier studies, for example Bernstein et al. (1987), were based only on read–write semantics where:

read and read do not conflict

read and write conflict

write and write conflict.

Which of the operations of the object shown in Figure 19.4 would conflict using read–write semantics but not using

object operation semantics?
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Chapter 20. Concurrency control

20.1 Introduction

20.2 Concurrent composite operations in main memory only

20.3 Structure of transaction management systems

20.4 Concurrency control through locking

20.5 Time-stamp ordering (TSO)

20.6 Optimistic concurrency control (OCC)

20.7 Summary
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20.1 Introduction

The main concern of this chapter is how concurrent execution of transactions can be implemented. Crash resilience, although related, is 

covered in the next chapter. The conceptual model based on objects, which was developed in Chapter 19, will be used again here.

A natural approach to concurrency control is to lock the objects involved in a composite operation (transaction). We shall show that 

locking can achieve serializability of the operations of transactions but that deadlock has to be considered. An alternative to locking is to 

associate a time-stamp with each transaction and to use this as a basis for enforcing one particular serializable order of execution of the 

operations of transactions. The methods used for concurrency control are considered in the light of the possibility that conflict may be 

very unlikely and having a great deal of mechanism in place to resolve it could be misplaced effort. Optimistic concurrency control may 

be the most suitable method for some application areas and is the final approach we consider.

First, we establish that the concurrent invocation of composite operations in main memory is subject to some of the problems that we 

have studied in relation to transaction systems. Then we focus on transaction processing systems (where persistent memory must be 

used).
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20.2 Concurrent composite operations in main memory only

Assume that a concurrent program has been developed in a modular fashion. We assume that each shared data abstraction is 

implemented as an abstract data type, as shown in Figure 20.1, and a data object is locked for exclusive use while any of its operations is 

invoked. Section 12.2 showed how this might be implemented for a single operation.

Figure 20.1. Related operations on data objects in main memory.

The problems of uncontrolled concurrent invocation of composite operations, discussed already in Part III, are relevant to this model. 

Assume in Figure 20.1 that objects A and B are operated on by one concurrent process; that is, a meaningful, high-level operation 

comprises both an operation on object A and an operation on object B. Similarly, another composite operation invoked by another process 

involves both object B and object C. We have already seen that incorrect values can result from inappropriate interleavings of the 

suboperations of composite operations. This is equally true for data objects in main memory and in persistent memory.

20.2.1 Objects in the main memory of a single computer



We established the properties of transactions in Chapter 19: atomicity, consistency, isolation and durability (ACID). It is helpful to consider 

these properties for concurrent invocation of composite operations in main memory only; that is, when no suboperation of a composite 

operation writes to persistent store. We first consider a program running in the main memory of a single computer.

Atomicity If there is a crash during a composite operation, all the effects of suboperations are lost. If there is no crash the 

composite operation will complete. Atomicity holds without any special need for enforcement.

Consistency We assume that a composite (high-level) operation has meaning. Invocation of a single composite operation takes the 

state managed by the program from one consistent value to another. We are not concerned with crashes since all state 

in main memory is lost on a crash. Consistency must be enforced in the presence of concurrent invocations.

Isolation The results of the suboperations of a composite operation should not be revealed until the operation completes. Isolation 

should be enforced.

Durability If a program runs in the main memory of a single computer and a crash occurs during a composite operation invocation, 

all the main memory is lost. Durability is not relevant.

The properties of consistency and isolation are relevant to the correct execution of programs which contain composite operation 

invocations. Control of concurrent execution of composite operations is the central issue.

The concurrency control methods for transactions that are discussed later in this chapter might also be applicable to data in main memory 

only. Since locking has been the approach taken throughout Part II to ensure the correct execution of a single operation, we first consider 

this method briefly.

A simple example based on Figure 20.1, showing that deadlock must be considered, is as follows:

process P invokes an operation on A (thus locking A);

process Q invokes an operation on B (thus locking B);

the operation on A invokes an operation on B and P is delayed;

the operation on B invokes an operation on A and Q is delayed;

processes P and Q are deadlocked.

An alternative object management scheme is to provide separate lock and unlock operations. Deadlock can then arise when locks are 

acquired piecemeal. Section 17.2 set up a similar problem in a monitor-based program. The dining philosophers problem discussed in 

Section 18.5 is another example.

20.2.2 Objects in main memory in a distributed system

We now consider briefly concurrent invocations of composite operations involving objects which are located throughout the main memory 

of computers comprising a distributed system. We assume that there is a single copy of each object.

A given composite operation is invoked at a single node: let us call it the managing node. For any object which is not located at that node a 

remote invocation must be carried out. Chapter 16 showed that this might be done by a remote procedure call or by message passing. Any 

node or any network connection may be subject to congestion or may fail. As we discussed in Chapter 16, the protocol implementing the 

invocation will indicate this by returning an exception. Because the distributed program accesses data objects in main memory only, we 

need not be concerned, on an exception, with changes that might have been made to persistent state by a suboperation invocation. By 

definition, there are none. Again, the major issue is concurrency control; in more detail:

Atomicity A number of distributed objects are invoked. If the result of every remote invocation is returned to the managing node 



and the local operations are also done then the composite operation is known by the manager to be complete.

If any result is not returned (after retries by the underlying protocol) then the composite operation has failed. The 

significance of this depends on the application. It may be that the distributed program has to be abandoned. It may be 

that the program can proceed by making use of an alternative to the operation that failed.

Consistency We assume that a composite operation has meaning. Invocation of a single composite operation takes the (distributed) 

state managed by the program from one consistent value to another. Consistency must be enforced in the presence of 

concurrent invocations and partial failures.

Isolation The results of the suboperations of a composite operation should not be revealed until the operation completes. Isolation 

should be enforced.

Durability If composite operations are invoked in main memory only, durability is not relevant.

Again, our main concern is to achieve consistency through enforcing isolation by some means of concurrency control. If locking is 

employed then, as above, we must allow for the possibility of deadlock.

20.2.3 Systematic approaches to concurrent program development

Some approaches to solving these problems in the context of a concurrent program are as follows:

Incorporate a transaction specification into the programming language. For example:

start transaction

invoke operation 1 on object A

invoke operation n on object B

end transaction;

The objects may or may not be persistent and may or may not 

be in a single local memory. This pushes the problem down into 

the transaction implementation. Most of this chapter is 

concerned with how transactions, which might be specified in 

this way, can be implemented.

1.

Use formal techniques of program analysis to ensure that the software system is deadlock free.2.

Incorporate a general object manager in the program. Data structures and algorithms such as those described in Chapter 18 to 

detect or avoid deadlock could be used by the manager.

3.

When designing the concurrent program, take into account the possibility of deadlock and avoid calls between operations that 

could lead to cycles (a systematic rather than formal approach).

For a given program the order in which locks are acquired could be specified statically in order to avoid cycles. In cases where 

large data objects are broken down into smaller components so that an operation on the containing object involves a nested 

call to the contained object this is easily achieved; the reverse direction of call is not required. Also, it may be possible to lock 

only the component concerned and not the whole containing object. In general it is difficult to avoid the possibility of cycles, and 

a systematic, informal approach is highly susceptible to error. Small problems, such as the dining philosophers example 

(Section 18.5), can be solved specifically.

4.

Consider other methods of concurrency control than locking, such as time-stamp ordering (see below).5.

We now proceed to concurrency control in systems which support transactions on persistent data.
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20.3 Structure of transaction management systems

Figure 20.2 outlines the components of an instance of a transaction processing system (TPS) in a single computer. In Chapter 22 we shall 

consider distributed transaction processing explicitly although much of the discussion in this chapter is relevant to distributed systems. 

Clients submit transactions to the TPS, which may start work on them concurrently. The transaction manager is responsible for 

validating the clients' submissions and for passing the component operations of the transactions to the scheduler (we assume here that 

the objects to be invoked are in the local database). The scheduler will use some strategy to achieve a serializable schedule of the 

operations of the transactions in progress. This is the main concern of the rest of this chapter.

Figure 20.2. A transaction processing system.



The data objects in persistent memory will be transferred into main memory for operation invocation and new values will be written back. 

This is the concern of the data manager and is discussed in the next chapter.
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20.4 Concurrency control through locking

We assume a manager for each object, as discussed in Chapter 19. Figure 20.3 shows an object which is now assumed to have a lock and 

unlock operation as well as those previously discussed. We assume that an object can be locked and only the holder of the lock can 

invoke an operation on the object. Locking a single object does not solve the problems introduced in Chapter 17 since the essence of the 

problem is how to carry out related operations on distinct objects. A number of locks are needed for a composite operation.

Figure 20.3. An object used in a transaction system.

We assume that the objects are located in persistent memory in a database and are accessed through a management system (a DBMS or 

TP system). We assume that each instance of the management system will contain a transaction scheduler and possibly a lock manager, 

responsible for deadlock detection or avoidance as well. Let us assume for now that the transaction scheduler will issue lock and unlock

operation invocations as well as those discussed previously. A possible strategy is to lock all the objects required by a transaction at its 

start and to release them on commit or abort. Can we achieve better concurrency behaviour than this?

20.4.1 Two-phase locking (2PL)

In two-phase locking, locks can be acquired for a transaction as they are needed. The constraint which defines two-phase locking is that 

no lock can be released until all locks have been acquired. A transaction therefore has a phase during which it builds up the number of 

locks it holds until it reaches its total requirement.

In the general form of two-phase locking, a transaction can release locks piecemeal as it finishes with the associated objects. If atomic 

transactions are to be supported with the property of isolation (that the effects of a transaction are not visible to other transactions before 

commit), a safe procedure is to release all locks on commit. This is called strict two-phase locking. Allowing visibility earlier allows more 

concurrency at the risk of cascading aborts and state which is difficult to recover, as discussed in Section 19.9.

Two-phase locking guarantees that all conflicting pairs of operations of two transactions are scheduled in the same order and thus 

enforces a serializable schedule of transactions. This is reasonably intuitive, but we will discuss it further after looking at an example.



It is possible for a lock request to fail because the object is locked already. In this case the transaction may be blocked for a time in the 

hope that the transaction holding the lock will complete and release the lock. It is possible for deadlock to occur, as shown below.

20.4.2 An example of two-phase locking

Figure 20.4 is the example used in Section 17.5.2 to illustrate the problem of inconsistent retrieval. T1 is the transfer transaction which first 

debits (D) A then credits (CR) B. For conciseness we shall not show a balance check here. T2 is a transaction which sums the values of A

and B using read-balance (R). Lock (L) and unlock (U) operations have been inserted. When T1 and T2 are run concurrently, any of the 

following can happen:

T2 locks A before T1 locks A. T2 proceeds to lock B and calculates and outputs A + B. T1 is delayed when it attempts to lock A. A 

serializable schedule T2  T1 is achieved.

1.

T1 locks A before T2 locks A. T1 proceeds to lock B. T2 is delayed when it attempts to lock A or B. A serializable schedule T1

 T2 is achieved.

2.

T1 locks A before T2 locks A. T2 locks B. Deadlock is inevitable.3.

Figure 20.4. Two transactions including lock and unlock operations.

Two-phase locking ensures that a non-serializable schedule of the operations of transactions cannot occur. The method is subject to 

deadlock, but the occurrence of deadlock means that a non-serializable schedule has been attempted and prevented.

Discussion

Suppose two transactions have a pair of conflicting operations on object A, and another pair on object B. A particular ordering of the 

conflicting operations is determined as soon as one of the transactions locks one of the objects. It cannot release the object until it has 

locked the other object (the two-phase locking rule) which it may or may not succeed in doing. If it succeeds, it has acquired locks on both 

objects over which there is conflict. If it fails because the other transaction has locked the other object, deadlock is inevitable. This 

argument generalizes to any number of objects. It is not quite so obvious that it generalizes to any number of transactions.

We have established that two-phase locking enforces that the conflicting operations of every pair of transactions are scheduled in the 



same order. It remains to argue that a cycle involving a number of transactions (see Section 19.8) is not possible. The intuition here is that 

if T1 is 'before' T2 (in the sense of Section 19.8: the operations in T1 of all conflicting pairs are scheduled before the conflicting operations in 

T2) and T2 is before T3, then T1 must be before T3: the before relation is transitive. At this stage we are considering a centralized system, 

with a single value of time, rather than a distributed one, so events can be ordered.

20.4.3 Semantic locking

The above discussion has assumed that an object is locked for exclusive use before an operation is invoked on it. For some operations, 

such as read-balance, any number of invocations could take place concurrently without interference. We could at least refine the system's 

locking policy to allow for shared locks and exclusive locks to be taken out.

In this case lock conversion might be required in some circumstances. A transaction might read a large number of object values and on 

that basis decide which object to update. The shared lock on the object to be updated would be converted to an exclusive lock and the 

shared locks on all the other objects could be released, at the time allowed by the two-phase rule. Deadlock could arise if two transactions 

holding a given shared lock both required to convert it to an exclusive lock.

By regarding each object as a separate entity there is maximum possible scope for indicating which operations can be executed 

concurrently and which cannot. Locking could be associated with each operation on an object and not provided as a separate operation. 

An invocation starts and a check of any degree of sophistication could be computed to determine whether to go ahead or consider the 

object locked against this invoker at this time and with this current object state.

20.4.4 Deadlock in two-phase locking

Allowing the objects required by a transaction to be locked separately rather than all together and allowing processes to hold their current 

objects while requesting further locks (the definition of two-phase locking) can lead to deadlock. That is, the rules of two-phase locking set 

up the conditions which make deadlock possible: (1) exclusive allocation (in the sense that a request for a resource can be refused); (2) 

resource hold while waiting; and (3) no preemption, (see Section 18.4). An example specifically associated with two-phase locking was 

given in Section 20.4.2, where a cycle of processes holding some locks and waiting for others was demonstrated. Concurrency control 

based on two-phase locking must therefore have provision for dealing with deadlock.

The ability to abort a transaction is likely to be in place for crash resilience (see Chapter 21) and application requirements. Deadlock 

detection followed by abortion of the deadlocked transactions is likely to be a better design option than deadlock avoidance, which 

involves a greater overhead. Algorithms for deadlock detection and avoidance are given in Chapter 18. A simple alternative to maintaining 

complex data structures and running an algorithm on them for deadlock detection is to time out requests for locks and to abort 

transactions with timed-out lock requests.

A general point is that if the ability to abort is essential in a system design for reasons other than recovery from deadlock (for crash 

resilience or because the applications require it) then deadlock becomes a problem that is relatively easy to deal with without introducing 

excessive overhead. The overhead of supporting abort was already there!
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20.5 Time-stamp ordering (TSO)

We are aiming to run transactions concurrently and to produce a serializable execution of their operations. An alternative approach to 

locking for achieving this is to associate a time-stamp with each transaction. One serializable order is then imposed on the operations: that 

of the time-stamps of the transactions they comprise. Assume initially that the time-stamp is the time of the start of the transaction and is 

recorded at the invoked object with every operation that transaction invokes. We have already assumed that an object is able to record 

such information.

Recall from Section 19.6.2 that for serializability of two transactions it is necessary and sufficient for the order of their invocations of all 

non-commutative (conflicting) pairs of operations to be the same for all the objects which are invoked by both transactions. Suppose a 

transaction invokes an operation. Suppose a second transaction attempts to invoke an operation that conflicts with it. If the time-stamp of 

the second transaction is later than (>) that of the first transaction then the operation can go ahead. If the time-stamp of the second 

transaction is earlier than (<) that of the first it is deemed TOO LATE and is rejected (the requesting transaction is aborted and restarted 

with a new, later, time-stamp). If this is enforced for all conflicting pairs of operations at every object then we have a serializable schedule 

of the operations of the concurrent transactions.

This approach enforces one particular serializable order on the operations of the concurrent transactions: that of the transactions' 

time-stamps. It is therefore more susceptible to transaction abort and restart than a method which allows any serializable ordering. This 

sacrifice of flexibility can be justified on the following grounds:

the implementation is simple and efficient, thus improving system performance for all transactions;

the information recorded for concurrency control is associated only with each object and is not held or processed centrally;

objects are not 'locked' for longer than the duration of a single operation, unlike two-phase locking, thus giving more potential 

for concurrent access to objects (but see Section 20.5.1 for a discussion of strictness in time-stamp ordering).

Let us consider implementation through the simple example used above in Section 20.4.2 and illustrated here in Figure 20.5. Assume the 

time-stamps indicate T1 < T2. Assume that objects A and B record the time-stamps of the transactions which carried out potentially 

conflicting pairs of operations (debit (D) and read-balance (R) are non-commutative, as are credit (CR) and read-balance). Consider the 

following examples of orderings of the operations of T1 and T2 and the corresponding actions taken by objects A and B:

D1A, R2A, R2B, CR1B FAILS because it conflicts with R2B which has a higher recorded time-stamp (of T2); T1 is aborted.1.

R2A, R2B, D1A FAILS because it conflicts with R2A which has a higher recorded time-stamp. T1 is aborted, even though the 

order T2 < T1 is serializable.

2.

Figure 20.5. Two transactions with time-stamp ordering.



The method is simple to implement. There is no need to keep central allocation information nor to maintain a resource-wait graph and to 

run algorithms for deadlock detection or avoidance on it. Transactions are serialized in the order that they were submitted for execution. 

This means that any other serializable ordering, although correct, will fail, as in 2 above.

An early transaction fails when it attempts to invoke an operation on an object on which a later transaction has already carried out a 

conflicting operation. Abortion could therefore be a common occurrence if contention was likely. If contention is unlikely, the method incurs 

little overhead.

The following examples illustrate that the definition of conflicting behaviour must be considered carefully. Suppose a transaction to read a 

large number of items, process them and write a value depending on all the values read (the account to be credited is that with the lowest 

balance) was run concurrently with transactions, each of which updates one of the values read. Figure 20.6 illustrates the point with a 

small number of objects.

R3A, R3B, R3C, R3D, CR4E, R3E: this fails because R3E conflicts with CR4E which has a higher recorded time-stamp. The 

semantics of the transaction indicate that it need not, since although the value read by T3 relates to the state after T4 has run, 

rather than before, it is not incorrect; in fact it is more relevant. Forcing serialization in the order T3 > T4 happens to be 

unnecessary in this case but we can only say this because we know the intention of T3 is to invoke a credit on whichever of 

objects A, B, C, D and E has the lowest value.

1.

R3A, R3B, D5B, R3C, R3D, R3E, CR5E is allowed. Suppose T5 has transferred £1000 from B to E. The values seen by T3 are 

correct because B is read before the debit and E is read before the credit.

2.

Figure 20.6. More examples of time-stamp ordering.



Two-phase locking was shown to limit concurrency more than might be strictly necessary, but delivered correct results. Time-stamp 

ordering may achieve a higher degree of concurrency because an object is available unless an operation is being invoked on it (but see 

the next section). We have seen that a large number of aborts could be made necessary by the particular serialization enforced and that 

no simple general definition of conflicting operations would allow us to be more flexible than this. The simple description given here has 

used the time of the start of a transaction as its time-stamp; it might be more appropriate to use the time of its first invocation of an 

operation which belongs to a conflicting pair. Refinements of the basic scheme are discussed further in Bernstein et al. (1987).

Time-stamp ordering can be a simple and effective scheme when conflicts are unlikely. The fact that the decision on whether an operation 

on an object can go ahead is made on the basis only of information recorded with the object itself makes it a suitable method for a 

distributed system. We shall discuss this further in Chapter 22.

20.5.1 Cascading aborts and recovery of state

Time-stamp ordering, as described above, does not enforce the property of isolation and is therefore subject to cascading aborts and 

complex recovery of object state as discussed in Section 19.9. Recall that it is necessary to be able to undo and redo operations.

If isolation (strict execution) is to be enforced in the implementation, an additional mechanism to that described above is needed. A 

transaction scheduler together with the individual object managers could achieve this. An object could ensure that a commit operation had 

been invoked for a given transaction before allowing any operation of any conflicting pair of operations to go ahead for another transaction 

with a later time-stamp.

Note that this does not introduce the possibility of deadlock. Circular wait is prevented by the time-stamp ordering of invocations; that is, a 

cycle of transactions cannot occur such that each has invoked an operation and is waiting for another transaction to commit before 

invoking another operation.

Strict time-stamp ordering introduces the requirement for atomic commitment. Assume that a given transaction has invoked, on a number 

of objects, operations which belong to conflicting pairs. All the objects must agree whether the transaction is to commit or abort. That is, all 

or none of the objects invoked by the transaction must commit the state changes effected by the transaction. This is not difficult to achieve 

in a centralized system in the absence of failures. In practice, crashes must be anticipated and distributed implementations may be 

necessary. Chapters 21 and 22 consider these problems.
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20.6 Optimistic concurrency control (OCC)

Optimistic schemes for concurrency control are based on the premise that conflict is unlikely. We should therefore be careful to avoid 

heavyweight concurrency control mechanisms but we must still ensure a serializable execution. OCC also aims to achieve high availability 

of objects. The idea is to minimize delay at transaction start. OCC is therefore appropriate for certain application areas where these 

conditions and requirements hold; that is, for applications which need a transaction system, but where it is unusual for different 

transactions to touch the same object, and which need real-time response.

For example, suppose my medical record is being updated by the hospital administration some time after my admission to hospital. 

Suppose that my surgeon finds that she needs immediate access to the details of my medication or history during my operation, but 

unfortunately, my record is locked for writing by the administrator. Clearly, there should be instant access to my record by the surgeon and 

the fact that the most recent update about my admission to hospital will not be included in the version available does not matter.

The strategy of OCC is to apply no changes to persistent memory during the execution of transactions. When a transaction requests 

commit its history is validated to determine whether it can be serialized along with transactions that have already been accepted. Recall 

Section 19.6 on serializability and Section 19.8 on histories and serialization graphs. Once a serial order of validated transactions is 

established, updates are applied in that order to objects in persistent memory.

The update of persistent memory must be such that in any state read from an object either all or none of the changes at that object 

associated with a given transaction are visible.

During transaction execution invocations are made on workspace copies, shadow copies, of objects. Figure 20.7 shows an object with a 

shadow for use by transaction T1. Notice that isolation is a side-effect of OCC. No other transaction may see the updates being made by a 

given transaction to its shadow copies. Each object's shadow copy has a well-defined version, which is the identifier of the transaction 

(with associated time-stamp) whose updates have most recently been applied to the object in persistent memory. Let us also assume that 

a time-stamp is recorded with the transaction identifier and that the time-stamp is the time when the transaction is validated and its updates 

are guaranteed.

Figure 20.7. An object with a shadow.

Each transaction undergoes three phases:



Execution (read): The transaction executes to completion (commit or abort) shadow copies of data objects.1.

Validation: Following commit the execution schedule is checked to ensure serializability.2.

Update (write): Update invocations are applied to objects in persistent memory in serial order, transaction by transaction. It is

the responsibility of the update manager to ensure that all updates succeed. The update manager will know at any time those 

transactions for which updates have succeeded. It can therefore be asserted that the updates up to those of some transaction 

have succeeded, see Figure 20.8.

Figure 20.8. Single-threading through commit and object versions.

3.

For valid execution each transaction must interact with a consistent set of shadow copies. One (heavyweight) way of achieving this is to 

ensure that updates are applied atomically across all objects participating in a transaction, using an atomic commitment protocol such as 

two-phase commit (see Section 22.9) in a distributed system. Validation can take place at each object as part of the first phase of the 

protocol, with update taking place only if all objects can accept the transaction. Recall that a transaction is defined to take the system from 

one consistent state to another. We can then make sure that a set of shadows taken at the start of a transaction is consistent; that is, we 

must also assume that taking a set of shadows is made atomic.

There are objections to this approach:

The enforcement of update atomicity using a protocol such as two-phase commit reduces concurrency and is bad for 

performance in general. That is, there is overhead in using such an algorithm which penalizes all clients of the system. Also, 

specific transactions will not experience high availability of objects if they are held for the atomic commitment of some other 

transaction.

At the start of transaction execution we may not know what shadows are required. Even if we enforce atomic commitment this 

does not help unless all shadows are taken 'at the same time'.

More importantly, there is a mismatch of philosophy. OCC is postulated on the assumption that interference between 



transactions is unlikely. It is not worth going to a lot of trouble to ensure that it does not occur. The approach we are objecting to 

is highly pessimistic rather than optimistic!

We should therefore abandon the requirement that we take a consistent set of shadows at transaction start thus avoiding the machinery to 

achieve this. We can then delay making a shadow copy of an object until an operation is invoked on it, noting the object's version so that it 

can be checked by the validator. There is then the risk that execution will proceed using inconsistent shadows (see Figure 20.9), but this 

risk applies also to other schemes that aim for high concurrency, such as allowing non-strict execution in a two-phase locking approach. As 

in these schemes we risk rejection when we attempt to commit. We can achieve high concurrency only if we are prepared to risk abort.

Figure 20.9. Inconsistent shadow objects.

The execution of the transaction continues, invoking shadow objects until either

abort: the shadow objects are simply discarded

or

commit: the validator is called.

The validator has knowledge of all transactions whose validation or update phases overlap execution of the transaction that is to be 

checked. When a transaction involves an operation on a shadow object there may be transactions with outstanding updates guaranteed 

for that object. The validator must ensure that there has been no conflict. The information used by the validator might be extended to take 

into account transactions that have started to execute since this one, but we shall not consider this possibility further.

Two conditions need to be checked by the validator. If either cannot be met the transaction must be aborted.

The execution must be based on a consistent system state

The versions of the shadow objects are available. The requirement is that these versions were all current at some particular 

transaction time-stamp.

Figure 20.10 shows a possible scenario. Suppose that at the start ST of transaction T the earliest unacknowledged time-stamp is 

u, and that during T's execution phase shadow copies are made whose version time-stamps are (in some order) t1, t2, … tk. If all 

time-stamps t1, t2, … tk are earlier than u, then certainly all versions were current at the latest of the time-stamps recorded, say tk.

Figure 20.10. Checking for a consistent state.

1.



If interference is low it is likely that all updates to the objects involved will have been acknowledged before the transaction starts, 

and also that no further updates occur during the execution phase. Even if this precise scenario is not followed it is quite 

possible for the set of shadows to be consistent.

If shadow validation succeeds then the execution is based on a time-stamp at which all the shadow versions were consistent. 

Let us call this the base time-stamp.

The transactions must be serializable

The transactions with which the given transaction must be reconciled are those validated for update with a time-stamp later than 

the base time-stamp, whether or not their updates have been applied. Recall that once a transaction is validated its updates are 

guaranteed, and that updates are applied in time-stamp order at each object.

The requirement is that an ordering of these transactions can be found in which serial update is meaningful; that is, that the final 

system state reflected after the (serial) update of the set of transactions must be consistent with all of their execution phases, 

performed concurrently. Recall Sections 19.6 and 19.8. Although the definitions of conflict needed can be based on 

non-commutativity this is unnecessarily restrictive, as we shall see in an example.

Figure 20.11 illustrates this two-phase validation.

Figure 20.11. The two phases of validation.

2.



Provided that both conditions are met, the transaction can be accepted and recorded as validated. This establishes its position in the 

queue of validated transactions that are waiting to update. In simple cases object update is just a matter of copying a shadow object back 

into persistent memory. In other cases it may be necessary to reapply the operations of a transaction to a version more recent than the 

original shadow.

OCC has very different properties from time-stamp ordering. In the latter, transactions are scheduled in a predetermined order, usually that 

of transaction start. In OCC the order is determined at validation time, and in theory the validator is free to insert the current transaction at 

any position in the queue for update. The validation algorithm could therefore become quite elaborate, but it is probably not worth going to 

great lengths in an attempt to optimize. OCC is suitable only if there is little interference between transactions, and the hope is that simple 

validation will normally succeed.

Examples

We now consider two simple examples. In the first a consistent set of shadows is assumed. In the second only one object is involved. The 

examples illustrate the OCC approach and highlight some of the issues. Bear in mind that, in practice, we cannot automatically assume 

that the shadows are consistent and this must be checked at validation (condition 1 above).

First, consider the example we have often used, of concurrent transfer and sum transactions (see Figure 20.12), and suppose that both 

transactions are using shadows of the same values of A and B. Note that sum is a read-only transaction. It might be argued on the basis of 

this example that there is no point in taking shadows for a read-only transaction. The counter-argument is that a number of reads might be 

required from a large object and taking a shadow ensures that the reads are performed on the same version of the object. We shall make 

the assumption that shadows are taken when an object is first invoked, either for reading or writing.

Figure 20.12. The transfer and sum example.

The sum transaction uses its shadow values of A and B quite independently of what the transfer transaction is doing to its shadow values of 

A and B. In Section 19.6 we considered read-balance and credit (or debit) to be non-commutative. If consistent shadow copies are taken by 

both transactions this is no longer relevant. In fact, if the shadows used by a read-only transaction represent a consistent system state then 

that transaction cannot fail. If we allow the possibility that the shadows used by a transaction do not represent a consistent state then it 

can be rejected when it attempts to commit. A problem here is that the transaction may have performed output based on inconsistent 

object values. This problem is not exclusive to systems which use OCC. What-ever concurrency control scheme is used in a system there 

must be a policy on how to deal with aborted transactions that have performed output.

If we assume each transaction is working on a consistent set of shadows we need only be concerned with operations that are 

non-commutative with respect to state changes at the object. Values output by the transaction relate to a consistent version of the system 

state and cause no problems. The sum transaction will therefore be validated as correct at commit, whenever this is requested. It has not 

changed the value of A or B.



It is interesting to note that the values output by a number of transactions that are working on the same version of system state are not the 

same as those that would be output by a serial execution of those transactions on the persistent state: they execute in parallel on the same 

version. The transactions are forced to commit in some serial order.

When the transfer transaction requests commit, the operations it has done on A and B are validated. The information recorded at the 

persistent objects and their shadows is sufficient for the commit to be validated as correct or rejected. Suppose transfer has invoked an 

operation on A or B which belongs to a conflicting pair. If some other transaction has committed (since the shadow was taken for transfer) the 

result of an invocation of the conflicting operation of that pair, then transfer must be aborted. The validation phase checks this for all the 

operations that the transaction requesting commit has invoked on all objects.

Figure 20.13 shows transaction abort and restart when non-commutative credit and add-interest-to-balance operations are invoked on the 

same value of a bank account. Exercise 20.8 gives another example. The validation phase indicates whether commit is possible and the 

commit phase must ensure the correct persistent values, taking into account changes that have been committed since the shadows were 

taken.

Figure 20.13. Example showing abort and restart.

In the example, T1 invokes credit (£2000) on a shadow copy of account-A, changing its value from £5000 to £7000. A shadow copy taken

from the same persistent object value has add-interest-to-balance invoked by T2, changing its value from £5000 to £5005. This latter

transaction T2 is first to commit and the persistent value of account-A is updated to £5005. T1 now requests commit. Because credit and 

add-interest-to-balance are defined to be non-commutative, and therefore conflicting, the commit is rejected. The transaction is restarted as 

T3 with a shadow of account-A with value £5005. The credit (£2000) is performed at the shadow, giving £7005 for the value, and this value

is then committed at the persistent copy of the object.

Notice that when transaction T1 requests commit and is rejected, applying the credit operation at that stage at the persistent copy of the 

object would yield £7005! The requirement for commutativity appears to be too strong for a case such as this. Commutativity enforces that

the same result is obtained whatever the order of execution of a pair of transactions. As soon as one transaction has committed, the 

serialization order is defined. If the rejected transaction is aborted and restarted it is from the system state committed by the first. They are 

no longer running in parallel. Ideally, this should be taken into account when T1 requests commit.

If invocations are carried out on shadow copies which do not conflict with subsequent updates at the persistent object, the invocations can 

be reapplied to the object on commit. For example, suppose a shadow copy of account-A was credited by £1000, changing its value from

£4000 to £5000. Suppose at commit, other transactions have caused the balance to reach the value £8000 by invoking operations that



commute with credit. The credit operation is redone at the object giving a balance of £9000.

Generalizing from these examples, when a transaction requests commit and after a consistent starting point has been ascertained 

(condition 1):

The validation phase uses the information recorded with each persistent object involved and its shadow to check whether any 

non-commutative pairs of operations have been invoked on the object by this transaction and any other that has committed 

since this transaction took its shadows. As noted above, this definition of conflict may be too restrictive. See Herlihy, 1990; 

Badrinath and Ramamritham, 1992; Wong and Agrawal, 1993; Guerni et al., 1995 for further reading.

If the validation phase is successful, the transaction is committed. This may involve redoing (at the persistent copy of the 

objects) the operations that have changed the values of shadow objects. This can be done because the validation phase has 

rejected the commit if any of the invocations of the transaction do not commute with committed invocations.

If the validation phase is not successful the transaction is aborted.

Optimistic concurrency control allows every operation invocation to go ahead without the overhead of locking or time-stamp checking: it 

achieves high object availability. The fact that shadows are taken and work proceeds without delay makes this method suitable for 

applications in which timing guarantees are required and in which conflict is rare. The overhead occurs when commit is requested. The 

validation phase uses the information stored locally at each object. If all the objects invoked by a transaction indicate that commit is 

possible then the updates can go ahead.

Optimistic concurrency control operates on a first come (to commit) first served basis. If there are several shadows of an object, the state 

of the first to commit becomes the new object state. If contention is rare the method works well. If the application is such that transactions 

might invoke heavily used objects (data 'hot-spots') they are likely to be aborted and restarted without regard to fairness or priority of the 

transaction. The method should probably not be used if this is likely to occur.
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20.7 Summary

We have been concerned with methods of implementing transactions in the presence of concurrency and, in particular, with ensuring the 

property of serializability for correct execution. Three approaches were considered: locking, time-stamping and optimistic concurrency 

control.

The object model set up in Chapter 19 was used again here. To implement the locking methods of concurrency control the object was 

extended with lock and unlock operations. These were assumed to be invoked by a transaction manager or other agency with knowledge of 

all the locks held and requested by a transaction. Deadlock detection was shown to be necessary.

Two-phase locking guarantees a serializable schedule of the operation invocations of concurrent transactions. The penalty is the overhead 

of deadlock management. Also, objects are locked for longer than is necessary for their invocations. If the property of isolation is enforced 

in the implementation, locks are held until commit. This is called strict two-phase locking and avoids cascading aborts and complex 

procedures for recovering previously committed object values (at the cost of reduced concurrency).

When time-stamping is used for concurrency control, the decision to accept or reject an operation invocation is made at the object. One 

specific serialized order is achieved, that of the time-stamps of the transactions, and this can lead to correct transactions being rejected. A 

strict execution schedule can be enforced by delaying an invocation until the transaction that previously invoked an operation of a 

conflicting pair has committed. This cannot cause deadlock because the invocations are in time-stamp order at every object, so a circular 

wait is impossible.

Optimistic concurrency control minimizes the delay involved in invoking objects: each transaction works on a shadow copy of each object it 

invokes. It might be appropriate for the shadows to reside in the user's workstation. The shadows could be guaranteed (at heavy cost) to be 

taken from committed system state and therefore represent a consistent version of it. The property of isolation is manifest in such an 

implementation. In practice, such an approach is heavyweight and against the optimistic philosophy of the method.

There is no concurrency control until a transaction requests commit. A validation phase then takes place to determine whether the 

persistent values of the objects can be updated from the shadow copies. It may be necessary to redo operations at the persistent objects on 

commit.

The method is suitable for systems where contention is unlikely since, if no conflicting operations have been committed since the shadows 

were taken, commit is very simple. Abort is always very simple since it merely involves discarding the shadow objects. If contention occurs, 

and abortion is necessary, there is no provision for fairness in transaction scheduling. Commitment occurs on a first-come first-served 

basis.

The delay involved before work can start on the objects used by a transaction is minimized in optimistic concurrency control; shadows can 

be taken without delay and work can commence. For this reason the method is suitable for systems with a real-time requirement or where 

timing guarantees must be made.

Most practical systems are based on strict two-phase locking. Time-stamp ordering is based only on information stored at each object. It is 

probably more suited to distributed systems than a locking approach. We shall explore this in Chapter 22. The optimistic approach, unlike 

time-stamp ordering, allows work to be carried out which may later have to be discarded. It does, however, allow greater flexibility in the 

serialization order of transactions. Performance may degrade badly as contention increases in a system using OCC.

Study questions

S20.1 What are the three approaches to concurrency control mentioned in Section 20.1?

S20.2 What is meant by locking for exclusive use?



S20.3 If objects reside in the main memory of a single computer, which of the ACID properties of transactions require no 

special action to be taken, and why?

S20.4 What is the main issue that arises when locks are used as the means of concurrency control for objects that reside in 

main memory?

S20.5 With regard to the ACID properties of transactions, what is the main difference between objects in the main memory of a 

single computer and objects in the main memories of a distributed system?

S20.6 How can the problems of deadlock due to locking be overcome in a transaction management system?

S20.7 What is the alternative to the use of locks for concurrency control?

S20.8 Describe the components of the transaction processing system (TPS) shown in Figure 20.2.

S20.9 What is a lock on an object?

S20.10 Describe two-phase locking (2PL). What is the major constraint that defines two-phase locking?

S20.11 What is the advantage of strict two-phase locking?

S20.12 What does 2PL guarantee? Explain.

S20.13 If deadlock occurs when 2PL is in use, what has happened?

S20.14 What is a shared lock?

S20.15 What is lock conversion, and what problem can arise when it is used?

S20.16 Which is the better policy for dealing with deadlock in 2PL: deadlock detection or deadlock avoidance?

S20.17 If an abort operation is available, what is a simple alternative to deadlock detection?

S20.18 What is time-stamp ordering (TSO)? How is it used to obtain a serializable execution of transactions?

S20.19 What are the advantages of TSO?

S20.20 What is the main disadvantage of TSO?

S20.21 Why does TSO not enforce the property of isolation? How can isolation be achieved when TSO is in use?

Exercises

20.1
Why is the provision of lock and unlock operations not sufficient to ensure serializability of composite operation 

invocations?

a.

Why does two-phase locking (2PL) ensure serializability?b.

Why is 2PL subject to deadlock? (Consider the four conditions for deadlock to exist, given in Section 18.4.)c.



Why does 2PL not guard against cascading aborts?d.

In what way does strict two-phase locking guard against cascading aborts?e.

20.2
Why might the start time of a transaction not be the best time to use for its time-stamp?a.

Given the time-stamps of two committed transactions, can you always draw their serialization graphs? Does 

time-stamp ordering restrict concurrency more than locking? Discuss.

b.

Compare the overhead of implementing locking with that of time-stamp ordering.c.

20.3 Why are cascading aborts possible in a system with time-stamp-based concurrency control? What extra mechanism could 

prevent it?

20.4 Is concurrency control based on time-stamp ordering (TSO) (or strict time-stamp ordering) subject to deadlock?

20.5 Why is optimistic concurrency control (OCC) potentially appropriate for use in real-time systems? Why is it potentially 

good for systems where contention is rare?

20.6
What is involved in aborting a transaction in a system which uses OCC?a.

Describe the validation and commitment phases of an OCC scheme. Consider the case where the objects to be 

committed have had updates committed since the shadow copies were taken. Consider the cases where the 

updates are the result of operations which do and do not belong to conflicting pairs. What actions should be 

taken in both these cases?

b.

20.7 Suppose that two transactions use copies of the same objects under an OCC scheme. Suppose that both transactions 

generate output and are both committed. Does the output reflect a serial ordering of the transactions? Does it matter?

20.8 Consider the example shown in Figure 20.14. What happens when T3 requests commit? What happens when T1 then 

requests commit?

Figure 20.14. Example involving non-commutative operations.



20.9 A particular application is known to comprise almost entirely read-only transactions. Discuss the three approaches to 

concurrency control for such a system.

20.10 For a particular application, transactions are either read-only or have a phase in which they read and compute followed by 

a phase in which they write their results back to the database. Discuss the three approaches to concurrency control for 

this application.

20.11 In OCC we defined the version number of an object as the time-stamp of the transaction whose validated invocations 

were most recently applied to the object. The transaction's time-stamp is therefore that of its commit time instead of its 

start time. Contrast TSO and OCC with respect to the time-stamps allocated to transactions and the schedules that are 

allowed to execute.
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21.1 Requirements for recovery

There are a number of reasons why recovery procedures are required in a system which supports atomic transactions:

System crash

The contents of main memory are lost, perhaps because of a power failure, but persistent store is not affected. This kind of 

system crash was discussed in Chapter 15 and a fail–stop model was assumed for simplicity. Any transaction in progress

(that has not completed commit processing) will be affected by the loss of data structures in main memory and must be

aborted. The effects of any committed transaction must persist and the system software must be designed to ensure this.

1.

Media failure

For example, a disk head crash. Part of the database will be lost and it must be possible to restore it. If transactions in 

progress are using that part of the persistent store they must be aborted and the persistent state prior to the transactions 

must be recoverable. There must be more than one copy of all persistent data, including any system management data. If the 

system guarantees to retain the state resulting from every committed transaction then two independent copies must be 

written during commit processing.

We assume that a dump of all the database is taken periodically, for example overnight, as part of normal operating system 

file backup procedures. The database application is responsible for recording all subsequent changes.

2.

Transaction abort

An abort operation may be available to the transaction programmer. A transaction might not be able to complete for some 

application-level reason, such as insufficient money in an account to continue with a transfer operation.

A transaction management system may be designed to use abort followed by restart of the transaction to solve problems 

such as deadlock, as discussed in previous chapters. This type of failure can be transparent to the user except that it might 

detect slower than expected performance.

3.

In general, the transaction is taken to be the unit of recovery.

Figure 20.2 showed the components of a transaction processing system. The concern of this chapter is the data management module 

which includes the cache manager and the recovery manager. The cache manager is responsible for moving information between main 

memory and persistent memory. The recovery manager is responsible for carrying out recovery procedures after a crash.
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21.2 The object model, object state and recovery

Throughout Part III we have used an object model for reasoning about atomic transactions. In this chapter we focus on object state and 

how and when it is recorded in persistent memory. Clients of a TP system are not concerned with object state explicitly, but with the 

results of operation invocations. The TPS implementation must ensure that the states of the objects comprising the system together 

present a consistent system state to its clients.

In Section 19.9 we assumed that an object records all relevant information on the operations that are invoked on it, for example, the 

transaction identifier and time of invocation. In Chapter 20 this was used for concurrency control. We assumed, as a theoretical starting 

point, that a complete history of invocations is held by every object. In theory, an object's state is defined as a sequence of invocations 

on an object starting from a create operation. In theory, any state can be recovered by starting again from the initial state on create and 

performing some required sequence of invocations, for example, to exclude an operation of an aborted transaction. In practice, this 

procedure would take too much time and space and a suitable optimization must be devised.

A basis for such an optimization is that an object may make a checkpoint of its state. It may even record its state before and after every 

invocation that changes its state. We justify this recording of state as follows: if it is impossible to distinguish between an object state 

derived from the application of the invocations which comprise its history and the recorded value, then recording that value is a valid 

optimization. Practical implementations are based on recording object state, while theoretical models are based on histories of 

invocations. In this chapter we are concerned with implementation issues, but we must be able to reason about the behaviour and 

correctness of our implementations.

If we base our recovery procedures on recorded state instead of a history of invocations we should consider whether we have lost the 

ability to recover some required previous state. By dispensing with the full history and recording state we have introduced a requirement 

that operations should be UNDO-able. We can no longer reason from a basis of invocations (forwards) from create so must be able to go 

backwards from some recorded value of state; that is, starting from a value of state, it should be possible to UNDO an operation to 

recover the state previous to its invocation. In Chapter 20 we assumed that any operation could be undone; that is, every operation has a 

corresponding UNDO operation. If this is the case, the UNDO operations may form the basis of recovery; any transaction can be aborted 

by undoing its operations.
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21.3 Concurrency, crashes and the properties of transactions

The ACID properties of transactions must be guaranteed by a TPS in the presence of concurrency and unpredictable failures.

Atomicity Either all or none of the transaction's operations are performed. This must be ensured by the recovery manager. A 

crash may occur part-way through a transaction and the invocations of any incomplete transactions must be undone.

Consistency A transaction transforms the system from one consistent state to another. This is achieved through concurrency 

control, provided that atomicity is guaranteed by the recovery manager in the presence of crashes.

Isolation An incomplete transaction cannot reveal its result to other transactions before it is committed. This is achieved through 

concurrency control.

Durability Once a transaction is committed the system must guarantee that the results of its operations will persist, even if there 

are subsequent system failures.

This is the responsibility of the recovery manager, based on general data management policies. As we discussed in 

Chapter 15, the system can make the probability of losing information arbitrarily small by replicating its storage. We 

used the 'stable storage' abstraction to indicate this.

We have used the concept of system state comprising the state of all objects in the system. We now proceed to discuss the 

implementation of recovery. We shall assume that objects record their state (as discussed above) and the terms 'object value' and 'object 

state' are used in this practical sense.
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21.4 Logging and shadowing for crash resilience

Two basic approaches to achieving crash resilience were outlined in Chapter 15: logging and shadowing. Our concern there was to make 

a single invocation atomic in the presence of crashes. In Part III we have moved on to transactions comprising a number of related 

invocations and should reconsider the approaches from this perspective.

Logging: Persistent object values are updated in place and all changes are recorded in a log. The method is based on

recorded state and a fundamental assumption is that it is possible to undo an invocation at an object. This is necessary when 

a crash occurs part-way through a transaction. The pre-crash invocations of the uncommitted transaction must be undone. 

We shall explore this approach in more detail in the next section.

Shadowing: Persistent object values are not updated in place. The new and old values of each object comprising a

transaction are maintained in persistent store and a switch is made from old to new values on commit.

Note that this requires commit to be atomic over all the objects involved in a transaction. The objects must participate in a 

protocol and a single point of decision is necessary for transaction commit. If a crash occurs during commit, the objects 

participating in commit must be able to find out the decision for the whole transaction and act accordingly.

We shall study an atomic commitment protocol in Chapter 22. In that chapter we are concerned with distributed objects and 

partial failures of (components of) a system. In this chapter we focus on centralized systems where the whole TPS is 

assumed to fail when main memory is lost. Our concern here is to be able to ensure the consistency of the persistent 

memory on restart after a failure.

In both cases, the aim is to record securely the values before and after operation invocations. The difference is in implementation detail.

An alternative approach is to defer invocations until commit. Recall our discussion of optimistic concurrency control (Section 20.6) 

where invocations which have been carried out on shadow copies are first validated, then committed at the database. The approach 

might be used more generally, depending on the requirements of applications. It might, however, be impossible to defer invocation of 

operations for some transactions, for example, if they require intermediate results in order to proceed with their computations.

An extension of this approach is explored in the context of distributed systems in Yahalom (1991). We leave this for further reading and 

consider use of a recovery log in more detail.
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21.5 Use of a recovery log

As noted in Section 21.1, it is assumed that a daily dump of the system's persistent state is taken and that the DBMS must make a 

record of subsequent activity if complete crash resilience is to be achieved at any time.

An outline of the general approach is that, on an invocation, the object value is updated in persistent store and a record of the invocation 

is made in a log. We have already assumed that every object keeps information (for concurrency control purposes) of the kind we 

require to be logged and we can require objects to write log records. In order to achieve a recoverable state we must consider when the 

update to persistent object state is made and when the corresponding log record is written to persistent store (see Section 21.5.1). 

Points to bear in mind which relate to an efficient implementation are as follows:

Writing to a log is efficient: it requires an append to a file and involves records from all active transactions.

Writing values of objects to persistent store is inefficient: the objects are likely to be scattered throughout the database. We

should take care not to require object values to be updated in place at a very fine time grain. A long queue of updates can be 

ordered to exploit an efficient disk arm scheduling algorithm, for example. Also, object values written by committed 

transactions may be read from the cache in main memory.

21.5.1 Log records and their use in recovery

We require an object to write a log record for all the invocations on it. Depending on the use that is to be made of the log, it might only be 

necessary to log the invocations that have changed object state. A log record might take the following general form:

Transaction id, object id, operation, arguments, state prior to invocation, state after invocation

We also assume that start, commit and abort are recorded in the log with the appropriate transaction identifier.

If a failure of any kind occurs the log can be used in the recovery procedure by the recovery manager. We assume that the log is written 

to stable storage so that if a medium failure causes one copy of the log to be lost another copy exists.

The effects of any transaction that committed before the failure must persist and the recovery manager can use the log to ensure this. If a 

transaction has not committed at the time of the failure it must be aborted and any changes made to object values in the database by 

any of its operations must be undone by the recovery manager.

If a transaction has simply to be aborted as in case 3 of Section 21.1, its operations can be undone using the information in the log. If a 

medium failure occurs (case 2) the database can be reloaded from the latest dump. The recovery manager can then REDO the 

operations of all committed transactions since the time of the dump and UNDO the effects of any uncommitted transaction.

21.5.2 Log write-ahead

Two distinct actions are associated with effecting an invocation of a transaction:

Update the value of an object in the persistent store.1.



Write the log record of the change to persistent store.2.

A failure could occur at any time including between the two actions. Once the object value is changed its previous value is lost. The log 

record contains both the old value and the new value.

The log record must be written to persistent store before the object value is changed.

When a transaction commits, the system guarantees that the changes it has made to the database become permanent.

It is necessary for all the log records of a transaction to be written out to the log before commit is completed.

Note that we need not insist that all the object values are written to persistent store on commit. There is sufficient information in the log 

records to update the object values if a failure occurs. The point made above, that it could be inefficient to write out object values on the 

commit of every transaction, is relevant here.

21.5.3 Checkpoints and the checkpoint procedure

It can be seen from the above that the log is very large. Processing a large log might be tolerable on media failure but transaction abort 

must be efficient, and recovery after a crash should be reasonably fast. A checkpoint is therefore taken at 'small' time intervals, for 

example, every five minutes or after a specified number of items have been logged.

A checkpoint procedure would be as follows:

Force-write any log records in main storage out to the actual log on persistent store.1.

Force-write a 'checkpoint record' to the log which contains a list of all the transactions which are active at the time of the 

checkpoint and the address within the log of each transaction's most recent log record.

2.

Force-write any database updates which are still in memory (in database buffers) out to persistent store.3.

Write the address of the checkpoint record within the log into a 'restart file'.4.

It must be possible to know that data has been written out to disk. Figure 21.1 shows that data objects are initially invoked in main 

memory and log records are initially written in main memory. It also shows the log file and restart file in persistent memory. The figure 

shows a snapshot after 2 and before 3 in the above list. The log records and checkpoint record have been written but the database 

updates have not yet been made.

Figure 21.1. A recovery log with a checkpoint record.



Not only does the DBMS cache data in main memory (to avoid many writes to disk of small items of data), but the operating system on 

which the DBMS runs may also cache data in memory. Chapter 24 gives a detailed example. It is essential that an operating system over 

which a DBMS runs should allow an application to request that data is written out to persistent store and should acknowledge that this 

has been done.
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21.6 Idempotent undo and redo operations

A transaction can make a number of different types of change to a database, for example:

delete an existing object;

create a new object;

invoke an operation which changes an object's state.

A crash might occur at any time, including in the middle of undoing or redoing invocations during failure recovery. No assumptions should 

therefore be made about whether the object has its old or new value and the UNDO and REDO operations must be made idempotent 

(repeatable) by some means.

We have made the simplifying assumption in this chapter that an object's state before and after an invocation is recorded in the log 

record associated with the invocation. If this is the case, an idempotent UNDO operation can simply set the object value to that before 

the invocation, and an idempotent REDO operation can set the object value to the state after the invocation.

It could be argued that a more general approach should be taken which is closer to our abstract object model. In some application areas 

object state is large and recording pre- and post-invocation state might take up an excessive amount of space. Perhaps we should 

instead expect each object to specify an undo operation for every operation. In the case of the bank account object, for example, a debit

operation undoes a credit operation. Unfortunately, debit and credit are not idempotent and one would be very pleased, or very angry, 

depending on which was executed repeatedly on one's bank account object.

In general, operations and their inverses are not idempotent. A recovery procedure based on log records without both pre- and 

post-invocation state would have to use other techniques to achieve atomic invocation of UNDO and REDO in the presence of crashes.

For simplicity, we shall continue to use our state-based implementation model, which gives us idempotent UNDO and REDO.
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21.7 Transaction states on a failure

In Figure 21.2 a checkpoint is taken at time tc and the system fails at time tf.

Figure 21.2. Transaction categories for recovery.

T1 has already committed at the time of the checkpoint. All its log records will have been written to the log on commit. Any remaining 

changes to data items will be written out at the time of the checkpoint. T1 will not be recorded as active in the checkpoint and no 

recovery action is needed.

T2 was recorded as active at the time of the checkpoint. Its log records and database updates at that time are written out. T2 commits 

before the crash. All its log records are written out before commit completes. T2 must be REDONE by the recovery procedure 

since it has committed.

T3 was recorded as active at the time of the checkpoint. Its log records and database updates at that time are written out. T3 is still in 

progress at the time of the crash. It must be UNDONE because it is incomplete. The log records are the basis for this.

T4 was not recorded as active at the time of the checkpoint. It has completed commit processing, however, and must therefore be 

REDONE since all the changes it made are guaranteed to persist. All its log records were written out on commit.

T5 was not recorded as active at the time of the checkpoint. T5 is still in progress at the time of the crash. It must be UNDONE 

because it is incomplete. The log records are the basis for this.
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21.8 An algorithm for recovery

An algorithm for the recovery procedure is as follows.

The recovery manager keeps:

an UNDO LIST which initially contains all the transactions listed as active in the checkpoint record;

a REDO LIST which is initially empty.

It searches forwards from the checkpoint record to the end of the log (that is, the most recently written record at the time of failure):

if it finds a START TRANSACTION record it adds that transaction to the UNDO LIST;

if it finds a COMMIT record it moves that transaction from the UNDO LIST to the REDO LIST.

It then works backwards through the log from its end,

UNDOing transactions on the UNDO LIST.

Finally, it works forwards again from the checkpoint record to the end of the log,

REDOing transactions on the REDO LIST.

An example of the recovery log for T1 to T5 above is shown in Figure 21.3. It is assumed that the transactions have the property of 

isolation and their executions are strict. The columns of the table indicate a partial ordering of the operations and the associated writing of 

log records; for example, T3 cannot access x until after T2 has committed. For conciseness the operations invoked and their arguments 

are not shown. The figure shows only the object states before and after each invocation.

Figure 21.3. Example of a recovery log.

At the checkpoint, T2 and T3 are recorded as active. After the crash, at the start of the recovery procedure:

UNDO LIST = T2, T3



REDO LIST is empty

After searching forwards through the log to the end:

UNDO LIST = T3, T5 (T2 is removed, T4 is added then removed)

REDO LIST = T2, T4

While working back through the log from the end to the checkpoint, UNDOing transactions on the UNDO list (T3, T5) the following data 

values are established:

z = 8 (T5), x = 3 and b = 5 (T3)

The checkpoint record can then be used to locate the most recent record of an operation invoked by T3 and to complete the UNDOing of T3.

While working forwards through the log from the checkpoint to the end, REDOing transactions on the REDO list (T2, T4) the following data 

values are established:

z = 7 (T2), c = 4 and z = 8 (T4)

Note that these operations are repeatable, allowing for a crash during the recovery procedure. The previous value of each data item does 

not matter.
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21.9 Location databases for mobile objects

Users and their computers may be mobile. Technology such as wireless networks and high bandwidth wireless ATM networks have 

opened up design issues for systems to accommodate mobility, for example:

It should be possible to plug a computer into any network and to continue working as normal. This may involve locating files 

and accessing services such as mail and news.

It should be possible for a mobile user to make use of the network-based computers located wherever he or she might be.

As a user moves around a work environment, relevant environment objects might move with the user. This is a more futuristic 

scenario; for example, you are taking part in a multimedia conference. You wear a locator object such as an active badge and 

when you move to another room you are detected there. Your display migrates to a convenient workstation in your new 

location and the camera, microphone and speaker there are used instead of those in your original location.

A location database is needed to support mobility; the information held there changes as people, and other objects labelled with locator 

devices, move around. For this style of database the recovery procedure described in this chapter is inappropriate. It is better to rebuild 

the location information from badge readings than to restore the pre-crash state which is out of date. Availability of the location service is 

important and a lengthy recovery procedure will keep it inaccessible. Traditional commercial databases contain integrated, heavyweight 

recovery and a new approach is needed to support mobility.
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21.10 Summary

Any system which supports atomic operations must be able to recover from failures of all kinds at any time. In Part II we studied single 

atomic operations; in Part III we are studying atomic composite operations (transactions).

Throughout Part III we have used a general object model for reasoning about transactions. In theory, object state may be regarded as 

the result of a sequence of invocations starting from create. In theory, any state can be recovered by starting again from create and 

making any required sequence of invocations. In practice, our recovery procedures have to be efficient and have to allow for a crash at 

any time. We took a simple, state-based model for recovery in which object state was assumed to be recorded before and after an 

invocation. This allows any operation to be undone and redone, and these UNDO and REDO operations are idempotent.

When a transaction has committed, its effects must be guaranteed to persist. In this chapter we studied one specific system 

implementation of recovery based on a recovery log. The approach here is to update the database in place and to record all the changes 

that have been made in a recovery log.

The method is efficient because the log records of all transactions are appended to one place on the disk, the log file. Since log records 

must be guaranteed to have reached the disk before a transaction is acknowledged as committed, log writes must take place on a fine 

time grain. Database updates can be done on a coarser time grain and any transaction which needs the committed object values can 

read them from main memory buffers. The state of all objects affected by committed transactions can be computed from the log if a 

crash occurs before the object values are updated. Gleeson (1989) makes the following point:

Once the log records of committed transactions are written to persistent store, the persistent store may be 

regarded as in a consistent state. When all object values are updated from the log, the persistent store is restored 

to not only a consistent state but a canonical state.

All this is based on the assumption that the operating system allows the DBMS application to force writes out to the physical disk or to 

some other form of persistent memory. Many operating systems cache data in main memory until they need the buffer space that it 

occupies. A TP application cannot be built on an operating system with such semantics.

Our main area of concern is concurrency control. Although crash recovery is not central to this study, the implementation of concurrency 

control and crash recovery are often inextricably related. Date (1983) and Bernstein et al. (1987) are recommended for further reading.

Exercises

21.1 Consider a TP system crash, in which main memory is lost at the following times:

A transaction has completed some but not all of its operations.a.

A client has received acknowledgement that a transaction has committed.b.

The system has decided to commit a transaction and has recorded the fact on stable storage, but there is a 

crash before the client can receive the acknowledgement of commit.

c.

Discuss what the system must do on restart for each of these cases. Consider for each case where the data values 

that have been or are about to be committed might be stored. What is it essential for the TP system to know? Why 

might a conventional operating system not make this information available?



21.2 A recovery log is very large and it may be used for transaction abort as well as crash recovery. How can a periodic 

checkpoint procedure help to manage this complex process?

