

The Art of Multiprocessor Programming

This page intentionally left blank

The Art of Multiprocessor
Programming

Maurice Herlihy

Nir Shavit

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

Acquisitions Editor Tiffany Gasbarrini

Publishing Services Manager George Morrison

Senior Production Editor Paul Gottehrer

Cover Design Alisa Andreola

Composition diacriTech

Interior printer Sheridan Books

Cover printer Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper. ∞©
Copyright © 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also
complete your request online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 978-0-12-370591-4

For information on all Morgan Kaufmann publications,

visit our Web site at www.mkp.com or www.books.elsevier.com

Printed and bound in the United States of America

09 10 11 12 13 5 4 3 2 1

For my parents, David and Patricia Herlihy, and for Liuba, David, and Anna.

For my parents, Noun and Aliza, my beautiful wife Shafi, and my kids,
Yonadav and Lior, for their love and their patience, their incredible,

unbelievable, and unwavering patience, throughout the writing of this book.

This page intentionally left blank

Contents

Acknowledgments xvii

Preface xix

1 Introduction 1

1.1 Shared Objects and Synchronization 3

1.2 A Fable 6
1.2.1 Properties of Mutual Exclusion 8
1.2.2 The Moral 9

1.3 The Producer–Consumer Problem 10

1.4 The Readers–Writers Problem 12

1.5 The Harsh Realities of Parallelization 13

1.6 Parallel Programming 15

1.7 Chapter Notes 15

1.8 Exercises 16

I PRINCIPLES 19

2 Mutual Exclusion 21

2.1 Time 21

2.2 Critical Sections 22

vii

viii Contents

2.3 2-Thread Solutions 24
2.3.1 The LockOne Class 25
2.3.2 The LockTwo Class 26
2.3.3 The Peterson Lock 27

2.4 The Filter Lock 28

2.5 Fairness 31

2.6 Lamport’s Bakery Algorithm 31

2.7 Bounded Timestamps 33

2.8 Lower Bounds on the Number of Locations 37

2.9 Chapter Notes 40

2.10 Exercises 41

3 Concurrent Objects 45

3.1 Concurrency and Correctness 45

3.2 Sequential Objects 48

3.3 Quiescent Consistency 49
3.3.1 Remarks 51

3.4 Sequential Consistency 51
3.4.1 Remarks 52

3.5 Linearizability 54
3.5.1 Linearization Points 55
3.5.2 Remarks 55

3.6 Formal Definitions 55
3.6.1 Linearizability 57
3.6.2 Compositional Linearizability 57
3.6.3 The Nonblocking Property 58

3.7 Progress Conditions 59
3.7.1 Dependent Progress Conditions 60

3.8 The Java Memory Model 61
3.8.1 Locks and Synchronized Blocks 62
3.8.2 Volatile Fields 63
3.8.3 Final Fields 63

Contents ix

3.9 Remarks 64

3.10 Chapter Notes 65

3.11 Exercises 66

4 Foundations of Shared Memory 71

4.1 The Space of Registers 72

4.2 Register Constructions 77
4.2.1 MRSW Safe Registers 78
4.2.2 A Regular Boolean MRSW Register 78
4.2.3 A Regular M-Valued MRSW Register 79
4.2.4 An Atomic SRSW Register 81
4.2.5 An Atomic MRSW Register 82
4.2.6 An Atomic MRMW Register 85

4.3 Atomic Snapshots 87
4.3.1 An Obstruction-Free Snapshot 87
4.3.2 A Wait-Free Snapshot 88
4.3.3 Correctness Arguments 90

4.4 Chapter Notes 93

4.5 Exercises 94

5 The Relative Power of Primitive
Synchronization Operations 99

5.1 Consensus Numbers 100
5.1.1 States and Valence 101

5.2 Atomic Registers 103

5.3 Consensus Protocols 106

5.4 FIFO Queues 106

5.5 Multiple Assignment Objects 110

5.6 Read–Modify–Write Operations 112

5.7 Common2 RMW Operations 114

5.8 The compareAndSet() Operation 116

5.9 Chapter Notes 117

5.10 Exercises 118

x Contents

6 Universality of Consensus 125

6.1 Introduction 125

6.2 Universality 126

6.3 A Lock-Free Universal Construction 126

6.4 A Wait-Free Universal Construction 130

6.5 Chapter Notes 136

6.6 Exercises 137

II PRACTICE 139

7 Spin Locks and Contention 141

7.1 Welcome to the Real World 141

7.2 Test-And-Set Locks 144

7.3 TAS-Based Spin Locks Revisited 146

7.4 Exponential Backoff 147

7.5 Queue Locks 149
7.5.1 Array-Based Locks 150
7.5.2 The CLH Queue Lock 151
7.5.3 The MCS Queue Lock 154

7.6 A Queue Lock with Timeouts 157

7.7 A Composite Lock 159
7.7.1 A Fast-Path Composite Lock 165

7.8 Hierarchical Locks 167
7.8.1 A Hierarchical Backoff Lock 167
7.8.2 A Hierarchical CLH Queue Lock 168

7.9 One Lock To Rule Them All 173

7.10 Chapter Notes 173

7.11 Exercises 174

8 Monitors and Blocking Synchronization 177

8.1 Introduction 177

Contents xi

8.2 Monitor Locks and Conditions 178
8.2.1 Conditions 179
8.2.2 The Lost-Wakeup Problem 181

8.3 Readers–Writers Locks 183
8.3.1 Simple Readers–Writers Lock 184
8.3.2 Fair Readers–Writers Lock 185

8.4 Our Own Reentrant Lock 187

8.5 Semaphores 189

8.6 Chapter Notes 189

8.7 Exercises 190

9 Linked Lists: The Role of Locking 195

9.1 Introduction 195

9.2 List-Based Sets 196

9.3 Concurrent Reasoning 198

9.4 Coarse-Grained Synchronization 200

9.5 Fine-Grained Synchronization 201

9.6 Optimistic Synchronization 205

9.7 Lazy Synchronization 208

9.8 Non-Blocking Synchronization 213

9.9 Discussion 218

9.10 Chapter Notes 219

9.11 Exercises 219

10 Concurrent Queues and the ABA Problem 223

10.1 Introduction 223

10.2 Queues 224

10.3 A Bounded Partial Queue 225

10.4 An Unbounded Total Queue 229

10.5 An Unbounded Lock-Free Queue 230

10.6 Memory Reclamation and the ABA Problem 233
10.6.1 A Näıve Synchronous Queue 237

xii Contents

10.7 Dual Data Structures 238

10.8 Chapter Notes 241

10.9 Exercises 241

11 Concurrent Stacks and Elimination 245

11.1 Introduction 245

11.2 An Unbounded Lock-Free Stack 245

11.3 Elimination 248

11.4 The Elimination Backoff Stack 249
11.4.1 A Lock-Free Exchanger 249
11.4.2 The Elimination Array 251

11.5 Chapter Notes 255

11.6 Exercises 255

12 Counting, Sorting, and Distributed
Coordination 259

12.1 Introduction 259

12.2 Shared Counting 259

12.3 Software Combining 260
12.3.1 Overview 261
12.3.2 An Extended Example 267
12.3.3 Performance and Robustness 269

12.4 Quiescently Consistent Pools and Counters 269

12.5 Counting Networks 270
12.5.1 Networks That Count 270
12.5.2 The Bitonic Counting Network 273
12.5.3 Performance and Pipelining 280

12.6 Diffracting Trees 282

12.7 Parallel Sorting 286

12.8 Sorting Networks 286
12.8.1 Designing a Sorting Network 287

12.9 Sample Sorting 290

12.10 Distributed Coordination 291

Contents xiii

12.11 Chapter Notes 292

12.12 Exercises 293

13 Concurrent Hashing and Natural
Parallelism 299

13.1 Introduction 299

13.2 Closed-Address Hash Sets 300
13.2.1 A Coarse-Grained Hash Set 302
13.2.2 A Striped Hash Set 303
13.2.3 A Refinable Hash Set 305

13.3 A Lock-Free Hash Set 309
13.3.1 Recursive Split-Ordering 309
13.3.2 The BucketList Class 312
13.3.3 The LockFreeHashSet<T> Class 313

13.4 An Open-Addressed Hash Set 316
13.4.1 Cuckoo Hashing 316
13.4.2 Concurrent Cuckoo Hashing 318
13.4.3 Striped Concurrent Cuckoo Hashing 322
13.4.4 A Refinable Concurrent Cuckoo Hash Set 324

13.5 Chapter Notes 325

13.6 Exercises 326

14 Skiplists and Balanced Search 329

14.1 Introduction 329

14.2 Sequential Skiplists 329

14.3 A Lock-Based Concurrent Skiplist 331
14.3.1 A Bird’s-Eye View 331
14.3.2 The Algorithm 333

14.4 A Lock-Free Concurrent Skiplist 339
14.4.1 A Bird’s-Eye View 339
14.4.2 The Algorithm in Detail 341

14.5 Concurrent Skiplists 348

14.6 Chapter Notes 348

14.7 Exercises 349

xiv Contents

15 Priority Queues 351

15.1 Introduction 351
15.1.1 Concurrent Priority Queues 351

15.2 An Array-Based Bounded Priority Queue 352

15.3 A Tree-Based Bounded Priority Queue 353

15.4 An Unbounded Heap-Based Priority Queue 355
15.4.1 A Sequential Heap 356
15.4.2 A Concurrent Heap 357

15.5 A Skiplist-Based Unbounded Priority Queue 363

15.6 Chapter Notes 366

15.7 Exercises 366

16 Futures, Scheduling, and Work Distribution 369

16.1 Introduction 369

16.2 Analyzing Parallelism 375

16.3 Realistic Multiprocessor Scheduling 378

16.4 Work Distribution 381
16.4.1 Work Stealing 381
16.4.2 Yielding and Multiprogramming 381

16.5 Work-Stealing Dequeues 382
16.5.1 A Bounded Work-Stealing Dequeue 383
16.5.2 An Unbounded Work-Stealing DEQueue 386
16.5.3 Work Balancing 390

16.6 Chapter Notes 392

16.7 Exercises 392

17 Barriers 397

17.1 Introduction 397

17.2 Barrier Implementations 398

17.3 Sense-Reversing Barrier 399

17.4 Combining Tree Barrier 401

17.5 Static Tree Barrier 402

17.6 Termination Detecting Barriers 404

Contents xv

17.7 Chapter Notes 408

17.8 Exercises 409

18 Transactional Memory 417

18.1 Introduction 417
18.1.1 What is Wrong with Locking? 417
18.1.2 What is Wrong with compareAndSet()? 418
18.1.3 What is Wrong with Compositionality? 420
18.1.4 What can We Do about It? 421

18.2 Transactions and Atomicity 421

18.3 Software Transactional Memory 424
18.3.1 Transactions and Transactional Threads 427
18.3.2 Zombies and Consistency 428
18.3.3 Atomic Objects 429
18.3.4 Dependent or Independent Progress? 431
18.3.5 Contention Managers 431
18.3.6 Implementing Atomic Objects 433
18.3.7 An Obstruction-Free Atomic Object 434
18.3.8 A Lock-Based Atomic Object 438

18.4 Hardware Transactional Memory 445
18.4.1 Cache Coherence 446
18.4.2 Transactional Cache Coherence 447
18.4.3 Enhancements 447

18.5 Chapter Notes 448

18.6 Exercises 449

III APPENDIX 451

A Software Basics 453

A.1 Introduction 453

A.2 Java 453
A.2.1 Threads 453
A.2.2 Monitors 455
A.2.3 Yielding and Sleeping 458
A.2.4 Thread-Local Objects 458

xvi Contents

A.3 C# 460
A.3.1 Threads 460
A.3.2 Monitors 461
A.3.3 Thread-Local Objects 462

A.4 Pthreads 464
A.4.1 Thread-Local Storage 465

A.5 Chapter Notes 466

B Hardware Basics 469

B.1 Introduction (and a Puzzle) 469

B.2 Processors and Threads 472

B.3 Interconnect 472

B.4 Memory 473

B.5 Caches 473
B.5.1 Coherence 474
B.5.2 Spinning 476

B.6 Cache-Conscious Programming, or the Puzzle
Solved 476

B.7 Multi-Core and Multi-Threaded Architectures 477
B.7.1 Relaxed Memory Consistency 478

B.8 Hardware Synchronization Instructions 479

B.9 Chapter Notes 481

B.10 Exercises 481

Bibliography 483

Index 495

Acknowledgments

We would like to thank Doug Lea, Michael Scott, Ron Rivest, Tom Corman,
Michael Sipser, Radia Pearlman, George Varghese and Michael Sipser for their
help in finding the right publication venue for our book.

We thank all the students, colleagues, and friends who read our draft chap-
ters and sent us endless lists of comments and ideas: Yehuda Afek, Shai Ber,
Martin Buchholz, Vladimir Budovsky, Christian Cachin, Cliff Click, Yoav Cohen,
Dave Dice, Alexandra Fedorova, Pascal Felber, Christof Fetzer, Shafi Goldwasser,
Rachid Guerraoui, Tim Harris, Danny Hendler, Maor Hizkiev, Eric Koskinen,
Christos Kozyrakis, Edya Ladan, Doug Lea, Oren Lederman, Pierre Leone, Yossi
Lev, Wei Lu, Victor Luchangco, Virendra Marathe, John Mellor-Crummey, Mark
Moir, Dan Nussbaum, Kiran Pamnany, Ben Pere, Torvald Riegel, Vijay Saraswat,
Bill Scherer, Warren Schudy, Michael Scott, Ori Shalev, Marc Shapiro, Yotam
Soen, Ralf Suckow, Seth Syberg, Alex Weiss, and Zhenyuan Zhao. We apologize
for any names inadvertently omitted.

We thank Mark Moir, Steve Heller, and our colleagues in the Scalable Syn-
chronization group at Sun Microsystems for their incredible support during the
writing of the book.

xvii

This book offers complete code for all the examples, as well as
slides, updates, and other useful tools on its companion web page
at: http://books.elsevier.com/companions/9780123705914

Preface

This book is intended to serve both as a textbook for a senior-level undergraduate
course, and as a reference for practitioners.

Readers should know enough discrete mathematics to understand “big-O”
notation, and what it means for a problem to be NP-complete. It is helpful to
be familiar with elementary systems constructs such as processors, threads, and
caches. A basic understanding of Java is needed to follow the examples. (We
explain advanced language features before using them.) Two appendixes summa-
rize what the reader needs to know: Appendix A covers programming language
constructs, and Appendix B covers multiprocessor hardware architectures.

The first third covers the principles of concurrent programming, showing how
to think like a concurrent programmer. Like many other skills such as driving a car,
cooking a meal, or appreciating caviar, thinking concurrently requires cultivation,
but it can be learned with moderate effort. Readers who want to start program-
ming right away may skip most of this section, but should still read Chapters 2
and 3 which cover the basic ideas necessary to understand the rest of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chap-
ter is essential for understanding why concurrent programming is a challenge. It
covers basic concepts such as fairness and deadlock. We then ask what it means
for a concurrent program to be correct (Chapter 3). We consider several alter-
native conditions, and the circumstances one might want to use each one. We
examine the properties of shared memory essential to concurrent computation
(Chapter 4), and we look at the kinds of synchronization primitives needed to
implement highly concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the
art of multiprocessor programming spend time solving the problems presented
in the first part of this book. Although these problems are idealized, they distill
the kind of thinking necessary to write effective multiprocessor programs. Most

xix

xx Preface

important, they distill the style of thinking necessary to avoid the common
mistakes committed by nearly all novice programmers when they first encounter
concurrency.

The next two-thirds describe the practice of concurrent programming. Each
chapter has a secondary theme, illustrating either a particular programming pat-
tern or algorithmic technique. At the level of systems and languages, Chapter 7
covers spin locks and contention. This chapter introduces the importance of
the underlying architecture, since spin lock performance cannot be understood
without understanding the multiprocessor memory hierarchy. Chapter 8 covers
monitor locks and waiting, a common synchronization idiom, especially in Java.
Chapter 16 covers work-stealing and parallelism, and Chapter 17 describes bar-
riers, all of which are useful for structure concurrent applications.

Other chapters cover concurrent data structures. All these chapters depend on
Chapter 9, and the reader should read this chapter before reading the others.
Linked lists illustrate different kinds of synchronization patterns, ranging from
coarse-grained locking, to fine-grained locking, to lock-free structures (Chap-
ter 9). The FIFO queues illustrate the ABA synchronization hazard that arises
when using atomic synchronization primitives (Chapter 10), Stacks illustrate an
important synchronization pattern called elimination (Chapter 11), Hash maps
show how an algorithm can exploit natural parallelism (Chapter 13), Skip lists
illustrate efficient parallel search (Chapter 14), and priority queues illustrate
how one can sometimes weaken correctness guarantees to enhance performance
(Chapter 15).

Finally, Chapter 18 describes the emerging transactional approach to concur-
rency, which we believe will become increasingly important in the near future.

The importance of concurrency has not always been acknowledged. Here is
a quote from a 1989 New York Times article on new operating systems for the
IBM PC:

Real concurrency–in which one program actually continues to function while you
call up and use another–is more amazing but of small use to the average person.
How many programs do you have that take more than a few seconds to perform
any task?

Read this book, and decide for yourself.

1Introduction

The computer industry is undergoing, if not another revolution, certainly a
vigorous shaking-up. The major chip manufacturers have, for the time being at
least, given up trying to make processors run faster. Moore’s Law has not been
repealed: each year, more and more transistors fit into the same space, but their
clock speed cannot be increased without overheating. Instead, manufacturers are
turning to “multicore” architectures, in which multiple processors (cores) com-
municate directly through shared hardware caches. Multiprocessor chips make
computing more effective by exploiting parallelism: harnessing multiple proces-
sors to work on a single task.

The spread of multiprocessor architectures will have a pervasive effect on how
we develop software. Until recently, advances in technology meant advances in
clock speed, so software would effectively “speed up” by itself over time. Now,
however, this free ride is over. Advances in technology will mean increased par-
allelism and not increased clock speed, and exploiting such parallelism is one of
the outstanding challenges of modern Computer Science.

This book focuses on how to program multiprocessors that communicate via
a shared memory. Such systems are often called shared-memory multiprocessors
or, more recently, multicores. Programming challenges arise at all scales of mul-
tiprocessor systems—at a very small scale, processors within a single chip need
to coordinate access to a shared memory location, and on a large scale, proces-
sors in a supercomputer need to coordinate the routing of data. Multiprocessor
programming is challenging because modern computer systems are inherently
asynchronous: activities can be halted or delayed without warning by interrupts,
preemption, cache misses, failures, and other events. These delays are inherently
unpredictable, and can vary enormously in scale: a cache miss might delay a pro-
cessor for fewer than ten instructions, a page fault for a few million instructions,
and operating system preemption for hundreds of millions of instructions.

We approach multiprocessor programming from two complementary direc-
tions: principles and practice. In the principles part of this book, we focus on
computability: figuring out what can be computed in an asynchronous concur-
rent environment. We use an idealized model of computation in which multiple

1

2 Chapter 1 Introduction

concurrent threads manipulate a set of shared objects. The sequence of the thread
operations on the objects is called the concurrent program or concurrent algorithm.
This model is essentially the model presented by the JavaTM, C#, or C++ thread
packages.

Surprisingly, there are easy-to-specify shared objects that cannot be imple-
mented by any concurrent algorithm. It is therefore important to understand
what not to try, before proceeding to write multiprocessor programs. Many of
the issues that will land multiprocessor programmers in trouble are consequences
of fundamental limitations of the computational model, so we view the acquisi-
tion of a basic understanding of concurrent shared-memory computability as a
necessary step. The chapters dealing with principles take the reader through a
quick tour of asynchronous computability, attempting to expose various com-
putability issues, and how they are addressed through the use of hardware and
software mechanisms.

An important step in the understanding of computability is the specification
and verification of what a given program actually does. This is perhaps best
described as program correctness. The correctness of multiprocessor programs,
by their very nature, is more complex than that of their sequential counterparts,
and requires a different set of tools, even for the purpose of “informal reasoning”
(which, of course, is what most programmers actually do). Sequential correct-
ness is mostly concerned with safety properties. A safety property states that some
“bad thing” never happens. For example, a traffic light never displays green in all
directions, even if the power fails. Naturally, concurrent correctness is also con-
cerned with safety, but the problem is much, much harder, because safety must be
ensured despite the vast number of ways that the steps of concurrent threads can
be interleaved. Equally important, concurrent correctness encompasses a variety
of liveness properties that have no counterparts in the sequential world. A live-
ness property states that a particular good thing will happen. For example, a red
traffic light will eventually turn green. A final goal of the part of the book dealing
with principles is to introduce a variety of metrologies and approaches for rea-
soning about concurrent programs, which will later serve us when discussing the
correctness of real-world objects and programs.

The second part of the book deals with the practice of multiprocessor program-
ming, and focuses on performance. Analyzing the performance of multiprocessor
algorithms is also different in flavor from analyzing the performance of sequential
programs. Sequential programming is based on a collection of well-established
and well-understood abstractions. When we write a sequential program, we usu-
ally do not need to be aware that underneath it all, pages are being swapped from
disk to memory, and smaller units of memory are being moved in and out of
a hierarchy of processor caches. This complex memory hierarchy is essentially
invisible, hiding behind a simple programming abstraction.

In the multiprocessor context, this abstraction breaks down, at least from a
performance perspective. To achieve adequate performance, the programmer
must sometimes “outwit” the underlying memory system, writing programs that
would seem bizarre to someone unfamiliar with multiprocessor architectures.

1.1 Shared Objects and Synchronization 3

Someday perhaps, concurrent architectures will provide the same degree of
efficient abstraction now provided by sequential architectures, but in the mean-
time, programmers should beware.

The principles part of the book presents a progressive collection of shared
objects and programming tools. Every object and tool is interesting in its own
right, and we use each one to expose the reader to higher-level issues: spin-locks
illustrate contention, linked lists illustrate the role of locking in data structure
design, and so on. Each of these issues has important consequences for program
performance. The hope is that the reader will understand the issue in a way that
will later allow him or her to apply the lesson learned to specific multiprocessor
systems. We culminate with a discussion of state-of-the-art technologies such as
transactional memory.

We would like to include few words about style. The book uses the Java pro-
gramming language. There are, of course, other suitable languages which readers
would have found equally appealing. We have a long list of reasons for our spe-
cific choice, but perhaps it is more suitable to discuss them over a cup of coffee!
In the appendix we explain how the concepts expressed in Java are expressed in
other popular languages or libraries. We also provide a primer on multiprocessor
hardware. Throughout the book, we avoid presenting specific performance num-
bers for programs and algorithms, and stick to general trends. There is a good
reason for this: multiprocessors vary greatly, and unfortunate though it may be,
at this point in time, what works well on one machine may be significantly less
impressive on another. Sticking to general trends is our way of guaranteeing that
the validity of our assertions will be sustained over time.

We provide references the end of each chapter. The reader will find a bibli-
ographical survey of the material covered, with suggestions for further reading.
Each chapter also includes a collection of exercises which readers can use to gauge
their comprehension or entertain themselves on Sunday mornings.

1.1 Shared Objects and Synchronization

On the first day of your new job, your boss asks you to find all primes between
1 and 1010 (never mind why), using a parallel machine that supports ten con-
current threads. This machine is rented by the minute, so the longer your pro-
gram takes, the more it costs. You want to make a good impression. What do
you do?

As a first attempt, you might consider giving each thread an equal share of the
input domain. Each thread might check 109 numbers, as shown in Fig. 1.1. This
approach fails, for an elementary, but important reason. Equal ranges of inputs do
not necessarily produce equal amounts of work. Primes do not occur uniformly:
there are many primes between 1 and 109, but hardly any between 9 ·109 and 1010.
To make matters worse, the computation time per prime is not the same in all
ranges: it usually takes longer to test whether a large number is prime than a

4 Chapter 1 Introduction

1 void primePrint {
2 int i = ThreadID.get(); // thread IDs are in {0..9}
3 int block = power(10, 9);
4 for (int j = (i * block) + 1; j <= (i + 1) block; j++) {
5 if (isPrime(j))
6 print(j);
7 }
8 }

Figure 1.1 Balancing load by dividing up the input domain. Each thread in {0..9} gets an equal
subset of the range.

1 Counter counter = new Counter(1); // shared by all threads
2 void primePrint {
3 long i = 0;
4 long limit = power(10, 10);
5 while (i < limit) { // loop until all numbers taken
6 i = counter.getAndIncrement(); // take next untaken number
7 if (isPrime(i))
8 print(i);
9 }
10 }

Figure 1.2 Balancing the work load using a shared counter. Each thread gets a dynamically
determined number of numbers to test.

small number. In short, there is no reason to believe that the work will be divided
equally among the threads, and it is not clear even which threads will have the
most work.

A more promising way to split the work among the threads is to assign each
thread one integer at a time (Fig. 1.2). When a thread is finished with testing
an integer, it asks for another. To this end, we introduce a shared counter, an
object that encapsulates an integer value, and that provides a getAndIncrement()
method that increments its value, and returns the counter’s prior value to the
caller.

Fig. 1.3 shows a naı̈ve implementation of Counter in Java. This counter imple-
mentation works well when used by a single thread, but it fails when shared by
multiple threads. The problem is that the expression

return value++;

is actually an abbreviation of the following, more complex code:

long temp = value;
value = temp + 1;
return temp;

In this code fragment, value is a field of the Counter object, and is shared among
all the threads. Each thread, however, has its own local copy of temp, which is a
local variable to each thread.

1.1 Shared Objects and Synchronization 5

1 public class Counter {
2 private long value; // counter starts at one
3 public Counter(int i) { // constructor initializes counter
4 value = i;
5 }
6 public long getAndIncrement() { // increment, returning prior value
7 return value++;
8 }
9 }

Figure 1.3 An implementation of the shared counter.

Now imagine that threadsA andB both call the counter’s getAndIncrement()
method at about the same time. They might simultaneously read 1 from value,
set their local temp variables to 1, value to 2, and both return 1. This behavior
is not what we intended: concurrent calls to the counter’s getAndIncrement()
return the same value, but we expect them to return distinct values. In fact,
it could get even worse. One thread might read 1 from value, but before it sets
value to 2, another thread would go through the increment loop several times,
reading 1 and setting to 2, reading 2 and setting to 3. When the first thread finally
completes its operation and sets value to 2, it will actually be setting the counter
back from 3 to 2.

The heart of the problem is that incrementing the counter’s value requires two
distinct operations on the shared variable: reading the value field into a tempo-
rary variable and writing it back to the Counter object.

Something similar happens when you try to pass someone approaching you
head-on in a corridor. You may find yourself veering right, then left several times
to avoid the other person doing exactly the same thing. Sometimes you manage
to avoid bumping into them and sometimes you do not, and in fact, as we see in
the later chapters, such collisions are provably unavoidable.1 On an intuitive level,
what is going on is that each of you is performing two distinct steps: looking at
(“reading”) the other’s current position, and moving (“writing”) to one side or
the other. The problem is, when you read the other’s position, you have no way
of knowing whether they have decided to stay or move. In the same way that you
and the annoying stranger must decide who passes on the left and who on the
right, threads accessing a shared Counter must decide who goes first and who
goes second.

As we will see in Chapter 5, modern multiprocessor hardware provides spe-
cial read-modify-write instructions that allow threads to read, modify, and write a
value to memory in one atomic (i.e., indivisible) hardware step. For the Counter
object, we can use such hardware to increment the counter atomically.

1 A preventive approach such as “always sidestep to the right” does not work because the approach-
ing person may be British.

6 Chapter 1 Introduction

We can also provide such atomic behavior by guaranteeing in software (using
only read and write instructions) that only one thread executes the read-and-write
sequence at a time. The problem of making sure that only one thread at a time
can execute a particular block of code is called the mutual exclusion problem, and
is one of the classic coordination problems in multiprocessor programming.

As a practical matter, you are unlikely ever to find yourself having to design
your own mutual exclusion algorithm (instead, you would probably call on a
library). Nevertheless, understanding how to implement mutual exclusion from
the basics is an essential condition for understanding concurrent computation
in general. There is no more effective way to learn how to reason about essential
and ubiquitous issues such as mutual exclusion, deadlock, bounded fairness, and
blocking versus nonblocking synchronization.

1.2 A Fable

Instead of treating coordination problems (such as mutual exclusion) as program-
ming exercises, we prefer to think of concurrent coordination problems as if they
were physics problems. We now present a sequence of fables, illustrating some of
the basic problems. Like most authors of fables, we retell stories mostly invented
by others (see the Chapter Notes at the end of this chapter).

Alice and Bob are neighbors, and they share a yard. Alice owns a cat and Bob
owns a dog. Both pets like to run around in the yard, but (naturally) they do
not get along. After some unfortunate experiences, Alice and Bob agree that they
should coordinate to make sure that both pets are never in the yard at the same
time. Of course, we rule out trivial solutions that do not allow any animals into
an empty yard.

How should they do it? Alice and Bob need to agree on mutually compatible
procedures for deciding what to do. We call such an agreement a coordination
protocol (or just a protocol, for short).

The yard is large, so Alice cannot simply look out of the window to check
whether Bob’s dog is present. She could perhaps walk over to Bob’s house and
knock on the door, but that takes a long time, and what if it rains? Alice might
lean out the window and shout “Hey Bob! Can I let the cat out?” The problem
is that Bob might not hear her. He could be watching TV, visiting his girlfriend,
or out shopping for dog food. They could try to coordinate by cell phone, but
the same difficulties arise if Bob is in the shower, driving through a tunnel, or
recharging his phone’s batteries.

Alice has a clever idea. She sets up one or more empty beer cans on Bob’s
windowsill (Fig. 1.4), ties a string around each one, and runs the string back to her
house. Bob does the same. When she wants to send a signal to Bob, she yanks the
string to knock over one of the cans. When Bob notices a can has been knocked
over, he resets the can.

1.2 A Fable 7

Figure 1.4 Communicating with cans.

Up-ending beer cans by remote control may seem like a creative solution, but
it is still deeply flawed. The problem is that Alice can place only a limited number
of cans on Bob’s windowsill, and sooner or later, she is going to run out of cans to
knock over. Granted, Bob resets a can as soon as he notices it has been knocked
over, but what if he goes to Cancún for Spring Break? As long as Alice relies on
Bob to reset the beer cans, sooner or later, she might run out.

So Alice and Bob try a different approach. Each one sets up a flag pole, easily
visible to the other. When Alice wants to release her cat, she does the following:

1. She raises her flag.

2. When Bob’s flag is lowered, she unleashes her cat.

3. When her cat comes back, she lowers her flag.

Bob’s behavior is a little more complicated.

1. He raises his flag.

2. While Alice’s flag is raised

a) Bob lowers his flag

b) Bob waits until Alice’s flag is lowered

c) Bob raises his flag

3. As soon as his flag is raised and hers is down, he unleashes his dog.

4. When his dog comes back, he lowers his flag.

This protocol rewards further study as a solution to Alice and Bob’s problem.
On an intuitive level, it works because of the following flag principle. If Alice and
Bob each

1. raises his or her own flag, and then

2. looks at the other’s flag,

8 Chapter 1 Introduction

then at least one will see the other’s flag raised (clearly, the last one to look will see
the other’s flag raised) and will not let his or her pet enter the yard. However, this
observation does not prove that the pets will never be in the yard together. What
if, for example, Alice lets her cat in and out of the yard several times while Bob is
looking?

To prove that the pets will never be in the yard together, assume by way of con-
tradiction that there is a way the pets could end up in the yard together. Consider
the last time Alice and Bob each raised their flag and looked at the other’s flag
before sending the pet into the yard. When Alice last looked, her flag was already
fully raised. She must have not seen Bob’s flag, or she would not have released the
cat, so Bob must have not completed raising his flag before Alice started looking.
It follows that when Bob looked for the last time, after raising his flag, it must
have been after Alice started looking, so he must have seen Alice’s flag raised and
would not have released his dog, a contradiction.

This kind of argument by contradiction shows up over and over again, and it
is worthwhile spending some time convincing ourselves why this claim is true.
It is important to note that we never assumed that “raising my flag” or the “look-
ing at your flag” happens instantaneously, nor did we make any assumptions
about how long such activities take. All we care about is when these activities
start or end.

1.2.1 Properties of Mutual Exclusion

To show that the flag protocol is a correct solution to Alice and Bob’s problem, we
must understand what properties are required of a solution, and then show that
they are met by the protocol.

First, we proved that the pets are excluded from being in the yard at the same
time, a property we call mutual exclusion.

Mutual exclusion is only one of several properties of interest. After all, as we
noted earlier, a protocol in which Alice and Bob never release a pet satisfies the
mutual exclusion property, but it is unlikely to satisfy their pets. Here is another
property of central importance. First, if one pet wants to enter the yard, then it
eventually succeeds. Second, if both pets want to enter the yard, then eventually
at least one of them succeeds. We consider this deadlock-freedom property to be
essential.

We claim that Alice and Bob’s protocol is deadlock-free. Suppose both pets
want to use the yard. Alice and Bob each raise their flags. Bob eventually notices
that Alice’s flag is raised, and defers to her by lowering his flag, allowing her cat
into the yard.

Another property of compelling interest is starvation-freedom (sometimes
called lockout-freedom): if a pet wants to enter the yard, will it eventually suc-
ceed? Here, Alice and Bob’s protocol performs poorly. Whenever Alice and Bob
are in conflict, Bob defers to Alice, so it is possible that Alice’s cat can use the yard

1.2 A Fable 9

over and over again, while Bob’s dog becomes increasingly uncomfortable. Later
on, we will see how to make protocols prevent starvation.

The last property of interest concerns waiting. Imagine that Alice raises her
flag, and is then suddenly stricken with appendicitis. She (and the cat) are taken
to the hospital, and after a successful operation, she spends the next week under
observation at the hospital. Although Bob is relieved that Alice is well, his dog
cannot use the yard for an entire week until Alice returns. The problem is that
the protocol states that Bob (and his dog) must wait for Alice to lower her flag. If
Alice is delayed (even for a good reason), then Bob is also delayed (for no apparent
good reason).

The question of waiting is important as an example of fault-tolerance. Nor-
mally, we expect Alice and Bob to respond to each other in a reasonable amount
of time, but what if they do not do so? The mutual exclusion problem, by its very
essence, requires waiting: no mutual exclusion protocol avoids it, no matter how
clever. Nevertheless, we see that many other coordination problems can be solved
without waiting, sometimes in unexpected ways.

1.2.2 The Moral

Having reviewed both the strengths and weaknesses of Bob and Alice’s protocols,
we now turn our attention back to Computer Science.

First, we examine why shouting across the yard and placing cell phone calls did
not work. Two kinds of communication occur naturally in concurrent systems:

� Transient communication requires both parties to participate at the same time.
Shouting, gestures, or cell phone calls are examples of transient commun-
ication.

� Persistent communication allows the sender and receiver to participate at dif-
ferent times. Posting letters, sending email, or leaving notes under rocks are all
examples of persistent communication.

Mutual exclusion requires persistent communication. The problem with shouting
across the yard or placing cell phone calls is that it may or may not be okay for
Bob to unleash his dog, but if Alice is not able to respond to messages, he will
never know.

The can-and-string protocol might seem somewhat contrived, but it corre-
sponds accurately to a common communication protocol in concurrent systems:
interrupts. In modern operating systems, one common way for one thread to get
the attention of another is to send it an interrupt. More precisely, thread A inter-
rupts thread B by setting a bit at a location periodically checked by B. Sooner or
later, B notices the bit has been set and reacts. After reacting, B typically resets
the bit (A cannot reset the bit). Even though interrupts cannot solve the mutual
exclusion problem, they can still be very useful. For example, interrupt commu-
nication is the basis of the Java language’s wait() and notifyAll() calls.

10 Chapter 1 Introduction

On a more positive note, the fable shows that mutual exclusion between two
threads can be solved (however imperfectly) using only two one-bit variables,
each of which can be written by one thread and read by the other.

1.3 The Producer–Consumer Problem

Mutual exclusion is not the only problem worth investigating. Eventually, Alice
and Bob fall in love and marry. Eventually, they divorce. (What were they think-
ing?) The judge gives Alice custody of the pets, and tells Bob to feed them. The pets
now get along with one another, but they side with Alice, and attack Bob when-
ever they see him. As a result, Alice and Bob need to devise a protocol for Bob
to deliver food to the pets without Bob and the pets being in the yard together.
Moreover, the protocol should not waste anyone’s time: Alice does not want to
release her pets into the yard unless there is food there, and Bob does not want to
enter the yard unless the pets have consumed all the food. This problem is known
as the producer–consumer problem.

Surprisingly perhaps, the cans-and-string protocol we rejected for mutual
exclusion does exactly what we need for the producer–consumer problem. Bob
places a can standing up on Alice’s windowsill, ties one end of his string around
the can, and puts the other end of the string in his living room. He then puts food
in the yard and knocks the can down. From now on, when Alice wants to release
the pets, she does the following:

1. She waits until the can is down.

2. She releases the pets.

3. When the pets return, Alice checks whether they finished the food. If so, she
resets the can.

Bob does the following:

1. He waits until the can is up.

2. He puts food in the yard.

3. He pulls the string and knocks the can down.

The state of the can thus reflects the state of the yard. If the can is down, it means
there is food and the pets can eat, and if the can is up, it means the food is gone
and Bob can put some more out. We check the following three properties:

� Mutual Exclusion: Bob and the pets are never in the yard together.

� Starvation-freedom: If Bob is always willing to feed, and the pets are always
famished, then the pets will eat infinitely often.

� Producer–Consumer: The pets will not enter the yard unless there is food, and
Bob will never provide more food if there is unconsumed food.

1.3 The Producer–Consumer Problem 11

This producer–consumer protocol and the mutual exclusion protocol consid-
ered in the last section both ensure that Alice and Bob are never in the yard at
the same time. Nevertheless, Alice and Bob cannot use this producer–consumer
protocol for mutual exclusion, and it is important to understand why. Mutual
exclusion requires deadlock-freedom: anyone must be able to enter the yard
infinitely often on their own, even if the other is not there. By contrast, the
producer–consumer protocol’s starvation-freedom property assumes continuous
cooperation from both parties.

Here is how we reason about this protocol:

� Mutual Exclusion: We use a slightly different proof style than that used in our
earlier mutual exclusion proof: a “state machine”-based proof rather than one
by contradiction. We think of the stringed can as a state machine. The can has
two states, up and down, and it repeatedly transitions between these states. We
argue that mutual exclusion holds since it holds initially and continues to hold
when transitioning from any state of the can to the other.

Initially the can is either up or down. Let us say it was down. Then only
one of the pets can go in, and mutual exclusions holds. In order for the can
to be raised by Alice, the pets must first leave, so when the can is raised, the
pets are not in the yard and mutual exclusion is maintained since they will
not enter again until it is knocked over. In order for the can to be knocked
over, Bob must have left the yard, and will not enter until it is raised again,
so mutual exclusion is maintained once the can is knocked over. There are no
other possible transitions, and so our claim holds.

� Starvation-freedom: suppose the claim does not hold: It must be the case that
infinitely often Alice’s pets are hungry, there is no food, and Bob is trying to
provide food but does not succeed. The can cannot be up, as then Bob will
provide food and knock over the can, allowing the pets to eat. So it must be
that the can is down, and since the pets are hungry, Alice will eventually raise
the can, bringing us back to the former case.

� Producer–Consumer: The mutual exclusion property implies that the pets and
Bob will never be in the yard together. Bob will not enter the yard until Alice
raises the can, which she will do only if there is no more food. Similarly, the
pets will not enter the yard until Bob lowers the can, which he will do only after
placing the food.

Like the mutual exclusion protocol we have already described, this protocol
exhibits waiting. If Bob deposits food in the yard, and immediately goes on vaca-
tion without remembering to reset the can, then the pets may starve, despite the
presence of food.

Turning our attention back to Computer Science, the producer–consumer
problem appears in almost all parallel and distributed systems. It is the way in
which processors place data in communication buffers to be read or transmitted
across a network interconnect or shared bus.

12 Chapter 1 Introduction

1.4 The Readers–Writers Problem

Bob and Alice eventually decide they love their pets so much they need to com-
municate simple messages about them. Bob puts up a billboard in front of his
house. The billboard holds a sequence of large tiles, each tile holding a single
letter. Bob, at his leisure, posts a message on the bulletin board by lifting one
tile at a time. Alice, at her leisure, reads the message by looking at the billboard
through a telescope, one tile at a time.

This may sound like a workable system, but it is not. Imagine that Bob posts
the message:

sell the cat

Alice, looking through her telescope, transcribes the message

sell the

At this point Bob takes down the tiles and writes out a new message

wash the dog

Alice, continuing to scan across the billboard transcribes the message

sell the dog

You can imagine the rest.
There are some straightforward ways to solve the readers–writers problem.

� Alice and Bob can use the mutual exclusion protocol to make sure that
Alice reads only complete sentences. She might still miss a sentence,
however.

� They can use the can-and-string protocol, where Bob produces sentences and
Alice consumes them.

If this problem is so easy to solve, then why do we bring it up? Both the mutual
exclusion and producer–consumer protocols require waiting: if one participant is
subjected to an unexpected delay, so is the other. In the context of shared multi-
processor memory, a solution to the readers–writers problem is a way of allowing
a thread to capture an instantaneous view of several memory locations. Capturing
such a view without waiting, that is, without preventing other threads from mod-
ifying these locations while they are being read, is a powerful tool that can be used
for backups, debugging, and in many other situations. Surprisingly, the readers–
writers problem does have solutions that do not require waiting. We examine
several such solutions later on.

1.5 The Harsh Realities of Parallelization 13

1.5 The Harsh Realities of Parallelization

Here is why multiprocessor programming is so much fun. In an ideal world,
upgrading from a uniprocessor to an n-way multiprocessor should provide about
an n-fold increase in computational power. In practice, sadly, this never happens.
The primary reason for this is that most real-world computational problems
cannot be effectively parallelized without incurring the costs of inter-processor
communication and coordination.

Consider five friends who decide to paint a five-room house. If all the rooms are
the same size, then it makes sense to assign each friend to paint one room, and as
long as everyone paints at about the same rate, we would get a five-fold speed-up
over the single-painter case. The task becomes more complicated if the rooms are
of different sizes. For example, if one room is twice the size of the others, then the
five painters will not achieve a five-fold speedup because the overall completion
time is dominated by the one room that takes the longest to paint.

This kind of analysis is very important for concurrent computation. The for-
mula we need is called Amdahl’s Law. It captures the notion that the extent to
which we can speed up any complex job (not just painting) is limited by how
much of the job must be executed sequentially.

Define the speedup S of a job to be the ratio between the time it takes one
processor to complete the job (as measured by a wall clock) versus the time it takes
n concurrent processors to complete the same job. Amdahl’s Law characterizes the
maximum speedup S that can be achieved by n processors collaborating on an
application, where p is the fraction of the job that can be executed in parallel.
Assume, for simplicity, that it takes (normalized) time 1 for a single processor to
complete the job. With n concurrent processors, the parallel part takes time p/n
and the sequential part takes time 1 − p. Overall, the parallelized computation
takes time:

1 − p +
p

n

Amdahl’s Law says that the speedup, that is, the ratio between the sequential
(single-processor) time and the parallel time, is:

S =
1

1 − p +
p

n

To illustrate the implications of Amdahl’s Law, consider our room-painting exam-
ple. Assume that each small room is one unit, and the single large room is two
units. Assigning one painter (processor) per room means that five of six units can
be painted in parallel, implying that p = 5/6, and 1−p = 1/6. Amdahl’s Law states
that the resulting speedup is:

S =
1

1 − p +
p

n

=
1

1/6 + 1/6
= 3

14 Chapter 1 Introduction

Alarmingly, five painters working on five rooms where one room is twice the size
of the others yields only a three-fold speedup.

It can get worse. Imagine we have ten rooms and ten painters, where each
painter is assigned to a room, but one room (out of ten) is twice the size of the
others. Here is the resulting speedup:

S =
1

1/11 + 1/11
= 5.5

With even a small imbalance, applying ten painters to a job yields only a five-fold
speedup, roughly half of what one might naı̈vely expect.

The solution therefore, as with our earlier prime printing problem, seems to
be that as soon as one painter’s work on a room is done, he/she helps others to
paint the remaining room. The issue of course is that this shared painting of the
room will require coordination among painters, but can we afford to avoid it?

Here is what Amdahl’s Law tells us about the utilization of multiprocessor
machines. Some computational problems are “embarrassingly parallel”: they can
easily be divided into components that can be executed concurrently. Such prob-
lems sometimes arise in scientific computing or in graphics, but rarely in sys-
tems. In general, however, for a given problem and a ten-processor machine,
Amdahl’s Law says that even if we manage to parallelize 90% of the solution,
but not the remaining 10%, then we end up with a five-fold speedup, but not
a ten-fold speedup. In other words, the remaining 10% that we did not paral-
lelize cut our utilization of the machine in half. It seems worthwhile to invest
an effort to derive as much parallelism from the remaining 10% as possible,
even if it is difficult. Typically, it is hard because these additional parallel parts
involve substantial communication and coordination. Here is a major focus of
this book: understanding the tools and techniques that allow programmers to
effectively program the parts of the code that require coordination and synchro-
nization, because the gains made on these parts may have a profound impact on
performance.

Returning to the prime number printing program of Fig. 1.2, let us revisit the
three main lines of code:

i = counter.getAndIncrement(); // take next untaken number
if (isPrime(i))
print(i);

It would have been simpler to have threads perform these three lines atom-
ically, that is, in a single mutually-exclusive block. Instead, only the call to
getAndIncrement() is atomic. This approach makes sense when we consider
the implications of Amdahl’s Law: it is important to minimize the granularity
of sequential code; in this case, the code accessed using mutual exclusion. More-
over, it is important to implement mutual exclusion in an effective way, since the
communication and coordination around the mutually exclusive shared counter
can substantially affect the performance of our program as a whole.

1.7 Chapter Notes 15

1.6 Parallel Programming

For many of the applications you may wish to parallelize, you will find that there
are significant parts that can easily be determined as executable in parallel because
they do not require any form of coordination or communication. However, at the
time this book is being written, there is no cookbook recipe for identifying these
parts. This is where the application designer needs to use his or her accumulated
understanding of the algorithm being parallelized. Luckily, in many cases it is
obvious how to find such parts. The more substantial problem, the one which this
book addresses, is how to deal with the remaining parts of the program. As noted
earlier, these are the parts that cannot be easily parallelized because the program
must access shared data and requires interprocess coordination and communica-
tion in an essential way.

The goal of this text is to expose the reader to core ideas behind modern coor-
dination paradigms and concurrent data structures. We present the reader with a
unified, comprehensive picture of the elements that are key to effective multipro-
cessor programming, ranging from basic principles to best-practice engineering
techniques.

Multiprocessor programming poses many challenges, ranging from grand
intellectual issues to subtle engineering tricks. We tackle these challenges using
successive refinement, starting with an idealized model in which mathematical
concerns are paramount, and gradually moving on to more pragmatic models,
where we increasingly focus on basic engineering principles.

For example, the first problem we consider is mutual exclusion, the oldest and
still one of the most basic problems in the field. We begin with a mathematical
perspective, analyzing the computability and correctness properties of various
algorithms on an idealized architecture. The algorithms themselves, while clas-
sical, are not practical for modern architectures. Nevertheless, learning how to
reason about such idealized algorithms is a necessary step toward learning how
to reason about more realistic (and more complex) algorithms. It is particularly
important to learn how to reason about subtle liveness issues such as starvation
and deadlock.

Once we understand how to reason about such algorithms in general, we
turn our attention to more realistic contexts. We explore a variety of algorithms
and data structures using different multiprocessor architectures with the goal of
understanding which are effective, and why.

1.7 Chapter Notes

Most of the parable of Alice and Bob is adapted from Leslie Lamport’s invited
address to the 1984 ACM Symposium on Principles of Distributed Computing
[93]. The readers–writers problem is a classical synchronization problem that has

16 Chapter 1 Introduction

received attention in numerous papers over the past twenty years. Amdahl’s Law
is due to Gene Amdahl, a parallel processing pioneer [9].

1.8 Exercises

Exercise 1. The dining philosophers problem was invented by E. W. Dijkstra, a
concurrency pioneer, to clarify the notions of deadlock and starvation freedom.
Imagine five philosophers who spend their lives just thinking and feasting. They
sit around a circular table with five chairs. The table has a big plate of rice. How-
ever, there are only five chopsticks (in the original formulation forks) available,
as shown in Fig. 1.5. Each philosopher thinks. When he gets hungry, he sits down
and picks up the two chopsticks that are closest to him. If a philosopher can pick
up both chopsticks, he can eat for a while. After a philosopher finishes eating, he
puts down the chopsticks and again starts to think.

1. Write a program to simulate the behavior of the philosophers, where each
philosopher is a thread and the chopsticks are shared objects. Notice that you
must prevent a situation where two philosophers hold the same chopstick at
the same time.

2. Amend your program so that it never reaches a state where philosophers are
deadlocked, that is, it is never the case that each philosopher holds one chop-
stick and is stuck waiting for another to get the second chopstick.

3. Amend your program so that no philosopher ever starves.

4. Write a program to provide a starvation-free solution for any number of
philosophers n.

Exercise 2. For each of the following, state whether it is a safety or liveness prop-
erty. Identify the bad or good thing of interest.

1. Patrons are served in the order they arrive.

2. What goes up must come down.

Figure 1.5 Traditional dining table arrangement according to Dijkstra.

1.8 Exercises 17

3. If two or more processes are waiting to enter their critical sections, at least one
succeeds.

4. If an interrupt occurs, then a message is printed within one second.

5. If an interrupt occurs, then a message is printed.

6. The cost of living never decreases.

7. Two things are certain: death and taxes.

8. You can always tell a Harvard man.

Exercise 3. In the producer–consumer fable, we assumed that Bob can see whether
the can on Alice’s windowsill is up or down. Design a producer–consumer pro-
tocol using cans and strings that works even if Bob cannot see the state of Alice’s
can (this is how real-world interrupt bits work).

Exercise 4. You are one of P recently arrested prisoners. The warden, a deranged
computer scientist, makes the following announcement:

You may meet together today and plan a strategy, but after today you will be in
isolated cells and have no communication with one another.

I have set up a “switch room” which contains a light switch, which is either on or
off. The switch is not connected to anything.

Every now and then, I will select one prisoner at random to enter the “switch
room.” This prisoner may throw the switch (from on to off, or vice-versa), or may
leave the switch unchanged. Nobody else will ever enter this room.

Each prisoner will visit the switch room arbitrarily often. More precisely, for any
N , eventually each of you will visit the switch room at least N times.

At any time, any of you may declare: “we have all visited the switch room at least
once.” If the claim is correct, I will set you free. If the claim is incorrect, I will feed
all of you to the crocodiles. Choose wisely!

� Devise a winning strategy when you know that the initial state of the switch
is off.

� Devise a winning strategy when you do not know whether the initial state of
the switch is on or off.

Hint: not all prisoners need to do the same thing.

Exercise 5. The same warden has a different idea. He orders the prisoners to stand
in line, and places red and blue hats on each of their heads. No prisoner knows the
color of his own hat, or the color of any hat behind him, but he can see the hats
of the prisoners in front. The warden starts at the back of the line and asks each
prisoner to guess the color of his own hat. The prisoner can answer only “red”
or “blue.” If he gives the wrong answer, he is fed to the crocodiles. If he answers
correctly, he is freed. Each prisoner can hear the answer of the prisoners behind
him, but cannot tell whether that prisoner was correct.

18 Chapter 1 Introduction

The prisoners are allowed to consult and agree on a strategy beforehand (while
the warden listens in) but after being lined up, they cannot communicate any
other way besides their answer of “red” or “blue.”

Devise a strategy that allows at least P − 1 of P prisoners to be freed.

Exercise 6. Use Amdahl’s Law to resolve the following questions:

� Suppose a computer program has a method M that cannot be parallelized, and
that this method accounts for 40% of the program’s execution time. What is
the limit for the overall speedup that can be achieved by running the program
on an n-processor multiprocessor machine?

� Suppose the method M accounts for 30% of the program’s computation time.
What should be the speedup of M so that the overall execution time improves
by a factor of 2?

� Suppose the method M can be sped up three-fold. What fraction of the overall
execution time must M account for in order to double the overall speedup of
the program?

Exercise 7. Running your application on two processors yields a speedup of S2.
Use Amdahl’s Law to derive a formula for Sn, the speedup on n processors, in
terms of n and S2.

Exercise 8. You have a choice between buying one uniprocessor that executes five
zillion instructions per second, or a ten-processor multiprocessor where each pro-
cessor executes one zillion instructions per second. Using Amdahl’s Law, explain
how you would decide which to buy for a particular application.

IPrinciples

This page intentionally left blank

2Mutual Exclusion

Mutual exclusion is perhaps the most prevalent form of coordination in multipro-
cessor programming. This chapter covers classical mutual exclusion algorithms
that work by reading and writing shared memory. Although these algorithms are
not used in practice, we study them because they provide an ideal introduction to
the kinds of algorithmic and correctness issues that arise in every area of synchro-
nization. The chapter also provides an impossibility proof. This proof teaches us
the limitations of solutions to mutual exclusion that work by reading and writing
shared memory, and will help to motivate the real-world mutual exclusion algo-
rithms that appear in later chapters. This chapter is one of the few that contains
proofs of algorithms. Though the reader should feel free to skip these proofs, it is
very helpful to understand the kind of reasoning they present, because we can use
the same approach to reason about the practical algorithms considered in later
chapters.

2.1 Time

Reasoning about concurrent computation is mostly reasoning about time.
Sometimes we want things to happen simultaneously, and sometimes we want
them to happen at different times. We need to reason about complicated condi-
tions involving how multiple time intervals can overlap, or, sometimes, how they
cannot. We need a simple but unambiguous language to talk about events and
durations in time. Everyday English is too ambiguous and imprecise. Instead, we
introduce a simple vocabulary and notation to describe how concurrent threads
behave in time.

In 1689, Isaac Newton stated “absolute, true and mathematical time, of itself
and from its own nature, flows equably without relation to anything external.”
We endorse his notion of time, if not his prose style. Threads share a common
time (though not necessarily a common clock). A thread is a state machine, and
its state transitions are called events.

21

22 Chapter 2 Mutual Exclusion

Events are instantaneous: they occur at a single instant of time. It is convenient
to require that events are never simultaneous: distinct events occur at distinct
times. (As a practical matter, if we are unsure about the order of two events that
happen very close in time, then any order will do.) A threadA produces a sequence
of events a0,a1, . . . threads typically contain loops, so a single program statement
can produce many events. We denote the j-th occurrence of an event ai by a

j
i .

One event a precedes another event b, written a→ b, if a occurs at an earlier time.
The precedence relation “→” is a total order on events.

Let a0 and a1 be events such that a0 → a1. An interval (a0,a1) is the duration
between a0 and a1. Interval IA = (a0,a1) precedes IB = (b0,b1), written IA → IB ,
if a1 → b0 (that is, if the final event of IA precedes the starting event of IB). More
succinctly, the → relation is a partial order on intervals. Intervals that are unre-
lated by → are said to be concurrent. By analogy with events, we denote the j-th
execution of interval IA by I

j
A.

2.2 Critical Sections

In an earlier chapter, we discussed the Counter class implementation shown in
Fig. 2.1. We observed that this implementation is correct in a single-thread system,
but misbehaves when used by two or more threads. The problem occurs if both
threads read the value field at the line marked “start of danger zone,” and then
both update that field at the line marked “end of danger zone.”

We can avoid this problem if we transform these two lines into a critical sec-
tion: a block of code that can be executed by only one thread at a time. We call
this property mutual exclusion. The standard way to approach mutual exclusion
is through a Lock object satisfying the interface shown in Fig. 2.2.

For brevity, we say a thread acquires (alternately locks) a lock when it executes a
lock() method call, and releases (alternately unlocks) the lock when it executes an

1 class Counter {
2 private int value;
3 public Counter(int c) { // constructor
4 value = c;
5 }
6 // increment and return prior value
7 public int getAndIncrement() {
8 int temp = value; // start of danger zone
9 value = temp + 1; // end of danger zone

10 return temp;
11 }
12 }

Figure 2.1 The Counter class.

2.2 Critical Sections 23

1 public interface Lock {
2 public void lock(); // before entering critical section
3 public void unlock(); // before leaving critical section
4 }

Figure 2.2 The Lock interface.

1 public class Counter {
2 private long value;
3 private Lock lock; // to protect critical section
4
5 public long getAndIncrement() {
6 lock.lock(); // enter critical section
7 try {
8 long temp = value; // in critical section
9 value = temp + 1; // in critical section

10 } finally {
11 lock.unlock(); // leave critical section
12 }
13 return temp;
14 }
15 }

Figure 2.3 Using a lock object.

unlock() method call. Fig. 2.3 shows how to use a Lock field to add mutual exclu-
sion to a shared counter implementation. Threads using the lock() and unlock()
methods must follow a specific format. A thread is well formed if:

1. each critical section is associated with a unique Lock object,

2. the thread calls that object’s lock() method when it is trying to enter the
critical section, and

3. the thread calls the unlock() method when it leaves the critical section.

Pragma 2.2.1. In Java, these methods should be used in the following struc-
tured way.

1 mutex.lock();
2 try {
3 ... // body
4 } finally {
5 mutex.unlock();
6 }

This idiom ensures that the lock is acquired before entering the try block, and
that the lock is released when control leaves the block, even if some statement
in the block throws an unexpected exception.

24 Chapter 2 Mutual Exclusion

We now formalize the properties that a good Lock algorithm should satisfy.
Let CS

j
A be the interval during which A executes the critical section for the j-th

time. Let us assume, for simplicity, that each thread acquires and releases the lock
infinitely often, with other work taking place in the meantime.

Mutual Exclusion Critical sections of different threads do not overlap. For
threads A and B, and integers j and k, either CSk

A → CS
j
B or CS

j
B → CSk

A .

Freedom from Deadlock If some thread attempts to acquire the lock, then some
thread will succeed in acquiring the lock. If thread A calls lock() but never
acquires the lock, then other threads must be completing an infinite number
of critical sections.

Freedom from Starvation Every thread that attempts to acquire the lock even-
tually succeeds. Every call to lock() eventually returns. This property is some-
times called lockout freedom.

Note that starvation freedom implies deadlock freedom.
The mutual exclusion property is clearly essential. Without this property, we

cannot guarantee that a computation’s results are correct. In the terminology of
Chapter 1, mutual exclusion is a safety property. The deadlock-freedom prop-
erty is important. It implies that the system never “freezes.” Individual threads
may be stuck forever (called starvation), but some thread make progress. In the
terminology of Chapter 1, deadlock-freedom is a liveness property. Note that a
program can still deadlock even if each of the locks it uses satisfies the deadlock-
freedom property. For example, consider threads A and B that share locks �0 and
�1. First, A acquires �0 and B acquires �1. Next, A tries to acquire �1 and B tries
to acquire �0. The threads deadlock because each one waits for the other to release
its lock.

The starvation-freedom property, while clearly desirable, is the least com-
pelling of the three. Later on, we will see practical mutual exclusion algorithms
that fail to be starvation-free. These algorithms are typically deployed in circum-
stances where starvation is a theoretical possibility, but is unlikely to occur in
practice. Nevertheless, the ability to reason about starvation is essential for under-
standing whether it is a realistic threat.

The starvation-freedom property is also weak in the sense that there is no guar-
antee for how long a thread waits before it enters the critical section. Later on, we
will look at algorithms that place bounds on how long a thread can wait.

2.3 2-Thread Solutions

We begin with two inadequate but interesting Lock algorithms.

2.3 2-Thread Solutions 25

2.3.1 The LockOne Class

Fig. 2.4 shows the LockOne algorithm. Our 2-thread lock algorithms follow the
following conventions: the threads have ids 0 and 1, the calling thread has i, and
the other j = 1 − i. Each thread acquires its index by calling ThreadID.get().

Pragma 2.3.1. In practice, the Boolean flag variables in Fig. 2.4, as well
as the victim and label variables in later algorithms must all be declared
volatile to work properly. We explain the reasons in Chapter 3 and
Appendix A.