21.3 Why must undo and redo operations be idempotent?



21.4 Consider a TP system based on the bank account objects used as an example in Section 19.6 and shown in Figure 

21.4. For each operation define an undo operation.

Figure 21.4. An account object.

Suppose that a recovery log record contains:

Transaction id, object id, operation, arguments, state prior to invocation

Define recovery procedures for transactions in all the states shown in Figure 21.2 when a crash occurs. Consider the 

possibility of a crash during the recovery procedures.



21.5 Redesign the recovery algorithm of Section 21.8 for a non-strict execution schedule (where cascading aborts must be 

allowed for).
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22.1 An object model for distributed systems

In Section 19.6 a model of objects was set up as a basis for studying transaction processing systems. We now consider this model with 

specific reference to distributed systems. Figure 22.1 is given here for completeness. We assume each object is invoked through 

operations appropriate to its type. The figure also shows some object management operations such as commit, abort, lock and unlock

which may be needed for practical implementation of a transaction processing system (TPS).

Figure 22.1. An object in a distributed transaction system.

The assumptions stated in Section 19.6 were as follows:

Objects are identified uniquely in a system.

The operations are executed atomically (in the sense of Part II); that is, the operations we are considering here are at the finest 

granularity of decomposition.

There is a single clock associated with the object which is used to indicate the time at which operation invocations take place 

and therefore their order.

The object records the time at which each operation invocation takes place and the transaction identifier of the transaction that 

executed the operation.

The model is appropriate for a distributed system. We now consider object invocation in the context of a distributed TPS.
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22.2 Distributed transaction processing

Figure 22.2 shows two instances of the transaction processing system described in Section 20.3 such as would occur at two nodes in a 

distributed TPS. The following points and assumptions are relevant to an implementation of a distributed TPS, extending the assumptions 

about objects stated above:

A client submits a transaction at one node only, which we shall call the coordinating node.

A given object resides at one and only one node; that is, we assume there is no object replication. An object invocation takes 

place at this home node.

There are mechanisms for locating an object, given its unique identifier.

Figure 22.2. A distributed transaction processing system.



The TPS instances comprising the distributed TPS must cooperate. A client submits a transaction to one TPS. The transaction manager 

identifies and locates the objects invoked by the transaction. Local object invocations are passed to the local scheduler; remote object 

invocations are passed to the (scheduler of the) appropriate remote TPS.

A TPS must therefore handle both transaction requests from local clients and requests from remote TPSs to invoke operations on its local 

objects. For this latter type of request we assume initially that the TPS does not have a specification of the whole transaction. The 

scheduler at each node is passed operations which come from both local and remote transaction submissions. As before, the scheduler is 

at liberty to invoke the operations in any order, subject to the concurrency control algorithm it implements.

We must consider:

Concurrency control: how a serializable schedule is achieved in a distributed TPS. The methods introduced in Chapter 20

(locking, time-stamping and optimistic concurrency control) will be reconsidered for a distributed system.

Commitment: the transaction manager at a single node receives a client request for a transaction and initiates local and

remote operation invocations. It must be notified of the results of attempted invocations: whether an invocation was accepted 

and done, or rejected, or perhaps that a lock request has been outstanding for some specified timeout period, depending on the 

method used to achieve concurrency control. Assuming that all the transaction's invocations (at all the nodes) have been 

notified as 'done' to the initiating transaction manager the transaction must then be committed. We shall study how this can be 

achieved in a distributed system in the presence of partial failures.

As in Chapter 20 we shall assume that the property of isolation is enforced: a transaction can only see committed object values.
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22.3 Communication

The above discussion assumes communication between TPS instances. In some cases specific application protocols are needed, for 

example, an atomic commitment protocol. Application protocols are implemented above general communications protocols such as 

remote procedure call (Section 16.7) or some form of message passing. Specific examples are a clock synchronization protocol (Section 

7.6.4) and a two-phase commit protocol (Section 22.8).

Communications protocols are designed to allow for the possibilities of congestion and failure of the network and the communicating 

nodes. The mechanism used is the timeout (see Section 16.7). If a timeout expires the protocol may immediately inform the higher level 

which invoked it or may retry a few times to allow for congestion. We shall assume the latter here for simplicity. The higher level may 

therefore receive a 'success' notification or an exception, indicating a failure. The application protocol must be designed on this basis, as 

we shall see in Section 22.8, for atomic commitment in the presence of failures.
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22.4 Concurrency control: Two-phase locking (2PL)

In Section 20.4 two-phase locking was shown to enforce a serializable order on the object 

invocations of transactions. Each object is assumed to have lock and unlock operations (see 

Figure 22.1). We should consider how the two phases, of acquiring and releasing locks, can 

be implemented in a distributed system. In a centralized system the transaction manager 

knows when locks on all the objects of a transaction have been acquired and the operations 

done. The unlock operation can then be invoked on all the objects.

In a distributed system, all the schedulers involved in a transaction must inform the transaction manager at the coordinating node that the 

requested locking and invocation of objects is done. Only then can the unlock operations be sent back to the schedulers concerned. 

Notice that use of a protocol of this kind prevents timing problems. The phases are defined at one node: the coordinating node of the 

transaction. For a strict execution that enforces the property of isolation in the implementation, the locks are not released until the 

transaction is committed.

The method is subject to deadlock, and we assumed in Chapter 20 that dead-lock detection and recovery would be carried out by a 

component of a (centralized) TPS.

This component (let us call it the lock manager) maintains information on the objects that have been locked by transactions and the 

outstanding lock requests. The implicit assumption in Chapter 20 was that all the objects concerned were local to the TPS, so that 

complete information on all transactions was available. A deadlock detection algorithm could be run and action taken, such as aborting 

some or all of the deadlocked transactions.

In a distributed TPS the lock manager at any node can maintain the same information as 

described above for invocations by local transactions. It can be told about requests for 

remote invocations by local transactions. It can also know about the requests for local 

invocations by remote transactions. What it does not know is the remote locks held by 

these remote transactions and their outstanding requests, and so on until the transitive 

closure of locks and requests is computed. This information is needed for deadlock (cycle) 

detection and was discussed in Section 18.10.

The overhead of two-phase locking is large, particularly when extended for use in a distributed system. Each node must maintain a great 

deal of information to detect and recover from deadlock, and the method scales badly. In practice a simpler approach based on timeout 

might be adopted. If a transaction fails to acquire a lock in a given time it is aborted and all the locks it holds are there-fore freed.
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22.5 Concurrency control: Time-stamp ordering (TSO)

Time-stamp ordering was described in Section 20.5. Each transaction is given a unique 

time-stamp and their executions are serialized in the order of their time-stamps. In the 

general model, each object maintains information on its invocations. In time-stamp ordering, 

the operation invoked and the time-stamp of the invoking transaction are recorded at the 

object. The object knows which pairs of its operations conflict.

Assume that one operation of a conflicting pair has been carried out (and committed) at an object and the information described above 

has been recorded. Assume that a subsequent request for the other operation of the conflicting pair is made. If the transaction 

time-stamp associated with the request is later than that recorded, the invocation goes ahead and is recorded. If it is less, the invoking 

transaction must be aborted and may be restarted with a new time-stamp.

The major advantage of this method for a distributed implementation of concurrency control is that only information held at each object is 

used to achieve serialization. Contrast this with the overhead described above for the distributed deadlock detection associated with 

distributed two-phase locking.

At first sight it seems that there might be a problem associated with time in using the method in a distributed TPS. In a centralized 

system the time-stamps have a serial order because they are generated from a single clock. In a distributed system a system-wide 

ordering of time-stamps is needed for correct serialization of transactions. This is quite easy to achieve. The essential requirement for 

correctness is that every object takes the same decision about the relative order of two time-stamps. First, suppose that we use the local 

time of the coordinating node of the transaction for the time-stamp. Except for the case of identically equal times, these values could be 

used to achieve a correct serializable execution. To deal with the case of equal times we just need a system-wide policy to achieve the 

arbitration. The node identifiers could be used, for example.

Although this method of generating and using time-stamps achieves correctness it favours nodes with fast-running clocks when 

arbitration between equal times is needed.
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22.6 Optimistic concurrency control (OCC)

The premise on which the use of OCC is based is that conflict is unlikely to happen. It is also 

assumed that transactions require high availability of objects, such as in systems which have 

some degree of real-time requirement. A transaction is allowed to proceed without delay on 

shadow copies of objects. No changes are applied to persistent object states until the 

transaction requests commit. The transaction is then validated in order to ascertain whether 

its shadow copies represent a consistent system state and whether its history is serializable 

with the histories of transactions that have already been validated. Once a transaction is 

validated, its updates are guaranteed to be made. If the validation fails, the transaction is 

aborted. This simply involves discarding its shadows. It might then restart with new shadows.

In Section 20.6 we argued that it would be pessimistic, rather than optimistic, to ensure at transaction start that the shadow copies of 

objects used by the transaction during the execution phase represent a consistent system state. To achieve this consistency we should 

have to sacrifice guaranteed high availability of objects since an object might be held during commit of some transaction when required 

by another. It would be necessary to enforce atomic commitment over all the objects invoked by a transaction and to take shadow copies 

of all the objects needed by a transaction atomically. Section 22.8 shows how atomic commitment can be carried out in a distributed 

system. This is too heavyweight when we optimistically assume that conflict is unlikely. Also it is not always possible to know at 

transaction start all the objects that will be needed by a transaction.

As in time-stamp ordering, the decision on whether a transaction may commit is based on information recorded at each object. The 

decision is made during the validation phase, after a transaction requests commit. Objects vote independently to accept or reject the 

transaction, and this aspect of OCC is therefore appropriate for a distributed system. There is a need to ensure that the local contexts for 

validation at the objects participating in a transaction are consistent.

The discussion of Section 20.6 was equally applicable to a centralized and a distributed implementation. An essential requirement in a 

distributed system is that transactions are validated for update in a well-defined serial order. Decisions on validation must be 

communicated to the participating objects atomically, and we shall sketch a protocol to achieve this in Section 22.9.

In Section 20.6 we required that in the update phase of a transaction update invocations are applied to objects in persistent memory in 

serial order, transaction by transaction. It is the responsibility of the update manager to ensure that all updates succeed. The update 

manager will know at any time those transactions for which updates have succeeded. It can therefore be asserted that the updates up to 

those of some transaction have succeeded.

This places a requirement on the underlying communications system used for making remote object invocations. There are issues 

specific to a distributed implementation that are associated with the independent failure modes of its components. It is necessary to 

assume that the invocations are made at the object in the order they are sent by the update manager and that these invocations are 

acknowledged to the update manager. We require that messages are not lost without notification and are not received in a different 

order from that in which they are sent. This can be achieved by selecting an appropriate communications protocol.
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22.7 Commit and abort in a distributed system

Let us assume in the case of 2PL and TSO that the transaction manager at the coordinating node has received a request to commit a 

transaction. We have to ensure:

Atomicity Either all nodes commit the changes or none do, and any other transaction perceives the changes made at every node or 

those at none.

Isolation The effects of the transaction are not made visible until all nodes have made an irrevocable decision to commit or abort.

We have set up the conditions that no scheduler will refuse to commit the transaction on correctness grounds. In 2PL and TSO we have 

avoided this possibility by only allowing serializable invocations to take place. For these pessimistic methods there are two remaining 

issues to consider:

Nodes or network connections might fail during commit.

Other nodes may be attempting to carry out distributed commit at the same time and this might involve an intersecting set of 

objects.

Atomic commitment protocols address these issues. The two-phase commit protocol is discussed in Section 22.8.

In 2PL and TSO we can ensure isolation by holding locks until after commit (see Sections 20.4.1 and 20.5.1), thus guaranteeing 

strictness. If strictness is enforced we can assume that all the objects that were invoked by the transaction to be committed are available 

to the commit procedure for it. To achieve this we have introduced a possible additional delay when an object is invoked in 2PL and 

TSO. Once again we are restricting concurrency (object availability) in order to ensure that transactions see a consistent system state.

In the case of OCC we have made no attempt to ensure the correctness of an executing transaction, preventing harmful consequences 

by invoking operations on shadow objects. After an executing transaction has issued commit we have to ensure during validation:

Consistency The execution has been based on shadow objects derived from a consistent system state, and there has been no 

interference at any object from transactions executing concurrently.

We have argued against the atomic commitment of updates for OCC, but its use has definite advantages. Herlihy (1990) proves the 

correctness of OCC algorithms that are based on a two-phase protocol for update in which validation is performed at each object during 

the first phase. In this paper he also shows that optimistic and pessimistic methods can be mixed on a per-object basis. Should we wish 

to enforce strictness (execution based on consistent system state only) for OCC it would be necessary not only to commit updates 

atomically but also to take the shadow copies needed by a transaction atomically. The drawback of this in a distributed system is that it 

can greatly reduce object availability, which was one of the goals when OCC was introduced.

On the other hand, we have to ensure a serializable execution, which means that a consistent serial order of committed transactions 

must be established system-wide. Global consistency is enforced during validation, and locks held during this phase relate only to the 

process of validation, not to the objects themselves. Once a transaction has its updates guaranteed these can be applied 

asynchronously at the participating objects, and executing transactions merely read whatever version the object has reached when 

creating a shadow object. Objects are therefore available except at the moment of version change. The drawback is loss of strictness, 

with the result that a transaction may be rejected simply because its shadow objects were inconsistent. Since transactions always 

execute to completion there can be a considerable waste of system resources. A protocol for atomic validation is described in Section 

22.9.

We shall now look at a widely used atomic commitment protocol: two-phase commit (2PC). Other such protocols have been defined 

which vary with respect to the failures they can tolerate and the number of communications that are needed. Further reading on the topic 

may be found in Bernstein et al. (1987), Ceri and Pelagatti (1984) and Bell and Grimson (1992).
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22.8 Atomic commitment: The two-phase commit (2PC) protocol

We assume a number of participating nodes and a commit manager at the co-ordinating node 

of the transaction (see Figure 22.3(a)). Each participating node 'votes' for commit or abort of the 

transaction. Ultimately, all the nodes must make the same decision and the purpose of the 

protocol is to ensure this. The two phases involved are, broadly:

Phase 1: the commit manager requests and assembles the 'votes' for commit or abort of the transaction from each participating node;

Phase 2: the commit manager decides to commit or abort, on the basis of the votes, and propagates the decision to the participating 

nodes.

Figure 22.3. The two-phase commit protocol when all nodes vote commit.



Showing more detail of the steps involved:

The commit manager sends a request to each participating node for its vote.1.

Each node either votes commit and awaits further instructions, or votes abort and stops (exits from the algorithm). Note that a 

commit vote indicates that both the new value of the data object and the old value are stored safely in stable storage so that the 

node has the ability to commit or abort.

2.

The commit manager receives the votes and adds its own vote. If all the votes are to commit it decides commit and sends 

commit to every participating node. If any vote is abort it decides abort and sends abort to all the nodes that voted commit (the 

others have already stopped). The commit manager stops.

3.

The participating nodes that voted commit are awaiting notification of the decision. They receive this notification, decide 

accordingly and stop.

4.

We assume that the decision indicated in step 3 above is permanent, guaranteed to persist; there is a point of decision in the algorithm at 

the commit manager.

We must consider how the protocol might handle congestion and failures in the nodes and connections involved. As discussed in Section 

22.3 above, the two-phase commit protocol is an application protocol which is implemented above lower-level protocols. Each 

communication involved in two-phase commit will have a success indication or an exception returned from the level below. We shall 

assume that the lower levels have made allowance for congestion (by retrying after timeouts) and that an exception indicates a failure of 

some kind. The protocol must be designed on this basis. Bear in mind that a decision cannot be reversed: once a decision is made, failure 

recovery procedures must ensure it is implemented.

Suppose that an RPC from the coordinating node to each participating node is used to implement steps 1 (request for vote) and 2 (reply 

with vote). A failure of any one of these RPCs is assumed to indicate a failure of that participating node. The vote from that node might 

have been abort; an abort vote is the only safe assumption, so the transaction is aborted.

Suppose that step 3 (send the decision to nodes that voted commit) is also implemented by RPC, the reply indicating just an 

acknowledgement of receipt. A failure of any one of these RPCs indicates that the decision to commit or abort may still need to be effected 

at that node. The decision cannot be changed; it has been made and put into effect at the management node and at the nodes which have 

received the decision from the manager. Recovery from failure at any node must therefore involve terminating correctly any two-phase 

commit that was in pro-gress when the node failed and sufficient information must be stored in persistent storage to make this possible. 

On restarting, the node could ask the manager for the decision. The manager knows that node failed and can expect the request.

The above discussion has outlined how failure resilience might be approached in two-phase commit if one or more of the participating 

nodes fail. The manager might also fail:

After sending requests for votes but before deciding. All the participating nodes that voted commit will time out (at the 

two-phase commit level) waiting for a decision.

1.



After deciding (and recording the decision in persistent store) but before sending the decision to any participating nodes. All the 

participating nodes that voted commit will time out waiting for a decision.

2.

After deciding (and recording the decision in persistent store) and after sending the decision to some but not all participating 

nodes. Some of the participating nodes that voted commit will time out waiting for the decision.

3.

Any one participating node which times out cannot distinguish between these three possibilities. So far we have assumed that the 

participating nodes know about the manager but not about each other. It would be easy to add a list of participating nodes to the request 

for vote. Any node that timed out could attempt to find out the decision from the other nodes. Bell and Grimson (1992) and Bernstein et al.

(1987) give detailed termination protocols for 2PC and also discuss three-phase commit (3PC) protocols.
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22.9 Two-phase validation for OCC

We assume a number of participating nodes and a validation manager at the coordinating 

node of each transaction (see Figure 22.4). In addition there is a single logical agent in the 

system, the update manager, which is responsible for the queue of transactions that have 

been validated for update. Each transaction involves a number of participating objects, and 

each object votes independently accept or reject on whether there has been conflict. In 

addition, any object that votes to accept a transaction notifies the validation manager of the 

version time-stamp of the shadow object that was created for the execution phase.

Figure 22.4. Distributed validation for OCC.

In the figure, transaction T is being validated by validation manager 2, the participating objects being A, D and X. Another transaction 



involving objects C and X has just issued commit, and validation manager 3 is to validate it. Two-phase validation has much the same 

general structure as the two-phase commit protocol described in Section 22.8, but there are two important differences. First, an object 

may be involved in several transactions concurrently: one transaction may issue commit when the object is already participating in the 

validation phase of some other transaction. It would be possible to block the newly requested validation, but such a policy would run the 

risk of deadlock. A better approach is to ask the validation manager to try again later if the object's vote is still of interest. Secondly, if all 

participants vote accept at the first phase and the transaction is validated successfully, they do not need to apply the updates during the 

second phase. Instead the validation manager applies to the update manager for a time-stamp for the transaction, and at this point the 

serialization order is determined. This interaction is atomic. The validation manager must then inform each participating object of the 

decision, so that any subsequent validation takes place in a consistent context.

Interaction between the validation manager and participating objects follows the general pattern shown in Figure 22.3, but the details of 

the protocol must take account of the above differences. The two phases involved are, broadly:

Phase 

1:

the validation manager requests and assembles the 'votes' for accept or reject of the transaction from each participating 

object, except those that say busy;

Phase 

2:

the validation manager decides to commit, reject or retry, on the basis of the votes, taking account of shadow object 

consistency. If the decision is commit it applies to the update manager for a time-stamp. The decision is propagated to 

participating objects.

Considering the steps involved in more detail:

The validation manager sends a request to each participating object for its vote on the transaction execution.1.

Any object that is performing validation of some other transaction replies busy and awaits further information. Other objects 

either vote accept (indicating the shadow object version time-stamp) and await further instructions, or vote reject, record 

rejection locally and discard the shadow object. Objects that vote reject need not be contacted further.

2.

The validation manager receives the responses and determines what action to take.

If any vote is reject it decides reject and sends reject to all the objects that replied accept or busy (the others have already 

stopped).

Otherwise, if any vote is busy it asks all the objects to suspend validation for a subsequent retry. Objects which voted accept

are then free to validate other transactions. The validation manager will retry after a suitable interval. Objects which voted 

accept originally may then vote reject.

If all the votes are accept the validation manager decides whether to commit on the basis of shadow object consistency. If the 

versions were inconsistent (see Section 20.6), it decides reject and sends reject to all the objects; the validation manager 

stops.

3.

If the decision is commit, the validation manager applies to the update manager for a time-stamp for the transaction. The 

decision is propagated to all participating objects, together with the time-stamp. The validation manager stops.

4.

The point of decision in the above algorithm occurs when the update manager issues a time-stamp for the transaction. At that point all 

participating objects have voted accept in a two-phase protocol, and they must be prepared to apply updates at some later stage.

It is worth considering the extent to which concurrent execution is sacrificed, and the consequences for object availability. First, the 

interaction to obtain a time-stamp from the update manager is atomic, and requests must be serviced by a single queue manager. 

Secondly, when a validation manager receives a busy reply from an object it abandons the attempt to validate for a while. Objects will 

service only one request to validate at a time. Both of these restrictions apply to the validation phase of a transaction. The busy reply 

may increase the chance that a transaction is rejected, thus wasting system resources. On the other hand there are no bad implications 

for object availability at the execution phase, since updates are applied locally at each object during the update phase, without a 

protocol that involves external sites. Shadow objects can therefore be created except when a request is received during a change of 

object version (essentially a rename operation).

This discussion has not considered how the protocol might handle congestion and failures in the nodes and connections involved. 

Two-phase validation, like two-phase commit, is an application protocol which is implemented above lower-level protocols. The 

considerations outlined in Section 22.8 apply equally here.
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22.10 Summary

We considered multiple cooperating instances of the TPS described in Chapter 20 and reiterated, in the context of a distributed system, 

the general object model that was set up in Chapter 19.

Much of the discussion of concurrency control in Chapter 20 was equally applicable to distributed systems. In this chapter a short 

discussion on each method highlighted the points specific to distributed systems. There is as yet little practical experience of distributed 

implementations.

Two-phase locking has the overhead of deadlock detection which is more complex and imposes greater overhead in a distributed system 

than in a centralized one. A simple timeout approach, in which a transaction that does not succeed in acquiring a lock in a given time is 

aborted and restarted, is preferable.

Time-stamp ordering has the advantage that information held locally at an object is the basis on which an invocation is accepted or 

rejected so the method is potentially good for distributed systems. The absence of system-wide time is not a problem provided that there 

is a policy which ensures that all objects reach the same decision on the relative order of any two transaction time-stamps.

Optimistic methods are also potentially well suited to distributed systems. Operations are invoked on copies of all the objects involved in 

a transaction and the results of the transaction are incorporated into the database when it requests commit. In OCC the order in which 

transactions' updates are made at each object is determined by the update manager. A time-stamp, issued by the update manager, is 

associated with the transaction and the updates are made in time-stamp order at each object.

For simplicity, we assumed in 2PL and TSO that strictness was enforced in the implementation of the transaction executions. Greater 

concurrency might be achieved at the expense of greater complexity by relaxing strictness. We argued that atomic commitment and 

taking shadow copies atomically would reflect a pessimistic, rather than optimistic, approach and is therefore unsuitable for OCC.

We discussed atomic commitment for 2PL and TSO. The independent failure modes of the components of distributed systems are 

relevant here. The same decision on transaction commit or abort must be made for all objects invoked by the transaction. A two-phase 

commit protocol was described and discussed in some detail. Finally, we discussed a two-phase validation protocol for OCC. In this 

case, the single point of decision on whether the transaction is to be committed is when the update manager issues the transaction 

time-stamp. Updates are then guaranteed to be made in time-stamp order at each object.

Study questions

S22.1 In addition to the operations appropriate to its type, what further operations can be applied to an object in a 

transaction processing system?

S22.2 In a TPS, what information is stored with each object for each operation invocation?

S22.3 What assumptions are made about a distributed TPS?

S22.4 What must each node in a distributed TPS be able to do? What functions does the local transaction manager 

perform? What coordinates activities at each node?

S22.5 What are the two major issues that must be addressed in a distributed TPS?



S22.6 What is meant, in a distributed TPS, by saying that, 'the property of isolation is enforced'?

S22.7 At what level are application protocols implemented?

S22.8 Give an example of an application protocol in a TPS.

S22.9 What are communications protocols used for?

Exercises

22.1 In what ways do distributed systems differ from centralized ones?

22.2 How can the components of a distributed system agree on a basis for establishing system time? Under what 

circumstances might system time be needed?

22.3 Relate the object model in Section 22.1 and the distributed TPS of Section 22.2 with the discussion on the 

implementation of naming, binding, locating and invoking objects of Section 16.11.

First, consider the component TPSs as a distributed application that a client may wish to invoke. The components may

be named as a set of application servers. The objects they manage are named internally by the TPS. This is the

client–server model.

A more general object model might support global naming and invocation of the data objects. How might this be 

managed in a system?

22.4 Describe the operation of a distributed TPS from the point at which a client submits a transaction to a single 

component of the TPS.

22.5 Why are the time-stamp ordering (TSO) and optimistic concurrency control (OCC) approaches to concurrency control 

potentially more suitable for distributed implementation than two-phase locking? How can 2PL be simplified?

22.6 What is involved in the validation phase of OCC in a distributed system?

22.7
Why is a complex protocol required to commit a transaction atomically in a distributed TPS?a.

What happens in the two-phase commit protocol if the transaction manager fails? Discuss its failure at all 

relevant stages in the protocol.

b.

Suppose a participant fails after voting for commit of a transaction. What should it do on restart?c.

What are the advantages and disadvantages of letting the nodes participating in a two-phase commit know about each 

other?
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23.1 Introduction

In this chapter we focus on the special problems associated with designing algorithms which are implemented with distributed 

components. Many are useful building blocks for designing distributed systems.

Chapter 7 introduced the fundamental properties of distributed computations: concurrent execution of components, independent failure 

modes of components, communications delay, potential inconsistency of data and absence of a single timeframe.

Here, we shall assume that the nodes involved have clocks that are synchronized as described in Chapter 7. Some of the algorithms we

consider will make use of locally issued time-stamps, using process identifiers to arbitrate between requests with equal time-stamps. We

shall be concerned with the fact that any component of a computation, or any connection path, may fail at any time. It is often impossible

to tell which of these has happened. The situation is made worse by the possibility of comunications delay. It may be that timeouts result

from heavily loaded networks or servers rather than failures. We took account of this for a simple request–response protocol in Chapter 

16. The higher-level components we consider in this chapter are built above such communications.

We have already taken a preliminary look at some distributed algorithms, but without a full discussion of failure implications. In Chapter 6

we saw that clients of distributed filing systems are likely to maintain a cache of files or blocks of files for their users. Maintenance of 

cache consistency requires a distributed algorithm. In the approaches we studied, the file server played a central role. In Chapter 18 we 

considered how distributed deadlock detection might be carried out. Again, we omitted to discuss the failure modes of the various 

approaches.

Chapter 22 covered distributed transactions and we studied an atomic commitment protocol: two-phase commit. We assumed a known 

group of processes were to reach consensus on whether to commit or abort a result. In this chapter we extend the discussion to the 

composition of the group and the election of a coordinator by a group of processes.

Naming was introduced in Chapter 7 as a fundamental issue underlying all system design. We saw that the data held by name servers 

should be highly available and that a trade-off may have to be made between availability and consistency of data. Implementation 

approaches are discussed here.
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23.2 Process groups

Many algorithms assume that a certain number of components are participating, indeed the algorithm may make use of the number of 

processes involved and their identities. Before such an algorithm commences we need to have a means of controlling group membership. 

Typical primitives for managing groups are as follows:

create (group-name, <list-of-processes>)

kill (group-name)

join (group-name, process)

leave (group-name, process)

The system may provide a 'group server' to which all these requests must be sent or it may be that join and leave may be sent to any 

member of the group. It would of course be necessary for a process to have the necessary access privilege to be able to kill a group.

It is necessary to specify whether communication involving groups is closed or open. For example, a distributed algorithm may be such 

that a process must be a member of the group in order to participate in the algorithm. Alternatively, a group of servers may exist to carry 

out a service, in which case the service is invoked by a message from a process outside the group to any member of it.

We shall consider cases where the group has no internal structure and the algorithms are fully distributed. Alternatively, we shall study 

algorithms in which the group is structured and a leader acts as coordinator.

Any process may fail at any time. A crashed process is deemed to have left any group of which it is a member and must rejoin on 

restarting. The group control algorithms must be robust under failure, for example on failure of a process during leave and join. Failure of a 

group leader is considered in the next section.

Systems concerned with fault tolerance may be built above a group abstraction. For example, the processes of a group might each 

compute and vote on the result of a computation. Communication is likely to be based on a reliable multi-cast protocol where any 

message is guaranteed to be delivered to every member of the group. ISIS is an example of such a system, see Birman and Joseph 

(1987) and Birman (1993).

23.2.1 Leadership election

The coordinator of an algorithm may in some cases be any member of a group. For example, the group members may each be 

maintaining a data replica and any member that receives an external request to update the data will act as coordinator of the update, see 

Section 23.3.

If there is no obvious initiator then a leader may be 'elected'. Let us assume:

each process has a unique ID known to all members;

the process with the highest ID is the leader;

any process may fail at any time.

The BULLY election algorithm



One election algorithm that has been proposed is called BULLY. All processes behave as follows:

P notices there is no reply from the coordinator.

P sends an elect message to all processes with higher IDs.

If any reply then P exits.

If there are no replies then P wins, obtains any state needed to function as leader then sends a coordinator message to all 

processes.

On receipt of an elect message a process must both reply to the sender and start an election if it is not already holding one.

Notice that there can be concurrent elections in progress, see Figure 23.1(ii), and that the algorithm can involve a large number of 

messages. Also, it is not specified how long a process should wait before deciding that no reply has come back and that it is therefore the 

new leader. This is an issue for the lower-level protocols; the high-level algorithms act according to the best information available from the 

lower levels.

Figure 23.1. Election algorithm: BULLY.

A ring-based election algorithm

An alternative is to use a RING algorithm in which processes are ordered cyclically, the order being known to all processes. A failed 

process can therefore be bypassed. The algorithm requires messages to be acknowledged so that any process that fails during its 

execution can be bypassed. All processes behave as follows, see Figure 23.2:

P notices the coordinator is not functioning.



P sends an elect message containing its own ID to the next process in the ring.

on receipt of an elect message:

without the receiver's ID – add this ID and pass on the message;a.

with the receiver's ID (the message has been round the ring) – send a message (coordinator, highest ID in the 

message) around the ring.

b.

Figure 23.2. Election algorithm: RING.

The process with the highest ID then functions as coordinator; all the processes have found out this ID as the message traversed the ring.

The algorithm involves fewer messages than the BULLY algorithm. Communication delay may again interfere with the algorithm, in that 

heavy loading of a process's node or the communication path to it may cause it to be bypassed. In both cases the algorithms are specified 

at a higher level than this.
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23.3 Consistency of data replicas

Data that is needed to support the smooth operation of a system is often replicated. An example is the naming data held by name servers 

that was discussed in Section 16.11. Replication of data ensures that if a single computer that holds such data fails, another copy exists. 

Replication may also be used to ensure that there is a copy reasonably near to all points of the system, which is particularly relevant to 

large-scale systems. Data is therefore replicated for reasons of availability and performance. Applications and services in general may 

maintain data replicas for these reasons. Communications delay and distributed updates mean that replicas can get out of step. We may 

have sacrificed consistency to achieve availability.

When data replicas exist in a system there must be a policy about how changes to such data are handled. Alternative policies are as 

follows:

Weak consistency: A change made to one of the replicas is visible immediately. The system will propagate the change to the

other replicas in due course but in the meantime the system has become inconsistent.

Strong consistency: Another approach is to attempt to make the change to all the copies before allowing the data to become

visible again. The problem here is that even if all the computers holding the replicas are available, the process is much slower 

than updating one nearby copy.

Here we have a simpler model than in the transactional systems of Chapter 22. We have replicas of a single object which may be read and 

written by distributed processes. Another term which captures the requirement for strong consistency is single copy serializability (SR1).

If any replica is on a system which is not available we have either to forbid the update or handle the inconsistency when the system 

becomes available again. It has been said that distributed computing means that the fact that a computer you have never heard of has 

crashed means that you can't get on with your work! We see how this problem can be alleviated in the next section.

Another scenario is that all the replicas may be on systems that are running but the network has become partitioned. There is the 

possibility of inconsistent updates being made within the separate partitions.

A special case of replication is that systems of moderate scale may maintain a hot standby. In this case a duplicate is maintained in step 

with the primary copy so that if the primary fails a switch can be made to the duplicate without loss of state. We shall not consider this 

option further but will focus on the more general case of multiple distributed replicas.

23.3.1 Quorum assembly for strong consistency

An approach to alleviating the problem of contacting every replica is to allow an update to take place when a majority of the replicas can 

be assembled to take part in the process. This is called a write quorum. A read quorum is also defined and its value is chosen to ensure 

that at least one of its member replicas contains the most recent update. If there are n replicas a write quorum WQ and read quorum RQ

are typically defined to be:

WQ > n/2

RQ + WQ > n

For example, if n = 7, you may have to assemble and write to 5 replicas and assemble 3 for reading. On reading you check the time of last 

update of all three and use the most recent. The system software is likely to attempt to bring all the replicas up to date behind the scenes. 

Figure 23.3 illustrates.



Figure 23.3. Quorum assembly.

Note that the replicas are maintained by a group of processes of size n. Quorum assembly is tolerant of failure of the nodes. An atomic 

commitment protocol must then be used to commit (or fail to commit) the update for all (or no) members of the quorum; see Section 22.7. 

Quorum assembly is not tolerant of the group size being increased concurrently with assembly of a quorum and this must be taken into 

account in the protocol which implements join.

23.3.2 Large-scale systems

Quorum assembly alleviates the problem of having to contact every replica to make an update in a system where strong consistency is 

required. In large-scale systems the quorum size might still be large and the process of assembly very slow. Figure 23.4 illustrates how 

strong and weak consistency might both be used in a large-scale system. A hierarchy of replicas is created. Recall that a similar approach 

was used for NTP (network time protocol) to synchronize the clocks of computers on the internet; see Section 7.6.4.

Figure 23.4. Large-scale systems of replicas.



Figure 23.4 shows a number of primary servers at the top level of the hierarchy. They are responsible for maintaining strongly consistent 

replicas. The system specification may be that all updates must be made by contacting some primary server. That server is then 

responsible for assembling a quorum among the primary servers then using an atomic commitment protocol to commit the update 

securely. The primary servers then propagate the update down their respective hierarchies.

A process which requires a read to be guaranteed to be up-to-date must contact a primary server. If a quick response is required any local 

server may be contacted. There is a small risk that an update to the data item required is still on its way to that server.

Ma (1992) used a hierarchical scheme of this kind for name servers. Adly et al. (1993; 1995) give a design which allows a variety of 

application semantics to be provided within a hierarchically structured system. The protocols are tolerant of changes in group membership. 

Adly et al. (1995) give an overview of replication algorithms for large-scale systems as well as describing this work in detail.
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23.4 Ordering message delivery

We have seen that a group of processes may be set up and may execute distributed algorithms. Each member may be maintaining a data 

replica and we have seen how a single update may be committed by all members of the group or by none of them, using quorum 

assembly followed by an atomic commitment protocol. Concurrent update requests are serialized by the fact that only one quorum 

assembly can succeed. Strong consistency has been achieved, we have single copy serializability and have imposed a total order of 

updates system-wide (within the group).

In the above we did not take into account the order in which the update requests originated. We could specify an additional requirement: 

that updates are committed at the replicas in time-stamp order. In an application domain where this is appropriate it could well be 

beneficial to separate the application making updates from the message delivery system, as shown in Figure 23.5.

Figure 23.5. Ordering message delivery.

In some applications this strong consistency is not needed. If we remove the requirement for consistency we can allow messages to be 

delivered to the application in any order. We can ensure that every update reaches every replica eventually but the order in which the 

updates are made is not controlled.

Between these extremes we may require causal ordering of message delivery. Here we assert that a message received by a process can 

potentially affect any subsequent message sent by that process. Those messages should be received in that order at all processes. 

Unrelated messages may be delivered in any order. Figure 23.6 illustrates.

Figure 23.6. Causal message delivery order.



The causal ordering condition may be stated more formally as follows:

sendi(m)  sendj(n) implies deliverk(m)  deliverk(n) 

23.4.1 Vector clocks

We assume that every message is to be delivered eventually to every process. The message delivery system must be able to deliver 

messages to the application in causal order if required. This implies that some messages which are received 'early' must be held by the 

message delivery system before being delivered. A data structure must be maintained on which such decisions can be based. One 

approach is to use so-called 'vector clocks' (see the chapter by Babaoglu and Marzullo in Mullender (1993) and Figure 23.7).

Figure 23.7. Example showing vector clocks.

We assume a fixed number n of processes, each with a corresponding entry in a vector. The entry for a process indicates the eventcount 

at that process; the idea is that described for logical time and event ordering in Section 7.6.3. Each time a process sends or receives a 

message it increments its own eventcount (its entry in the vector).

SEND(vector, message) 

When a process sends a message it tags the message with its value of the vector. This indicates the belief of that process about the state 

(eventcounts) of all other processes.



RECEIVE(vector, message) 

When a process receives a message it updates its vector entries for other processes from the values in the vector when these are greater 

then the values in its locally maintained vector.

Each process, implementing the message service for an application, therefore maintains its best knowledge of the state of the system. 

Based on the values in the vector it can decide whether or not to pass a given message up to the application. Figure 23.7 illustrates.

Note that we have assumed that the number of processes is fixed. Each process has a name which indicates its slot in the vector. This 

notation has been used historically but a set notation would be more general. It would allow the group size to vary as processes join and 

leave and would avoid the problem of a gap in the vector caused by a leaving process.
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23.5 Distributed, N-process mutual exclusion

Consider n processes executing on n processors with no shared memory. A problem discussed in the literature is to devise an algorithm to 

implement a critical region within each process. As discussed in Chapters 7 and 16 any such algorithm must take into account the 

possibility of independent failures of the components of distributed systems, the absence of global time and the delay involved in 

communications between components.

In order to explore the characteristics of applications for which a distributed mutual exclusion protocol may be appropriate we shall start 

from an example of a centralized data object with distributed processing.

Assume that n processes are cooperating to process data in a shared file and that the processes must use a conventional file server which 

sees a file as an unstructured byte sequence. Processes read the data in fixed size records, of size k bytes, process it, write it back to its 

original place in the file, read another record, and so on (see Figure 23.8). The processes may run at different speeds and the processing 

of the records may involve variable amounts of computing. The problem is to ensure that no record of the file is processed by more than 

one process and that all records are processed by some process.

Figure 23.8. Centralized object, distributed operation invocation.

If a process requests to read 'the next k bytes' (relative to some system-maintained pointer) the file server delivers a unique portion of the 

file to each process. Unfortunately, the process is unable to write back the record because it does not know the position of the record in 

the file; other processes may change the position of the pointer. If, instead, each process asks for a specific range of bytes, it is possible 

that more than one process will read a given range (or that some records will be missed) unless they coordinate their activities.

The file service interface does not provide the functionality required by the cooperating processes. We may adopt two approaches to 

solving this problem:



A centralized approach: provide an 'access coordination server' (or coordinator) which tells the processes which record they

may process.

Note that we must avoid introducing extra data transfers into the distributed system. We must not put the coordinator on the 

data transfer path between the file server and the processes. Instead, each free process should ask the coordinator for a byte 

range in the file which it may process.

Note that we are not implementing the coordinator as a server which functions as an object manager. It does not perform 

operation invocations on the object: we wish to have these done in parallel by the processes. Our coordinator is part of the 

process of assessing the object, similar to an object location server which is transparent to client (object invoker) and server 

(object manager).

A distributed approach: the processes execute a protocol to ensure that no record of the file is processed by more than one

process and that all records are processed by some process. Before going into the details of such protocols we first consider 

some more general examples.

Replicated or distributed data objects

In the example above there is a single copy of the data object, and we arranged carefully that no part of it would be acquired by more than 

one process. We now consider the possibility that multiple copies of objects or parts of objects might exist in a distributed system.

For example, suppose that a system supports object mapping. Suppose that several processes have mapped a given object in their 

address spaces (see Figure 23.9). When process i wishes to invoke an operation on its local copy of the object it must first coordinate with 

the other processes to ensure that it has exclusive access to the object or some specified part of it.

Figure 23.9. A replicated or distributed object.

Another example is a distributed game with n players. Suppose each player has a copy of the game's data and that only one player at 

once may make a change to the data. The change is propagated to all the other players.

Another example is a multimedia, on-line conferencing system. Each delegate sees some replicated objects and some private objects. A 

participant may only make a change to a replicated object after executing a distributed mutual exclusion protocol. A similar situation arises 

when a participant wishes to speak. It is agreed that only one person may speak at once and obtaining permission to speak requires a 

mutual exclusion protocol.

23.5.1 Algorithms



Three approaches to implementing n-process distributed mutual exclusion are now outlined. The exercises which follow guide the reader 

in exploring the trade-offs and potential problems. Raynal (1986) contains these and other algorithms. The fully distributed approach was 

discussed in Lamport (1978) and the algorithm presented below was devised by Ricart and Agrawala (1981).

Centralized algorithm

This approach is similar to that described above for a centralized access coordination server or coordinator. The idea is that one of the n

processes is elected as coordinator. Each process sends a request to the coordinator before entering its critical region (CR). The 

coordinator checks whether any process is in the CR and, if so, accumulates a queue of requests. When the CR becomes free the 

coordinator sends a reply to a process, selected according to some specified scheduling policy, and this process receives the message 

and proceeds into its CR. On exit from its CR it sends a release message to the coordinator.

Token passing in a virtual ring of processes

The processes are ordered into a virtual ring and a 'token' is devised. The token comprises a message which all processes recognize as

permission to enter the CR. The token is passed from process to process in the order specified. When a process receives the token it may,

if it wishes, enter its CR. In this case it keeps the token and passes it on to the next process on exit from the CR. Otherwise it passes on

the token immediately. Notice the similarity of the scheduling policy to that of the Eisenberg–McGuire algorithm for shared-memory

systems (Section A.4.3).

A distributed algorithm

The aim is to implement a first come first served scheduling policy. Recall the discussion of Section 7.6 on the ordering of events in 

distributed systems. When a process wishes to enter its CR it sends a request message to all processes, including itself, and includes a 

time-stamp with the message. The system has a policy for global ordering of time-stamps: for example, if any time-stamps are equal, the 

associated process IDs are used to achieve a unique global ordering of the request messages. On receiving a request message a process 

may reply immediately or may defer sending a reply as follows:

If a process is in its CR it defers sending a reply.

If a process does not want to enter its CR it sends a reply immediately.

If a process wants to enter its CR but has not yet done so then it compares the time-stamp on its own request with the 

time-stamp of the incoming request. If its own time-stamp is greater than that of the incoming request it sends a reply 

immediately (the other process asked first). Otherwise it defers its reply.

A process that has received a reply from all the other processes may enter its CR. On exit from the CR the process replies to any requests 

that it has deferred. Notice the similarity of the scheduling policy to that of the bakery algorithm (Section A.4.4).

The algorithms may be criticized as follows.

The centralized algorithm is fair: it implements first-come first-served priority. It is also economical in the number of messages required. 

However, it has a single point of failure and the coordinator will become a bottleneck for large-scale systems. The conditions of failure of 

the coordinator and denial of access to the CR cannot be distinguished. This can be solved by using an acknowledgement of the request. 

The requestor is then trusted to wait for the CR.

The token ring algorithm is reasonably efficient, although the token continues to circulate when no one wishes to enter the CR. It is not fair 

in that the ring ordering does not honour the order of requesting the CR. The algorithm is susceptible to loss of the token. 



Acknowledgement messages are needed to detect failure of components which must then be bypassed.

The distributed algorithm replaces a single point of failure with n separate points of failure and n bottlenecks. Although it is fair it is 

expensive in the number of messages required. As above, acknowledgement messages should be used to distinguish between failure and 

denial of the CR.
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23.6 Summary of Part III

The model of an object with abstract operations is used throughout the book. Part II is concerned with implementing a single abstract 

operation correctly in the presence of concurrency and crashes. Part III is concerned with implementing a number of related operations 

comprising a single higher-level abstract operation.

The problems arising from uncontrolled concurrent execution of composite operations are incorrect results arising from certain 

interleavings of suboperations, and deadlock arising from some approaches to controlling this. Deadlock is discussed in Chapter 18. The 

concept of atomic transaction is developed in Chapter 19 and the ACID properties of transactions (atomicity, consistency, isolation and 

durability) are discussed. Concurrency control procedures must ensure consistency and isolation; storage management policies and 

crash recovery procedures must ensure atomicity and durability.

For concurrency control purposes we assume that information is stored at each object, including the time at which each invocation was 

made and by which transaction. The object also specifies which of its pairs of operations are conflicting (non-commutative).

On this basis the implementation of transactions in the presence of concurrent transactions and failures can be studied. Chapter 20

focuses on concurrency control; two-phase locking (2PL), time-stamp ordering (TSO) and optimistic methods (OCC) are discussed in 

general terms.

In Chapter 21 we are concerned with crash recovery. If a crash occurs it must be possible to recover any desired system state and 

therefore any desired state for any object. We have already set up the recording of a history of invocations at each object for concurrency 

control purposes. In theory, object state may be regarded as the result of a sequence of invocations starting from create. In theory, any 

state can be recovered by starting again from create and making any required sequence of invocations. In practice, our recovery 

procedures have to be efficient and have to allow for a crash at any time. We took a simple, state-based model for recovery in which 

object state was assumed to be recorded before and after an invocation. This allows any operation to be undone and redone, and these 

UNDO and REDO operations must be idempotent to allow for crashes during recovery.

Concurrency control and recovery are closely related because the mechanisms that must be in place for crash resilience in a transaction 

system can be used by a concurrency control method to achieve abort.

The object model used throughout Part III is not restricted to a centralized implementation. Most of the discussion in Chapters 17 to 21 is 

relevant to both centralized and distributed systems. Chapter 22 focuses on the issues specific to distributed systems; their special 

properties are discussed and the various methods for achieving concurrency control are reconsidered. Time-stamp ordering and 

optimistic concurrency control are shown to be immediately applicable to distributed systems; two-phase locking involves a good deal of 

extra work to distribute the deadlock detection procedure. In practice, if distributed two-phase locking was used for concurrency control, a 

timeout mechanism would be used. Any transaction which fails to achieve a lock in a given time is aborted.

In pessimistic methods commitment must be implemented atomically over all objects invoked by a transaction. In a centralized system 

the whole TPS is assumed to fail together. The recovery procedures must ensure the consistency of persistent memory on restart after a 

failure. In a distributed system we are concerned with the atomic commitment of distributed objects in the presence of partial failures of 

(components of) a system. We studied a two-phase commit protocol and outlined the recovery procedures of nodes that fail during the 

protocol.

In optimistic methods, we strive for high concurrency, that is, high availability of objects. If objects are involved in the atomic commitment 

of one transaction they are unavailable to others. We studied a two-phase validation protocol for distributed OCC during which shadow 

objects may still be taken by new transactions.

Finally we stepped back from transactions involving persistent data and examined some multicomponent distributed computations. The 

algorithms covered were suitable for use as building blocks within various categories of application. For each algorithm we considered 

the implications of the fundamental properties of distributed systems.



Exercises

23.1 How is the distributed deadlock detection algorithm of Section 18.10 affected by failure of the nodes involved?

23.2 Suppose a file server supports file caching at clients. Discuss how cache coherency might be maintained. Include 

possible interactions among the clients after server failure. What restart procedures would you expect at the server 

and at clients?

23.3 Discuss object coherency and failure semantics for a distributed object mapping system as described in Section 6.8.2.

23.4 Discuss how the nodes executing an atomic commitment protocol after write-quorum assembly should handle an 

incoming join or leave message from a process which is not in the write quorum.

23.5 For the BULLY and RING election algorithms:

How many messages are involved in electing a new coordinator?a.

What should happen when a failed coordinator restarts?b.

23.6 Give examples of applications which you would you expect to require strong consistency of data and of those which 

you would expect to prefer or tolerate weak consistency.

23.7 For the n-process mutual exclusion algorithms:

Is each algorithm correct and free from deadlock?a.

How many messages are required for the entry and exit protocols, with and without failure detection?b.

How many processes does each process need to communicate with?c.

How easy is it for the group of processes to be reconfigured by join and leave?d.
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Part IV: Case Studies

In Part IV we look at the design choices that were made in some real systems. Many papers, web pages, 

standards documents, and sometimes books, have been written on the systems we consider. A short case study 

cannot do full justice to any system and, for greater insight, the papers written by those involved in the design and 

everyday use of the systems are referenced.

Although fragments of UNIX have been used as examples through-out the book, classical UNIX is the first case 

study in Chapter 24. An outline of the design of Bell Telephone Research Laboratory's Seventh Edition UNIX 

kernel is given. The modifications and extensions offered by Berkeley UNIX BSD 4.3, AT&T's System V.3, LINUX 

and Solaris are described in Chapter 25. Chapter 26 covers the broad range of styles of extensible operating 

systems. The design of Windows 2000, described in Chapter 27, is object based and close to the abstract design 

used through-out the book. PCs are now sufficiently powerful and capacious to support large-scale, advanced and 

network-based applications. Windows 2000 has left behind the single-user, small-scale, unprotected designs of 

earlier PC operating systems and has taken on board the well-established design principles that have emerged 

from previous projects. The vision of general, open interworking has not yet been realized.

The World Wide Web is a large-scale, widely distributed system, originally designed for document delivery. In 

Chapter 28 we look at how the standard distributed system architectural components introduced in Chapter 7, 

namely communication, naming, location, security, concurrency control and scalability have been addressed in the 

design of web browsers and web servers. We note that the fact that web documents are read-only over quite long 

periods of time helps to simplify the design. Because the web is ubiquitous it is coming to be used as the standard 

interface for many distributed systems and we discuss this trend and outline the standards designed for this 

purpose.

Chapter 29 discusses the design of middleware: a software layer or platform that may run above heterogeneous 

operating systems to create a common interface through which distributed applications can inter-operate together 

with system services that run above the platform. We set up a framework for considering middleware paradigms 

then discuss current middleware in this context.

OMG's CORBA is discussed in detail because its design is object based and it is a widely accepted de facto

standard. Java was originally designed with web servers and web browsers in mind but JavaSoft now offers the 

full range of services that might be expected in a general middleware platform. We describe Microsoft's Distributed 

Component Object Model (DCOM) and its recent middleware to support a web server approach .NET (dotNET). 

We discuss message-oriented middleware (MOM) and give two widely used examples: IBM's MQseries and 

TIBCO's TIB/Rendezvous. It should be noted that both CORBA and Java have been extended to include message 

passing services.

Chapter 30 first discusses how transaction processing (TP) systems might be implemented in terms of processes 

and IPC. We then outline some TP systems in the area of electronic funds transfer (EFT). The international 

Automatic Teller Machine network is then described in some detail. Security issues and some approaches to their 

solution are outlined.

 24 Classical UNIX

 25 LINUX, Solaris and contemporary UNIX

 26 Extensible systems

 27 Windows 2000

 28 The World Wide Web



 29 Middleware

 30 Transaction processing monitors and systems

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

Chapter 24. Classical UNIX
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24.1 Introduction

This chapter outlines the design of the UNIX operating system kernel, focusing on the first widely known UNIX design, that of Bell 

Telephone Laboratory's Seventh Edition of 1978. The structure of that system and the major abstractions that it presents to the 

programmer still underpin contemporary UNIX kernels and the POSIX programming APIs. In Chapter 25 we examine how these more 

recent UNIX implementations build on the foundations of Seventh Edition, concentrating in particular on the mechanisms that they 

provide for communication between processes and for concurrency control.

There is a massive amount of literature on UNIX, including some books specifically on the kernel design and others on the environment

above the kernel. Classic references are Ritchie and Thompson, 1974 (see below), and a collection of papers in the July–August 1978

issue of the Bell System Technical Journal. Other books which give a comprehensive treatment of the kernel are Bach (1986) which 

emphasizes the System V design from AT&T and, more recently, McKusick et al. (1996) for BSD 4.4.

The aim of this chapter is not to give explicit syntax for every UNIX system call or kernel function. This is widely available in books and 

manuals, for example Stephens (1992). Rather, the reader should understand the basic modular structure of UNIX and how it supports 

the execution of user-level processes and is itself executed in response to users' requests and actions. Good and bad aspects of this 

design are highlighted.

In 1974 a paper was published by Ritchie and Thompson in the Communications of the ACM in which the following were highlighted as 

the main design features of UNIX when compared with then-current alternatives:

Compatible interfaces for file, device and inter-process input and output.1.

A hierarchical file system incorporating demountable volumes.2.

The ability of one process to initiate others asynchronously.3.

A system command language (shell) selectable on a per-user basis.4.

Over a hundred applications and tools, including implementations of a dozen languages.5.

A relatively high degree of portability as a consequence of using the C programming language in place of assembly language 

for much of the system's implementation.

6.

In Section 24.2 we outline the historical development of UNIX and the relationship between the 'classical' version considered here and 

the contemporary systems of Chapter 25. Section 24.3 introduces the overall system structure, showing the interaction between 

processes and the UNIX kernel. We consider in some detail the first three design features identified by Ritchie and Thompson: Section 

24.4 describes the interfaces used for file and device accesses; Section 24.5 describes the implementation of a hierarchical file system; 

and Section 24.6 describes process creation, termination and scheduling. We conclude the chapter by introducing pipes and signals as 

the two basic inter-process communication mechanisms that are available in classical UNIX systems.
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24.2 Evolution of UNIX

UNIX dates from 1969. Bell Telephone's Research Laboratory had been involved in the Multics research group in collaboration with MIT 

and General Electric. The aim was to build a large, complex, general-purpose time-sharing system. Bell pulled out of the collaboration in 

the late 1960s and Ken Thompson, soon joined by Dennis Ritchie, set about building a smaller computing environment which became 

UNIX.

UNIX was soon moved to the PDP-11 architecture and was implemented in the high-level language C in 1973. This was unusual at the 

time and made it possible to port UNIX relatively easily to other architectures. UNIX therefore had the advantage of being independent of 

any computer manufacturer and potentially available on any architecture.

In the early years, UNIX was a small, simple, easily understandable system. It was originally developed as a single-user programming 

environment, but was soon extended to support multi-access use. Its designers opted for a simple and comprehensible design, even if this 

was at the expense of efficiency or with the removal of features found in other systems. UNIX became popular within the Bell Labs 

research environment, particularly for text processing. Although Bell was not able to market, advertise or support UNIX in the 1970s, its 

use had spread to some 500 sites by 1977, partly as a result of being made available free of charge to universities for educational 

purposes. The fact that it was written in a high-level language and the source code was made available made it popular as a vehicle for 

teaching operating systems. Also, much software was written for it and shared among its users.

Figure 24.1 shows the chronological relationship between some of the major UNIX (which started out as UNICS) and UNIX-derived 

systems. The one we consider in this chapter is the Seventh Edition which, as illustrated, stands as the forefather of the BSD and System 

V designs from which most contemporary UNIX systems originate. Of course, the systems represented in the figure are just a few of the 

operating systems whose origins lie with UNIX: some complete families have been omitted for brevity and in reality there are many more 

intermediate editions and cross-links between versions than can be depicted clearly.

Figure 24.1. UNIX chronology.
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24.3 System structure and the UNIX kernel

UNIX provides a multi-user multi-programmed kernel-based operating system in which the kernel is responsible for accessing devices on 

behalf of applications, for scheduling access to resources and for enforcing protection between processes. This structure is illustrated in 

Figure 24.2 along with the major modules which comprise the kernel.

Figure 24.2. Outline of UNIX kernel modules.

In the figure, four example processes are shown as rounded rectangles. Two of these are system processes called init and the swapper;

we will consider them in more detail in Section 24.6. The other two are ordinary processes running applications on behalf of users; for 

example a shell through which the user issues instructions to start and terminate jobs and a compiler that they are using for program 

development.

We will briefly consider each of the main kernel modules in turn:

The system call interface is used by processes to invoke operating system services. It is described in Section 24.3.1.



The character I/O, block I/O and device driver modules are used in the implementation of file systems and device accesses. We 

discuss them in Section 24.3.2.

The buffer cache is responsible for caching data that has recently been the subject of a block I/O operation. It aims to improve 

system performance when applications exhibit the expected temporal and spatial locality in their access patterns. It is the 

subject of Section 24.3.3.

The file subsystem manages the UNIX naming graph, that is, the hierarchical namespace which is used to name files, 

directories and I/O devices. Since all of those resources are named in the same way, system calls concerned with these items 

will be handled here in the first instance, even if they do not ultimately access files on disk. We discuss the file system interface 

in Section 24.4 and the implementation of a simple file system in Section 24.5.

The memory management module maintains the physical memory of the computer system and allocates it to the processes 

running or to the operating system functions that require it. We describe the structure of a UNIX process's virtual address space 

in Section 24.6.

The process management module is responsible for process creation, termination, scheduling, and basic forms of inter-process 

communication. It is the subject of Sections 24.6 and 24.7.

24.3.1 System calls and kernel execution

The UNIX kernel offers services that are invoked via system calls from user-level processes, for example through a software interrupt or 

trap mechanism as described in Section 3.3. The purpose of the system call interface is to provide a controlled way in which an application 

may enter privileged-mode execution within the kernel. When a system call is made, the process identifier remains constant so, for 

example, user process 25 becomes kernel process 25 when it makes a system call and proceeds to execute the kernel. However, since 

the process is now executing in privileged mode, it has full access to the memory and to the devices attached to the computer.

We can therefore say that the UNIX kernel is executed procedurally since its invocation through a system call resembles an ordinary 

function invocation in which the caller operates in user mode and the called operation is in kernel mode. This is in contrast to a 

message-passing design in which the kernel may operate concurrently with user processes that communicate with it by sending and 

receiving messages.

The UNIX kernel is traditionally non-preemptable meaning that when a process is executing in kernel mode it will not be preempted by the 

scheduler in favour of another process. However:

A kernel process may explicitly invoke a blocking operation, for example if it is attempting to perform an I/O event and must 

block until a device is ready.

If an interrupt is raised while executing a kernel process then control is always returned to that process after servicing the 

interrupting device. In contrast, if a process is interrupted while executing in user mode, the scheduler might return control to 

another process, particularly if the interrupt was caused by a blocking I/O operation completing.

The justification for these restrictions is that UNIX was originally designed for uniprocessor machines and so this simple design will suffice. 

Context switching between processes does not get more processing done; indeed, it imposes system overhead. A non-preemptive kernel 

design avoids much of the complexity of the kind of concurrency control described in Chapter 12. The assumption of uniprocessor 

operation underlies the UNIX kernel design and a major rewrite would be needed for a multiprocessor version in order to incorporate fully 

general, shared-memory concurrency control. Of course, such a development is necessary to support a modern workload that includes 

interactive and soft-real-time applications.