We use writeA(x = v) to denote the event in which A assigns value v to field
x, and readA(v == x) to denote the event in which A reads v from field x. Some-
times we omit v when the value is unimportant. For example, in Fig. 2.4 the event
writeA(flag[i] = true) is caused by Line 7 of the lock() method.

Lemma 2.3.1. The LockOne algorithm satisfies mutual exclusion.

Proof: Suppose not. Then there exist integers j and k such that CS
j
A �→ CSkB and

CSkB �→ CS
j
A. Consider each thread’s last execution of the lock() method before

entering its k-th (j-th) critical section.

Inspecting the code, we see that

writeA(flag[A] = true) → readA(flag[B] == false) → CSA (2.3.1)

writeB(flag[B] = true) → readB(flag[A] == false) → CSB (2.3.2)

readA(flag[B] == false) → writeB(flag[B] = true) (2.3.3)

Note that once flag[B] is set to true it remains true. It follows that Eq. 2.3.3
holds, since otherwise thread A could not have read flag[B] as false. Eq. 2.3.4
follows from Eqs. 2.3.1–2.3.3, and the transitivity of the precedence order.

1 class LockOne implements Lock {
2 private boolean[] flag = new boolean[2];
3 // thread-local index, 0 or 1
4 public void lock() {
5 int i = ThreadID.get();
6 int j = 1 - i;
7 flag[i] = true;
8 while (flag[j]) {} // wait
9 }
10 public void unlock() {
11 int i = ThreadID.get();
12 flag[i] = false;
13 }
14 }

Figure 2.4 The LockOne algorithm.

26 Chapter 2 Mutual Exclusion

writeA(flag[A] = true) → readA(flag[B] == false) → (2.3.4)

writeB(flag[B] = true) → readB(flag[A] == false)

It follows that writeA(flag[A] = true) → readB(flag[A] == false) without an
intervening write to the flag[] array, a contradiction. �

The LockOne algorithm is inadequate because it deadlocks if thread executions
are interleaved. If writeA(flag[A] = true) and writeB(flag[B] = true) events
occur before readA(flag[B]) and readB(flag[A]) events, then both threads wait
forever. Nevertheless, LockOne has an interesting property: if one thread runs
before the other, no deadlock occurs, and all is well.

2.3.2 The LockTwo Class

Fig. 2.5 shows an alternative lock algorithm, the LockTwo class.

Lemma 2.3.2. The LockTwo algorithm satisfies mutual exclusion.

Proof: Suppose not. Then there exist integers j and k such that CS
j
A �→ CSkB and

CSkB �→ CS
j
A. Consider as before each thread’s last execution of the lock() method

before entering its k-th (j-th) critical section.

Inspecting the code, we see that

writeA(victim = A) → readA(victim == B) → CSA (2.3.5)

writeB(victim = B) → readB(victim == A) → CSB (2.3.6)

Thread B must assign B to the victim field between events writeA(victim = A)
and readA(victim = B) (see Eq. 2.3.5). Since this assignment is the last, we have

writeA(victim = A) → writeB(victim = B) → readA(victim == B). (2.3.7)

Once the victim field is set to B, it does not change, so any subsequent read
returns B, contradicting Eq. 2.3.6. �

1 class LockTwo implements Lock {
2 private volatile int victim;
3 public void lock() {
4 int i = ThreadID.get();
5 victim = i; // let the other go first
6 while (victim == i) {} // wait
7 }
8 public void unlock() {}
9 }

Figure 2.5 The LockTwo algorithm.

2.3 2-Thread Solutions 27

The LockTwo class is inadequate because it deadlocks if one thread runs
completely before the other. Nevertheless, LockTwo has an interesting property:
if the threads run concurrently, the lock() method succeeds. The LockOne and
LockTwo classes complement one another: each succeeds under conditions that
cause the other to deadlock.

2.3.3 The Peterson Lock

We now combine the LockOne and LockTwo algorithms to construct a starvation-
free Lock algorithm, shown in Fig. 2.6. This algorithm is arguably the most
succinct and elegant two-thread mutual exclusion algorithm. It is known as
“Peterson’s Algorithm,” after its inventor.

Lemma 2.3.3. The Peterson lock algorithm satisfies mutual exclusion.

Proof: Suppose not. As before, consider the last executions of the lock() method
by threads A and B. Inspecting the code, we see that

writeA(flag[A] = true) → (2.3.8)

writeA(victim = A) → readA(flag[B]) → readA(victim) → CSA

writeB(flag[B] = true) → (2.3.9)

writeB(victim = B) → readB(flag[A]) → readB(victim) → CSB

Assume, without loss of generality, that A was the last thread to write to the
victim field.

writeB(victim = B) → writeA(victim = A) (2.3.10)

1 class Peterson implements Lock {
2 // thread-local index, 0 or 1
3 private volatile boolean[] flag = new boolean[2];
4 private volatile int victim;
5 public void lock() {
6 int i = ThreadID.get();
7 int j = 1 - i;
8 flag[i] = true; // I’m interested
9 victim = i; // you go first
10 while (flag[j] && victim == i) {}; // wait
11 }
12 public void unlock() {
13 int i = ThreadID.get();
14 flag[i] = false; // I’m not interested
15 }
16 }

Figure 2.6 The Peterson lock algorithm.

28 Chapter 2 Mutual Exclusion

Equation 2.3.10 implies that A observed victim to be A in Eq. 2.3.8. Since A
nevertheless entered its critical section, it must have observed flag[B] to be false,
so we have

writeA(victim = A) → readA(flag[B] == false) (2.3.11)

Eqs. 2.3.9–2.3.11, together with the transitivity of →, imply Eq. 2.3.12.

writeB(flag[B] = true) → writeB(victim = B) →
writeA(victim = A) → readA(flag[B] == false) (2.3.12)

It follows that writeB(flag[B] = true) → readA(flag[B] == false). This obser-
vation yields a contradiction because no other write to flag[B] was performed
before the critical section executions. �

Lemma 2.3.4. The Peterson lock algorithm is starvation-free.

Proof: Suppose not. Suppose (without loss of generality) that A runs forever
in the lock() method. It must be executing the while statement, waiting until
either flag[B] becomes false or victim is set to B.

What is B doing while A fails to make progress? Perhaps B is repeatedly enter-
ing and leaving its critical section. If so, however, then B sets victim to B as soon
as it reenters the critical section. Once victim is set to B, it does not change, and
A must eventually return from the lock() method, a contradiction.

So it must be that B is also stuck in its lock() method call, waiting until either
flag[A] becomes false or victim is set to A. But victim cannot be both A and
B, a contradiction. �

Corollary 2.3.1. The Peterson lock algorithm is deadlock-free.

2.4 The Filter Lock

We now consider two mutual exclusion protocols that work for n threads, where
n is greater than 2. The first solution, the Filter lock, is a direct generalization
of the Peterson lock to multiple threads. The second solution, the Bakery lock,
is perhaps the simplest and best known n-thread solution.

The Filter lock, shown in Fig. 2.7, creates n−1 “waiting rooms,” called levels,
that a thread must traverse before acquiring the lock. The levels are depicted in
Fig. 2.8. Levels satisfy two important properties:

� At least one thread trying to enter level � succeeds.

� If more than one thread is trying to enter level �, then at least one is blocked
(i.e., continues to wait at that level).

2.4 The Filter Lock 29

1 class Filter implements Lock {
2 int[] level;
3 int[] victim;
4 public Filter(int n) {
5 level = new int[n];
6 victim = new int[n]; // use 1..n-1
7 for (int i = 0; i < n; i++) {
8 level[i] = 0;
9 }
10 }
11 public void lock() {
12 int me = ThreadID.get();
13 for (int i = 1; i < n; i++) { //attempt level 1
14 level[me] = i;
15 victim[i] = me;
16 // spin while conflicts exist
17 while ((∃k != me) (level[k] >= i && victim[i] == me)) {};
18 }
19 }
20 public void unlock() {
21 int me = ThreadID.get();
22 level[me] = 0;
23 }
24 }

Figure 2.7 The Filter lock algorithm.

CS

l 5 0

l 5 1

non-CS with n threads

l 5 n22

l 5 n21

n21 threads

n22 threads

2 threads

l 5 2

Figure 2.8 There are n−1 levels threads pass through, the last of which is the critical section.
There are at most n threads that pass concurrently into level 0, n− 1 into level 1 (a thread in
level 1 is already in level 0), n − 2 into level 2 and so on, so that only one enters the critical
section at level n− 1.

The Peterson lock uses a two-element boolean flag array to indicate
whether a thread is trying to enter the critical section. The Filter lock gener-
alizes this notion with an n-element integer level[] array, where the value of
level[A] indicates the highest level that thread A is trying to enter. Each thread
must pass through n − 1 levels of “exclusion” to enter its critical section. Each
level � has a distinct victim[�] field used to “filter out” one thread, excluding it
from the next level.

30 Chapter 2 Mutual Exclusion

Initially a thread A is at level 0. We say that A is at level j for j > 0, when it last
completes the waiting loop in Line 17 with level[A] � j. (So a thread at level j
is also at level j − 1, and so on.)

Lemma 2.4.1. For j between 0 and n − 1, there are at most n − j threads at
level j.

Proof: By induction on j. The base case, where j = 0, is trivial. For the induction
step, the induction hypothesis implies that there are at most n − j + 1 threads at
level j − 1. To show that at least one thread cannot progress to level j, we argue
by contradiction: assume there are n− j + 1 threads at level j.

Let A be the last thread at level j to write to victim[j]. Because A is last, for
any other B at level j:

writeB(victim[j]) → writeA(victim[j]).

Inspecting the code, we see that B writes level[B] before it writes to victim[j],
so

writeB(level[B] = j) → writeB(victim[j]) → writeA(victim[j]).

Inspecting the code, we see that A reads level[B] after it writes to victim[j], so

writeB(level[B] = j) → writeB(victim[j]) → writeA(victim[j]) → readA(level[B]).

Because B is at level j, every time A reads level[B], it observes a value greater
than or equal to j, implying that A could not have completed its waiting loop in
Line 17, a contradiction. �

Entering the critical section is equivalent to entering level n− 1.

Corollary 2.4.1. The Filter lock algorithm satisfies mutual exclusion.

Lemma 2.4.2. The Filter lock algorithm is starvation-free.

Proof: We argue by reverse induction on the levels. The base case, level n − 1, is
trivial, because it contains at the most one thread. For the induction hypothesis,
assume that every thread that reaches level j + 1 or higher, eventually enters (and
leaves) its critical section.

Suppose A is stuck at level j. Eventually, by the induction hypothesis, there
are no threads at higher levels. Once A sets level[A] to j, then any thread at
level j − 1 that subsequently reads level[A] is prevented from entering level j.
Eventually, no more threads enter level j from lower levels. All threads stuck at
level j are in the waiting loop at Line 17, and the values of the victim and level
fields no longer change.

We now argue by induction on the number of threads stuck at level j. For the
base case, if A is the only thread at level j or higher, then clearly it will enter level
j + 1. For the induction hypothesis, we assume that fewer than k threads cannot
be stuck at level j. Suppose threads A and B are stuck at level j. A is stuck as long

2.6 Lamport’s Bakery Algorithm 31

as it reads victim[j] = A, and B is stuck as long as it reads victim[j] = B. The
victim field is unchanging, and it cannot be equal to both A and B, so one of the
two threads will enter level j + 1, reducing the number of stuck threads to k − 1,
contradicting the induction hypothesis. �

Corollary 2.4.2. The Filter lock algorithm is deadlock-free.

2.5 Fairness

The starvation-freedom property guarantees that every thread that calls lock()
eventually enters the critical section, but it makes no guarantees about how long
this may take. Ideally (and very informally) if A calls lock() before B, then A
should enter the critical section before B. Unfortunately, using the tools at hand
we cannot determine which thread called lock() first. Instead, we split the lock()
method into two sections of code (with corresponding execution intervals):

1. A doorway section, whose execution interval DA consists of a bounded number
of steps, and

2. a waiting section, whose execution interval WA may take an unbounded num-
ber of steps.

The requirement that the doorway section always finish in a bounded number of
steps is a strong requirement. We will call this requirement the bounded wait-free
progress property. We discuss systematic ways of providing this property in later
chapters.

Here is how we define fairness.

Definition 2.5.1. A lock is first-come-first-served if, whenever, thread A finishes
its doorway before thread B starts its doorway, then A cannot be overtaken by B:

If D
j

A →Dk
B , then CS

j

A → CSk
B .

for threads A and B and integers j and k.

2.6 Lamport’s Bakery Algorithm

The Bakery lock algorithm appears in Fig. 2.9. It maintains the first-come-first-
served property by using a distributed version of the number-dispensing machines
often found in bakeries: each thread takes a number in the doorway, and then
waits until no thread with an earlier number is trying to enter it.

In the Bakery lock, flag[A] is a Boolean flag indicating whether A wants to
enter the critical section, and label[A] is an integer that indicates the thread’s
relative order when entering the bakery, for each thread A.

32 Chapter 2 Mutual Exclusion

1 class Bakery implements Lock {
2 boolean[] flag;
3 Label[] label;
4 public Bakery (int n) {
5 flag = new boolean[n];
6 label = new Label[n];
7 for (int i = 0; i < n; i++) {
8 flag[i] = false; label[i] = 0;
9 }
10 }
11 public void lock() {
12 int i = ThreadID.get();
13 flag[i] = true;
14 label[i] = max(label[0], ...,label[n-1]) + 1;
15 while ((∃k != i)(flag[k] && (label[k],k) << (label[i],i))) {};
16 }
17 public void unlock() {
18 flag[ThreadID.get()] = false;
19 }
20 }

Figure 2.9 The Bakery lock algorithm.

Each time a thread acquires a lock, it generates a new label[] in two steps.
First, it reads all the other threads’ labels in any order. Second, it reads all the other
threads’ labels one after the other (this can be done in some arbitrary order) and
generates a label greater by one than the maximal label it read. We call the code
from the raising of the flag (Line 13) to the writing of the new label[] (Line 14)
the doorway. It establishes that thread’s order with respect to the other threads
trying to acquire the lock. If two threads execute their doorways concurrently,
they may read the same maximal label and pick the same new label. To break this
symmetry, the algorithm uses a lexicographical ordering << on pairs of label[]
and thread ids:

(label[i], i) << (label[j], j))

if and only if (2.6.13)

label[i] < label[j] or label[i] = label[j] and i < j.

In the waiting part of the Bakery algorithm (Line 15), a thread repeatedly rereads
the labels one after the other in some arbitrary order until it determines that no
thread with a raised flag has a lexicographically smaller label/id pair.

Since releasing a lock does not reset the label[], it is easy to see that each
thread’s labels are strictly increasing. Interestingly, in both the doorway and wait-
ing sections, threads read the labels asynchronously and in an arbitrary order, so
that the set of labels seen prior to picking a new one may have never existed in
memory at the same time. Nevertheless, the algorithm works.

Lemma 2.6.1. The Bakery lock algorithm is deadlock-free.

2.7 Bounded Timestamps 33

Proof: Some waiting thread A has the unique least (label[A],A) pair, and that
thread never waits for another thread. �

Lemma 2.6.2. The Bakery lock algorithm is first-come-first-served.

Proof: If A’s doorway precedes B’s, DA →DB , then A’s label is smaller since

writeA(label[A]) → readB(label[A]) → writeB(label[B]) → readB(flag[A]),

so B is locked out while flag[A] is true. �

Note that any algorithm that is both deadlock-free and first-come-first-served
is also starvation-free.

Lemma 2.6.3. The Bakery algorithm satisfies mutual exclusion.

Proof: Suppose not. Let A and B be two threads concurrently in the critical sec-
tion. Let labelingA and labelingB be the last respective sequences of acquiring
new labels prior to entering the critical section. Suppose that (label[A],A) <<
(label[B],B). When B successfully completed the test in its waiting section, it
must have read that flag[A] was false or that (label[B],B) << (label[A],A).
However, for a given thread, its id is fixed and its label[] values are strictly
increasing, so B must have seen that flag[A] was false. It follows that

labelingB → readB(flag[A]) → writeA(flag[A]) → labelingA

which contradicts the assumption that (label[A],A) << (label[B],B). �

2.7 Bounded Timestamps

Notice that the labels of the Bakery lock grow without bound, so in a long-lived
system we may have to worry about overflow. If a thread’s label field silently rolls
over from a large number to zero, then the first-come-first-served property no
longer holds.

Later on, we will see constructions where counters are used to order threads,
or even to produce unique identifiers. How important is the overflow problem in
the real world? It is difficult to generalize. Sometimes it matters a great deal. The
celebrated “Y2K” bug that captivated the media in the last years of the twentieth
century is an example of a genuine overflow problem, even if the consequences
were not as dire as predicted. On January 18, 2038, the Unix time_t data structure
will overflow when the number of seconds since January 1, 1970 exceeds 232. No
one knows whether it will matter. Sometimes, of course, counter overflow is a
nonissue. Most applications that use, say, a 64-bit counter are unlikely to last long
enough for roll-over to occur. (Let the grandchildren worry!)

34 Chapter 2 Mutual Exclusion

In the Bakery lock, labels act as timestamps: they establish an order among
the contending threads. Informally, we need to ensure that if one thread takes a
label after another, then the latter has the larger label. Inspecting the code for the
Bakery lock, we see that a thread needs two abilities:

� to read the other threads’ timestamps (scan), and

� to assign itself a later timestamp (label).

A Java interface to such a timestamping system appears in Fig. 2.10. Since our
principal application for a bounded timestamping system is to implement the
doorway section of the Lock class, the timestamping system must be wait-free.
It is possible to construct such a wait-free concurrent timestamping system (see
the chapter notes), but the construction is long and rather technical. Instead, we
focus on a simpler problem, interesting in its own right: constructing a sequential
timestamping system, in which threads perform scan-and-label operations one
completely after the other, that is, as if each were performed using mutual exclu-
sion. In other words, consider only executions in which a thread can perform
a scan of the other threads’ labels, or a scan, and then an assignment of a new
label, where each such sequence is a single atomic step. The principles underlying
a concurrent and sequential timestamping systems are essentially the same, but
they differ substantially in detail.

Think of the range of possible timestamps as nodes of a directed graph (called
a precedence graph). An edge from node a to node b means that a is a later time-
stamp than b. The timestamp order is irreflexive: there is no edge from any node a
to itself. The order is also antisymmetric: if there is an edge from a to b, then there
is no edge from b to a. Notice that we do not require that the order be transitive:
there can be an edge from a to b and from b to c, without necessarily implying
there is an edge from a to c.

Think of assigning a timestamp to a thread as placing that thread’s token on
that timestamp’s node. A thread performs a scan by locating the other threads’
tokens, and it assigns itself a new timestamp by moving its own token to a node
a such that there is an edge from a to every other thread’s node.

Pragmatically, we would implement such a system as an array of single-writer
multi-reader fields, where array element A represents the graph node where
thread A most recently placed its token. The scan() method takes a “snapshot”
of the array, and the label() method for threadA updates theA-th array element.

1 public interface Timestamp {
2 boolean compare(Timestamp);
3 }
4 public interface TimestampSystem {
5 public Timestamp[] scan();
6 public void label(Timestamp timestamp, int i);
7 }

Figure 2.10 A timestamping system interface.

2.7 Bounded Timestamps 35

0 1 2 3

Figure 2.11 The precedence graph for an unbounded timestamping system. The nodes
represent the set of all natural numbers and the edges represent the total order among them.

Fig. 2.11 illustrates the precedence graph for the unbounded timestamp
system used in the Bakery lock. Not surprisingly, the graph is infinite: there is
one node for each natural number, with a directed edge from node a to node b
whenever a > b.

Consider the precedence graph T 2 shown in Fig. 2.12. This graph has three
nodes, labeled 0, 1, and 2, and its edges define an ordering relation on the nodes
in which 0 is less than 1, 1 is less than 2, and 2 is less than 0. If there are only two
threads, then we can use this graph to define a bounded (sequential) timestamp-
ing system. The system satisfies the following invariant: the two threads always
have tokens located on adjacent nodes, with the direction of the edge indicating
their relative order. Suppose A’s token is on Node 0, and B’s token on Node 1 (so
A has the later timestamp). For A, the label() method is trivial: it already has
the latest timestamp, so it does nothing. For B, the label() method “leapfrogs”
A’s node by jumping from 0 to 2.

Recall that a cycle1 in a directed graph is a set of nodes n0,n1, . . . ,nk such that
there is an edge from n0 to n1, from n1 to n2, and eventually from nk−1 to nk , and
back from nk to n0.

The only cycle in the graph T 2 has length three, and there are only two
threads, so the order among the threads is never ambiguous. To go beyond two
threads, we need additional conceptual tools. Let G be a precedence graph, and
A and B subgraphs of G (possibly single nodes). We say that A dominates B
in G if every node of A has edges directed to every node of B. Let graph mul-
tiplication be the following noncommutative composition operator for graphs
(denoted G ◦H):

Replace every node v of G by a copy of H (denoted Hv), and let Hv dominate
Hu in G ◦H if v dominates u in G.

Define the graph T k inductively to be:

1. T 1 is a single node.

2. T 2 is the three-node graph defined earlier.

3. For k > 2, T k = T 2 ◦ T k−1.

For example, the graph T 3 is illustrated in Fig. 2.12.

1 The word “cycle” comes from the same Greek root as “circle.”

36 Chapter 2 Mutual Exclusion

T 1 5 T 3 5

T 2 5

T k 5 T 2 * T k21

0
12

0

12

0 0

12

0

2 112

Figure 2.12 The precedence graph for a bounded timestamping system. Consider an initial
situation in which there is a token A on Node 12 (Node 2 in subgraph 1) and tokens B and
C on Nodes 21 and 22 (Nodes 1 and 2 in subgraph 2) respectively. Token B will move to 20
to dominate the others. Token C will then move to 21 to dominate the others, and B and C
can continue to cycle in the T 2 subgraph 2 forever. If A is to move to dominate B and C, it
cannot pick a node in subgraph 2 since it is full (any Tk subgraph can accommodate at most k
tokens). Instead, token A moves to Node 00. If B now moves, it will choose Node 01, C will
choose 10 and so on.

The precedence graph T n is the basis for an n-thread bounded sequential
timestamping system. We can “address” any node in the T n graph with n− 1 dig-
its, using ternary notation. For example, the nodes in graph T 2 are addressed by
0, 1, and 2. The nodes in graph T 3 are denoted by 00, 01, . . . , 22, where the high-
order digit indicates one of the three subgraphs, and the low-order digit indicates
one node within that subgraph.

The key to understanding the n-thread labeling algorithm is that the nodes
covered by tokens can never form a cycle. As mentioned, two threads can never
form a cycle on T 2, because the shortest cycle in T 2 requires three nodes.

How does the label() method work for three threads? When A calls label(),
if both the other threads have tokens on the same T 2 subgraph, then move to
a node on the next highest T 2 subgraph, the one whose nodes dominate that
T 2 subgraph. For example, consider the graph T 3 as illustrated in Fig. 2.12. We
assume an initial acyclic situation in which there is a token A on Node 12 (Node
2 in subgraph 1) and tokens B and C , respectively, on Nodes 21 and 22 (Nodes
1 and 2 in subgraph 2). Token B will move to 20 to dominate all others. Token C
will then move to 21 to dominate all others, and B and C can continue to cycle
in the T 2 subgraph 2 forever. If A is to move to dominate B and C , it cannot pick
a node in subgraph 2 since it is full (any T k subgraph can accommodate at most
k tokens). Token A thus moves to Node 00. If B now moves, it will choose Node
01, C will choose 10 and so on.

2.8 Lower Bounds on the Number of Locations 37

2.8 Lower Bounds on the Number of Locations

The Bakery lock is succinct, elegant, and fair. So why is it not considered
practical? The principal drawback is the need to read and write n distinct loca-
tions, where n (which may be very large) is the maximum number of concurrent
threads.

Is there a clever Lock algorithm based on reading and writing memory that
avoids this overhead? We now demonstrate that the answer is no. Any deadlock-
free Lock algorithm requires allocating and then reading or writing at least n
distinct locations in the worst case. This result is crucially important, because
it motivates us to add to our multiprocessor machines, synchronization opera-
tions stronger than read-write, and use them as the basis of our mutual exclusion
algorithms.

In this section, we observe why this linear bound is inherent before we discuss
practical mutual exclusion algorithms in later chapters. We will observe the fol-
lowing important limitation of memory locations accessed solely by read or write
instructions (in practice these are called loads and stores): any information writ-
ten by a thread to a given location could be overwritten (stored-to) without any
other thread ever seeing it.

Our proof requires us to argue about the state of all memory used by a given
multithreaded program. An object’s state is just the state of its fields. A thread’s
local state is the state of its program counters and local variables. A global state or
system state is the state of all objects, plus the local states of the threads.

Definition 2.8.1. A Lock object state s is inconsistent in any global state where
some thread is in the critical section, but the lock state is compatible with a global
state in which no thread is in the critical section or is trying to enter the critical
section.

Lemma 2.8.1. No deadlock-free Lock algorithm can enter an inconsistent state.

Proof: Suppose the Lock object is in an inconsistent state s, where no thread is in
the critical section or trying to enter. If thread B tries to enter the critical section,
it must eventually succeed, because the algorithm is deadlock-free.

Suppose the Lock object is in an inconsistent state s, where A is in the criti-
cal section. If thread B tries to enter the critical section, it must block until A
leaves.

We have a contradiction, because B cannot determine whether A is in the crit-
ical section. �

Any Lock algorithm that solves deadlock-free mutual exclusion must have
n distinct locations. Here, we consider only the 3-thread case, showing that a

38 Chapter 2 Mutual Exclusion

deadlock-free Lock algorithm accessed by three threads must use three distinct
locations.

Definition 2.8.2. A covering state for a Lock object is one in which there is at least
one thread about to write to each shared location, but the Lock object’s locations
“look” like the critical section is empty (i.e., the locations’ states appear as if there
is no thread either in the critical section or trying to enter the critical section).

In a covering state, we say that each thread covers the location it is about to
write.

Theorem 2.8.1. Any Lock algorithm that, by reading and writing memory, solves
deadlock-free mutual exclusion for three threads, must use at least three distinct
memory locations.

Proof: Assume by way of contradiction that we have a deadlock-free Lock algo-
rithm for three threads with only two locations. Initially, in state s, no thread is in
the critical section or trying to enter. If we run any thread by itself, then it must
write to at least one location before entering the critical section, as otherwise s is
an inconsistent state.

It follows that every thread must write at least one location before entering.
If the shared locations are single-writer locations as in the Bakery lock, then it is
immediate that three distinct locations are needed.

Now consider multiwriter locations such as the victim location in Peterson’s
algorithm (Fig. 2.6). Let s be a covering Lock state where A and B respectively
cover distinct locations. Consider this possible execution starting from state s as
depicted in Fig. 2.13:

Let C run alone. Because the Lock algorithm satisfies the deadlock-free property,
C enters the critical section eventually. Then let A and B respectively update their
covered locations, leaving the Lock object in state s′.

The state s′ is inconsistent because no thread can tell whether C is in the critical
section, so a lock with two locations is impossible.

It remains to be shown how to maneuver threads A and B into a covering state.
Consider an execution in which B runs through the critical section three times.
Each time around, it must write some location, so consider the first location it
writes when trying to enter the critical section. Since there are only two locations,
B must write one location twice. Call that location LB .

Let B run until it is poised to write location LB for the first time. If A runs
now, it would enter the critical section, since B has not written anything. A must
write LA before entering the critical section. Otherwise, if A writes only LB , then
let A enter the critical section, let B write to LB (obliterating A’s last write). The
result is an inconsistent state: B cannot tell whether A is in the critical section.

Let A run until it is poised to write LA. This state is not a covering state,
because A could have written something to LB indicating to thread C that it
is trying to enter the critical section. Let B run, obliterating any value A might

2.8 Lower Bounds on the Number of Locations 39

A B

1. The system is
in a covering
state.

WA WB

Assume only 2 locations.

C

CS

2. C runs. It
 possibly writes
 all locations
 and enters
 the CS.

CS

3. Run the other threads
A and B. They overwrite
what C wrote and one of
them must enter the CS –
a contradiction!

Figure 2.13 Contradiction using a covering state for two locations. Initially both locations
have the empty value ⊥.

have written to LB , entering and leaving the critical section at most three times,
and halting just before its second write to LB . Notice that every time B enters
and leaves the critical section, whatever it wrote to the locations is no longer
relevant.

In this state, A is about to write LA, B is about to write LB , and the locations
are consistent with no thread trying to enter or in the critical section, as required
in a covering state. Fig. 2.14 illustrates this scenario. �

The same line of argument can be extended to show that n-thread deadlock-
free mutual exclusion requires n distinct locations. The Peterson and Bakery
locks are thus optimal (within a constant factor). However, as we note, the need
to allocate n locations per Lock makes them impractical.

This proof shows the inherent limitation of read and write operations: infor-
mation written by a thread may be overwritten without any other thread ever
reading it. We will remember this limitation when we move on to design other
algorithms.

In later chapters, we will see that modern machine architectures provide spe-
cialized instructions that overcome the “overwriting” limitation of read and write
instructions, allowing n-thread Lock implementations that use only a constant
number of memory locations. We will also see that making effective use of these
instructions to solve mutual exclusion is far from trivial.

40 Chapter 2 Mutual Exclusion

B

1. Start in a covering
state for LB.WBWA

LBLA

2. Run system until A is
about to write LA. There
must be such a case;
otherwise let A enter the
CS and then B can overwrite
its value. But there could be
traces left by A in LB.

3. Run B again. It
erases traces in LB.

Then let it enter the
CS and return again.
If one repeats this
pattern twice more,
B must return to a
covering state for
the exact same location
(in the figure it is LB).

CSCS

A

Figure 2.14 Reaching a covering state. In the initial covering state for LB both locations have
the empty value ⊥.