Access to shared kernel data structures by processes executing the kernel is therefore no problem in classical UNIX. Once in kernel 

mode, a process can run until it blocks voluntarily and therefore can be guaranteed to execute a critical region without interference from 

another process. If there is any possibility that a kernel process is accessing a data structure that could be modified by an interrupt handler 

then interrupts are disabled from that source for the duration of the critical code. Often a hierarchy of interrupt priorities is defined so that 

certain kinds of interrupts can be masked; for example to allow important timer interrupts to be delivered while handling an interrupt from a 

network device, but not vice versa.



24.3.2 Device management

Device management in UNIX is split into two separate systems: block I/O and 'character' I/O. Block I/O is used for accessing the disks on 

which the file system is held. All other I/O is deemed to be character I/O and this can include network devices, for example, in addition to 

actual character-based terminals.

The main point of interest to us in the context of concurrent systems and their structures is that interrupts are serviced simply by saving the 

state of the interrupted process, switching to privileged mode (if not already in it) and branching to the interrupt handler; there are no 

dedicated device-handler processes. Much of UNIX exception handling is standard, or machine dependent, as described in Chapter 3. It is 

worth noting that even exception-handling routines are written in the (relatively) high-level language C rather than in assembler. This 

introduces a small overhead per exception.

Similarly, device drivers will not be discussed in detail since UNIX is not of special interest in this respect. In outline, a traditional UNIX 

device driver is divided into a top half which provides the functions that are invoked by the block I/O and character I/O modules and a bottom 

half which is invoked from an interrupt handler.

For example, a disk driver takes requests from a queue and carries them out. Each request takes the form of a 'transaction record' which 

indicates whether a read or write should be done and the disk and memory addresses and data sizes involved. The queue will have been 

sorted into an order which optimizes the head movements, allowing the heads to sweep across the disk surface and back. If the 

transaction originates from the block I/O system the memory address will indicate a block in the cache. A user area data block may be 

indicated otherwise.

UNIX maintains a pool of character blocks (c-lists) for terminal drivers rather than an input buffer and output buffer per process. Again, 

terminal handling does not merit detailed discussion.

24.3.3 The buffer cache

For reasons of efficiency, in order to reduce the number of reads and writes performed by the physical disk, blocks which have been used 

recently are kept in memory in a disk block cache. The cache is always examined first for reads and writes, and only if the required blocks 

are not in the cache does a request go down to the block I/O system for real disk I/O.

The buffer cache is a shared data structure, accessed by processes which are executing the kernel. Its design must take into account 

possible concurrent access by processes and by DMA devices as discussed in Part II. Each block in the cache has an associated header 

which indicates which block of which disk it is and other status information, which includes:

Is the block busy, that is, currently being read or written (locked for concurrency control)?

Has the block been updated on behalf of a process since it entered the cache? (Is the 'dirty' bit set?)

Is the block reserved but not yet in receipt of its intended data through a DMA transfer?

Various pointers are also used to chain the blocks for rapid access by the cache management algorithm.

On a read request the cache is searched for the required block and it is read from the cache if present. If it is not present a cache block 

must be allocated for the new data. First, a free block is sought from the free block chain. If all blocks are in use a policy is needed to 

decide which block should have its contents evicted. Typically, the system attempts to reallocate the 'least recently used' block. If the 

chosen block has been written to (if the dirty bit is set) it must be written out to disk before being overwritten by the new data.

On a write request the cache is searched for the required block. If it is present it is written to and marked dirty. Note that it is not 

immediately written out to disk. If it is not in the cache a new block must be found, as described above for a read.

A substantial disk block cache in main memory increases system performance by reducing the number of disk accesses. However, 

deferring the actual transfer of data to non-volatile storage on a disk raises a number of potential problems:

It is possible that output which has been acknowledged as successfully completed to the process concerned is still in the cache 



when a system crash occurs.

An application may have arranged its writes to disk in a careful order. The ordering may be changed by the cache 

management algorithm. Data structures on disk may become inconsistent and may be visible to other processes while 

inconsistent.

The system cannot give timely error reports to applications resulting from failed writes to disk since the actual writes have been 

decoupled from the associated requests; typically an error is only reported when a file is closed.

For these reasons the implementers of applications may wish to have more control over disk writes than indicated here. UNIX has always 

included a system call to flush the cache for a given file and later versions have allowed greater control from the application level. Various 

strategies have been employed, such as writing dirty blocks to disk at specified times: when a user logs off, or every 30 seconds for 

example.
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24.4 File system interfaces

In this section we will consider the system calls that the UNIX kernel provides for managing the file system. In UNIX files are identified 

within a hierarchical file system namespace, as described in Chapter 6. A simple example is shown in Figure 24.3. The namespace 

available on a UNIX system has a single root although, as we shall see in Section 24.4.1, it may be assembled by mounting a number of 

separate file systems together. Normal files present an unstructured random-access byte-stream abstraction, unlike many of the operating 

systems contemporary with classical UNIX in which files were divided into a series of records.

Figure 24.3. The hierarchical file system namespace.

The namespace can also contain various kinds of special file which provide access to devices or IPC mechanisms through the same 

interface that is used for accessing normal files. These special device files are traditionally held in the /dev directory. For example, opening 

the file /dev/hda may provide direct access to the blocks held on the first hard drive in the system. Access to such special files is usually 

restricted to privileged users of the system. Integrating file access, IPC and device access enables the modular composition of 

communicating processes: a particular program can be written to perform generic I/O operations without (in many cases) being aware of 

the kind of data source or destination that it is using.

A small number of system calls provide I/O operations. The file's pathname is given when a file is opened for use along with flags 

indicating the kind of access that will be made and the desired behaviour if the file does not already exist. If all is well, a small integer, the 

file descriptor or fd, is returned for the open file and used in subsequent calls. A current offset into the file is maintained by the system for 

reads and writes. This can be manipulated explicitly by the user, but for sequential reads and writes the system will remember where you 

got to.

fd = open(pathname, flags)



result = close (fd)

bytes = read (fd, where-to-in-memory, byte-count)

count = write (fd, where-from-in-memory, byte-count)

result = seek (fd, where to position the current offset in the file)

result = create (pathname)

24.4.1 Mounting and unmounting file systems

The hierarchical namespace is typically large and constructed from a number of separate file systems on separate devices. A file system 

can be mounted into the existing naming tree, its root replacing some specified directory, using the mount system call (see Figure 24.4). 

For example:

mount ('/bin', '/dev/hda', R/W)

causes the file system which is on device hda (with special file /dev/hda) to be mounted over the directory /bin. R/W indicates that it can be 

read and written. The file /cc shown on a constituent file system becomes /bin/cc after mounting. There is also a system call to unmount a 

file system.

Figure 24.4. Separate file systems are mounted to form a single hierarchy.



24.4.2 Graph navigation and the current directory

It is inconvenient to use the full pathname, starting from the root, every time a filename is used. For this reason, the UNIX kernel 

associates a current or working directory with each process and filenames are interpreted relative to that. Aside from being a convenience 

for the user, maintaining a current directory can make lookup operations more efficient if the implementation follows the scheme we will 

see in Section 24.5. For example, in Figure 24.3:

/bin/sh is a pathname starting from the root, /;

sh is the same file's name if /bin is the current directory.

Furthermore, each user has a home-directory setting defining an initial working directory that is established at login by the shell. After 

that, a process may change its current directory at any time, using a system call, chdir.

UNIX also allows navigation of the naming graph upwards from the current directory towards the root. Each directory contains an entry for 

itself named '.' and an entry for its parent named '..'. If /home/tlh20 is the current directory, .. /jmb is a pathname up to directory /home (the 

parent of /home/tlh20) then down to directory /home/jmb. It is often more convenient to change working directory than to construct long 

relative pathnames of this kind.

Although related, these three mechanisms are provided by different parts of the system: the kernel records the current directory for each 

process; the home directory is managed by the shell; and the '.' and '..' entries are actually reflected in links of those names stored in every 

directory.
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24.5 File system implementation

In Section 24.4 we described the interface that an application uses when accessing the file system and the way in which directory names 

are presented to users. In this section we introduce the primary data structures that are used to implement a basic UNIX file system and 

show how these might be held on a disk.

24.5.1 Inodes

Central to each file system is a metadata table held on disk and cached in main memory in which each file occurring there has an entry 

(irrespective of whether it is a normal file, a directory file or a special file). These entries are called index nodes or inodes and contain 

information on the corresponding file. By convention, the inode of the root of a file system is the first entry in the table. Figure 24.5 shows 

the information held in an inode.

Figure 24.5. A UNIX inode structure.

The inode identifies the owner of the file, the ways in which the file may be accessed, the times at which it was last subject to particular 

kinds of access, the type of the file, its size in bytes, a reference count for the file and the location of the disk blocks that contain the file's 

data. Although normal UNIX files are presented as unstructured byte streams, a file type is still needed to distinguish between such normal 

files, directory files and special device files. Special files do not have any associated disk blocks, but their inodes identify the particular 

device that they represent.

The disk blocks occupied by normal and directory files are recorded as a table of pointers in the inode. The first few pointers point directly 



to first disk blocks used for the file. There are typically 12 or so pointers, although Figure 24.5 shows only three for simplicity. Small files 

can therefore be accessed efficiently. After the direct pointers come pointers to indirect blocks: these are disk bocks which themselves 

contain only pointers to blocks of the file. There are typically two indirect blocks. After these the inode contains double-indirect blocks 

(which hold pointers to indirect blocks) and then triple-indirect blocks (which hold pointers to double-indirect blocks). UNIX systems differ in 

the disk block size and the number of direct and indirect pointers, but all use this general approach, allowing large files to be handled while 

retaining fixed-size inode structures.

Keeping the information on files together in an inode table is convenient. An alternative is to use a disk block as an indirection on the path 

to each file, thus scattering the information and leading to many more disk reads. Algorithms for checking the consistency of the file 

system are easy to implement using the inode table (see Section 24.5.6). The disadvantage of an inode table is that it is vulnerable to 

head crashes or bad blocks in that area. For that reason, the table is usually replicated.

24.5.2 Directory files

Directory files contain mappings from components of a pathname to the inode at which that component is located, either for the next 

directory within a hierarchy or for a file occurring as a leaf node. Figure 24.6 gives an example of the resulting style of pathname lookup for 

the file /home/tlh20/.mail.

Figure 24.6. Pathname resolution.



This separation between directories and inodes allows one file to be accessible via multiple names, since there may be more than one 

directory entry that specifies a particular inode. This might be useful when organizing the file system hierarchy because it allows a single 

file to be available in different parts of the namespace. Each such occurrence of a file's inode within a directory is said to be a hard link to 

the file. Notice how the metadata in the inode is intrinsic to the file itself, so its access permissions and ownership information will be the 

same for each of the names under which it is accessible.

24.5.3 Access protection

The access control information kept in each inode indicates, in broad categories, who can access the file and in what way. Three 

categories are used: owner, group (typically used for a class of students or a project team) and others. The types of access that can be 

specified for a normal file are read, write and execute. This information is coded as shown in Figure 24.7. The same coding is used for 

directory files, but the interpretation of the access types is different: a 'read' permission allows the directory contents to be listed, a 'write' 

permission allows directory entries to be added or removed and an 'execute' permission allows the directory to be traversed. A 

consequence of this is that deleting a file requires write access to the directory in which the file resides, not write access to the file itself.

Figure 24.7. Access permissions for a normal file.

An additional permissions bit, called the set user-id bit, allows access by program to be specified as well as access by categories of user. 

When this bit is set for a program file, any user having permission to execute the program inherits the privileges of the owner while 

executing the program. It is therefore possible for a given user to write to some data file (accessible to the owner of the program being 

executed) while executing a set-uid program, but not otherwise. The set group-id bit performs a similar function but with the group id. A 

further bit is also defined, but its precise semantics differ between versions of UNIX. It was originally known as the sticky bit because, if 

applied to an executable program, the code would remain in physical memory once loaded. It was used for frequently executed programs 

such as the shell or popular tools: its need has been superseded by larger physical memories and more effective strategies for caching 

and sharing code between processes.

Figure 24.8 gives an example of UNIX permissions. A user named PROF has written a program called TEST which students must run in 

order to be assessed. The program gives them some tasks to carry out and writes their scores into the file SCORES. A student has no 

access to the file SCORES except when running the program TEST so cannot bypass the test procedure and either write a high score into 

the file or read the scores of fellow students.

Figure 24.8. Use of the set-user-id facility.



Another aspect of this facility is that while running the set-uid program the process retains the original real-id (of the user that created the 

process) and an effective-id (of the owner of the program). These are both available to the program and may be used to ensure that only 

a certain group of users carry out the TEST in the example above. UNIX provides system calls, seteuid and setreuid, for switching 

between the real-id and the effective-id so that a process can perform operations both as its invoker and as its creator.

A set-uid program can therefore enforce arbitrarily fine-grained access controls and is a protected interface to the data files it accesses. 

More generally, any set-uid program can keep a hate list and refuse to run for blacklisted individuals. The facility can be used for programs 

owned by the system for reading and writing system files which are not generally accessible. It may also enforce access controls related to 

time of day. For example, the students may have to run the TEST before a certain deadline or in a certain room at certain times so that 

collaboration can be prevented.

Extreme care is required when using the set user-id facility: its casual use has been a notorious source of security problems. The program 

must be written defensively to ensure that it will only perform the intended tasks no matter how the user running the program has 

configured their environment.

24.5.4 Allocation of disk blocks to a file system

A disk can be considered as an array of blocks. Early systems typically used a block size of 512 bytes, current systems use larger block 

sizes for greater efficiency (although at the risk of internal fragmentation unless blocks can be subdivided when holding small files).

Block 0 of a disk which holds a file system is reserved for bootstrapping UNIX and is not used by the file system.

Block 1 is called the super-block and is used for management purposes. It contains information such as:

- the number of blocks in the file system;

- the number of free blocks in the file system;

- a list of (some of the) free blocks;

- the size of the inode table;

- the number of free inodes;

- a list of (some of the) free inodes;

together with flags to prevent race conditions over access to free blocks and free inodes. The super-block is usually replicated 

at several points on the disk since the information that it contains is critical to the file system's operation.

Blocks 2 to N contain the inode table.

Blocks from N+1 are either allocated to files or are free blocks. As you would expect, this range typically forms the vast majority 

of the file system's size and extends to the end of the disk (other than space that might be reserved for holding replicas of the 

super-block or inode table).

The free blocks are maintained in a structure which is a chain of tables of free blocks. One disk read gives a table of free 

blocks and a pointer to the next table.



24.5.5 File system data structures in main memory

When a system is up and running, information about the files that have been opened by the active processes is held in main memory. 

Figure 24.9 shows the primary data structures involved. Each process has an open file table that maps from the file descriptors (UFIDs) 

used over the system call interface to internal file identifiers. Recall that all I/O is handled through the file system interface so the user's 

terminal device as well as normal files that are open will be represented here.

Figure 24.9. The organization of file system structures on disk and in memory.

A system-wide open file table contains at least one entry for each open file: this identifies the file system and inode being accessed and 

contains the current file offset for that file. The active inode table contains a 'copy' of the inode of each open file. In fact the information will 

differ from that held in the inode on disk in a number of ways. The active inode must identify its corresponding inode uniquely within the 

entire file system hierarchy; the mode of use must be indicated (read only or read/write); and the location of information on disk may 

change if the file is open for writing and this is first recorded in the active inode. There are, therefore, potential Part III style problems if a 

crash occurs, as discussed in Chapter 17. When a file is closed the inode is written to disk if any changes have been made. A design 

issue is how frequently inodes which have been changed should be written to disk while the file is in use.

Placing the current file offset within a system-wide table can allow it to be shared between processes so that the change in position caused 

by a read, write or seek operation by one process is seen by the others. This sharing will exist by default between a parent process and 

any child processes that it creates; it is a consequence of the process creation model described in the next section. If separate processes 



open the file independently then they will each use distinct entries in the system-wide table and will therefore have separate pointers into 

the file. There is still a single active inode so that the metadata remains consistent for the file. Classical UNIX does not enforce any kind of 

exclusive write lock: it assumes that related processes will be cooperating closely.

An in-memory copy of the super-block will also be held for each mounted file system, providing fast access to initial entries in the list of 

free blocks and the list of free inodes.

24.5.6 Consistency issues

We saw at the start of this section how inodes are held separately from directory files. This means that deletion of an entry from a directory 

must be a three-stage process:

Remove the directory entry

If the access check on the directory indicates that the user has the right to delete the file, the directory service will remove the 

entry from the directory specified by the pathname, first noting the inode of the file. The change to the directory is first made in 

main memory and the changed directory is later written to disk.

1.

Check the reference count in the file's inode

The inode of the file being deleted is read into main memory if it is not already in the in-memory active inode table. Let us 

assume the reference count is 1 before the deletion and so the inode and the blocks of the file can be freed once this last 

reference is removed.

2.

Free the data blocks and the inode

The blocks that were allocated to the file are added to that file system's free-list, initially starting from the in-memory copy of its 

super-block. The changed super-block must later be written to disk.

3.

This example shows that a typical operation will involve a series of related changes to the file system on disk. If there is no crash, all the 

changes will eventually reach persistent storage, reflecting the state after the successful completion of the operation. If there is a crash 

which causes main memory to be lost, after some but not all of the data is written out to disk, the file system is inconsistent. For this 

reason, a consistency check is carried out on the file system when UNIX is restarted after a crash.

During such a check, the fact that the blocks allocated to a file can be ascertained just from reading the inode table (without reference to 

the directory structure) is convenient. Each block must either be allocated to a file or be on the free-list. The check will detect whether any 

block is lost to the file system or doubly allocated: both to a file and on the free-list.
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24.6 Process creation, termination and scheduling

In this section we will describe how processes are managed in UNIX, including the mechanisms for their creation and the way in which the 

CPU scheduler selects which process to run at any particular instant. As with any operating system, a basic requirement that a user places 

on it is to load some specified program and have it executed by a process. The code may be the binary file resulting from compilation of a 

user's program or be a system utility.

Figure 24.10 shows the address space that is set up for a process by UNIX. Each process has its own logical address space, meaning 

that the translation from virtual addresses to physical addresses is changed upon each context switch. Typically this address space is 

divided into two portions. The UNIX kernel is resident in one and is mapped at the same logical addresses into each process's address 

space. The memory management unit (MMU) would be configured to only allow access to these addresses while executing in kernel 

mode, for example during a system call. The remainder of the address space contains per-process information. The address translation 

mappings for this region are changed upon each context switch and the entire contents of the region can be swapped out of physical 

memory (as described in Section 24.6.6) to make room for other processes.

Figure 24.10. The organization of process address spaces in UNIX.



The user-accessible part of the address space is set up with three logical segments: text (code), data and stack. The text segment is 

write-protected and may be shared with other processes that are executing the same program. The data and stack segments are private 

to an individual process. These are 'logical' segments in that they are each contiguous regions in the logical address space of the process. 

The translation from these logical addresses to physical addresses may well be implemented using a paged scheme (as described in 

Section 5.6.1) rather than using hardware-provided segments.

There are two data structures in each process's address space that are only accessible in kernel mode: a per-process data area holding 

the execution environment including such things as saved register values and open file status, and a separate kernel stack that is used for 

temporary storage during system call execution or interrupt dispatch. Additionally, the kernel maintains, in its own space, a process 

descriptor or process control block for each process. This holds the information about the process that must be available at all times and 

cannot be paged out to disk. For example, the information required by the scheduler is held there. Today, a typical UNIX machine might 

have a 4-Gbyte virtual address space and hundreds of megabytes of physical memory. The division of process state between a 

per-process data area and the process control block managed by the scheduler shows UNIX's age. The PDP-11, UNIX's major host 

machine in the early days, had a 64-kbyte address space and so physical memory and kernel address space were very tight.

An inaccessible guard page is often reserved at the very lowest logical addresses as a programming aid: an attempt to dereference a 

NULL pointer will try to access that page and the fault will be detected by the MMU. A second guard page may be included between the 

kernel stack and the user stack segment in order to trap kernel stack overflows. Some early systems eschewed the use of guard pages 

and placed a readable page at the low end of the address space containing constant values that enabled 'trick' code optimizations.

A process may use the brk system call to set the size of its data segment, or the 'break value' as it is historically known. The kernel often 

allocates physical memory to the process in a lazy fashion by recording the new break value, setting the MMU to generate faults if the new 

space is accessed and only then allocating a physical page. Usually an application allocates memory through higher-level library 

operations rather than system calls. For example, the standard C library provides functions malloc and free for programmers to use, 

presenting a convenient heap abstraction for allocating and deallocating blocks of a specified number of bytes. These operations may in 

turn use brk to expand the heap if required. Similarly, within the Java Virtual Machine (JVM), the heap on which objects are allocated will 

be implemented in terms of the lower-level brk system call, although in this case storage space is reclaimed by the garbage collector 

(again, part of the JVM implementation) rather than through explicit free calls.

24.6.1 Process creation

We saw in Figure 24.2 how there are traditionally two system processes in UNIX: init (described in Section 24.6.3) which is responsible for 

system initialization and the swapper (described in Section 24.6.6) which transfers processes between physical memory and disk if there 

is insufficient physical memory to accommodate them all. All other processes come into existence as a consequence of the fork system 

call which takes the form:

process-id = fork ( )

This causes a new address space to be created which is a replica of that of the process executing the fork system call (the parent 

process). The process-id returned to the parent is that of the child which has been created. The process-id returned to the child is zero. 

After fork the parent and child can take different paths by testing this value.

Notice that fork is heavyweight, since a new address space is created for the new process. This mechanism should be contrasted with the 

lightweight fork discussed in Chapters 4 and 11, where a new process shares an address space with its parent and only a new stack 

needs to be created.

The execve system call specifies a program to be loaded and executed:

execve (program-name, <argument-list>)

The existing code (text) segment of the process is replaced by the named executable program loaded from the file system. The data 

segment is lost apart from the per-process data area which is copied to give the initial state of the new process. A new data segment is 

constructed that combines the initialized data values loaded from the executable and an area termed the bss whose contents are 

initialized to zero. This reduces the size of the executable because it does not have to contain initialization values for data structures which 

should be set to zero. The argument list is made available to the new program through the per-process data area.



It is very common that a new process is created for the purpose of executing a new program. The work involved in replicating the address 

space on fork is largely wasted in this case.

24.6.2 Parent–child synchronization on process termination

Usually, the parent process performs a fork operation to create a child process for some purpose and so the parent needs to know when 

the child has finished its task. If the child executes directly and terminates rather than using execve to start some other program, it needs 

a mechanism to tell its parent it has finished, either before terminating or in combination with that. This is achieved by the exit system call:

exit (byte of status information)

The address space of the process which has executed exit is removed from the system but the process control block is kept. The byte of 

status information is stored there for the parent to pick up. This is called zombie state: the process is dead but not buried. If this happens 

and the parent terminates first then the child is re-parented to the init system process so that it will not remain a zombie.

The parent can synchronize with the death of a child by executing the system call:

process-id = wait (address for exit information)

If the process has more than one child it may or may not specify which particular death it is waiting for. The system returns the process-id

of a child that has terminated, the associated status byte if it invoked exit and additional information about how it came to terminate. Figure 

24.11 shows the general scheme.

Figure 24.11. Process management system calls.



24.6.3 Process creation during system initialization

At system initialization the kernel is loaded from the file system and starts to run. Data structures are initialized, the root file system is 

mounted, process 0 is created and control is passed to it. Process 0 creates process 1 and then becomes the swapper for the lifetime of the 

system. Process 1 is init, the terminal monitor and login initiator (see Figure 24.12). Historically, init finds out which terminal lines are active 

and creates a child process to manage user logins for each of these. In contemporary systems init is responsible for coordinating other 

initialization and termination tasks to transfer the system between different modes of operation; for example between its ordinary 

multi-user mode, a single-user maintenance mode and a halted mode in which file systems are not mounted and the system may be 

powered down.

Figure 24.12. System initialization.

The process created by init to manage an active terminal device is the only process that needs to know the characteristics of the device 

and the name of the special device file for that terminal (/dev/ttyN). One file descriptor (indicating an entry in the per-user open file table) is 

insufficient for handling terminal input, output and error diagnostic output, so three are created for the terminal via the dup system call. 

These files remain open across all subsequent execve system calls.

The next process started using execve (/etc/getty) causes a message to be output to the user and the login name to be read. The actual 

login procedure is then carried out by using execve to start /bin/login which inputs, encrypts and checks the password. The user's entry in 

the password file contains information such as the user-id and group-id which is set up in the process descriptor for this process. The 

user's preferred working directory (home directory) is also stored there and is now set up as working directory for this process. Finally, the 

shell (command interpreter program) is executed (/bin/sh or the user's preferred shell indicated in the password file entry).

24.6.4 Process creation by the command interpreter

We have seen that a command interpreter or shell is loaded and executed by a process for each logged-in user. Figure 24.13 shows what 

happens next. The shell reads a command from the user by using a read system call on the terminal input file descriptor (opened as 

described in the previous section). Some commands are handled directly by the shell invoking system calls on the user's behalf; more 



generally the command might indicate that a program should be loaded from the file system and executed. In this case the shell forks a 

child process which starts the requested program. The shell process invokes wait to block for termination of the child.

Figure 24.13. Process creation by the shell.



The user's shell process then goes on to read another command. This time two commands are input, separated by &. This indicates that 

the two commands are to be run in parallel. The shell forks a process to execute each command. Only when the complete command, 

which in general may have any number of parallel components, has been obeyed does the shell process wait for the children it has 

created to die.

24.6.5 Process scheduling

The previous section has described the system calls that the UNIX kernel provides to manage processes and has shown how these are 

used by the shell. In this section we consider how the kernel performs process scheduling, that is, if there are a number of processes 

that are ready for execution, how it selects which one of them it is to run.

In outline, UNIX uses a dynamic priority-based scheduler, meaning one that associates a priority level with each process and then 

chooses one of the processes that is ready to run with the highest priority. The scheme is 'dynamic' in that the priorities are computed by 

the scheduler based on the behaviour of the processes rather than being fixed priorities set up when a process is created.

Processes currently executing the kernel are of higher priority than user processes. Recall that the kernel is non-preemptive 

and so, when executing a system call, a process will continue to run until it voluntarily blocks or is temporarily interrupted by a 

device.

The priority of a blocked system process is associated with the event it awaits.

User processes are scheduled with a time quantum. If all processes were to use up their quantum they would execute on a 

round-robin basis. The scheduling algorithm takes account of the amount of CPU time the process has used in its recent time 

slices, weighting the most recent highest, and associates a number, forming the dynamic priority, with each process based on 

this.

Notice that the scheduling algorithm, like most of the UNIX kernel, will run 'in process', meaning that it operates in the context of the 

process that was most recently running when the scheduler was invoked. This is typically the process that has just been preempted (if it 

was operating in user mode) or that has blocked (if it was a kernel process). Figure 24.15 shows the possible states and state transitions 

of a UNIX process.

When a process is executing in the kernel it may need to wait for an event to occur, or a resource to become available; for example, for a 

device to input some data or for a buffer or inode to become free. To achieve this condition synchronization the process executes the 

sleep routine, which transfers it from the runnable state to the blocked state. The thread of control that was the process that has become 

blocked then enters the scheduler and another process is selected to run. Note that the UNIX kernel is still being executed procedurally 

through being entered via a system call from user-level processes.

When the event occurs or the resource becomes free the wakeup routine is executed. If the event is signalled by an interrupt, the interrupt 

handler executes wakeup. If the event occurs as a result of an action by some process, such as freeing a locked resource, that process 

executes wakeup. Again, we see the procedural method of kernel invocation.

The wakeup routine changes the state of each process that was blocked, waiting for the event or resource, to runnable. A number of 

processes may wait for the same event and all are made runnable. Figure 24.14 illustrates the mechanism. Rather than record the events 

waited for and occurring in process descriptors, the implementation maps the set of events to a set of kernel addresses. There is not 

necessarily a one-to-one mapping of events to addresses, so processes waiting on different events which map to the same address will 

be awakened when that address is used by the wakeup routine.

Figure 24.14. Processes sleeping on events and event addresses.



Non-preemptive scheduling of kernel processes ensures that a process can complete the execution of sleep or wakeup without 

interference from another process. An interrupt could occur, however, so interrupts are disabled while the sleep and wakeup routines

manipulate the event–wait data structures. This is to avoid the possibility of race conditions, particularly the 'wake-up waiting' problem in

which an event occurs after the process has decided it must wait but before it is recorded as waiting for the event.

24.6.6 The swapping algorithm

The final aspect of process management that we will consider is the swapper, operating as system process number 0. Swapping refers to 

transferring complete processes (their code, data and stack segments, the per-process data area and their kernel stack) between physical 

memory and backing store. This is, of course, done when demand for physical memory exceeds supply.

As we will see in Chapters 25 and 27, modern operating systems employ smaller-scale transfers of individual pages rather than complete 

process images. That may be worthwhile when a process is large and some portion of it can be removed from physical memory while 

allowing the remainder to continue execution. However, swapping at the level of entire processes is usually also retained as a 'last resort' 

measure when physical memory is particularly tight. Swapping a process to or from disk may have a substantial runtime cost if the process 

is large. This means that swapping is integrated both with memory management and with process management: a process that has been 

swapped-out to backing store is not considered for execution by the scheduler. The swapper can thus be viewed as a 'medium-term' 

scheduler that operates over longer time-scales than the usual process scheduler.

The swapper runs when an event occurs (the wakeup routine is executed) and a process waiting for that event is swapped out. The 

swapping-in might then be initiated, if appropriate. The swapper also runs periodically, say once a second, to review the processes in main 

memory and swapped out, and to determine whether any swapping should be started.

The algorithm looks for the longest swapped-out process that is runnable and considers swapping it in. If there is free space in main 

memory, or a blocked process it can swap out, it proceeds. If this is not the case and the process has been swapped out for less than 

three seconds nothing else happens this time round. If the process has been swapped out for three seconds a runnable process is sought 

as a candidate for swapping out. If the process has been in main memory for less than two seconds nothing happens at this stage. 

Otherwise the swapping out and in is initiated. This original design was simple and aimed to avoid unnecessary transfers.

This simple algorithm means that an event could be signalled to a process that has just been swapped out and the process might be 

unable to respond for three seconds. Together with the non-preemptive scheduling of kernel processes this property made UNIX 



unsuitable for any application with real-time response requirements.

24.6.7 Process states

Figure 24.15 shows the possible states and transitions of a single UNIX process from creation on fork to death on exit.

Figure 24.15. UNIX process state transitions.

First, a process is created and (eventually) scheduled:

c-rbm: A newly created process is allocated some main memory.

rbm-rk: The process is scheduled according to some arbitrarily assigned initial priority.

rk-ru: The process transfers from kernel to user state.

Then, from user state the process may be interrupted or may make a system call:

ru-rk: A process running in user state makes a system call and becomes a system state process, executing the kernel (see 

Section 24.3.1); or an interrupt occurs, such as a device interrupt or the clock, and is serviced in system state in the context 

of this process (see Section 24.3.2).

rk-ru: Return from system to user state after an interrupt when the interrupt has not made a kernel process runnable or 'timed out' 

this process, or return to user state after a system call (either immediately or after sleeping, waking up and being 

scheduled, for example rk-slm-rbm-rk).



rk-p: The process is preempted when it is about to transfer to user state. A kernel process may have been made runnable as a 

result of an interrupt, or a timer interrupt may have caused this process to run out of time.

p-ru: No process in system state is runnable and the preempted process is scheduled to run in user state.

rk-rk: An interrupt occurs and is serviced in the context of the interrupted process. If the process is executing in user state when 

the interrupt occurs the interrupt mechanism changes the process state to system state.

rk-slm: A process executing kernel code sleeps to wait for an event (see Section 24.6.5).

slm-rbm: The awaited event occurs and the process is made runnable (see Section 24.6.5).

rbm-rk: The process is scheduled according to the priority at which it slept (see Section 24.6.5).

slm-sls: A sleeping process is swapped out (see Section 24.6.6).

sls-rbs: The awaited event occurs and the process is made runnable, but is still swapped out.

rbs-rbm: The process is swapped in (see Section 24.6.6).

rbm-rbs: A runnable process is swapped out (see Section 24.6.6).

c-rbs: There is insufficient main memory available to allocate to a newly created process.

rk-z: The process executes the exit system call (ru-rk) and is removed from the system. It remains a zombie until its exit code is 

picked up by its parent (see Section 24.6.4).

A check for inter-process signals is made during rk-slm and rbm-rk, and signals are checked and handled when a process is about to 

transfer to user state, rk-ru and p-ru. Signals will be described in the next section, Section 24.7.

The state diagram again shows the procedural nature of UNIX. System calls are executed in-process (with a change of privilege state). 

There are no device-handler processes so interrupts are handled in the context of the interrupted process. The interrupt mechanism 

ensures that interrupt processing is done in privileged mode. Notice that a user process never blocks directly: it does so after attempting 

I/O or IPC and therefore after entering the kernel. Similarly, the process must enter the kernel in order to terminate.
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24.7 IPC: Pipes and signals

The final aspect of the classical UNIX system that we will consider is the provision of inter-process communication (IPC). We have already 

seen one crude option: a process may write to a file in the file system which another process subsequently reads. This can be coordinated 

using the exit code returned by a child process to indicate when the file is ready for reading. However, that solution is far from satisfactory 

for several reasons: it requires a further communication mechanism to supply the processes involved with the filename to use, it assumes 

that the file is written in its entirety before being read and it also requires that data is written to disk (or at least to the buffer cache) even if 

both processes remain in physical memory during the entire operation.

Classical UNIX provides two further IPC mechanisms. The first of these, pipes, is described in Section 24.7.1. These provide a 

unidirectional byte-stream abstraction between a single writing process and a single reading process. They allow data to be buffered in 

memory and allow the reading process to block until data is supplied by the writer (or for the writer to block until there is free buffer space 

for it to use). The second mechanism, signals, is described in Section 24.7.2. Signals provide a primitive event notification service in 

which events are identified by small integer values and, subject to access control, can be delivered asynchronously from one process to 

another. In Section 24.7.3 we will assess the strengths and weaknesses of these two schemes and set the scene for the improved IPC 

mechanisms that we consider in Chapter 25.

24.7.1 Pipes between commands

In order to achieve compatibility between file and device I/O, devices are considered as 'special files' and are accessed through the same 

naming graph as normal files. To make inter-process communication compatible with file and device I/O, the concept of a pipe is used. A 

pipe may be thought of as another kind of file. Like normal files, directory files and special files, each pipe is used through file identifiers in 

the communicating processes' open file tables (see Figure 24.9). A pipe has an inode but, in the original UNIX design, pipes did not have a 

pathname; a pipe exists as long as processes exist which have file descriptors referring to it. Pipes provide one-way communication and 

are usually used with only one process putting bytes into the pipe and another taking bytes out (see Figure 24.16).

Figure 24.16. Example of the use of a pipe file.



Notice the differences between pipes and normal files:

There are two pointers: for input (reading) and output (writing).

There is a separate system call to create a pipe:

pipe(fildes)

where fildes is an integer array with two elements. pipe returns a read and write file descriptor, stored in fildes[0] and fildes[1] 

respectively.

The pointers cannot be manipulated explicitly using seek. Once bytes have been read they cannot be read again.

If a process reads from an empty pipe it is blocked until bytes are available to satisfy the read. There is a notion of a 'full' pipe 

so that the buffers used by a pipe file stay small enough to be kept in main memory. If a process writes to a full pipe it is 

blocked until some bytes are removed by the reader. The pipe file is therefore a synchronized byte stream between a writing 

process and a reading process. Note that this can easily lead to deadlocks if using two pipes for bi-directional communication: 

if the pipes are simultaneously full and the two processes attempt to write further data then they will both block.

Notice the similarities between normal files and pipes:

Once a pipe file is created with two open file descriptors it is read and written as though it was a normal file.

The pipe file descriptors are passed down from parent to child on process creation (as indeed are all other file descriptors). 

They are indistinguishable from other file descriptors in the process's open file tables. Figure 24.16 shows an example. 

Descendants of a common ancestor may therefore be programmed to use a pipe to communicate in a similar way to using an 

open file, but with the restrictions noted above.

When the shell, instanced on behalf of a user, creates processes to carry out in parallel the commands specified by the user it is the 

common ancestor of all these processes. It is therefore possible for pipes to be used between commands which are running in parallel on 

behalf of a user process. This flexibility is possible because file and device input and output are designed to be compatible and the UNIX 

commands are designed to produce output which is suitable for input to other commands. The output from UNIX tools, therefore, tends to 

be somewhat terse and unembellished by headings and summaries. The shell will create pipes for use between the command programs if 

requested as follows:

command1 | command2 | command3

A pipe is created by the shell for IPC between command1 and command2 before the processes are created to execute them. Its 

descriptors are inherited by the processes which are forked. Similarly, another pipe is created for IPC between command2 and 

command3.

Note that pipes may be used in this way without any changes within the programs that take the input or deliver the output. The command 

programs are such that their input and output may use standard terminal I/O, I/O redirected to or from normal files, or pipes. To this extent, 

device, file and inter-process I/O are compatible (see Section 24.4).

24.7.2 Signals



Signals inform processes of the occurrence of events. They are typically concerned with terminating a process when an error has been 

detected or an abort character has been typed by the user. They are not a general mechanism for inter-process synchronization since the 

range of signals available is limited and most have predefined meanings; originally there were only two signal numbers defined for 'user' 

purposes. In later UNIX systems, a process can wait for a particular signal to be delivered using the sigsuspend system call. Signals are 

not for synchronizing with devices or waiting for resources: that is typically achieved using system calls which block in the kernel.

The mechanism for sending a signal is as described in Section 4.4, where we saw a bit set in the process descriptor to indicate the 

occurrence of the associated event. Only one signal of a given type can be recorded and subsequent events of that type are lost if the 

process does not detect the first signal in time.

The use of the signal mechanism has been extended in later versions of UNIX to allow user-level processes to send signals to each other 

as well as to allow errors detected in the kernel to be signalled and handled by user-level processes. There are 20 kinds of signal in UNIX 

BSD 4.3 and 19 in SVr4 and in the POSIX interface.

We shall not study every signal in detail, but broad categories of signals are as follows:

coordination of process termination using the SIGCHLD signal as notification that a child process has terminated;

process-induced exceptions (see Section 3.3.1), for example a floating point error indicated by SIGFPE, or an attempt to write 

on a pipe which does not have a reader attached, indicated by SIGPIPE;

unrecoverable conditions during execution, such as SIGSEGV indicating an out-of-range memory access;

process management signals such as SIGKILL, SIGSTOP and SIGCONT sent between user-level processes using the kill

system call (named to reflect one of the usual purposes for sending a signal);

signals for tracing the execution of a process.

Many of these signals are recorded when a process executes in kernel mode and an error is detected. When a process is about to return 

to user mode, it checks whether any signals are outstanding and handles them. When a process is waiting for a low-priority hardware 

event or system resource it is allowed to handle outstanding signals before waiting, on waking up, or the blocking operation may be 

interrupted so that it handles the signal. Originally the high-priority events were ones that were expected to complete reasonably quickly, 

for instance a disk request rather than a keyboard input.

A signal sent from a user process to another user process will only be detected when that process has cause to enter the kernel or is 

interrupted. Before returning control to the interrupted user-level process a check is made for signals, which are then handled.

24.7.3 Overview of classical IPC mechanisms

Figure 24.17 gives the context for the UNIX IPC mechanisms. It shows a pipe for communication between user-level processes which 

execute in separate address spaces. It also shows that kernel-level processes execute in shared memory and may therefore communicate 

through shared data structures.

Figure 24.17. UNIX IPC: for user-level and kernel processes.



User-level processes

For user-level processes signals and pipes are available for IPC.

Signals convey very limited information: that the particular type of event named by the signal has occurred. In the case of death 

of a child, a byte of status information is passed from the dying child to the waiting parent.

Only one outstanding signal of a given type can be recorded.

A process only checks for the occurrence of signals at certain times, such as when it is about to leave the kernel and return to 

user level. There can be a long delay before a process detects a signal.

Pipes also offer a limited facility. A pipe is an unstructured byte stream between processes with a common ancestor.

A process may use a number of different pipes, but is blocked as soon as it attempts to read from an empty pipe, even if its 

other pipes are not empty.

The model of parallel processing supported is the pipeline and tools are not provided for building server processes which can take 

requests from many clients.

Kernel processes

Kernel processes use signals, see above.

Processes execute the kernel procedurally and use shared data structures for sharing information about resources managed by 

the kernel. Non-preemptive scheduling prevents interference between processes and no semaphores are needed. Forbidding 

interrupts, as described for the sleep routine above, prevents race conditions, that is, interference between hardware-driven 

access to data structures and processes.

A process will sleep in order to wait for a specific event to occur. Many processes may wait for the same event and all are 

woken when it occurs. They must therefore retest the availability of the resource when they are scheduled again and may need 

to sleep again if some other process has acquired the resource first. The priority of a sleeping process depends on its reason 

for sleeping. Signals may be handled by low-priority processes when they are about to sleep, are sleeping (they are temporarily 

wakened), or on awaking.

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

24.8 Summary

The original UNIX design was small and comprehensible. Some of its features were dictated by the PDP-11 architecture with which it 

was closely associated in its early years. The assumption that UNIX will run on a uniprocessor permeated the design of the kernel, in 

particular leading to a non-preemptive model. If a design decision required a choice to be made between simplicity and efficiency, the 

former was chosen. In the next chapter we look at how some of the major deficiencies have been addressed in some of the most 

commonly used versions of UNIX.

Exercises

24.1
What is meant by saying that UNIX is a procedural system? How might the hardware support or assume 

this style of system design (see Sections 9.3 and 5.8 for an example)?

a.

How does procedural execution of the kernel affect the design of the mechanism for synchronization 

between the hardware and processes?

b.

How might a procedural design make it difficult to guarantee a bound for the time between an event 

occurring and a process that was waiting for it running at user level?

c.

24.2 Assume that all the directories and files in the following pathname and all the inodes except that of the root are on 

disk rather than in main memory. Assume that each directory may be read by a single disk access. How many disk 

reads would it take to resolve the pathname:

/usr/guru/examples/C-examples/C-prog

24.3
Suppose a filing system uses a 4-kbyte block size and a block pointer occupies 4 bytes. What size of file 

can be accessed from 12 direct pointers in an inode? What size of file can be accessed from 12 direct 

pointers and 2 indirect pointers (see Section 24.5)? What size of file could be accessed with an additional 

triple indirect pointer?

a.

Figure 24.9 shows the system open file table. Each entry contains a pointer into an open file for use in 

reading and writing. If the table is designed so that this pointer occupies 4 bytes, how large can a file be?

b.

24.4 What are the advantages and disadvantages of using process-relative names, such as small integers, for open files, 

pipes, sockets, etc?

24.5 Contrast the effect of the UNIX fork system call with that of the language-level fork described in Sections 

4.16.1,12.2.9 and 13.8.

24.6
The UNIX command interpreter (shell) is run as a user-level process. Explain how the shell sets up a 

a.



process to execute a command and how the command's arguments might be passed to it.

How would you arrange to run your own command interpreter instead of the standard shell?b.

What are the advantages and disadvantages that would result from using a system process, executing in 

kernel mode, as the command interpreter?

c.

24.7 UNIX keeps a pool of character buffers of a defined size (say, 32 characters) for terminal I/O. Work out in some detail 

how a character would be delivered by a device, accepted by an interrupt handler, checked to see whether any 

special action should be taken (for example on a break or flow control character) and put in a buffer.

24.8 UNIX keeps a cache of disk block buffers. Each buffer has a data area which is the size of a disk block and a header 

for control information. What information would you keep in the header to control the use of the buffers and to ensure 

mutually exclusive access to them?

24.9 A process creates and opens a file and a pipe then creates two child processes. Which system calls can the children 

use to access both the file and the pipe? Which system calls can be used for the file but not for the pipe?

24.10 Extend Figure 24.9 to show two independent sharers of an open file and two sharers of a file which have inherited it 

from a common ancestor.

24.11 Are UNIX signals a general inter-process synchronization mechanism? Discuss.

24.12 Why is there no need for semaphores in the UNIX kernel?

24.13 How might a crash make a UNIX filing system inconsistent? Consider a sequence of events that might lose a block 

to the filing system or might cause a block to be recorded as allocated both to a file and to the free-list. How does the 

way UNIX records the blocks allocated to files help to make consistency checks relatively easy?

24.14 Why can a directory held on one file system not contain a hard link to a file on a separately mounted file system? 

Suggest how the file subsystem could be extended to provide this facility and describe whether your scheme 

introduces any disadvantages.

24.15 Some UNIX systems have a vfork system call that creates a new process but requires that the child does not return 

from the function that called vfork and that it invokes only the exit or execve system calls. Why is this curious system 

call a useful addition? How and why do modern CPUs reduce the need for vfork?

24.16 The fork system call creates a new process by making a near identical copy of its parent. Assess the advantages 

and disadvantages of this operation in contrast to an simple create_process system call that would take the name of 

a program to load and execute.
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25.1 Introduction

In Chapter 24 we introduced UNIX as an archetypal kernel-based operating system, focusing on the design of Seventh Edition from 

1978. That system provided a multiprogrammed environment, enforcing isolation between processes, the kernel and devices. The 

system exploited its initial target of uniprocessor machines to give a simple non-preemptable kernel invoked procedurally through a 

system call interface. We showed how the IPC mechanisms provided by classical UNIX are not very flexible: processes can exchange 

data through files held on disk, through pipes created in advance by a common parent and by simple asynchronous signals.

In this chapter we examine how UNIX and UNIX-derived systems have been developed to support more powerful computer systems. We

also show how the abstractions presented to the programmer have been extended to provide flexible inter-process and network-based 

communication. As in the previous chapter, the aim is not to present a complete application programming interface (API) for each of 

these subsystems, but to compare and contrast the facilities and abstractions that they provide.

Section 25.2 considers how the overall structure of the UNIX kernel has developed and, in particular, how modular systems have been 

designed, how common internal communication mechanisms have been developed and how concurrency is now controlled on 

multiprocessor machines. Sections 25.3 and 25.4 introduce the IPC mechanisms that exist beyond the basic pipe and signal abstractions 

of classical UNIX; the first section describes the facilities that were introduced in SVr4, representing a departure from the use of the file 

subsystem as a common naming domain. The second section introduces the alternative facilities, from BSD-derived systems, which 

retain that integration. We also consider how a set of server processes could be structured to make good use of these facilities. Section 

25.5 covers memory management, showing how the construction of process address spaces has become more flexible, allowing 

memory-mapped files and shared regions. Finally, Section 25.6 describes how multiprocessor scheduling can be implemented.
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25.2 Kernel structure

This section describes how the structure of the UNIX kernel has developed from the format introduced in Section 24.3. Although the core 

functions remain the same, the mechanisms by which they are composed to form the running kernel have become more flexible and the 

interfaces between different components have become more consistently defined.

25.2.1 Loadable kernel modules

The system structure shown in Figure 24.2 places a large number of components within the kernel; for instance there must be a device 

driver for each device that the system is using and there must be implementations of the file systems, network protocols and IPC APIs that 

might be used. This structure means that, if the system is to operate without interruption, all of this code must be incorporated into the 

kernel at the time that it is built. That would be a reasonable proposition in original UNIX systems with a relatively fixed device 

configuration, but is not acceptable in a modern system in which users expect to be able to add and remove devices during the system's 

operation and to use new devices that might not have been conceived at the time that the kernel was compiled.

Contemporary UNIX systems, including Solaris, LINUX and FreeBSD, introduce loadable kernel modules (LKMs) as a way of allowing 

some parts of the kernel's implementation to be extended or modified while the system remains in operation. Since they operate in 

privileged mode, a kernel module can only be loaded by a trusted user. In Chapter 26 we introduce more general techniques for 

extensibility that can allow code supplied by untrusted users to safely replace kernel functionality. In fact, some of these systems also 

allow a larger range of functionality to be replaced, for example core components such as CPU scheduling algorithms or buffer cache 

management policies.

In LINUX an LKM is implemented as a single object file containing specially named symbols to identify it to the system and to provide an 

initialization function. The system tool insmod provides an explicit mechanism for loading a specified module, although more usually a 

system-wide configuration file sets out the modules that are available and the services that they provide. A system process parses this 

configuration file and receives requests from the kernel to load modules dynamically when the functionality required from them is first 

accessed. The insmod loader is responsible for relocating the module's code against the existing sections of the kernel and the other 

LKMs that are already loaded. It then invokes the init_module system call which copies the module's implementation to kernel space and, 

in privileged mode, calls the initialization function provided within the module. This initialization is responsible for registering the 

functionality that the LKM provides with the remainder of the kernel. Each module has a usage count that must be zero if it is to be 

unloaded; for example the usage count of a module implementing a kind of file system would be incremented each time a file system of 

that kind is mounted.

25.2.2 Communication with kernel modules

A successful LKM system requires appropriate interfaces to have been used within the kernel so that new services can be registered with 

a running system.

LINUX takes an object-oriented approach in which the data structures defining parts of the system include tables of function pointers for 

performing operations on them. For instance, a module implementing a new file system invokes a register_filesystem function within the 

kernel, passing a file_system_type structure. That structure contains a pointer to a function for reading the super-block of a file system 

(see Section 24.5.4) to obtain a super_block structure which, in turn, contains a super_operations structure that contains pointers to 

functions for reading inodes and for synchronizing active copies of inodes with their canonical versions on disk.

This encapsulated structure is typical for each different kind of resource in LINUX: parts of the kernel that use the resource access it by 



indirection through a table of operations without being aware of exactly how the operations are implemented.

Kernel streams

UNIX designs derived from SVr4 use a common 'streams' interface for communication between different modules within the kernel. As with 

the object-oriented function call interfaces in LINUX, this aims to provide greater modularity and flexibility. In contrast to the design used in 

LINUX, streams provide a single interface that can be used by a variety of modules providing different kinds of facility; for example even if 

the programmer accesses networking through a sockets interface (described in Section 25.4), the kernel modules that implement the 

network protocols could be interconnected using streams. This generality comes at a potential performance cost which has led to 

scepticism about its introduction for data communication within LINUX.

A stream can be thought of as operating between a device (the 'stream end') and a process (interacting with the 'stream head'). These two 

endpoints convert between the common formats used within the stream to the external interfaces respectively required by the device or the 

programming API. Specialized processes may themselves use the streams API. A stream consists of a number of linearly linked queue 

pairs, one member of each pair for input and the other for output (see Figure 25.1). Each queue pair is associated with a kernel module 

such as a device driver. Each queue contains a list of messages which are processed and passed on to the next queue in the stream.

Figure 25.1. System V streams.

The driver modules manipulate the data passed through the queues by calling operations on the queues. Each queue is an abstract data 

type with operations:

open, called during an open system call;

close, called during a close system call;

put, to pass a message into the queue;

service, called when a queue is scheduled to execute;

and data:



a pointer to the next queue in the stream;

a pointer to a list of messages awaiting service;

a pointer to a private data structure that maintains the state of the queue; flags, etc., for managing the queue size, 

flow control and scheduling.

25.2.3 Interrupt handling

In classical UNIX, device management was divided into a 'bottom half' that was executed as part of the interrupt service routine (ISR) in 

whatever context the system was in when the interrupt was delivered and a 'top half' that was executed procedurally during system calls. 

Taking a network device as an example, the bottom half would be responsible for placing data received into an appropriate buffer (perhaps 

performing network protocol processing code and unblocking a process that was waiting for data which has been delivered) and the top 

half would be responsible for retrieving the data from such buffers. Each device would have a particular interrupt priority level (IPL) set for 

its driver and, while processing its bottom-half code, interrupts would be disabled from devices at that level and below.

Deferred processing

In such a design, ISR execution can introduce a substantial and variable amount of time during which the system is not operating under 

the control of the process scheduler and in which interrupts are disabled. In the case of a network device this could lead to packet loss if a 

burst of data arrives; early packets in the burst will be processed, but later ones may be dropped if they arrive while interrupts are disabled 

and the device has insufficient space to buffer them.

The solution adopted in BSD 4.2 was to divide the ISR into sections that could operate at different IPLs. Initial interrupt handling operates 

at a high IPL and is responsible for interacting directly with the device and buffer management, that is, the functions that must be 

performed before it is possible to re-enable interrupts from the device. Subsequent processing, such as protocol processing associated 

with the TCP or UDP network protocols, continues at a lower IPL. This structure reduces the length of time over which interrupts are 

disabled from the device.

This scheme is illustrated in Figure 25.2 showing an application being interrupted first by a low-priority interrupt (say delivering a packet of 

data received from the network) and that interrupt service routine being interrupted in turn by one with a higher priority. Once the first 

packet has been received from the hardware, protocol processing proceeds at a lower IPL and, in this case, is interrupted by the delivery 

of a second packet. Once the second packet has been received the processing of the first packet resumes followed by the processing of 

the second before finally returning to user-mode execution of the application.

Figure 25.2. Processing of code in response to interrupts at multiple priorities.



LINUX introduces soft-IRQs and tasklets for this purpose. A soft IRQ represents a request that a specified function be run at some time in 

the future. If the same kind of soft IRQ is requested multiple times then invocations of it can execute concurrently on multiple processors. 

In contrast, different tasklets can run simultaneously on multiple CPUs, but invocations of the same tasklet are serialized with respect to 

themselves. The system checks periodically (for example during each pass through the CPU scheduler or before returning from a system 

call) whether there are any outstanding soft IRQ requests, executing them if there are. Usually there are only three kinds of soft IRQ: 

deferred network transmit processing, deferred network receive processing and tasklet execution.

Receive livelock

In extreme cases, under high interrupt rates, designs that defer interrupt processing lead to receive livelock (Mogul and Ramakrishnan, 

1997) in which processing at the lower IPL is never complete before the next interrupt occurs, delivering more data and requiring further 

low-IPL processing. Short bursts of received data can be absorbed by buffering, but ultimately space is exhausted and data must be 

discarded. If this situation continues then no useful progress will be made because the system spends its time receiving data only to 

discard it later.

Several techniques can be used to overcome this problem. They each rely on reducing the rate at which interrupts occur in order to avoid 

the onset of receive livelock; if the system is overloaded then it makes sense to discard unprocessed packets at the device/processor 

interface before effort is expended during partial processing. A simplistic approach is to disable interrupts from a particular device when 

data from it occupies more than some threshold in internal buffers. A second approach is to reduce the size of the interrupt handler to an 

absolute minimum, just a notification that an event has occurred, and to use this to trigger polling. Such interrupts are idempotent and can 

be masked from the time between delivering the first one from a device and querying the device's status. The Nemesis operating system 

(described in Section 26.5.2) takes this to an extreme by placing device managers under the control of the CPU scheduler and allowing 

the resources used on behalf of the device to be bounded.

In practice fast CPUs, streamlined protocol implementations and hardware support for limiting the rate at which devices generate interrupts 

make receive livelock an academic concern for the moment.

25.2.4 Multiprocessor kernel structure

As we saw in Section 24.3, UNIX was originally developed for uniprocessor machines in which the kernel was executed non-preemptively 

with respect to processes. This meant that the only concurrency to consider was between device handlers and the remainder of the 

kernel. Disabling interrupt delivery during critical regions provided a straightforward solution. However, a multiprocessor machine allows 

genuine parallelism between the tasks operating on each of the CPUs and therefore requires a more careful approach, particularly if the 

potential performance benefits of multiple CPUs are to be achieved.

The approach taken in LINUX 2.0 typifies early designs for multiprocessor UNIX systems (although it substantially postdates them). It 

defines a single 'kernel lock' which must be held by a CPU when executing code within the kernel. Notice that this lock must be allocated 

to a CPU rather than a particular invocation of kernel code to avoid deadlock if an interrupt is delivered to a CPU that is already executing 

in kernel mode. This scheme allows multiple applications to proceed in parallel in user-mode execution while providing the same execution 

model for kernel code as on a uniprocessor. It consequently provides a straightforward incremental development of the kernel since many 

device drivers or other modules can be used unchanged with the lock acquisition and release code introduced in common kernel entry/exit 

functions. However, this basic approach severely limits performance if the rate of system calls or interrupts is high. Associating a single 



lock with the entire kernel limits scalability in multiprocessor machines.

These problems can be addressed by introducing separate locks to mediate access to different kernel data structures, allowing 

non-conflicting operations to proceed concurrently. The LINUX 2.4 kernel provides three kinds of lock for this purpose: ordinary spin locks 

to enforce mutual exclusion, multiple reader, single writer (MRSW) locks and 'big reader' locks that provide MRSW semantics but are 

optimized under the assumption that write operations are extremely infrequent. Separate functions are provided for atomically 

manipulating small values, such as shared integer counts. These can usually proceed without blocking by using atomic instructions that 

the CPU provides, typically compare-and-swap (see Section 10.3).

As usual, an engineering trade-off has to be made between the parallelism that fine-grained locking may enable and the overheads that 

are associated with acquiring and releasing locks. The 'kernel lock' scheme therefore represents one extreme approach.

The interaction between code executed within system calls and interrupt handlers can make deadlock a particularly pernicious problem. 

Dynamic deadlock detection schemes, such as those described in Section 18.7, are not practicable. Careful ordering of lock acquisition 

can prevent deadlock between invocations of the kernel on separate processors. If an interrupt handler may attempt to acquire a particular 

lock then interrupts from that source must be disabled on any CPU holding a lock that would prevent the handler from completing. This 

can be implemented by associating an IPL with each lock and disabling interrupts up to that IPL when the lock is held. Schimmel (1994) 

provides further details.
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25.3 SVr4 IPC

As Figure 24.1 illustrates, the System V UNIX releases from AT&T formed the major commercial development path after the Seventh 

Edition. Among the facilities introduced in the SVr4 release was a set of inter-process communication mechanisms that aim to support 

more flexible communication than the simple pipes and signals of Section 24.7. These facilities are widely supported in contemporary 

UNIX systems (even those, such as LINUX, that are not directly derived from System V).

Three kinds of IPC mechanism are provided: message queues that support structured message-based communication between arbitrary 

processes on the same machine, shared memory segments that can be mapped into the logical address space of multiple processes 

and semaphore sets that provide synchronization facilities. We briefly describe these in Sections 25.3.1–25.3.3. Further details of their use 

and implementation can be found in Bach (1986).

These communication mechanisms take quite a different approach to those available in classical UNIX. Firstly, they are accessed through 

separate APIs from those used for access to files and pipes. This means that applications must be developed specially to use them, rather 

than allowing the shell to plumb together existing applications. Secondly, a different naming scheme is used to identify communication 

resources, rather than using the hierarchical namespace that the kernel's file subsystem module provides. A flat integer namespace is 

used in its place.

The different APIs can be justified by the fact that none of the three IPC mechanisms presented here can easily be mapped onto an 

ordered byte stream and so operations such as open, read and close could not be presented cleanly. However, the use of a separate and 

unstructured namespace is problematic because communicating processes need an additional naming service to determine the integer 

value representing the resource that they should be using. An ordinary file in a per-application directory could be used for this purpose, but 

there is no agreed convention. A library operation, ftok, provides one option for mapping a filename to a key value. However, it is no more 

than a hash function and makes no guarantee that distinct names will map to distinct keys.

Resources are volatile across system reboots but are managed independently of process lifetimes. For example a shared memory 

segment continues to exist even when there are no processes still attached to it; this allows future processes to be created and to reattach 

to it. Management tools are needed to remove resources allocated by failed processes and again conventions are needed to identify the 

integers denoting these resources. A criticism of the basic design is that there is no equivalent to a close system call so the kernel has no 

record of which processes are accessing a given item. Processes are therefore able to bypass the get system calls which are normally 

used to acquire access to these resources and instead guess and use an ID. This is still subject to access control specifications but means 

that there is no automatic way to distinguish between quiescent resources that will be used again and those that can be reclaimed.

In Section 25.4 we introduce the alternative communication mechanisms which are integrated with the file subsystem.

25.3.1 Message queues

A message queue supports message passing between arbitrary processes on the same machine. Normal communication is achieved 

using msgsnd and msgrcv operations, but unlike the read and write operations used with a pipe, the message queue maintains the 

boundaries, or framing, of messages: a send operation enqueues exactly one message and a receive operation removes exactly one. The 

basic operations are:

msgqid = msgget (key, flag)

 msgsnd (msgqid, msg, count, flag)

count = msgrcv (msgqid, msg, maxcount, type, flag)

 msgctl (msgqid, cmd, mstatbuf)

Messages are buffered in the kernel in FIFO order. A table of message queue headers is maintained as shown in Figure 25.3 and a 

message is sent to or received from a message queue. A message queue is identified by a user-specified integer key which is recorded in 



the message queue header. A process effectively 'opens' a message queue using the msgget system call which returns a small integer 

descriptor, the msgqid. This call is also used to create a new queue if the key passed to it is not already associated with a header. A msgqid

must be specified when a message is sent and received.

Figure 25.3. System V support for message passing.

The queue header indicates which process created the queue, which processes may send messages to and receive messages from the 

queue and other information. The implementation can impose restrictions on the maximum message size and the maximum number of 

bytes that a queue may buffer. The msgctl operation allows the message queue to be deleted, its current status obtained and its access 

control settings to be changed. The same user/group/other bit fields are used as for file system accesses.

A message queue can be used by multiple processes at the same time, any of which can send and receive messages subject to access 

control checks. This enables the queue to be used for one-to-one, many-to-one, one-to-many or many-to-many styles of communication. 

For example, a multiprocess server system might use a single message queue to distribute work from a coordinating process to a number 

of 'slave' processes that perform operations on its behalf. Message send and receive operations are atomic to applications.

The system does not interpret the contents of a message, except for a single integer type field which is intended to indicate different kinds 

of message that might require different handling by the processes that are using the queue. The msgrcv operation also allows a type to be 

specified in which case it extracts the first (if any) message of that type in the queue. This is particularly useful in one-to-many 

environments because communication from the coordinating process to different receivers can be multiplexed over a single queue by 

using different type values.

25.3.2 SVr4 semaphore sets

Semaphores are provided so that processes may synchronize their activities. System V semaphores are a generalization of those defined 

in Chapter 10. Many of the intricacies come from needing to control how the semaphores are managed when one process fails in the 

middle of an operation on them or on a resource that they control.

SVr4 semaphores are grouped into arrays and support atomic operations across multiple semaphores within a single array; that is, the 

specified operations will be done on all the elements of a semaphore array or none will be done. Each semaphore in an array provides:

an integer value;

the process identifier of the last process to manipulate the semaphore;



the number of processes waiting for the value to increase;

the number of processes waiting for the value to equal 0.

The system calls are semget to create and gain access to an array of semaphores, semctl to carry out various control operations and 

semop to manipulate the semaphore values. As for messages and shared memory regions, each semaphore array is identified by a 

user-specified key and used via a small integer descriptor (see Figure 25.4).

Figure 25.4. System V support for semaphores.

semid = semget (key, count, flag)

oldval = semop (semid, oplist, count)

 semctl (semid, cmd, semstatbuf)

The semop system call is used to perform the semWait and semSignal operations introduced in Section 10.4. It takes a list of semaphores 

and integer modifications to apply to their values. A positive value indicates a semSignal and a negative value indicates a semWait. There 

are two interesting extensions that semop provides in addition to the basic semSignal and semWait operations. Firstly, the count value 

can be manipulated by more than 1; for instance, if it represents the number of resources of some kind available then a semop specifying 

-5 would attempt to atomically decrement the value by 5, blocking if that would make it negative. Such counting operations are useful, for 

instance, when managing space in a shared buffer for holding data items of different sizes: processes can block until there is sufficient 

space for the item that they wish to store.

The second notable extension is that each process has an 'undo' value associated with each semaphore. This is an amount by which the 

semaphore's value is adjusted if the process exits. In principle it can be used to represent the fact that resources previously in use by the 

process become available to others when it exits. In practice its use requires great care to ensure that shared data structures are in a 

consistent state if the process exits abnormally.



25.3.3 SVr4 shared memory segments

Shared memory segments are intended for holding data structures that processes wish to share explicitly. For instance, a group of web 

server processes may be designed to share a common cache of frequently accessed web pages rather than each maintaining its own 

cache. SVr4 shared memory segments are rarely used for sharing code between processes: as we saw in Section 24.6 the operating 

system will normally automatically share program code and libraries between applications without the involvement of the application. 

However, shared segments may find some use in sharing the results of just-in-time compilation or dynamic optimization.

The system calls for managing shared memory are similar to those for message queues in that a shmget system call creates a new 

region of shared memory or returns an existing one and a shmctl system call provides control operations. The size of a shared memory 

segment is fixed at its time of creation. As with message queues, processes name shared memory segments using integer key values.

Once a shared memory segment has been created, processes wishing to use it invoke the shmat system call to attach it to their virtual 

address space, either passing a virtual address at which to place the shared segment or passing 0 to request that the system selects a 

suitable address. This could, theoretically, lead to external fragmentation of the logical address space, but in general the large size of that 

compared with the smaller sizes and number of attached segments means that fragmentation is not a practical concern Shared memory 

segments are usually implemented by arranging that the page table entries in each of the sharing processes each map the virtual 

addresses at which they have attached the segment to the same physical memory region. This means that the address at which a 

segment is mapped will be rounded to a page boundary. The shmdt detaches a region from the virtual address space of a process.

The pattern of usage is thus:

shmid = shmget (key, size, flag)

addr = shmat (shmid, addr, flag)

 shmdt (addr)

Figure 25.5 illustrates how applications that have attached to shared memory segments may organize their virtual address spaces. In this 

example Process A and Process B have both attached the shared segments with identifiers 2 and 3. Segment 3 has been mapped at 

identical addresses for each process. This is important if the segment holds a data structure containing memory addresses because these 

will be interpreted within the virtual address space of the process that accesses them. Segment 2 has been attached at different 

addresses. Segment 1 has been created but has not been attached; its contents are still held by the kernel but are inaccessible to the 

processes.

Figure 25.5. System V support for shared memory.
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25.4 Sockets and file subsystem integrated IPC

In Section 25.3 we showed how SVr4 UNIX introduced a number of IPC abstractions for communication between processes. These 

represent a departure from the traditional I/O mechanisms that UNIX has provided in that they each use separate system call interfaces 

rather than being expressed in terms of operations on file descriptors. Alternative UNIX designs introduced a further set of IPC 

mechanisms which, in contrast, are integrated with the file subsystem and are generally accessed by performing ordinary read and write

system calls. This increases the transparency with which they can be used by applications although, of course, it is important to remember 

the practical limits to this transparency and the need to design multiprocess systems to be robust to failures.

25.4.1 Named pipes

The first mechanism that we consider is an extension to the pipes introduced in Section 24.7. A named pipe or FIFO special file provides 

the same communication facilities as an ordinary pipe, but it is named in the file system and can be opened by any process that the 

access permissions allow. This lets named pipes be used for communication between unrelated processes rather than requiring, as for an 

ordinary pipe, that it be created in advance by a common parent. Data buffered in the pipe is still held in memory rather than actually being 

written to the file system: it therefore only permits communication within a single machine, even if the file system has been mounted from a 

network server. The mkfifo operation creates a new FIFO special file with a specified name which the communicating processes must 

then pass to open.

25.4.2 Sockets API

The second communication mechanism that we consider, introduced in BSD, are sockets. These integrate local and remote IPC, allowing 

both to be accessed through operations on file descriptors. The basic concepts are:

socket: an endpoint of communication, represented to a process as an entry in its open file table;

domain: within which sockets are named and communication takes place. A socket operates in a single domain and the address 

format of the socket depends on that domain. Each domain employs a single protocol suite.

The two major domains available are:

the UNIX domain for local communication, in which case the address format of a socket is a file system pathname;

the INET domain in which the internet protocols such as TCP and UDP over IP are used (see Section 3.9). The address format 

typically comprises a 32-bit IPv4 host identifier and, for TCP and UDP, a 16-bit port number that is used to differentiate 

between different network traffic for separate applications going to or from the same host.

Many other domains are defined for protocols that are less pervasive nowadays, for example Appletalk, DECnet or X25. Figure 25.6

shows a process with sockets operating in three example domains.

Figure 25.6. Sockets and domains in UNIX BSD 4.3.



There are several types of socket. Each type may or may not be implemented in a given communication domain depending on whether the 

protocols defined in that domain provide a reasonable way of supporting the particular kind of socket.

A stream socket provides a reliable duplex data stream, a 'virtual circuit' in communications terminology. There are no record 

boundaries within the byte stream. In the UNIX domain a pipe may be implemented as a pair of sockets of this type (two 

communication endpoints). In the INET domain the TCP protocol supports this socket type.

A datagram socket will transfer a message of variable size in either direction. This is an unreliable datagram service; that is, 

there is no guarantee that the order of sending will be preserved on receipt and a datagram might be lost, duplicated or 

corrupted. This type is supported by UDP (the user datagram protocol) in the internet domain.

A sequenced packet socket acts like a stream socket but, in addition, record boundaries are preserved as with SVr4 message 

queues.

A reliably delivered message socket is defined to provide a reliable datagram service and guaranteed delivery of messages.

A raw socket allows direct access by processes to the protocols that support the other socket types. This is intended for use in 

developing new protocols. For example, a new protocol suite to support lightweight connections (a service between streams 

and datagrams) for multimedia data could be developed above the Ethernet protocol.

In general, a socket is created by:

socket-descriptor = socket (domain, socket type, protocol)

This merely creates an endpoint through which communication may be attempted, allocating it the entry 'socket-descriptor' in the calling 

process's open file table. Further steps must usually be taken before it is possible to communicate over the socket. The first is to bind the 

socket to give it an address on the local system:

bind (socket-descriptor, pointer to name, length of name in bytes)

For example, with an internet domain socket the bind operation would specify with which particular local host address the socket is to be 

associated and (for the TCP and UDP protocols) which port number it should use. In many cases a process acting as a network client may 



be ambivalent about these choices and pass special values to bind indicating that the kernel should select all host addresses that are 

available and any port that is not currently in use.

After creating and binding a socket, the next step is usually to identify the remote peer with which the socket is communicating. This 

depends on whether the socket is being used in a server mode (in which it waits for incoming connection requests) or whether it is being 

used in a client mode (in which it initiates connection requests). For datagram sockets no connection needs to be established. Otherwise, 

for a client, the connect system call is used, indicating a socket descriptor and the remote name to communicate with:

connect (socket-descriptor, pointer to name, length of name in bytes)

This operation will block until the system has established any state necessary for maintaining the connection; for example with the TCP 

protocol this will be until the server has accepted the connection.

For a process acting as a server an alternative listen system call is needed to tell the kernel that it should accept calls for service. It also 

indicates how many requests the kernel can accumulate without the server processing them:

listen (socket-descriptor, queue-length)

The listen system call does not block waiting for incoming connections, it merely requests that the operating system should become 

receptive to them. The accept call is actually used to receive an incoming connection request, blocking until one arrives:

new-socket-descriptor = accept (socket-descriptor)

A new socket is created representing the freshly-established connection to that client.

An example of a client–server interaction is as follows:

Client processC:  

sC-id = socket (AF-INET, stream, default-TCP)

 bind (sC-id, <Client-socket-name>)

Server processS:  

sS-id = socket (AF-INET, stream, default-TCP)

 bind (sS-id, <Server-socket-name>)

ProcessC:  

 connect (sC-id, <Server-socket-name>)

ProcessS:  

 listen (sS-id, <queue-length>)

sN-id = accept (sS-id)

Figure 25.7 shows a client–server interaction. The server creates and names a socket to function at the 'well-known' address of the

service. A client connects to that well-known name. The connect and accept operations are the only two here that will block.

Figure 25.7. Client–server interaction using sockets.



The close system call closes a connection and destroys a socket, whereas the shutdown call allows one direction of the duplex connection 

to be closed. There are other calls for managing protocol-specific information such as getsockname, getpeername, getsockopt and 

setsockopt.

The above discussion relates to connection-oriented communication. Connectionless communication using datagram sockets is achieved 

by

byte-count = sendto (socket descriptor, data-buffer-pointer and length, address-buffer-pointer and length)

byte-count = recvfrom (socket descriptor, data-buffer-pointer and length, address-buffer-pointer and length)

The number of bytes transferred is returned in each case. The address buffer contains the destination address on sendto and the source 

address is supplied by the system on recvfrom.

25.4.3 Server process structure

The sockets API may initially seem complex because of the series of operations that are needed to establish communication between one 

process and another. A pipe can be created with a single system call, whereas establishing a network connection requires socket, then 

bind and then connect before data can actually be exchanged.

The complexity comes from the attempt to define a single API that can be exposed by a broad range of protocols: not every protocol will 

require all three steps. The success of the API is reflected by its continued ubiquity on UNIX systems and the wide variety of network 

protocols that have been cast in terms of its operations. These include, for example, domains for ATM virtual circuits using protocols 

whose design postdates the sockets API.

Notice, however, that once a connection has been established, two sockets representing the ends of a stream-based communication can 

be accessed through file descriptors using ordinary read and write system calls. This means that simple server systems can often be 

structured as a 'front end' process that manages the sockets, accepting connections and then forking separate 'back end' child processes 

to deal with each connection. These processes would have the socket as their standard input and standard output file descriptor and so 



they do not necessarily have to be aware that they are interacting over a network connection.

Multiprocess and multi-threaded structures

This kind of multiprocess server system will behave poorly when each child does only a small amount of work before terminating: the cost 

of starting and terminating the process dominates its execution time. It also behaves poorly if there are a large number of clients because 

of the context switching between the processes managing them.

UNIX provides facilities that enable a number of alternative server structures:

Each client could be handled by a separate thread operating within a single process: it will be faster to create or terminate a 

thread than to create or terminate a process. This scheme could be used for a server implemented in Java. However, this may 

not address concerns of context switch frequency.

A single thread could deal both with accepting new connections and with interacting with existing clients. The select system 

call allows a single thread to block until one of a set of file descriptors becomes available for use, for example until a new 

connection request is received or until communication is possible over one of the existing connections. The format of a select

call is:

ready-count = select (num, read-set, write-set, error-set, timeout)

The operation blocks, up to the specified timeout, until at least one of the file descriptors specified in the read set has data 

ready for reading (or an incoming connection request in the case of a listening socket), until one in the write set has buffer 

space available for writing into or until one in the error set experiences an error condition. The system call updates the sets to 

indicate which operations are possible and returns the number of file descriptors which became ready.

Using select avoids context switching, but it does not allow the server to exploit multiprocessor hardware if that is available: 

the process will be structured as a single loop that uses select, performs operations on the indicated file descriptors and then 

performs select again to obtain more work. An intermediate design is to use a 'pool' of server threads, creating one per 

processor available. Each pool thread can therefore operate concurrently and use select to handle some subset of the clients; 

a shared memory data structure would be used to allocate new clients to members of the pool.

Figure 25.8 illustrates these three alternative structures for a single application. Notice how the fundamental differences concern the 

operations on which threads block in the kernel and how many clients a particular thread will handle. In practice selecting the 'correct' 

structure will depend on the number of clients that are expected, the costs of creating, terminating and switching between threads and the 

ease of implementing a system in which one thread acts on behalf of multiple clients.

Figure 25.8. Possible server structures in UNIX.



Passing file descriptors

When using sockets in the UNIX domain, it is possible to send access rights from one process to another as part of a sendmsg system 

call. These take the form of file descriptors, granting the recipient access to the file, pipe or socket to which that descriptor refers. This acts 

as a simple capability mechanism, although more usually it can be used to hand an established network connection from a front-end 

process to a back-end process that will deal with it. Such a structure has been used for FTP servers with one back-end process running 

for each different user logged in through FTP.

Notice that as Figure 24.9 illustrated, file descriptors are indices into a per-process table of open files, meaning that the UNIX domain 

implementation of the recvmsg system call must allocate a new entry in the recipient's table and install a reference to the same entry in 

the system open file table. Passing file descriptors between processes raises subtle management problems: suppose that a UNIX domain 

socket is created, a file descriptor for that same socket is sent over it but never received and then all processes with descriptors for the 

socket close it. The socket will still have a reference count of 1 (because of the descriptor that it currently buffers within itself), but this can 

never be read. A periodic garbage collection operation is needed to avoid permanently losing system resources in this way.

Sendfile operations

The final aspect of server structure that we will consider is the sendfile system call. It takes four parameters:

count = sendfile (out_fd, in_fd, offset, length)

Its function is to send 'length' bytes starting at 'offset' within 'in_fd' to the destination identified by 'out_fd'. This simple operation can have a 

dramatic effect on system performance because the transfer can occur without direct involvement of the process that initiated it, unlike the 

structure suggested above in which the process might loop using select to transfer data in a piecemeal fashion. If the source or 

destination is ultimately a network device then it is also amenable to a zero copy implementation because the buffers holding the data 

remain under the control of the kernel at all times. Its use is, of course, limited to simple copy operations.

The facility is available both in FreeBSD, LINUX 2.4 and in Solaris 8, although it is not yet a pervasive or standardized feature.
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25.5 Memory management

Chapter 24 showed how each process in a classical UNIX system comprises three logical segments, one holding its text (code), one 

holding its data (including the heap) and the third holding the stack. When the fork system call was used to create a process the child 

would share its text segment with the parent and would have its data and stack segments initialized with copies of its parent's current 

state. We assumed that hardware-supported paging or segmentation would operate, as described in Chapter 5, to map those logical 

segments onto physical memory.

In this section we examine how the use of memory has developed in contemporary UNIX systems, both in terms of how the logical 

address space of a process is constructed and in terms of how the kernel can balance the different demands for physical memory that are 

placed on it. This is an interesting problem because of the trade-offs involved: the solutions developed are applicable both within other 

operating systems and within application programs.

Basic demand paging and page replacement algorithms are described in Chapter 5 and will not be discussed further here.

25.5.1 Memory-mapped files

The mmap interface provides processes with control over the structure of their logical address spaces, generalizing the facilities available 

from SVr4 shared memory segments. Although originating in BSD UNIX, it has subsequently become ubiquitous. It can be used to provide 

memory-mapped files which, as introduced in Section 7.7, expose the file's contents as part of the process's address space. Shared 

memory regions can be created by causing the same file to be mapped into the address space of each of the processes involved.

There are two main system calls:

addr = mmap (addr, len, prot, flags, fd, offset)

 munmap (addr, len)

The first of these, mmap, establishes a mapping of length 'len' from 'offset' within the file referred to by descriptor 'fd'. 'prot' specifies 

whether the mapping should allow read, write or execute accesses to be made and 'flags' defines whether the mapping is private to the 

caller or whether it should be shared with other mappers of the file (and ultimately with the file as it is held on the file system). The 

munmap system call removes any mappings that exist within the 'len' bytes following address 'addr'.

The interface is elegantly integrated with the existing UNIX facilities. Straightforward access to files as memory-mapped objects is possible 

by opening the file and invoking mmap on the resulting file descriptor. Shared memory can be coordinated by using the existing naming 

hierarchy that the file subsystem provides, unlike the SVr4 shared memory regions of Section 25.3. Some UNIX systems provide 

specialized in-memory file systems for naming transient shared memory regions that should never be written to disk.

The mmap interface can also be used to construct the usual process address space in UNIX. In principle the text segment can be built 

during execve from a shared read-only mapping of the program being loaded. The initialized data segment can be built from a private 

read-write mapping of the data section being loaded. The zero-initialized portion of the data segment and the stack segment can be 

formed by making private read-write mappings of the '/dev/zero' special file, a device that always returns zero when read and ignores write 

requests. In practice the need for load-time dynamic linking may complicate this scheme on some systems.

A problematic aspect of the mmap interface is how it integrates with process creation. Recall that in UNIX the fork system call creates a 

new process by duplicating the state of the caller. If the caller has a private mapping of some file then should that become shared or 

should a separate mapping be created which then remains private to the child? The latter option is taken with mmap. Memory 

management hardware that allows copy-on-write is useful in these circumstances, as described in Section 5.5.



Aside from mmap and munmap there are system calls to update the kinds of access permitted to a section of a process's logical address 

space (mprotect), to 'pin' a region of that space into physical memory (mlock and correspondingly munlock) and finally to flush any 

modified pages from a region of the memory back to files on disk (msync). Solaris and BSD provide a further system call, madvise,

through which an application can indicate the kind of access that it will make in the future to a memory-mapped file: for example that 

accesses will be sequential (so that simple read-ahead prefetching will be effective); that a particular area will not be accessed again (so 

that it can be written back to disk and the physical memory it occupied reused); or that the contents of an area can be discarded without 

writing them to disk.

25.5.2 Communication through shared memory

Shared memory regions allow efficient communication between processes because they can access the shared data with ordinary 

memory read and write operations rather than needing to invoke system calls. Implementations of the pthread interfaces (Section 11.8) for 

mutual exclusion locks and condition variables are now usually built over shared memory regions. Again, this enables synchronization 

between processes to be achieved without requiring system calls unless the semaphore operation causes a thread to become blocked or 

to become runnable.

Coordination may be required between processes that are using a shared memory segment: writes made by one process will immediately 

become visible to the others. This necessitates careful design to avoid the kind of problems described in Part II, either by using the 

pthread, SVr4 semaphore or message queue facilities or by using whatever atomic operations the processor provides, such as 

test-and-set or compare-and-swap.

25.5.3 Physical memory allocation

An operating system can require physical memory for a large number of different reasons. As well as needing complete pages for 

allocation to applications it requires space for its own data structures, such as the process control blocks used by the scheduler or the 

tables used to manage file systems or network communication. Aside from these 'hard' requirements pages can be used to provide 

storage for the buffer cache or for other caches implemented by particular modules. We saw in Section 25.2 how a modern UNIX kernel 

may use dynamically loaded modules: therefore the sources of allocation requests can change over time as well as the amount of memory 

required. The operating system therefore requires a mechanism for balancing these different kinds of request in order to make the most 

effective use of the physical memory that is available.

Simple allocation

The traditional interface for physical memory allocation within the kernel was to provide functions kmem_alloc and kmem_free to allocate 

and to free data structures of a specified size in the same way that the C library functions malloc and free are available to applications. 

However, modules using those allocation functions would typically introduce a further level of indirection in order to implement an 'object 

cache' with the aim of reducing the cost of allocating and deallocating objects. This was based on the observation that many data 

structures have a 'quiescent' state to which they must be initialized before active use and to which they are returned before deallocation: 

ordinarily a constructor function is used to turn a newly allocated area of memory into this quiescent state and a corresponding destructor 

function is used before deallocation. The object cache holds constructed objects and attempts to reuse these in order to avoid the cost of 

invoking the constructor function for each allocation.

This led to several problems. Firstly, each module may implement its own cache manager to perform essentially the same function. Aside 

from introducing code duplication this makes it difficult to provide consistent interfaces for monitoring or debugging memory usage. More 

importantly, the implementation of kmem_alloc and kmem_free is not aware of which areas of memory are genuinely free and which 

appear to be allocated but hold quiescent objects that are not in active use. This is a problem when there is high demand for physical 

memory.



The slab allocator

The approach taken in LINUX and Solaris is to use a slab allocator as a common way of allocating physical memory to different parts of 

the kernel and of implementing object caching. When a module wishes to use the slab allocator it first requests an object cache using a 

kmem_cache_create operation, specifying the size of the kind of object that can be allocated and the constructor and destructor functions 

to be called when adding space to the cache or removing space from it. Objects are allocated from and freed back to a cache using 

kmem_cache_alloc and kmem_cache_free operations. An entire cache can be destroyed using kmem_cache_destroy.

cache = kmem_cache_create (name, object-size, align, cons, des)

 kmem_cache_destroy (cache)

obj = kmem_cache_alloc (cache, flags)

 kmem_cache_free (cache, obj)

Physical memory is allocated to (or revoked from) a cache at the level of slabs comprising one or more pages of physical memory. All 

slabs are the same size and so they cannot suffer from external fragmentation. Of course, internal fragmentation is possible if the amount 

of space that a slab provides is not a multiple of the object size. Each slab has a usage count holding the number of allocated objects that 

lie on it: a slab can be returned from a cache if the count falls to zero. A control structure associated with each slab forms the head of a 

chain of free quiescent objects within the slab. Implementations vary between how this control structure is located: typically it is placed in 

space wasted by internal fragmentation if possible and otherwise allocated from a separate object cache.

This scheme is illustrated in Figure 25.9 showing how the physical memory structures may be organized with an object cache comprising a 

number of slabs in active use (with non-zero usage counts) containing both allocated and quiescent objects and then some that contain 

only quiescent objects. Allocations are satisfied, if possible, from the former kind of slab so that the latter are available for revocation from 

the cache.

Figure 25.9. Physical memory allocation with a slab allocator.

The earlier kmem_alloc and kmem_free interfaces can be supported over the slab allocator by implementing object caches of varying 

sizes with null constructor functions (or constructors that clear memory if that is required). For instance LINUX provides slabs of 32 bytes, 

64 bytes, 128 bytes, etc. up to 128 kbytes.
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25.6 Multiprocessor scheduling

There are two major considerations which affect CPU scheduling when moving from a uniprocessor environment to one with multiple 

CPUs:

how the presence of multiple CPUs should influence the scheduling algorithm;

how to expose the availability of genuine parallelism to application programmers.

Section 11.8 introduced the pthread API for creating and synchronizing multiple threads operating within a single virtual address space. 

This now enjoys near-universal deployment across UNIX systems as the primary mechanism for writing multi-threaded applications. Early 

implementations were provided entirely as library code, operating in user space without explicit support from the kernel. Such a design 

leads most naturally to a non-preemptive thread scheduling policy in which the pthread library switches between threads only upon explicit 

yields or when a blocking operation is invoked. Non-blocking I/O operations and the select system call can be used, as introduced in 

Section 25.4.3, to avoid blocking the entire process when one of its constituent threads blocks. Such schemes were also used in early 

implementations of the Java Virtual Machine (JVM).

25.6.1 UNIX scheduling for multiple CPUs

Recall that the UNIX scheduler is normally invoked either after the currently running process blocks within the kernel or after a timer 

interrupt is delivered at the expiration of the current scheduling quantum. This can be extended to form a primitive multi-CPU UNIX 

scheduler by:

guarding the implementation of the scheduler with a spin lock to serialize scheduling decisions if it is invoked across multiple 

processors;

using per-CPU timers, started after a scheduling decision is made on that processor to signal the end of its quantum.

As with the concurrency control scheme described in Section 25.2.4, this scheduler will perform correctly but provides poor scalability and 

often far from optimal performance even on small two-CPU or four-CPU machines. Notice how each invocation of the scheduler proceeds 

identically to that of a uniprocessor machine: no attempt is made to provide affinity of any processes to particular CPUs. As Section 4.7

describes, affinity can benefit the process if the data it requires is still in the selected CPU's cache and can benefit the scheduler 

implementation if it enables per-CPU run queues to be used.

For example, LINUX increases the dynamic priority of a process if it is considered by the scheduler for the CPU that it most recently ran 

on. The quantum length does not depend on the number of CPUs. In some Mach-derived UNIX implementations the quantum used by 

each CPU is selected to provide a particular 'effective quantum' for the entire system. This is based on the observation that if there are 

more runnable processes than available CPUs then context switches can become frequent: for instance if there are 11 processes 

runnable on 10 CPUs then an ordinary quantum of 100 ms would require a context switch on some processor every 10 ms. Raising the 

quantum to 1 s allows each process to run after waiting on average 100 ms while reducing switching overheads. Using a long quantum is 

preferable where it can be done, like this, without a great cost in responsiveness.

25.6.2 Exposing parallelism



The problem of moving applications from a simple non-preemptive threaded environment to one that does support preemption mirrors 

many of those that we saw in Section 25.2 concerning the structure of the UNIX kernel for multiprocessor machines. If an application was 

written to assume that its threads are scheduled without preemption then it is likely to fail if its threads genuinely execute in parallel. 

Conversely, other programmers would be disappointed if a multi-threaded application could not run with genuine parallelism over multiple 

CPUs.

There are two reasons why a process may wish to use multiple threads: it may aim for improved performance by using the additional 

CPUs available on a multiprocessor machine, or it may simply be a natural way of expressing the task that the process is to perform. In the 

former case we may expect that application to maintain several runnable threads providing work for the CPUs. In the latter there may be 

little parallelism available, with the thread abstraction being used for convenience.

Section 4.17 introduces thread package architectures more generally. Here we will consider two examples taken from current UNIX 

systems.

LINUX 2.4 provides a clone system call as a generalization of fork that allows the caller to specify that the new 'process' should share 

(rather than copy) the virtual memory layout, open file table, signal handlers, process-id, parent process or various other information with 

its creator. Each of the resulting tasks is considered by the kernel CPU scheduler, can be preempted and can run concurrently on a 

separate CPU. The pthread API is implemented in terms of clone.

Solaris 2 uses a multi-level scheduling scheme for supporting threads. It introduces what is termed a lightweight process (LWP) which is 

the entity that the kernel scheduler considers: an ordinary process can therefore be thought of as a single LWP hosting a single thread 

within a particular virtual address space. Each LWP hosts a thread scheduler supporting one or more threads. Switching between threads 

running over the same LWP is a lightweight operation in that it occurs entirely at user level. If a thread invokes a system call that blocks 

then the LWP that was running it becomes blocked. To avoid deadlock a SIGWAITING signal is delivered to a process if all of its LWPs 

become blocked; it could then allocate a new LWP if it has additional threads that can be dispatched.

This two-level design allows a range of common policies to be expressed by controlling how many threads are associated with each LWP. 

An example configuration is illustrated in Figure 25.10 showing three applications being executed over a four-processor machine. The first 

application has a single thread and a single LWP: it is eligible for execution on CPU1, CPU2 or CPU3. The second application has multiple 

threads, but again only one LWP and so the threads can never run in parallel and the entire application will initially block if the LWP does. 

The third application has one group of three threads scheduled over two LWPs: therefore up to two of these threads may execute in 

parallel. It has an additional thread that is bound to its own LWP which, in turn, is bound to a specific processor. CPU4 is therefore 

reserved for that final thread. Powell et al. (1991) present further information about this design.

Figure 25.10. Solaris lightweight processes (LWPs).

Supporting multiple threads within an address space introduced problems with early libraries developed for UNIX. For example the strtok

operation in the standard C library provides a simple parsing facility to break a string into tokens delimited by specified characters. An 



initial call specifies the string to decompose and the delimiters expected. Further invocations specify a NULL string to indicate that they 

require the subsequent token from the previously specified string. Applications using functions such as this must either be linked against 

re-entrant versions of the library (which track per-thread state rather than having a single per-process state) or must use alternative 

operations, such as strtok_r which takes an additional parameter identifying per-thread storage to use.
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25.7 Summary

This chapter has highlighted the key APIs and implementation techniques that have allowed classical UNIX to develop from a 

uniprocessor background into a flexible multiprocessor operating system. We have seen how the kernel can be restructured into a 

modular design, supporting increased concurrency and the dynamic introduction of new facilities. We have seen how the scheduler can 

operate in a multiprocessor environment and the new IPC abstractions that have been introduced for efficient communication between 

concurrent tasks on a single machine, or with some transparency between tasks running on separate computers.

The abstractions introduced in Chapter 24 still underpin the modern design: resources are generally named within the file subsystem 

hierarchy and many data communication mechanisms are cast in terms of operations on file descriptors. The SVr4 IPC package 

introduced a new type of name for messages, memory regions and semaphores: the key. These integers can be made to identify objects 

uniquely within a single system, but do not generalize for use in distributed systems.

Many of the facilities introduced here are subject to several standardization initiatives, the most notable being that of the IEEE POSIX 

committee. This committee has produced a standard (IEEE 1003.1) for UNIX system calls (library functions); see IEEE, 1988. Other 

documents published by the committee relate to the standardization of features of UNIX such as networking, the shell and utility 

programs, real-time extensions, security extensions and system administration.

Exercises

25.1
What are the advantages of structuring an OS using kernel loadable modules? Are there any 

disadvantages?

a.

Suggest three components of the kernel which could not easily be implemented in this way.b.

25.2
What did the designers of BSD 4.2 seek to achieve by performing network protocol processing at a lower 

interrupt priority level than the level at which the device driver initially executes?

a.

Describe the phenomenon of receive livelock and a situation in which it could occur.b.

A designer suggests that receive livelock could be avoided by performing network protocol processing 

within a new system process 'nwproto' executing in kernel mode but under the control of the CPU 

scheduler. Do you agree that this would be a worthwhile change?

c.

25.3 Compare and contrast the IPC mechanisms provided by SVr4 UNIX and the mmap interface developed for BSD. 

What are the strengths and weaknesses of each?

25.4 Figure 25.5 shows two processes that are operating in a system with three shared memory segments defined.

What system call would the processes use to make shared segment 1 available to both of them?a.

Process A maps the segment at address 0x10000 and Process B maps it at address 0x20000 in its virtual 

address space. What problems would arise storing a linked-list data structure in this segment? Suggest 

b.



how these problems could be overcome.

25.5 A 'big reader' lock provides multiple reader, single writer semantics optimized for workloads in which updates are rare. 

Using the compare-and-swap instruction sketch a design of such a lock by analogy with the simple spin lock design 

presented in Figure 10.5.

25.6 A server process is going to deal with a small number of concurrent clients, each of which makes a complex series of 

interactions with it over a TCP connection. Which of the structures suggested in Figure 25.8 would be most 

appropriate? Justify your answer.

25.7 The sendfile system call, provided on some UNIX systems, transfers data from one file descriptor to another without 

further intervention from the process. Why are the source and destination specified using file descriptors rather than 

filenames?

25.8 Some UNIX systems and tools attempt to intercept accesses to files with names such as 

'/dev/tcp/www.cl.cam.ac.uk/80' as requests to open a TCP connection to the specified server on a specified port.

Is this functionality best provided in the shell, in a loadable kernel module or as a core part of the file 

subsystem?

a.

Describe the strengths and weaknesses of this approach in comparison to using the sockets API directly.b.

25.9 The JVM is running on an otherwise unloaded 4-processor machine running the Solaris operating system. Would you 

expect each instance of java.lang.Thread to be associated with a separate LWP?
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Chapter 26. Extensible systems

26.1 Mechanisms for extensibility

26.2 Compile-time specialization 

26.3 Microkernel operating systems 

26.4 Downloadable code 

26.5 Exokernels and vertical structuring 

26.6 Nested virtual machines

26.7 Extensible virtual machines

26.8 Summary 

Modern operating systems are large and complex pieces of software. For example, in early 2002 the source code of the LINUX kernel 

comprised almost four million lines. It had doubled in size since 2000. LINUX is not unusual either in its size or in its rate of growth: 

operating systems implementers are frequently under pressure to include new features such as support for additional kinds of hardware 

or for further network protocols or for new programming interfaces (APIs).

Designing any system of that size poses substantial challenges in software engineering, and these challenges are exacerbated in the 

case of an operating system kernel because of the environment in which it executes. Since the kernel has complete access to all of the 

resources of the system an error in any part of it can have unrestrained consequences: for instance a bug in the device driver for a 

network adapter could corrupt a data structure used by the process scheduler; there is no isolation between the different components.

Another engineering problem in designing operating systems is the need to balance the conflicting requirements of different kinds of 

application or different kinds of user. A simple example is how to parameterize the scheduling algorithm: if the system is being used 

interactively then the goal may be to provide a fast response time to the user, whereas if the system is being used to perform 

computationally intensive calculations then efficiency may become the primary goal. The first case suggests frequent preemption while 

the second suggests it should be less frequent. Such policy decisions must be made whenever the operating system has to interpose 

on resource accesses or arbitrate between processes. In the operating systems examined in Chapters 24 and 25, this usually led to 

general-purpose policies being designed that behave reasonably well for a broad range of workloads but that are rarely ideal. For 

example, a feedback-based dynamic priority scheduler of the kind found in UNIX can manage a mixed workload of interactive and 

computational jobs but not those with hard real-time requirements.

These two problems, the lack of isolation between operating system components and the difficulty of identifying effective 

general-purpose policies, have motivated the design of the extensible systems that we will study in this chapter. These systems are 

extensible in that they provide ways in which various components can be separated from one another and updated or replaced with 

some degree of independence. Sometimes this separation is done so that a fault in one component cannot interfere with the operation of 

others and sometimes it is done so that some aspect of the system's operation can readily be customized to support a particular policy, 

either without halting the entire system or with different policies for different applications.
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26.1 Mechanisms for extensibility

The development of techniques for designing extensible systems formed one of the main thrusts of operating systems research during 

the 1980s and 1990s. Seltzer et al. (1997) identified a taxonomy of schemes around which we base our discussion. They consider five 

aspects of the system: the technology that is used to extend it, the trust and failure of extensions, the lifetime over which a particular 

extension remains in effect, the granularity with which aspects of the system may be extended and the approach that the system takes to 

conflict arbitration between incompatible extensions.

As an example, consider the loadable kernel module system that is used extensively in LINUX, as described in Section 25.2. These 

modules are typically used to introduce support for new kinds of network protocol or new devices. The technology is a binary format with 

conventions for initializing or removing the module. The trust and failure of modules is handled crudely: they may only be loaded by the 

system administrator and, once loaded, they operate with the full privileges of kernel code. Module failures can have arbitrary effects. An 

extension may be loaded and unloaded while the system is operating and it consequently has a flexible lifetime which need not 

correspond to machine reboots. The granularity with which the system may be extended is fixed for a particular kernel image: modules 

are supported by hooks in various parts of the kernel and so extensions can only be supported where these hooks are present. The task 

of conflict arbitration must be performed manually by updating configuration files.

In this chapter we investigate six different mechanisms that have been used to promote extensibility in operating systems and in similar 

environments. We start, in Section 26.2, with compile-time extensibility in which the lifetime of extensions corresponds to the 

deployment of a particular kernel image. This does not offer additional flexibility to the end user of the system, but provides a mechanism 

at configuration time for streamlining the OS to a particular workload. In Section 26.3 we consider dynamic extensibility leading to 

microkernel designs in which the total volume of code operating in privileged mode is reduced and the system is split into a number of 

communicating user-level server processes. This provides extensions with a flexible lifetime and, if their communication patterns are 

organized correctly, can isolate the failure of one part of the system from that of others.

The downloadable code systems we describe in Section 26.4 use a very different technology for introducing extensions into a running 

OS kernel: they are written using a type-safe language allowing them to be executed directly in privileged mode. This can reduce the 

communication costs introduced by microkernel systems since a simple procedure call interface can be used in place of IPC.

A further approach is taken by what have been termed library extensible, exokernel, or vertically structured operating systems. In 

these systems, discussed in Section 26.5, the kernel exposes low-level interfaces that can be used by untrusted application programs. 

Unlike microkernels, applications are expected to access these interfaces directly rather than through communication with other 

processes. Designers envisage that standard libraries will build on these low-level interfaces to provide conventional APIs. The emphasis 

is not in reducing kernel size as a goal in itself, but in retaining only those aspects of the kernel that are necessary to provide isolation 

between applications and the protection and scheduling of resources.

In Section 26.6 we introduce nested virtual machines in which OS functionality is decomposed into a number of layers, forming at 

runtime a hierarchy of nested environments. The environments are known as virtual machines because, as with the Java Virtual 

Machine, they each provide facilities for program execution, but not necessarily the full facilities of a particular physical machine's 

hardware. For example, one layer may control how the CPU is scheduled for the applications operating over it, or it may provide 

checkpoint and resume operations for that group of processes.

Finally, in Section 26.7, we briefly consider extensibility within a programming language runtime environment, taking the Java Virtual 

Machine as an example. Such systems provide many of the traditional functions of an OS to the applications they host, such as isolation 

between parts of the system, conventional programming APIs and, increasingly, resource management.
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26.2 Compile-time specialization

A statically extensible system is reconfigured at compile time. This allows customization to a specific workload, either by omitting parts of 

the system which would be unused, or by selecting between different implementations of a particular interface which provide different 

trade-offs.

This is typified by the Scout operating system, designed to manage data flows within internet appliances, for instance handling video and 

audio data within a set-top box (Montz et al., 1995). A running Scout system comprises modules whose interconnections are specified at 

build time. For example, Figure 26.1 shows how modules might be configured for receiving an MPEG format video stream over the 

network and rendering it to the local display. These modules are instantiated at runtime to form paths through which data flows: in this 

case the layered Ethernet, IP and UDP network protocols, followed by modules for MPEG decoding and ultimately for display. If the 

system was displaying a number of MPEG video streams then there would be a separate path for each of them.

Figure 26.1. The Scout operating system configured for playing a video stream.

This structure has two particular benefits over a conventional kernel-based architecture. Firstly, the strict modular decomposition may 

promote good system design by encouraging the development of individual modules that can be composed in innovative ways, much as 

proponents of object-oriented programming suggest that decomposing a large system into classes will promote modularity and code 

reuse. By fixing the relationship between modules at build time an optimizing compiler could perform cross-module optimizations, for 

example collecting the 'receive path' code from the Ethernet, IP and UDP modules into a single function. In Scout's intended applications 

the effects of cache performance may be important: executing code in turn from each module along a path may improve temporal locality 

of access within the data cache. Removing unnecessary code from the kernel is important in resource-constrained embedded systems.

The second advantage is that identifying paths associated with each stream aids resource management and scheduling. In a traditional 

OS the Ethernet, IP and UDP protocol processing would be performed within the kernel and the resources consumed would not be 

accounted to any particular task. Additionally, on most UNIX systems, the final display of MPEG streams would be performed within the X 

Server; the process scheduler would have to provide appropriate resources to two separate applications to achieve effective performance. 

In contrast, the approach taken by Scout associates a single path with each stream and the scheduler considers these paths when 

apportioning resources.

The original Scout system did not enforce protection between the operations being performed by different modules along a path: each 

module ran in kernel mode and had full access to the resources of the machine. In more recent work Spatscheck and Peterson (1997) 

have extended Scout to form Escort, supporting per-module and per-path protection domains so that each module could have associated 

data (not accessible when executing code in other modules) and each path could have private data (not accessible when executing code 

on behalf of other paths). Donnelly (2002) has designed a related system, Expert, that integrates a limited form of path-based scheduling 

alongside ordinary task-based code in the Nemesis operating system (described in Section 26.5.2).
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26.3 Microkernel operating systems

The compile-time specialization provided by Scout allows the operating system to be adapted, at build time, for a particular workload. This 

was acceptable for the system's intended use in embedded environments which might only be subject to infrequent and vendor-initiated 

configuration, such as a set-top box for use with digital television. It would not be suitable for use in a desktop or server environment in 

which it may be desired to introduce new functionality into the operating system while keeping the system available to its users.

In contrast, a dynamically extensible system allows reconfiguration to be performed while the system is running. We have already seen 

one example of a dynamically extensible system in the use of loadable kernel modules within LINUX. In that case new implementations 

could be provided for interfaces exposed by the 'static' portion of the kernel: although those interfaces must have been in place at the time 

that the kernel was built, the module itself can be introduced at a later date.

In the case of LINUX loadable modules, we identified one particular problem as being the fact that the modules are implemented in 

arbitrary machine code and are executed in kernel mode and therefore with full access to the resources of the computer. This means that 

the extensions must be trusted to perform correctly and that they can only be installed by a privileged user.

Microkernel operating systems take a different approach to dynamic extensibility: the system is still decomposed into various modules, but 

each of these can operate as an ordinary user-level process. These server processes may be changed without restarting the kernel and, 

since they operate in user mode, the system enforces isolation between them. For example, there may be a separate server process for 

each different file system that is accessible on the computer. An application would perform file system operations by communicating with 

the appropriate server which would then act on its behalf. This structure, of a large number of interacting modules operating in separate 

protection domains, places an emphasis on efficient IPC to enable their communication. It also enables innovative distributed structures if 

the same IPC mechanism can be used across a network.

In a microkernel design, the volume of code included within the kernel, that is, executed with the processor in privileged mode, is reduced 

as far as is practicable, leaving the minimum functionality necessary to support:

the low-level management of devices, such as the dispatch of interrupts;

processes, that is, the entity to which resources are allocated;

inter-process communication;

minimal memory management: handling MMU exceptions for example.

There is a vast amount of existing software that runs on conventional operating systems such as UNIX. If a microkernel is to form the 

basis of an ordinary workstation or PC environment as well as high-performance special-purpose servers, it must be possible to run 

existing applications software above it. Several microkernel projects have emulated the UNIX interface; that is, servers running at user 

level above the microkernel will accept UNIX system calls and translate them into calls on the microkernel. This structure is shown in 

Figure 26.2 in which the UNIX server process provides much of the functionality provided by a conventional UNIX kernel. The application 

uses library code to translate between the system calls that it would originally have made and the IPC interfaces used to access the UNIX 

server.

Figure 26.2. Mach running a UNIX environment.



An interesting, and much debated, question is whether splitting operating system functions between a set of server processes does 

actually increase robustness. For instance, if a file system is implemented in a server process then can applications accessing files on that 

file system continue to operate if the server process is restarted? Many of the challenges in designing a robust and dynamic microkernel 

system mirror those of designing a robust distributed system. Solutions often also coincide: in the case of a file system the server could be 

implemented in a stateless manner (as with the NFS server in Section 6.7).

A number of microkernels have been developed within university computer science departments. Some of the research projects have gone 

on to seek funding for development as standards or commercial products. It is interesting to see how long this process takes. In Chapter 

24 we traced the evolution of UNIX from a research activity within Bell Telephone Research Laboratories, starting in 1969, to a worldwide

commercial success 15–20 years later. Here, we will examine some research activities in microkernel design that started in the late 1970s

and early 1980s, focusing in particular on the Mach system.

Other microkernels could have been selected for description here, for example, V (Cheriton, 1984; Cheriton and Zwaenpoel, 1985), 

Amoeba (Mullender and Tanenbaum, 1986; Tanenbaum et al., 1990), Sprite (Ousterhout et al., 1988) and the distributed operating 

systems in Chapter 16. Mach was chosen because of its close association with the versions of UNIX that were described in Chapters 24

and 25.

26.3.1 Mach

As discussed in Chapter 24, UNIX could only be made to run on multiprocessors by a complete rewrite of the kernel. The Mach 

microkernel was chosen for support by the US Defense Advanced Research Projects Agency (DARPA) to emulate the BSD 4.3 UNIX 

interface and to provide multiprocessor operation. Mach was also selected by the Open Software Foundation to form the basis of their 

operating system OSF/1. Mach release 2.5 had many UNIX services still integrated with the Mach kernel. Mach release 3.0 has all UNIX 

functionality moved up to the application level.

Mach is fully binary compatible with BSD 4.3 and also offers the following facilities:

Support for tightly coupled and loosely coupled general-purpose multiprocessors.

Support for large, sparse virtual address spaces, 'copy-on-write' virtual copy operations and memory-mapped files (Rashid et 

al., 1987; Tevanian et al., 1987). Memory-mapped files were proposed for UNIX BSD 4.2 and BSD 4.3 but not implemented. 

The earlier Accent microkernel used memory-mapping techniques for IPC and these were extended in Mach.

Provision for user-supplied memory objects and user-level page managers for them. The kernel provides minimal memory 

management and instead directs page faults to the page server process responsible for that kind of object, for instance for 

managing a memory-mapped file or for implementing a conventional virtual memory system.

Multiple threads of control within a single address space.



A message-based IPC facility which is integrated with memory management and allows large amounts of data to be 

transferred using the copy-on-write technique seen in Chapter 5.

Transparent network IPC. Communication between processes is implemented by sending messages to designated ports which 

could either resolve to local addresses (that is, to services provided on the same machine) or to remote addresses (in which 

case the message would be sent via a network server process).

Protection of inter-process communication which extends across network boundaries. This is achieved through protected port 

names and send and receive rights for ports. Mach also has security extensions which are not covered here. Encryption is 

available for network communication (Sansom et al., 1986).

The Mach kernel supports six basic abstractions to support this message-passing-based design (see also Figure 26.3):

task: an execution environment and the basic unit of resource allocation. This includes a paged virtual address space and

access to the system resources such as processors, ports, capabilities for using ports and virtual memory.

thread: the basic unit of execution. A thread executes in the address space of a single task. A thread shares the resources

allocated to the task with other threads in the task.

port: a one-way communication channel implemented as a message queue managed by the kernel. All communication takes

place via ports.

port set: a group of ports that are treated as a logical unit. The port set has a single queue.

message: a collection of typed data objects used in communication between threads. Data may be contained by value or by

reference. Port rights are obtained in this way.

memory object: an object usually residing in secondary storage that is mapped into the address space of a task.

Figure 26.3. Mach IPC.



26.3.2 Mach IPC

Message passing is the essential service of the system and is used both for communication between threads of different tasks and 

between a thread and the kernel. In order to use a port it is necessary to have the appropriate access rights. The send right indicates that a 

thread may send a message to a port. The receive right indicates that a thread may de-queue messages from a port.

The port name is a capability (see Section 16.11). The use of a random component in the port name, and encryption techniques for 

generating and checking port names, ensures that a port name cannot be guessed or forged, and that send and receive rights cannot be 

forged. The security measures in Mach are discussed in Sansom et al. (1986).

The concept of port sets allows ports to share a single message queue and a thread running in a task to service a number of ports. The 

thread can determine from the specific port to which the message was sent, which object should be invoked or which service done. If a 

port belongs to a set it may not also be addressed directly by a receive.

Both synchronous and asynchronous message passing are supported. Mach also supports an RPC (request–response) primitive, with the

ability to specify timeouts for send and receive. Higher-level RPC can easily be built on this.

Mach uses virtual memory techniques to allow large amounts of data to be transmitted. When a thread in a task sends a large message, 

the data is mapped into a special address space used by the kernel, called the ipc-map. The data is also remapped copy-on-write in the 

sender's address space so that if the sender writes to the data new pages are generated, leaving the message intact. When a thread of 

the destination task performs a receive operation, the data is mapped into the receiver's address space. If many large messages are in 

transit, the ipc-map address space could become full.

The tight integration of the Mach IPC and virtual memory systems gives high performance for large, intra-node messages. Small 

messages are costly due to the large overhead of manipulating the memory management unit. This has been identified as an area for 

further study by the Mach developers.

26.3.3 Memory objects and object sharing in main memory

The Mach design is object-oriented. A port is the means by which an object is referenced. An operation on an object is invoked by sending 

a message to the port which represents the object; see Figure 26.3. When an object is mapped into the address space of a task, the object 

is a resource of the task and therefore shared by all its threads. Only one task may have receive access rights to a given port at any time, 

but any thread in that task may use the port to receive messages.

The primary role of memory management in the microkernel is to manage physical memory as a cache of the contents of persistent 

memory objects. If an object has been mapped into the address space of a task and a thread of another task requests to map the same 

object, two problems must be solved. First, the kind of sharing that is required must be specified: private copy or single copy. If each task 

wants a private copy of the object, the copy-on-write technique is used to minimize data copying. An example of this situation is when a 

child is forked and a new address space is created for it (see Section 24.6). Second, if two or more private copies of an object exist in main 

memory, which have diverged from the copy on disk, then these versions must be managed. Mach uses shadow copies of objects for this 

purpose. Details can be found in Tevanian et al. (1987).
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26.4 Downloadable code

In Section 26.3 we examined microkernels and the Mach system in particular. These systems provided OS functions from a number of 

communicating user-mode server processes. Microkernels enable a great deal of flexibility in the policies implemented by components of 

the system and, if designed carefully, allow components to fail and be restarted without interrupting the system as a whole. However, it is 

interesting to examine the trade-offs that exist between this level of flexibility and the costs of the IPC mechanisms that are required to 

support it. An alternative mechanism for extensibility, downloadable code, takes a very different approach to integrating new functionality 

with the running OS kernel by allowing sections of code to be supplied by ordinary users and be executed within the kernel. These 

extensions can therefore be invoked efficiently using ordinary procedure calls.

A specialized example of this technique is the packet filter language designed by Mogul et al. (1987) which provides a mechanism for 

applications to supply packet classification algorithms that the kernel uses to identify particular traffic streams that the application wishes to 

receive; for example to allow it to use experimental protocols that are not directly supported by the kernel, or to allow it to perform 

user-mode protocol processing. These filters are expressed in a simple stack-based bytecode language that allows the fields of the packet 

to be examined, but provides limited control flow constructs and forbids arbitrary memory accesses. This allows classifiers written in the 

filter language to be executed safely in the kernel, either by an interpreter or after compilation to machine code.

The SPIN operating system generalizes this approach of allowing extensions to be written in a safe language and ultimately executed in 

privileged mode (Bershad et al., 1995). This is motivated by examples from the database, distributed programming, multimedia and 

fault-tolerant computing communities. By downloading code into the kernel, SPIN aims to co-locate extensions with existing services and 

thereby support low-cost communication between the two, gaining the efficiency of kernel loadable modules along with the isolation that a 

microkernel aims to provide.

SPIN uses a safe subset of the Modula-3 language for writing extensions, but it could equally use an alternative such as Standard ML or 

Java. The safety that these languages provide allows SPIN to use pointers as capabilities for access to kernel resources: the language's 

type system prevents an extension from forging object references that have not been issued to it. Extensions can interact with untrusted 

user-space applications (which need not be implemented in Modula-3) by exporting capabilities as indices into a protected per-process 

capability table, much as UNIX uses file descriptors to provides access to kernel-managed resources.

Figure 26.4 illustrates how downloadable code may be used to customize the thread scheduler used by an application. In this example an 

application performs a create operation to download the compiled scheduling extension that it proposes. An event-based mechanism is 

used for interaction between one extension and another and between an extension and the remainder of the kernel. In the case of a 

thread scheduler events correspond to checkpoint and resume operations that identify a particular thread to stop or to start. A layered 

design is formed in which the thread scheduler is responsible for selecting which thread to execute and the thread package provides the 

ultimate mechanisms for managing thread contexts. Separating these functions is useful for modularity and is also important since saved 

thread contexts may be subject to stringent access requirements, for example to prevent a thread from being changed arbitrarily from user 

mode execution to kernel mode execution. In other settings events may correspond to the delivery of packets over the network and 

extensions can be registered for execution when particular classes of packet are received. Packets are classified based on protocol 

settings or other header fields. Extensions have been developed in SPIN to control paging to disk, thread management and specialized 

network protocol stacks.

Figure 26.4. SPIN using downloadable code.



In SPIN the integrity of extensions is ensured by digital signatures appended by the trusted Modula-3 compiler. This means that 

extensions may be distributed in a compiled form rather than being recompiled at each point at which they are downloaded. Researchers 

have also investigated forms of typed assembly language (TAL) that could be used as a general-purpose target code for compilers and 

ideas for proof carrying code (PCC) in which a low-level program is accompanied with a mechanically verifiable proof that it will meet 

predefined safety criteria.
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26.5 Exokernels and vertical structuring

Previous sections have introduced three mechanisms for extending or customizing operating system functions. The first operated purely at 

compile time allowing a more streamlined system to be built for a particular environment. The second, leading to microkernel designs, 

operated at runtime allowing new implementations to be supplied for interfaces exposed by the OS kernel. These implementations could 

either operate within privileged code (in the example of kernel loadable modules) or in unprivileged user-space applications (in a 

microkernel system). The third scheme, downloadable code, also allowed new implementations to be provided but these were not 

executed directly but rather compiled from a safe language using a trusted tool-chain.

The fourth mechanism that we will consider tries to provide the combined benefits of these first three approaches: that is, it allows 

customization of a system to its particular environment; it allows decisions to be made during uninterrupted operation; and it retains 

isolation between the operating system kernel and the extensions that are supplied.

A library extensible system redesigns the interfaces exposed by the operating system so that it is possible to move code from the kernel 

into untrusted shared libraries that an application may link with directly. The key idea is that the operating system remains in control of 

protection and scheduling but that, where permitted, offers interfaces without further abstraction. Groups of libraries that are used together 

form a library operating system that provides the abstractions required by applications in terms of the system calls available from the 

OS. For example, a kernel-based system will usually implement the TCP network protocol in privileged mode and will expose operations to 

applications in terms of read and write operations on a socket. This abstraction leads to a consistent interface between streams of data 

that come from files, those that are received over the network and those that come from other input devices. In contrast, the kernel of a 

library extensible system may provide a lower-level interface through which the application sends and receives, perhaps, Ethernet frames. 

The TCP protocol would then be available as a user-space library that an application may link against. In that case the kernel provides the 

minimum functionality for demultiplexing input data between applications and for checking that data being sent is correctly formed and 

addressed. However, if an application programmer so desires, they may bypass the shared library code and obtain direct access to 

unprivileged lower-level interfaces.

Figure 26.5 illustrates this structure, showing how some applications may use traditional APIs provided by abstraction libraries while others 

may access the kernel interfaces directly. Of course, there are some functions that cannot be moved into untrusted library code; for 

instance the interfaces exported by most hardware devices can only be accessed by privileged instructions and cannot isolate (or even be 

aware of) different clients using the device. Such functionality must either remain in the kernel if it requires privileged-mode execution, or it 

may be moved to a trusted user-space device manager if it does not. In a pragmatic implementation, some services may remain in the 

kernel if efficient implementation techniques do not allow them to be removed.

Figure 26.5. A library extensible operating system.



26.5.1 The exokernel architecture

The exokernel architecture promotes library extensibility for reasons of performance and flexibility (Kaashoek et al., 1997). Xok is an 

exokernel implementation for Intel-x86-based machines. ExOS is a library operating system (libOS) for Xok which supports applications 

requiring a UNIX-like environment, including fork-based process creation, inter-process signals, pipes and sockets. The design of Xok is 

based on four principles:

Protection and management should be separate

meaning that the exokernel should provide the mechanisms needed to control access to resources but that policy decisions and 

abstraction should not be dictated by the kernel.