2.9 Chapter Notes

Isaac Newton’s ideas about the flow of time appear in his famous Principia [122].
The “→” formalism is due to Leslie Lamport [90]. The first three algorithms
in this chapter are due to Gary Peterson, who published them in a two-page
paper in 1981 [125]. The Bakery lock presented here is a simplification of the
original Bakery Algorithm due to Leslie Lamport [89]. The sequential time-
stamp algorithm is due to Amos Israeli and Ming Li [77], who invented the
notion of a bounded timestamping system. Danny Dolev and Nir Shavit [34]
invented the first bounded concurrent timestamping system. Other bounded
timestamping schemes include Sibsankar Haldar and Paul Vitányi [51], and
Cynthia Dwork and Orli Waarts [37]. The lower bound on the number of
lock fields is due to Jim Burns and Nancy Lynch [23]. Their proof technique,
called a covering argument, has since been widely used to prove lower bounds
in distributed computing. Readers interested in further reading can find a
historical survey of mutual exclusion algorithms in a classic book by Michel
Raynal [132].

2.10 Exercises 41

2.10 Exercises

Exercise 9. Define r-bounded waiting for a given mutual exclusion algorithm to
mean that if D

j
A →Dk

B then CS
j
A → CSk+r

B . Is there a way to define a doorway for
the Peterson algorithm such that it provides r-bounded waiting for some value
of r?

Exercise 10. Why do we need to define a doorway section, and why cannot we
define FCFS in a mutual exclusion algorithm based on the order in which the first
instruction in the lock() method was executed? Argue your answer in a case-by-
case manner based on the nature of the first instruction executed by the lock():
a read or a write, to separate locations or the same location.

Exercise 11. Programmers at the Flaky Computer Corporation designed the pro-
tocol shown in Fig. 2.15 to achieve n-thread mutual exclusion. For each question,
either sketch a proof, or display an execution where it fails.

� Does this protocol satisfy mutual exclusion?

� Is this protocol starvation-free?

� is this protocol deadlock-free?

Exercise 12. Show that the Filter lock allows some threads to overtake others an
arbitrary number of times.

Exercise 13. Another way to generalize the two-thread Peterson lock is to arrange
a number of 2-thread Peterson locks in a binary tree. Suppose n is a power of two.

1 class Flaky implements Lock {
2 private int turn;
3 private boolean busy = false;
4 public void lock() {
5 int me = ThreadID.get();
6 do {
7 do {
8 turn = me;
9 } while (busy);

10 busy = true;
11 } while (turn != me);
12 }
13 public void unlock() {
14 busy = false;
15 }
16 }

Figure 2.15 The Flaky lock used in Exercise 11.

42 Chapter 2 Mutual Exclusion

Each thread is assigned a leaf lock which it shares with one other thread. Each lock
treats one thread as thread 0 and the other as thread 1.

In the tree-lock’s acquire method, the thread acquires every two-thread
Peterson lock from that thread’s leaf to the root. The tree-lock’s release method for
the tree-lock unlocks each of the 2-thread Peterson locks that thread has acquired,
from the root back to its leaf. At any time, a thread can be delayed for a finite dura-
tion. (In other words, threads can take naps, or even vacations, but they do not
drop dead.) For each property, either sketch a proof that it holds, or describe a
(possibly infinite) execution where it is violated.

1. mutual exclusion.

2. freedom from deadlock.

3. freedom from starvation.

Is there an upper bound on the number of times the tree-lock can be acquired
and released between the time a thread starts acquiring the tree-lock and when it
succeeds?

Exercise 14. The �-exclusion problem is a variant of the starvation-free mutual
exclusion problem. We make two changes: as many as � threads may be in the
critical section at the same time, and fewer than � threads might fail (by halting)
in the critical section.

An implementation must satisfy the following conditions:

�-Exclusion: At any time, at most � threads are in the critical section.

�-Starvation-Freedom: As long as fewer than� threads are in the critical section,
then some thread that wants to enter the critical section will eventually succeed
(even if some threads in the critical section have halted).

Modify the n-process Filter mutual exclusion algorithm to turn it into an
�-exclusion algorithm.

Exercise 15. In practice, almost all lock acquisitions are uncontended, so the most
practical measure of a lock’s performance is the number of steps needed for a
thread to acquire a lock when no other thread is concurrently trying to acquire
the lock.

Scientists at Cantaloupe-Melon University have devised the following “wrap-
per” for an arbitrary lock, shown in Fig. 2.16. They claim that if the base Lock class
provides mutual exclusion and is starvation-free, so does the FastPath lock, but
it can be acquired in a constant number of steps in the absence of contention.
Sketch an argument why they are right, or give a counterexample.

2.10 Exercises 43

1 class FastPath implements Lock {
2 private static ThreadLocal<Integer> myIndex;
3 private Lock lock;
4 private int x, y = -1;
5 public void lock() {
6 int i = myIndex.get();
7 x = i; // I’m here
8 while (y != -1) {} // is the lock free?
9 y = i; // me again?
10 if (x != i) // Am I still here?
11 lock.lock(); // slow path
12 }
13 public void unlock() {
14 y = -1;
15 lock.unlock();
16 }
17 }

Figure 2.16 Fast path mutual exclusion algorithm used in Exercise 15.

1 class Bouncer {
2 public static final int DOWN = 0;
3 public static final int RIGHT = 1;
4 public static final int STOP = 2;
5 private boolean goRight = false;
6 private ThreadLocal<Integer> myIndex;
7 private int last = -1;
8 int visit() {
9 int i = myIndex.get();
10 last = i;
11 if (goRight)
12 return RIGHT;
13 goRight = true;
14 if (last == i)
15 return STOP;
16 else
17 return DOWN;
18 }
19 }

Figure 2.17 The Bouncer class implementation.

Exercise 16. Suppose n threads call the visit() method of the Bouncer class
shown in Fig. 2.17. Prove that—

� At most one thread gets the value STOP.

� At most n− 1 threads get the value DOWN.

� At most n− 1 threads get the value RIGHT.

Note that the last two proofs are not symmetric.

44 Chapter 2 Mutual Exclusion

0 1 3 6

2 4 7

5 8

9

Figure 2.18 Array layout for Bouncer objects.

Exercise 17. So far, we have assumed that all n threads have unique, small indexes.
Here is one way to assign unique small indexes to threads. Arrange Bouncer
objects in a triangular matrix, where each Bouncer is given an id as shown in
Fig. 2.18. Each thread starts by visiting Bouncer zero. If it gets STOP, it stops. If
it gets RIGHT, it visits 1, and if it gets DOWN, it visits 2. In general, if a thread gets
STOP, it stops. If it gets RIGHT, it visits the next Bouncer on that row, and if it gets
DOWN, it visits the next Bouncer in that column. Each thread takes the id of the
Bouncer object where it stops.

� Prove that each thread eventually stops at some Bouncer object.

� How many Bouncer objects do you need in the array if you know in advance
the total number n of threads?

Exercise 18. Prove, by way of a counterexample, that the sequential time-stamp
system T 3, started in a valid state (with no cycles among the labels), does not work
for three threads in the concurrent case. Note that it is not a problem to have two
identical labels since one can break such ties using thread IDs. The counterex-
ample should display a state of the execution where three labels are not totally
ordered.

Exercise 19. The sequential time-stamp system T 3 had a range of 3n different pos-
sible label values. Design a sequential time-stamp system that requires only n2n

labels. Note that in a time-stamp system, one may look at all the labels to choose
a new label, yet once a label is chosen, it should be comparable to any other label
without knowing what the other labels in the system are. Hint: think of the labels
in terms of their bit representation.

Exercise 20. Give Java code to implement the Timestamp interface of Fig. 2.10
using unbounded labels. Then, show how to replace the pseudocode of the
Bakery lock of Fig. 2.9 using your Timestamp Java code [82].

3Concurrent Objects

The behavior of concurrent objects is best described through their safety and
liveness properties, often referred to as correctness and progress. In this chapter
we examine various ways of specifying correctness and progress.

While all notions of correctness for concurrent objects are based on some
notion of equivalence with sequential behavior, different notions are appropriate
for different systems. We examine three correctness conditions. Quiescent consis-
tency is appropriate for applications that require high performance at the cost of
placing relatively weak constraints on object behavior. Sequential consistency is a
stronger condition, often useful for describing low-level systems such as hardware
memory interfaces. Linearizability, even stronger, is useful for describing higher-
level systems composed from linearizable components.

Along a different dimension, different method implementations provide
different progress guarantees. Some are blocking, where the delay of any one
thread can delay others, and some are nonblocking, where the delay of a thread
cannot delay the others.

3.1 Concurrency and Correctness

What does it mean for a concurrent object to be correct? Fig. 3.1 shows a simple
lock-based concurrent FIFO queue. The enq() and deq() methods synchronize
by a mutual exclusion lock of the kind studied in Chapter 2. It is easy to see that
this implementation is a correct concurrent FIFO queue. Because each method
accesses and updates fields while holding an exclusive lock, the method calls take
effect sequentially.

This idea is illustrated in Fig. 3.2, which shows an execution in which A en-
queues a, B enqueues b, and C dequeues twice, first throwing EmptyException,
and second returning b. Overlapping intervals indicate concurrent method calls.
All three method calls overlap in time. In this figure, as in others, time moves from

45

46 Chapter 3 Concurrent Objects

1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
4 Lock lock;
5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantLock();
8 items = (T[])new Object[capacity];
9 }
10 public void enq(T x) throws FullException {
11 lock.lock();
12 try {
13 if (tail - head == items.length)
14 throw new FullException();
15 items[tail % items.length] = x;
16 tail++;
17 } finally {
18 lock.unlock();
19 }
20 }
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return x;
29 } finally {
30 lock.unlock();
31 }
32 }
33 }

Figure 3.1 A lock-based FIFO queue. The queue’s items are kept in an array items, where
head is the index of the next item to dequeue, and tail is the index of the first open array
slot (modulo the capacity). The lock field is a lock that ensures that methods are mutually
exclusive. Initially head and tail are zero, and the queue is empty. If enq() finds the queue
is full, i.e., head and tail differ by the queue size, then it throws an exception. Otherwise,
there is room, so enq() stores the item at array entry tail, and then increments tail. The
deq() method works in a symmetric way.

left to right, and dark lines indicate intervals. The intervals for a single thread
are displayed along a single horizontal line. When convenient, the thread name
appears on the left. A bar represents an interval with a fixed start and stop time.
A bar with dotted lines on the right represents an interval with a fixed start-time
and an unknown stop-time. The label “q.enq(x)” means that a thread enqueues
item x at object q, while “q.deq(x)” means that the thread dequeues item x from
object q.

The timeline shows which thread holds the lock. Here, C acquires the lock,
observes the queue to be empty, releases the lock, and throws an exception. It

3.1 Concurrency and Correctness 47

q.enq(a)

q.enq(b)

q.deq(b)

A

B

C

Lock
Holder
Timeline B

enq(b)
C

deq(b)
A

enq(a)

lock() enq(a) unlock()

deq(b) unlock()

lock() enq(b) unlock()

lock() unlock()

C
deq(empty)

lock()

Figure 3.2 Locking queue execution. Here, C acquires the lock, observes the queue to be empty, releases
the lock, and throws an exception. B acquires the lock, inserts b, and releases the lock. A acquires the lock,
inserts a, and releases the lock. C re-acquires the lock, dequeues b, releases the lock, and returns.

does not modify the queue. B acquires the lock, inserts b, and releases the lock.
A acquires the lock, inserts a, and releases the lock. C reacquires the lock,
dequeues b, releases the lock, and returns. Each of these calls takes effect sequen-
tially, and we can easily verify that dequeuing b before a is consistent with our
understanding of sequential FIFO queue behavior.

Let us consider, however, the alternative concurrent queue implementation in
Fig. 3.3. (This queue is correct only if it is shared by a single enqueuer and a single
dequeuer.) It has almost the same internal representation as the lock-based queue
of Fig. 3.1. The only difference is the absence of a lock. We claim this is a correct
implementation of a single-enqueuer/single-dequeuer FIFO queue, although it is
no longer easy to explain why. It may not even be clear what it means for a queue
to be FIFO when enqueues and dequeues are concurrent.

Unfortunately, it follows from Amdahl’s Law (Chapter 1) that concurrent
objects whose methods hold exclusive locks, and therefore effectively execute one
after the other, are less desirable than ones with finer-grained locking or no locks
at all. We therefore need a way to specify the behavior of concurrent objects, and
to reason about their implementations, without relying on method-level locking.
Nevertheless, the lock-based queue example illustrates a useful principle: it is eas-
ier to reason about concurrent objects if we can somehow map their concurrent
executions to sequential ones, and limit our reasoning to these sequential execu-
tions. This principle is the key to the correctness properties introduced in this
chapter.

48 Chapter 3 Concurrent Objects

1 class WaitFreeQueue<T> {
2 volatile int head = 0, tail = 0;
3 T[] items;
4 public WaitFreeQueue(int capacity) {
5 items = (T[])new Object[capacity];
6 head = 0; tail = 0;
7 }
8 public void enq(T x) throws FullException {
9 if (tail - head == items.length)

10 throw new FullException();
11 items[tail % items.length] = x;
12 tail++;
13 }
14 public T deq() throws EmptyException {
15 if (tail - head == 0)
16 throw new EmptyException();
17 T x = items[head % items.length];
18 head++;
19 return x;
20 }
21 }

Figure 3.3 A single-enqueuer/single-dequeuer FIFO queue. The structure is identical to that
of the lock-based FIFO queue, except that there is no need for the lock to coordinate access.

3.2 Sequential Objects

An object in languages such as Java and C++ is a container for data. Each object
provides a set of methods which are the only way to manipulate that object. Each
object has a class, which defines the object’s methods and how they behave. An
object has a well-defined state (for example, the FIFO queue’s current sequence of
items). There are many ways to describe how an object’s methods behave, ranging
from formal specifications to plain English. The application program interface
(API) documentation that we use every day lies somewhere in between.

The API documentation typically says something like the following: if the
object is in such-and-such a state before you call the method, then the object will
be in some other state when the method returns, and the call will return a par-
ticular value, or throw a particular exception. This kind of description divides
naturally into a precondition (describing the object’s state before invoking the
method) and a postcondition, describing, once the method returns, the object’s
state and return value. A change to an object’s state is sometimes called a side
effect. For example, consider how one might specify a first-in-first-out (FIFO)
queue class. The class provides two methods: enq() and deq(). The queue state
is just a sequence of items, possibly empty. If the queue state is a sequence
q (precondition), then a call to enq(z) leaves the queue in state q · z, where
“·” denotes concatenation. If the queue object is nonempty (precondition), say
a · q, then the deq() method removes and returns the sequence’s first element a

3.3 Quiescent Consistency 49

(postcondition), leaving the queue in state q (side effect). If, instead, the queue
object is empty (precondition), the method throws EmptyException and leaves
the queue state unchanged (postcondition).

This style of documentation, called a sequential specification, is so familiar that
it is easy to overlook how elegant and powerful it is. The length of the object’s
documentation is linear in the number of methods, because each method can be
described in isolation. There are a vast number of potential interactions among
methods, and all such interactions are characterized succinctly by the methods’
side effects on the object state. The object’s documentation describes the object
state before and after each call, and we can safely ignore any intermediate states
that the object may assume while the method call is in progress.

Defining objects in terms of preconditions and postconditions makes perfect
sense in a sequential model of computation where a single thread manipulates a
collection of objects. Unfortunately, for objects shared by multiple threads, this
successful and familiar style of documentation falls apart. If an object’s meth-
ods can be invoked by concurrent threads, then the method calls can overlap in
time, and it no longer makes sense to talk about their order. What does it mean,
in a multithreaded program, if x and y are enqueued on a FIFO queue during
overlapping intervals? Which will be dequeued first? Can we continue to describe
methods in isolation, via preconditions and postconditions, or must we provide
explicit descriptions of every possible interaction among every possible collection
of concurrent method calls?

Even the notion of an object’s state becomes confusing. In single-threaded pro-
grams, an object must assume a meaningful state only between method calls.1 For
concurrent objects, however, overlapping method calls may be in progress at every
instant, so the object may never be between method calls. Any method call must be
prepared to encounter an object state that reflects the incomplete effects of other
concurrent method calls, a problem that simply does not arise in single-threaded
programs.

3.3 Quiescent Consistency

One way to develop an intuition about how concurrent objects should behave is
to review examples of concurrent computations involving simple objects, and to
decide, in each case, whether the behavior agrees with our intuition about how a
concurrent object should behave.

Method calls take time. A method call is the interval that starts with an
invocation event and ends with a response event. Method calls by concurrent
threads may overlap, while method calls by a single thread are always sequential

1 There is an exception: care must be taken if one method partially changes an object’s state and
then calls another method of that same object.

50 Chapter 3 Concurrent Objects

r.write(7)

r.write(23) r.read(27)

Thread A

Thread B

Figure 3.4 Why each method call should appear to take effect instantaneously. Two threads
concurrently write −3 and 7 to a shared register r. Later, one thread reads r and returns the
value −7. We expect to find either 7 or −3 in the register, not a mixture of both.

(non-overlapping, one-after-the-other). We say a method call is pending if its call
event has occurred, but not its response event.

For historical reasons, the object version of a read–write memory location
is called a register (see Chapter 4). In Fig. 3.4, two threads concurrently write
−3 and 7 to a shared register r (as before, “r.read(x)” means that a thread reads
value x from register object r, and similarly for “r.write(x).”). Later, one thread
reads r and returns the value−7. This behavior is clearly not acceptable. We expect
to find either 7 or −3 in the register, not a mixture of both. This example suggests
the following principle:

Principle 3.3.1. Method calls should appear to happen in a one-at-a-time,
sequential order.

By itself, this principle is usually too weak to be useful. For example, it
permits reads always to return the object’s initial state, even in sequential
executions.

Here is a slightly stronger condition. An object is quiescent if it has no pending
method calls.

Principle 3.3.2. Method calls separated by a period of quiescence should appear
to take effect in their real-time order.

For example, suppose A and B concurrently enqueue x and y in a FIFO
queue. The queue becomes quiescent, and then C enqueues z. We may not be
able to predict the relative order of x and y in the queue, but we know they are
ahead of z.

Together, Principles 3.3.1 and 3.3.2 define a correctness property called
quiescent consistency. Informally, it says that any time an object becomes qui-
escent, then the execution so far is equivalent to some sequential execution of the
completed calls.

As an example of a quiescently consistent object, consider the shared counter
from Chapter 1. A quiescently-consistent shared counter would return numbers,
not necessarily in the order of the getAndIncrement() requests, but always
without duplicating or omitting a number. The execution of a quiescently con-
sistent object is somewhat like a musical-chairs game: at any point, the music
might stop, that is, the state could become quiescent. At that point, each pending

3.4 Sequential Consistency 51

method call must return an index so that all the indexes together meet the
specification of a sequential counter, implying no duplicated or omitted numbers.
In other words, a quiescently consistent counter is an index distribution mecha-
nism, useful as a “loop counter” in programs that do not care about the order in
which indexes are issued.

3.3.1 Remarks

How much does quiescent consistency limit concurrency? Specifically, under
what circumstances does quiescent consistency require one method call to block
waiting for another to complete? Surprisingly, the answer is (essentially), never.
A method is total if it is defined for every object state; otherwise it is partial. For
example, let us consider the following alternative specification for an unbounded
sequential FIFO queue. One can always enqueue another item, but one can
dequeue only from a nonempty queue. In the sequential specification of a FIFO
queue, enq() is total, since its effects are defined in every queue state, but deq() is
partial, since its effects are defined only for nonempty queues.

In any concurrent execution, for any pending invocation of a total method,
there exists a quiescently consistent response. This observation does not mean
that it is easy (or even always possible) to figure out what that response is, but
only that the correctness condition itself does not stand in the way. We say that
quiescent consistency is a nonblocking correctness condition. We make this notion
more clear in Section 3.6.

A correctness property P is compositional if, whenever each object in the
system satisfies P , the system as a whole satisfies P . Compositionality is impor-
tant in large systems. Any sufficiently complex system must be designed and
implemented in a modular fashion. Components are designed, implemented, and
proved correct independently. Each component makes a clear distinction between
its implementation, which is hidden, and its interface, which precisely character-
izes the guarantees it makes to the other components. For example, if a concur-
rent object’s interface states that it is a sequentially consistent FIFO queue, then
users of the queue need to know nothing about how the queue is implemented.
The result of composing individually correct components that rely only on one
anothers’ interfaces should itself be a correct system. Can we, in fact, compose a
collection of independently implemented quiescently consistent objects to con-
struct a quiescently consistent system? The answer is, yes: quiescent consistency
is compositional, so quiescently consistent objects can be composed to construct
more complex quiescently consistent objects.

3.4 Sequential Consistency

In Fig. 3.5, a single thread writes 7 and then−3 to a shared register r. Later, it reads
r and returns 7. For some applications, this behavior might not be acceptable
because the value the thread read is not the last value it wrote. The order in which

52 Chapter 3 Concurrent Objects

r.write(7) r.write(23) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

Figure 3.6 There are two possible sequential orders that can justify this execution. Both
orders are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

a single thread issues method calls is called its program order. (Method calls by
different threads are unrelated by program order.)

In this example, we were surprised that operation calls did not take effect in
program order. This example suggests an alternative principle:

Principle 3.4.1. Method calls should appear to take effect in program order.

This principle ensures that purely sequential computations behave the way we
would expect.

Together, Principles 3.3.1 and 3.4.1 define a correctness property called sequen-
tial consistency, which is widely used in the literature on multiprocessor synchro-
nization.

Sequential consistency requires that method calls act as if they occurred in a
sequential order consistent with program order. That is, in any concurrent exe-
cution, there is a way to order the method calls sequentially so that they (1) are
consistent with program order, and (2) meet the object’s sequential specifica-
tion. There may be more than one order satisfying this condition. In Fig. 3.6,
thread A enqueues x while B enqueues y, and then A dequeues y while B
dequeues x. There are two possible sequential orders that can explain these results:
(1) A enqueues x, B enqueues y, B dequeues x, then A dequeues y, or (2) B
enqueues y, A enqueues x, A dequeues y, then B dequeues x. Both these orders
are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

3.4.1 Remarks

It is worth noting that sequential consistency and quiescent consistency are in-
comparable: there exist sequentially consistent executions that are not qui-
escently consistent, and vice versa. Quiescent consistency does not necessarily

3.4 Sequential Consistency 53

preserve program order, and sequential consistency is unaffected by quiescent
periods.

In most modern multiprocessor architectures, memory reads and writes are
not sequentially consistent: they can be typically reordered in complex ways. Most
of the time no one can tell, because the vast majority of reads–writes are not used
for synchronization. In those specific cases where programmers need sequen-
tial consistency, they must ask for it explicitly. The architectures provide special
instructions (usually called memory barriers or fences) that instruct the processor
to propagate updates to and from memory as needed, to ensure that reads and
writes interact correctly. In the end, the architectures do implement sequential
consistency, but only on demand. We discuss further issues related to sequential
consistency and the Java programming language in detail in Section 3.8.

In Fig. 3.7, thread A enqueues x, and later B enqueues y, and finally A
dequeues y. This execution may violate our intuitive notion of how a FIFO queue
should behave: the call enqueuing x finishes before the call dequeuing y starts, so
although y is enqueued after x, it is dequeued before. Nevertheless, this execution
is sequentially consistent. Even though the call that enqueues x happens before
the call that enqueues y, these calls are unrelated by program order, so sequential
consistency is free to reorder them.

One could argue whether it is acceptable to reorder method calls whose inter-
vals do not overlap, even if they occur in different threads. For example, we might
be unhappy if we deposit our paycheck on Monday, but the bank bounces our rent
check the following Friday because it reordered our deposit after your withdrawal.

Sequential consistency, like quiescent consistency, is nonblocking: any pending
call to a total method can always be completed.

Is sequential consistency compositional? That is, is the result of composing
multiple sequentially consistent objects itself sequentially consistent? Here, unfor-
tunately, the answer is no. In Fig. 3.8, two threads, A and B, call enqueue and
dequeue methods for two queue objects, p and q. It is not hard to see that p and q
are each sequentially consistent: the sequence of method calls for p is the same as
in the sequentially consistent execution shown in Fig. 3.7, and the behavior of q is
symmetric. Nevertheless, the execution as a whole is not sequentially consistent.

q.enq(x) q.deq(y)

q.enq(y)

Figure 3.7 Sequential consistency versus real-time order. Thread A enqueues x, and later
thread B enqueues y, and finally A dequeues y. This execution may violate our intuitive notion
of how a FIFO queue should behave because the method call enqueuing x finishes before
the method call dequeuing y starts, so although y is enqueued after x, it is dequeued before.
Nevertheless, this execution is sequentially consistent.

54 Chapter 3 Concurrent Objects

q.enq(x) p.deq(y)

p.enq(y) q.deq(x)

p.enq(x)

q.enq(y)

A

B

Figure 3.8 Sequential consistency is not compositional. Two threads, A and B, call enqueue
and dequeue methods on two queue objects, p and q. It is not hard to see that p and q are
each sequentially consistent, yet the execution as a whole is not sequentially consistent.

Let us check that there is no correct sequential execution in which these method
calls can be ordered in a way consistent with their program order. Let us assume,
by way of contradiction, that these method calls can be reordered to form a correct
FIFO queue execution, where the order of the method calls is consistent with the
program order. We use the following shorthand: 〈p.enq(x) A〉 → 〈q.deq(x) B〉
means that any sequential execution must order A’s enqueue of x at p before B’s
dequeue of x at p, and so on. Because p is FIFO and A dequeues y from p, y must
have been enqueued before x:

〈p.enq(y) B〉 → 〈p.enq(x) A〉

Likewise,

〈q.enq(x) A〉 → 〈q.enq(y) B〉.

But program order implies that

〈p.enq(x) A〉 → 〈q.enq(x) A〉 and 〈q.enq(y) B〉 → 〈p.enq(y) B〉.

Together, these orderings form a cycle.

3.5 Linearizability

We have seen that the principal drawback of sequential consistency is that it is not
compositional: the result of composing sequentially consistent components is not
itself necessarily sequentially consistent. We propose the following way out of this
dilemma. Let us replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

Principle 3.5.1. Each method call should appear to take effect instantaneously at
some moment between its invocation and response.

This principle states that the real-time behavior of method calls must be pre-
served. We call this correctness property linearizability. Every linearizable execu-
tion is sequentially consistent, but not vice versa.

3.6 Formal Definitions 55

3.5.1 Linearization Points

The usual way to show that a concurrent object implementation is linearizable is
to identify for each method a linearization point where the method takes effect.
For lock-based implementations, each method’s critical section can serve as its
linearization point. For implementations that do not use locking, the linearization
point is typically a single step where the effects of the method call become visible
to other method calls.

For example, let us recall the single-enqueuer/single-dequeuer queue of
Fig. 3.3. This implementation has no critical sections, and yet we can identify its
linearization points. Here, the linearization points depend on the execution. If it
returns an item, the deq() method has a linearization point when the head field
is updated (Line 18). If the queue is empty, the deq() method has a lineariza-
tion point when it throws Empty Exception (Line 16). The enq() method is
similar.

3.5.2 Remarks

Sequential consistency is a good way to describe standalone systems, such as
hardware memories, where composition is not an issue. Linearizability, by con-
trast, is a good way to describe components of large systems, where components
must be implemented and verified independently. Moreover, the techniques we
use to implement concurrent objects, are all linearizable. Because we are inter-
ested in systems that preserve program order and compose, most (but not all)
data structures considered in this book are linearizable.

How much does linearizability limit concurrency? Linearizability, like sequen-
tial consistency, is nonblocking. Moreover, like quiescent consistency, but unlike
sequential consistency, linearizability is compositional; the result of composing
linearizable objects is linearizable.

3.6 Formal Definitions

We now consider more precise definitions. Here, we focus on the formal proper-
ties of linearizability, since it is the property most often used in this book. We leave
it as an exercise to provide the same kinds of definitions for quiescent consistency
and sequential consistency.

Informally, we know that a concurrent object is linearizable if each method call
appears to take effect instantaneously at some moment between that method’s
invocation and return events. This statement is probably enough for most infor-
mal reasoning, but a more precise formulation is needed to take care of some
tricky cases (such as method calls that have not returned), and for more rigorous
styles of argument.

56 Chapter 3 Concurrent Objects

An execution of a concurrent system is modeled by a history, a finite sequence
of method invocation and response events. A subhistory of a history H is a subse-
quence of the events of H . We write a method invocation as 〈x.m(a∗) A〉, where
x is an object, m a method name, a∗ a sequence of arguments, and A a thread.
We write a method response as 〈x : t(r∗) A〉 where t is either Ok or an exception
name, and r∗ is a sequence of result values. Sometimes we refer to an event labeled
with thread A as a step of A.

A response matches an invocation if they have the same object and thread. We
have been using the term “method call” informally, but here is a more formal
definition: a method call in a history H is a pair consisting of an invocation and
the next matching response in H . We need to distinguish calls that have returned
from those that have not: An invocation is pending in H if no matching response
follows the invocation. An extension of H is a history constructed by append-
ing responses to zero or more pending invocations of H . Sometimes, we ignore
all pending invocations: complete(H) is the subsequence of H consisting of all
matching invocations and responses.

In some histories, method calls do not overlap: A history H is sequential if the
first event of H is an invocation, and each invocation, except possibly the last, is
immediately followed by a matching response.

Sometimes we focus on a single thread or object: a thread subhistory, H |A (“H
at A”), of a history H is the subsequence of all events in H whose thread names
are A. An object subhistory H |x is similarly defined for an object x. In the end,
all that matters is how each thread views what happened: two histories H and
H ′ are equivalent if for every thread A, H |A = H ′|A. Finally, we need to rule out
histories that make no sense: A history H is well formed if each thread subhistory
is sequential. All histories we consider here are well-formed. Notice that thread
subhistories of a well-formed history are always sequential, but object subhistories
need not be.

How can we tell whether an object is really a FIFO queue? We simply assume
that we have some effective way of recognizing whether any sequential object his-
tory is or is not a legal history for that object’s class. A sequential specification for
an object is just a set of sequential histories for the object. A sequential history H
is legal if each object subhistory is legal for that object.

Recall from Chapter 2 that a partial order → on a set X is a relation that is
irreflexive and transitive. That is, it is never true that x→ x, and whenever x→ y
and y→ z, then x→ z. Note that it is possible that there are distinct x and y such
that neither x→ y nor y→ x. A total order < on X is a partial order such that for
all distinct x and y in X, either x < y or y < x.

Any partial order can be extended to a total order:

Fact 3.6.1. If → is a partial order on X, then there exists a total order “<” on X
such that if x→ y, then x < y.

We say that a method call m0 precedes a method call m1 in history H
if m0 finished before m1 started: that is, m0’s response event occurs before

3.6 Formal Definitions 57

m1’s invocation event. This notion is important enough to introduce some
shorthand notion. Given a history H containing method calls m0 and m1, we
say that m0 →H m1 if m0 precedes m1 in H . We leave it as an exercise to show that
→H is a partial order. Notice that if H is sequential, then →H is a total order.
Given a history H and an object x, such that H |x contains method calls m0 and
m1, we say that m0 →x m1 if m0 precedes m1 in H |x.

3.6.1 Linearizability

The basic idea behind linearizability is that every concurrent history is equiv-
alent, in the following sense, to some sequential history. The basic rule is that
if one method call precedes another, then the earlier call must have taken effect
before the later call. By contrast, if two method calls overlap, then their order is
ambiguous, and we are free to order them in any convenient way.

More formally,

Definition 3.6.1. A history H is linearizable if it has an extension H ′ and there
is a legal sequential history S such that

L1 complete(H ′) is equivalent to S, and

L2 if method call m0 precedes method call m1 in H , then the same is true in S.

We refer to S as a linearization of H . (H may have multiple linearizations.)
Informally, extending H to H ′ captures the idea that some pending invo-

cations may have taken effect, even though their responses have not yet been
returned to the caller. Fig. 3.9 illustrates the notion: we must complete the pending
enq(x) method call to justify the deq() call that returns x. The second condition
says that if one method call precedes another in the original history, then that
ordering must be preserved in the linearization.

3.6.2 Compositional Linearizability

Linearizability is compositional:

Theorem 3.6.1. H is linearizable if, and only if, for each object x, H |x is
linearizable.

q.enq(x)

q.deq(x)

Figure 3.9 The pending enq(x) method call must take effect early to justify the deq() call that
returns x.

58 Chapter 3 Concurrent Objects

Proof: The “only if ” part is left as an exercise.
For each object x, pick a linearization of H |x. Let Rx be the set of responses

appended to H |x to construct that linearization, and let →x be the corresponding
linearization order. Let H ′ be the history constructed by appending to H each
response in Rx.

We argue by induction on the number of method calls in H ′. For the base case,
if H ′ contains only one method call, we are done. Otherwise, assume the claim
for every H containing fewer than k > 1 method calls. For each object x, consider
the last method call in H ′|x. One of these calls m must be maximal with respect
to →H : that is, there is no m′ such that m→H m′. Let G′ be the history defined
by removing m from H ′. Because m is maximal, H ′ is equivalent to G′ ·m. By the
induction hypothesis, G′ is linearizable to a sequential history S ′, and both H ′

and H are linearizable to S ′ ·m. �

Compositionality is important because it allows concurrent systems to be
designed and constructed in a modular fashion; linearizable objects can be imple-
mented, verified, and executed independently. A concurrent system based on a
noncompositional correctness property must either rely on a centralized sched-
uler for all objects, or else satisfy additional constraints placed on objects to ensure
that they follow compatible scheduling protocols.

3.6.3 The Nonblocking Property

Linearizability is a nonblocking property: a pending invocation of a total method
is never required to wait for another pending invocation to complete.

Theorem 3.6.2. Let inv(m) be an invocation of a total method. If 〈x inv P 〉 is
a pending invocation in a linearizable history H , then there exists a response
〈x res P 〉 such that H · 〈x res P 〉 is linearizable.

Proof: Let S be any linearization of H . If S includes a response 〈x res P 〉
to 〈x inv P 〉, we are done, since S is also a linearization of H · 〈x res P 〉.
Otherwise, 〈x inv P 〉 does not appear in S either, since linearizations, by defi-
nition, include no pending invocations. Because the method is total, there exists
a response 〈x res P 〉 such that

S ′ = S · 〈x inv P 〉 · 〈x res P 〉

is legal. S ′, however, is a linearization of H · 〈x res P 〉, and hence is also a lin-
earization of H . �

This theorem implies that linearizability by itself never forces a thread with
a pending invocation of a total method to block. Of course, blocking (or even
deadlock) may occur as artifacts of particular implementations of linearizability,
but it is not inherent to the correctness property itself. This theorem suggests that

3.7 Progress Conditions 59

linearizability is an appropriate correctness condition for systems where concur-
rency and real-time response are important.

The nonblocking property does not rule out blocking in situations where it
is explicitly intended. For example, it may be sensible for a thread attempting to
dequeue from an empty queue to block, waiting until another thread enqueues
an item. A queue specification would capture this intention by making the deq()
method’s specification partial, leaving its effect undefined when applied to an
empty queue. The most natural concurrent interpretation of a partial sequential
specification is simply to wait until the object reaches a state in which the method
is defined.

3.7 Progress Conditions

Linearizability’s nonblocking property states that any pending invocation has a
correct response, but does not talk about how to compute such a response. For
example, let us consider the scenario for the lock-based queue shown in Fig. 3.1.
Suppose the queue is initially empty. A halts half-way through enqueuing x, and
B then invokes deq(). The nonblocking property guarantees that B’s call to deq()
has a response: it could either throw an exception or return x. In this implemen-
tation, however, B is unable to acquire the lock, and will be delayed as long as A
is delayed.

Such an implementation is called blocking, because an unexpected delay by one
thread can prevent others from making progress. Unexpected thread delays are
common in multiprocessors. A cache miss might delay a processor for a hundred
cycles, a page fault for a few million cycles, preemption by the operating system
for hundreds of millions of cycles. These delays depend on the specifics of the
machine and the operating system.

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps. It is bounded wait-free if there is a bound on the
number of steps a method call can take. This bound may depend on the num-
ber of threads. For example, the Bakery algorithm’s doorway section studied in
Chapter 2 is bounded wait-free, where the bound is the number of threads.
A wait-free method whose performance does not depend on the number of active
threads is called population-oblivious. We say that an object is wait-free if its meth-
ods are wait-free, and in an object oriented language, we say that a class is wait-
free if all instances of its objects are wait-free. Being wait-free is an example of a
nonblocking progress condition, meaning that an arbitrary and unexpected delay
by one thread (say, the one holding a lock) does not necessarily prevent the others
from making progress.

The queue shown in Fig. 3.3 is wait-free. For example, in the scenario where A
halts half-way through enqueuing x, and B then invokes deq(), then B will either
throw EmptyException (if A halted before storing the item in the array) or it
will return x (if A halted afterward). The lock-based queue is not nonblocking

60 Chapter 3 Concurrent Objects

because B will take an unbounded number of steps unsuccessfully trying to
acquire the lock.

The wait-free property is attractive because it guarantees that every thread that
takes steps makes progress. However, wait-free algorithms can be inefficient, and
sometimes we are willing to settle for a weaker nonblocking property.

A method is lock-free if it guarantees that infinitely often some method call fin-
ishes in a finite number of steps. Clearly, any wait-free method implementation
is also lock-free, but not vice versa. Lock-free algorithms admit the possibility
that some threads could starve. As a practical matter, there are many situations
in which starvation, while possible, is extremely unlikely, so a fast lock-free algo-
rithm may be more attractive than a slower wait-free algorithm.

3.7.1 Dependent Progress Conditions

The wait-free and lock-free nonblocking progress conditions guarantee that the
computation as a whole makes progress, independently of how the system sched-
ules threads.

In Chapter 2 we encountered two progress conditions for blocking imple-
mentations: the deadlock-free and starvation-free properties. These properties
are dependent progress conditions: progress occurs only if the underlying plat-
form (i.e., the operating system) provides certain guarantees. In principle, the
deadlock-free and starvation-free properties are useful when the operating sys-
tem guarantees that every thread eventually leaves every critical section. In prac-
tice, these properties are useful when the operating system guarantees that every
thread eventually leaves every critical section in a timely manner.

Classes whose methods rely on lock-based synchronization can guarantee, at
best, dependent progress properties. Does this observation mean that lock-based
algorithms should be avoided? Not necessarily. If preemption in the middle of a
critical section is sufficiently rare, then dependent blocking progress conditions
are effectively indistinguishable from their nonblocking counterparts. If preemp-
tion is common enough to cause concern, or if the cost of preemption-based
delay are sufficiently high, then it is sensible to consider nonblocking progress
conditions.

There is also a dependent nonblocking progress condition: the obstruction-free
property. We say that a method call executes in isolation if no other threads take
steps.

Definition 3.7.1. A method is obstruction-free if, from any point after which it
executes in isolation, it finishes in a finite number of steps.

Like the other nonblocking progress conditions, the obstruction-free condi-
tion ensures that not all threads can be blocked by a sudden delay of one or more
other threads. A lock-free algorithm is obstruction-free, but not vice versa.

The obstruction-free algorithm rules out the use of locks but does not guar-
antee progress when multiple threads execute concurrently. It seems to defy the

3.8 The Java Memory Model 61

fair approach of most operating system schedulers by guaranteeing progress only
when one thread is unfairly scheduled ahead of the others.

In practice, however, there is no problem. The obstruction-free condition does
not require pausing all threads, only those threads that conflict, meaning that they
call the same shared object’s methods. The simplest way to exploit an obstruction-
free algorithm is to introduce a back-off mechanism: a thread that detects a conflict
pauses to give an earlier thread time to finish. Choosing when to back off, and for
how long, is a complicated subject discussed in detail in Chapter 7.

Picking a progress condition for a concurrent object implementation depends
on both the needs of the application and the characteristics of the underlying
platform. The absolute wait-free and lock-free progress properties have good
theoretical properties, they work on just about any platform, and they provide
real-time guarantees useful to applications such as music, electronic games, and
other interactive applications. The dependent obstruction-free, deadlock-free,
and starvation-free properties rely on guarantees provided by the underlying plat-
form. Given those guarantees, however, the dependent properties often admit
simpler and more efficient implementations.

3.8 The Java Memory Model

The Java programming language does not guarantee linearizability, or even
sequential consistency, when reading or writing fields of shared objects. Why
not? The principal reason is that strict adherence to sequential consistency would
outlaw widely used compiler optimizations, such as register allocation, common
subexpression elimination, and redundant read elimination, all of which work
by reordering memory reads–writes. In a single-threaded computation, such
reorderings are invisible to the optimized program, but in a multithreaded com-
putation, one thread can spy on another and observe out-of-order executions.

The Java memory model satisfies the Fundamental Property of relaxed mem-
ory models: if a program’s sequentially consistent executions follow certain rules,
then every execution of that program in the relaxed model will still be sequen-
tially consistent. In this section, we describe rules that guarantee that the Java
programs are sequentially consistent. We will not try to cover the complete set of
rules, which is rather large and complex. Instead, we focus on a set of straightfor-
ward rules that should be enough for most purposes.

Fig. 3.10 shows double-checked locking, a once-common programming idiom
that falls victim to Java’s lack of sequential consistency. Here, the Singleton
class manages a single instance of a Singleton object, accessible through the
getInstance() method. This method creates the instance the first time it is
called. This method must be synchronized to ensure that only one instance is
created, even if several threads observe instance to be null create new instances.
Once the instance has been created, however, no further synchronization should
be necessary. As an optimization, the code in Fig. 3.10 enters the synchronized

62 Chapter 3 Concurrent Objects

1 public static Singleton getInstance() {
2 if (instance == null) {
3 synchronized(Singleton.class) {
4 if (instance == null)
5 instance = new Singleton();
6 }
7 }
8 return instance;
9 }

Figure 3.10 Double-checked locking.

block only when it observes an instance to be null. Once it has entered, it double-
checks that instance is still null before creating the instance.

This pattern, once common, is incorrect. At Line 5, the constructor call appears
to take place before the instance field is assigned, but the Java memory model
allows these steps to occur out of order, effectively making a partially initialized
Singleton object visible to other programs.

In the Java memory model, objects reside in a shared memory and each thread
has a private working memory that contains cached copies of fields it has read or
written. In the absence of explicit synchronization (explained later), a thread that
writes to a field might not propagate that update to memory right away, and a
thread that reads a field might not update its working memory if the field’s copy
in memory changes value. Naturally, a Java virtual machine is free to keep such
cached copies consistent, and in practice they often do, but they are not required
to do so. At this point, we can guarantee only that a thread’s own reads–writes
appear to that thread to happen in order, and that any field value read by a thread
was written to that field (i.e., values do not appear out of thin air).

Certain statements are synchronization events. Usually, the term “synchroniza-
tion” implies some form of atomicity or mutual exclusion. In Java, however, it also
implies reconciling a thread’s working memory with the shared memory. Some
synchronization events cause a thread to write cached changes back to shared
memory, making those changes visible to other threads. Other synchronization
events cause the thread to invalidate its cached values, forcing it to reread field
values from memory, making other threads’ changes visible. Synchronization
events are linearizable: they are totally ordered, and all threads agree on that order-
ing. We now look at different kinds of synchronization events.

3.8.1 Locks and Synchronized Blocks

A thread can achieve mutual exclusion either by entering a synchronized block
or method, which acquires an implicit lock, or by acquiring an explicit lock
(such as the ReentrantLock from the java.util.concurrent.locks package). Both
approaches have the same implications for memory behavior.

If all accesses to a particular field are protected by the same lock, then
reads–writes to that field are linearizable. Specifically, when a thread releases a
lock, modified fields in working memory are written back to shared memory,

3.8 The Java Memory Model 63

performing modifications while holding the lock accessible to other threads.
When a thread acquires the lock, it invalidates its working memory to ensure
fields are reread from shared memory. Together, these conditions ensure that
reads–writes to the fields of any object protected by a single lock are linearizable.

3.8.2 Volatile Fields

Volatile fields are linearizable. Reading a volatile field is like acquiring a lock: the
working memory is invalidated and the volatile field’s current value is reread from
memory. Writing a volatile field is like releasing a lock: the volatile field is imme-
diately written back to memory.

Although reading and writing a volatile field has the same effect on mem-
ory consistency as acquiring and releasing a lock, multiple reads–writes are not
atomic. For example, if x is a volatile variable, the expression x++ will not nec-
essarily increment x if concurrent threads can modify x. Some form of mutual
exclusion is needed as well. One common usage pattern for volatile variables
occurs when a field is read by multiple threads, but only written by one.

The java.util.concurrent.atomic package includes classes that provide
linearizable memory such as AtomicReference<T> or AtomicInteger. The
compareAndSet() and set() methods act like volatile writes, and get() acts like
a volatile read.

3.8.3 Final Fields

Recall that a field declared to be final cannot be modified once it has been ini-
tialized. An object’s final fields are initialized in its constructor. If the constructor
follows certain simple rules, described in the following paragraphs, then the cor-
rect value of any final fields will be visible to other threads without synchroniza-
tion. For example, in the code shown in Fig. 3.11, a thread that calls reader() is

1 class FinalFieldExample {
2 final int x; int y;
3 static FinalFieldExample f;
4 public FinalFieldExample() {
5 x = 3;
6 y = 4;
7 }
8 static void writer() {
9 f = new FinalFieldExample();
10 }
11 static void reader() {
12 if (f != null) {
13 int i = f.x; int j = f.y;
14 }
15 }
16 }

Figure 3.11 Constructor with final field.

64 Chapter 3 Concurrent Objects

1 public class EventListener {
2 final int x;
3 public EventListener(EventSource eventSource) {
4 eventSource.registerListener(this); // register with event source ...
5 }
6 public onEvent(Event e) {
7 ... // handle the event
8 }
9 }

Figure 3.12 Incorrect EventListener class.

guaranteed to see x equal to 3, because the x field is final. There is no guarantee
that y will be equal to 4, because y is not final.

If a constructor is synchronized incorrectly, however, then final fields may be
observed to change value. The rule is simple: the this reference must not be
released from the constructor before the constructor returns.

Fig. 3.12 shows an example of an incorrect constructor in an event-driven sys-
tem. Here, an EventListener class registers itself with an EventSource class,
making a reference to the listener object accessible to other threads. This code may
appear safe, since registration is the last step in the constructor, but it is incorrect,
because if another thread calls the event listener’s onEvent() method before the
constructor finishes, then the onEvent() method is not guaranteed to see a correct
value for x.

In summary, reads–writes to fields are linearizable if either the field is volatile,
or the field is protected by a unique lock which is acquired by all readers and
writers.

3.9 Remarks

What progress condition is right for one’s application? Obviously, it depends on
the needs of the application and the nature of the system it is intended to run
on. However, this is actually a “trick question” since different methods, even ones
applied to the same object, can have different progress conditions. A frequently
called time-critical method such as a table lookup in a firewall program, should
be wait-free, while an infrequent call to update a table entry can be implemented
using mutual exclusion. As we will see, it is quite natural to write applications
whose methods differ in their progress guarantees.

Which correctness condition is right for one’s application? Well, it depends on
the needs of the application. A lightly loaded printer server that uses a queue to
hold, say print jobs, might be satisfied with a quiescently-consistent queue, since
the order in which documents are printed is of little importance. A banking server
should execute customer requests in program order (transfer $100 from savings to

3.10 Chapter Notes 65

checking, write a check for $50), so it should use a sequentially consistent queue.
A stock-trading server is required to be fair, so orders from different customers
must be executed in the order they arrive, so it would require a linearizable queue.

The following joke circulated in Italy in the 1920s. According to Mussolini, the
ideal citizen is intelligent, honest, and Fascist. Unfortunately, no one is perfect,
which explains why everyone you meet is either intelligent and Fascist but not
honest, honest and Fascist but not intelligent, or honest and intelligent but not
Fascist.

As programmers, it would be ideal to have linearizable hardware, linearizable
data structures, and good performance. Unfortunately, technology is imperfect,
and for the time being, hardware that performs well is not even sequentially con-
sistent. As the joke goes, that leaves open the possibility that data structures might
still be linearizable while performing well. Nevertheless, there are many challenges
to make this vision work, and the remainder of this book is a road map showing
how to attain this goal.

3.10 Chapter Notes

The notion of quiescent consistency was introduced implicitly by James Aspnes,
Maurice Herlihy, and Nir Shavit [16] and more explicitly by Nir Shavit and
Asaph Zemach [143]. Leslie Lamport [91] introduced the notion of sequential
consistency, while Christos Papadimitriou [124] formulated the canonical formal
characterization of serializability. William Weihl [149] was the first to point out
the importance of compositionality (which he called locality). Maurice Herlihy
and Jeannette Wing [69] introduced the notion of linearizability in 1990. Leslie
Lamport [94, 95] introduced the notion of an atomic register in 1986.

To the best of our knowledge, the notion of wait-freedom first appeared implic-
itly in Leslie Lamport’s Bakery algorithm [89]. Lock-freedom has had several his-
torical meanings and only in recent years has it converged to its current definition.
Obstruction-freedom was introduced by Maurice Herlihy, Victor Luchangco, and
Mark Moir [61]. The notion of dependent progress was introduced by Maurice
Herlihy and Nir Shavit [63] .

Programming languages such as C or C++ were not defined with concurrency
in mind, so they do not define a memory model. The actual behavior of a concur-
rent C or C++ program is the result of a complex combination of the underlying
hardware, the compiler, and concurrency library. See Hans Boehm [21] for a more
detailed discussion of these issues. The Java memory model proposed here is the
second memory model proposed for Java. Jeremy Manson, Bill Pugh, and Sarita
Adve [112] give a more complete description of the current Java memory.

The 2-thread queue is considered folklore, yet as far as we are aware, it first
appeared in print in a paper by Leslie Lamport [92].

66 Chapter 3 Concurrent Objects

3.11 Exercises

Exercise 21. Explain why quiescent consistency is compositional.

Exercise 22. Consider a memory object that encompasses two register compo-
nents. We know that if both registers are quiescently consistent, then so is the
memory. Does the converse hold? If the memory is quiescently consistent, are the
individual registers quiescently consistent? Outline a proof, or give a counterex-
ample.

Exercise 23. Give an example of an execution that is quiescently consistent but
not sequentially consistent, and another that is sequentially consistent but not
quiescently consistent.

Exercise 24. For each of the histories shown in Figs. 3.13 and 3.14, are they quies-
cently consistent? Sequentially consistent? Linearizable? Justify your answer.

Exercise 25. If we drop condition L2 from the linearizability definition, is the
resulting property the same as sequential consistency? Explain.

r.read(1)

r.write(1)

r.write(2)

A

B

C

r.read(2)

Figure 3.13 First history for Exercise 24.

r.read(1)

r.write(1)

r.write(2)

A

B

C

r.read(1)

Figure 3.14 Second history for Exercise 24.

3.11 Exercises 67

Exercise 26. Prove the “only if ” part of Theorem 3.6.1

Exercise 27. The AtomicInteger class (in the java.util.concurrent.atomic
package) is a container for an integer value. One of its methods is

boolean compareAndSet(int expect, int update).

This method compares the object’s current value to expect. If the values are
equal, then it atomically replaces the object’s value with update and returns true.
Otherwise, it leaves the object’s value unchanged, and returns false. This class also
provides

int get()

which returns the object’s actual value.
Consider the FIFO queue implementation shown in Fig. 3.15. It stores its items

in an array items, which, for simplicity, we will assume has unbounded size. It
has two AtomicInteger fields: tail is the index of the next slot from which to
remove an item, and head is the index of the next slot in which to place an item.
Give an example showing that this implementation is not linearizable.

Exercise 28. Consider the class shown in Fig. 3.16. According to what you have been
told about the Java memory model, will the reader method ever divide by zero?

1 class IQueue<T> {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicInteger tail = new AtomicInteger(0);
4 T[] items = (T[]) new Object[Integer.MAX_VALUE];
5 public void enq(T x) {
6 int slot;
7 do {
8 slot = tail.get();
9 } while (! tail.compareAndSet(slot, slot+1));
10 items[slot] = x;
11 }
12 public T deq() throws EmptyException {
13 T value;
14 int slot;
15 do {
16 slot = head.get();
17 value = items[slot];
18 if (value == null)
19 throw new EmptyException();
20 } while (! head.compareAndSet(slot, slot+1));
21 return value;
22 }
23 }

Figure 3.15 IQueue implementation.

68 Chapter 3 Concurrent Objects

1 class VolatileExample {
2 int x = 0;
3 volatile boolean v = false;
4 public void writer() {
5 x = 42;
6 v = true;
7 }
8 public void reader() {
9 if (v == true) {

10 int y = 100/x;
11 }
12 }
13 }

Figure 3.16 Volatile field example from Exercise 28.

Exercise 29. Is the following property equivalent to saying that object x is
wait-free?

For every infinite history H of x, every thread that takes an infinite number of
steps in H completes an infinite number of method calls.

Exercise 30. Is the following property equivalent to saying that object x is
lock-free?

For every infinite history H of x, an infinite number of method calls are
completed.

Exercise 31. Consider the following rather unusual implementation of a method
m. In every history, the ith time a thread calls m, the call returns after 2i steps. Is
this method wait-free, bounded wait-free, or neither?

Exercise 32. This exercise examines a queue implementation (Fig. 3.17) whose
enq() method does not have a linearization point.

The queue stores its items in an items array, which for simplicity we will
assume is unbounded. The tail field is an AtomicInteger, initially zero. The
enq() method reserves a slot by incrementing tail, and then stores the item at
that location. Note that these two steps are not atomic: there is an interval after
tail has been incremented but before the item has been stored in the array.

The deq() method reads the value of tail, and then traverses the array in
ascending order from slot zero to the tail. For each slot, it swaps null with the
current contents, returning the first non-null item it finds. If all slots are null, the
procedure is restarted.

Give an example execution showing that the linearization point for enq()
cannot occur at Line 15.

Hint: give an execution where two enq() calls are not linearized in the order
they execute Line 15.

3.11 Exercises 69

1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 static final int CAPACITY = 1024;
5
6 public HWQueue() {
7 items =(AtomicReference<T>[])Array.newInstance(AtomicReference.class,
8 CAPACITY);
9 for (int i = 0; i < items.length; i++) {
10 items[i] = new AtomicReference<T>(null);
11 }
12 tail = new AtomicInteger(0);
13 }
14 public void enq(T x) {
15 int i = tail.getAndIncrement();
16 items[i].set(x);
17 }
18 public T deq() {
19 while (true) {
20 int range = tail.get();
21 for (int i = 0; i < range; i++) {
22 T value = items[i].getAndSet(null);
23 if (value != null) {
24 return value;
25 }
26 }
27 }
28 }
29 }

Figure 3.17 Herlihy/Wing queue.

Give another example execution showing that the linearization point for enq()
cannot occur at Line 16.

Since these are the only two memory accesses in enq(), we must conclude that
enq() has no single linearization point. Does this mean enq() is not linearizable?

Exercise 33. Prove that sequential consistency is nonblocking.

This page intentionally left blank

4Foundations of
Shared Memory

The foundations of sequential computing were established in the 1930s by Alan
Turing and Alonzo Church, who independently formulated what has come to be
known as the Church-Turing Thesis: anything that can be computed, can be com-
puted by a Turing Machine (or, equivalently, by Church’s Lambda Calculus). Any
problem that cannot be solved by a Turing Machine (such as deciding whether
a program halts on any input) is universally considered to be unsolvable by any
kind of practical computing device. The Turing Thesis is a thesis, not a theorem,
because the notion of “what is computable” can never be defined in a precise,
mathematically rigorous way. Nevertheless, just about everyone believes it.

This chapter describes the foundations of concurrent shared memory comput-
ing. A shared-memory computation consists of multiple threads, each of which is a
sequential program in its own right. These threads communicate by calling meth-
ods of objects that reside in a shared memory. Threads are asynchronous, meaning
that they run at different speeds, and any thread can halt for an unpredictable
duration at any time. This notion of asynchrony reflects the realities of mod-
ern multiprocessor architectures, where thread delays are unpredictable, rang-
ing from microseconds (cache misses), to milliseconds (page faults), to seconds
(scheduling interruptions).

The classical theory of sequential computability proceeds in stages. It starts
with finite-state automata, moves on to push-down automata, and culminates
in Turing Machines. We, too, consider a progression of models for concurrent
computing. In this chapter we start with the simplest form of shared-memory
computation: concurrent threads apply simple read–write operations to shared-
memory locations, called registers for historical reasons. We start with very simple
registers, and we show how to use them to construct a series of more complex
registers.

The classical theory of sequential computability is (for the most part) not con-
cerned with efficiency: to show that a problem is computable, it is enough to show
that it can be solved by a Turing Machine. There is little incentive to make such
a Turing Machine efficient, because a Turing Machine is not a practical means
of computation. In the same way, we make little attempt to make our register

71

72 Chapter 4 Foundations of Shared Memory

constructions efficient. We are interested in understanding whether such
constructions exist, and how they work. They are not intended to be a practi-
cal model for computation. Instead, we prefer easy-to-understand but inefficient
constructions over complicated but efficient ones. In particular, some of our con-
structions use timestamps (counter values) to distinguish older values from newer
values.

The problem with timestamps is that they grow without bound, and even-
tually overflow any fixed-size variable. Bounded solutions (such as the one in
Section 2.7 of Chapter 2) are (arguably) more intellectually satisfying, and we
encourage readers to investigate them further through the references provided in
the chapter notes. Here, however, we focus on simpler, unbounded constructions,
because they illustrate fundamental principles of concurrent programming with
less danger of becoming distracted by technicalities.

4.1 The Space of Registers

At the hardware level, threads communicate by reading and writing shared
memory. A good way to understand inter-thread communication is to abstract
away from hardware primitives, and to think about communication as happen-
ing through shared concurrent objects. Chapter 3 provided a detailed description
of shared objects. For now, it suffices to recall the two key properties of their
design: safety, defined by consistency conditions, and liveness, defined by progress
conditions.

A read–write register (or just a register), is an object that encapsulates a value
that can be observed by a read() method and modified by a write() method
(in real systems these method calls are often called load and store). Fig. 4.1
illustrates the Register<T> interface implemented by all registers. The type T
of the value is typically either Boolean, Integer, or a reference to an object.
A register that implements the Register<Boolean> interface is called a Boolean
register (we sometimes use 1 and 0 as synonyms for true and false). A register
that implements Register<Integer> for a range of M integer values is called an
M-valued register. We do not explicitly discuss any other kind of register, except
to note that any algorithm that implements integer registers can be adapted to
implement registers that hold references to other objects, simply by treating those
references as integers.

1 public interface Register<T> {
2 T read();
3 void write(T v);
4 }

Figure 4.1 The Register<T> interface.

4.1 The Space of Registers 73

1 public class SequentialRegister<T> implements Register<T> {
2 private T value;
3 public T read() {
4 return value;
5 }
6 public void write(T v) {
7 value = v;
8 }
9 }

Figure 4.2 The SequentialRegister class.

If method calls do not overlap, a register implementation should behave as
shown in Fig. 4.2. On a multiprocessor, however, we expect method calls to over-
lap all the time, so we need to specify what the concurrent method calls mean.

One approach is to rely on mutual exclusion: protect each register with a mutex
lock acquired by each read() and write() call. Unfortunately, we cannot use
mutual exclusion here. Chapter 2 describes how to accomplish mutual exclu-
sion using registers, so it makes little sense to implement registers using mutual
exclusion. Moreover, as we saw in Chapter 3, using mutual exclusion, even if
it is deadlock- or starvation-free, would mean that the computation’s progress
would depend on the operating system scheduler to guarantee that threads
never get stuck in critical sections. Since we wish to examine the basic building
blocks of concurrent computation using shared objects, it makes little sense to
assume the existence of a separate entity to provide one of their key properties:
progress.

Here is a different approach. Recall that an object implementation is wait-free
if each method call finishes in a finite number of steps, independently of how its
execution is interleaved with steps of other concurrent method calls. The wait-free
condition may seem simple and natural, but it has far-reaching consequences. In
particular, it rules out any kind of mutual exclusion, and guarantees independent
progress, that is, without relying on an operating system scheduler. We therefore
require our register implementations to be wait-free.1

An atomic register is a linearizable implementation of the sequential register
class shown in Fig. 4.2. Informally, an atomic register behaves exactly as we would
expect: each read returns the “last” value written. A model in which threads com-
municate by reading and writing to atomic registers is intuitively appealing, and
for a long time was the standard model of concurrent computation.

It is also important to specify how many readers and writers are expected. Not
surprisingly, it is easier to implement a register that supports only a single reader
and writer than one that supports multiple readers and writers. For brevity, we
use SRSW to mean “single-reader, single-writer,” MRSW to mean “multi-reader,
single-writer,” and MRMW to mean “multi-reader, multi-writer.”