1.

Resource allocation and revocation should be exposed to applications

so that they may be designed to operate within a particular resource budget and, if their resource allocation changes, they can 

control which instance of a particular resource to relinquish.

2.

Physical names should be used wherever possible

in order to avoid unnecessary translation steps. This motivates the use of a single virtual address space so that, where 

permitted by protection settings, references to shared data structures are consistent between processes.

3.

System information such as configuration and global performance metrics should be exposed

so that applications may make informed decisions about the likely effects of trade-offs.

4.

Xok/ExOS also uses downloadable code techniques. This is to avoid the runtime costs of frequent up-calls to user-space libraries. Xok 

uses a number of mechanisms to protect the kernel from errant library operating systems and to allow one library operating system to 

control access to its data structures from the applications that it manages. These include software regions, which are areas of memory 

supporting fine-grained protection by requiring that all accesses are made through system calls, simple critical sections by disabling 

software interrupts, and hierarchical capabilities that must be provided with particular system calls and may be delegated from one libOS 

to the applications that use it.

Moving functionality from the kernel into a library operating system introduces a shift from system-wide to per-application resource 

management: for example, each application using a UNIX libOS may perform its own caching of data blocks read from disk, whereas a 

UNIX kernel would have a single cache. Without effective mechanisms for cooperation and incentives for using them there is a risk of 

losing statistical multiplexing between resource demands: for example, a system that supports per-process allocation of network 

transmission bandwidth may reject traffic from one over-budget application even though other tasks on the system are not currently using 

the resources that they have reserved. Kaashoek et al. (1997) speculate that superior global performance may be possible by using the 

newly enabled intra-application optimization to reduce resource wastage, by allowing groups of applications to perform inter-application 

management of shared resources and by designing adaptive applications which can employ different algorithms depending on which 

resources are scarce.

26.5.2 Nemesis



The Nemesis operating system is a second example of vertical structuring. It was conceived as a multiservice operating system, meaning 

that it should be capable of handling a diverse and changing mix of applications and that these applications would extend beyond 

traditional workstation tasks to include capturing, processing and displaying multimedia streams (Leslie et al., 1996).

Its structure is motivated by a number of observations on how a traditional or microkernel-based system behaves when handling a 

media-rich environment. These observations hinge on the fact that most applications involve several system components. For instance, 

consider the example of playing a video stream used to illustrate Scout in Section 26.2: protocol processing is performed for Ethernet, IP 

and UDP as data is received; this data must then be decoded and finally it must be rendered to the display. On a UNIX system the 

protocol implementations would form part of the kernel and the display might be accessed as an X Server. In order to guarantee smooth 

playback it is not sufficient to arrange that the CPU scheduler provides enough time to the application for decoding the data: we must 

consider the path that the data takes before it reaches the application and the path that the rendered results take before they are 

displayed.

Some systems have proposed mechanisms for resource transfer in which, for example, an allocation of CPU time could be made to the 

video playback application and, when presenting a frame for rendering, it would transfer some portion of these resources to the X Server. 

However, such a scheme is not always satisfactory: the X Server must be trusted to perform appropriate scheduling internally so that work 

is done on behalf of clients that have transferred resources. This may require major internal restructuring of the X Server and, in any case, 

does not address concerns about processing done within the kernel.

The approach taken in Nemesis is to eschew the use of server applications and to reduce, so far as is practicable, the processing that is 

done within the kernel. This leads to a similar library extensible structure as with exokernels, but the motivation is very different: 

processing within the kernel is being reduced to aid resource accounting and scheduling rather than for efficiency or as an end in itself.

The primary design principles in Nemesis are that resources should be multiplexed at the lowest level and that physical resources should 

be exposed to applications wherever possible. As an example of the first of these tenets, if a system is handling network connections then 

data should be demultiplexed as soon as possible upon receipt and any further processing should be performed by the application 

requiring the data. As an example of the second, applications should be explicitly aware of the amount of processing time and physical 

memory that they have been apportioned.

Low-level demultiplexing makes it feasible to account the resources used by each task. This is because when handling demultiplexed data 

there is a direct association between the stream of data and the task to which it is being accounted, as with the identification of media 

flows with paths in Scout. In contrast, when handling aggregates, it is much harder to account usage back to particular tasks. This leads to 

QoS crosstalk where application performance depends critically on shared resources whose allocation or scheduling cannot be controlled.

Bulk communication

Nemesis uses a shared memory bulk communication mechanism for delivering data to applications (such as received network packets) 

and for inter-process communication. This mechanism, called rbufs channels, is illustrated in Figure 26.6. A shared data area is accessible 

to the two tasks invoked; Nemesis' use of a single virtual address space means that addressing is consistent between tasks, although they 

may have separate protection settings on the area. The data area is indexed by control areas containing FIFO queues describing blocks of 

data to be delivered, for example represented by a pointer into the data region and a block length.

Figure 26.6. Bulk data transfer in Nemesis using an rbufs channel.



These control areas are also held in shared memory and their use, in turn, is coordinated by head and tail counts which identify the first 

and last entries in the FIFO. These are maintained by event counts which the Nemesis kernel provides as a communication primitive. 

These follow the semantics described in Section 11.7, allowing atomic increments to be performed as entries are introduced or consumed 

from the FIFO and for await operations with which the sender or receiver can block.

It is important to realize that, although data transfer may be unidirectional at the application layer, rbufs channels operate bidirectionally. 

For example, suppose that in the figure Application A is delivering a stream of decoded video frames to Application B, each packaged into 

a block held in the data area. Once B has processed a frame it returns an entry in its control area for the same block. This serves two 

purposes. Firstly, it informs A that that block is now free and may be reused. Secondly, it integrates a simple congestion control scheme 

with the data transfer, providing A with an indication of B's progress. If A observes that B is not keeping up then it may elect to periodically 

discard data rather than passing it on, reducing the likelihood of receive livelock. The scheme also permits a straightforward trade-off 

between the latency with which communication occurs and the throughput obtained: a low latency is achieved by context switching each 

time the channel state changes, whereas a higher throughput is obtained by writing a batch of entries into the control areas before 

switching.

User-safe disks

In Nemesis, User-Safe Disks (USDs) provide an extent-based interface for data storage. Clients perform I/O operations over rbufs

channels with which resource allocations or disk scheduling parameters may be associated. Access control is performed on an 

extent-level granularity by a trusted user-space file system driver. The USD driver maintains a cache of permission checks and makes 

call-backs to the file system driver upon cache misses.

Memory management and self-paging

Self-paging is used by applications which require virtual memory. Separate interfaces are used for allocating (or potentially revoking) 

physical and virtual address space. The application is responsible for electing which physical frames should back which regions of its 

virtual address space and for paging data to disk where necessary. This design aids the accountability of the resources used when paging 

(for example, accounting disk operations to the application requiring them) and local optimization (for example, to avoid writing a page 

containing unallocated space in the heap).

Scheduler activations

Although Nemesis provides applications with firm guarantees of processing time, beyond this it is the responsibility of the application itself 

to multiplex the time that it receives between different threads of execution. An application does this by providing a user-level thread 

scheduler to implement a particular scheduling policy.



The design is conceptually similar to Anderson's scheduler activations introduced in Section 4.17. However, the interface through which 

the user-level scheduler interacts with the kernel scheduler is notably different.

The key fact about Anderson's scheme is that the user-level scheduler is informed explicitly when it is allocated the CPU. Rather than 

transparently resuming execution at the point at which it was suspended, the process scheduler invokes the user-level scheduler by 

making an up-call to its activation handler. It is then the responsibility of the activation handler to select which thread to resume. Separate 

notifications inform the user-space thread scheduler when a thread becomes blocked or unblocked during I/O.

Anderson's scheduler activations handled preemption by having the process scheduler record the preempted state and pass it back to the 

application when it was next activated. The activation handler could elect to resume from that saved state, or it could switch threads by 

resuming from a different saved state that it may have stored. This approach is problematic because it is unclear how to proceed if an 

application is preempted before its activation handler has resumed from a saved context.

The approach taken in Nemesis differs in two ways: firstly, complete state records are not passed between the process scheduler and the 

user-level scheduler. Instead, each application has an allocation of context slots in which saved processor states can be recorded. The 

activation handler selects which slot is used to hold the processor context next time that application is preempted. This allows the kernel to 

maintain control over the saved contexts, since they may contain privileged registers which should not be modified by the application.

Secondly, the user-level scheduler may disable activations. If the application is preempted while activations are disabled then the context 

is recorded in a designated resume slot. When the application is next scheduled it is restarted directly from the resume slot, rather than by 

activation. Furthermore, whenever activation occurs, the process scheduler atomically disables further activations. This avoids the 

potential race condition when an application is preempted before the handler resumes from a saved context. An atomic resume and 

enable activations system call is used to resume threads.

This scheme allows Nemesis to support a spectrum of user-level scheduling policies. It also enables lightweight critical sections to be 

implemented in preemptive uniprocessor environments: thread switches within an application can be prevented by disabling activations. 

Many traditional thread scheduling policies can be implemented directly. For example, the activation handler in a preemptive round-robin 

scheduler need only maintain a circular list of runnable threads and resume each of these in turn.
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26.6 Nested virtual machines

The designs of ordinary kernel-based systems, microkernels and library extensible systems each provide different positions at which to 

draw the boundary between kernel-mode execution and user-mode execution. One feature that all of these systems have in common is 

the use of a dual-mode environment in which the system is either executing part of the kernel, or it is executing a user-mode process. This 

scheme has several advantages.

Dual-mode execution enjoys almost universal support from modern microprocessors, for example through specialized 

instructions for implementing system call and return operations.

Exposing each application as a separate entity directly to the operating system means that only a single level of resource 

management and scheduling is required.

Other research has investigated nested process architectures in which, at least conceptually, the system is divided into an arbitrary 

number of layers, each of which is able to control the environment seen by those above it in much the same way as the operating system 

controls the environment seen by its processes. This can have a number of benefits in terms of manageability because an entire tree of 

process environments above some point in the system can be treated as a single entity; for instance to impose access control restrictions 

over the resources that those processes can use or to 'snapshot' the entire state of those processes so that they can be migrated to 

another machine.

One way of constructing such nested structures is through the use of virtual machine monitors (VMMs) which provide multiple virtualized 

environments based on a single underlying machine. As illustrated in Figure 26.7, a virtual machine monitor acts as an adapter that runs 

within one instance of a lower programming environment and provides a series of interfaces supporting another environment.

Figure 26.7. A virtual machine monitor.

VMMs have been used in a number of different settings with various design choices made over the upper and lower interfaces that they 

support. The Java Virtual Machine can be viewed in this context as a VMM in which the upper interface is an environment supporting the 

execution of Java bytecode along with a set of standard libraries and services. Of special interest are self-virtualizing systems, where the 

upper and lower interfaces are the same, and in particular where they correspond to the basic execution environment that is provided by 

some processor. Such a VMM enables one physical machine to be partitioned into a number of disjoint ones, for example to support 

multiple operating systems at the same time or to support a number of separate user communities.

However, self-virtualization is not straightforward to support over most dual-mode processors because of two problems. The first stems 

from the fact that the upper interface can only directly support user-mode execution: applications running over it cannot be granted direct 

access to kernel mode because that would grant them complete access to the underlying physical machine. Some mechanism is needed 

to support a virtualized kernel mode. This could be based on using an interpreter when the virtual processor switches to kernel mode, but 

this in turn raises problems of efficiency if more than a few nested levels of virtualization are to be supported: each layer must trap and 



emulate the privileged instructions from the layer above. The second problem is that, even when executing in user mode, some 

instructions supported by the upper interface may expose information about the physical machine; for example on Intel x86 processors the 

current processor mode can be read directly.

However, with these problems in mind, it is possible to design an alternative system architecture in which self-virtualization may be 

achieved efficiently. Such a system can be used to construct ordinary operating system abstractions in a layered manner, although since it 

does not support the full hardware interface of an existing processor it is unlikely to be able to host a complete unmodified operating 

system.

The Fluke system (Ford et al., 1996) provides a nested microkernel-based environment in which processes have access to three kinds of 

facility:

Direct execution of a subset of the Intel x86 instruction set, essentially the user-mode operations that do not reveal global 

processor state.

A low-level system call API that is exposed by the microkernel and can be accessed directly from any level. It provides 

operations for creating and managing a number of object types (for example, IPC endpoints) which, subject to access control, 

can be used for direct communication between any pair of applications on the system. Crucially for the hierarchical structure, 

the low-level API also provides operations by which one level can query the resources accessible to environments operating 

over it and can snapshot and restore any state held in the kernel on behalf of those objects.

A set of common protocols which define higher-level functions using an interface definition language. These are accessed 

over an IPC mechanism. The lowest-level virtual machine in the system directly accesses an implementation provided by the 

microkernel. It may, in turn, pass on capabilities to access these interfaces themselves, or it may export a new version of these 

interfaces and export that to the environments running over it.

Each layer in this system is termed a nester. This structure is illustrated in Figure 26.8 showing how a process manager nester and a 

checkpoint nester may be combined with two applications. The process manager performs a similar function to part of the UNIX Server in

a Mach system: it tracks information needed to support POSIX parent–child semantics. The checkpoint nester allows the state of the

applications running over it to be checkpointed to disk and subsequently to be restored. This design allows flexibility between exposing

low-level APIs to programmers (and structuring applications as in a library extensible system) and exposing APIs similar to those in a

traditional OS. Furthermore, a single running instance of the system can use both approaches concurrently by defining global policies

within nesters over which groups of applications run. For example, a shared buffer cache could be provided by a nester over which all

applications run, or separate caches could be implemented within each application. This allows system-specific trade-offs between

intra-and inter-application optimization of resource usage.

Figure 26.8. Nested process environments in Fluke.



The hierarchical structure encourages similar approaches to resource management. Inheritance scheduling is an example mechanism 

for use in such a system. Schedulers are organized in a hierarchy in which they receive resources from their parent and donate these, in 

some scheduler-specific fashion, to their children. For example, the hierarchy may consist of schedulers representing different 

administrative domains within an organization. A low-level dispatcher implements primitive thread management functions such as 

marking threads blocked or unblocked and waking threads after timeouts expire. This is the only part of the scheduling system which does 

not operate in user mode. Donation is performed by a schedule operation which specifies a target thread, a wakeup sensitivity which 

controls when the scheduler should regain control, for example if the scheduler should be woken if the target to which it donates blocks, or 

if the scheduler should be woken if another of its client threads becomes runnable. Resource donation need not follow the scheduler 

hierarchy: the ability to perform arbitrary donation allows a natural approach to handling priority inversion since a thread which blocks may 

donate the remainder of its time to the thread which is holding the contended lock.
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26.7 Extensible virtual machines

The final form of extensibility that we will consider is in managing the services that are offered by a programming language runtime 

environment such as the Java Virtual Machine. There are many conceptual analogies between an OS and such a system: both are 

involved with presenting application programmers with an abstraction over the underlying facilities of a machine and in providing some 

form of isolation between its components. They differ in that the interface provided by software-based VMs is generally offered at a higher 

level, for example in terms of a bytecode instruction set with operations for method invocation, object allocation and so forth rather than for 

manipulating words in memory. The JVM has gained popularity as a deployment platform because it provides a consistent programming 

interface and code format that can be implemented over a variety of hardware platforms.

Recent implementations integrate high-performance runtime compilers, concurrent automatic storage management and mechanisms for 

hosting several applications over a single VM. As with the implementation of a kernel-based operating system, this means that the VM 

implementation must embody a number of implementation policies, for example to control when and how it engages the compiler or the 

garbage collector, when it reschedules between different tasks that it supports or how it selects where to place objects within the heap.

An extensible virtual machine (XVM) attempts to provide some application control over such policies without sacrificing the isolation that 

the VM provides, either between the code that it hosts and the remainder of the system, or between different protected components 

running over it.

26.7.1 The Sceptre XVM

The Sceptre XVM (Harris, 2001) prototypes a number of techniques for such systems. It was developed to provide facilities that could be 

integrated with the JVM, but the design does not depend specifically on that system and is applicable to other environments. It is based on 

three principles:

Applications can be used without modification and, if executed using default policies, will behave without significantly degraded 

performance.

As with library extensible operating systems, applications should be provided with the facilities to control the manner in which 

they are executed, rather than the requirement that they actually exercise that control. The facilities provided should be 

sufficiently expressive to allow existing general-purpose policies to be implemented; for example that methods should be 

compiled to optimized code after they have been executed a specified number of times, or that a simple round-robin thread 

scheduler should be used.

1.

Policy implementations are expressed separately from application code.

Separating policy definitions from application code enables policies that are developed to be reused with other applications and 

also allows one application to be used with different policies, perhaps when it is executed on different computer systems with 

very different characteristics. Naïve or premature 'optimization' policies can be replaced.

2.

Fully-featured programming languages are used, where practicable and appropriate, for expressing policy implementations.

The intent is that using an ordinary language for defining policies enables interesting and non-trivial policies to be formulated. 

The initial implementation used Java for policy definitions.

3.

The structure of the system is illustrated in Figure 26.9 which shows the particular example of application-controlled memory management. 

In this case the heap is divided into a number of regions of memory and the allocation policy is responsible for selecting which region to 

use for a particular object allocation, for example to co-locate objects which will be used together or which may have similar lifetimes. 

These policy definitions are implemented as Java classes which are registered with sections of application code. The policy registry

maintains that mapping and makes an up-call to the policy definition when a decision is required. The actual allocation is performed by a 

protected mechanism implementation that manages the selected region of the heap. This also receives deallocation notifications from 



the garbage collector when that identifies that an object has become unreachable. Decisions made by the policy implementation may be 

in-lined during runtime compilation so that the full lookup procedure is not invoked on every object creation.

Figure 26.9. Memory management in an XVM.

In contrast, Figure 26.10 shows how an application-specified scheduling policy may be implemented within an XVM. In this case a 

different approach is required because scheduling decisions may be required on a frequent basis (perhaps every few milliseconds) and the 

selection must vary over time and so cannot be cached. Here the scheduler is implemented as a Java class but, before execution, it is 

compiled to native code with safety checks in-lined upon each scheduling decision, to check that the saved context that it intends to 

resume from represents a runnable thread. The scheduler stub acts as an intermediary to establish the runtime context needed to 

execute the compiled scheduler. Writing the scheduler in Java introduces a number of problematic cases because it may invoke a blocking 

operation or attempt to acquire a lock that is held by one of the threads that it is scheduling. If the scheduler does block during its 

execution then the system uses a default algorithm until the intended scheduler may continue.

Figure 26.10. Thread management in an XVM.



26.7.2 Java operating systems

Several research projects have investigated using the Java Virtual Machine as the basis for complete multiprocess operating systems. 

Unlike Sceptre, which aims to provide additional flexibility to an individual application, these systems provide an explicit process model 

including varying degrees of isolation between processes. In such systems all applications would be supplied as Java bytecode and 

method invocations would replace the system call interface. As with downloadable code in SPIN, this can allow low-latency 

communication because no processor protection switch is required: protection is enforced using the type safety of the language.

Having said that, the motivation for Java operating systems is often not the wholescale replacement of an existing OS but rather the 

support for resource isolation between potentially mistrusting Java components executing within the same virtual machine. For example, a 

web hosting company could accept Java servlets for execution on behalf of separate organizations whose websites it manages. Without 

the availability of OS-style facilities within the JVM there would be nothing to prevent one servlet from consuming an uncontrollable 

amount of resources.

Back et al. (2000) survey many of the designs that have been proposed for Java-based operating systems. They identify three related 

problems which must be tackled by any design:

Resource accounting

Any system in which users are charged according to the amount of resources actually consumed must be underpinned by an 

accurate accounting mechanism. Various accounting schemes have been proposed and even within this subcategory many 

options are available. For instance, in terms of CPU time, whether execution is tracked in terms of the number of Java 

bytecode instructions executed, or in terms of time on the underlying processor and whether accurate accounts are always 

available or whether a sampling mechanism is used that is only probabilistically correct over longer timescales. As with an 

ordinary OS it is necessary to decide how to account system tasks such as the execution of a runtime compiler or a garbage 

collector.

Resource reclamation

Systems vary according to how and when resource reclamation occurs; for example whether resources can be reclaimed 



explicitly at any time, or only when the last process using them exits.

Resource allocation

Controlled resource allocation is needed if processes are to be given limits to the amount that they can consume. The same 

problems emerge as with resource accounting in that it is necessary to identify the units in which usage is defined and it is 

necessary to consider shared resources and those used by the system.

These issues are intimately related to the kinds of sharing that a Java OS can support between the processes running over it. One 

extreme is to allow processes direct access to shared objects, that is, for each process to have an identical reference to the object. This 

makes communication easy but impacts resource accounting: should each process using the object be charged in full for the space that it 

occupies, should only the object's creator be charged for it or should each process be charged a proportion of the resources used by the 

object? It is easy to construct scenarios where any of those options are reasonable. However, from a technical standpoint, charging the 

creator raises the question of what happens when the creator terminates and charging a proportion means that the cost of using an object 

can vary over time. Similarly, if immediate resource reclamation is required then it becomes difficult for processes to share access to 

mutual exclusion locks (which, as we saw in Chapter 11, are associated with each object in Java). If a process's CPU allocation is revoked 

while it holds a lock then it will never make progress and release it.

K0

The K0 Java OS provides a process model similar to that of a traditional kernel-based OS. Direct sharing is only allowed through a 

designated shared heap: normal object allocations are made to per-process heaps and allocations in the shared heap are mediated by the 

kernel. Using separate heaps means that, in principle, most garbage collection can be performed independently, involving only 

synchronization between the threads that are acting within the process whose heap is being collected.

Inter-heap references are tracked by a write barrier each time an object reference is updated in memory. If a reference is created from 

heap A to heap B then a reference-counted entry item is added to heap B to refer to the referent and an exit item is added to heap A that 

refers to the entry item. This technique, common in distributed garbage collection, allows heaps to be collected independently by 

considering the entry items to be root objects. Jones and Lins (1996) describe distributed garbage collection in detail.

Ordinary method invocations are used to access kernel services. Kernelallocated objects are used to represent resources such as open 

files and network connections. This straightforward model simplifies resource accounting and revocation. CPU scheduling follows the 

inheritance scheme described for Fluke in Section 26.6.

Alta

Alta provides a hierarchical process abstraction modelled on Fluke. As with that system, fundamental resources such as heap storage and 

processing time are managed by Alta while higher-level resources such as network access are provided to processes via IPC. Direct 

sharing of objects is permitted between sibling processes, that is, those with the same parent within the nested hierarchy. Upon 

termination, a process's parent is responsible for any objects that remain accessible (recall that the hierarchical model means that the 

space in which they were allocated is, in any case, derived from space allocated by the parent). An interesting extension of the 

hierarchical model is that a parent can control the class namespace that is seen by its children, for example by mapping standard class 

names into specialized implementations.

MVM

The MVM represents a recent attempt to design a multiprocess JVM that provides a practical compromise between feature provision and 

efficiency of execution (Czajkowski and Daynès, 2001). Earlier systems, such as K0 and Alta, were developed using comparatively old 

versions of the JVM. In contrast, MVM aims to support the full APIs available to the Java programmer and to do so in a way that is 



compatible with modern runtime compilation and garbage collection techniques. The key design principle of MVM is that it provides each 

process with the illusion of execution in a separate JVM, but internally shares as much information as possible between the processes. For 

example, the static fields of a class must be replicated for each process, but the actual code that implements the class is compiled at 

runtime into a shareable form. Each process has a logically separate heap, but at the implementation level these are interleaved within a 

single pool of storage. Privileged APIs allow resource limits to be controlled and processes to be created and terminated.

Unlike K0 and Alta, no direct sharing of objects is permitted between processes: they must communicate using traditional IPC 

mechanisms such as Java RMI or the sockets interface. This avoids the need for a distributed garbage collector.
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26.8 Summary

This chapter has introduced a wide range of schemes for providing various forms of extensibility, either at the OS level, or within a JVM, 

or in some combination of the two. Although the discussion has focused on OS implementation issues, it is worthwhile remembering that 

similar techniques can be useful when designing any other large system. For instance, separating functionality into different processes 

allowing, with careful design, for them to be replaced or configured dynamically, as in a microkernel. These topics have been the focus of 

substantial research over the past three decades; it is only recently that they are having a significant impact on commodity systems. For 

example, the kernel used in the MacOS X operating system is derived from Mach and, as Chapter 27 shows, the kernel used in Windows 

NT, 2000 and XP also has a microkernel heritage.

Exercises

26.1 To what extent do you agree that the problems involved in designing a successful microkernel-based single-machine 

operating system mirror those involved in designing distributed systems in general? In what ways do the two problems 

differ?

26.2 Describe a number of optimizations which are enabled by demultiplexing network packets into paths. What are the 

disadvantages?

26.3 The Nemesis operating system (Section 26.5.2) uses a single virtual address space process model in which all 

processes execute within the same virtual address space, albeit with different virtual memory protection settings. 

Assess the advantages and disadvantages of this approach. What impact does it have on providing binary 

compatibility for UNIX applications?

26.4 The scheduling scheme used in Nemesis was presented in Section 26.5.2 for uniprocessor systems. How would you 

extend it to allow a multi-threaded process to make use of a machine with several CPUs?

26.5 A JVM is to execute a number of threads performing separate tasks and to provide resource isolation between them. 

Describe, for three different resources, why such execution requires support from the JVM implementer.
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27.1 Introduction to Windows 2000

In 1988 Microsoft decided to design and build an operating system for the 1990s. The existing MS-DOS was designed for hardware and 

modes of use that were rapidly becoming restrictive, if not obsolete; that is, single-user operation on 8-and 16-bit architectures with 

primitive support for running multiple processes and without any memory protection between them. The alternative, OS/2, had attempted 

to be broader in scope but contained substantial portions of assembly language for a uniprocessor CISC architecture (Intel 80286), and 

could not evolve to take advantage of new RISC processors or of the more conventional memory protection features of subsequent Intel 

CPUs. Furthermore, experience from academic OS research was becoming available, particularly from Mach and other microkernels.

Dave Cutler was recruited from Digital to lead the development team. The challenge was to build on his previous experience of 

designing operating systems for computers which sold in their tens of thousands in order to create one for hundreds of millions of PCs. 

An operating system has a long development period, is long-lived and should therefore be portable to new technology as it becomes 

available. Work started in 1989 and the team grew from 10 to 40 or so people providing some 100 person-years of effort. Windows NT 

was released in 1993 with support for Intel x86, MIPS and Digital Alpha processors. 1994 saw the release of Windows NT 3.51, 

increasing the system's performance and adding support for the PowerPC processor. This was followed in 1996 by Windows NT 4.0 and 

then, adopting a new naming scheme, by Windows 2000.

This case study is based on three books (Custer, 1993; 1994 and Solomon and Russinovich, 2000) which should be consulted for further 

detail. We recommend them highly for their clear exposition, which assumes no prior knowledge of operating systems and maintains a 

consistent conceptual framework throughout. We are grateful to Microsoft Press for permission to reproduce figures from these books.

Section 27.2 describes the overall structure of the operating system, showing the layered design and the communication models that it 

employs. We then describe the two main layers which operate in privileged mode: the executive (Section 27.3) and the kernel (Section 

27.4). Section 27.5 describes the structure of processes in terms of the scheduling of the threads operating within them and the 

organization of their virtual address spaces. Sections 27.6–27.8 cover communication between processes through I/O devices, the file 

system and the network. The structure described here continues to underpin the new Windows XP operating system.

27.1.1 Design principles

The design set out to provide:

extensibility – to meet changing market requirements. This has led to a modular object-based structure that allows common

functionality (such as controlling access to resources and tracking their usage) to be separated from resource-specific

definitions. Device drivers may be loaded and removed dynamically as with the loadable kernel modules popular in UNIX and

described in Section 25.2. Common mechanisms are provided for client–server communication between processes;

portability – to accommodate hardware developments. As with UNIX, the code that operates in privileged mode is written in

high-level languages, primarily in C with some C++. Assembly language is confined to a hardware-dependent layer;

scalability – allowing applications to exploit the range of hardware available. This entails support for multiprocessor

hardware and large physical address spaces. It also requires that the system is structured to make good use of these

resources;

integration into distributed systems having networking capabilities and the ability to interoperate with other operating systems;

reliability and robustness – the system should protect itself from internal errors, crashes and external attack. A modular

structure helps to confine and locate a source of error. A protected operating system cannot be corrupted by any user-level

program that cares to write over it; virtual memory and protected address spaces prevent applications from corrupting each

other. Password-protected login prevents free-for-all access to files and the use of resource quotas can stop the resource

usage of one application preventing another from running. The file system should be recoverable to a consistent state after



an unexpected failure;

compatibility – with existing Microsoft systems, addressing the universal problem that legacy software should continue to run

on new operating systems;

government-certifiable security – for multi-user and business use, to class C2 level initially. This is simply

password-protected login, the operating system running in protected mode, protected address spaces and resource quotas;

performance – the system should be as fast and responsive as possible while meeting the other design constraints.

Following the success of consumer editions of Microsoft Windows, the strategy was to create a family of operating systems to span the 

range of available computers from laptops to multiprocessor, multi-user workstations. These would support similar graphical user 

interfaces and the Win32 API, a 32-bit programming interface for application development. Windows NT would also support the APIs 

presented by other operating systems so that it could host applications developed for MS-DOS, OS/2 or POSIX. Although the POSIX 

support that is provided is rudimentary, third-party development has produced alternatives that enable a larger range of POSIX 

operations to be available.

PC hardware had become so powerful that applications which were previously restricted to large, expensive systems 'in the computer 

room' are now feasible for PCs. Similarly, features regarded as standard for many years in larger systems became reasonable to include 

in a PC operating system. Windows NT introduced security mechanisms such as user logon, resource quotas and object protection (see 

below), and the virtual memory system provides protected address spaces. The need for protection between applications has been 

accentuated in recent years, even in single-user workstations, by the pervasive deployment of internet-based networking and the 

execution of code from untrusted or mutually conflicting sources.

Structured exception handling controls error handling and provides protected entry to the privileged kernel (via traps or software 

interrupts) thus contributing towards reliability. The modular structure with interactions through published interfaces also contributes. 

None of these features is novel, except in the context of PC software.
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27.2 System structure

Figure 27.1 shows the overall system structure. The majority of operating system functions are provided within the executive running in 

privileged mode. The executive has components that implement virtual memory management, process management, I/O and the file 

system (including network drivers), inter-process communication and some security functions. Object management is generic, is used by 

all of these functions and is abstracted in a separate executive component.

Figure 27.1. Windows 2000 block diagram.

The executive builds on lower-level facilities provided by the kernel. For instance, the mechanics of storing and resuming thread contexts 

is a kernel function, but the creation of new processes and threads is managed by the executive. The kernel is also responsible for 

dispatching interrupts and exceptions to the appropriate part of the executive and for managing basic synchronization primitives. The 

interface provided by the kernel is private, used only by the higher-level executive functions; see Figure 27.2. The kernel itself interacts 

with the physical machine through the hardware abstraction layer (HAL) which abstracts the aspects of the system which are machine 

dependent, for example how to interact with an interrupt controller or how to communicate between CPUs in a multiprocessor machine.



Figure 27.2. System interfaces.

The executive is invoked from user mode through a system call interface. However, applications are expected to use a further level of 

indirection through protected subsystems that implement conventional programming APIs in terms of these system calls. The figure

illustrates three such subsystems, providing OS/2, Win32 and POSIX environments to their respective client processes. These

subsystems can either be structured using a client–server model or as shared libraries with which clients link. In practice, a combination of

both mechanisms is used so that the subsystem can retain control over system-wide data structures (for example the POSIX subsystem

records parent–child relationships between the processes that it manages) while allowing more direct access where such protection is not

required, for instance translating between file descriptors used by a POSIX process and the underlying identifiers exported by the

executive. This represents a limited combination of the microkernel and library extensible operating systems that we saw in Chapter 26.

27.2.1 Executive components

In this section we describe the major components of the executive.

The object manager creates and deletes executive objects, as shown in Figure 27.3. A system call to create any specific type of 

executive object results in a call from the component of the executive that manages objects of that type to the object manager. 

Object management is the uniform underlying mechanism for the representation and management of resources and the object 

manager is involved in all generic operations. In Chapter 24 we saw how UNIX processes used file descriptors as a way of 

identifying the resources that they were using. Executive object handles are a more general mechanism: they can identify 

entities such as processes and threads in addition to communication endpoints.

Figure 27.3. Creating executive objects.



The security reference monitor provides runtime protection for objects and, being involved in object manipulation, can audit their 

use. The consistent use of object handles to denote resources brings a similar consistency to security management.

The process manager is responsible for processes and threads. A process must be created with one thread to start with, since a 

thread is the unit of scheduling; more threads may be created as the process progresses. As for UNIX, a process is the unit of 

resource allocation.

The local procedure call facility (LPC) supports client–server communication.

The virtual memory manager provides a protected address space for each process (shared by its threads) and supports paging.

The I/O system provides device-independent I/O and manages file and network buffers.
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27.3 The object model and object manager

The design used in Windows NT and Windows 2000 has taken object-based structuring further than most commercial operating systems. 

An object is an instance of an object type. An attribute of an object is part of its state (a data field). Object services are the means by 

which objects are manipulated. The public service interface of Figure 27.2 contains services for executive objects; see also below. The 

term 'method' which is often used for objects' interface operations is used more specifically here; see later. Some client subsystems such 

as Win32 and POSIX require that a child process should inherit resources from a parent (recall the UNIX fork operation), and this is easily 

arranged via object mechanisms.

Objects provide a uniform approach to:

naming: providing human-readable names for system resources;

sharing: allowing resources and data to be shared by processes;

protection: protecting resources from unauthorized access.

The object manager (OM) creates, deletes, protects and tracks the use of executive objects. The executive provides the public interface of 

the operating system and, in turn, builds on the lower-level mechanisms provided by the kernel through its internal, private interface. The 

public interface makes available the object types given below. For each object type the manager or subsystem which supports it is given.

Executive objects

process (process manager)

A program invocation including the address space and resources required to run the program. Resources are allocated to 

processes.

thread (process manager)

An executable entity within a process. A thread has a scheduling state, priority and saved processor state if it is not currently 

executing on a CPU.

section (memory manager)

A region of memory which may be shared.

file (I/O manager)

An instance of an opened file or I/O device. Notice that, as in UNIX, files and devices are treated uniformly.

port (local process communication (LPC) facility)

A destination for messages passed between processes; that is, a name for a communication endpoint.

access token (security system)

A tamper-proof ID containing security information about a logged-on user.

event (executive support services)



An announcement that a system event has occurred.

event pair (executive support services)

A notification that a dedicated client thread has copied a message to the Win32 server (used only by the Win32 subsystem).

semaphore (executive support services)

A counter that regulates the number of threads that can use a resource.

mutant (executive support services)

A mechanism that provides mutual exclusion (mutex) capabilities for the Win32 and OS/2 environments.

timer (executive support services)

A counter that records the passage of time.

object directory (object manager)

A memory-based repository for object names.

symbolic link (object manager)

A mechanism for referring indirectly to an object name.

profile (kernel)

A mechanism for measuring the distribution of execution time within a block of code (for performance tuning).

key (configuration manager)

An index for referring to records in the configuration database.

27.3.1 How executive objects are used

The use of objects is as described in general terms in Section 2.7 and follows the open–use–close model which is familiar from filing

systems. Here objects may be persistent, like files, or dynamic, needed only for the duration of a program execution, like threads. For

dynamic objects a create operation implies an open operation as well. Persistent objects are opened for use in the usual way.

A hierarchical object naming scheme is provided via directory objects and the object namespace is visible to all processes. This will be 

discussed in more detail below. Here we need only be aware that an object must have a name to be opened, shared and protected.

A process that knows the name of an object may open the object for some mode of use. An access control check is made and, if the 

process is authorized to use the object in that mode, an object handle is returned. A security descriptor is attached to the open object so 

that subsequent calls on the open object can be checked. We have:

handle  open (object-name, mode) 

result  service (handle, arguments)

A process acquires handles for all its open objects and these are available for use by its threads. Sharing between processes is also 

facilitated in that processes sharing an object each have a handle for it. The system can note the number of handles and determine when 

the open object is no longer in use. Note that this generalizes UNIX's use of the per-process open file table which contains handles for 

files, devices and pipes. UNIX pipes would be dynamic objects which are not named in this kind of naming graph.

27.3.2 The structure of an object



Every object has a type which determines its data and the native system services that can be applied to it. An object has a header and a 

body; see Figure 27.4. The header contains standard data (or attributes) which is controlled by the object manager component of the 

executive by means of generic object services. These services are the system calls in the public service interface which can be invoked 

from either user mode or privileged mode; recall Figure 27.2.

Figure 27.4. Contents of an object header.

In more detail, the standard object header attributes are:

object name
makes an object visible to other processes for sharing;

object directory
for the hierarchical object naming structure;

security descriptor
access control specification;

quota charges
resource charges levied on a process on opening this object;

open handle counter
count of open handles to this object;

open handle database
list of processes with open handles to this object;



permanent/temporary
may the object be deleted when it falls out of use?;

kernel/user mode
is the object available in user mode?;

type-object pointer
to the type-object which contains attributes common to a set of objects of the same type.

The generic object services on a created and opened object are:

close
closes a handle on the object;

duplicate
shares an object by duplicating the handle and giving it to another process;

query object
obtains information about an object's standard attributes;

query security
obtains an object's security descriptor;

set security
changes the protection on an object;

wait for a single object
synchronizes a thread's execution with one object;

wait for multiple objects
synchronizes a thread's execution with multiple objects.

27.3.3 Object types

The object body is of no concern to the object manager. It contains type-specific data which is controlled by some other component of the 

executive; all components may define object types and must then make services available to allow their type-specific attributes to be 

manipulated. Note that a type-object, pointed to from the object header, contains data that remains constant for all objects of that type. 

The type-object also maintains a data structure which links all objects of that type as shown in Figure 27.5.

Figure 27.5. Process objects and the process type-object.



The type-object contains the following:

object type name
name for objects of this type, such as 'process';

access types
types of access a thread may request when opening a handle to an object of this type, such as 

'read';

synchronization 

capability

whether a thread can wait on objects of this type;

pageable/non-pageable
whether the objects can be paged out of memory;

(virtual) methods
one or more routines provided by the creating component for the object manager to call at certain 

points in the object's lifetime, such as open, close, delete, query-name, parse, security (the last 

three relating to secondary domains); see Section 27.3.6.

Figure 27.6 shows an object instance. The generic attributes in the header are in the domain of the object manager. The interface 

operations which operate on the generic attributes are the system services supported by the OM. The object body is in the domain of the 

executive component which manages objects of that type. The interface operations which operate on the type-specific attributes are the 

system services exported by the executive component.

Figure 27.6. Objects, interfaces and managers.



27.3.4 Object names and directories

Objects are named to achieve identification, location and sharing. Object names are unique within a single system and the object 

namespace is visible to all processes; see Figure 27.7. Subject to the security reference monitor, Win32 and other subsystems as well as 

components of the executive can create directory hierarchies since these are simply nested structures comprising directory objects.

Figure 27.7. Object name hierarchy.

Object names are supplied to the create and open services; as for all objects, handles are used to access open directories. Once a thread 

has opened a handle to an object directory (with write access) it can create other objects and place them in the directory; see Figure 27.8. 

The query service scans the list of names and obtains the corresponding location information.

Figure 27.8. An object directory object.



The naming graph has domains superimposed on it; for example, a subtree of the hierarchy that contains file objects and their directories 

will be managed by the filing subsystem; see Figure 27.9. Files are persistent objects and the task of locating a given file from a directory 

entry is a function of file management. We have seen how this may be done in general in Chapter 6 and in UNIX systems in Chapters 24

and 25.

Figure 27.9. Object naming domains.

Locating a dynamic object, that exists only for the duration of a program execution, from a directory entry is a simpler matter: all that is 

needed is a pointer to an in-memory object; therefore different executive components are responsible for different portions of the graph.

Symbolic links are implemented as objects. The type-specific attributes include the substitute pathname string and the time of creation. 

The namespace design allows for extension to external objects in a distributed system. For example, at some point in a pathname an 

external device name may be detected and network services invoked; see Section 27.8.

27.3.5 Object handles

Each process has an object table which contains all its handles (pointers to open objects). An object handle is an index into a 

process-specific object table. In Windows 2000 the object table is held as a three-level tree, in much the same way as a mutli-level page 

table, so that it can provide access to a large number of handles without requiring a single contiguous table structure to be allocated. 

Figure 27.10 shows two processes sharing an object; each has a handle for it.

Figure 27.10. Process object tables.



27.3.6 Type-specific object methods

The object manager component of the executive exploits the similarities of objects across all types to manage them uniformly. The OM 

also allows each executive component which is an object type manager to register with it type-specific object methods. OM calls these at 

well-defined points, such as on create, open, close, delete and when an object is modified. An example is that the filing system (and not 

OM) should check whether an object to be closed is holding any locks. For the directory services query, parse and security, methods are 

called if the object exists in a secondary domain; for example, the first few components of a pathname may be in the domain of the object 

manager. At some point pathname components from a secondary domain are reached. At this point the OM will call the parse method for 

the appropriate secondary domain, such as a filing system, and pass the rest of the pathname to it for resolution.

27.3.7 Protecting objects

Class C2 security requires secure login, discretionary access control, auditing and memory protection. After an authenticated login an 

access token object is permanently attached to the user's process and serves as an official identifier for authorization and accounting 

purposes.

Figure 27.11 shows an example of an access token where user JMB belongs to four example groups named LECT, OPERA, WIC and 

SSC. A default access control list (ACL) is shown as a number of chained access control entries (ACE). If the user does not supply an 

ACL on creating an object and there is no arrangement to inherit one from other objects then this default ACL is used.

Figure 27.11. An access token object.
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27.4 The kernel

Unlike the rest of the executive, the kernel remains resident and runs without preemption, although interrupts from devices will still be 

delivered. It is written primarily in C with assembly language for those parts which must execute with maximum possible speed or are 

processor-specific. The kernel has four main functions:

scheduling threads for execution;

transferring control to handler routines when interrupts and exceptions occur;

performing low-level multiprocessor synchronization;

implementing system recovery procedures after power failure.

Policy/mechanism separation is a design feature of Windows NT and Windows 2000. The kernel provides mechanisms; the executive 

builds on them and implements policies. Above the kernel, the executive treats threads and other shareable resources as objects and 

therefore incurs object management overheads as described above for creating, opening, checking access control policy specifications, 

etc. Within the kernel simpler kernel objects are used, as described in the next section.

27.4.1 Kernel objects, kernel process and thread objects

Within the kernel, simple kernel objects come without the higher-level object machinery and most executive objects encapsulate one or 

more kernel objects. The kernel object controls the information held on executive-level objects and the executive must make kernel calls to 

access or update this information.

We shall not study each kernel object in detail. In outline, kernel objects are classified as control objects or dispatcher objects.

Control objects are for controlling various operating system functions and include kernel process objects, asynchronous 

procedure call (APC) objects, deferred procedure call (DPC) objects, interrupt objects, power-notify objects and power status 

objects.

Dispatcher objects incorporate synchronization capabilities, alter or affect thread scheduling and include kernel thread objects, 

kernel mutex objects, kernel mutant objects, kernel event objects, kernel event pair objects, kernel semaphore objects and 

kernel timer objects.

Figure 27.12 gives the general idea of (executive) process and thread objects encapsulating simpler kernel process and thread objects.

Figure 27.12. Kernel process and thread objects.



27.4.2 Thread scheduling and dispatching

The kernel implements priority-based, preemptive scheduling of threads. Priority levels 0 (low) to 31 (high) are supported. Levels 16–31

are known as real-time and 0–15 as variable priority, with level 0 reserved for use by the system. The dispatcher may therefore be 

visualized as maintaining a data structure comprising 31 ready queues and a blocked list. The real-time priority levels are intended for use 

in time-critical systems. In other systems threads will be alloc-ated priorities in the range 1 to 15.

The dispatcher adjusts the priorities of the variable priority processes to optimize system responsiveness. For example, a thread's priority 

is raised on becoming runnable after waiting for an event, the amount depending on the type of event; priority is lowered after a thread 

uses its entire time quantum. If a thread becomes compute-bound and repeatedly uses its time slice then its priority will decay to its base 

value which was inherited from its parent process on creation. A thread is created with a base priority in the range of that of its parent plus 

or minus two. As a thread runs its dynamic priority may range from its base to the highest value 15.

Figure 27.13 shows the thread states and transitions which are as follows:

ready: waiting to run on a processor;

standby: selected to run next on a particular processor;

running: until

- preempted by a higher-priority thread,

- time quantum used up,

- termination,

- voluntarily entering the waiting state;

waiting: entered by

- voluntarily waiting on an object to synchronize its execution,

- the operating system can wait on the thread's behalf,

- an environment subsystem can direct the thread to suspend itself, when the awaited event occurs the thread 

moves to the ready or transition state;

transition: ready for execution but resources are not available. When resources become available the thread moves to the 

ready state;



terminated: entered when the execution finishes. The thread object might or might not then be deleted; it might be reused by 

the executive.

Figure 27.13. Thread states and transitions.

Note that we have multiprocessor operation. Suppose a process of priority 7 is made runnable by a process of priority 8 running on 

processor A and some processor B is running a process with priority less than 7. Then the dispatcher will put the process of priority 7 in 

standby state for processor B and cause a dispatch interrupt to be sent to processor B. B's servicing of this interrupt will result in 

preemption of the running thread, which is set to the ready state, and a context switch to the standby thread. A preempted thread is put to 

the head of its priority queue whereas normally a thread is queued at the end of its priority queue.

27.4.3 Interrupt and exception handling

Custer (1993) illustrates interrupt and exception handling using the MIPS architecture, which has been used as an example throughout this 

book. All interrupts are taken initially by the trap handler which disables interrupts briefly while it records the machine state and creates a 

trap frame from which the interrupted thread can be resumed.

The trap handler determines the condition that caused it to be entered and transfers control to other kernel or executive modules. (Note 

that this analysis by software is imposed by the architecture. The alternative is hardware decoding of the source of the exception or 

interrupt with automatic transfer to the corresponding service routine, so-called 'vectored interrupts'. The trade-offs were discussed in 

Chapter 3.) If the cause was a device interrupt the kernel transfers control to the interrupt service routine (ISR) provided by the device 

driver for that device. If the cause was a call to a system service, the trap handler transfers control to the system service code in the 

executive. The remaining exceptions are fielded by the kernel. Details of how each type of interrupt or exception is handled are given in 



Custer (1993). Solomon and Russinovich (2000) describe the approach taken on Intel x86 processors.
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27.5 Processes, threads, fibres and concurrency control

As with UNIX, a process can be considered to be a running instance of an executable program. It has a private address space containing 

its code and data. As it executes, the operating system can allocate it system resources such as semaphores and communications ports. 

A process must have at least one thread since a thread is the unit of scheduling by the kernel.

A process executing in user mode invokes operating system services by making system calls. Via the familiar trap mechanism (Section 

3.3) its mode is changed to system (privileged) as it enters and executes the operating system and is returned to user mode on its return.

Processes are also represented as objects, so are manipulated using object management services; see Figure 27.14. The access token 

attribute is that of the user represented by this process; see Figure 27.11. Notice that the process has a base priority used for the 

scheduling of its threads and a default processor affinity which indicates the set of processors on which the threads of this process can 

run. The quota limits specify maximum useable amounts of paged and non-paged system memory, paging file space and processor time. 

The total CPU time and resources used by the process are accounted in execution time, I/O counters and VM operation counters.

Figure 27.14. Process object.



A process can create multiple threads to execute within its address space and both process objects and thread objects have built-in 

synchronization capabilities. Once a thread has been created it is managed independently of its parent process. Figure 27.14 shows a 

typical process and its resources. Figure 27.15 shows a thread object. The client ID identifies the thread uniquely; this is needed when it 

makes service calls, for example. The thread context includes the thread's register dump and execution status.

Figure 27.15. Thread object.

A form of lightweight thread or fibre is also available. Unlike threads, fibres are managed entirely in user mode and are invisible to the 

kernel and the executive; they follow the pattern of user-level threads introduced in Chapter 4. The kernel manages threads and a running 

thread can cooperatively switch from one fibre to another under the direction of a SwitchToFiber library operation. Each fibre has an 

associated saved register state, stack, exception-handling information and a perfibre data value. This user-level scheduling means that 

care is required in order to use fibres successfully: if a running fibre blocks then this will block the thread that hosts it. An application using 

fibres can only exploit a multiprocessor machine if it has more than one thread and coordinates the scheduling of its fibres over them: this 

necessitates concurrency control in case code executing in separate threads attempts to switch to the same fibre. An application that 

wishes to use fibres must explicitly create it first by invoking ConvertThreadToFiber.



Table 27.1. Synchronization object states.

Object type Set to signalled state when... Effect on waiting threads

Process last thread terminates All released

Thread thread terminates All released

File I/O operation completes All released

Event a thread sets (signals) the event All released

Event-pair dedicated client or server thread sets the event Other dedicated thread released

Semaphore count drops to zero All released

Timer set time arrives or interval expires All released

Mutant thread releases the mutant One thread released

27.5.1 Thread synchronization

We are familiar (Section 4.4, Chapters 10 and 11) with the requirement for threads to synchronize their activities by waiting for events and 

signalling their occurrence. Synchronization is implemented within this overall object framework. Synchronization objects are executive 

objects with which a thread can synchronize and include process, thread, file, event, event-pair, semaphore, timer and mutant objects. The 

last five of these exist solely for synchronization purposes.

At any time a synchronization object is in one of two states: signalled or non-signalled. These states are defined differently for different 

objects as shown in Table 27.1. A thread may synchronize with one or a number of objects and may indicate that it will wait only for a 

specified time. It achieves this by invoking a wait service provided by the object manager and passing one or more object handles as 

parameters. For example, a file object is set to the signalled state when a requested I/O operation on it completes. A thread waiting on the 

file handle is then released from its wait state and can continue.

27.5.2 Alerts and asynchronous procedure calls

It is often useful for one thread to notify another that it should abort. In Section 1.2.1, for example, we saw that several threads might be 

searching simultaneously for some data item. As soon as one thread solves the problem it should be able to tell the others to stop. This is 

called an alert. The UNIX kill signal has similar functionality.

An asynchronous procedure call (APC) is a mechanism by which a thread may be notified that it must perform some action by executing 

a pre-specified procedure. Most APCs are generated by the operating system, especially the I/O system. The I/O system is invoked 

asynchronously. For example, the caller can initiate input then proceed with work in parallel. When the input is complete, the I/O system 

uses a kernel-mode APC to force the thread (effectively interrupt it) to copy the data into its address space after which the thread may 

continue its interrupted work.

User-mode APCs are similar except that a thread may control when it will execute the APC. There are two ways in which a thread can 

control when it receives a user mode alert or APC. Either it calls a native service to test whether it has been alerted (a polling scheme) or it 

can wait on an object handle, specifying that its wait can be interrupted by an alert. In either case, if a user-mode APC is pending for the 

thread, it is executed by the thread.



27.5.3 Address space management

The address space of a process is as shown in Figure 27.16. We have seen exactly this organization in Section 9.3. A paged virtual 

memory management system is employed, as described in Section 5.5.

Figure 27.16. Address space layout within a process.

27.5.4 Sharing memory: Sections, views and mapped files

Recall from Chapter 5 that it is desirable for chunks of virtual memory to be shared by several processes to avoid using memory for a copy 

per process of, for example, compilers and libraries. Section objects, comparable with the segments of Section 5.4, are used to achieve 

sharing.

A thread in one process may create and name a section object. Threads in other processes may then open this section object and acquire 

handles to it. After opening, a thread can map the section object, or part(s) of it, into its own or another process's virtual address space. A 

mapped portion of a section object is called a view and functions as a window onto the section; the idea is to map only those portions of a 

(possibly large) section that are required. A thread may create multiple views and different threads may create different views, as shown in 



Figure 27.17.

Figure 27.17. Mapping views of a section.



The VM manager also allows section objects to be implemented as mapped files; see Section 6.8. The executive uses mapped files to 

load executable images into memory. They are also used for a number of I/O and cache management functions.

Figure 27.18 shows a section object. The maximum size is an attribute which, if the object is a mapped file, is the size of the file. The page 

protection attribute is assigned to all pages when the section is created. The section may be created empty, backed by swap space (the 

so-called paging file) or loaded with a file (backed by the mapped file). A based section must appear at the same virtual address for all 

processes sharing it, whereas a non-based section may appear at different virtual addresses in different processes.

Figure 27.18. A section object.

27.5.5 Memory protection

An address space per process, two modes (user and system) of processor operation and page-based protection have been standard in 

most non-PC operating systems for many years and are used here. Page-level protection may be read-only, read/write, execute-only (if the 

hardware supports this), guard page, no access or copy-on-write.

In addition to these standard facilities, object-based memory protection is provided. Each time a process opens a handle to a section 

object or maps a view to it, the security reference monitor checks whether the process attempting the operation is allowed that access 

mode to the object. For example, if a file is to be mapped, the mode of access required by this process must be specified on the file's ACL. 

All objects have ACLs so a check may always be made, although a shareable compiler would have a simple ACL permitting general use.
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27.6 The I/O subsystem

A design aim was that it should be possible to install, and add or remove dynamically, alternative device drivers in an arbitrary layered 

structure. For example, a number of existing file systems must be supported including MS-DOS's FAT, OS/2's HPFS, the CD-ROM file 

system CDFS in addition to the 'native' file system NTFS. Drivers should be portable and easy to develop, written in a high-level language.

As in all I/O systems concurrency control is crucial, especially as multiprocessor operation is supported. As always, hardware–software

synchronization is needed, as is mutual exclusion from shared buffer space.

The I/O system is packet driven, that is, every I/O request is represented by an I/O request packet (IRP). A central component, the I/O 

manager, coordinates all the interactions, see Figure 27.19, passing an IRP in turn to each driver that manipulates it.

Figure 27.19. I/O to a multi-layered driver.

Notice that we do not have a single level of device handling conceptually below the I/O manager but any number of levels. However, a 

high-level driver such as a filing system does not interact directly with a lower-level driver such as a disk driver. Each driver operates by 

receiving an IRP from the I/O manager, performing the operation specified and passing it back to the I/O manager. It may then be passed 

on to another driver or, if the transaction is complete, the caller may be informed.

As with the streams interface (Section 25.2) the use of a consistent internal API and data format aids flexibility by enabling a broader 

variety of module compositions to be developed. For instance, file system mirroring and striping can be provided in terms of IRPs and then 

composed with the implementation of any file system. Generic tracing and logging functions can also be provided by handling IRPs.



27.6.1 I/O design features

Object model and file abstraction

Programs perform I/O on virtual files, manipulating them by using file handles. All potential sources or destinations for I/O are represented 

by file objects. The I/O manager dynamically directs virtual file requests from user-level threads to the appropriate file, directory, physical 

device, pipe, network, etc.

Asynchronous I/O calls

We have often seen the problems associated with synchronous I/O, particularly when associated with single-threaded applications. The 

application must block until the I/O completes, even though processing could continue in parallel with the relatively slow device operation. 

Asynchronous I/O is supported as well as synchronous: the application need only specify 'overlapped' mode when it opens a handle. 

Services that are likely to involve lengthy I/O operations are asynchronous by default, about one-third of the native services. The 

underlying I/O system is implemented completely asynchronously, whether the caller is using synchronous or asynchronous mode.

Care must be taken to use asynchronous I/O correctly, in particular a thread must avoid accessing data which is simultaneously being 

used in an I/O transfer. The calling thread must synchronize its execution with completion of the I/O request, by executing wait on the file 

handle. Figure 27.20 shows the general scheme.

Figure 27.20. Asynchronous I/O.



Mapped file I/O and file caching

Mapped file I/O is provided jointly by the I/O system and the virtual memory manager (VMM). A file residing on disk may be viewed as part 

of a process's virtual memory. A program can then access the file via the demand paging mechanisms without performing disk I/O and 

causing the file data to be buffered. It is used for file caching and for loading and running executable programs. It is also made available to 

user mode.

Execution of asynchronous I/O by system threads

We have seen that, in general, the executive is executed procedurally when user-level threads make system calls into it. We now see that, 

when I/O is asynchronous, the thread may return to user level leaving the I/O call still to be serviced. A special system process exists 

which initializes the operating system and lives through its lifetime. This process has several worker threads which wait to execute 

requests on behalf of drivers and other executive components. If a file system or network driver needs a thread to perform asynchronous 

work, it queues a work item to the system process. A thread in the process is awakened to perform the necessary operations.

27.6.2 I/O processing

File objects provide an in-memory representation of shareable physical resources. The object manager treats file objects like other 

objects in the first instance. When it needs to initiate a data transfer to or from a device it calls the I/O manager. Figure 27.21 shows the 

contents of file objects and the services available to operate on them; that is, to operate on the open files or physical devices they 

represent.

Figure 27.21. A file object.



A file object's attributes relate to the open file and include the current byte pointer, whether concurrent access is possible, whether I/O is 

synchronous or asynchronous, cached or not cached and random or sequential. Note that there are several file objects for a given file if a 

number of processes are reading the file concurrently.

If the file object represents a persistent object, such as a file or directory, additional attributes may be set or queried via the services. 

These include time of creation, time of last access, time last modified, time of last time change, file type and the current and maximum 

size. This information is held in persistent storage with the file or directory.

27.6.3 Windows Driver Model

Device drivers interact with the kernel and executive by following the Windows Driver Model (WDM) which is common between Windows 

2000, Windows 98 and Windows Millennium Edition. The term 'device driver' is used here very generally: it would include modules such as 

the previously mentioned logger which handle IRPs but do not themselves interact directly with a hardware device. It also includes file 

system drivers that map file-based operations to block-based ones (both expressed as IRPs) and also network redirectors that map local 

file system operations into invocations on a remote network file server.

Within WDM there are three kinds of driver. Firstly, bus drivers are those which manage one of the communication buses within the 

system; for example, there will be a bus driver for the PCI bus, one for the USB bus (if present), and so on. These drivers monitor the 

status of the respective buses, performing power management and, where supported, detecting the arrival or removal of plug-and-play 

devices. The second kind of WDM driver is a function driver. These perform the classical device management functions, mapping the 

particular interface exposed by a hardware device into the IRP interface expected by the higher levels of the system. They use the 

hardware abstraction layer in order to interact with the hardware. In principle this means that a function driver for a particular kind of PCI 

network card on one machine could work on any other machine supporting that same card. The final kind of driver is a filter driver which 

acts purely in terms of IRPs.