1 A wait-free implementation is also lock-free.

74 Chapter 4 Foundations of Shared Memory

In this chapter, we address the following fundamental question:

Can any data structure implemented from the most powerful registers we define
also be implemented from the weakest?

We recall from Chapter 1 that any useful form of inter-thread communication
must be persistent: the message sent must outlive the active participation of the
sender. The weakest form of persistent synchronization is (arguably) the ability to
set a single persistent bit in shared memory, and the weakest form of synchroniza-
tion is (unarguably) none at all: if the act of setting a bit does not overlap the act
of reading that bit, then the value read is the same as the value written. Otherwise,
a read overlapping a write could return any value.

Different kinds of registers come with different guarantees that make them
more or less powerful. For example, we have seen that registers may differ in the
range of values they may encapsulate (for example, Boolean vs. M-valued), and
in the number of readers and writers they support. Finally, they may differ in the
degree of consistency they provide.

A single-writer, multi-reader register implementation is safe if —

� A read() call that does not overlap a write() call returns the value written by
the most recent write() call.

� Otherwise, if a read() call overlaps a write() call, then the read() call may
return any value within the register’s allowed range of values (for example,
0 to M − 1 for an M-valued register).

Be aware that the term “safe” is a historical accident. Because they provide such
weak guarantees, “safe” registers are actually quite unsafe.

Consider the history shown in Fig. 4.3. If the register is safe, then the three read
calls might behave as follows:

� R1 returns 0, the most recently-written value.

� R2 and R3 are concurrent with W (1), so they could return any value in the
range of the register.

W (0) W (1)

R
1
() R

2
() R

3
()

Figure 4.3 A single-reader, single-writer register execution: Ri is the ith read and W(v) is a
write of value v. Time flows from left to right. No matter whether the register is safe, regular,
or atomic, R1 must return 0, the most recently written value. If the register is safe then because
R2 and R3 are concurrent with W(1), they can return any value in the range of the register. If
the register is regular, R2 and R3 can each return either 0 or 1. If the register is atomic then
if R2 returns 1 then R3 also returns 1, and if R2 returns 0 then R3 could return 0 or 1.

4.1 The Space of Registers 75

It is convenient to define an intermediate level of consistency between safe and
atomic. A regular register is a multi-reader, single-writer register where writes do
not happen atomically. Instead, while the write() call is in progress, the value
being read may “flicker” between the old and new value before finally replacing
the older value. More precisely:

� A regular register is safe, so any read() call that does not overlap a write() call
returns the most recently written value.

� Suppose a read() call overlaps one or more write() calls. Let v0 be the
value written by the latest preceding write() call, and let v1, . . . , vk be the
sequence of values written by overlapping write() calls. The read() call may
return any of the vi, for any i in the range 0 . . . k.

For the execution in Fig. 4.3, a single-reader regular register might behave as
follows:

� R1 returns the old value, 0.

� R2 and R3 each return either the old value, 0, or the new value, 1.

Regular registers are quiescently consistent (Chapter 3), but not vice versa. We
defined both safe and regular registers to permit only a single writer. Note that a
regular register is a quiescently consistent single-writer sequential register.

For a single-reader single-writer atomic register, the execution in Fig. 4.3 might
produce the following results:

� R1 returns the old value, 0.

� If R2 returns 1 then R3 also returns 1.

� If R2 returns 0 then R3 could return 0 or 1.

Fig. 4.4 shows a schematic view of the range of possible registers as a three-
dimensional space: the register size defines one dimension, the number of readers
and writers defines another, and the register’s consistency property defines the
third. This view should not be taken literally: there are several combinations, such
as multi-writer safe registers, that are not useful to define.

To reason about algorithms for implementing regular and atomic registers,
it is convenient to rephrase our definitions directly in terms of object histo-
ries. From now on, we consider only histories in which each read() call returns
a value written by some write() call (regular and atomic registers do not
allow reads to make up return values). We assume values read or written are
unique.2

2 If values are not inherently unique, we can use the standard technique of appending to them
auxiliary values invisible to the algorithm itself, used only in our reasoning to distinguish one
value from another.

76 Chapter 4 Foundations of Shared Memory

Boolean

Safe
Regular

Atomic

SRSW

MRSW

MRMW

Multi-valued

Figure 4.4 The three-dimensional space of possible read–write register-based implementa-
tions.

Recall that an object history is a sequence of invocation and response events,
where an invocation event occurs when a thread calls a method, and a matching
response event occurs when that call returns. A method call (or just a call) is the
interval between matching invocation and response events. Any history induces
a partial → order on method calls, defined as follows: if m0 and m1 are method
calls, m0 → m1 if m0’s response event precedes m1’s call event. (See Chapter 3 for
complete definitions.)

Any register implementation (whether safe, regular, or atomic) defines a total
order on the write() calls called the write order, the order in which writes “take
effect” in the register. For safe and regular registers, the write order is trivial,
because they allow only one writer at a time. For atomic registers, method calls
have a linearization order. We use this order to index the write calls: write call
W 0 is ordered first, W 1 second, and so on. Note that for SRSW or MRSW safe or
regular registers, the write order is exactly the same as the precedence order.

We use Ri to denote any read call that returns vi, the unique value written by
W i. Remember that a history contains only one W i call, but it might contain
multiple Ri calls.

One can show that the following conditions provide a precise statement of what
it means for a register to be regular. First, no read call returns a value from the
future:

it is never the case that Ri → W i. (4.1.1)

Second, no read call returns a value from the distant past, that is, one that precedes
the most recently written non-overlapping value:

it is never the case that for some j W i → W j → Ri. (4.1.2)

4.2 Register Constructions 77

To prove that a register implementation is regular, we must show that its histories
satisfy Conditions 4.1.1 and 4.1.2.

An atomic register satisfies one additional condition:

if Ri → Rj then i� j. (4.1.3)

This condition states that an earlier read cannot return a value later than that
returned by a later read. Regular registers are not required to satisfy Condition
4.1.3. To show that a register implementation is atomic, we need first to define a
write order, and then to show that its histories satisfy Conditions 4.1.1–4.1.3.

4.2 Register Constructions

We now show how to implement a range of surprisingly powerful registers from
simple single-reader single-writer Boolean safe registers. These constructions
imply that all read–write register types are equivalent, at least in terms of com-
putability. We consider a series of constructions that implement stronger from
weaker registers.

The sequence of constructions appears in Fig. 4.5:

Base Class Implemented Class Section

SRSW safe MRSW safe 4.2.1

MRSW Boolean safe MRMW Boolean regular 4.2.2

MRSW Boolean regular MRSW regular 4.2.3

MRSW regular SRSW atomic 4.2.4

SRSW atomic MRSW atomic 4.2.5

MRSW atomic MRMW atomic 4.2.6

MRSW atomic atomic snapshot 4.3

Figure 4.5 The sequence of register constructions.

In the last step, we show how atomic registers (and therefore safe registers) can
implement an atomic snapshot: an array of MRSW registers written by different
threads, that can be read atomically by any thread. Some of these constructions
are more powerful than necessary to complete the sequence of derivations (for
example, we do not need to provide the multi-reader property for regular and
safe registers to complete the derivation of a SRSW atomic register). We present
them anyway because they provide valuable insights.

Our code samples follow these conventions. When we display an algorithm to
implement a particular kind of register, say, a safe MRSW Boolean register, we
present the algorithm using a form somewhat like this:

class SafeMRSWBooleanRegister implements Register<Boolean>
{
...
}

78 Chapter 4 Foundations of Shared Memory

While this notation makes clear the properties of the register class being imple-
mented, it becomes cumbersome when we want to use this class to implement
other classes. Instead, when describing a class implementation, we use the follow-
ing conventions to indicate whether a particular field is safe, regular, or atomic.
A field otherwise named mumble is called s_mumble if it is safe, r_mumble if it is
regular, and a_mumble if it is atomic. Other important aspects of the field, such as
its type, or whether it supports multiple readers or writers, are noted as comments
within the code, and should also be clear from context.

4.2.1 MRSW Safe Registers

Fig. 4.6 shows how to construct a safe MRSW register from safe SRSW registers.

Lemma 4.2.1. The construction in Fig. 4.6 is a safe MRSW register.

Proof: If A’s read() call does not overlap any write() call, then the read()
call returns the value of s_table[A], which is the most recently written value.
For overlapping method calls, the reader may return any value, because the
component registers are safe. �

4.2.2 A Regular Boolean MRSW Register

The next construction in Fig. 4.7 builds a regular Boolean MRSW register from a
safe Boolean MRSW register. For Boolean registers, the only difference between
safe and regular arises when the newly written value x is the same as the old.
A regular register can only returnx, while a safe register may return either Boolean
value. We circumvent this problem simply by ensuring that a value is written only
if it is distinct from the previously written value.

Lemma 4.2.2. The construction in Fig. 4.7 is a regular Boolean MRSW register.

1 public class SafeBooleanMRSWRegister implements Register<Boolean> {
2 boolean[] s_table; // array of safe SRSW registers
3 public SafeBooleanMRSWRegister(int capacity) {
4 s_table = new boolean[capacity];
5 }
6 public Boolean read() {
7 return s_table[ThreadID.get()];
8 }
9 public void write(Boolean x) {
10 for (int i = 0; i < s_table.length; i++)
11 s_table[i] = x;
12 }
13 }

Figure 4.6 The SafeBoolMRSWRegister class: a safe Boolean MRSW register.

4.2 Register Constructions 79

1 public class RegBooleanMRSWRegister implements Register<Boolean> {
2 ThreadLocal<Boolean> last;
3 boolean s_value; // safe MRSW register
4 RegBooleanMRSWRegister(int capacity) {
5 last = new ThreadLocal<Boolean>() {
6 protected Boolean initialValue() { return false; };
7 };
8 }
9 public void write(Boolean x) {
10 if (x != last.get()) {
11 last.set(x);
12 s_value =x;
13 }
14 }
15 public Boolean read() {
16 return s_value;
17 }
18 }

Figure 4.7 The RegBoolMRSWRegister class: a regular Boolean MRSW register constructed
from a safe Boolean MRSW register.

Proof: A read() call that does not overlap any write() call returns the most
recently written value. If the calls do overlap, there are two cases to consider.

� If the value being written is the same as the last value written, then the writer
avoids writing to the safe register, ensuring that the reader reads the correct
value.

� If the value written now is distinct from the last value written, then those
values must be true and false because the register is Boolean. A concurrent
read returns some value in the range of the register, namely either true or false,
either of which is correct. �

4.2.3 A Regular M-Valued MRSW Register

The jump from Boolean to M-valued registers is simple, if astonishingly
inefficient: we represent the value in unary notation. In Fig. 4.7 we implement
an M-valued register as an array of M Boolean registers. Initially the register is
set to value zero, indicated by the “0”-th bit being set to true. A write method of
value x writes true in location x and then in descending array-index order sets all
lower locations to false. A reading method reads the locations in ascending index
order until the first time it reads the value true in some index i. It then returns i.
The example in Fig. 4.9 illustrates an 8-valued register.

Lemma 4.2.3. The read() call in the construction in Fig. 4.8 always returns a
value corresponding to a bit in 0..M − 1 set by some write() call.

Proof: The following property is invariant: if a reading thread is reading r_bit[j],
then some bit at index j or higher, written by a write() call, is set to true.

80 Chapter 4 Foundations of Shared Memory

1 public class RegMRSWRegister implements Register<Byte> {
2 private static int RANGE = Byte.MAX_VALUE - Byte.MIN_VALUE + 1;
3 boolean[] r_bit = new boolean[RANGE]; // regular boolean MRSW
4 public RegMRSWRegister(int capacity) {
5 for (int i = 1; i < r_bit.length; i++)
6 r_bit[i] = false;
7 r_bit[0] = true;
8 }
9 public void write(Byte x) {
10 r_bit[x] = true;
11 for (int i = x - 1; i >= 0; i--)
12 r_bit[i] = false;
13 }
14 public Byte read() {
15 for (int i = 0; i < RANGE; i++)
16 if (r_bit[i]) {
17 return i;
18 }
19 return -1; // impossible
20 }
21 }

Figure 4.8 The RegMRSWRegister class: a regular M-valued MRSW register.

Reader

0 7

Writer

110 0 0 0 0 0

4

Reader

0 7

Writer

100 0 0 0 0 0

4

Reader

0 7

Writer

4 5

5

5

(a)

(b)

(c) 100 0 0 0 1 0

Figure 4.9 The RegMRSWRegister class: an execution of a regular 8-valued MRSW register.
The values true and false are represented by 0 and 1. In Part (a), the value prior to the write
was 4, thread W ’s write of 7 is not read by thread R because R reaches array entry 4 before
W overwrites false at that location. In Part (b), entry 4 is overwritten by W before it is read,
so the read returns 7. In Part (c), W starts to write 5. Since it wrote array entry 5 before it
was read, the reader returns 5 even though entry 7 is also set to true.

4.2 Register Constructions 81

When the register is initialized, there are no readers, and the constructor (we
treat the constructor call as a write(0) call) sets r_bit[0] to true. Assume a reader
is reading r_bit[j], and that r_bit[k] is true, for k � j.

� If the reader advances from j to j + 1, then r_bit[j] is false, so k > j (i.e., a
bit greater than or equal to j + 1 is true).

� The writer clears r_bit[k] only if it set a higher r_bit[�] to true,
for � > k. �

Lemma 4.2.4. The construction in Fig. 4.8 is a regular M-valued MRSW register.

Proof: For any read, let x be the value written by the most recent non-overlapping
write(). At the time the write() completed, a_bit[x] was set to true, and
a_bit[i] is false for i < x. By Lemma 4.2.3, if the reader returns a value that is
not x, then it observed some a_bit[j], j �= x to be true, and that bit must have
been set by a concurrent write, proving Conditions 4.1.1 and 4.1.2. �

4.2.4 An Atomic SRSW Register

We first show how to construct an atomic SRSW register from a regular SRSW
register. (Note that our construction uses unbounded timestamps.)

A regular register satisfies Conditions 4.1.1 and 4.1.2, while an atomic register
must also satisfy Condition 4.1.3. Since an SRSW regular register has no concur-
rent reads, the only way Condition 4.1.3 can be violated is if two reads that over-
lap the same write read values out-of-order, the first returning vi and the latter
returning vj , where j < i.

Fig. 4.10 describes a class of values that each have an added tag that
contains a timestamp. As illustrated in Fig. 4.11, our implementation of an
AtomicSRSWRegister will use these tags to order write calls so that they can
be ordered properly by concurrent read calls. Each read remembers the latest
(highest timestamp) timestamp/value pair ever read, so that it is available to
future reads. If a later read then reads an earlier value (one having a lower time-
stamp), it ignores that value and simply uses the remembered latest value.
Similarly, the writer remembers the latest timestamp it wrote, and tags each
newly written value with a later timestamp (a timestamp greater by 1).

This algorithm requires the ability to read–write a value and a timestamp
as a single unit. In a language such as C, we would treat both the value and
the timestamp as uninterpreted bits (“raw seething bits”), and use bit-shifting
and logical masking to pack and unpack both values in and out of one or
more words. In Java, it is easer to create a StampedValue<T> structure that
holds a timestamp/value pair, and to store a reference to that structure in the
register.

82 Chapter 4 Foundations of Shared Memory

1 public class StampedValue<T> {
2 public long stamp;
3 public T value;
4 // initial value with zero timestamp
5 public StampedValue(T init) {
6 stamp = 0;
7 value = init;
8 }
9 // later values with timestamp provided
10 public StampedValue(long stamp, T value) {
11 stamp = stamp;
12 value = value;
13 }
14 public static StampedValue max(StampedValue x, StampedValue y) {
15 if (x.stamp > y.stamp) {
16 return x;
17 } else {
18 return y;
19 }
20 }
21 public static StampedValue MIN_VALUE =
22 new StampedValue(null);
23 }

Figure 4.10 The StampedValue<T> class: allows a timestamp and a value to be read or writ-
ten together.

Lemma 4.2.5. The construction in Fig. 4.11 is an atomic SRSW register.

Proof: The register is regular, so Conditions 4.1.1 and 4.1.2 are met. The
algorithm satisfies Condition 4.1.3 because writes are totally ordered by their
timestamps, and if a read returns a given value, a later read cannot read an earlier
written value, since it would have a lower timestamp. �

4.2.5 An Atomic MRSW Register

To understand how to construct an atomic MRSW register from atomic SRSW
registers, we first consider a simple algorithm based on direct use of the construc-
tion in Section 4.2.1, which took us from SRSW to MRSW safe registers. Let the
SRSW registers composing the table array a_table[0..n − 1] be atomic instead
of safe, with all other calls remaining the same: the writer writes the array loca-
tions in increasing index order and then each reader reads and returns its associ-
ated array entry. The result is not a multi-reader atomic register. Condition 4.1.3
holds for any single reader because each reader reads from an atomic register, yet
it does not hold for distinct readers. Consider, for example, a write that starts
by setting the first SRSW register a_table[0], and is delayed before writing the
remaining locations a_table[1..n − 1]. A subsequent read by thread 0 returns
the correct new value, but a subsequent read by thread 1 that completely follows
the read by thread 0, reads and returns the earlier value because the writer has yet

4.2 Register Constructions 83

1 public class AtomicSRSWRegister<T> implements Register<T> {
2 ThreadLocal<Long> lastStamp;
3 ThreadLocal<StampedValue<T>> lastRead;
4 StampedValue<T> r_value; // regular SRSW timestamp-value pair
5 public AtomicSRSWRegister(T init) {
6 r_value = new StampedValue<T>(init);
7 lastStamp = new ThreadLocal<Long>() {
8 protected Long initialValue() { return 0; };
9 };
10 lastRead = new ThreadLocal<StampedValue<T>>() {
11 protected StampedValue<T> initialValue() { return r_value; };
12 };
13 }
14 public T read() {
15 StampedValue<T> value = r_value;
16 StampedValue<T> last = lastRead.get();
17 StampedValue<T> result = StampedValue.max(value, last);
18 lastRead.set(result);
19 return result.value;
20 }
21 public void write(T v) {
22 long stamp = lastStamp.get() + 1;
23 r_value = new StampedValue(stamp, v);
24 lastStamp.set(stamp);
25 }
26 }

Figure 4.11 The AtomicSRSWRegister class: an atomic SRSW register constructed from a
regular SRSW register.

to update a_table[1..n − 1]. We address this problem by having earlier reader
threads help out later threads by telling them which value they read.

This implementation appears in Fig. 4.12. The n threads share an n-by-n array
a_table[0..n− 1][0..n− 1] of stamped values. As in Section 4.2.4, we use time-
stamped values to allow early reads to tell later reads which of the values read is
the latest. The locations along the diagonal, a_table[i][i] for all i, correspond
to the registers in our failed simple construction mentioned earlier. The writer
simply writes the diagonal locations one after the other with a new value and a
timestamp that increases from one write() call to the next. Each reader A first
reads a_table[A][A] as in the earlier algorithm. It then uses the remaining SRSW
locations a_table[A][B], A �= B for communication between readers A and B.
Each reader A, after reading a_table[A][A], checks to see if some other reader
has read a later value by traversing its corresponding column (a_table[B][A] for
all B), and checking if it contains a later value (one with a higher timestamp). The
reader then lets all later readers know the latest value it read by writing this value to
all locations in its corresponding row (a_table[A][B] for all B). It thus follows
that after a read by A is completed, every later read by a B sees the last value A
read (since it reads a_table[A][B]). Fig. 4.13 shows an example execution of the
algorithm.

84 Chapter 4 Foundations of Shared Memory

1 public class AtomicMRSWRegister<T> implements Register<T> {
2 ThreadLocal<Long> lastStamp;
3 private StampedValue<T>[][] a_table; // each entry is SRSW atomic
4 public AtomicMRSWRegister(T init, int readers) {
5 lastStamp = new ThreadLocal<Long>() {
6 protected Long initialValue() { return 0; };
7 };
8 a_table = (StampedValue<T>[][]) new StampedValue[readers][readers];
9 StampedValue<T> value = new StampedValue<T>(init);
10 for (int i = 0; i < readers; i++) {
11 for (int j = 0; j < readers; j++) {
12 a_table[i][j] = value;
13 }
14 }
15 }
16 public T read() {
17 int me = ThreadID.get();
18 StampedValue<T> value = a_table[me][me];
19 for (int i = 0; i < a_table.length; i++) {
20 value = StampedValue.max(value, a_table[i][me]);
21 }
22 for (int i = 0; i < a_table.length; i++) {
23 a_table[me][i] = value;
24 }
25 return value;
26 }
27 public void write(T v) {
28 long stamp = lastStamp.get() + 1;
29 lastStamp.set(stamp);
30 StampedValue<T> value = new StampedValue<T>(stamp, v);
31 for (int i = 0; i < a_table.length; i++) {
32 a_table[i][i] = value;
33 }
34 }
35 }

Figure 4.12 The AtomicMRSWRegister class: an atomic MRSW register constructed from
atomic SRSW registers.

Lemma 4.2.6. The construction in Fig. 4.12 is a MRSW atomic register.

Proof: First, no reader returns a value from the future, so Condition 4.1.1 is clearly
satisfied. By construction, write() calls write strictly increasing timestamps. The
key to understanding this algorithm is the simple observation that the maximum
timestamp along any row or column is also strictly increasing. If A writes v with
timestamp t, then any read() call by B, where A’s call completely precedes B’s,
reads (from the diagonal of a_table) a maximum timestamp greater than or
equal to t, satisfying Condition 4.1.2. Finally, as noted earlier, if a read call by
A completely precedes a read call by B, then A writes a stamped value with time-
stamp t to B’s row, so B chooses a value with a timestamp greater than or equal
to t, satisfying Condition 4.1.3. �

4.2 Register Constructions 85

i1 2 30

0

1

2

j

3

t t t

t tt

t t tt

t t tt

Thread 1
reads

Writer writes
and halts i1 2 30

0

1

2

j

3

t t tt11

t11 t11 t11 t11

t t tt

t t tt

Thread 1
writes

Thread 0
reads

Thread 3
reads

t11

t11

Figure 4.13 An execution of the MRSW atomic register. Each reader thread has an index
between 0 and 4, and we refer to each thread by its index. Here, the writer writes a new value
with timestamp t + 1 to locations a_table[0][0] and a_table[1][1] and then halts. Then,
thread 1 reads its corresponding column a_table[i][1] for all i, and writes its corresponding
row a_table[1][i] for all i, returning the new value with timestamp t + 1. Threads 0 and 3
both read completely after thread 1’s read. Thread 0 reads a_table[0][1] with value t + 1.
Thread 3 cannot read the new value with timestamp t + 1 because the writer has yet to
write a_table[3][3]. Nevertheless, it reads a_table[3][1] and returns the correct value
with timestamp t + 1 that was read by the earlier thread 1.

4.2.6 An Atomic MRMW Register

Here is how to construct an atomic MRMW register from an array of atomic
MRSW registers, one per thread.

To write to the register, A reads all the array elements, chooses a timestamp
higher than any it has observed, and writes a stamped value to array element A.
To read the register, a thread reads all the array elements, and returns the one
with the highest timestamp. This is exactly the timestamp algorithm used by the
Bakery algorithm of Section 2.6. As in the Bakery algorithm, we resolve ties in
favor of the thread with the lesser index; in other words, we use a lexicographic
order on pairs of timestamp and thread ids.

Lemma 4.2.7. The construction in Fig. 4.14 is an atomic MRMW register.

Proof: Define the write order among write() calls based on the lexicographic
order of their timestamps and thread ids so that the write() call by A with
timestamp tA precedes the write() call by B with timestamp tB if tA < tB , or
if tA = tB and A < B. We leave as an exercise to the reader to show that this
lexicographic order is consistent with →. As usual, index write() calls in write
order: W 0,W 1,

Clearly a read() call cannot read a value written in a_table[] after it is
completed, and any write() call completely preceded by the read has a

86 Chapter 4 Foundations of Shared Memory

1 public class AtomicMRMWRegister<T> implements Register<T>{
2 private StampedValue<T>[] a_table; // array of atomic MRSW registers
3 public AtomicMRMWRegister(int capacity, T init) {
4 a_table = (StampedValue<T>[]) new StampedValue[capacity];
5 StampedValue<T> value = new StampedValue<T>(init);
6 for (int j = 0; j < a_table.length; j++) {
7 a_table[j] = value;
8 }
9 }
10 public void write(T value) {
11 int me = ThreadID.get();
12 StampedValue<T> max = StampedValue.MIN_VALUE;
13 for (int i = 0; i < a_table.length; i++) {
14 max = StampedValue.max(max, a_table[i]);
15 }
16 a_table[me] = new StampedValue(max.stamp + 1, value);
17 }
18 public T read() {
19 StampedValue<T> max = StampedValue.MIN_VALUE;
20 for (int i = 0; i < a_table.length; i++) {
21 max = StampedValue.max(max, a_table[i]);
22 }
23 return max.value;
24 }
25 }

Figure 4.14 Atomic MRMW register.

timestamp higher than all those written before the read is completed, implying
Condition 4.1.1.

Consider Condition 4.1.2, which prohibits skipping over the most recent
preceding write(). Suppose a write() call by A preceded a write call by B,
which in turn preceded a read() by C . If A = B, then the later write overwrites
a_table[A] and the read() does not return the value of the earlier write. If
A �= B, then since A’s timestamp is smaller than B’s timestamp, any C that
sees both returns B’s value (or one with higher timestamp), meeting Condi-
tion 4.1.2.

Finally, we consider Condition 4.1.3, which prohibits values from being read
out of write order. Consider any read() call by A completely preceding a read()
call by B, and any write() call by C which is ordered before the write() by D in
the write order. We must show that if A returned D’s value, then B could not
return C ’s value. If tC < tD , then if A read timestamp tD from a_table[D],
B reads tD or a higher timestamp from a_table[D], and does not return the
value associated with tC . If tC = tD , that is, the writes were concurrent, then from
the write order, C <D, so if A read timestamp tD from a_table[D], B also reads
tD from a_table[D], and returns the value associated with tD (or higher), even
if it reads tC in a_table[C]. �

Our series of constructions shows that one can construct a wait-free MRMW
multi-valued atomic register from SRSW safe Boolean registers. Naturally, no one

4.3 Atomic Snapshots 87

wants to write a concurrent algorithm using safe registers, but these constructions
show that any algorithm using atomic registers can be implemented on an archi-
tecture that supports only safe registers. Later on, when we consider more realistic
architectures, we return to the theme of implementing algorithms that assume
strong synchronization properties on architectures that directly provide only
weak properties.

4.3 Atomic Snapshots

We have seen how a register value can be read and written atomically. What if
we want to read multiple register values atomically? We call such an operation an
atomic snapshot.

An atomic snapshot constructs an instantaneous view of an array of atomic
registers. We construct a wait-free snapshot, meaning that a thread can take an
instantaneous snapshot of memory without delaying any other thread. Atomic
snapshots might be useful for backups or checkpoints.

The Snapshot interface (Fig. 4.15) is just an array of atomic MRSW registers,
one for each thread. The update() method writes a value v to the calling thread’s
register in that array, while the scan() method returns an atomic snapshot of that
array.

Our goal is to construct a wait-free implementation that is equivalent (that is,
linearizable to) the sequential specification shown in Fig. 4.16. The key property
of this sequential implementation is that scan() returns a collection of values,
each corresponding to the latest preceding update(), that is, it returns a collection
of register values that existed together in the same system state.

4.3.1 An Obstruction-Free Snapshot

We begin with a SimpleSnapshot class for which update() is wait-free, but
scan() is obstruction-free. We then extend this algorithm to make scan()
wait-free.

Just as for the atomic MRSW register construction, each value includes a
StampedValue<T> object with stamp and value fields. Each update() call incre-
ments the timestamp.

A collect is the non atomic act of copying the register values one-by-one into
an array. If we perform two collects one after the other, and both collects read the

1 public interface Snapshot<T> {
2 public void update(T v);
3 public T[] scan();
4 }

Figure 4.15 The Snapshot interface.

88 Chapter 4 Foundations of Shared Memory

1 public class SeqSnapshot<T> implements Snapshot<T> {
2 T[] a_value;
3 public SeqSnapshot(int capacity, T init) {
4 a_value = (T[]) new Object[capacity];
5 for (int i = 0; i < a_value.length; i++) {
6 a_value[i] = init;
7 }
8 }
9 public synchronized void update(T v) {

10 a_value[ThreadID.get()] = v;
11 }
12 public synchronized T[] scan() {
13 T[] result = (T[]) new Object[a_value.length];
14 for (int i = 0; i < a_value.length; i++)
15 result[i] = a_value[i];
16 return result;
17 }
18 }

Figure 4.16 A sequential snapshot.

same set of timestamps, then we know that there was an interval during which no
thread updated its register, so the result of the collect is a snapshot of the system
state immediately after the end of the first collect. We call such a pair of collects a
clean double collect.

In the construction shown in the SimpleSnapshot<T> class (Fig. 4.17), each
thread repeatedly calls collect() (Line 27), and returns as soon as it detects
a clean double collect (one in which both sets of timestamps were identical).
This construction always returns correct values. The update() calls are wait-free,
but scan() is not because any call can be repeatedly interrupted by update(),
and may run forever without completing. It is however obstruction-free, since a
scan() completes if it runs by itself for long enough.

4.3.2 A Wait-Free Snapshot

To make the scan() method wait-free, each update() call helps a scan() it may
interfere with, by taking a snapshot before modifying its register. A scan() that
repeatedly fails in taking a double collect can use the snapshot from one of the
interfering update() calls as its own. The tricky part is that we must make sure
the snapshot taken from the helping update is one that can be linearized within
the scan() call’s execution interval.

We say that a thread moves if it completes an update(). If threadA fails to make
a clean collect because thread B moved, then can A simply take B’s most recent
snapshot as its own? Unfortunately, no. As illustrated in Fig. 4.18, it is possible for
A to see B move when B’s snapshot was taken before A started its update() call,
so the snapshot did not occur within the interval of A’s scan.

4.3 Atomic Snapshots 89

1 public class SimpleSnapshot<T> implements Snapshot<T> {
2 private StampedValue<T>[] a_table; // array of atomic MRSW registers
3 public SimpleSnapshot(int capacity, T init) {
4 a_table = (StampedValue<T>[]) new StampedValue[capacity];
5 for (int i = 0; i < capacity; i++) {
6 a_table[i] = new StampedValue<T>(init);
7 }
8 }
9 public void update(T value) {
10 int me = ThreadID.get();
11 StampedValue<T> oldValue = a_table[me];
12 StampedValue<T> newValue =
13 new StampedValue<T>((oldValue.stamp)+1, value);
14 a_table[me] = newValue;
15 }
16 private StampedValue<T>[] collect() {
17 StampedValue<T>[] copy = (StampedValue<T>[])
18 new StampedValue[a_table.length];
19 for (int j = 0; j < a_table.length; j++)
20 copy[j] = a_table[j];
21 return copy;
22 }
23 public T[] scan() {
24 StampedValue<T>[] oldCopy, newCopy;
25 oldCopy = collect();
26 collect: while (true) {
27 newCopy = collect();
28 if (! Arrays.equals(oldCopy, newCopy)) {
29 oldCopy = newCopy;
30 continue collect;
31 }
32 T[] result = (T[]) new Object[a_table.length];
33 for (int j = 0; j < a_table.length; j++)
34 result[j] = newCopy[j].value;
35 return result;
36 }
37 }
38 }

Figure 4.17 Simple snapshot object.

The wait-free construction is based on the following observation: if a scanning
thread A sees a thread B move twice while it is performing repeated collects, then
B executed a complete update() call within the interval of A’s scan(), so it is
correct for A to use B’s snapshot.

Figs. 4.19, 4.20, and 4.21 show the wait-free snapshot algorithm. Each update()
call calls scan(), and appends the result of the scan to the value’s label. More pre-
cisely, each value written to a register has the structure shown in Fig. 4.19: a stamp
field incremented each time the thread updates its value, a value field containing
the register’s actual value, and a snap field containing that thread’s most recent
scan. The snapshot algorithm is described in Fig. 4.21. A scanning thread creates

90 Chapter 4 Foundations of Shared Memory

Scan1st collect 2nd collect

Scan

Scan Update

Thread A

Thread B

Thread C

Update

Figure 4.18 Here is why a thread A that fails to complete a clean double collect cannot simply
take the latest snapshot of a thread B that performed an update() during A’s second collect.
B’s snapshot was taken before A started its scan(), i.e., B’s snapshot did not overlap A’s scan.
The danger, illustrated here, is that a thread C could have called update() after B’s scan()
and before A’s scan(), making it incorrect for A to use the results of B’s scan().

1 public class StampedSnap<T> {
2 public long stamp;
3 public T value;
4 public T[] snap;
5 public StampedSnap(T value) {
6 stamp = 0;
7 value = value;
8 snap = null;
9 }
10 public StampedSnap(long label, T value, T[] snap) {
11 label = label;
12 value = value;
13 snap = snap;
14 }
15 }

Figure 4.19 The stamped snapshot class.

a Boolean array called moved[] (Line 13), which records which threads have been
observed to move in the course of the scan. As before, each thread performs two
collects (Lines 14 and 16) and tests whether any thread’s label has changed. If no
thread’s label has changed, then the collect is clean, and the scan returns the result
of the collect. If any thread’s label has changed (Line 18) the scanning thread tests
the moved[] array to detect whether this is the second time this thread has moved
(Line 19). If so, it returns that thread’s scan (Line 20), and otherwise it updates
moved[] and resumes the outer loop (Line 21).

4.3.3 Correctness Arguments

In this section, we review the correctness arguments for the wait-free snapshot
algorithm a little more carefully.

4.3 Atomic Snapshots 91

1 public class WFSnapshot<T> implements Snapshot<T> {
2 private StampedSnap<T>[] a_table; // array of atomic MRSW registers
3 public WFSnapshot(int capacity, T init) {
4 a_table = (StampedSnap<T>[]) new StampedSnap[capacity];
5 for (int i = 0; i < a_table.length; i++) {
6 a_table[i] = new StampedSnap<T>(init);
7 }
8 }
9
10 private StampedSnap<T>[] collect() {
11 StampedSnap<T>[] copy = (StampedSnap<T>[])
12 new StampedSnap[a_table.length];
13 for (int j = 0; j < a_table.length; j++)
14 copy[j] = a_table[j];
15 return copy;
16 }

Figure 4.20 The single-writer atomic snapshot class and collect() method.

1 public void update(T value) {
2 int me = ThreadID.get();
3 T[] snap = scan();
4 StampedSnap<T> oldValue = a_table[me];
5 StampedSnap<T> newValue =
6 new StampedSnap<T>(oldValue.stamp+1, value, snap);
7 a_table[me] = newValue;
8 }
9
10 public T[] scan() {
11 StampedSnap<T>[] oldCopy;
12 StampedSnap<T>[] newCopy;
13 boolean[] moved = new boolean[a_table.length];
14 oldCopy = collect();
15 collect: while (true) {
16 newCopy = collect();
17 for (int j = 0; j < a_table.length; j++) {
18 if (oldCopy[j].stamp != newCopy[j].stamp) {
19 if (moved[j]) {
20 return oldCopy[j].snap;;
21 } else {
22 moved[j] = true;
23 oldCopy = newCopy;
24 continue collect;
25 }
26 }
27 }
28 T[] result = (T[]) new Object[a_table.length];
29 for (int j = 0; j < a_table.length; j++)
30 result[j] = newCopy[j].value;
31 return result;
32 }
33 }
34 }

Figure 4.21 Single-writer atomic snapshot update() and scan() methods.

92 Chapter 4 Foundations of Shared Memory

Lemma 4.3.1. If a scanning thread makes a clean double collect, then the values it
returns were the values that existed in the registers in some state of the execution.

Proof: Consider the interval between the last read of the first collect, and the first
read of the second collect. If any register were updated in that interval, the labels
would not match, and the double collect would not be clean. �

Lemma 4.3.2. If a scanning thread A observes changes in another thread B’s label
during two different double collects, then the value of B’s register read during the
last collect was written by an update() call that began after the first of the four
collects started.

Proof: If during a scan(), two successive reads byA ofB’s register return different
label values, then at least one write by B occurs between this pair of reads. Thread
B writes to its register as the final step of an update() call, so some update() call
byB ended sometime after the first read byA, and the write step of another occurs
between the last pair of reads by A. The claim follows because only B writes to its
register. �

Lemma 4.3.3. The values returned by a scan() were in the registers at some state
between the call’s invocation and response.

Proof: If the scan() call made a clean double collect, then the claim follows from
Lemma 4.3.1. If the call took the scan value from another thread B’s register, then
by Lemma 4.3.2, the scan value found in B’s register was obtained by a scan() call
by B whose interval lies between A’s first and second reads of B’s register. Either
B’s scan() call had a clean double collect, in which case the result follows from
Lemma 4.3.1, or there is an embedded scan() call by a thread C occurring within
the interval of B’s scan() call. This argument can be applied inductively, noting
that there can be at most n−1 nested calls before we run out of threads, where n is
the maximum number of threads (see Fig. 4.22). Eventually, some nested scan()
call must have a clean double collect. �

Lemma 4.3.4. Every scan() or update() returns after at most O(n2) reads or
writes.

Proof: For a given scan(), since there are only n − 1 other threads, after n + 1
double collects, either one is clean, or some thread is observed to move twice. It
follows that scan() calls are wait-free, and so are update() calls. �

By Lemma 4.3.3, the values returned by a scan() form a snapshot as they are
all in the registers in some state during the call: linearize the call at that point.
Similarly, linearize update() calls at the point the register is written.

Theorem 4.3.1. Figs. 4.20 and 4.21 provide a wait-free snapshot implementation.

4.4 Chapter Notes 93

Scan

Scan

Scan Update

Thread 0

Thread 1

Thread n21

Update

Figure 4.22 There can be at most n – 1 nested calls of scan() before we run out of threads,
where n is the maximum number of threads. The scan() by thread n – 1, contained in the
intervals of all other scan() calls, must have a clean double collect.

4.4 Chapter Notes

Alonzo Church introduced Lambda Calculus around 1934-5 [29]. Alan Turing
defined the Turing Machine in a classic paper in 1936-7 [146]. Leslie Lamport first
defined the notions of safe, regular, and atomic registers and the register hierarchy,
and was the first to show that one could implement non trivial shared memory
from safe bits [94, 95]. Gary Peterson first suggested the problem of construct-
ing atomic registers [126]. Jaydev Misra gave an axiomatic treatment of atomic
registers [117]. The notion of linearizability, which generalizes Leslie Lamport
and Jaydev Misra’s notions of atomic registers, is due to Herlihy and Wing [69].
Susmita Haldar and Krishnamurthy Vidyasankar gave a bounded MRSW atomic
register construction from regular registers [50]. The problem of constructing a
multi-reader atomic register from single-reader atomic registers was mentioned
as an open problem by Leslie Lamport [94, 95], and by Paul Vitányi and Baruch
Awerbuch [148]. Paul Vitányi and Baruch Awerbuch were the first to propose an
approach for MRMW atomic register design [148]. The first solution is due to
Jim Anderson, Mohamed Gouda, and Ambuj Singh [12, 13]. Other atomic reg-
ister constructions, to name only a few, were proposed by Jim Burns and Gary
Peterson [24], Richard Newman-Wolfe [150], Lefteris Kirousis, Paul Spirakis, and
Philippas Tsigas [83], Amos Israeli and Amnon Shaham [78], and Ming Li and
John Tromp and Paul Vitányi [105]. The simple timestamp-based atomic MRMW
construction we present here is due to Danny Dolev and Nir Shavit [34].

Collect operations were first formalized by Mike Saks, Nir Shavit, and Heather
Woll [135]. The first atomic snapshot constructions were discovered concurrently
and independently by Jim Anderson [10], and by Yehuda Afek, Hagit Attiya,
Danny Dolev, Eli Gafni, Michael Merritt and Nir Shavit [2]. The latter algorithm is
the one presented here. Later snapshot algorithms are due to Elizabeth Borowsky
and Eli Gafni [22] and Yehuda Afek, Gideon Stupp, and Dan Touitou [4].

94 Chapter 4 Foundations of Shared Memory

The timestamps in all the algorithms mentioned in this chapter can be
bounded so that the constructions themselves use registers of bounded size.
Bounded timestamp systems were introduced by Amos Israeli and Ming Li [77],
and bounded concurrent timestamp systems by Danny Dolev and Nir Shavit [34].

4.5 Exercises

Exercise 34. Consider the safe Boolean MRSW construction shown in Fig. 4.6.
True or false: if we replace the safe Boolean SRSW register array with an array
of safe M-valued SRSW registers, then the construction yields a safe M-valued
MRSW register. Justify your answer.

Exercise 35. Consider the safe Boolean MRSW construction shown in Fig. 4.6.
True or false: if we replace the safe Boolean SRSW register array with an array of
regular Boolean SRSW registers, then the construction yields a regular Boolean
MRSW register. Justify your answer.

Exercise 36. Consider the atomic MRSW construction shown in Fig. 4.12. True
or false: if we replace the atomic SRSW registers with regular SRSW registers,
then the construction still yields an atomic MRSW register. Justify your answer.

Exercise 37. Give an example of a quiescently-consistent register execution that
is not regular.

Exercise 38. Consider the safe Boolean MRSW construction shown in Fig. 4.6.
True or false: if we replace the safe Boolean SRSW register array with an array
of regular M-valued SRSW registers, then the construction yields a regular
M-valued MRSW register. Justify your answer.

Exercise 39. Consider the regular Boolean MRSW construction shown in Fig. 4.7.
True or false: if we replace the safe Boolean MRSW register with a safe M-valued
MRSW register, then the construction yields a regular M-valued MRSW register.
Justify your answer.

Exercise 40. Does Peterson’s two-thread mutual exclusion algorithm work if we
replace shared atomic registers with regular registers?

Exercise 41. Consider the following implementation of a Register in a distri-
buted, message-passing system. There are n processors P0, . . . ,Pn−1 arranged in
a ring, where Pi can send messages only to Pi+1 mod n. Messages are delivered in
FIFO order along each link.

4.5 Exercises 95

Each processor keeps a copy of the shared register.

� To read a register, the processor reads the copy in its local memory.

� A processor Pi starts a write() call of value v to register x, by sending the
message “Pi: write v to x” to Pi+1 mod n.

� If Pi receives a message “Pj : write v to x,” for i �= j, then it writes v to its local
copy of x, and forwards the message to Pi+1 mod n.

� If Pi receives a message “Pi: write v to x,” then it writes v to its local copy of x,
and discards the message. The write() call is now complete.

Give a short justification or counterexample.
If write() calls never overlap,

� Is this register implementation regular?

� Is it atomic?

If multiple processors call write(),

� Is this register implementation atomic?

Exercise 42. You learn that your competitor, the Acme Atomic Register Com-
pany, has developed a way to use Boolean (single-bit) atomic registers to construct
an efficient write-once single-reader single-writer atomic register. Through your
spies, you acquire the code fragment shown in Fig. 4.23, which is unfortunately
missing the code for read(). Your job is to devise a read() method that works for

1 class AcmeRegister implements Register{
2 // N is the total number of threads
3 // Atomic multi-reader single-writer registers
4 private BoolRegister[] b = new BoolMRSWRegister[3 * N];
5 public void write(int x) {
6 boolean[] v = intToBooleanArray(x);
7 // copy v[i] to b[i] in ascending order of i
8 for (int i = 0; i < N; i++)
9 b[i].write(v[i]);
10 // copy v[i] to b[N+i] in ascending order of i
11 for (int i = 0; i < N; i++)
12 b[N+i].write(v[i]);
13 // copy v[i] to b[2N+i] in ascending order of i
14 for (int i = 0; i < N; i++)
15 b[(2*N)+i].write(v[i]);
16 }
17 public int read() {
18 // missing code
19 }
20 }

Figure 4.23 Partial acme register implementation.

96 Chapter 4 Foundations of Shared Memory

this class, and to justify (informally) why it works. (Remember that the register is
write-once, meaning that your read will overlap at most one write.)

Exercise 43. Prove that the safe Boolean MRSW register construction from safe
Boolean SRSW registers illustrated in Fig. 4.6 is a correct implementation of a
regular MRSW register if the component registers are regular SRSW registers.

Exercise 44. A monotonic counter is a data structure c = c1 ... cm (i.e., c is com-
posed of the individual digits cj , j > 0) such that c0 � c1 � c2 �..., where
c0, c1, c2,... denote the successive values assumed by c.

If c is not a single digit, then reading and writing c may involve several separate
operations. A read of c which is performed concurrently with one or more writes
to c may obtain a value different from any of the versions cj , j � 0. The value
obtained may contain traces of several different versions. If a read obtains traces of
versions ci1 , ..., cim , then we say that it obtained a value of ck,l where k = minimum
(i1, ..., im) and l = maximum (i1, ..., im), so 0 � k � l. If k = l, then ck,l = ck and
the read obtained is a consistent version of c.

Hence, the correctness condition for such a counter simply asserts that if a read
obtains the value ck,l, then ck � ck,l � cl. The individual digits cj are also assumed
to be atomic digits.

Give an implementation of a monotonic counter, given that the following
theorems are true:

Theorem 4.5.1. If c = c1 ... cm is always written from right to left, then a read

from left to right obtains a sequence of values ck1,�1

1 , . . . , ckm,�m
m with k1 � �1 �

k2 � . . .� km � �m.

Theorem 4.5.2. Let c = c1 ... cm and assume that c0 � c1 �

1. If i1 � ... � im � i then c
i1
1 ... cimm � ci.

2. If i1 � ... � im � i then c
i1
1 ... cimm � ci.

Theorem 4.5.3. Let c = c1 ... cm and assume that c0 � c1 � ... and the digits ci are
atomic.

1. If c is always written from right to left, then a read from left to right obtains a
value ck,l � cl.

2. If c is always written from left to right, then a read from right to left obtains a
value ck,l � cl.

Note that:
If a read of c obtains traces of version cj, j � 0, then:

� The beginning of the read preceded the end of the write of cj+1.

� The end of the read followed the beginning of the write of cj .

4.5 Exercises 97

Furthermore, we say that a read (write) of c is performed from left to right if
for each j > 0, the read (write) of cj is completed before the read (write) of cj+1

has begun. Reading or writing from right to left is defined in the analogous way.
Finally, always remember that subscripts refer to individual digits of c while

superscripts refer to successive values assumed by c.

Exercise 45. Prove Theorem 4.5.1 of Exercise 44. Note that since kj � �j , you need
only to show that �j � kj+1 if 1 � j < m.

(2) Prove Theorem 4.5.3 of Exercise 44, given that the Lemma is true.

Exercise 46. We saw safe and regular registers earlier in this chapter. Define a
wraparound register that has the property that there is a value v such that adding
1 to v yields 0, not v + 1.

If we replace the Bakery algorithm’s shared variables with either (a) flickering,
(b) safe, (c) or wraparound registers, then does it still satisfy (1) mutual exclusion,
(2) first-come-first-served ordering?

You should provide six answers (some may imply others). Justify each claim.

This page intentionally left blank

5The Relative Power of Primitive
Synchronization Operations

Imagine you are in charge of designing a new multiprocessor. What kinds of
atomic instructions should you include? The literature includes a bewildering
array of different choices: reading and writing to memory, getAndDecrement(),
swap(), getAndComplement(), compareAndSet(), and many, many others. Sup-
porting them all would be complicated and inefficient, but supporting the wrong
ones could make it difficult or even impossible to solve important synchroniza-
tion problems.

Our goal is to identify a set of primitive synchronization operations powerful
enough to solve synchronization problems likely to arise in practice. (Of course,
we might want to support other, nonessential synchronization operations for con-
venience.) To this end, we need some way to evaluate the power of various syn-
chronization primitives: what synchronization problems they can solve, and how
efficiently they can solve them.

A concurrent object implementation is wait-free if each method call finishes
in a finite number of steps. A method is lock-free if it guarantees that infinitely
often some method call finishes in a finite number of steps. We have already seen
wait-free (and therefore by definition also lock-free) register implementations
in Chapter 4. One way to evaluate the power of synchronization instructions is
to see how well they support implementations of shared objects such as queues,
stacks, trees, and so on. As we explained in Chapter 4, we evaluate solutions that
are wait-free or lock-free, that is, guarantee progress without relying on outside
support.1

We will see that all synchronization instructions are not created equal. If
one thinks of primitive synchronization instructions as objects whose exported
methods are the instructions themselves (in the literature these objects are often
referred to as synchronization primitives), one can show that there is an infinite

1 It makes no sense to evaluate solutions that only meet dependent progress conditions. This is
because the real power of solutions based on dependent conditions such as obstruction-freedom
or deadlock-freedom is masked by the contribution of the operating system they depend on.

99

100 Chapter 5 The Relative Power of Primitive Synchronization Operations

hierarchy of synchronization primitives, such that no primitive at one level can
be used for a wait-free or lock-free implementation of any primitives at higher
levels. The basic idea is simple: each class in the hierarchy has an associated
consensus number, which is the maximum number of threads for which objects
of the class can solve an elementary synchronization problem called consensus.
We will see that in a system of n or more concurrent threads, it is impossible to
construct a wait-free or lock-free implementation of an object with consensus
number n from an object with a lower consensus number.

5.1 Consensus Numbers

Consensus is an innocuous-looking, somewhat abstract problem that will have
enormous consequences for everything from algorithm design to hardware
architecture. A consensus object provides a single method decide(), as shown
in Fig. 5.1. Each thread calls the decide() method with its input v at most
once. The object’s decide() method will return a value meeting the following
conditions:

� consistent: all threads decide the same value,

� valid: the common decision value is some thread’s input.

In other words, a concurrent consensus object is linearizable to a sequential con-
sensus object in which the thread whose value was chosen completes its decide()
first. Sometimes it is useful to focus on consensus problems where all inputs are
either zero or one. We call this specialized problem binary consensus. To simplify
the presentation, we focus here on binary consensus, but our claims apply verba-
tim to consensus in general.

We are interested in wait-free solutions to the consensus problem, that is, wait-
free concurrent implementations of consensus objects. The reader will notice that
since the decide() method of a given consensus object is executed only once by
each thread, by definition a lock-free implementation would also be wait-free and
vice versa. Henceforth, we mention only wait-free implementations, and for his-
torical reasons, call any class that implements consensus in a wait-free manner a
consensus protocol.

1 public interface Consensus<T> {
2 T decide(T value);
3 }

Figure 5.1 Consensus object interface.

5.1 Consensus Numbers 101

We will restrict ourselves to object classes with deterministic sequential
specifications (i.e., ones in which each sequential method call has a single
outcome).2

We want to understand whether a particular class of objects is powerful enough
to solve the consensus problem. How can we make this notion more precise? If
we think of such objects as supported by a lower level of the system, perhaps the
operating system, or even the hardware, then we care about the properties of the
class, not about the number of objects. (If the system can provide one object of
this class, it can probably provide more.) Second, it is reasonable to suppose that
any modern system can provide a generous amount of read–write memory for
bookkeeping. These two observations suggest the following definition.

Definition 5.1.1. A class C solves n-thread consensus if there exist a consensus
protocol using any number of objects of class C and any number of atomic
registers.

Definition 5.1.2. The consensus number of a class C is the largest n for which that
class solves n-thread consensus. If no largest n exists, we say the consensus number
of the class is infinite.

Corollary 5.1.1. Suppose one can implement an object of class C from one or
more objects of class D, together with some number of atomic registers. If class
C solves n-consensus, then so does class D.

5.1.1 States and Valence

A good place to start is to think about the simplest interesting case: binary con-
sensus (i.e., inputs 0 or 1) for 2 threads (call them A and B). Each thread makes
moves until it decides on a value. Here, a move is a method call to a shared object.
A protocol state consists of the states of the threads and the shared objects. An
initial state is a protocol state before any thread has moved, and a final state is a
protocol state after all threads have finished. The decision value of any final state
is the value decided by all threads in that state.

A wait-free protocol’s set of possible states forms a tree, where each node repre-
sents a possible protocol state, and each edge represents a possible move by some
thread. Fig. 5.2 shows the tree for a 2-thread protocol in which each thread moves
twice. A’s moves are shown in black, and B’s in gray. An edge for A from node s
to node s′ means that if A moves in protocol state s, then the new protocol state
is s′. We refer to s′ as a successor state to s. Because the protocol is wait-free, the
tree must be finite. Leaf nodes represent final protocol states, and are labeled with
their decision values, either 0 or 1.

2 We avoid nondeterministic objects since their structure is significantly more complex. See the
discussion in the notes at the end of this chapter.

102 Chapter 5 The Relative Power of Primitive Synchronization Operations

A moves

B moves

final states with decision values

initial state (bivalent)

univalent state

1 0 1 1 1 1

Figure 5.2 An execution tree for two threads A and B. The dark shaded nodes denote bivalent
states, and the lighter ones univalent states.

A protocol state is bivalent if the decision value is not yet fixed: there is some
execution starting from that state in which the threads decide 0, and one in which
they decide 1. By contrast, the protocol state is univalent if the outcome is fixed:
every execution starting from that state decides the same value. A protocol state
is 1-valent if it is univalent, and the decision value will be 1, and similarly for
0-valent. As illustrated in Fig. 5.2, a bivalent state is a node whose descendants
in the tree include both leaves labeled with 0 and leaves labeled with 1, while a
univalent state is a node whose descendants include only leaves labeled with a
single decision value.

Our next lemma says that an initial bivalent state exists. This observation
means that the outcome of the protocol cannot be fixed in advance, but must
depend on how reads and writes are interleaved.

Lemma 5.1.1. Every 2-thread consensus protocol has a bivalent initial state.

Proof: Consider the initial state where A has input 0 and B has input 1. If A
finishes the protocol before B takes a step, then A must decide 0, because it must
decide some thread’s input, and 0 is the only input it has seen (it cannot decide
1 because it has no way of distinguishing this state from the one in which B has
input 0). Symmetrically, if B finishes the protocol before A takes a step, then B
must decide 1, because it must decide some thread’s input, and 1 is the only input
it has seen. It follows that the initial state where A has input 0 and B has input 1
is bivalent. �

5.2 Atomic Registers 103

Lemma 5.1.2. Every n-thread consensus protocol has a bivalent initial state.

Proof: Left as an exercise. �

A protocol state is critical if:

� It is bivalent, and

� if any thread moves, the protocol state becomes univalent.

Lemma 5.1.3. Every wait-free consensus protocol has a critical state.

Proof: Suppose not. By Lemma 5.1.2, the protocol has a bivalent initial state. Start
the protocol in this state. As long as there is some thread that can move without
making the protocol state univalent, let that thread move. If the protocol runs
forever, then it is not wait-free. Otherwise, the protocol eventually enters a state
where no such move is possible, which must be a critical state. �

Everything we have proved so far applies to any consensus protocol, no matter
what class (or classes) of shared objects it uses. Now we turn our attention to
specific classes of objects.

5.2 Atomic Registers

The obvious place to begin is to ask whether we can solve consensus using atomic
registers. Surprisingly, perhaps, the answer is no. We will show that there is no
binary consensus protocol for two threads. We leave it as an exercise to show that
if two threads cannot reach consensus on two values, then n threads cannot reach
consensus on k values, where n > 2 and k > 2.

Often, when we argue about whether or not there exists a protocol that solves
a particular problem, we construct a scenario of the form: “if we had such a pro-
tocol, it would behave like this under these circumstances . . . ”. One particularly
useful scenario is to have one thread, say A, run completely by itself until it fini-
shes the protocol. This particular scenario is common enough that we give it its
own name: A runs solo.

Theorem 5.2.1. Atomic registers have consensus number 1.

Proof: Suppose there exists a binary consensus protocol for two threads A
and B. We will reason about the properties of such a protocol and derive a
contradiction.

By Lemma 5.1.3, we can run the protocol until it reaches a critical state s. Sup-
pose A’s next move carries the protocol to a 0-valent state, and B’s next move
carries the protocol to a 1-valent state. (If not, then switch thread names.) What

104 Chapter 5 The Relative Power of Primitive Synchronization Operations

B executes
one operation

s

ś´

A reads

ś

B executes
one operation

1B runs solo

B runs solo

0

Figure 5.3 Case: A reads first. In the first execution scenario, B moves first, driving the pro-
tocol to a 1-valent state s′ , and then B runs solo and eventually decides 1. In the second
execution scenario, A moves first, driving the protocol to a 0-valent state s′′ . B then runs solo
starting in s′′ and eventually decides 0.

methods could A and B be about to call? We now consider an exhaustive list of
the possibilities: one of them reads from a register, they both write to separate
registers, or they both write to the same register.

Suppose A is about to read a given register (B may be about to either read or
write the same register or a different register), as depicted in Fig. 5.3. Consider two
possible execution scenarios. In the first scenario, B moves first, driving the pro-
tocol to a 1-valent state s′, and then B runs solo and eventually decides 1. In the
second scenario, A moves first, driving the protocol to a 0-valent state s′′. B then
runs solo starting in s′′ and eventually decides 0. The problem is that the states
s′ and s′′ are indistinguishable to B (the read A performed could only change its
thread-local state which is not visible to B), which means that B must decide the
same value in both scenarios, a contradiction.

Suppose, instead of this scenario, both threads are about to write to different
registers, as depicted in Fig. 5.4. A is about to write to r0 and B to r1. Let us
consider two possible execution scenarios. In the first, A writes to r0 and then B
writes to r1, so the resulting protocol state is 0-valent because A went first. In the
second, B writes to r1 and then A writes to r0, so the resulting protocol state is
1-valent because B went first.

The problem is that both scenarios lead to indistinguishable protocol states.
Neither A nor B can tell which move was first. The resulting state is therefore
both 0-valent and 1-valent, a contradiction.

Finally, suppose both threads write to the same register r, as depicted in Fig. 5.5.
Again, consider two possible execution scenarios. In one scenario A writes first,
the resulting protocol state s′ is 0-valent, B then runs solo and decides 0. In

5.2 Atomic Registers 105

B writes r1

B writes r1

s

A writes r0

A writes r0

0-valent 1-valent

Figure 5.4 Case: A and B write to different registers.

B writes r

s

ś

A writes r

ś´

B writes r

1

B runs solo

0

B runs solo

Figure 5.5 Case: A and B write to the same register.

another scenario, B writes first, the resulting protocol state s′′ is 1-valent, B
then runs solo and decides 1. The problem is that B cannot tell the difference
between s′ and s′′ (because in both s′ and s′′ it overwrote the register r and
obliterated any trace of A’s write) so B must decide the same value starting from
either state, a contradiction. �

Corollary 5.2.1. It is impossible to construct a wait-free implementation of any
object with consensus number greater than 1 using atomic registers.

106 Chapter 5 The Relative Power of Primitive Synchronization Operations

1 public abstract class ConsensusProtocol<T> implements Consensus<T> {
2 protected T[] proposed = (T[]) new Object[N];
3 // announce my input value to the other threads
4 void propose(T value) {
5 proposed[ThreadID.get()] = value;
6 }
7 // figure out which thread was first
8 abstract public T decide(T value);
9 }

Figure 5.6 The generic consensus protocol.

The aforementioned corollary is perhaps one of the most striking impossibil-
ity results in Computer Science. It explains why, if we want to implement lock-
free concurrent data structures on modern multiprocessors, our hardware must
provide primitive synchronization operations other than loads and stores (reads–
writes).

5.3 Consensus Protocols

We now consider a variety of interesting object classes, asking how well each can
solve the consensus problem. These protocols have a generic form, which we
describe in Fig. 5.6. The object has an array of atomic registers in which each
decide() method proposes its input value and then goes on to execute a sequence
of steps in order to decide on one of the proposed values. We will devise different
implementations of the decide() method using various synchronization objects.

5.4 FIFO Queues

In Chapter 3, we saw a wait-free FIFO queue implementation using only atomic
registers, subject to the limitation that only one thread could enqueue to the
queue, and only one thread could dequeue from the queue. It is natural to ask
whether one can provide a wait-free implementation of a FIFO queue that sup-
ports multiple enqueuers and dequeuers. For now, let us focus on a more specific
problem: can provide a wait-free implementation of a two-dequeuer FIFO queue
using atomic registers?

Theorem 5.4.1. The two-dequeuer FIFO queue class has consensus number at
least 2.