Each driver provides a series of routines through which it interacts with the I/O manager:

an initialization routine which is executed when the driver is first loaded and a corresponding unload routine which is called 

before the driver is removed;

an add-device routine which allocates a new device object representing a plug-and-play device that has become available;

a set of dispatch routines which are invoked to service each kind of IRP. For example there are DispatchRead and 

DispatchWrite operations;

a start I/O routine which can be used in simple drivers which support only a single IRP at a time (perhaps because they 

interact directly with a hardware device that has this restriction). Most drivers support multiple outstanding IRPs;



an interrupt service routine which is invoked in response to an interrupt from a device that the driver is managing and a 

Deferred Procedure Call routine which performs deferred processing in the same way as suggested in Section 25.2.3.
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27.7 The NT filing system, NTFS

The power and capacity of modern PCs makes it feasible to use them for applications that would in former days have been restricted first 

to mainframes and more recently to network-based distributed systems for the workplace. PCs are now capable of functioning as file 

servers, compute servers and database servers. They are capable of running engineering and scientific applications and they will be used 

for large corporate systems which are networked.

Early PC filing systems, such as MS-DOS FAT, are totally inadequate for such large-scale applications. Even the more recent OS/2 HPFS 

was found to need modification; for example, HPFS uses a single block size of 512 bytes for storage allocation and has a maximum file 

size of 4 GB. The Windows NT team therefore embarked on the design of a new filing system: NTFS. This continues to be used in 

Windows 2000.

27.7.1 NTFS requirements

Recoverability: it should be possible to restore the filing system to a consistent state after a crash. The 'volume inaccessible'

problem, familiar to PC users when the single copy of system data resides on a block which has become bad, is overcome by 

maintaining redundant copies of key system data and journaling updates.

Security: authenticated login and an access check against the file's ACL when file objects are opened and used.

Data redundancy and fault tolerance for application data, since it is envisaged that Windows NT and Windows 2000 will be 

used for a wide range of advanced applications. Corporate data must not be lost on media failure so redundant copies must be 

held. The layered I/O structure allows different disk drivers to be loaded dynamically. It can be arranged that all data is written 

both to a primary and to a mirror disk for example. Disk striping can also be built in.

Large disks and large files: the size of data fields which represent disk and file size should not restrict these sizes. Also, each

component of a pathname (a file or directory name) can be up to 255 characters in length.

27.7.2 New features of NTFS

Multiple data streams. A number of streams may be open simultaneously to a single file. Typical syntax is:

myfile.dat:stream2 

An example is that one stream can be used for data and another for logging.

Unicode-based names. A general, 16-bit encoding scheme is used so that files are transferable without restriction. Each

character in each of the world's languages is represented uniquely. Filenames can contain Unicode characters, embedded 

spaces and multiple periods.

General indexing facility. Filenames and attributes are sorted and indexed for efficient location.

Bad sector remapping.

POSIX support. Case-sensitive names can be used. The time a file was last modified is available. Hard links are supported,

but not symbolic links in the first instance.



Removable disks, that is, mountable filing systems.

27.7.3 NTFS design outline

We have seen that a virtual file abstraction is used for all I/O. System calls are made by subsystems (on behalf of their clients) or by library 

code (on behalf of high-level programs) to open and use file objects in order to perform all I/O. We are now concerned with file objects that 

correspond to files and directories as opposed to physical devices.

Figure 27.22 shows how the layering of drivers can be used by NTFS. We see a fault-tolerant driver interposed transparently between the 

NTFS driver and the disk driver. The fault-tolerant driver can ensure that data is written redundantly so that if one copy is corrupted a 

second copy can be located, for example using RAID-1 striping as described in Section 6.6. The figure also shows the executive 

components that are integrated closely with NTFS.

Figure 27.22. NTFS and related executive components.

The log file service (LFS) maintains a log of disk writes. This log file is used to recover an NTFS formatted volume in the case of a system 

failure. The cache manager (CM) provides system-wide caching services for NTFS and other file system drivers. These may be remote, 

network-based file systems. File caching is managed by mapping files into virtual memory which is read and written to perform file I/O 

operations. On a cache miss the VM manager calls NTFS to access the disk driver to obtain the file contents from disk. There are also 

various background activities in the cache manager, for example to flush the cache to disk periodically.

We have studied transaction processing concepts in Part III of this book. LFS is using a similar technique to that described in Chapter 21 on 

database recovery. NTFS guarantees that I/O operations which change the structure of the filing system are atomic. We have studied the 

problems of non-atomic file operations on many occasions.



Figure 27.23 outlines the in-memory (general, object-based) and on-disk data structures used by NTFS. The user has opened, and so has 

handles for, two streams to the file, each with a stream control block (SCB). Both of these point into a single file control block (FCB) 

associated with the open file. From the FCB the on-disk data on the file can be located, in the first instance as a record in the master file 

table (the equivalent to the metadata table of Chapter 6 or UNIX's inode table). Extent-based storage allocation, called runs or 

non-resident attributes, is used to manage the file data. This supports continuous media with contiguous allocation on disk; see Section 

6.5.3.

Figure 27.23. Outline of NTFS data structures.

Custer (1994) is devoted entirely to the filing system and further design details may be found there.
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27.8 Networking

Windows 2000 supports a wide range of network protocols, drawing on those developed for earlier Microsoft operating systems as well as 

those which have gained currency within the internet. This section describes the major APIs that are available to an application 

programmer. In each case instances of the resource are exposed by the executive as objects. However, the interface used by the 

application program will depend on the environment subsystem that it is using: an interface based on object handles is provided by the 

Win32 environment whereas one based on file descriptors is exposed to POSIX applications. As usual Solomon and Russinovich (2000) 

supply further details.

Named pipes

These provide reliable bidirectional communication between two endpoints, typically a client and a server. They can be used either within a 

single machine for communication between processes or, with some transparency, for communication across a network.

The Universal Naming Convention (UNC) is used to identify such pipes: names take the form '\\computer\Pipe\name' in which 'computer' 

specifies the machine on which the pipe has been created, 'Pipe' is a constant string indicating the kind of resource being accessed and 

'name' indicates the particular pipe to access on the specified machine. In contrast, a named pipe on UNIX is identified purely within a local 

context and cannot be used for communication between machines. As usual, applications may wish to use a separate name service to 

translate between higher-level names, indicating the kind of service required, and the name of the particular computer and pipe that 

provides that service. Using the internet protocol suite named pipes may be implemented over TCP.

Mailslots

These provide unreliable unidirectional message-based communication. They may be implemented over UDP and, as with that protocol, 

expose a broadcast operation. Mailslot names take the form '\\computer\Mailslot\name'.

Windows sockets

The winsock API provides analogues of the BSD sockets interface for direct access to protocols such as UDP and TCP. To aid server 

implementers, Windows 2000 provides a TransmitFile operation that behaves as with the sendfile system call that we introduced in 

Section 25.4. A further operation, AcceptEx, combines a connection-accept, a query of the new client's network address and a read of any 

data already received from the client.

Remote procedure call

A straightforward RPC facility is provided that broadly follows the model of Section 16.7. A client application links against a library of RPC 



stubs which translate local procedure calls into network communication, for example over a TCP connection or over a named pipe. The 

server uses a corresponding library to perform the reverse process. A variety of authentication and encryption schemes can be integrated, 

for instance Kerberos or SSL.

Common Internet File System

Certain components of the I/O management system within the executive provide access to remote file systems using the Common Internet 

File System (CIFS) protocols. These are an extension of the earlier Server Message Block (SMB) schemes. A pathname which is passed 

to the I/O system on an I/O request may be detected as referring to a non-local object; for example, a non-local disk name may be 

encountered which is the root of an external filing system. As for all I/O, the I/O system will create an IRP (I/O request packet) and, in this 

case, will pass it to a file system redirector, as shown in Figure 27.24. It is the responsibility of the redirector to create the illusion of a local 

filing system for local clients by holding data on open files and maintaining network connections.

Figure 27.24. Client–server network support.



At the server side the incoming request will be passed up to the server file system. This is not implemented as a multi-threaded process as 

might be expected but instead as a driver. This allows IRPs to be passed efficiently between drivers within the I/O system, in this case to 

the appropriate local file system driver.

A distributed cache coherence protocol is used to allow client machines to cache data that they are accessing over CIFS. The redirector 

may request opportunistic locks (oplocks) on a file which, if granted, permit it to cache the file's contents on either an exclusive or shared 

basis rather than needing to involve the server in each access. A batch mode oplock allows contents to be cached between uses of the 

file; it is particularly suitable for files which are frequently accessed but only for brief periods of time. The locks are opportunistic in that 

they are used merely in expectation of enhancing the performance of the system, not to provide mutual exclusion.
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27.9 Summary

Windows NT and Windows 2000 have a well-defined modular structure although the privileged executive is by no means a minimal 

microkernel. It contains a great deal of functionality including the filing system, although I/O drivers can be loaded dynamically. The fact 

that protected address spaces are provided allows protected subsystems to be built and prevents interference between them. Also, the 

executive is protected from the systems running above it. In these features we have long-established software technology.

More novel aspects of the design are:

the generic use of objects throughout the system, including within the executive;

multi-threaded processes with threads as the unit of scheduling by the kernel, and library support for fibres (user-level 

threads);

asynchronous (non-blocking) I/O with asynchronous notification of completion;

dynamically configurable, multi-level device drivers;

preemptive, priority-based scheduling, including both fixed-priority, real-time processes and variable-priority processes. This 

scheduling is implemented both for user-level processes and for execution of the executive;

(associated with the previous point) the provision of synchronization and mutual exclusion, including for kernel-mode 

processes;

multiprocessor operation (possible because of the last two features);

a filing system that is capable of supporting large-scale applications which may have requirements for networking, 

transactions and recoverability of data;

file system operations guaranteed atomic.

The power and capacity of the modern PC has made it potentially able to support a virtually unlimited range of applications. The first 

generation of PC operating systems lacked almost all of the design features necessary to support advanced applications and it was 

essential to replace them. The design is based on good practice established over many years. So far we have not seen the generality 

expressed in the vision for Windows NT: of coexisting subsystems and general interworking across architectures. Windows NT and 2000 

are at times perceived by its users to be the legacy Windows software rather than the well-designed underlying operating system.

The structure of Windows NT and 2000 described here continues to underpin the new Windows XP operating system.

Exercises

27.1 Describe the functions of the Object Manager in Windows 2000. Which UNIX abstraction is the closest analogue of an 

object handle?

27.2 What is an IRP? What advantages and disadvantages are introduced by using them in the I/O subsystem over using 

ad hoc per-device interfaces?



27.3 Compare and contrast the distinction between the processes, threads and fibres introduced in Section 27.5 with the 

concepts of Solaris processes, threads and LWPs from Section 25.6.

27.4 Section 27.2 described how a programming environment such as POSIX could be provided by a combination of a 

shared library used by applications and a subsystem process with which all POSIX applications communicate using 

IPC.

Why are both components necessary?a.

Discuss how functionality could be split between them in providing (i) the basic UNIX process management 

functions from Chapter 24, (ii) the sockets interface from Chapter 25 and (iii) SVr4 shared memory 

segments from Chapter 25.

b.
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Chapter 28. The World Wide Web

28.1 A simple web-client, web-server interaction 

28.2 Naming web pages 

28.3 Communication using HTTP 

28.4 Document representation 

28.5 Executing programs at server and client 

28.6 Security 

28.7 Concurrency control 

28.8 Scalability issues 

28.9 Web-based middleware: XML and SOAP 

28.10 Summary 

The internet has existed in one form or another for decades, based on research in packet switching in the 1960s. Donald Davies of the 

National Physical Laboratory, UK, conceived the idea in 1965, coined the term 'packet switching' in 1966 and led a team that built a 

packet-switched network. The internet, as we know it today, has grown gradually since that time. The World Wide Web (henceforth 'the 

web') came into use in the early 1990s and has grown into the most popular and widely used distributed system. Non-specialists often 

confuse the internet and the web since the web is their only experience of network- based systems. The approach originated from the 

CERN research institute in Switzerland as a network-based hypertext system for nuclear physicists. The requirement was to share 

documents of various types across networked computers and the innovation was to combine hypertext and networking, using a simple 

protocol HTTP (Hypertext Transfer Protocol) above TCP. The development of the Mosaic browser for the web in 1993 led to the web's 

popular acceptance and extraordinary rate of growth. Mosaic was developed by Marc Andreesen, a student at the University of Illinois at 

Urbana-Champaign, while working for the NCSA (National Center for Supercomputing Applications). Andreesen left NCSA in 1994 and 

formed a company with Jim Clark which later became known as Netscape Communications Corporation.

In this chapter we first outline the system components involved in a simple interaction between a web client and a web server. As for all 

distributed systems, naming, location and the communications protocol must be defined. We then go on to describe how the web has 

evolved to provide more sophisticated facilities.

Web developments are initiated and controlled by the World Wide Web Consortium (W3C), a collaboration between CERN and MIT. Its 

home page is http://www.w3.org/. A recent trend in system design has been to use the web paradigm for the user interface to distributed 

systems in general. A remarkably general acceptance of this approach is emerging and we mention some of the W3C standards on 

which this approach is based.

To find more information about any of the topics in this chapter try using a web search engine, such as Google, to find an introductory 

tutorial or a standard document. There is a wealth of material about the web on the web.
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28.1 A simple web-client, web-server interaction

The simplest way for a web service to operate is to deliver web pages on demand from clients. Figure 28.1 gives the overall architecture. 

This section gives an overview of the required naming, location and communication to make this happen together with an introduction to 

web server organization, document markup and display.

Figure 28.1. Architecture of a client–server interaction.

Web pages are documents which may take a variety of forms. They may be simple ASCII text, pdf or postscript but more usually are 

marked up according to a document standard. Document markup standards were of interest many years before the web was developed. 

The SGML (Standard Generalized Markup Language) ISO standard (8879) of the mid-1980s is widely used in electronic publishing. Web 

browsers have to display documents; that is, their format and style of display must be specified for the browser to implement. HTML

(HyperText Markup Language) avoided the complexity of SGML and started off as a simple markup language focusing on format and 

display as well as document structure. More advanced features have been added over the years.

As well as defining a document's structure and how it should be displayed, HTML supports active links to other documents, so-called 

hyperlinks. Clicking on such a link initiates another interaction to get another document; in the case of the web, another web page from a 

web server. Later, W3C defined XML (Extensible Markup Language) which is a subset of SGML and is concerned not with display but 

with general document structure. Web documents are discussed further in Section 28.4; in particular we need to consider how users can 

interact with web pages.

A web server delivers web pages to clients on demand. A web page is a document that is stored as a file. The file system maintained by 

the web server contains the whole website. The web server and associated file system are available publicly, even though they may be 

located behind a firewall. As we saw in Chapter 8, this is achieved by using a well-known address and port, port 80 at the server's IP 

address, on which the server listens. Packets destined for this address are allowed through the firewall.

Like any shared file service, a web server holds pages that are owned by individuals and pages that belong to groups or projects. Let us 

first assume that each web page has a single owner or manager who is the only principal with write-access to the page. The page is 

published by making it available as a file in the web server's filing system. All the world may then read the page by requesting it to be 

fetched from the web server and displayed in the client's browser. It is possible to restrict access to web pages and this will be covered in 

Section 28.6. In order to access a page a client must know, or be able to find out, its name and location. A protocol must be followed for 



requesting and transmitting a page. The communication protocol for this purpose HTTP (HyperText Transfer Protocol) is described in 

Section 28.3.

The most common form of a web page name is a URL (Uniform Resource Locator). A URL is a concatenation of the web server's DNS 

address, the pathname of the file containing the required web page in the web server's filing system, and the access protocol to be used to 

request and transfer it. Notice that both naming and location are embodied in a URL, that is, it is a location-dependent name. For example, 

the University of Cambridge Computer Laboratory maintains a web server and the top-level or home page is accessed via the URL 

http://www.cl.cam.ac.uk. The DNS address is cl.cam.ac.uk. Following the Research path through the filing system we find 

http://www.cl.cam.ac.uk/Research/SRG. We discuss naming for the web more fully in Section 28.2.

Directory services are the standard approach for finding out about the existence of objects in distributed systems. Directory services exist 

for the web at dedicated websites, for example, a national directory of universities, but the most common approach is to use a search 

engine such as Google or Alta Vista. Here again we are seeing the expertise of a different community (information retrieval) incorporated 

into a world-wide distributed system. Web users commonly bookmark the URLs of sites of interest, thus creating their personal name 

cache. When a web page arrives at a browser it must detect the document type and display the page.

The browser may need to use a program such as acroread or ghostview to display pdf or postscript respectively. The browser usually 

causes a new window to pop up with such displays. Simple ASCII text is displayed directly in the browser's window. HTML documents are 

displayed in the browser's window by following the HTML instructions. Some document components may not be embedded in the marked 

up document but may be in a separate file, for example, images, audio and video. These have to be fetched in separate interactions with 

the web server. Active hypertext links have to be specially indicated.

We now give more detail of items introduced in the above overview. We then go on to show how more sophisticated web interactions, 

involving the execution of programs at the server and at the client, are supported and discuss the issues raised, such as protection of the 

client's host systems from such programs.
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28.2 Naming web pages

The web is a very large-scale distributed system comprising many millions of documents stored at a large number of servers. The 

entities in a distributed system must be named uniquely and, as we saw in Chapter 7, there are well-known methods of designing a 

namespace and achieving unique names. The web uses a naming scheme which covers all kinds of documents, including books as well 

as web pages, called Uniform Resource Identifiers (URIs). One form of URI is a hierarchical, location-dependent name called a 

Uniform Resource Locator (URL). The other form of URI is a Uniform Resource Name (URN). A URL is built around the DNS name of 

the server which holds the document. An example is:

http://www.cl.cam.ac.uk/Research/SRG/opera/publications

As we have seen, cl.cam.ac.uk is the DNS name of the University of Cambridge Computer Laboratory and effectively indicates the root 

of the website. Research/SRG/opera/publications is one path through the website. The URL starts by selecting the protocol to be used, 

in this case HTTP. URLs have the general structure: Scheme :// host name:port / pathname at host. The scheme indicates how to 

access a document, for example via the HTTP protocol, via ftp or as a local file which may or may not not be stored at a public website. 

The host name may take the form of a DNS address or an IP address. If the port is omitted a default is used; port 80 is the usual 

convention. Other uses of URLs are possible such as for setting up telnet (a remote login protocol) or modem connections.

The other form of URI, a URN, is again globally unique but this time is a location-independent and persistent name for a document. A 

URN may be used for documents such as books and standards which are defined independently of website document hierarchies. The 

structure of a URN is:

URN: name-space-identifier: document identifier within namespace

For example, for a book we might have: URN: ISBN: 0-201-17767-6.

As we saw in Chapter 7, directory services are needed to resolve names and bind them to locations. This is easy for a URL in that the 

already existing DNS directory structure, see Section 7.7.3, is used to locate the web server and a pathname within the server to locate 

the document. There is as yet no supporting directory structure for locating documents named only by a URN. Notice that a URN has a 

flat, rather than a hierarchical, namespace.

We also saw in Chapter 7 that using a hierarchical name makes it difficult to move an object. This is certainly true for web documents. 

When the owner renames a document, perhaps by reorganizing a directory structure, thus changing its pathname, the old pathname may 

lead to nothing, causing an 'error 404' message to be displayed, or the owner may replace it with a page indicating its new location and 

perhaps including a hyperlink to it. Web services have no responsibility for such dangling references: the problem is left for solution by 

the user. There may be many bookmarked copies of a URL and many hyperlinks embedding it in web pages and a judgement has to be 

made on how long to maintain a forward pointer at its old location to its new one.

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

28.3 Communication using HTTP

Communication between web browsers and web servers is via HTTP (Hypertext Transfer Protocol). The first version of HTTP, defined in

1990 at CERN, was a simple client–server protocol: a synchronous invocation, to the server, in which a client sends a request message

to the server and awaits a response message. This version was for the transfer of raw data, while the next version HTTP 1.0 allowed

MIME (Multipurpose Internet Mail Extensions) types to be specified and transferred; see Section 28.4. The most recent version at the 

time of writing is HTTP 1.1, decribed in the WC3's request for comment document, RFC2616.

HTTP is an application-level protocol built above TCP which is connection-oriented and reliable; see Section 3.9 and Figures 3.22 and 

3.23. Figure 28.1 shows the overall architecture of a web client–server interaction. The early versions of HTTP were extremely inefficient,

setting up a new TCP connection for every client request, server response interaction. A document typically contains embedded

documents held as separate files at the server. For example, a web page containing text and several images would require an HTTP

connection to fetch the HTML page and a further connection when the browser, on processing the page for display, found each image

specification. This approach made transfers very slow. More recent versions allow a TCP connection to persist between a web client and

server: the way TCP is supposed to be used. Also, instead of waiting for the response to a message before issuing another request

message, a client may now issue a number of successive request messages. It is therefore now much faster to display a document

implemented as several files. HTTP is, however, stateless at the application level and does not expect a server to maintain information

on clients with open TCP connections.

The most commonly used HTTP request messages are:

HEAD Request to return the header of a document

GET Request to return a document to the client

PUT Request to store a document under some filename

POST Request to add a document to a collection such as a newsgroup

DELETE Request to delete a document

All communication takes the form of request messages from client to server and response messages from server to client. The detailed 

format of these messages can be found in tutorials, standards and web development texts.
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28.4 Document representation

An HTML document is a tree of elements, including a head and body which includes headings, paragraphs, lists, etc. Embedded in the 

document specification is formatting detail such as text justification, the use of bold and italic text, background colour, etc. The coarse 

structure is:

<HEAD> … the header of the document including its title

<TITLE> Example of HTML </TITLE>

</HEAD>

<BODY> … the document including formatting instructions … </BODY>

The body of the document may include, for example:

Paragraphs: <P> … paragraph text … </P>

Headings: <H1> first-level heading </H1>

<H2> second-level heading </H2>

Images: <IMG src="picture.jpeg" width = "200" height = "150">

Hyperlinks: <A HREF = "http://www.w3.org/" > W3C </A>

where the text between <A … > and </A>, in this case W3C, is usually displayed highlighted, in blue. If the hyperlink

were to be displayed explicitly we would have:

<A HREF = "http://www.w3.org/" > http://www.w3.org </A>

Lists may be bulleted, numbered or itemized, with nested lists as required.

HTML documents may also include scripts which are executed by the client browser during the process of preparing the page for display. 

This takes us further than the scenario represented in Figure 28.1 since it requires the client browser to interpret and execute the 

embedded script. We are seeing not only a document with instructions on how to display it but also the transmission of a program as part 

of the web page. When JavaScript is the scripting language we have:

<SCRIPT type = "text/javascript"> … the script … </SCRIPT>

Web pages may also include forms of various kinds, allowing users to interact with the web service. In a form, a user may be asked to 

type a response corresponding to a question; a single line might be:

Surname: <input name = surname ><BR>

A user might be presented with a list of alternatives and asked to select only one by clicking on that item. Alternatively, each element in a 

list may have an associated boolean response so that the user may select all items that apply by checking the associated boxes. A form 

may be presented to the user before a requested page is transferred, requesting authentication in the form of user name and password, 

thus controlling access to a web page. When a form is complete the user clicks on submit, the form is parsed and checked locally and, if 

correct, is transmitted to the web server in the form of an HTTP request to get a new page. The server must process the form data and 

carry out the required action such as sending a new page to the user and perhaps sending an email message confirming a completed 



transaction. The new page may be processed by the server to include the data in the form submitted by the user. We expand on the 

system architecture implied by these interactions in Figure 28.2.

Figure 28.2. Client–server interaction including script processing.

Forms are used widely in ecommerce, for example for selecting and purchasing airline tickets, insurance policies, goods and services in 

general. The information in forms may be confidential and sometimes includes financial data such as credit card details. In Section 8.6.5

we introduced the Secure Socket Layer (SSL) protocol which is widely used for protecting such transfers.

As we have seen, HTML mixes the marked up document with how it should be displayed. W3C went on to define XML (Extensible 

Markup Language) which is concerned only with expressing the document structure and not with how it is to be displayed. XML is 

compatible with, but less complex than, SGML. XML allows the document author to define arbitrarily named structures.

Document types

Web services may store and present to users many types of document, for example pdf, postscript, images, audio or video. Such 

document types were already defined for email attachments when the web was designed and MIME types (Multipurpose Internet Mail 

Extensions) are also used for web documents. MIME defines types and subtypes. Some examples are:

Type Subtype

Text Plain

HTML

XML

Application Octet-stream

Postscript



Type Subtype

PDF

Image GIF

JPEG
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28.5 Executing programs at server and client

We saw above that a web page may contain a script which is executed by the client's browser:

<SCRIPT type = "text/javascript"> … the script … </SCRIPT>

It is also possible for an HTML page to contain a script to be executed at the server side:

<SERVER type = "text/javascript"> … the script … </SERVER>

The result of executing the script, but not the script itself, is sent to the client along with the rest of the document. This facility might be 

used to personalize a page by inserting a 'welcome back' string before returning a page to a registered client. Figure 28.2 shows 

server-side and client-side script execution.

We also saw in Section 28.4 that forms may be sent for users to fill in either embedded in web pages or separately, perhaps for 

authentication before a requested page is returned. We now explore the software architecture that supports these activities and show 

extensions that allow programs (applets and servlets) as well as scripts to be executed.

Figure 28.3 shows one of the first enhancements of the basic client–server interaction shown in Figure 28.1. The non-intuitively-named 

Common Gateway Interface (CGI) is a protocol which defines how a web server should take user data as input, usually supplied by 

means of an HTML form, process it and generate HTML as output. A CGI script may be written in any language such as C or Perl. The 

client-side processing of the form causes the CGI program name and its input parameters to be sent to the server in the form of an HTTP 

GET request for a new page. The contents of the form are passed as a string of attribute value pairs. An attribute is what was output as 

part of the form, the corresponding value is what the user typed in response or selected from a menu, for example:

http://host-dnsname/path-to-cgi-program/script.cgi/name1=value1&name2=value2

Figure 28.3. Client–server interaction with forms and CGI programs.



This basic scheme is routinely used to download files and images as well as to invoke CGI scripts. An example of the use of a CGI 

program is to send the form data to an email address as well as to generate the next HTML page to send to the user.

The web server causes the CGI program to be executed with these parameter values and in return expects a web page for sending on to 

the client. The CGI program may simply fetch the required page from storage, adding the data as appropriate, or may carry out more 

sophisticated page generation. Either way, the web server has delegated the task to the CGI program and a web page is returned to it; any 

page generation by the CGI program is not visible to the server. CGI programs may be passed to the web server and stored in the server's 

file system along with HTML documents. There are obvious security concerns as the server is being asked to execute an imported 

program; see Section 28.6.

As well as client-side and server-side scripts it is possible to include pre-compiled programs in HTML pages. Programs to be executed at 

the client side are applets and those to be executed at the server side are servlets. Current practice is that applets and servlets are written 

in Java and embedded in the form of Java bytecode. Many applets are available with Java, for example one applet might be designed to 

play a game with the user, such as noughts and crosses, another might show an animation as part of a web page. Applets are executed by 

the client browser; servlets are executed by the web server; the flow of control is therefore similar to that when scripts are interpreted as 

shown in Figure 28.2. Notice that a CGI program is executed by a separate process in a separate address space from the web server.
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28.6 Security

Access control

We have seen above that a user might have to fill in a form before being allowed to see a document. The owner of the document 

associates a password and a list of user names with it and typically tells collaborators by telephone or by email what their names and 

passwords are. They must then fill in the form with this information before seeing the document. The approach is suitable as part of the 

management of collaborative authoring by distributed groups. Synchronization of access is currently left to the collaborators. This control 

is typically carried out through a combination of Readme files, email and telephone. The W3C is currently turning its attention to support 

for collaborative authoring.

An example where the web provides an ideal publishing forum yet where access control is important is in a conference management 

website, where authors submit papers for inclusion in the conference. A programme committee is responsible for reviewing the 

submissions and selecting the best papers for the conference. The papers and reviews are confidential documents. A selection of the 

papers will eventually appear in the published conference proceedings. Before the web existed, submitted papers were typically 

distributed as hard copy or by email. The submissions are now made available as part of a conference website but access to them must 

be strictly controlled.

Secure communication of confidential data

When buying goods and services via the web an option may be to pay on-line by supplying one's credit card details. This is information 

that must not be transmitted 'in clear'; the client must be assured that the data is securely encrypted before transmission. Many other 

forms of data may be deemed confidential, indeed those designing questionnaires using the HTML forms facility should be aware of the 

need to transmit user data securely. Users are informed that a secure communication is about to take place by a notification form in 

which they can click to proceed or cancel. The method in common use for implementing secure communication is the Secure Socket 

Layer (SSL) protocol described in Section 8.6.5.

Mobile code

We have seen examples of code originating at a web server being executed by a client browser. The code might take the form of scripts 

or applets, both specified in the document. There is reason for concern that an erroneous or malicious script or applet might be a trojan 

horse and, as well as carrying out its intended function, might damage the client's environment. For this reason, browsers run in virtual 

machines with controlled access to the environment in which they run.

The commonly used language for writing applets is Java and applets arrive at the client browser in the form of Java bytecode which is 

interpreted rather than executed directly. The interpreter functions as a controller, as part of a Java Virtual Machine in which the applet

runs. Protection of the client's environment is through controlling the objects that can be created and monitoring every I/O request. The

former results from the use of a trusted class loader and forbidding an imported program from using or generating its own class loader.

I/O requests to local files are almost invariably disallowed and the only network connection that may be established is to the originating

server. An applet is allowed access to the graphics library and to mouse and keyboard input which are necessary for user–browser



interaction.
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28.7 Concurrency control

Although there are many millions of web documents they are effectively read-only over a coarse time grain. Also, web documents tend to 

be read by human users at browsers rather than by other software. For these reasons, web software provides very little support for 

concurrency control. Any problems are left for the users to solve, as discussed in Section 28.2 for name changes leaving dangling 

references, and in Section 28.6 for synchronization for collaborative authoring.

The single writer, multiple readers paradigm applies to web documents, but strong consistency is not enforced. An owner may make 

changes to a page and replace an old version with a new one at any time. Many readers may be displaying the old version of the page 

while the change is being made. Once the page is replaced, any subsequent requests to the web server holding it will yield the new 

page. But, as we shall see below, there may be many cached copies of the old version and the new version will take time to propagate, 

depending on how the caches are managed.

More generally, a subtree of pages could be updated with related changes. Again, there is no support for transactional update and 

inconsistencies could be seen by readers. Because human users are involved, they can perceive and resolve such problems by forcing a 

reload of a page from its original source.

Servers must cope with a high volume of requests and each server instance must deploy multi-threading. At a website with high demand 

there may be many server machines. Again, concurrency control is made relatively simple by the read-only nature of web pages. 

Because the update rate is very low, the website data can be freely shared between threads and server machines without the need for 

complex locking or consistency maintenance.

Databases are increasingly becoming accessed via web-service front-ends. There have been spectacular failures of security and 

availability arising from failure of concurrency control, crash resilience and scalability.
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28.8 Scalability issues

Web servers can come under extremely heavy load, for example when a news event breaks millions of people may turn to the web for 

immediate information and images. In general, because of the scale of the web, any website that provides a useful service may have 

very large numbers of client requests arriving effectively simultaneously. Designers therefore need to consider how server architectures

can scale to handle large numbers of simultaneously ongoing client requests. One approach is to use server clusters, deploying a 

number of machines to provide the service. Another is to use mirror sites where a whole website is replicated. Users are not aware of 

server clusters but they are aware of the different server address components in mirrored URLs.

Because web documents are read-only over reasonably long timeframes, caching is potentially effective and is widely used; that is, 

copies of a document are stored local to clients who have accessed it recently. A cache may be for an individual, stored in the web 

browser's cache, or for a domain such as a university department. Such a domain runs a web proxy through which all requests for web 

pages pass. The web proxy passes a request for an uncached document to the external server and, when it is returned, stores the page 

in its own cache. The next time any client within the domain requests this page, the request is satisfied from the cache. Caches are of 

finite size and are managed according to a replacement algorithm such as 'least recently used'. There may be caches serving larger 

domains, such as universities or geographical regions, forming a hierarchical caching scheme.

Web pages may change. Users may request a reload from source, using the browser reload function, but users may often be in no 

position to know when this is appropriate. Cache management might include measures for consistency maintenance. A simple scheme 

is always to ask the originating server whether the page has changed since the time-stamp of the version held in the cache. Recall that 

one HTTP message option was GET HEADER which is used for this purpose. Although the amount of data transferred is greatly 

reduced by this procedure the number of interactions with the server is not. Alternative schemes are to use expiry times or to request 

servers to tell proxies when pages are changed. In practice cache hit rates have not been found to be very high, even for large caches, 

and cooperative caching is sometimes used. Here proxies are aware of each other and attempt to find a local copy of a page before 

going to the page-holding server.
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28.9 Web-based middleware: XML and SOAP

XML generalized the simple, display-focused document markup of HTML to give a markup language with power and flexibility: a subset 

of SGML. XML documents are made up of storage cells called entities which contain either parsed or unparsed data. Parsed data is 

made up of characters, some of which form the markup and the rest character data. Markup encodes the document's logical structure. 

Users can define arbitrarily named headings and subheadings, nesting to any depth, for example:

<bank-account> some-ID

<name> <surname>owner's-surname</surname>

<forename>owner's-forename </forename> </name>

etc. – other account details

</bank-account>

In contrast, in HTML the only facility is to indicate the importance of the heading, selecting from a small number of levels, and the size 

and boldness of the type to be used for each heading. The user is in fact creating a document type when defining an XML document. A 

document begins in a root or 'document' entity and a well-formed document, with correct nesting, conforms to a grammar.

Each XML document has an associated document type declaration which indicates the defined markup names (the elements) and the 

types of their values, thus defining the document's grammar or document type definition (DTD). The DTD may be contained in the 

document itself, may be in a separate document or may have both components.

We appear to have discarded the ability to indicate how a document should be displayed compared with HTML. In fact, display 

requirements are specified in yet another associated document written in XSL (Extensible Style Language).

For example, a DTD might contain (where #PCDATA indicates a string of characters):

<!ELEMENT student (surname, forename, course, age-at-enrolment)>

<!ELEMENT surname (#PCDATA) >

<!ELEMENT forename (#PCDATA) >

<!ELEMENT course (#PCDATA) >

<!ELEMENT age-at-enrolment (#PCDATA) >

etc …

An XML document with this DTD might contain many student records including:

<student>

<surname>Smith</surname>

<forename>John</forename>



<course> Data Structures </course>

<age-at-enrolment)>19 </age-at-enrolment)>

</student>

The web is an existing large-scale distributed system with an inbuilt scheme for naming and location based on DNS. Users are familiar 

with browsers which are therefore becoming almost essential interfaces to any distributed system. Browsers can transmit and receive 

messages in XML and this is leading to the widespread use of XML for a variety of purposes in addition to the definition and 

transmission of documents.

XML is suitable for marking up documents and giving them a type. Its use in general middleware, for specifying message contents and 

transmitting data in messages, has its pros and cons. XML is programming language independent yet can be generated from 

programming languages, therefore supporting the interworking of heterogeneous components. However, XML tends to express the 

transmitted data in external form as strings of characters. This is not ideal for transmission and is inappropriate if generalized to include 

storage of data in databases.

A W3C standard has been defined for the invocation of services using XML messages: the Simple Object Access Protocol (SOAP);

see http://www.w3.org/TR/SOAP. SOAP is described by W3C as a lightweight mechanism for exchanging structured and typed 

information between peers in a decentralized distributed environment using XML. SOAP allows any service to be wrapped so to appear 

as a web server to its clients.

[ Team LiB ]  

http://www.w3.org/TR/SOAP


[ Team LiB ]  

28.10 Summary

The internet-based World Wide Web is an example of a large-scale, widely distributed system. We studied its overall architecture and 

the mechanisms used for naming, location, communication, security and scalability. We saw that the commonly used names are location 

dependent, built above DNS. The web mechanisms do not address the avoidance of dangling references when the owner moves a page 

thus changing its name. The communications protocol HTTP is built above TCP. Its original design deficiencies, requiring a new TCP 

connection for every transfer involved in a composite document, were corrected in later versions thus improving on the original bad 

performance. The original document markup language HTML combined the specification of a document's structure with instructions for 

displaying it. XML is a generalization of HTML and a subset of SGML, the document standard ISO 8879 (ISO/IEC, 1986).

Web documents, unlike SGML-specified documents, need dynamic change and interaction with users. We saw how forms can be used 

for this purpose, how scripts can be executed at server or browser and how applets, servlets and CGI programs are located 

architecturally.

The fact that the web is concerned with delivering documents which are read-only over long periods simplifies concurrency control and 

makes it possible to exploit replication and caching successfully. The fact that a single owner or manager may write to a document, and 

this occurs infrequently, simplifies concurrency control. The web mechanisms do not address related changes to a number of different 

pages being made under transaction semantics. Consistency problems are left for the application level, the human users, to handle. The 

web is larger in scale than any other distributed system and scalability mechanisms are essential. Server clusters, hierarchical caching 

and mirror sites are widely deployed.

Recent developments are the use of web browsers as universal interfaces to distributed systems. This has led to the use of XML being 

extended from document markup to message definition and transfer and even data storage. This approach may or may not come to 

dominate future system usage. The W3C are active in defining standards. The recently defined SOAP allows any service to be wrapped 

so to appear as a web server to its clients. Using the web as the front-end to databases make concurrency control and transaction 

semantics important issues.

Exercises

28.1 What is a document markup language? What is the fundamental difference between HTML and XML?

28.2 How is the information on how to display an XML document conveyed to a browser?

28.3 How is a website managed by a server inside a firewall made available for public access?

28.4 Discuss naming with respect to the web:

How are unique names created for documents?a.

What happens when a web page is moved from one directory to another?b.

Give examples of where caching might usefully be used.c.

28.5 Criticize the original design of the HTTP protocol. How has it been improved over the years?



28.6 How is user interaction added to the basic functionality of displaying a document? How is such an interaction made 

secure, for example, for transmitting credit card details?

28.7 How are animations made part of documents and how are they executed when the document is displayed?

28.8 Web pages typically have a multiple reader, single writer pattern of access. To what extent is concurrency control 

enforced in the web environment?

28.9 How is potentially heavy load on web servers managed throughout the web architecture?

28.10 Outline the purpose of the SOAP protocol.
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Chapter 29. Middleware

29.1 Middleware paradigms

29.2 Java middleware

29.3 OMG and OMA

29.4 CORBA

29.5 ODMG

29.6 COM, DCOM and .NET

29.7 Message-oriented middleware (MOM)

29.8 Summary

Middleware was defined briefly in Section 2.8 as a layer of software that presents a uniform environment to the components of a 

distributed system. The middleware hides, or abstracts, any hetereogeneity in the underlying operating systems and communications 

services, as shown in Figure 2.19. As we saw in Chapter 7, all distributed systems need a naming scheme for their components, and 

services which map names to locations so that components can interwork, by making use of communications services. Chapter 16

started from same-machine inter-process communication and discussed how IPC might be integrated with communications services. 

There, we discussed message passing, remote procedure call and the socket interface to communications services. In this chapter we 

first give the historical development of the various styles of middleware, relating the paradigms that evolved to what we have studied 

already. We then describe the software that is available commercially or for free download.
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29.1 Middleware paradigms

The widespread introduction of high bandwidth local area networks into the workplace during the 1980s led to distributed systems and the 

need to support the interworking of distributed software components. One approach was to build on communications services where 

untyped byte-streams or packets of bytes were transmitted. The ISO 7-layer model was defined by the communications community and 

included not only traditional communication in levels 1 through 4 but also its extension to support distributed applications in levels 5 

(session), 6 (presentation) and 7 (application), see Section 3.8. Middleware can be seen as occupying layers 5 through 7 and 

message-oriented middleware (MOM) is a natural extension of the packet paradigm of communications. Note that message passing is an 

asynchronous style of communication. The sender does not block waiting for the recipient to participate in the exchange and, if there is a 

reply, it will also arrive asynchronously in due course. If the message service offers persistence and reliability then the receiver need not be 

up and running when the message is sent. Once a message is sent the system accepts responsibility for it and will buffer it if necessary 

until the receiver is ready. Again, this behaviour is following a communications paradigm, that of 'store and forward'. Later in this chapter 

we examine some examples of MOM.

Another approach to supporting distributed software development and deployment came from the computer science community and 

focused on programming. This led to remote procedure call (RPC) systems then remote object invocation, both of which offer typed 

communication between components of a distributed program; see Chapter 16. Object-oriented middleware is based on this style of 

communication together with related services to support the naming and location of objects system-wide so they can be invoked correctly. 

These services have various names such as Interface Trader, Yellow Pages, White Pages, Object Directory, Interface Repository, etc. 

Note that object invocation is a synchronous style of communication. The invoker blocks awaiting the return and the invoked object must 

be loaded and running to take the invocation.

The focus of the database community continued for some time to be of a centralized database with distributed clients making queries and 

receiving responses. Here, the role for middleware is limited to query and data shipping rather than closely-coupled, strongly-typed 

interaction between distributed components of a program. There is little need for strong typing in the communication, and 

message-oriented middleware was used. An example is IBM's CICS (Customer Information Control System), a transaction processing 

system supported by MQSeries reliable message passing; see Section 29.7.1.

In Chapter 28 we examined how document storage and delivery is distributed throughout the World Wide Web. In this case too, the 

communications protocol HTTP is based on message passing, simply being concerned with document transfer. The application (web 

browser or web server) interprets the marked-up document that is transferred but the communications service has no need to be aware of 

the document structure. As we discussed in Section 28.9, the web is larger in scale, and more widely used, than any other distributed 

system and web browsers are becoming the universal interfaces to distributed systems in general. A recent development that is becoming 

widely accepted is to use XML document markup as a type system for communication. Message passing is combined with XML data 

typing in the SOAP (simple object access protocol) standard of W3C, the World Wide Web Consortium. One use of SOAP is to wrap a 

service to make it appear as a web server to its clients. The web was covered in Chapter 28. In this chapter we discuss the broad range of 

middleware, including object-oriented and message-oriented middleware.

29.1.1 Evolution of object-oriented middleware

Early work on remote procedure call, see Chapter 16, with associated services for naming and location, led to standard platforms such 

as ISO's ODP (ISO, 1992) and OSF's DCE (OSF, 1992). These early platforms were based on the client–server model but over the 

years a higher-level object model evolved along with object-oriented programming languages such as C++, Modula 3 and Java. Both 

approaches may use object concepts, in that the server in an RPC system may be an object manager. Both use client-and server-side 

stubs for marshalling and unmarshalling call and return parameters. In distributed object systems the client-side stub is usually called the 

proxy of the remote object. One conceptual difference has not been implemented in practice: in the more general object model an object 

with its methods is an independent entity that might migrate to the caller on invocation. In practice we have seen only implementations 

where servers are object managers, as in RPC systems. Exceptions are in research projects such as Comandos (Balter et al., 1993) and 

Globe (van Steen et al., 1999). An important difference is in naming. In RPC systems an interface specification in an interface definition 

language (IDL) is the basis for naming, location and invocation. As we saw in Figure 16.28 and Section 16.11.3, a server exports its 



interface to a name server, a client imports the interface from the name server in the form of an interface reference and invokes one of its 

procedures. Interface references are temporary handles for invoking operational services. In using procedures and arguments we are 

dealing with programming language entities which translate naturally into a language-neutral IDL.

Distributed object systems define system-wide unique object references. An object may, in some systems, be defined as persistent in 

which case it continues to exist if its managing server ceases execution. As in RPC systems, an object that is to be invoked remotely must 

be made known within the system and allocated a reference. In current systems, such as Java middleware and CORBA, the global name 

for an object is location dependent, containing the address of the managing server, the communication endpoint, the protocol to use for 

communication with it and the server's local identifier for the object. Potential users of the object must be able to obtain object references; 

this can be done via a name service as in RPC systems. Finally, when a client binds to an object, the language-independent, global name 

for an object which is returned to the client's system must be translated into an object reference within a local programming environment 

so that the client can invoke the object consistently with other objects. The use of global references for objects simplifies many of the 

issues we discussed for parameter passing in RPC systems. Object references may be passed as first-class values; that is, they are fully 

general, typed parameters which are meaningful system-wide.

The above discussion has assumed that interface specifications are known at compile time. It is quite possible that in some applications 

this is not always the case. A client may look up an object specification at runtime and may then wish to invoke it. Most object-oriented 

middleware supports a dynamic invocation interface as well as providing a client proxy object at compile time. Figure 29.1 illustrates both 

modes of remote object invocation from a single client.

Figure 29.1. Remote object invocation.

In the following sections we examine some examples of object-oriented middle-ware systems. We have used Java as a programming 

language throughout this book and Java-based middleware is our first case study. Note that Java middleware is homogeneous and 

proprietary. It is homogeneous in that a single programming language running a single environment, the Java Virtual Machine, is 

assumed throughout the system. Although this software is freely available, proprietary software can always be changed at the whim of the 

developing company. Our second case study is OMG-CORBA, the Object Management Group's Common Object Request Broker 

Architecture. OMG is concerned with the specification of open standards to create middleware for heterogeneous distributed systems; 

that is, components may be written in different languages and may run on different operating systems. One of these languages is Java, 

allowing it to be used as a programming language for CORBA systems. As our third case study we briefly outline Microsoft's Component 

Object Model COM which includes distributed objects, sometimes referred to as DCOM and also .NET for web-style programming. 

Microsoft were latecomers to the use of networks and distributed systems yet instead of participating in the open standards that had 

emerged, they developed proprietary middleware for their Windows operating systems which, unlike that of Sun Microsystems, is not 

freely available. Components can be written in different programming languages and this is achieved by forcing each language to use a 

uniform binary-level interface, in the form of a table of pointers, for COM objects.

Object-oriented middleware is based on the synchronous communication paradigm since the invoker of a remote object blocks, waiting for

the call to return. This single paradigm has been found to be inadequate for meeting the needs of applications. The traditional way to

program around blocking calls is to use multi-threading at the caller but there are still interaction needs that are not met by



request–response synchronous invocation. Suppose, for example, that a server needs to send the same information to a large number of

clients and does not need a response from each. The synchronous paradigm forces the server to send to each client in turn and wait for a

null reply from each one before the next client can be contacted; a single slow or failed client delays all subsequent ones. Creating a

thread to make a blocking call to each client is a complex solution and imposes a great deal of thread management overhead for large

numbers of clients. We shall see that all the object-oriented middleware systems have grown to include asynchronous services. Emmerich

(2000) gives a detailed treatment of object-oriented middleware.
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29.2 Java middleware

From its outset Java was integrated with distributed programming by means of the web. Web programming was covered in detail in 

Chapter 28 and here we review the history and aspects that are relevant to this style of middleware.

29.2.1 Java for web programming

In 1990 Sun Microsystems set up a team of six, led by Patrick Naughton, to think afresh about support for distributed software 

development over heterogeneous systems. The team recognized the importance of a 'fun', easy to use interface and a language that 

allowed new media and devices to be programmed, and defined a minimal object-oriented language called Oak. Sun turned the team 

into a company called First Person which was in place, in 1993, ready to work with the World Wide Web and its browsers. Early in 1994 

First Person decided to focus on a software system for online media with Oak as a 'language-based operating system'. A browser was 

built and the first applet, the Duke icon waving over the internet, was run. Oak was renamed Java by Sun and made available free on the 

internet. The browser was named HotJava. The company JavaSoft became responsible for all Java and internet development. Java is a 

language but its surrounding support system has evolved into a computing platform, a base on which software developers can build 

distributed applications. Novel aspects compared with traditional platforms are as follows:

Java programs are mobile, that is, they can be migrated across a network. Data and the code to process it are transmitted 

together. A typical scenario is that Java programs (applets) are held on centralized servers and are downloaded on request. 

Note, however, that Java applications are mobile only once: their compiled images are loaded into Java interpreters and 

cannot move after they start executing. This is in contrast with some mobile programming languages, for example Scheme 

with state-saving continuations, where a program can be halted at any point and migrated to another node.

Heterogeneity is masked through interpretation. Programs are transferred as intermediate code (bytecode). Object code

can be produced on-the-fly for heterogeneous systems provided they have a Java interpreter. It is therefore unnecessary for 

an application to be ported to many different architectures. Java compilers also exist, of course; just-in-time compilers such as 

Kaffe (Wilkinson, 1997) translate a program's bytecode into native code after validating it. This allows long-running Java 

programs to be executed faster than under an interpreter, while at the same time ensuring that they do not access 

unauthorized areas of memory.

A browser interface is often used; for example, the Netscape browser contains an embedded Java platform (is 

Java-compatible). The term applet was coined for a mini application that runs inside a web browser. A Java application is 

self-standing whereas an applet is not; see Section 28.5.

Security. Although importing code into a system appears dangerous (we fear mobile viruses) the fact that it is interpreted by

the client's interpreter and runs on a well-defined platform can be used to define its scope and confine its access. For 

example, an applet that is loaded over the network can't normally read or write files in the context of its executor; it can't make 

network connections except to the host that it came from. It can, however, invoke the public methods of other applets on the 

same page. Although Java interpreters attempt to execute their programs in this secure environment, some security breaches 

have been found (McGraw and Felten, 1996). A source of problems is that the bytecode operates at a lower level than the 

programming language; there are some bytecode sequences that are accepted by the Java Virtual Machine (JVM) but that do 

not correspond directly to Java programs.

As we saw in Chapter 28, a popular use of Java is to develop applets for web pages. A Java applet is transferred, runs at the client site 

and may communicate externally only with its server. For a distributed application we need components to be loaded at several locations 

and then to interwork. When this is supported, serious, large-scale applications can be written in Java. We now look at the progress that 

has been made towards this end.

29.2.2 Java remote method invocation (RMI)



We have used Java for illustrative examples throughout this book. In Chapter 16 examples were given of, first, stream and socket 

programming, then Java RMI. The challenge of producing middleware for Java is much as we saw in Chapter 16 for the development of 

early RPC systems in the 1980s, in that a single programming language and a single environment, the JVM, are to be used. The 

difference is that Java is fully object-oriented and distributed objects have been integrated into the language. The approach taken for RMI 

is very much as outlined in Section 29.1.1, shown in Figure 29.1, and illustrated by example in Section 16.5. A remote object resides at 

one server and has a unique global reference which indicates this server. Its interface is made available to remote clients and the usual 

client proxy and server skeleton mechanisms are deployed. We mentioned the difficulty in general of translating global object references 

to and from the different local references required by different programming languages within a local programming environment. In 

homogeneous systems such as Java-based middleware this is much easier; a remote object's proxy appears as a local object in the 

client's address space.

We therefore appear to have distribution transparency since local and remote objects appear the same to the programmer. As discussed 

in Section 16.8, full distribution transparency is difficult to achieve, and possibly undesirable since certain local entities such as file 

descriptors and socket descriptors make no sense outside the local environment and the partial failures inherent in distributed systems 

must be dealt with. In an RMI, any primitive type and serializable object can be passed as a parameter. Local objects are passed by 

value which involves copying the object, however large. Remotely invocable objects are passed by passing their stubs which contain the 

object's managing server address and communication endpoint, the protocol to be used and the server's local identifier for the object.

Any Java object is an instance of a class and a class includes one or more interface implementations. A remote object has two 

components, one at the managing server and one for any client proxy. The server-side component is an instance of a class from which is 

generated the conventional object implementation and the server-side stub interface. The client-side component is an instance of a class 

which generates the client interface or proxy. The client proxy uses the server's address in the object reference to set up a connection to 

the server, create a message from the call arguments then await, receive, unmarshal and return the reply.

Because a proxy contains all the information necessary for invoking the remote object, proxies are self-standing and can function as 

global object references. Proxies can be marshalled in Java since a proxy can be treated in the same way as any other local object for 

the purposes of marshalling. On receipt the remote object can be invoked through the transmitted proxy since it contains the object 

reference and the invocation code. Note that this is only possible because we are operating in a homogeneous environment; the 

transmitted code will work when it arrives at another JVM. More detail, including optimizations of this process can be found in Waldo 

(1998).

Concurrency control on local objects is achieved by synchronized methods; see Section 12.2.1. Concurrency control on remote objects 

requires a distributed mutual exclusion protocol, see Section 23.5, since the crash of one client potentially affects others sharing the 

object. In general the use of remote objects can involve delay due to system failures or overload and this is best made explicit to systems 

programmers.

Note that unfortunate terminology was chosen for marshalling which is called serialization in Java, the intuition being 'flattening' for 

transmission. As we have seen in Part III, the concept of serializability had long been in use in the database community for a 

fundamental requirement on the concurrent execution of transactions.

29.2.3 Jini, including JavaSpaces

Jini's home page is http://www.sun.com/jini; the most useful descriptions are to be found in http://www.sun.com/jini/specs. Jini is intended 

for use within a Java environment where all computers run a JVM and where Java RMI is used for remote communication. Jini adds a 

service framework to a distributed Java system allowing service specifications to be published and discovered, a general middleware 

requirement we have seen in Chapter 16 and Section 29.1. Because of the homogeneity of distributed Java systems it is possible for both 

code and data to be freely transmitted; unusually, transmitted code will execute anywhere because of the universal use of the JVM, with 

its bytecode interpreter or just-in-time compiler, above all operating systems on all machine architectures.

JavaSpaces is an important and integral part of Jini. JavaSpaces provides facilities for storing into and retrieving from collections of 

(possibly) persistent objects in shared data spaces, for transactions and for event services. Both Jini services, and any services required 

by applications using Jini, can therefore be built as JavaSpaces in order to store and retrieve objects, manipulate them correctly under 

transactions and notify their clients of any changes in which they have registered interest. Jini supports more general communication 

patterns than synchronous method invocation; we shall see similar extensions in other object-oriented middleware systems.

JavaSpaces uses a tuple-space paradigm, first proposed for the Linda programming language, see Section 14.8.2, but, unlike Linda, 

JavaSpaces is object-oriented. A JavaSpace is a shared data space that stores tuples of Java objects. A system may have a number of 
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named JavaSpaces but each JavaSpace has a single centralized implementation. Tuples are read using associative matching via a 

template which specifies for each field of the tuple either the value required or a wildcard. The primitives for using a JavaSpace are, as 

for Linda but renamed:

write write the given tuple into this JavaSpaces service;

read return either an entry that matches the template or 'no match';

take is like read except that the entry is removed from the space.

If a given JavaSpace is managed by a single server these operations can easily be made atomic by the server; that is, when, for 

example, a take operation returns, the matched tuple has been removed and cannot be read or taken by another client. Note, however, 

that two or more tuples in the space can have exactly the same value. If a distributed implementation was envisaged, the designers 

would have to worry about how to make the operations atomic to avoid race conditions between concurrent requests to write, read and 

take.

A JavaSpace service can also operate as an event notification service. A client can ask to be notified whenever a tuple is written which 

matches a template:

notify register a template for notification whenever a matching tuple is written.

The mechanism used is that the client supplies, with the notify request, a reference to an object which may be in its own or some other 

process's address space. This object is responsible for listening for notifications from the server so is called a listener object. The 

server's notification is calling back to the client so the object reference is known as a callback reference. The JavaSpaces service notifies 

this object using RMI; we are seeing asynchronous notification implemented using synchronous invocation. The notification is not reliable 

but a sequence number is associated with each notification so that the client is able to detect any missing deliveries.

JavaSpaces also offers a simple transaction service, allowing multiple operations and/or multispace updates to complete atomically. 

The normal ACID properties are guaranteed, see Section 19.4, and a two-phase commit protocol is used, see Section 22.8, for 

distributed, atomic commitment. When a primitive operation is used in isolation it is deemed to comprise a single-operation transaction. 

Finally, a tuple is written into a JavaSpace with a limited lifetime or lease to avoid the indefinite build-up of garbage resulting from client 

crashes. A lease is also associated with a template registered for event notification.

Jini was not designed as a replacement for relational or object-oriented databases. It provides small-scale storage, which may be 

persistent, for implementing more general communication patterns than RMI. When the storage is persistent the communicating partners 

can operate asynchronously; that is, they do not need to engage in communication at precisely the same time. Because communication 

can be indirect, via a JavaSpace, the parties need not know the naming and location necessary for RMI. An example is as follows:

An academic wants to buy 20 copies of an out-of-print book for a specialist class. She writes a request into a public 

JavaSpace designed for this purpose.

Specialist booksellers have registered for notification of requests for books. They are notified of this particular request if it 

matches their template and, if they have the book for sale, enter an offer of some number of copies into the JavaSpace 

specified in the request.

At the time specified in the request, the buyer takes the offers out of the space and selects the 20 best ones.

Note that the buyer is communicating with previously unknown sellers, that is, making service discoveries. The fields of the tuples 

entered by the buyer and the templates of the sellers allow filtering of unwanted topics. The corresponding service in most other 

middleware styles would be a yellow pages service (YPS) where services, objects and attributes are specified for browsing by clients. 

But after discovering services via a YPS the client would then have to engage in one-to-one communication with each service whereas 

one-to-many and many-to-one communication is supported by a JavaSpace.

The detailed mechanisms of JavaSpaces are somewhat cumbersome. The fields of tuples are typed Java objects which are stored in 

marshalled form as type and value and may therefore be large. If two fields happen to hold the same object, two marshalled copies are 

stored there. The fields of templates are likewise typed, marshalled objects. The fields of tuples therefore always contain object values 

rather than object references.

Jini supports the development and deployment of system and application services and a number of system services are offered. An 



example is JNDI, the Java Naming and Directory Interface, which provides the standard middleware function of service interface 

publication and location. In addition, because of the notify facility of the underlying JavaSpaces, a JNDI client can ask to be notified of 

changes to JNDI. These could include addition of new objects or changes to existing objects and is useful in a dynamic environment. 

The naming service of JNDI provides a lookup function which returns objects matching a simple search request for a service name. The 

directory service is more powerful than the naming service, allowing applications to discover objects with common attributes by 

specifying the attributes for the search and returning a set of matching objects.

Jini was not designed for widely distributed implementations. It uses a multicast protocol and the underlying tuple-space paradigm makes 

it likely that services will be built with centralized implementations. The more recently defined Java Messaging Service (JMS) is 

potentially more scalable. We first introduce the Java component model then JMS.

29.2.4 The Java component model, JavaBeans

Applications of reasonable size are constructed from components – some bespoke (written specifically) and some reused. JavaBeans is

a software component model that allows independently developed Java components (beans) to be combined and interwork.

Reusable software components can be the push buttons, text fields, list boxes, scrollbars or dialogues, typically sold by third parties as 

component sets, toolkits, or widget libraries. They might be as complex as calendars, spreadsheets, barcharts, graphical diagram editors 

or word processors. Components can be nested and arbitrarily complex.

In language terms a bean is a Java class which adheres to certain property and event interface conventions; that is, the interfaces and 

behaviour of independently developed components must be well defined: this is the purpose of the JavaBeans model. What 

differentiates beans from typical Java classes is introspection. Tools that recognize predefined patterns in method signatures and class 

definitions can 'look inside' a bean to determine its properties and behaviour. A bean's state can be manipulated at the time it is being 

assembled as a part within a larger application.

Tools have been developed to support the design and testing of beans: in Java terminology, the beans development kit is a Java 

application which depends only on the Java Development Kit (JDK). There is also a tool (a BeanBox) for testing beans which have a 

visual element and with which the user can interact. That is, the user can cause events by clicking on buttons (or words made into 

hypertext links) which cause methods to be invoked on the image.

Not all software modules need be beans. Beans are best suited to software components intended to be manipulated visually within 

builder tools. Some functionality, however, is still best provided through a textual interface, rather than a visual manipulation interface. 

For example, an SQL API would probably be better suited to packaging through a class library, rather than a bean.

Beans are intended for domain experts (financial analysts, scientists, linguists, factory process control experts), rather than systems 

programmers. The idea is to make applications easy for them to build.

In summary, JavaBeans have the following properties:

Support for introspection allowing a builder tool to analyse how a bean works.

Support for customization allowing a user to alter the appearance and behaviour of a bean.

Support for events allowing beans to fire events, and informing builder tools about both the events they can fire and the 

events they can handle.

Support for properties allowing beans to be manipulated by program, as well as to support the customization mentioned 

above.

Support for persistence allowing beans that have been customized in an application builder to have their state saved and 

restored.

Enterprise JavaBeans (EJB) is the JavaBean component architecture targeted for the business community and aiming to support the 

development of robust services within a multi-tier architecture. The most recent Java platform, engineered for the enterprise market is 

J2EE, the Java2 Platform Enterprise Edition. The current standard platform is J2SE, the Java2 Platform Standard Edition.



29.2.5 Java Messaging Service (JMS)

JMS specifies an API for applications to use message-oriented middleware. JMS supports both asynchronous reliable message passing 

via queues, comparable with IBM's MQSeries, and publish/subscribe comparable with the TIBCO Rendezvous. In both styles, an object 

is created as the destination through which messages are sent/received or published/subscribed-to by the clients. JMS does not support 

direct, source-to-sink communication. See Section 29.7 for details of MQSeries and TIBCO Rendezvous.

29.2.6 JXTA

JXTA, http://www.jxta.org/, is associated with the Java2 Platform Micro Edition (J2ME), which is designed to support a wide range of 

consumer products including pagers, cellular phones, screenphones, digital set-top boxes and car navigation systems. JXTA technology 

is described as a set of open, generalized peer-to-peer (p2p) protocols that allow any connected device on the network to 

communicate and collaborate in a peer-to-peer manner. With the explosion of content on the network, and the existence of millions of 

connected devices, new styles of software and communications support are needed. For example, such devices may have relatively 

small amounts of memory and require a small software footprint. JXTA technology aims to enable new and innovative network 

applications to be created, giving access to content on this myriad of small, networked devices.

JXTA therefore aims to support networked, interoperable, p2p applications that can easily:

find other peers on the network with dynamic discovery across firewalls;

share files with anyone across the network;

find up to the minute content at websites;

create a group of peers that can easily find each other, across firewalls, on any device;

monitor peer activities remotely;

securely communicate with other peers on the network.

This is clearly a new application area, based on an evolution of communications services and devices, requiring new styles of 

middleware to be developed. It is not sufficient to develop new application-specific services, the approach often used by middleware 

producers to meet the needs of application domains such as finance or medicine. It brings with it the need to support mobile clients, 

services and applications.

Other ongoing developments for all middleware designers are associated with the need for interworking between different middlewares.
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29.3 OMG and OMA

Our second case study is of an open standard for heterogeneous, object-oriented middleware. The Object Management Group (OMG)

was formed to promote an object-oriented approach to distributed software design. More specifically, its aim was to develop, adopt and 

promote standards for the development and deployment of applications in distributed heterogeneous environments. In 1989 OMG issued a 

call for proposals for a new architecture OMA (Object Management Architecture) based on object invocation instead of client–server

interaction: OMG CORBA (Common Object Request Broker Architecture) was defined. Since then the CORBA approach has gained 

industrial and commercial acceptance; the architecture has been refined and various implementations are available, at the time of writing 

2.4 is widely used and 3.0 is coming into use. We examine CORBA in some detail below.

The OMG has grown to some 800 members who contribute technology and ideas in response to RFPs (requests for proposals) issued by 

the OMG. Based on these responses the OMG adopts and issues specifications after some iterations via RFCs (requests for comments). 

Its members include those who make products which implement the standards and those who build software which uses the standards. 

The vision is stated:

The members of OMG have a shared goal of developing and using integrated software systems. These systems 

should be built using a methodology that supports modular production of software; encourages reuse of code; 

allows for useful integration along lines of developers, operating systems, and hardware; and enhances long-range 

maintenance of that code. Members of OMG believe that the object-oriented approach to software construction best 

supports their goals. The OMG staff exists to support the vision of its membership and to promote object technology 

and its benefits.

The OMG home web page is at http://www.omg.org/ where the specifications may be obtained. An overview is given in Vinoski (1997) and 

further detail may be found in Pope (1998).

After CORBA became established the OMG reorganized itself in 1996, splitting the Technical Committee (TC) into two parts: the Domain 

TC and the Platform TC. The former includes task forces in the areas of medicine (master-patient indexing), telecommunications 

(management of quality of service for audio and video data) and business (a framework to support common business processes). The 

latter includes task forces in the areas of ORB object services and common facilities such as systems management.

29.3.1 OMA Reference Model component definitions

Figure 29.2 shows the main component types of the Object Management Architecture (OMA) Reference Model.

Figure 29.2. The OMA Reference Model: Interface categories.
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Object Request Broker (ORB)

At the heart of the OMA is an Object Request Broker Architecture, known commercially as CORBA. This provides the mechanisms by 

which objects transparently make requests and receive responses. It provides an infrastructure allowing objects to converse, independent 

of the specific platforms and techniques used to implement the objects. Compliance with the Object Request Broker standard guarantees 

portability and interoperability of objects over a network of hetero geneous systems.

Object services

These are general services (with specified interfaces) that are independent of any specific application domain. The CORBA services listed 

on the OMG website at the time of writing are:

Collection Service Persistent Object Service

Concurrency Service Property Service

Enhanced View of Time Query Service

Event Service Relationship Service

Externalization Service Security Service

Licensing Service Time Service

Life Cycle Service Trading Object Service

Naming Service Transaction Service

Notification Service  

We have already seen the need for some of these services and they are present in most CORBA systems. Naming allows a name to be 

associated with an object's identifier. Trading allows objects to publish their interfaces and clients to discover them. The property service 

allows clients to describe the properties of objects in the form of attribute-value pairs to provide information for potential clients to make a 

selection.

Other services may be used as required by the application. A collection service supports the grouping of objects into lists, sets, bags, 

etc., with corresponding access mechanisms so that elements can be inserted, selected and inspected. The concurrency service allows 

objects to be locked to support sharing by distributed clients. The event and notification services are an attempt to support asynchronous 



notification in addition to synchronous invocation.

Externalization is marshalling an object into a byte-stream for persistent storage or external transmission. The licensing service allows 

licensing conditions to be attached to an object. The persistence service allows objects to exist independently of the execution of their 

creator and managing server. Clients do not have to concern themselves with marshalling and unmarshalling objects for transfer to and 

from disk; this is the responsibility of the service. The relationship service allows connections between objects to be specified. The 

transaction service supports flat and nested transactions on method calls over multiple objects. Use of persistence, collections, 

relationships, and transactions should support at least some aspects of object and relational databases. The security service provides 

facilities for authentication, access control, auditing and secure communication. The time service provides the current time within a 

specified tolerance.

Common facilities

Common facilities provide a set of generic application functions that can be configured to the specific requirements of a particular 

configuration. These are facilities that sit closer to the user, such as printing, document management, database, system management and 

electronic mail facilities. Standardization leads to uniformity in generic operations and to better options for end-users for configuring their 

working environments.

Domain interfaces

Domain interfaces provide functionality of direct interest to end-users in particular application domains such as medical, financial and 

manufacturing. Domain interfaces are similar in function to common facilities and object services, but are designed to perform particular 

tasks for users within a certain market or industry. Figure 29.2 shows many different application domains.

Application interfaces

Application interfaces are developed specifically for a given application. OMG does not develop applications, only specifications, so these 

interfaces are not standardized. An application is typically built from a large number of basic objects: some specific to the application, some 

domain specific, some from object services and some built from a set of common facilities. These applications benefit greatly from unified 

object systems development. Better abstraction of the problem space and solution, reusability of components and simpler evolution 

contribute to good object application development. The application interfaces represent component-based applications performing 

particular tasks for a user and are important for a comprehensive system architecture.

29.3.2 The OMG Object Model

The OMG Object Model defines common object semantics for specifying the externally visible characteristics of objects in a standard and 

implementation-independent way. The common semantics characterize objects that exist in an OMG-conformant system. The OMG 

Object Model is based on a small number of basic concepts: objects, operations, types and subtyping.

An object can model any kind of entity such as a person, a car, a document and so on. Operations are applied to objects and allow one to 

conclude specific things about an object such as determining a person's date of birth. Operations associated with an object collectively 

characterize an object's behaviour.

Objects are created as instances of types. One can view a type as a template for object creation. An instance of type car could be a red 

car, 5 m long, with a seating capacity of five. A type characterizes the behaviour of its instances by describing the operations that can be 



applied to those objects. There can exist a relationship between types. For example, a racing car could be related to a generic form of car. 

The relationships between types are known as supertypes/subtypes.

The OMG Object Model defines a core set of requirements, based on the basic concepts, that must be supported in any system that 

complies with the Object Model standard. While the Core Model serves as the common ground, the OMG Object Model also allows for 

extensions to the Core to enable greater commonality within different technology domains. The concepts, known as Components and 

Profiles, are supported by the OMA and are discussed in the OMA Guide.
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29.4 CORBA

CORBA (Common Object Request Broker Architecture) is an application framework that provides interoperability between objects, built-in 

(possibly) different languages, running on (possibly) different machines in heterogeneous distributed environments.

CORBA 1.1 was introduced in 1991 and defined the Interface Definition Language (IDL) and the Application Programming Interfaces 

(APIs) that enable client–server object interaction within a specific implementation of an Object Request Broker (ORB); see Figure 29.3. 

CORBA 2.0, adopted in December 1994, tackled interoperability by specifying how ORBs from different vendors can interoperate.

Figure 29.3. CORBA architecture.

An ORB is the middleware that establishes the client–server relationships between objects. Using an ORB, a client can transparently

invoke a method on a server object, which can be on the same machine or across a network. The ORB intercepts the call and is

responsible for finding an object that can implement the request, pass it the parameters, invoke its method, and return the results. The

client does not have to be aware of where the object is located, its programming language, its operating system, or any other system

aspects that are not part of an object's interface. In so doing, the ORB provides inter-operability between applications on different

machines in heterogeneous distributed environments.

The main features of CORBA 2.0 are:

ORB core

OMG Interface Definition Language (IDL)

interface repository

language mappings



stubs and skeletons

dynamic invocation and dispatch

object adapters

inter-ORB protocols.

The function of each is outlined below; further information may be obtained from the references. Some of the concepts were introduced in 

Chapter 16 in the context of RPC systems; other issues are language-level concerns.

29.4.1 The ORB core

The function of the ORB core is to support object invocation by clients on target objects. We 

therefore need a naming scheme for CORBA objects (see Section 7.7). When a CORBA object is 

created it is given an object reference, a unique identifier which is never reused. Object 

references can have standardized formats or proprietary formats.

Objects are created by invoking a create operation on the appropriate factory object; an object reference is returned to the creator. An 

object reference may also be acquired through a directory lookup. For example, the CORBA Naming Service will supply the object 

reference for a named object; the Trading Service will supply the object reference for an object with specified properties. Object references 

may be stored persistently in files or databases for subsequent retrieval and use.

A client with an object reference may invoke any interface operation (service) supported by that object. The ORB is responsible for making 

this happen and achieves the following transparencies:

Location transparency. The ORB must be able to locate the object from its reference.

Implementation transparency. The client need not know how the target object is implemented, in what programming

language it was written nor the operating system or hardware on which it is running.

Object execution state. The ORB activates the object if necessary before delivering the request to it.

Communications mechanism. The underlying protocol used by the ORB is transparent to the client.

29.4.2 OMG's Interface Definition Language (IDL)

As in all other object models we have seen, an object's interface is a specification of the operations and types that the object supports. 

Interfaces are defined in the OMG Interface Definition Language. As for other platforms, the idea is that an IDL is programming language 

independent; interfaces are defined separately from object implementations. Objects may be written in different programming languages 

and still be able to communicate.

The OMG IDL built-in types are:

long (signed and unsigned): 32-bit arithmetic types;

long long (signed and unsigned): 64-bit arithmetic types;

short (signed and unsigned): 16-bit arithmetic types;

float, double and long double: IEEE 754(1985) floating point types;

char and wchar: character and wide character types;



boolean: boolean type;

octet: 8-bit value;

enum: enumerated type;

any: a tagged type that can hold a value of any OMG IDL type, both built-in and user-defined.

The sizes of all types are specified in the standard to ensure interoperability across heterogeneous hardware implementations of CORBA.

The constructed types are:

struct: a data aggregation construct, similar to C/C++;

discriminated union: a type composed of a type discriminator and a value of one of several possible OMG IDL types that are

specified in the union definition.

OMG IDL also supports object reference types and template types whose exact characteristics are defined at declaration time (for 

example, strings and sequences). Interfaces can inherit from one or more other interfaces; technically this is restricted multiple inheritance 

without overloading of operation names. The importance of inheritance is that an interface is open for extension but closed against 

modification (Meyer, 1988).

29.4.3 Other CORBA features

Interface repository

When a program containing a CORBA object invocation is type-checked at compile time, the interface specification of the object is 

needed. This may be a remote object written in another programming language but in all cases it must be specified in IDL. An interface 

repository (IR) holds these specifications. An alternative method of obtaining an interface specification is by invoking the get-interface

operation which every object inherits. An IR may be interrogated dynamically at runtime as well as statically at compile time, see below.

Language mappings

OMG has standardized language mappings for Ada, C, C++, COBOL, CORBA scripting language, Lisp, Smalltalk, Java, Pl/1, Python and 

Smalltalk. Mappings for Perl, Eiffel and Modula3 exist but have not been submitted to OMG for acceptance as standards.

For each language it is necessary to be able to:

invoke CORBA objects from a program written in the language;

create an IDL interface specification for objects implemented in the language.

For each language a mapping of the language types to OMG IDL types is needed. In addition to the built-in types and constructors, types 

that are specific to IDLs must be mapped into the languages. An IDL interface is typically mapped to a class, as for C++, or an abstract 

data type, for C; an object reference may map to a pointer or an object instance. A CORBA object invocation is usually implemented as a 

function call in the language.



Stubs (proxies for remote objects) and skeletons

OMG IDL compilers generate client-side stubs and server(target-)side skeletons. This automatic code generation from the IDL 

specification is an important component of IDL technology. The client-side stub creates and issues the request on behalf of the client; the 

skeleton delivers the request to the CORBA object implementation.

The programming languages that have mappings for CORBA may implement a CORBA object-operation invocation as a function call in 

the language or a local object invocation. In both cases the stub is invoked which functions as a proxy for the (possibly) remote target 

object. The stub, with the assistance of the ORB, marshalls the arguments that are to be transmitted. See Figure 29.1 and Section 29.1.1

for a general discussion.

Dynamic invocation and dispatch

CORBA supports two interfaces for dynamic invocation, roughly equivalent to the stub and the skeleton. These are the Dynamic 

Invocation Interface (DII) and the Dynamic Skeleton Interface (DSI). They can be seen as generic stubs and skeletons which are provided 

directly by the ORB and are independent of the IDL interfaces of the objects being invoked. By this means it is possible for an object to be 

invoked without compile-time knowledge of its interface. This is useful for external objects such as gateways and browsers which may 

evolve independently of the CORBA platform and for which interface information may be obtained by interface repository lookup or by 

interaction with a human user. See Figure 29.1 and Section 29.1.1 for a general discussion.

Object adapters

An object adapter is an object that adapts the interface of an object to that expected by its caller; it functions as a wrapper for external or 

legacy objects. There are language-level semantic issues in this area: the problem cannot be assumed to be solvable in general.

Inter-ORB protocols

Any one middleware platform abstracts above heterogeneous hardware and software. Alas, several different middleware platforms have 

been developed and standardized; we therefore have heterogeneous middleware. Distributed software running above different platforms 

may need to interoperate so the interworking of platforms has to be considered. Even different implementation of CORBA may need such 

services. CORBA 2.0 began to address interoperability.

The ORB interoperability architecture is based on the General Inter-ORB Protocol (GIOP) which specifies transfer syntax and a standard 

set of message formats for ORB interoperation over any connection-oriented transport. The Internet Inter-ORB Protocol (IIOP) specifies 

how GIOP is built over TCP/IP. The architecture also provides for other environment-specific inter-ORB protocols (ESIOPs). The first of 

these was for OSFs Distributed Computing Environment, the DCE Common Inter-ORB Protocol (DCE-CIOP). It can be used in 

environments where DCE is already installed and allows for integration of CORBA and DCE applications.

Object references must be understandable across interoperating platforms. CORBA specifies a standard object reference format: the 

Interoperable Object Reference (IOR). An IOR contains information needed to locate and communicate with an object over one or more 

protocols.

CORBA 3 has three main new categories of specification: Java and Internet integration, quality of service control and the CORBA

component architecture (CCA). Allied with CCA, mappings have been specified to two scripting languages: Python and the specially 

defined CORBA-specific scripting language.



29.4.4 CORBA support for asynchronous communication

As discussed in Section 29.1, the synchronous communication paradigm does not meet all the interaction needs of applications. To some

extent, multi-threading can be used to program around the blocking behaviour enforced by synchronous communication but this can add to

software complexity. We saw a number of extensions for Java middleware to support more general communication patterns than

one-to-one, directly-named, client–server interactions. A number of extensions have also been provided for CORBA to meet these needs.

CORBA one-ways were added to the request–response paradigm for calls that do not require a response. The semantics of one-ways

was not clearly defiined and some ORBs implemented them as synchronous calls: although no response is expected, the caller must block

waiting for the called object to process the call. Another attempt to provide communication akin to message passing was objects 

passable by value, first included in 1999 in CORBA 2.3. Without this facility, programmers who require to transmit the data associated 

with an occurrence, typed using IDL, such as observed (bus49, sensor123, threadneedle-street) have to pass a fully-fledged object.

The event service of 1993 and the event notification service of 1998 were added to CORBA for applications that require asynchronous, 

best-effort notification of event occurrences. These services do not buffer events but operate either on a 'push' or a 'pull model'. The push 

model means that an event occurring at a source is notified first to the event service and then to any client registered with the event 

service. The pull model means that a client polls the event service which then polls event sources. The event service was soon found to be 

inadequate as no filtering of events is supported: a separate event service (event channel) would have to be used for each event type to 

avoid clients being flooded with events which they then have to filter. The notification service supports filtering and also deregistration at 

sources to avoid propagation of events for which there are no clients.

Asynchronous Message Invocation (AMI) was added to CORBA in late 2000 as part of release 2.4. Here, messages are typed using the 

IDL type system, unlike events in the event and notification services. AMI is still described in terms of invocation, where the result of the 

invocation may be notified to the caller by callback or the caller may pick the result up by polling. At least, a busy server with many 

notifications to make can send them all off without waiting for each reply. The general asynchronous paradigm, where all that is needed is 

an unreliable multicast, is still not envisaged.
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29.5 ODMG

The Object Data Management Group (ODMG) is a consortium of object-oriented database management system (ODBMS) vendors and 

interested parties working on standards to allow portability of customer software across ODBMS products. The ODMG home page is 

http://www.odmg.org/.

By supporting the same interface, members expect to accelerate significantly progress towards effective adoption of the standard. The 

objectives of the ODMG are:

To develop a standard set of specifications that may be freely incorporated in database and applications programs in order to 

permit applications to access information stored in object database management systems in a uniform manner.

To make the definitions developed available to others for general industry use, and to submit them through appropriate 

channels for consideration by other standards-setting organizations, such as the International Standards Organization (ISO), 

the American National Standards Institute (ANSI) and the Object Management Group (OMG).

Although not part of the OMG, the consortium's work is therefore closely related to that of the OMG. The first standard to be published 

was ODMG-93 and the second edition is Cattell (1996) which should be consulted in preference; the first edition was quite heavily 

criticized and the problems are addressed in the second edition. As we saw in Section 29.3.1 there is some overlap with CORBA 

services which were developed in parallel. ODMG provides integrated object database support which is easier to comprehend than a 

combination of facilities provided by collection, persistence, relationship and transaction CORBA services.

For further information, see http://www.odmg.org/. Details can be found there on the ODMG object model, object definition language 

(ODL), object query language (OQL) and Java language binding for the second edition.
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29.6 COM, DCOM and .NET

Microsoft's component object model COM, dating from 1993, was designed to make it easier for their software developers to create new 

releases of Windows operating systems that are compatible with previous versions and to encapsulate applications. It was necessary to 

be able to evolve and reuse existing components. To allow Windows operating systems to function as parts of distributed systems, COM 

was integrated with OSF's DCE, an RPC protocol, in NT 4.0. Product names such as Active/X, Network-OLE and DCOM were used but 

the term COM has come to subsume these and imply a distributed component object model.

Unlike other object-oriented middleware COM therefore supports binary encapsulation of server objects and binary compatibility. That 

is, the machine code deriving from components originally written in different programming languages, such as C++, Visual Basic or Visual 

J++, possibly by third parties, can be used without recompilation and invoked by clients in new environments. This is achieved by strict 

separation of interface and implementation. Like CORBA (and unlike Java RMI) COM allows components to be written in heterogeneous 

programming languages and an interface definition language is therefore needed, Microsoft's IDL, or MIDL to avoid confusion with OMG's 

IDL.

COM's object model

COM defines interfaces, implementations and classes. See Figure 29.4.

Figure 29.4. COM interfaces, implementations and classes.



A COM interface has a globally unique name: a 128-bit identifier into which is incorporated the physical network interface ID of the server 

computer and a time-stamp.

A COM implementation is a class of whatever programming language is used to program the component. An implementation may 

implement several interfaces and different views may be created for different client roles. COM (like CORBA) defines programming 

language bindings and these bindings determine how the languages are used to implement MIDL interfaces. An instance of a COM 

implementation is called a COM object. A COM object is identified by a pointer to a main memory location, called an interface pointer. If 

the client and the invoked object share an address space, the interface pointer points to the object itself. If the invoked object is remote, 

the interface pointer points to the invoked object's proxy. Note that although the COM object proxy is equivalent in functionality to 

CORBA's client stub, COM's interface pointer (main memory pointer) is a lower-level concept than CORBA's object reference or Java's 

proxy object reference. In general, binary compatibility is achieved by requiring every programming language to treat the interface to an 

object as an array of pointers to the object's methods. The alternative is that the IDL compiler translates interfaces specified in IDL into 

programming language source code which is then compiled into code to invoke the object appropriate to that programming language.

COM defines COM classes to manage and locate COM objects. COM classes should not be confused with the programming language 

classes mentioned above which implement interfaces (see Figure 29.4). COM classes are instantiated in class objects and each COM 

class needs to have at least one class object. COM classes are the means by which COM objects are created and located. A COM class 

may make available one or more interfaces. COM classes have glob-ally unique identifiers, CLSIDs, which take the same form as those 

for interfaces.

Types, interface specifications and invocations

COM supports base types which include boolean, byte, small, short, long, float, double, char and enum, and a limited number of type 

constructors; records and arrays. COM's object model is statically typed. Although interface pointers have a dynamic type they can only 

be used to request operations that are exported by that specific type and this is checked statically by the compilers used to build clients.

COM operations are specified with in, out and inout parameters. Multiple interfaces in COM can be used to provide client-role-specific 

views, although within a given interface all operations are visible to all clients who can see it. COM supports single interface inheritance: 

every COM interface must inherit from another interface and the inheritance hierarchy forms a tree with a single root called IUnknown.

IUnknown has three operations which every COM object must support: QueryInterface, AddRef and Release. The latter two are used to 

count the references to an object for garbage collection purposes; an object without a reference is deactivated.

Unlike CORBA, COM does not support the specification of attributes in interfaces: exposing instance variables would break binary 

encapsulation. Instead, attributes are unified with operations in the form of property operations.

Like CORBA, COM supports both static and dynamic invocation interfaces. The standard client proxy and server stub mechanisms are 

used when invocations are available at compile time. Idispatch is COM's dynamic invocation interface.

.NET (dotNET)

Microsoft's website for .NET is http://www.microsoft.com/net. Like all middleware providers Microsoft is seeing the importance of 

supporting web programming and access to services from, and on, a myriad small devices. .NET is middleware which supports an XML 

web services platform consisting of:

a software platform for running web servers, databases, etc., and for XML message-based communication for invoking them;

a programming model and tools to build and integrate XML web services;

a set of programmable XML web services;

http://www.microsoft.com/net


a way to enable users to interact with a broad range of smart devices via the web, while ensuring that the user, rather than the 

application, controls the interaction;

a way to provide users with applications, services and devices that are personalized, simple, consistent and secure.

It is envisaged that existing sevices and products, such as the Exchange messaging system and the Mobile Informations Server, will be 

integrated with .NET and form part of a naming and location infrastructure. Web services provide the services and information that users 

will require and expect and because these web services are programmable, they allow a user to use any device to access this information 

and to share it with other sites and services.

As with Java, a virtual machine is used to execute programs in .NET. This is termed the Common Language Runtime (CLR) because, 

unlike JVM, it is designed to support a range of programming languages rather than just one. These include mainstream languages (C, 

C++, Visual Basic), research languages (Mercury, Haskell) and at least one new language (C#, pronounced C-sharp). As we have seen, 

the usual approach in a middleware that supports components written in a number of languages is to define an IDL with bindings for each 

language. Instead, .NET allows interfaces to be defined using ordinary programming languages. The designers identified a common 

subset of features found in most IDLs and also in most programming languages. Provided that an interface is defined only in terms of 

facilities drawn from the common subset, it can be invoked or implemented from any supported language.
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29.7 Message-oriented middleware (MOM)

Message-oriented middleware evolved alongside that based on object invocation, as we discussed in Section 29.1. MOM has a larger 

share of the middleware market than object-oriented middleware, being associated with database access within large business 

applications. In Chapters 13 and 14 we discussed message passing as a general IPC mechanism, applicable to same-machine, 

cross-address-space message passing. Section 16.3.1 showed how the distribution of message passing can be approached for 

network-based systems. Recall that in Chapter 14 we also discussed synchronous message passing, where processes have to make a 

handshake or rendezvous in order to communicate; that is, one party must block until the other is ready to communicate. Synchronous 

message passing was developed for multicomputer interconnects and message passing in network-based, distributed systems is almost 

invariably asynchronous. This, as always, implies that messages are buffered/queued by the message transport system. The 

characteristics of message passing as the basic communication service in MOM may be summarized as follows. We assume that every 

potential participant has a message queue for both outgoing and incoming messages:

Message passing is asynchronous. The sender may send off a message and proceed immediately without blocking. The 

sender and receiver need not be parties to the communication at the same time, in a handshake or rendezvous. Indeed, they 

need not necessarily be running at the same time. The communicating parties are loosely coupled.

Message passing may be reliable or best effort. A reliable service, after acknowledging acceptance of a message, guarantees 

to deliver it to the recipient's message queue exactly once. This implies that the message transport service must store 

messages in persistent storage to prevent their loss on system crashes.

The recipient is responsible for retrieving the message from its queue and the message transport system makes no guarantee 

about when or whether a message is read.

A difference between single-machine message passing and MOM is that if a message is tagged as persistent (a reliable service is 

requested) the participants' output and input queues must be persistent and may be available independently of whether the participant is 

running. Also, a message may be routed through a number of queues, again using persistent storage for a reliable service, before eventual 

delivery into the recipient's queue. In practice, direct delivery from senderqueue to receiver-queue is often used.

MOM evolved to support the interaction of many clients with a few large services, for example financial databases. Unlike object-oriented 

middleware, MOM did not grow a large number of system services, even for service discovery and location. Instead, static routing was 

originally used for message transmission between queues. As the scope and size of MOM increased, static routing became difficult to 

organize and instead a number of routers, which know the whole message queuing topology, are used. Routers can also be used to 

achieve efficient multicast within a backbone structure, leaving the fan-out of multicast messages to be done close to their destinations 

instead of close to the source.

Communications services up to and including the transport level are not concerned with interpreting or preserving the internal structure of 

messages. We have seen that object-oriented middleware, through stubs, skeletons and proxies, ensures that the type checking within the 

distributed components of a program is preserved during communication. MOM is in general not concerned with the internal structure of 

messages and leaves this interpretation for the application. An exception is when MOM is used to integrate legacy systems. In this case a 

function of some components of the MOM is to translate message formats between the legacy format and that required by the existing 

services. Note that the contents of such messages are visible to the system performing the translation which must therefore be associated 

with known applications and trusted by them and their clients.

So far we have assumed that messages are addressed to their recipients, although the sender and recipient are loosely coupled and need 

not synchronize in order to communicate. In wide-area, large-scale systems it may be advantageous to decouple sources and sinks with 

respect to naming. We have already seen this in Jini/JavaSpaces where the tuple-space abstraction allows senders to insert tuples into a 

JavaSpace and receivers to receive tuples by supplying a template to a JavaSpace; fields of the template must be matched exactly by 

value or may be wildcards. By this means senders and receivers may be mutually anonymous.

Message passing systems have also been designed to decouple the naming of sources and sinks in so-called publish-subscribe

systems. In these systems the message transport service must have knowledge of the message contents. Some publish-subscribe 

systems are topic-based (or subject-based): each message is given a topic and the internals of the message are not interpreted by the 

system. Others are attribute-based. Here, the message is structured as attribute-value pairs and the receiver may ask for filtering of the 



messages by requesting values of attributes or wildcards for each pair within a message.

We first consider an example of a reliable MOM service, then a topic-based, publish-subscribe system.

29.7.1 IBM's MQSeries

MQSeries (Gilman and Schreiber, 1996) was developed to serve CICS (Customer Information Control System), a transaction processing 

system running on IBM mainframes. Its architecture is very much as described above, is shown in Figure 29.5, and has the following 

components:

Queue manager. Queue manager software resides on a message router. A queue manager is responsible for a number of

input queues and a number of output queues. It holds routing tables which it uses to transfer each message from an input 

queue to the appropriate output queue, according to the routing table.

Message channel. A message channel is a unidirectional reliable connection between a sending and receiving queue

manager. It is associated with exactly one output and one input queue. In an internet-based system a message channel is 

implemented as a TCP connection.

Message-channel agent (MCA). An MCA is a component of a queue manager. A sending MCA is responsible for checking

output queues for messages and sending them via the underlying transport service. A receiving MCA is responsible for 

listening for an incoming packet and storing the message therein in the appropriate queue.

Figure 29.5. MQSeries architecture.



Figure 29.5 shows these components in the blown-up view of a queue manager. It also shows the general architecture, with a queue 

manager for a domain, holding the input and output queues of the clients in the domain, together with an internetwork of queue managers 

acting as message routers. It is optional whether the input and output queues of a process are co-located on the same machine or are on 

a different, shared machine. This is transparent to the process as the same interface is used in either case:

MQopen open a queue which may be local or remote, transparently to the application

MQclose close a queue

MQput put a message into an open queue

MQget get a message from a local queue

Messages may be defined as persistent (requesting a reliable service with transactional acceptance, transmission and delivery) or 

non-persistent. Messages are returned to the receiver on a priority basis and messages of equal priority are removed in first-in, first-out 

order. It is also possible to request notification that a message has arrived to avoid frequent polling of queues.

As there are no naming and directory services, and instead routing tables are used, there is a problem associated with propagating the 

knowledge of global names to all participants and handling name and location changes. This problem is solved by allowing clients to use 

aliases which are translated to and from global names by the MQSeries software.

29.7.2 TIB/Rendezvous

The basic TIB/Rendezvous is a subject-based, publish-subscribe system. Processes do not address each other directly but instead a 

source sends or publishes messages on a given subject and a sink receives messages on subjects to which it has subscribed. Note that 

all messages on a given subject are sent to subscribers since there is no attribute-based filtering. The architecture is shown in Figure 29.6.

Figure 29.6. TIB/Rendezvous architecture.



Within a local networked domain each participating host runs a rendezvous daemon to handle subscriptions and publications. The 

rendezvous daemon keeps a record of the subjects subscribed to, listens for incoming multicast messages and delivers those tagged with 

a subject for which there are local subscriptions. The rendezvous daemon is also the first port-of-call for published messages which it 

multicasts to hosts within the local domain. It is possible to optimize and use direct communication instead of multicast when local 

subscribing hosts are known. For wide-area implementation, each domain runs a router daemon which communicates with other router 

daemons using standard communications addressing and routing. Unlike MQSeries, message acceptance, transport and delivery are not 

transactional and stored persistently en route. It is assumed that the underlying communication service is reliable; messages are held by 

the publishing host's rendezvous daemon for 60 seconds so that retransmissions can be requested; messages are given a sequence 

number by the publishing host's rendezvous daemon so that missing messages can be detected and retransmission requested.

On sending, a message is tagged with a subject name which is a sequence of character strings separated by dots. Subscribers can 

specify components of the sequence to be matched and wildcards for 'don't care' components. For example, a subject naming hierarchy 

might be created for stock values at stock exchanges, world wide. One generic name might be of the form 

stocks.stock-exchange-name.stock-type.stock-subtype. A subscription might take the form: stocks.*.utilities.* and would be matched 

by messages with any stock exchange in the second field and any utility in the fourth field, such as stocks.New-York.utilities.water and 

stocks.Tokyo.utilities.electricity. Subjects are assumed to be known statically, outside the transport system.

Messages consist of a number of named fields, each field comprises typed attributes and a typed data value as follows:

Name string the name of the field, possibly null and not necessarily message-unique

ID integer a two-byte integer that must be unique within the message

Size integer the size of the field in bytes

Count integer the number of elements if the data is an array

Type constant the type of the data in the field

Data any type the data in the field

This is a brief overview of a robust product and more details can be found at the TIBCO TIB-Rendezvous home page 

http://www.rv.tibco.com/.
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29.8 Summary

The growth in acceptance of object-oriented design concepts embodied by CORBA and Java middleware has been steady, if relatively 

slow. This style of platform was designed primarily for workplace, industrial and commercial distributed systems and was evolving 

through the late 1980s and 1990s to exploit local area networks. This style of middleware primarily supports the interoperation of the 

distributed components of programs. They are assumed to be tightly coupled and continuously available for synchronous communication 

in the form of object invocation. Large-scale, wide-area, many-to-many communication among mutually anonymous parties was not 

envisaged.

Web browsers became available in 1993 and the explosive growth of popular interest in the internet and the web followed. Java took 

advantage of this popularly accepted style of interface and has become increasingly widely used, rather than just another object-oriented 

language. JavaSoft is looking to the ubiquitous computing market via web programming as well as working towards support for 

traditional distributed computing applications through the development of more traditional middleware products such as Jini, JavaSpaces 

and JMS with their related services. JXTA is an attempt to prepare for a world of myriad, small intercommunicating devices, as is 

CORBA version 3.0 and Microsoft's .NET. Emmerich (2000) gives a detailed treatment of object-oriented middleware.

Object concepts have stood the test of time in programming languages, operating systems and middleware platforms. Objects in 

themselves do not provide completely general interworking; there are many different object models and object-based middleware 

platforms, and middleware developers are increasingly concerned with interworking with different middleware.

Message-oriented middleware was an abstraction of communication services and is used by the database and transaction processing 

market. Here, clients and servers are assumed to be loosely coupled and asynchronous communication is essential. Reliable, 

store-and-forward communication is also provided. Initially, MOM had very little support for message structuring. More recently, XML has 

come to be used for message formatting.

We saw that object-oriented middlware came with a large number of services: some essential for the basic operations of naming and 

location, others optional but generic and others application-specific. MOM started with less of a service infrastructure and first used static 

routing then message routers.

It soon became apparent that synchronous object invocation alone was insufficient to meet the needs of all distributed applications and

the asynchronous paradigm was added to object-oriented middleware in a variety of forms: Java RMI was augmented by Jini and JMS.

CORBA was augmented by the event and notification services and by AMI. In all cases it is unclear to what extent truly asynchronous

operation has been achieved since the asynchronous communication is often built above lower-level synchronous request–response.

As we saw with the use of Java for web programming, processors have become fast enough to make on-the-fly interpretation of code a 

feasible means of running applications. We had previously seen static clients and servers with data passed between them in some 

standard external form. It became possible to create programs which run above heterogeneous hardware and operating systems by 

interpreting intermediate code within the Java Virtual Machine. A simple form of mobility and heterogeneity is achieved relatively easily by 

this means. There is currently a great deal of interest in more general support for mobility which is beyond the scope of this book. There 

is also a great deal of interest in extending the web paradigm into general middleware, using browser interfaces and making all services 

look like web services.

Exercises

29.1 Contrast message-oriented middleware (MOM) with the message passing we defined in Chapters 14 and 16. (Hint: 

consider the reliability of the transmission.)



29.2 Contrast MOM with object-oriented middleware (OOM). List as many differences as you can.

29.3 What is meant by open interoperability? Contrast the approach taken by OMG CORBA with that of Sun's Java and 

Microsoft's DCOM.

29.4 What interaction paradigm does a tuple space aim to support? What operations do the Linda programming language 

and JavaSpaces support? What problems would arise if a tuple space was to be distributed?

29.5 How is service naming and location supported in OMG CORBA and Java middleware?

29.6 What are the Java platforms J2SE, J2EE and J2ME designed to support?

29.7 What is the purpose of an Interface Definition Language (IDL)?

29.8 How have the OOM platforms been extended with asynchronous communication? Are these services equivalent to 

MOM services? To what extent has MOM moved towards the approach taken in OOM?

29.9 Contrast the approach taken in IBM's MQSeries MOM with that in the TIB/Rendezvous MOM. Contrast the design of 

names in the two systems.

29.10 How has the widespread acceptance of the web affected the design of middleware? Give examples of how recent 

middleware is adopting the web paradigm. What are the pros and cons of this?
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Chapter 30. Transaction processing monitors and 

systems

30.1 Transaction processing monitors

30.2 Introduction to some electronic funds transfer (EFT) applications

30.3 International inter-bank payments: SWIFT

30.4 Authentication by PIN

30.5 The international automatic teller machine (ATM) network service

30.6 Load and traffic in TP systems

30.7 Summary and trends

We first discuss systems aspects of transaction processing (TP) monitors. TP applications impose requirements on the underlying 

system in the following areas:

the operating systems in the various computers involved, in particular, their support for processes, with or without 

multi-threading and inter-process communication (IPC);

the communications support for the messages which flow to effect transactions;

the higher-level transaction support to ensure correctness of stored data in the presence of failures in systems and 

communications;

the requirements for transaction throughput, particularly in large-scale systems. Average, peak and emergency load should 

be considered.

We then look at some examples of transaction processing systems which are taken from the general area of electronic funds transfer 

(EFT). This application area is usually described from the viewpoint of security, since EFT systems are an obvious focus for criminals 

who want to steal money. Here, we are more concerned with general systems aspects and will leave a detailed study of encryption 

techniques for more specialized texts, for example Davies and Price (1984) and Meyer and Matyas (1982).

Terminology

In this chapter ATM stands for automatic teller machine and an ATM network allows you to obtain banking services internationally. In 

Chapter 3 an ATM network was one employing the asynchronous transfer mode of communication. We are suffering from a coincidence 

of TLAs (three-letter acronyms). Perhaps the term 'cashpoint machine' would be better.
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30.1 Transaction processing monitors

Transaction processing applications were introduced in Chapter 1 and the theory underlying the correct execution of transactions was the 

core topic of Part III. A TP monitor coordinates the flow of information between users at terminals who issue transaction requests and TP 

applications that process the requests. Much of the integration of the software components (operating systems, communications and 

database management systems (DBMSs)) that are used by TP applications is done by the TP monitor. Figure 30.1 gives a model for a TP 

monitor, which follows Bernstein (1990). It is assumed that each transaction selects a pre-specified application service program. This is in 

contrast with a database transaction, which is composed in response to a query.

Figure 30.1. Components of a TP monitor.

The figure shows the functions of the components of the TP monitor in the execution of a single transaction. In a typical TP system there 

are many instances of each of the components. Bernstein (1990) discusses the functions of each component in detail, together with 

standard message formats, etc. We shall focus on operating systems aspects.

30.1.1 Use of processes and IPC

A TP monitor is responsible for creating and managing the processes which execute the components shown in Figure 30.1. Design issues 

include the following:

Should the components execute together in a single address space or separately in different address spaces?



Is each process single-threaded or multi-threaded? (Multi-threaded processes were discussed in Section 4.11, throughout 

Chapters 4 and 9, and in Section 14.9.)

It is necessary to know the process model of the operating system and the IPC it provides when making these design decisions. We now 

consider the various options.

Single address space, single-threaded processes

The components are linked together into a single load module and are executed by a single process; see Figure 30.2(a). The control flow 

between the components is effected by a simple procedure call within the process. A simple strategy is to create such a process for each 

terminal. This model is used in small TP systems, but it does not scale well. A TP system may have a large number of active terminals. 

Even if the operating system is, in theory, able to support a large number of processes it may perform badly when a large number exist. 

This is because of the overhead of handling a large number of process descriptors for scheduling purposes, context switching overhead 

and memory overhead per process leading to the possibility of paging, etc. If the TP system is distributed there may be a process per 

terminal on each computer involved in a given transaction (see Chapter 22).

Figure 30.2. TP modules in a single address space. (a) Single-threading. (b) Multi-threading.

It is not clear how times of high activity, and therefore high load on the system, could be managed. An approach that is used in practice is 

to lower the priority of some request types. An example from a stock control system is that new orders would be given priority over 

requests from a management information system for the current stock level. We can assume the existence of a process dedicated to 

monitoring the load on the system. We can assume that each process, on decoding a request, could determine the current level of the 

load. We should then need a process to be able to request that its priority is lowered if the load is high and its request type is deemed 

unimportant. It may not be possible to do this and the crude approach of rejecting or aborting terminal transactions, whatever their type, 

might have to be used.



Single address space, multi-threaded processes

The components are linked together into a single load module and are executed by a multi-threaded process; see Figure 30.2(b). Each 

terminal is assigned a thread and each thread has a private data area for its local variables. We assume that a strongly typed language 

would offer protection of the private data.

The threads may be managed by the operating system or by a threads package in the TP monitor (see Chapter 4). In the latter case, the 

operating system must offer asynchronous system calls for this scheme to work effectively. Recall that a synchronous system call which 

results in blocking will block the whole process if the operating system is not aware of the separate threads of the process.

If the system is to run on a shared-memory multiprocessor, multi-threading implemented by the operating system allows the threads to run 

concurrently.

As we noted above, scheduling parameters may need to be adjusted at times of high load. The area of scheduling multi-threaded 

processes is still under active research and this is a requirement that should be taken into account.

TP monitors that use a single address space in practice use multi-threading. An example is IBM's CICS (Customer Information Control 

System), (see Yelavitch, 1985) but note that IBM has a proprietary network architecture to provide communications support for this 

product: System Network Architecture (SNA). Digital had a similar product (DECintact) and network support (DECNET).

Multiple address spaces, single-threaded processes

It is desirable to implement the components of the TP monitor as separate processes in the following circumstances:

The system may comprise a large, geographically dispersed network of terminals. It is convenient to locate a message 

manager in a machine which is close to a group of terminals.

The users submit transactions at workstations. The message manager component is best located in the workstation.

The system may be partitioned so that some application servers execute specific request types. This may be because different 

parts of a business are concerned with different types of transaction and the business may most conveniently be served by 

such an arrangement.

We now require IPC between the components of the TP monitor which is executing a given transaction. This may take the form of 

message passing or remote procedure call (RPC). Figure 30.3 shows the approach in general terms.

Figure 30.3. TP modules in separate address spaces. (a) Single-threading. (b) Multi-threading.



The modules shown there may be located in separate address spaces in the same computer or in separate computers. The IPC may be 

between different address spaces on the same machine or inter-machine. A wide-area network may separate some of the components.

Connection-oriented message passing is used in some systems (see Section 3.8.2). A process establishes a session, or virtual circuit, 

with another process after which they can exchange messages. In IBM's CICS, for example, a permanent half-duplex connection is set up 

and there is explicit transfer of control between the processes at the connection endpoints to form a conversation. Conversations are 

intended to be long-lived and to span many transactions. With this model a single transaction comprises a chain of processes. When each 

component process in the chain has finished its processing the transaction may be committed. Only then can the chain of connected 

processes start work on the next transaction.

When message passing is used between some components of the TP monitor and procedure call is used to invoke other components, the 

system configuration is made explicit in the programs. For example, the message manager might be in a dedicated machine, but the other 

components might run in a single address space. This could not be changed without reprogramming. The argument against using a 

separate address space for every component, even when they run on the same machine, is that the IPC would then be less efficient than 

procedure call.

We have seen that an RPC mechanism implements a client–server style of interaction. Each component of the TP monitor could be

implemented as a separate process and RPC could be used for invocation. Some components are invoked as a server, then become a

client of the next component in the line. The components could be invoked by same-machine RPC or cross-network RPC transparently to

the application. This would make programming easy and reconfiguration possible without reprogramming. Digital's ACMS and Tandem's

Pathway TP monitors used the client–server model.

Increasing the efficiency of general message passing and RPC is an active research area. If cross-address-space IPC can be made 

efficient it is preferable for the components of TP systems to be implemented as separate processes running in separate address spaces 

for the reasons mentioned above. However, if each of these processes is only single-threaded a large number of processes is needed 

when a large number of transactions must be handled. As we discussed for single address space implementations, this imposes a high 

overhead on the operating system and leads to a large amount of context switching overhead.

Multiple address spaces, multi-threaded processes

Here we again have the TP monitor's components in separate address spaces but this time they are executed by multi-threaded 

processes; see Figure 30.3(b). The context switching overhead between threads is much lower than between processes. Problems may 

arise (as discussed for single address space, multi-threaded processes) if the operating system does not support threads and has 

synchronous system calls.

Digital's ACMS and Tandem's Pathway TP monitors supported an 'application service class' abstraction to avoid this problem. The 

application service modules (which make potentially blocking system calls) are single-threaded and run as separate OS processes. A new 

transaction which requires an application service can make a request to the class and not to a specific instance of the application service. 

Any free application service process of this class can service the request.



30.1.2 Buffered transaction requests

The implication in the above discussion has been that a transaction is executed while the user waits. This may be the case in some 

applications. In others it may be convenient for the system to accumulate a batch of requests before carrying out processing. For example, 

a shop may record the items that have been sold during the day as a batch of transactions and may update the stock database overnight. 

Orders for new stock are then made on a daily basis. The shop may record the cheque or credit card purchases made by its customers as 

a batch of transactions to be sent to its bank for settlement.

A batch mode of working is natural for many systems. In others it may be that a transaction that would normally be executed on-line, such 

as an order to dispatch an item to a customer, might not be able to complete for some reason. A network connection or remote database 

system might be unavailable. In this case, it might be possible to enter the transaction into the system and have it guaranteed to execute 

but after some delay. The crucial requirement is that once the transaction is accepted it is not lost.

The TP monitor may therefore provide for messages to be stored securely and executed later. This allows batch working as described 

above and also allows the system to be used if there has been a network or server failure.

30.1.3 Monitoring system load and performance

TP systems are large and complex. Human managers or automated management systems need information on the throughput in 

transactions per second and the response times that are being achieved. This information allows the system to be expanded when it 

becomes necessary. It also allows parameters to be tuned dynamically to improve system performance.

A typical system will grade its transaction request types in priority, for example, into those which must, if possible, be carried out 

immediately and those which may be batched or delayed for a short time. When load becomes high, low-priority request types might be 

rejected or queued to ensure good response to high-priority types. A general requirement is that the operating system should allow the 

application to specify the relative priorities of its threads and should be able to change these priorities dynamically to respond to changing 

load levels.
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30.2 Introduction to some electronic funds transfer (EFT) applications

An outline of some of the transaction processing which is carried out within EFT systems is now given.

30.2.1 Paying by cheque

Figure 30.4 outlines what is involved when goods are paid for by cheque.

Figure 30.4. Payment by cheque.

I have bought a television and have paid the shop by cheque. My handwritten signature on the cheque is used to authenticate me, but only 

in the event of a dispute at a later stage.

The shop presents my cheque (and many others) to its bank.1.

The shop's bank transmits a file containing a batch of transactions to a central clearing house. A central clearing house service 
2.



is used to avoid the necessity of every bank interacting with every other bank. One of these transactions corresponds to my 

cheque. The transactions are called debit transfers because they are requests to debit various accounts. The clearing house 

will need to interact with many different banks to establish whether the transactions can be carried out. These interactions are 

likely to be batched per bank rather than on-line.

For each transaction, the clearing house asks the bank concerned whether the cheque can be honoured: whether there is 

enough money in the account. This process will involve a batch of transactions for each bank. The figure may imply something 

more interactive and immediate. The bank sends back bounced cheques after a day or two. Let us assume that I can pay for 

the television.

3.

My account is debited and the shop's account is credited with the amount specified in the cheque. The mechanism for 

achieving this is again likely to involve a batch of accumulated transactions from my bank. This time, the transactions are credit 

transfers: they are a list of authorized credits.

4.

I get a monthly bank statement which includes a record of this transaction.5.

Note that while the cheque is being cleared I cannot safely use the money represented by the cheque, nor can the shop that I have paid 

with it. The mechanism takes of the order of days because very large numbers of cheques are involved and the batch mode of working is 

used. This system therefore favours the banks since they can make use of the money in transit. Customer pressure and competition 

between banks will provide the motivation for developing more interactive systems.

We avoided discussing cheques that bounce. In practice, in Britain and some other countries, the shop would have insisted that I cover my 

cheque with a bank card which guarantees that the cheque will be honoured. It is then my bank's problem if the cheque bounces (to 

recover the money from me), and not the shop's. In this case, interaction 3 would merely pass the requirement to make the debit to my 

bank, whether my account could cover the cheque or not. Banks will not cover very large sums of money in this way, without a fee being 

paid, and other payment mechanisms are needed. For example, the goods might be held until the cheque is cleared, as described in 1 to 5 

above.

The following points are relevant to an implementation of such a system:

That the long time taken to clear a cheque by this means is tolerable to users of the system.

A file transfer protocol is used to transfer the files of transactions. Copies of the various transaction files are kept so that any 

problems can be resolved. Early systems used magnetic tape to transfer batches of transactions.

Encryption is used for security (see below).

When transactions are being carried out at my bank, a transaction log records the debit to my account. If the system crashes 

during transaction processing, the log has a record of the old and new value of the account (see Chapter 21).

When transactions are being carried out at the shop's bank, a transaction log records the credit corresponding to my cheque. 

This prevents the credit being made more than once, or not at all.

It must be ensured that each transaction is carried out exactly once, even when the systems or the networks connecting them fail. The use 

of a log for recovery was described in Chapter 21.

30.2.2 Paying by credit card

Figure 30.5 outlines what is involved when goods are paid for by credit card. This time, the shop is guaranteed payment by the credit card 

company (CCC). My credit card is issued by a member of the CCC which we shall call the credit card issuer (CCI). The CCI may be 

associated with a bank, for example.

Figure 30.5. Payment by credit card.



My CCI notifies me of a batch of transactions in my monthly statement and I then pay the CCI for all of them (or pay to borrow money from 

the CCI). The CCC acts as a large, secure, high-level guarantor for the money involved in the transactions, shown as an umbrella in 

Figure 30.5. It is less likely to go broke than any one of its member CCIs and a card with its endorsement is more likely to be trusted by 

vendors of goods and services.

30.2.3 Paying by debit card: Point of sale transactions

A debit card is also likely to be guaranteed by an umbrella organization as described above for credit cards. If a debit card is used together 

with a handwritten signature on a payment slip, the procedure is similar to that described above for cheques. The debit card also acts as a 

guarantee that the issuer will cover the payment. At present there is no on-line interaction between the point of sale and the card issuer: 

the card merely functions as a cheque that is easy to clear. The card is put through the point of sale machine to check against a list of 

stolen card numbers (see below).

Most point of sale systems have traditionally used handwritten signatures for authentication but are gradually moving towards more secure 

methods.

Note that so far, a batch mode of working has been used to avoid the complexity of myriad interactive transactions between the many 

banks of purchasers, vendors and card issuers. The requirements on the operating system and communications support are less 

demanding for this batch mode of working than for on-line TP (OLTP). Interactive working implies that all parties wait in real time for 

accounts to be checked and authority to be given. When a batch mode is used, a system or communications line can go down for a short 

time without affecting the financial operations. If we move to interactive working, systems must be fault-tolerant. It would be intolerable for 

purchases, etc., to be held up when failures occur.

30.2.4 Some security issues

Cheque-books and cards can be stolen and forged. One of the critical issues for the financial card industry is the rate of loss due to fraud 

and forgery. In the USA, for example, this amounts to over 1.5% of the turnover of signature-based credit card transactions. For many 

issuing institutions this is over half of the profit made on credit card business. Much of the effort in designing EFT systems is therefore 



directed towards preventing and detecting both crime external to the EFT system (by its users), and internally (by those operating it).

After you have reported that your card is stolen, the credit card company is responsible for covering subsequent use of the card. It is in the 

company's interest to propagate information on stolen cards, so-called 'hot card numbers', as widely and rapidly as possible.

When a file of transactions is recorded it must be ensured that all these transactions are genuine and have not been augmented by 

transactions in favour of bank employees, nor have any transactions been changed to achieve this end. It must be guaranteed that only 

the intended transactions are processed when the file reaches its destination. Also, transactions must not be changed during transmission. 

In general, the requirement is that attacks on the transaction data must be prevented. An attack seeks to change data for the benefit of the 

attacker.

Security policies and mechanisms to achieve these aims are described in Davies and Price (1984) and Meyer and Matyas (1982).
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30.3 International inter-bank payments: SWIFT

The discussion in the previous section has given some indication of the immense volume of EFT traffic. The implicit assumption was that 

the banks concerned were located in a single country, but many transactions involve the transfer of funds between countries. If you can 

find a garage when on holiday in the high Pyrenees it will almost certainly allow you to pay for your petrol by credit card. The 

supermarket in the provincial French town where you buy your holiday provisions will give you a choice of using a debit or a credit card.

The previous section described methods that are used for transactions involving a small amount of money. The methods described 

above would not be used for large sums. In the past, telephone or telex would have been used to arrange such transfers, but these 

methods are subject to misunderstandings and fraud. Increasingly, telecommunications are being used for this purpose, a major 

example being the Society for Worldwide Inter-bank Financial Telecommunications (SWIFT). SWIFT was formed in 1973 as a 

bank-owned, non-profit cooperative society, directed by about 1000 shareholding member banks which are located in about 50 countries 

worldwide. It has been operational since 1977. The costs of its message transfer service are paid for by members using a tariff based on 

the numbers of connections, their addresses and the volume of traffic.

Chapter 10 of Davies and Price (1984) covers the operation of SWIFT in detail and its interaction with the clearing houses of its member 

nations.
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30.4 Authentication by PIN

In Section 30.2 we considered payment by cheque, credit card and debit card. In all of these cases a handwritten signature was the basis 

for authenticating the purchaser. In the next section we consider automatic teller machines (ATMs) which are EFT terminals which give 

cash dispensing and other banking services. For these machines a handwritten signature is not used. Before going on to the design of an 

ATM system we first consider authentication by personal identification numbers (PINs), a method suitable for banking and other 

applications. As well as being an authentication mechanism that is easier to automate than handwritten signatures, the PIN method has 

also been found to be very much less subject to fraud.

A PIN is a secret number assigned to, or selected by, the holder of a credit card or debit card. It authenticates the cardholder to the EFT 

system. The PIN is memorized by the cardholder and must not be recorded in any way that could be recognized by another person. At the 

time when the cardholder initiates an EFT transaction, the PIN is entered into the EFT terminal using a keyboard provided for this purpose. 

Unless the PIN, as entered, is recognized by the EFT system as correct for this particular account number (which is also recorded on the 

card) the EFT system refuses to accept the transaction.

This approach ensures that if someone steals a card or finds a lost card, he or she is unable to use it because the PIN is not known to 

them. Also, if a counterfeit copy of a card is made, it is useless without the corresponding PIN.

Chapter 10 of Meyer and Matyas (1982) discusses PINs in detail. The issues discussed there are summarized briefly below.

PIN secrecy

It is important that the users of the EFT system have confidence in its security. For example, if an applicant for a card were to be asked to 

specify a PIN on an application form it would be obvious that many employees of the card issuer would have access to the PIN. For this 

reason, we are issued with PINs instead of specifying our own.

Certain policies should hold, such as:

A PIN should not be transmitted across a network connection 'in clear', that is, without first being encrypted.

A clear PIN should never reside in a mainframe computer or database, even momentarily when in transit.

A clear PIN should not be seen by an employee of the company at any time, including when it is being issued.

Employees should not have access to the encryption keys used in the system.

PIN length

We are exhorted to use non-alphanumeric characters in our login passwords, whereas PINs are restricted to numeric characters to keep 

the EFT terminal's keyboard simple. As with computer passwords, the longer the PIN, the more difficult the system is to crack: the more 

unlikely it is that a guessed PIN will be correct. However, the method of guessing at random is thought to be infeasible for a would-be thief. 

It would be necessary to stand at an EFT terminal for many hours and this would not go without detection; see also 'allowable entry 

attempts' below.

Cardholders are required to memorize their PINs. The longer the PINs, the more likely we are to forget them. Four digits allow 10 000 



different PINs, five digits give 100 000 and six digits 1 000 000. Four-digit PINs are often used, in order to be easy to remember, but this 

means that a lot of people will share a given PIN (each with a different account number of course), and occasionally they are found to live 

in the same house. In general, short PINs can be used because we do not tell them to each other.

Allowable PIN entry attempts

Notice a significant difference in the way passwords at login and PINs are used. When the card is inserted and a PIN is typed, the EFT 

system can monitor the process and can count the number of attempts which are made to type the correct PIN. The system typically 

refuses to allow more than a small number of attempts. A login procedure could do the same, but this would not prevent other methods of 

attempting to break a computer system's security. These often involve off-line computation; for example, a password file could be copied 

and many artificially constructed passwords could be put through the known encryption function and compared with the encrypted 

passwords in the file. The stored, encrypted PINs are not available to users of the EFT system. Off-line attacks on the master PIN key (see 

below) are still feasible, however.

The PIN validation mechanism

Suppose that the EFT terminal is owned by the card issuer. The two approaches to PIN validation are outlined in Figure 30.6. Either the 

PIN is validated off-line in the EFT terminal alone or it is validated on-line by an interaction between the EFT terminal and the card issuer's 

computer system.

Figure 30.6. PIN validation.

Figure 30.7 gives a simplified view of one method of off-line validation. When the card and PIN are issued, the account number and a 

secret random number (the master PIN key) are put through an encryption function, giving the PIN as result. The PIN is not stored 

anywhere in the system and no bank employee sees it: it emerges in a sealed, addressed envelope.

Figure 30.7. Off-line PIN validation at the EFT terminal.



When the card is used at an EFT terminal, the terminal must have the computing power and the information necessary to carry out the 

same encryption process. This information resides in the tamper-proof secure unit shown in the figure. The account number from the 

card's magnetic stripe and the stored secret random number (the master PIN key) are put through the encryption function and the result is 

compared with the typed-in PIN. The reader is referred to Meyer and Matyas (1982) for details of this and other methods.

If an off-line validation method is used, some of the EFT services, such as cash dispensing, can still be offered when the EFT terminal is 

disconnected from the rest of the network. The EFT terminal must have stable storage to record the transactions. Other services, such as 

determining the balance of the account, may not be available.

Changing a PIN interactively

Some machines allow you to change your PIN. How can this be possible if PINs are not stored in the system? The method used is to store 

the difference between the original PIN and the new one the user has chosen. This stored information must be available to any EFT 

terminal. On-line validation is more appropriate for systems which offer a 'change PIN' service.

[ Team LiB ]  

file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/Operating%20Systems%20-%20Concurrent%20and%20Distributed%20Software%20Design%20(Addison%20Wesley-2003).chm/0321117891_12041533.html


[ Team LiB ]  

30.5 The international automatic teller machine (ATM) network service

Early ATMs were essentially cash dispensers. Their single function was to deliver cash in the form of banknotes and debit the 

corresponding bank account. Further facilities have now been added to these automatic tellers. You can enquire about the status of your 

bank accounts. You can move money between your own accounts and sometimes may be allowed to credit another person's account. It 

may be possible for travellers' cheques to be dispensed (in countries where these are needed). There may also be a simple deposit 

facility.

We have become used to the convenience of being able to put a card into an ATM anywhere in the world in order to draw cash from a 

bank account. You can now set off on holiday or on business with very little concern about how much cash to take with you.

This has happened recently and the design of the systems that support the service tends not to be discussed in the standard systems 

literature. When the systems are described, the emphasis is on the security aspects of their design. We give a short case study here which 

does not involve a deep discussion of security issues. An introduction to PINs and their validation was given in the previous section.

30.5.1 How bank accounts are held

A bank's account database is likely to be held on a relatively small number of large computer systems. Any given account is held at a 

primary site and a backup site, the 'hot standby' shown in Figure 30.8. As transactions involving the accounts are carried out at the primary 

site a log is kept as described in Chapter 21. If this computer should fail the bank accounts it holds should not become unavailable. This is 

the reason for the hot standby.

Figure 30.8. Local control of ATMs.



One approach to maintaining the hot standby would be to carry out each transaction on both machines but this would slow down the rate 

at which transactions could be processed. The log of transactions on the primary site is not lost on a crash, however, and it is therefore not 

necessary to keep the accounts exactly in step. The hot standby tends to be updated at a granularity of about ten minutes and the log can 

be used after a crash to bring the standby right up to date. With this approach, during normal working, a batch of transactions can be sent 

from the primary to the standby machine, thus optimizing both use of communication services and transaction processing at the standby.

30.5.2 Local control of ATMs

Figure 30.8 shows a number of ATM machines in a local area. The machines must be physically secure because they contain money. A 

secure authentication mechanism will not protect the machine from a brute force attack by heavy lifting gear. They therefore tend to be 

built into the foundations of the buildings where they are located. Each ATM has a keyboard through which the customer requests services 

and a screen to display information. Authentication of the customer is of primary importance and different approaches to achieving this 

were outlined in Section 30.4. Once the customer is authenticated, the transactions are carried out.

An ATM is typically owned and managed by a single bank, but the banks cooperate to allow transactions from each other's ATMs (not 

illustrated). Figure 30.8 shows a small computer which controls a number of local ATMs in addition to the main computers at which bank 

accounts are held. The rationale for the local computer is that while at work, for example, I regularly use the same few ATM outlets of my 

bank. The local computer can manage a large proportion of ATM traffic without interacting with the large account database storage 

systems. The functions of the ATM controller include the following:

To keep a copy of information on selected local bank accounts. Hopefully, most transactions can be satisfied from this 

information. The less frequent cases are when a stranger uses this machine and when a local person goes elsewhere and uses 

a remote machine (see Section 30.5.3).

The values of the various copies of a bank account (on the account-database machines and on the local ATM controller) are 

guaranteed to be synchronized on a 24-hour basis. In practice, transactions are carried out at a finer time grain and 

synchronization is more likely to be achieved after ten minutes or so. The information at the local controller can become out of 

date if the account is accessed remotely.

The most recent value of each local account is remembered so if only local transactions are carried out, this value is up to date.

All transactions are recorded in stable storage and a batch is sent to the account-database machine periodically, for example, 

every ten minutes.

To keep a list of 'hot cards': those which have been notified as missing, presumed stolen. This is updated at least on a daily 

basis.

To keep information on cards which have been used recently. This allows any attempt to use a stolen card repeatedly to be 

detected. It also allows a policy to limit the number of transactions per day or the amount of cash that can be withdrawn per day 

to be enforced.

To cache information that may be useful in satisfying future requests.

To communicate with other computers when requests cannot be satisfied from information held locally.

From the above it is clear that a local request is satisfied on the basis of the information held in the local controller.

30.5.3 Remote use



The following issues arise when an ATM is used by someone whose account information is not held by the ATM's controller.

The user belongs to the same bank or card issuer (CI) as the ATM's owner

The ATM's stored encryption keys, the encryption function it uses and the encoding of the card are uniform for the CI. The PIN 

typed by the user at the ATM can therefore be validated.

After PIN validation the ATM can carry out some services, such as dispensing cash. The transaction is recorded and in due 

course is passed to the account-holding database machine and the account is debited.

If that user makes use of his or her local ATM on the way home, the value stored there for the balance of the account will not, 

in general, reflect this transaction.

Certain services, such as giving the value of the account, may not be available. To provide such a service, it would be 

necessary to support interactive querying of the account database from this ATM's local controller. It might be that the account 

database is queried to ascertain and enforce the user's credit limit and the balance might or might not be divulged depending 

on the bank's policy for remote use.

Interactive TP is likely to become available increasingly in the future.

The user belongs to a different bank or card issuer (CI) from the ATM's owner

It is necessary for the user's CI and the ATM owner to have an agreement that their cards can be used in each other's machines. They 

may agree to use the same method of PIN validation (see Section 30.4), but the 'secret random number' (key) that is input to the 

encryption function when the card is issued, and when the PIN is validated, will be different for the two CIs. It must be possible for these 

secret numbers to be inserted into the tamper-proof secure unit in the ATM without being disclosed to the cooperating CIs. The program in 

the ATM which reads the card can detect the bank number and select the appropriate secret on that basis. An alternative method is to 

encrypt the information and transmit it for remote validation by the CI.

The service offered may differ slightly from that given to a customer of the owner's bank. It might be necessary that the account database 

is interrogated to enforce a 'no overdraft' policy, but the value is unlikely to be disclosed.
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30.6 Load and traffic in TP systems

The above descriptions were presented in general terms. In order to understand the likely load on TP systems and the volume of traffic 

involved in this application area, knowledge of typical transaction sizes and the rates at which they are invoked is needed. If one is to 

design a TP system it is essential to know these values for the application areas it is intended to serve.

An example from ATM systems of the rate at which transactions can be executed is that a recent reimplementation of a widely used 

system has increased the potential transaction rate from 50 per second to 400 per second. The transaction rate could be limited by the 

line speed used for the connection between the ATM controller and the customer's host system, but is most often software-limited.

Another factor to bear in mind is peak load both in normal and exceptional circumstances. For example, ATM machines are used most 

heavily on Fridays and Saturdays around midday. The international stock exchanges' systems were unable to cope with the load 

generated on 'Black Monday' in October 1987. A TP system should have management procedures to cope with predicted high loads and 

projected emergency loads.

The size of a transaction depends on the number of instructions executed (the 'pathlength') and the number of input and output 

instructions it performs. Studies of real workloads have shown that pathlength provides a reasonable basis for comparison. Sharman 

(1991) classifies typical workloads as simple, medium and complex:

simple: pathlength < 100 000 instructions

medium: 100 000 < pathlength < 1 000 000

complex: pathlength > 1 000 000 instructions

A typical mixed workload comprises simple and medium transactions. Complex transactions typically occur in applications which involve 

complex query analysis on a database, expert systems inference applications or very large components databases (such as the 

components involved in manufacturing various parts of an aircraft).

It is difficult to compare systems with widely varying transaction mixes. Figures indicating the number of transactions per second are 

quoted, but the transaction sizes must be known for these rates to mean anything. The non-profit Transaction Processing Performance 

Council (TPPC) was set up for this purpose in 1989. Its aim is to define standard benchmarks upon which both the industry and its 

customers can rely (see Gray, 1991). TPPC will define benchmarks based on typical applications and will specify the configurations 

which are needed to run them.

One benchmark, TPC-A, is based on a simplified banking transaction known as debit/credit which has a pathlength of 100 000 

instructions. Typical prices of systems that can achieve one TPC-A transaction per second are in the range $20,000 to $40,000 

(Sharman, 1991).

A customer may wish to purchase a TP system that will scale, for example, to handle from 0.1 to 1000 transactions per second. Different 

departments of the company may require different mixes and different rates, and any given part of a company will wish to be able to 

allow for growth of the system.

In addition to supporting some specified transaction rate a TP system (comprising the hardware and software of the attached computers 

and the net work connections) is required to be highly available, to operate continuously and to be secure.
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30.7 Summary and trends

This brief study of transaction processing systems has shown the relevance to them of the topics that we studied in the earlier parts of 

the book. We saw that it is necessary to know the process model and IPC facilities of the operating system over which a TP system is 

implemented. Ideally, the OS should support multi-threaded processes. The TP system can then be programmed naturally and without 

artificial restrictions. If only single-threaded processes are supported, and system calls are synchronous, the TP system implementor has 

to go to a great deal of trouble to program around the potential problems. We saw that multiple address spaces containing multi-threaded 

processes using RPC for communication could be used to provide a general and flexible implementation.

Examples of TP systems in the area of electronic funds transfer were given. They can be divided into those which use handwritten 

signatures for authentication and those which use personal identification numbers. The latter are more convenient to automate and more 

secure. The trend is therefore towards the use of PINs, and PIN validation is likely to come into use at point of sale terminals. IBM, 

however, go for signature verification.

We saw that file transfer and batched transaction processing are often used. This method uses processing power and communications 

efficiently, but is subject to delay. The trend is towards increasingly widespread use of on-line transaction processing, associated with the 

more conveniently automated PIN-based authentication.

Large distributed systems of this kind require management: configuration management and evolution in response to failures and 

bottlenecks and parameter tuning in response to varying load. At present, monitoring processes may report to human managers but the 

trend is towards increased automation of management processes. An example is that the transactions issued by one company to order 

goods from another may be input directly to the control mechanisms of the manufacturing processes of the supplying company.

Exercises

30.1 What problems arise from using one operating system process per user terminal?

30.2 How do the problems which arise when single-threaded processes are used for building multi-threaded servers apply 

to TP system implementations? How have these problems been addressed in practice?

30.3 Why is connection-oriented communication between the components of a TP system less elegant than an RPC 

system? Why might it be more efficient?

30.4 Why is the use of a separate process for each component of a TP system more flexible than a shared address space 

solution?

30.5 Indicate where buffered transaction processing is used when goods are paid for by cheque, credit card and debit card. 

How could on-line TP be brought into point of sale applications?



30.6
What are the factors affecting the design of PIN-based authentication?a.

What would be the problems arising from a 12-digit PIN?b.

Why shouldn't I choose a PIN and tell my card issuer by writing it on a form that includes my unencrypted 

name and address?

c.

30.7 What would be involved in keeping the bank accounts in the bank account database computers and the ATM 

controllers completely up to date?

30.8 Why are TP benchmarks needed?
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Appendix Evolution of computer systems

A.1 Evolution and exploitation of technology

A.2 Operating systems and distributed operating systems

A.3 Databases

A.4 Concurrency control

Since system design is technology-driven an outline of technological developments is given below. The development of hardware, 

computer systems and networks is included. Technology must be exploited, first in research projects and, when feasibility is 

demonstrated, in commercial products. The formation of selected major companies and software products is therefore included. The 

data below is based on the timeline created by the IEEE Computer Society for their 50th anniversary in 1996. See IEEE (1996) and 

http://www.computer.org/history/ for further reading.

We then go on to the evolution of software systems. The integrated approach taken throughout is relevant to operating systems, 

distributed operating systems, middleware, distributed services and database. A brief discussion of the major milestones in the evolution 

of these systems is given. The concepts can be followed up in the relevant section of the book.

Finally, the historically important problem of how to achieve concurrency control without hardware support is described with solutions.
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A.1 Evolution and exploitation of technology

1801

A linked sequence of punched cards controls the weaving of patterns in Jacquard's loom.

1822–49

Charles Babbage works on his Difference Engine and Analytical Engine.

1844

Samuel Morse demonstrates the Morse code.

1854

George Boole develops Boolean algebra.

1858

First Atlantic telegraph cable.

1876

Alexander Graham Bell invents the telephone.

1882

William S. Burroughs embarks on inventing an adding machine.

1889

Herman Hollerith's Electronic Tabulating System is selected for use in the 1890 census. He establishes a company in 1896.

1895

Guglielmo Marconi transmits a radio signal.

1901

The keypunch appears.

1924

T. J. Watson renames the former CTR (originating from Hollerith) IBM.

1927

Television is demonstrated.

1936

Konrad Zuse files a patent application for the automatic execution of calculations including a combination memory.

1937

Howard Aiken proposes a digital calculating machine to IBM. Claude Shannon publishes the principles for an electronic adder. George 

Stibitz develops a binary circuit based on Boolean algebra. Alan Turing publishes 'On Computable Numbers' giving the concepts of the 



Turing machine. John Vincent Atanasoff devises the principles of the electronic digital computer.

1938

Hewlett Packard formed.

Zuse completes the electromechanical Z1.

1939

Atanasoff builds a prototype electronic digital computer based on binary arithmetic.

1940

Zuse completes the Z2, based on telephone relays.

1941

Zuse completes the Z3, the first fully functional, program-controlled electromechanical digital computer.

1943

The construction of ENIAC begins at the Moore School of Electrical Engineering in Philadelphia. Colossus, the first all-electronic 

calculating device, is developed at Bletchley Park, UK by Turing and others.

1944

Harvard Mark 1 produced by Aiken.

1945

Eckert and Mauchley contract to build EDVAC.

ENIAC operational.

John von Neumann introduces the concept of a stored program in a draft report on the EDVAC design.

1946

ENIAC unveiled at the University of Pennsylvania.

Turing publishes a report on his design for ACE (Automatic Computing Engine) to be built at the National Physical Laboratory (NPL), UK.

1947

Harvard Mark II is completed.

The magnetic drum is introduced as a data storage device.

Design for the first transistor at Bell Labs.

1948

Shannon publishes 'A Mathematical Theory of Communication'.

Manchester Mark I operational at Manchester University, UK.

EDSAC operational at Cambridge, UK.

The Hamming code is devised.

1949

Whirlwind goes into service at MIT.

1950



The Pilot ACE is completed at the NPL, UK.

1951

The first Univac I is delivered to the US Census Bureau.

David Wheeler, Maurice Wilkes and Stanley Gill introduce subprograms incorporating the 'Wheeler jump' mechanism.

Maurice Wilkes originates microprogramming.

Grace Murray Hopper develops the first compiler.

1952

EDVAC runs its first production program.

Illiac I is built at the University of Illinois.

von Neumann's bit-parallel machine is completed at Princeton.

Thomas J. Watson Jr becomes president of IBM.

Univac I predicts the outcome of the presidential election on TV.

1953

English Electric's LEO, a commercial version of EDSAC, goes into service for Lyons cafeterias.

The IBM 650 (Magnetic Drum Calculator) becomes the first mass-produced computer.

A Postgraduate Diploma in Computer Science is offered by the University of Cambridge, UK.

1957

Control Data incorporated.

John Backus and colleagues at IBM deliver the first Fortran compiler.

1958

Digital Equipment Corporation (DEC) is founded.

1959

The Codasyl committee is formed to create COBOL.

John McCarthy develops Lisp.

1960

Paul Baran at RAND develops the packet switching principle.

Algol 60 standards established by US and Europeans.

DEC introduces PDP-1, with a monitor and keyboard input.

1961

Fernando Corbato at MIT implements timesharing/multiaccess in CTSS.

IBM's Stretch (7030) completed.

1962

Atlas in the UK has paged virtual memory and pipelined operations.



Telstar satellite launched.

First video game.

Stanford and Purdue Universities establish departments of Computer Science.

Design and storage of synthesized music at Bell Labs.

1963

The ASCII 7-bit code becomes a standard.

1964

Seymour Cray's CDC 6600 achieves 9 megaflops – the first commercially successful supercomputer.

Doug Engelbart invents the mouse.

IBM announces (third generation) System/360.

IBM develops a CAD system.

IBM completes the Sabre airline reservation system.

BASIC is developed at Dartmouth by Kemeny and Kurtz.

1965

DEC introduces the PDP-8.

Project MAC embarks on the Multics operating system.

Maurice Wilkes proposes the use of a cache memory.

1967

Simula is developed.

1968

Burroughs introduces B2500 and B3500, the first computers to use integrated circuits.

Intel established by Noyce, Grove and Moore.

Seymour Cray's CDC 7600 achieves 40 megaflops.

The six-digit date format is established as a standard, ensuring a problem over year 2000.

Dijkstra invents semaphores for the THE operating system.

1969

The US Department of Defense commissions Arpanet for research networking. The first four nodes are UCLA, UC Santa Barbara, SRI 

and the University of Utah.

1970

UNIX developed at Bell Labs by Ritchie and Thomson (after withdrawing from the project MAC's Multics project in 1969).

Xerox PARC established for computer research.

Ted Codd defines the relational model.

1971

Niklaus Wirth develops Pascal.



First network email.

David Parnas defines the principle of information hiding.

Intel 4004 developed.

1972

DEC's PDP-11/45 is introduced.

Intel's 8008 and 8080 introduced, 8-bit microprocessors.

Prolog developed at the University of Marseilles.

Smalltalk developed at Xerox PARC.

C developed at Bell Labs.

1973

Robert Metcalfe describes the Ethernet as a modified Alohanet.

The Alto is developed at Xerox PARC.

Work begins on TCP.

1974

At Xerox PARC Charles Simonyi writes the first WYSIWYG (what you see is what you get) application.

1975

The first PC is available as a kit – the Altair 8800.

Fred Brookes writes The Mythical Man-Month.

1976

The Cray-1 vector/supercomputer is announced.

CP/M developed for 8-bit PCs.

OnTyme – the first commercial email service finds too few potential users.

Apple-I built by Steve Jobs and Steve Wozniak.

1977

Apple is formed and the Apple II establishes a personal computing environment.

Bill Gates and Paul Allen set up Microsoft, in Albuquerque, New Mexico.

1978

DEC introduces the VAX 11/780, a 32-bit computer.

Intel announces the 8086, its first 16-bit processor.

Wordstar becomes widely used on CP/M and later on DOS systems.

Rivest, Shamir and Adelman propose the RSA cipher as a public key cryptosystem for enciphering digital transmissions.

1979

Visicalc is unveiled – the first electronic spreadsheet.



Motorola introduces the MC68000, later to be used in the Macintosh.

1980

IBM selects PC-DOS from Microsoft as the operating system for its new PC.

David Patterson coins the term 'reduced instruction set computer' (RISC) in his work at Berkeley and develops the concept with John 

Hennessy of Stanford.

The Ada language emerges from the US Department of Defense. It is intended for process control and embedded applications.

DBase II is developed for the IBM PC.

1981

The open architecture IBM PC is launched.

Xerox introduces the Xerox Star.

The Star then Viewpoint GUIs are developed.

1982

IBM PC clones are developed.

Autodesk is founded and AutoCAD is available.

John Warnock develops Postscript and with Charles Geschke founds Adobe Systems.

Japan launches its Fifth Generation project focusing on artificial intelligence.

Commercial email begins.

1983

The global internet is made by completion of the switchover to TCP/IP.

IBM PC-XT is available.

Lotus 1-2-3 is available for the IBM PC.

Apple's Lisa is launched.

1984

The Apple Macintosh is launched.

MacPaint is available.

MIDI (Musical Instrument Digital Interface) standards are developed for interfacing computers and digital music synthesizers.

CD-ROM introduced by Sony and Philips.

1985

Microsoft Windows 1.0 is available for DOS-compatible computers.

The Inmos transputer is introduced.

Cray 2 and Thinking Machines' parallel processor Connection Machine is announced.

Intel introduces the 80386 chip with 32-bit processing and on-board memory management.

PageMaker becomes the first desktop publishing program, first for the Macintosh and later for IBM compatibles.

1986



The term CASE (Computer Assisted Software Engineering) is popularized by a Wall Street Journal article.

1988

Motorola's 32-bit 88000 series of RISC processors is announced.

The internet worm program of graduate student Robert Morris Jr shows the need for better network security.

1989

Intel's 80486 chip is announced.

1990

Microsoft introduces Windows 3.0.

HP and IBM each announce RISC-based computers.

Intel's i486 and iPSC/860 become available.

Tim Berners-Lee writes the initial prototype for the World Wide Web.

1991

Cray Research unveils the Cray Y-MP C90 with 16 processors and a speed of 16 Gflops.

IBM, Motorola and Apple announce their PowerPC alliance.

1992

The first M-bone audio multicast is transmitted on the internet.

DEC introduces its first Alpha chip: a 64-bit RISC architecture.

1993

Apple releases the Newton, a personal digital assistant with a stylus pen.

Intel's Pentium is introduced.

The Mosaic browser is developed by NCSA (University of Illinois' National Center for Supercomputing).

1994

Jim Clark and Marc Andreesen found Netscape Communications.

Netscape's first browser becomes available.

1995

SUN Microsystems launches the Java programming language.

Microsoft Windows 95 is launched.

1996

The Intel Pentium Pro is announced.
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A.2 Operating systems and distributed operating systems

The earliest computer systems had no operating systems. Programmers would book time on the computer or queue to use it. They 

would then read in their decks of cards or paper tapes and perhaps single-shot through the part of the program being debugged while 

watching the effect on the console display. The potential of computers for the business world was soon realized and the need for 

streamlining program execution became apparent.

One-at-a-time batch

During the 1960s computers were expensive and were located in air-conditioned machine rooms. The first operating systems were 

designed to run one program at once and the human was removed from the input process. The term SPOOL (simultaneous peripheral 

operation on line) was coined by IBM for a system in which a batch of jobs to be run was assembled on magnetic tape. The jobs were 

read into memory one at a time from the input spool and results were delivered to the output spool. This was faster than using other 

peripherals; a slower, less expensive computer could be used to generate the final output.

A one-day turnaround during program development and testing was deemed acceptable and the payroll program would run for many 

hours weekly. Although memory protection hardware would have been useful for this mode of operation to protect the operating system 

from the running program, early systems typically had no memory protection or relocation hardware. The operating system was 

frequently corrupted and had to be reloaded.

A.2.1 Multiprogramming batch

As technology improved, memory size increased, processors became faster and magnetic disks became available it was possible to give 

the operating system greater functionality. We still had batch working but multiprogramming batch operation became possible; that is, a 

number of programs could be in main memory at the same time. Each would run until it blocked for I/O when another program could take 

over to make use of this otherwise idle time. The batch of jobs could be input to disk, accessed in any order (unlike magnetic tape) and 

selected to run in memory. An aim was to achieve a good 'job mix' of jobs with varying resource requirements to avoid competition and 

make best use of the system's resources. This selection process was called high-level scheduling, as opposed to low-level or processor 

scheduling.

Note that memory protection is now essential to protect the operating system from the running programs and the programs from each 

other. It is no longer feasible to reload a corrupted operating system between jobs: jobs are continually terminating and being replaced 

from disk by other similar jobs. All multiprogramming systems had protection hardware; many did not have dynamic relocation hardware.

IBM OS/360 1964

IBM's OS/360 had two versions MFT (multiple fixed task) and MVT (multiple variable tasks), both requiring memory to be partitioned. 

Each program was assigned to a partition of memory in which it would always run. The partitions were associated with resources, for 

example, jobs requiring a large amount of memory and using magnetic tape, jobs of smaller size requiring some other peripherals and so 

on.



OS/360 (1964) was designed to run on a range of IBM machines, was written in assembler (as were all operating systems at the time), 

and was notoriously large. It had an extremely complex job control language (JCL) to allow for all possible options, which took weeks 

to learn. Over the years, the System 360 architecture evolved to the 370 series which finally provided virtual memory with segmentation 

and paging hardware and an address space per user. The operating system MVS is still basically a batch system but with some 

interactive use as an option: time sharing option (TSO).

Atlas 1960

The Atlas computer was designed at the University of Manchester, UK in the late 1950s and early 1960s and ran at Manchester and 

London Universities (where one author programmed it) as well as some government research laboratories. It was a spooled 

multiprogramming batch system as described above but also employed a magnetic drum; see below. It had several novel features which 

have since become standard; trap instructions were used for system calls (so-called extracodes) and device drivers were incorporated in 

the operating system.

Atlas memory management was remarkable in introducing paging hardware, virtual memory and demand paging from the 98K drum. 

The main (core) memory size was typically 16K. The page size was 512 x 48-bit words. The whole main memory was mapped in 

hardware in an associative memory (32 associative registers for a 16K memory). On a page fault a page replacement algorithm ran 

which could rely on one memory page being kept free so that the required page could be transferred in without delay.

Burroughs 1961

The Burroughs approach is worthy of note, the philosophy being to support the high-level language programmer. The architectures 

incorporated stack hardware (to mirror expression evaluation in languages such as Algol 60), and segmented memory management was 

used from the early 1960s.

A.2.2 Centralized time-sharing (interactive) systems

Batch operation works well for programs which run for a long time and change rarely. It is frustrating during the program development 

and testing period, since a small syntactic bug can mean a day or more wasted. As technology advanced computers became able to 

support interaction with users.

One model is a centralized system with an adequate supply of memory, good memory management hardware, plenty of file space, etc. 

The fact that humans type relatively slowly helped to make this mode of operation feasible. As communications improved users could 

logon from remote locations via dial-up lines and modems. Some early LAN-based systems used the LAN to provide access from 

terminals to centralized computer systems. The major new requirement was that the scheduling algorithm had to attempt to keep all the 

interactive users happy; thus time-slicing was invented. Some key system designs are outlined below but many others were developed, 

including Tops10 and Tenex for the DEC System10 (PDP-10), VMS for DEC VAXs and the Titan supervisor for the Atlas 2 computer at 

Cambridge University, UK.

CTSS 1962

The Compatible Time-Sharing System (CTSS) was designed at MIT (Corbato et al., 1962). It ran on an IBM 7090 and was able to 

support up to 32 interactive users. The scheduling algorithm employed multi-level queueing; the time quantum associated with a queue 



doubled for each drop in priority level. The aim was to give high priority to interactive users who would run only for a short time and to 

allow compute-bound users to run for a reasonable time when the interactive users were all blocked. Memory management relied on 

swapping memory images rather than using demand paging hardware.

XDS 940, 1965

This was an interactive system designed at the University of California at Berkeley for a Rank Xerox machine (Lichtenberger and Pirtle, 

1965). Although it had paging hardware for a 2K word page size, this was in the form of a memory map or hardware page table rather 

than making use of demand paging. When a process was running its entire page table had to be present in the hardware memory map, 

thus allowing dynamic address relocation. The memory map could contain entries for several processes and pages could be shared. The 

system was innovative in allowing any process to create subprocesses dynamically and supporting shared memory IPC between them.

THE 1968

THE design was described in detail in Chapter 11. The innovative aspect was the formalization of IPC through the definition of 

semaphores. The layered structure was also an attempt to master the complexity of operating systems and prove their correctness. Strict 

layering has not proved possible and modularity, especially through object orientation, has come to dominate. The process structure was 

static, unlike the other systems in this subsection.

Multics 1968

Multics was designed at MIT (Corbato and Vyssotski, 1965; Organick, 1972) as a natural successor to CTSS. It was funded under project

MAC as a collaboration between MIT, GE, BBN and Bell Laboratories. The vision was a large time-sharing system that would offer

continuous service. The hardware base was the specially developed GE645 which provided a large, paged and segmented virtual

address space comprising an 18-bit segment number, a 16-bit word–offset and a 1K word page size. The operating system was written

in a high-level language, PL/1.

A novel aspect was the integration of virtual memory with the filing system. A file became a segment when referenced and acquired a 

segment number dynamically. The design aim was to support full generality of file/segment sharing between processes. Process 

scheduling was similar to CTSS, with a multi-level queue structure.

A great deal of attention was paid to protection. As well as a flexible access control list specification for files, the hardware supported 

nested protection domains or rings. Sixty-four rings were envisaged but the operational system had eight. The innermost levels were 

used for highly privileged kernel functions such as interrupt servicing and process dispatching; outer levels were used for less sensitive 

functions. The operating system ran in-process, was invoked procedurally and inward ring crossing was monitored through hardware 

traps. Several levels were available for applications so that, for example, an instructor could assign software to examine students to a 

number of rings. The software to record the score could be made inaccessible to the software to test the student except through 

standard entry points.

MU5 1969

Various research machines were built at Manchester University, UK, including the Mark 1 in the late 1940s, Atlas in 1960 and a Dataflow 

machine in the 1980s. Research Machine 5 (MU5) (Morris and Detlefsen, 1969; Morris and Ibett, 1979) was built to explore paged, 

segmented memory management and included an early example of what would now be called an inverted page table. The use of large 



numbers of segments per process and the ability to share them was explored. The design was based on segment numbers rather than 

names (as in Multics) and naming conventions were necessary if renumbering was to be avoided. MU5 also employed message passing 

for IPC. The MU5 design was influential on ICL's 2900 and the George III operating system.

UNIX 1970

UNIX was designed initially as a personal computing environment but soon came to implement time-sharing. The original design 

decisions on IPC have been used throughout the book as examples and a full case study can be found as Chapter 24. Modern variants 

of UNIX are described in Chapter 25.

RC4000 1973

The aim here was to provide a nucleus on which any kind of operating system could be built (Brinch Hansen, 1970). The hardware 

platform was the Danish Regnecentralen RC4000. The nucleus supported processes and message-based IPC. In this early system 

messages were fixed length (8 words) and the same message was used for a reply as that for the original request. Input and output was 

unified as message passing between processes and device drivers. A process could create subprocesses dynamically and allocate its 

resources among them.

Capability architectures

The focus here is on capability-based addressing for a secure environment. The designs can be seen as a generalization of the Multics 

ring structure (nested protection domains). The aim was to design general, hardware-enforced, domain-structured systems with 

capability-controlled domain entry. Examples include the Plessey PP250 (England, 1972), CAP at Cambridge University, UK (Needham 

and Walker, 1977), the Intel iAPX 432, Hydra for C.mmp and StarOS for Cm* at Carnegie Mellon University. In general, the slow 

performance was found to be too great a penalty to pay for the enhanced security. Also, the advent of distributed systems meant that 

capabilities had to be transferred across the network (protected by encryption) rather than protected by hardware within a single system 

and the design emphasis changed.

A.2.3 Workstations and personal computers

During the 1970s and 1980s we saw the centralized time-sharing system replaced as the normal mode of computing provision by 

personal workstations. The workplace environment came to comprise a computer on the desk with a network connection and services 

such as printing and filing provided across the network.

We must now consider more than a single computer. During the 1970s at Xerox Palo Alto Research Center (Xerox PARC) researchers 

were given an environment comprising an Ethernet LAN, Alto workstations running the Pilot operating system (Lampson and Sproull, 

1979; Redell et al., 1980) and various shared servers such as the XDFS (Xerox Distributed File System) (Mitchell and Dion, 1982). For the 

first time, users were not constantly aware of the OS interface since a window-based GUI was provided above it. The work on the user 

interface at Xerox PARC was used as a basis for that of the Apple Macintosh personal computer. Distributed systems such as the 

Grapevine message passing and registration service (Birrell et al., 1982) were built above this base.

The designers of Pilot used the term 'open operating system' for the concept that evolved into the microkernel approach to operating 

system design. The OS should support efficiently not only users developing and running programs but also shared servers and 

communications gateways. A common core should be provided.



UNIX was designed as a personal environment, was extended for centralized time-sharing systems and is now used in many 

workstations. As technology has developed workstations have become able to support a single local user and remote users 

simultaneously. There are many versions of UNIX (see Chapter 25).

Operating systems for LAN-based distributed systems include:

CDCS (Cambridge Distributed Computing System) (Needham and Herbert, 1982);

Thoth at the University of Waterloo, Ontario (Gentleman, 1981);

V system at Stanford (Cheriton, 1984);

Apollo Domain (Leach et al., 1983);

Newcastle Connection (Brownbridge et al., 1982);

Mach from Carnegie Mellon University (Rashid, 1986);

CHORUS from INRIA (Rozier et al., 1988);

Amoeba at the Vrije Universiteit Amsterdam (Tanenbaum et al., 1990);

Plan9 from Bell (Pike et al., 1990; 1991).

A great deal of research effort has been directed towards applying object-oriented design principles to the internals of operating systems. 

Most of this effort has been by research teams at academic institutions, for example:

Clouds at the Georgia Institute of Technology (Dasgupta et al., 1991);

Emerald at the University of Washington (Black et al., 1986; 1987);

Choices at the University of Illinois (Campbell et al., 1992);

Lipto at the University of Arizona (Druschel et al., 1992);

Tigger at Trinity College Dublin, Ireland (Cahill, 1996).

Others, at government research institutions include:

Peace, at GMD, Germany (Schroeder-Preikschat, 1994);

Soul at INRIA, France (Shapiro, 1991).

A team at SUN Microsystems designed Spring (Hamilton and Kougiouris, 1993).

Personal computers had to be as inexpensive as possible. The OS had to fit into a small amount of memory, and features such as 

protected address spaces were inappropriate for this environment. Typically the operating system and all user-level software would run 

without restriction in a single address space; the OS could be corrupted and the user would have to reboot. The filing system was based 

on the assumption of a single owner; protection was not an issue. Examples are CP/M for early, 8-bit microprocessors, MacOS for Apple 

computers and MS-DOS, then Windows 95 for IBM-compatible PCs. IBM's OS/2 (Cook and Rawson, 1988) has been overtaken in 

popularity by Microsoft's Windows NT (Solomon, 1998). NT has an object-oriented design, offers protected address spaces, supports a 

multi-user filing system and is capable of running a broad range of applications, thus extending the scope of PC software. Windows 

2000/NT are described in Chapter 27.
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A.3 Databases

The field of database is large and, in this integrated approach to software systems design, we have focused on object data modelling, 

transaction processing, concurrency control, recovery, distribution and the requirements a database system imposes on the underlying 

operating system. We have not studied earlier approaches to data modelling and query language design. A very brief historical 

development is given here but a specialist database text should be consulted for background reading (Date, 1995; Korth and 

Silberschatz, 1991). Bell and Grimson (1992) focus on distributed database systems. Collections of papers edited by leading database 

researchers are Mylopoulos and Brodie (1989), Zdonik and Maier (1990) and Stonebraker (1994). Database products for 

microcomputers include dBaseIII; a spreadsheet/database product is Lotus 1-2-3.

Before the 1970s database functionality was achieved by indexed access to files structured as fixed-length records with file and record 

locking used to achieve concurrency control. During the 1970s complete DBMSs became available, based on the hierarchical (IBM's 

IMS) and network data models; that is links were used to create hierarchical structures of records. Record-level access control was 

imposed and the theory of transactions, with concurrency control and recovery as described in Part III of this book, began to emerge. A 

database became a general, linked, multifile structure.

Codd's classic paper in 1970 (Codd, 1970) introduced the relational data model and by the 1980s commercial relational DBMSs were 

available together with transactions and high-level query languages, such as SQL (structured query language), defined by ANSI in 1984 

and described in Date (1987). Examples of relational systems are INGRES, from the University of California at Berkeley (Stonebraker, 

1976; 1980) and System R from IBM San José (Astrahan et al., 1976). System R* extended the project to a distributed database 

(Williams et al., 1982).

The functional data model and related query languages emerged during the 1980s (Shipman, 1981; Buneman et al., 1982).

In 1989 'The object-oriented database system manifesto' was published (Atkinson et al., 1989) and in 1990 the 'Third generation 

database system manifesto'. There was general agreement on the directions in which DBMSs needed to move. The ODMG-93 standard 

was a swift response to the two manifestos. The authors worked within the general framework of the Object Management Group (OMG), 

although as an independent consortium, the Object Database Management Group. Other OMG initiatives such as the object 

management architecture and CORBA are described in Chapter 29. The first edition of the ODMG standard was quite heavily criticized 

and a second edition is now available (Cattell, 1996). Cattell (1991) gives an excellent overview of object-oriented database systems.

Object-oriented databases have been designed and implemented during the 1990s but commercial systems still tend to follow the 

relational model. Some object-oriented systems with references are as follows:

Camelot (Spector et al., 1986);

Gemstone (Bretl et al., 1988);

IRIS (Fishman et al., 1987);

O2 (Bancilhon et al., 1988);

ObjectStore;

ONTOS;

POSTGRES (Stonebraker and Rowe, 1986);

Starburst (Schwarz et al., 1986).
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A.4 Concurrency control

A.4.1 Mutual exclusion without hardware support

Section 10.2 discussed how processes can achieve mutually exclusive access to shared data. There we emphasized the use of hardware 

support in the form of composite instructions and discussed the option of forbidding interrupts inside the kernel of a uniprocessor. 

Nowadays composite instructions are provided and can be used for the lowest level of concurrency control. But in the early days of 

computer systems, hardware was restricted in its scope and concurrency control had to be achieved without composite instructions.

A great deal of research effort was directed towards the mutual exclusion problem before processor designers routinely provided 

instructions on which mutual exclusion can be built. It was first discussed by Dijkstra (1965), and the Dutch mathematician Dekker was the 

first to publish a correct algorithm, for two processes. This algorithm was generalized for N processes by Dijkstra. Subsequently, versions 

with greater efficiency and alternative algorithms were devised. Two such algorithms are the N-process mutual exclusion protocol of 

Eisenberg and McGuire (1972) and Lamport's N-process bakery algorithm (1974). We will cover these two algorithms in Sections A.4.3 and 

A.4.4 respectively. Note, however, that these algorithms do not allow for a dynamically changing number of processes.

A.4.2 Requirements

Each process contains a critical region (CR) of code which it may execute any number of times. The phases of a process's execution may 

be represented as follows:

execute non-critical code

execute an entry protocol for the critical region

execute the critical region

execute an exit protocol for the critical region

execute non-critical code

The requirements on an algorithm implemented by the entry and exit protocols are as follows:

The processes may run on a multiprocessor, so we cannot forbid interrupts to achieve mutual exclusion.

The processors may not have a composite read–modify–write instruction. We must solve the problem by software alone.

The processes are not identical and no assumption can be made about their relative speeds. It is not satisfactory to arrange 

that they enter their critical regions in some specific order.

A process may halt in its non-critical region. This must not affect the other processes. It may not halt in its critical region nor in 

the entry and exit protocols for it.



The algorithm must be free from deadlock (see Chapter 18). If some processes are attempting to enter their critical region then 

one of them must eventually succeed.

The algorithm must be free from starvation for every process. If a process commences execution of the entry protocol it must 

eventually succeed.

In the absence of contention for the critical region the overhead of executing the entry protocol should be minimal.

A.4.3 The N-process mutual exclusion protocol of Eisenberg and McGuire (1972)

Let us assume n processes, P0, … , Pn-1 which share two variables:

int[] procphase = new int[n]; /* Each value is either out-cr, want-cr or claim-cr */

int turn; /* Holds values 0..n -1 */

Initially, all entries in the array procphase are set to out-cr (no process is in the critical region or seeking entry to it) and turn has some 

arbitrary value, say turn'=0. Figure A.1 gives an example to illustrate how procphase and turn are used and how they must be manipulated 

by the entry and exit protocols. In the algorithms i indicates the process identifier and j is a local variable of each process Pi.

Figure A.1. An example of the use of procphase and turn by five processes to achieve mutual 

exclusion.

The entry protocol for process Pi expresses the intention of entering the critical region by setting procphase[i]=want-cr. If no other process 

Pk for some k between turn and i (in circular order) has expressed a similar intention, then Pi asserts its right to enter the critical region by 

setting procphase[i]=claim-cr. Provided that Pi is the only process to have asserted its right, it enters the critical region by setting turn=i; if 

there is contention it restarts the entry protocol.

The exit protocol for process Pi examines the array procphase in the order i+1, i+2, … , n-1, 0, 1, … , i-1. If a process is found which has the 

value want-cr (or possibly claim-cr) in procphase, then turn is set to the identifier of that process. In the example in Figure A.1, P2's exit 

protocol would set turn=3. If every process, other than i itself, has value out-cr in procphase, then turn remains at value i. Finally, Pi sets its 



own value in procphase to out-cr.

The algorithm depends on scanning the list of processes in circular order (see Figure A.2). While process Pi is executing the critical region 

turn=i, if at its exit from the critical region no other process has expressed an intention of entering then turn remains set to i, otherwise Pi

sets turn to the identifier of the first interested process.

Figure A.2. Scanning n processes in circular order.

The complete algorithm is as follows:

non-critical code

/* entry protocol for process i */ 

   do {
      procphase[i]=want-cr;

      j=turn;

      while (j != i) {                                // no check if turn=i

        if procphase[j]=out-cr

            j=(j + 1) % n                              // reduce modulo n

        else
           j=turn;                                     // restart scan

      }

      procphase[i]=claim-cr;                           // no prior claimant

      j=(i + 1) % n;

      while (procphase[j] != claim-cr) j=(j + 1) % n;  // contention?

   }



   while ((j != i) || (turn != i && procphase[turn] != out-cr));

   turn=i;

critical region (CR)

/* exit protocol for process i */ 

   j=(turn + 1) % n;                             // turn=i

   while (procphase[j]=out-cr) j=(j + 1) % n;    // any interest?

   turn=j;

   procphase[i]=out-cr;

non-critical code

Suppose that a process has finished its turn but has found no successor waiting to enter (see Figure A.2). Later, process i starts its entry 

protocol. procphase[i] will be reset to out-cr only after process i has been through its critical region; hence only processes to which process i

defers can obtain right of entry before it does. Any such process on exit will detect that process i is waiting to enter, unless some other 

process intermediate in the cycle is also waiting. At worst, process i will be given its turn after a single critical region execution by each 

such intermediate process.

In order to understand the entry protocol we shall use an example with five processes and consider some simple cases, followed by 

parallel execution of the entry protocol.

Figure A.3 illustrates the case where two processes are waiting to enter the critical region when P2 exits from it. P3 detects that P2 has left 

the region and that turn=3. It therefore proceeds to set procphase[3]=claim-cr and (eventually) turn=3.

Figure A.3. An example illustrating the entry protocol.



The reader should consider what happens if P1 runs before P3 after P2 exits from the critical region.

Figure A.4 illustrates the case where P2 exits from the critical region and no processes are waiting to enter. Later P1 and P3 execute the 

entry protocol with instruction execution in parallel, as shown in the figure.

Figure A.4. Parallel execution of the entry protocol.

The reader should consider:

What happens when P1 and P3 restart their entry protocols? Why do they not cycle indefinitely as shown in the figure?a.



What happens if P2 attempts to re-enter the critical region while P1 and P3 are executing the entry protocol as shown? Recall 

that turn still has value 2 when P2 has finished the exit protocol in this example.

b.

What happens if P0 and P4 start to execute the entry protocol?c.

How many turns can P1 have to wait between starting its entry protocol by setting want-cr and entering its critical region?d.

A.4.4 The N-process bakery algorithm

In 1974 Lamport published an algorithm based on the method used in bakeries, shoe shops, and so on for achieving service in first come 

first served order. The idea is that a process which wishes to enter the critical region takes a ticket and it is arranged that the processes 

enter the critical region in the order of the number on their tickets. Figure A.5 illustrates.

Figure A.5. Parallel execution of the bakery protocol.

The shared data structures are:

boolean[] taking = new boolean[n]; /* initialized to false */

int[] ticket = new int[n]; /* initialized to 0 */

In order to express the algorithm concisely we use a 'less than' relation on ordered pairs of integers, so that:

(a,b) < (c,d) if a < c or if a=c and b < d

The bakery algorithm is as follows:

non-critical code



/* entry protocol for the critical region for process i */ 

   taking[i]=true;

   ticket[i]=max(ticket[0],ticket[1], ... ,ticket[n-])+1

   taking[i]=false;

   for (j=0; j < n; j++) {

      while (taking[j]) { /* nothing */ }

      while ((ticket[j] != 0) && ((ticket[j],j) < (ticket[i],i))) { /* nothing */ }

   }

critical region (CR)

/* exit protocol for the critical region for process i */ 

   ticket[i]=0;

non-critical code

Exercises

A.1
Section A.4 is about algorithms which ensure mutually exclusive access to shared data in a multiprocessor 

system without support for concurrency. For each process having a critical region in such a system, what 

phases of execution are assumed?

a.

Distinguish between an entry protocol and an exit protocol.b.

Why may a process halt (i.e. stop indefinitely) in a non-critical region but must not be allowed to halt in its 

critical region nor in its entry or exit protocol?

c.

What is meant by the term starvation?d.

What are the requirements that any software solution to the mutual exclusion problem should satisfy?e.

A.2 Some general questions on the Eisenberg–McGuire algorithm of Section A.4.3 are as follows:

Can you argue (informally) that the algorithm preserves mutual exclusion?

Is it the case that once a process has expressed an interest in entering the critical region it will not be delayed 

indefinitely? (Is the algorithm free from starvation?)

If several processes want to enter the critical region will one of them succeed eventually? (Is the algorithm free from 

deadlock?)

What is the overhead of executing the algorithm in the absence of contention? Express the number of tests made as a 

function of n.



A.3 Figure A.5 gives a simple example. Work through this case and complete the entry protocol for P4. If P4 completes its exit 

protocol, what will be the value of the ticket taken by the next process to enter the critical region?

Under what circumstances will the values of the tickets increase indefinitely? Is this likely to be a problem?

Notice that it is possible for processes to have tickets with the same value. How does the entry protocol ensure that only 

one process at a time enters the critical region?

Can you argue (informally) that the algorithm preserves mutual exclusion?

Is it the case that once a process has expressed an interest in entering the critical region it will not be delayed 

indefinitely? (Is the algorithm free from starvation?)

If several processes want to enter the critical region will one of them succeed eventually? Is the algorithm free from 

deadlock?

What is the overhead of executing the algorithm in the absence of contention? Express the number of tests made as a 

function of n.

A.4 Compare the Eisenberg–McGuire and bakery algorithms with respect to scheduling of processes (order of entry into the

critical region), overhead, ease of comprehension and programming. Consider how each behaves under heavy

contention.

A.5 As an exercise in understanding, rewrite the Eisenberg–McGuire and bakery algorithms as full Java classes. For

simplicity, you may make the (unsafe) assumption that the hardware does not reorder memory accesses; this is not a

safe assumption for modern multiprocessors. But in practice, these algorithms are of historic interest only. Test-and-set,

and other composite instructions, have been used for decades to achieve mutual exclusion.
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Glossary

ACID

Atomicity, Consistency, Isolation, Durability

ACE

Access Control Entry

ACL

Access Control List

ADT

Abstract Data Type

AIX

IBM's version of UNIX

ALU

Arithmetic Logic Unit

AMI

Asynchronous Message Invocation



ANSA

Advanced Networked Systems Architecture

ANSI

American National Standards Institute

APC

Asynchronous Procedure Call

API

Application Programming Interface

ARM

Acorn RISC Machine

ASCII

American Standard Code for Information Interchange

ASN.1

Abstract Syntax Notation one

ATM 

1. Asynchronous Transfer Mode

2. Automatic Teller Machine



BSD

Berkeley Software Distribution (of UNIX, for example BSD 4.3)

CA

Certification Authority

CAD

Computer Aided Design

capability

A name for an object which includes access rights to the object

CBR

Cambridge Backbone Ring

CCA

CORBA Component Architecture

CCC

Credit Card Company

CCI 

Credit Card Issuer



CCITT

Comitée Consultatif International Télégraphique et Téléphonique

CDCS

Cambridge Distributed Computing System

CFR

Cambridge Fast Ring

CGI

Common Gateway Interface

CI

Card Issuer

CICS

Customer Information Control System

CIFS

Common Internet File System

CISC

Complex Instruction Set Computer



client

A computer program for which a server performs some computation; compare user

CM

Cache Manager

COM

Component Object Model

CORBA

OMG's Common Object Request Broker Architecture

COW

Copy-On-Write

CPU

Central Processing Unit

CR

1. Cambridge Ring

2. Critical Region

CRL

Certificate Revocation List



CSMA/CD

Carrier Sense Multiple Access with Collision Detection

DAN

Desk Area Network

DAP

1. Distributed Array Processor

2. Directory Access Protocol

DARPA

Defense Advanced Research Projects Agency

DBMS

Database Management System

DCE

Distributed Computing Environment

DEQNA

An Ethernet network interface of Digital Equipment Corporation

DES

Data Encryption Standard



DII

Dynamic Invocation Interface (OMG-CORBA)

DMA

Direct Memory Access

DN

Distinguished Name

DNS

Internet Domain Name Service

DPC

Deferred Procedure Call

DRAM

Dynamic Random Access Memory

DSA

Data Signature Algorithm

DSI

Dynamic Skeleton Interface (OMG-CORBA)

DTD



Document Type Definition

EBCDIC

Extended Binary Coded Decimal Interchange Code

EDF

Earliest Deadline First – a real-time scheduling algorithm

EFT

Electronic Funds Transfer

EJB

Enterprise Java Beans

EPC

Exception Program Counter

ESIO

Environment Specific Inter-ORB Protocol

FCB

File Control Block

FCFS

First Come First Served



FDDI

Fibre Distributed Data Interface

FID

File IDentifier

FIFO

First In First Out

FTP

File Transfer Protocol

garbage

Inaccessible object occupying storage resources

GCHQ

Government Communications Headquarters (UK)

GEOS

Geostationary Operational Environment Satellite

GIOP

General Inter-ORB Protocol (OMG-CORBA)



GNS

Global Names Service

GNU

GNU's Not UNIX, a recursive acronym. The name of a project to make freely available UNIX-compatible software

GPS

Global Positioning System

GUI

Graphical User Interface

HAL

Hardware Abstraction Layer

host

A computer attached to a network, in particular, an IP network

HP-UX

Hewlett-Packard's version of UNIX

HTML

Hypertext Markup Language



HTTP

Hypertext Transfer Protocol

ID

IDentifier

IDEA

International Data Encryption Algorithm

IDL

Interface Definition Language

IEEE

Institute of Electrical and Electronics Engineers

IIOP

Internet Inter-ORB Protocol (OMG-CORBA)

inode

In the UNIX file system a file's index node or inode stores the file's metadata

internet

A global network connecting many commercial, academic and government sites, especially institutions engaged in research. 

The internet is an aggregate of many independently managed networks. The unifying factor is the Internet Protocol

I/O



Input/Output

IOR

Interoperable Object Reference

IP

Internet Protocol

IPC

Inter-Process Communication

IPL

Interrupt Priority Level

IR

Interface Repository

IRP

I/O Request Packet

ISDN

Integrated Services Digital Network

ISO

International Standards Organization



ISR

Interrupt Service Routine

JDK

Java Development Kit

JMS

Java Messaging Service

JNDI

Java Naming and Directory Interface

JTS

Java Transaction Service

JVM

Java Virtual Machine

KDC

Key Distribution Centre

LAN

Local Area Network



LANCE

Local Area Network Controller for Ethernet

LDAP

Lightweight Directory Access Protocol

LFS

Log File Service

LKM

Loadable Kernel Module

LPC

Local Procedure Call

LRU

Least Recently Used

LSF

Least Slack First – a real-time scheduling algorithm

LWP

LightWeight Process



MAN

Metropolitan Area Network

MCA

Message-Channel Agent

MIDL

Microsoft's Interface Definition Language

MIMD

Multiple Instruction Multiple Data

MIME

Multipurpose Internet Mail Extensions

MIPS

1. Millions of Instructions Per Second – an indicator of processor speed

2. A RISC processor made by MIPS Computer Systems Inc.

MIT

Massachusetts Institute of Technology

MMU

Memory Management Unit



MOM

Message-oriented Middleware

MRSW

Multiple Reader, Single Writer

MS-DOS

Microsoft Disk Operating System. A single-user OS for the Intel 8088 microprocessor and its successors

MSNA

Multi-Service Network Architecture (Cambridge)

MTBF

Mean Time Between Failures

multi-threaded process

Used in systems where a process is the unit of resource allocation and a thread is the unit of execution on a processor. The 

threads of the process share its resources

Name service

Maps names to locations

See also [YPS]

NFS

SUN's Network File System



NIST

National Institute of Standards and Technology (US)

node

A component computer of a distributed system, like host

NNTP

Network News Transfer Protocol

NSA

National Security Agency (US)

NT

New Technology

NTP

Network Time Protocol

NVRAM

Non-Volatile Random Access Memory

Object-based OS

An operating system which is object structured internally as well as supporting object-structured software

Object-support OS



An operating system which is designed to support object-structured software

OCC

Optimistic Concurrency Control, a method of concurrency control for transactions

ODBMS

Object-oriented Database Management System

ODL

Object Definition Language

ODMG

Object Data Management Group

ODMG-93

Object-oriented database standard

OLTP

On-Line Transaction Processing

OM

Object Manager

OMA

Object Management Architecture



OMG

Object Management Group

OO

Object-oriented

OOM

Object-oriented Middleware

OQL

Object Query Language

ORB

Object Request Broker

OS

Operating System

OSF

Open Software Foundation: a consortium of vendors led by IBM, DEC and Hewlett-Packard

OSI

Open Systems Inter-connection



OTS

Object Transaction Service (OMG-CORBA)

PC

1. Personal Computer

2. Program Counter

PCC

Proof Carrying Code

PGP

Pretty Good Privacy

PIN

Personal Identification Number

PKI

Public Key Infrastructure

POSIX

IEEE Standard 1000.3, Portable Operating System Interface for Computer (UNIX) Environments

PSR

Processor Status Register



PTBR

Page Table Base Register

pthreads

POSIX threads

PTT

Post, Telephone and Telegraph: the bodies within a country that are licensed to provide public data transmission services

QoS

Quality of Service

RAM

Random Access Memory

RARA

Request–Acknowledge–Reply–Acknowledge

RFC

Request For Comment

RFE

Return From Exception



RFP

Request For Proposal

RISC

Reduced Instruction Set Computer

RM

Resource Manager

RMI

(Java's) Remote Method Invocation

RMS

Rate Monotonic Scheduling – for real-time systems

RPC

Remote Procedure Call

RRA

Request–Reply– Acknowledge

RSA

Rivest, Shamir and Adleman algorithm

SAP



Service Access Point

SAR

Segmentation And Reassembly

SASOS

Single Address Space Operation System

SCB

Stream Control Block

SCSI

Small Computer System Interface. A standard I/O bus.

server

A computer or program designed to perform computations on behalf of other programs, its clients

SFID

System File IDentifier

SGML

Standard Generalized Mark-up Language

SHA

Secure Hash Algorithm



SHS

Secure Hash Standard

SIMD

Single Instruction Multiple Data

SISD

Single Instruction Single Data

SITA

Société Internationale de Télécommunications Aéronautiques

site

1. A component computer of a distributed system, like host and node

2. A local internetwork at some geographical locality, such as the Cambridge site

SLA

Single Logical Action

SMB

Server Message Block

SMT

Simultaneous Multi-Threading



SMTP

Simple Mail Transport Protocol

SOAP

Simple Object Access Protocol

socket

An abstraction for a communication end-point

SPARC

Scalable Processor ARChitecture, a RISC architecture

SPKI

Simple Public Key Infrastructure

SQL

Structured Query Language

SR1

Single-copy Serializability

SSL

Secure Socket Layer



SWIFT

Society for Worldwide Inter-bank Financial Telecommunications

TAL

Typed Assembly Language

TAS

Test-And-Set

Tcl-Tk

Tool command language and the Tk X11 toolkit

TCP

Transmission Control Protocol

thread

A name for a unit of execution on a processor;

See also [multi-threaded process]

TLB

Translation Lookaside Buffer

TLS

Transport Layer Security



TP

Transaction Processing

TPPC

Transaction Processing Performance Council

TPS

Transaction Processing System

TS

Tuple Space

TSO

Time-Stamp Ordering, a method of concurrency control for transactions

UDP

User Datagram Protocol

UFID

User File IDentifier

UI

UNIX International: a consortium of vendors led by AT&T



UID

Unique Identifier

ULTRIX

Digital Equipment Corporation's version of UNIX

UML

Unified Modelling Language

UNC

Universal Naming Convention

Unicode

A 16-bit character encoding scheme

UPS

Uninterruptable Power Supply – used to maintain a supply of power to equipment when the mains has failed

URI

Uniform Resource Identifier

URL

Universal Resource Locator

URN



Uniform Resource Name

USD

User-Safe Disk

user

A human operator of a computer system; compare client

UTC

Universal Coordinated Time

VAX

A CISC processor proprietary to the Digital Equipment Corporation

VC

Virtual Circuit

VLSI

Very Large Scale Integration

VM

1. Virtual Machine

2. Virtual Memory

VME



A backplane bus standard, IEEE standard 104

VMM

Virtual Machine Monitor

W3C

World Wide Web Consortium

WAN

Wide Area Network

WDM

Windows Driver Model

WORM

Write Once Read Multiple, an optical storage technology

WWW (W3)

World Wide Web

XDR

External Data Representation. A standard for representing data types so that they can be exchanged between different types 

of computer



XML

eXtensible Markup Language

XSL

eXtensible Style Language

XVM

eXtensible Virtual Machine

YPS

Yellow Pages Service, maps names to attributes

2PL

Two-Phase Locking: a method of concurrency control for transactions

2PC

Two-Phase Commit: an atomic commitment protocol

3PC

Three-Phase Commit: an atomic commitment protocol

[ Team LiB ]
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