Proof: Fig. 5.7 shows a two-thread consensus protocol using a single FIFO
queue. Here, the queue stores integers. The queue is initialized by enqueuing
the value WIN followed by the value LOSE. As in all the consensus protocol

5.4 FIFO Queues 107

1 public class QueueConsensus<T> extends ConsensusProtocol<T> {
2 private static final int WIN = 0; // first thread
3 private static final int LOSE = 1; // second thread
4 Queue queue;
5 // initialize queue with two items
6 public QueueConsensus() {
7 queue = new Queue();
8 queue.enq(WIN);
9 queue.enq(LOSE);
10 }
11 // figure out which thread was first
12 public T decide(T Value) {
13 propose(value);
14 int status = queue.deq();
15 int i = ThreadID.get();
16 if (status == WIN)
17 return proposed[i];
18 else
19 return proposed[1-i];
20 }
21 }

Figure 5.7 2-thread consensus using a FIFO queue.

considered here, decide() first calls propose(v), which stores v in proposed[], a
shared array of proposed input values. It then proceeds to dequeue the next item
from the queue. If that item is the value WIN, then the calling thread was first, and
it decides on its own value. If that item is the value LOSE, then the other thread
was first, so the calling thread returns the other thread’s input, as declared in the
proposed[] array.

The protocol is wait-free, since it contains no loops. If each thread returns its
own input, then they must both have dequeued WIN, violating the FIFO queue
specification. If each returns the other’s input, then they must both have dequeued
LOSE, also violating the queue specification.

The validity condition follows from the observation that the thread that
dequeued WIN stored its input in the proposed[] array before any value was
dequeued. �

Trivial variations of this program yield protocols for stacks, priority queues,
lists, sets, or any object with methods that return different results if applied in
different orders.

Corollary 5.4.1. It is impossible to construct a wait-free implementation of a
queue, stack, priority queue, set, or list from a set of atomic registers.

Although FIFO queues solve two-thread consensus, they cannot solve 3-thread
consensus.

Theorem 5.4.1. FIFO queues have consensus number 2.

108 Chapter 5 The Relative Power of Primitive Synchronization Operations

B deq

s

A deq

B deq A deq

0 1

C runs solo C runs solo

x y

queue tailqueue head

y y

Figure 5.8 Case: A and B both call deq().

Proof: By contradiction. Assume we have a consensus protocol for a threads A,
B, and C . By Lemma 5.1.3, the protocol has a critical state s. Without loss of
generality, we can assume that A’s next move takes the protocol to a 0-valent
state, and B’s next move takes the protocol to a 1-valent state. The rest, as before,
is a case analysis.

First, we know that A and B’s pending moves cannot commute, implying that
they are both about to call methods of the same object. Second, we know that A
and B cannot be about to read or write shared registers. It follows that they are
about to call methods of a single queue object.

First, suppose A and B both call deq(), as depicted in Fig. 5.8. Let s′ be the
protocol state if A dequeues and then B dequeues, and let s′′ be the state if the
dequeues occur in the opposite order. Since s′ is 0-valent, if C runs uninterrupted
from s′, then it decides 0. Since s′′ is 1-valent, if C runs uninterrupted from s′′,
then it decides 1. But s′ and s′′ are indistinguishable to C (the same two items
were removed from the queue), so C must decide the same value in both states, a
contradiction.

Second, supposeA calls enq(a) andB calls deq(). If the queue is nonempty, the
contradiction is immediate because the two methods commute (each operates on
a different end of the queue): C cannot observe the order in which they occurred.
If the queue is empty, then the 1-valent state reached if B executes a dequeue on
the empty queue and then A enqueues is indistinguishable to C from the 0-valent
state reached if A alone enqueues. Notice that we do not really care what a deq()
on an empty queue does, that is, aborts or waits, since this will not affect the state
visible to C .

Finally, suppose A calls enq(a) and B calls enq(b), as depicted in Fig. 5.9. Let
s′ be the state at the end of the following execution:

5.4 FIFO Queues 109

B enq b

s

A enq a

B enq b A enq a

0 1

C runs solo C runs solo

queue head queue tail

run A till deq b

run B till deq a

run A till deq a

run B till deq b

b

b a

a

a b b a

Figure 5.9 Case: A calls enq(a) and B calls enq(b). Notice that a new item is enqueued by A
after A and B enqueued their respective items and before it dequeued (and B could have also
enqueued items before dequeuing), but that this item is the same in both of the execution
scenarios.

1. Let A and B enqueue items a and b in that order.

2. Run A until it dequeues a. (Since the only way to observe the queue’s state is
via the deq() method, A cannot decide before it observes one of a or b.)

3. Before A takes any further steps, run B until it dequeues b.

Let s′′ be the state after the following alternative execution:

1. Let B and A enqueue items b and a in that order.

2. Run A until it dequeues b.

3. Before A takes any further steps, run B until it dequeues a.

Clearly, s′ is 0-valent and s′′ is 1-valent. Both A’s executions are identical until
A dequeues a or b. Since A is halted before it can modify any other objects, B’s
executions are also identical until it dequeues a or b. By a now familiar argument,
a contradiction arises because s′ and s′′ are indistinguishable to C . �

110 Chapter 5 The Relative Power of Primitive Synchronization Operations

Trivial variations of this argument can be applied to show that many similar
data types, such as sets, stacks, double-ended queues, and priority queues, all have
consensus number exactly two.

5.5 Multiple Assignment Objects

In the (m,n-assignment) problem, for n � m > 1 (sometimes called multiple
assignment), we are given an object with n fields (sometimes an n-element array).
The assign() method takes as arguments m values vi, i ∈ 0, . . . ,m− 1, and m
index values ij, j ∈ 0, . . . ,m− 1, ij ∈ 0, . . . ,n− 1. It atomically assigns vj to array
element ij . The read() method takes an index argument, i, and returns the ith

array element. This problem is the dual of the atomic snapshot object (Chapter 4),
where we assign to one field and read multiple fields atomically. Because snapshots
can be implemented from read–write registers, Theorem 5.2.1 implies shapshot
objects have consensus number 1.

Fig. 5.10 shows a lock-based implementation of a (2, 3)-assignment object.
Here, threads can assign atomically to any two out of three array entries.

Theorem 5.5.1. There is no wait-free implementation of an (m,n)-assignment
object by atomic registers for any n > m > 1.

Proof: It is enough to show that we can solve 2-consensus given two threads and a
(2, 3)-assignment object. (Exercise 75 asks one to justify this claim.) As usual, the
decide() method must figure out which thread went first. All array entries are
initialized with null values. Fig. 5.11 shows the protocol. Thread A writes (atom-
ically) to fields 0 and 1, while thread B writes (atomically) to fields 1 and 2. Then
they try to determine who went first. From A’s point of view, there are three cases,
as shown in Fig. 5.12:

1 public class Assign23 {
2 int[] r = new int[3];
3 public Assign23(int init) {
4 for (int i = 0; i < r.length; i++)
5 r[i] = init;
6 }
7 public synchronized void assign(T v0, T v1, int i0, int i1) {
8 r[i0] = v0;
9 r[i1] = v1;
10 }
11 public synchronized int read(int i) {
12 return r[i];
13 }
14 }

Figure 5.10 A lock-based implementation of a (2,3)-assignment object.

5.5 Multiple Assignment Objects 111

� If A’s assignment was ordered first, and B’s assignment has not happened,
then fields 0 and 1 have A’s value, and field 2 is null. A decides its own input.

� If A’s assignment was ordered first, and B’s second, then field 0 has A’s value,
and fields 1 and 2 have B’s. A decides its own input.

� If B’s assignment was ordered first, and A’s second, then fields 0 and 1 have
A’s value, and 2 has B’s. A decides B’s input.

A similar analysis holds for B. �

Theorem 5.5.2. Atomic (n, n(n+1)
2)-register assignment for n > 1 has consensus

number at least n.

Proof: We design a consensus protocol for n threads 0, . . . ,n − 1. The protocol

uses an (n, n(n+1)
2)-assignment object. For convenience we name the object fields

as follows. There are n fields r0, . . . , rn−1 where thread i writes to register ri, and
n(n− 1)/2 fields rij , where i > j, where threads i and j both write to field rij . All
fields are initialized to null. Each thread i atomically assigns its input value to n
fields: its single-writer field ri and its n−1 multi-writer registers rij . The protocol
decides the first value to be assigned.

1 public class MultiConsensus<T> extends ConsensusProtocol<T> {
2 private final int NULL = -1;
3 Assign23 assign2 = new Assign23(NULL);
4 public T decide(T value) {
5 propose(value);
6 int i = ThreadID.get();
7 int j = 1-i;
8 // double assignment
9 assign23.assign(i, i, i, i+1);
10 int other = assign23.read((i+2) % 3);
11 if (other == NULL || other == assign23.read(1))
12 return proposed[i]; // I win
13 else
14 return proposed[j]; // I lose
15 }
16 }

Figure 5.11 2-thread consensus using (2,3)-multiple assignment.

A decides a

0 1 2

A decides b

0 1 2

Case 1 Case 3

a a

A decides a

0 1 2

Case 2

a b b a a b

Figure 5.12 Consensus using multiple assignment: possible views.

112 Chapter 5 The Relative Power of Primitive Synchronization Operations

Case 1 Case 2

ri

0 1 2 3

b d

i 1 2

0

1

2

rij

j

3

b

b

d

d

d

i 1 2

0

1

2

rij

j

3

b

a a

d

d

d

ri

0 1 2 3

a b d

Figure 5.13 Two possible views of (4,10)-assignment solving consensus for 4 threads. In Part
1 only threads B and D show up. B is the first to assign and wins the consensus. In Part 2
there are three threads A, B, and D, and as before, B wins by assigning first and D assigns last.
The order among the threads can be determined by looking at the pairwise order among any
two. Because the assignments are atomic, these individual orders are always consistent and
define the total order among the calls.

After assigning to its fields, a thread determines the relative ordering of the
assignments for every two threads i and j as follows:

� Read rij . If the value is null, then neither assignment has occurred.

� Otherwise, read ri and rj . If ri’s value is null, then j precedes i, and similarly
for rj .

� If neither ri nor rj is null, reread rij . If its value is equal to the value read from
ri, then j precedes i, else vice versa.

Repeating this procedure, a thread can determine which value was written by the
earliest assignment. Two example orderings appear in Fig. 5.13. �

Note that multiple assignment solves consensus for any m > n > 1 threads
while its dual structures and atomic snapshots, have consensus number at most
one. Although these two problems may appear similar, we have just shown that
writing atomically to multiple memory locations requires more computational
power than reading atomically.

5.6 Read–Modify–Write Operations

Many, if not all, of the classical synchronization operations provided by multipro-
cessors in hardware can be expressed as read–modify–write (RMW) operations,
or, as they are called in their object form, read–modify–write registers. Consider

5.6 Read–Modify–Write Operations 113

a RMW register that encapsulates integer values, and let F be a set of functions
from integers to integers.3

A method is an RMW for the function set F if it atomically replaces the cur-
rent register value v with f(v), for some f ∈ F , and returns the original value v.
(Sometimes F is a singleton set.) We (mostly) follow the Java convention that an
RMW method that applies the function mumble is called getAndMumble().

For example, the java.util.concurrent package provides an AtomicInteger
class with a rich set of RMW methods.

� The getAndSet(v) method atomically replaces the register’s current value with
v and returns the prior value. This method (also called swap()) is an RMW
method for the set of constant functions of the type fv(x) = v.

� The getAndIncrement() method atomically adds 1 to the register’s cur-
rent value and returns the prior value. This method (also called fetch-and-
increment) is an RMW method for the function f(x) = x + 1.

� The getAndAdd(k) method atomically adds k to the register’s current value
and returns the prior value. This method (also called fetch-and-add) is an
RMW method for the set of functions fk(x) = x + k.

� The compareAndSet() method takes two values, an expected value e, and an
update value u. If the register value is equal to e, it is atomically replaced with
u, and otherwise it is unchanged. Either way, the method returns a Boolean
value indicating whether the value was changed. Informally, fe,u(x) = x if x �= e
and u otherwise. Strictly speaking however, compareAndSet() is not an RMW
method for fe,u, because an RMW method would return the register’s prior
value instead of a Boolean value, but this distinction is a technicality.

� The get() method returns the register’s value. This method is an RMW
method for the identity function f(v) = v.

The RMW methods are interesting precisely because they are potential hardware
primitives, engraved not in stone, but in silicon. Here, we define RMW registers
and their methods in terms of synchronized Java methods, but, pragmatically,
they correspond (exactly or nearly) to many real or proposed hardware synchro-
nization primitives.

An RMW method is nontrivial if its set of functions includes at least one func-
tion that is not the identity function.

Theorem 5.6.1. Any nontrivial RMW register has consensus number at least 2.

Proof: Fig. 5.14 shows a 2-thread consensus protocol. Since there exists f in F
that is not the identity, there exists a value v such that f(v) �= v. In the decide()
method, as usual, the propose(v) method writes the thread’s input v to the

3 For brevity, we consider only registers that hold integer values, but they could equally well hold
references to other objects.

114 Chapter 5 The Relative Power of Primitive Synchronization Operations

1 class RMWConsensus extends ConsensusProtocol {
2 // initialize to v such that f(v) != v
3 private RMWRegister r = new RMWRegister(v);
4 public Object decide(Object value) {
5 propose(value);
6 int i = ThreadID.get(); // my index
7 int j = 1-i; // other’s index
8 if (r.rmw() == v) // I’m first, I win
9 return proposed[i];
10 else // I’m second, I lose
11 return proposed[j];
12 }
13 }

Figure 5.14 2-thread consensus using RMW.

proposed[] array. Then each thread applies the RMW method to a shared regis-
ter. If a thread’s call returns v, it is linearized first, and it decides its own value.
Otherwise, it is linearized second, and it decides the other thread’s proposed
value. �

Corollary 5.6.1. It is impossible to construct a wait-free implementation of any
nontrivial RMW method from atomic registers for two or more threads.

5.7 Common2 RMW Operations

We now identify a class of RMW registers, called Common2, that correspond to
many of the common synchronization primitives provided by processors in the
late Twentieth Century. Although Common2 registers, like all nontrivial RMW
registers, are more powerful than atomic registers, we will show that they have
consensus number exactly 2, implying that they have limited synchronization
power. Fortunately, these synchronization primitives have by-and-large fallen
from favor in contemporary processor architectures.

Definition 5.7.1. A set of functions F belongs to Common2 if for all values v and
all fi and fj in F , either:

� fi and fj commute: fi(fj(v)) = fj(fi(v)), or

� one function overwrites the other: fi(fj(v)) = fi(v) or fj(fi(v)) = fj(v).

Definition 5.7.2. A RMW register belongs to Common2 if its set of functions F
belongs to Common2.

For example, many RMW registers in the literature provide only one nontrivial
function. For example, getAndSet() uses a constant function, which overwrites

5.7 Common2 RMW Operations 115

any prior value. The getAndIncrement() and getAndAdd() methods use func-
tions that commute with one another.

Very informally, here is why RMW registers in Common2 cannot solve 3-thread
consensus. The first thread (the winner) can always tell it was first, and each of the
second and third threads (the losers) can each tell that they were losers. However,
because the functions defining the state following operations in Common2 com-
mute or overwrite, a loser thread cannot tell which of the others went first (was
the winner), and because the protocol is wait-free, it cannot wait to find out. Let
us make this argument more precise.

Theorem 5.7.1. Any RMW register in Common2 has consensus number
(exactly) 2.

Proof: Theorem 5.6.1 states that any such register has consensus number at least
2. We need only to show that any Common2 register cannot solve consensus for
three threads.

Assume by way of contradiction that a 3-thread protocol exists using only
Common2 registers and read–write registers. Suppose threads A, B, and C reach
consensus through Common2 registers. By Lemma 5.1.3, any such protocol has a
critical state s in which the protocol is bivalent, but any method call by any thread
will cause the protocol to enter a univalent state.

We now do a case analysis, examining each possible method call. The kind
of reasoning used in the proof of Theorem 5.2.1 shows that the pending methods
cannot be reads or writes, nor can the threads be about to call methods of different
objects. It follows that the threads are about to call RMW methods of a single
register r.

Suppose A is about to call a method for function fA, sending the protocol to
a 0-valent state, and B is about to call a method for fB , sending the protocol to a
1-valent state. There are two possible cases:

1. As depicted in Fig. 5.15, one function overwrites the other: fB(fA(v)) = fB(v).
Let s′ be the state that results if A applies fA and then B applies fB . Because
s′ is 0-valent, C will decide 0 if it runs alone until it finishes the protocol. Let
s′′ be the state that results if B alone calls fB . Because s′′ is 1-valent, C will
decide 1 if it runs alone until it finishes the protocol. The problem is that the
two possible register states fB(fA(v)) and fB(v) are the same, so s′ and s′′

differ only in the internal states of A and B. If we now let thread C execute,
sinceC completes the protocol without communicating withA orB, these two
states look identical to C , so it cannot possibly decide different values from the
two states.

2. The functions commute: fA(fB(v)) = fB(fA(v)). Let s′ be the state that results
if A applies fA and then B applies fB . Because s′ is 0-valent, C will decide 0 if
it runs alone until it finishes the protocol. Let s′′ be the state that results if A
and B perform their calls in the reverse order. Because s′′ is 1-valent, C will
decide 1 if it runs alone until it finishes the protocol. The problem is that the

116 Chapter 5 The Relative Power of Primitive Synchronization Operations

s

ś

fA(v)

ś´

0

1
C runs solo

C runs solo

fB(v)

fB(fA(v))

Figure 5.15 Case: two functions that overwrite.

two possible register states fA(fB(v)) and fB(fA(v)) are the same, so s′ and s′′

differ only in the internal states of A and B. Now let thread C execute. Since C
completes the protocol without communicating with A or B, these two states
look identical to C , so it cannot possibly decide different values from the two
states. �

5.8 The compareAndSet() Operation

We consider the compareAndSet() operation mentioned earlier, a synchroniza-
tion operation supported by several contemporary architectures. (For example,
it is called CMPXCHG on the Intel PentiumTM). This method is also known in
the literature as compare-and-swap. As noted earlier, compareAndSet() takes two
arguments: an expected value and an update value. If the current register value is
equal to the expected value, then it is replaced by the update value; otherwise the
value is left unchanged. The method call returns a Boolean indicating whether
the value changed.

Theorem 5.8.1. A register providing compareAndSet() and get() methods has
an infinite consensus number.

Proof: Fig. 5.16 shows a consensus protocol for n threads 0, . . . ,n− 1 using
the AtomicInteger class’s compareAndSet() method. The threads share an
AtomicInteger object, initialized to a constant FIRST, distinct from any thread
index. Each thread calls compareAndSet() with FIRST as the expected value, and

5.9 Chapter Notes 117

1 class CASConsensus extends ConsensusProtocol {
2 private final int FIRST = -1;
3 private AtomicInteger r = new AtomicInteger(FIRST);
4 public Object decide(Object value) {
5 propose(value);
6 int i = ThreadID.get();
7 if (r.compareAndSet(FIRST, i)) // I won
8 return proposed[i];
9 else // I lost
10 return proposed[r.get()];
11 }
12 }

Figure 5.16 Consensus using compareAndSwap().

its own index as the new value. If thread A’s call returns true, then that method
call was first in the linearization order, so A decides its own value. Otherwise, A
reads the current AtomicInteger value, and takes that thread’s input from the
proposed[] array. �

We note that having the compareAndSet() register in Theorem 5.8.1 provides
a get() method is only a convenience, and as proved in a homework assignment:

Corollary 5.8.1. A register providing only compareAndSet() has an infinite
consensus number.

As we will see in Chapter 6, machines that provide primitive operations like
compareAndSet()4 are asynchronous computation’s equivalents of the Turing
Machines of sequential computation: any concurrent object that can be imple-
mented, can be implemented in a wait-free manner on such machines. Thus, in
the words of Maurice Sendak, compareAndSet() is the “king of all wild things.”

5.9 Chapter Notes

Michael Fischer, Nancy Lynch, and Michael Paterson [40] were the first to prove
that consensus is impossible in a message-passing system where a single thread
can halt. Their seminal paper introduced the “bivalency” style of impossibil-
ity argument widely used in the field of distributed computing. M. Loui and
H. Abu-Amara [109] and Herlihy [62] were the first to extend this result to shared
memory.

4 Some architectures provide a pair of operations similar to get()/compareAndSet() called load-
linked/store-conditional. In general, the load-linked method marks a location as loaded, and the
store-conditional method fails if another thread modified that location since it was loaded. See
Chapter 18 and Appendix B.

118 Chapter 5 The Relative Power of Primitive Synchronization Operations

Clyde Kruskal, Larry Rudolph, and Marc Snir [87] coined the term
read–modify–write operation as part of the NYU Ultracomputer project.

Maurice Herlihy [62] introduced the notion of a consensus number as a mea-
sure of computational power, and was the first to prove most of the impossibility
and universality results presented in this chapter and Chapter 6.

The class Common2 that includes several common primitive synchroniza-
tion operations was defined by Yehuda Afek and Eytan Weisberger and Hanan
Weisman [5]. The “sticky-bit” object used in the exercises is due to Serge Plotkin
[127].

The n-bounded compareAndSet() object with arbitrary consensus number n
in Exercise 5.10 is based on a construction by Prasad Jayanti and Sam Toueg [81].
In the hierarchy used here, we say that X solves consensus if one can construct a
wait-free consensus protocol from any number of instances of X and any amount
of read–write memory. Prasad Jayanti [79] observed that one could also define
resource-bounded hierarchies where one is restricted to using only a fixed number
of instances of X, or a fixed amount of memory. The unbounded hierarchy used
here seems to be the most natural one, since any other hierarchy is a coarsening
of the unbounded one.

Jayanti also raised the question whether the hierarchy is robust, that is, whether
an object X at level m can be “boosted” to a higher consensus level by combin-
ing it with another object Y at the same or lower level. Wai-Kau Lo and Vassos
Hadzilacos [107] and Eric Schenk [144] showed that the consensus hierarchy is
not robust: certain objects can be boosted. Informally, their constructions went
like this: let X be an object with the following curious properties. X solves n-
thread consensus but “refuses” to reveal the results unless the caller can prove
he or she can solve an intermediate task weaker than n-thread consensus, but
stronger than any task solvable by atomic read/write registers. If Y is an object
that can be used to solve the intermediate task, Y can boost X by convincing X
to reveal the outcome of an n-thread consensus. The objects used in these proofs
are nondeterministic.

The Maurice Sendak quote is from Where the Wild Things Are [140].

5.10 Exercises

Exercise 47. Prove Lemma 5.1.2.

Exercise 48. Prove that every n-thread consensus protocol has a bivalent initial
state.

Exercise 49. Prove that in a critical state, one successor state must be 0-valent, and
the other 1-valent.

Exercise 50. Show that if binary consensus using atomic registers is impossible for
two threads, then it is also impossible for n threads, where n > 2. (Hint: argue by

5.10 Exercises 119

reduction: if we had a protocol to solve binary consensus for n threads, then we
can transform it into a two-thread protocol.)

Exercise 51. Show that if binary consensus using atomic registers is impossible for
n threads, then so is consensus over k values, where k > 2.

Exercise 52. Show that with sufficiently many n-thread binary consensus objects
and atomic registers one can implement n-thread consensus over n values.

Exercise 53. The Stack class provides two methods: push(x) pushes a value onto
the top of the stack, and pop() removes and returns the most recently pushed
value. Prove that the Stack class has consensus number exactly two.

Exercise 54. Suppose we augment the FIFO Queue class with a peek() method
that returns but does not remove the first element in the queue. Show that the
augmented queue has infinite consensus number.

Exercise 55. Consider three threads, A, B, and C , each of which has a MRSW
register, XA, XB , and XC , that it alone can write and the others can read.

In addition, each pair shares a RMWRegister register that provides only a
compareAndSet() method: A and B share RAB , B and C share RBC , and A
and C share RAC . Only the threads that share a register can call that register’s
compareAndSet() method or read its value.

Your mission: either give a consensus protocol and explain why it works, or
sketch an impossibility proof.

Exercise 56. Consider the situation described in Exercise 5.55, except that A, B,
and C can apply a double compareAndSet() to both registers at once.

Exercise 57. In the consensus protocol shown in 5.7, what would happen if we
announced the thread’s value after dequeuing from the queue?

Exercise 58. Objects of the StickyBit class have three possible states ⊥, 0, 1,
initially ⊥. A call to write(v), where v is 0 or 1, has the following effects:

� If the object’s state is ⊥, then it becomes v.

� If the object’s state is 0 or 1, then it is unchanged.

A call to read() returns the object’s current state.

1. Show that such an object can solve wait-free binary consensus (that is, all
inputs are 0 or 1) for any number of threads.

2. Show that an array of log2 m StickyBit objects with atomic registers can
solve wait-free consensus for any number of threads when there are m possi-
ble inputs. (Hint: you need to give each thread one single-writer, multi-reader
atomic register.)

Exercise 59. The SetAgree class, like the Consensus class, provides propose()
and decide() methods, where each decide() call returns a value that was the

120 Chapter 5 The Relative Power of Primitive Synchronization Operations

argument to some thread’s propose() call. Unlike the Consensus class, the values
returned by decide() calls are not required to agree. Instead, these calls may
return no more than k distinct values. (When k is 1, SetAgree is the same as
consensus.) What is the consensus number of the SetAgree class when k > 1?

Exercise 60. The two-thread approximate agreement class for a given ε is defined
as follows. Given two threads A and B, each can call decide(xa) and decide(xb)
methods, where xa and xb are real numbers. These methods return values
ya and yb respectively, such that ya and yb both lie in the closed interval
[min(xa,xb), max(xa,xb)], and |ya − yb| � ε for ε > 0. Note that this object is
nondeterministic.

What is the consensus number of the approximate agreement object?

Exercise 61. Consider a distributed system where threads communicate by
message-passing. A type A broadcast guarantees:

1. every nonfaulty thread eventually gets each message,

2. if P broadcasts M1 then M2, then every thread receives M1 before M2, but

3. messages broadcast by different threads may be received in different orders at
different threads.

A type B broadcast guarantees:

1. every nonfaulty thread eventually gets each message,

2. if P broadcasts M1 and Q broadcasts M2, then every thread receives M1 and
M2 in the same order.

For each kind of broadcast,

� give a consensus protocol if possible,

� and otherwise sketch an impossibility proof.

Exercise 62. Consider the following 2-thread QuasiConsensus problem:
Two threads, A and B, are each given a binary input. If both have input v, then

both must decide v. If they have mixed inputs, then either they must agree, or B
may decide 0 and A may decide 1 (but not vice versa).

Here are three possible exercises (only one of which works). (1) Give a 2-thread
consensus protocol using QuasiConsensus showing it has consensus number 2,
or (2) give a critical-state proof that this object’s consensus number is 1, or (3)
give a read–write implementation of QuasiConsensus, thereby showing it has
consensus number 1.

Exercise 63. Explain why the critical-state proof of the impossibility of consensus
fails if the shared object is, in fact, a Consensus object.

Exercise 64. In this chapter we showed that there is a bivalent initial state for
2-thread consensus. Give a proof that there is a bivalent initial state for n thread
consensus.

5.10 Exercises 121

Exercise 65. A team consensus object provides the same propose() and decide()
methods as consensus. A team consensus object solves consensus as long as no
more than two distinct values are ever proposed. (If more than two are proposed,
the results are undefined.)

Show how to solve n-thread consensus, with up to n distinct input values, from
a supply of team consensus objects.

Exercise 66. A trinary register holds values⊥, 0, 1, and provides compareAndSet()
and get() methods with the usual meaning. Each such register is initially ⊥. Give
a protocol that uses one such register to solve n-thread consensus if the inputs of
the threads are binary, that is, either 0 or 1.

Can you use multiple such registers (perhaps with atomic read–write regis-
ters) to solve n-thread consensus even if the threads’ inputs are in the range
0 . . .2K − 1, for K > 1. (You may assume an input fits in an atomic register.)
Important: remember that a consensus protocol must be wait-free.

� Devise a solution that uses at most O(n) trinary registers.

� Devise a solution that uses O(K) trinary registers.

Feel free to use all the atomic registers you want (they are cheap).

Exercise 67. Earlier we defined lock-freedom. Prove that there is no lock-free
implementation of consensus using read–write registers for two or more
threads.

Exercise 68. Fig. 5.17 shows a FIFO queue implemented with read, write,
getAndSet() (that is, swap) and getAndIncrement() methods. You may assume

1 class Queue {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicReference items[] =
4 new AtomicReference[Integer.MAX_VALUE];
5 void enq(Object x){
6 int slot = head.getAndIncrement();
7 items[slot] = x;
8 }
9 Object deq() {
10 while (true) {
11 int limit = head.get();
12 for (int i = 0; i < limit; i++) {
13 Object y = items[i].getAndSet(); // swap
14 if (y != null)
15 return y;
16 }
17 }
18 }
19 }

Figure 5.17 Queue implementation.

122 Chapter 5 The Relative Power of Primitive Synchronization Operations

this queue is linearizable, and wait-free as long as deq() is never applied to an
empty queue. Consider the following sequence of statements.

� Both getAndSet() and getAndIncrement() methods have consensus num-
ber 2.

� We can add a peek() simply by taking a snapshot of the queue (using the meth-
ods studied earlier in the course) and returning the item at the head of the
queue.

� Using the protocol devised for Exercise 54, we can use the resulting queue to
solve n-consensus for any n.

We have just constructed an n-thread consensus protocol using only objects with
consensus number 2. Identify the faulty step in this chain of reasoning, and
explain what went wrong.

Exercise 69. Recall that in our definition of compareAndSet() we noted that
strictly speaking, compareAndSet() is not a RMW method for fe,u, because a
RMW method would return the register’s prior value instead of a Boolean value.
Use an object that supports compareAndSet() and get() to provide a new object
with a linearizable NewCompareAndSet() method that returns the register’s cur-
rent value instead of a Boolean.

Exercise 70. Define an n-bounded compareAndSet() object as follows. It provides
a compareAndSet() method that takes two values, an expected value e, and an
update value u. For the first n times compareAndSet() is called, it behaves like
a conventional compareAndSet() register: if the register value is equal to e, it is
atomically replaced with u, and otherwise it is unchanged, and returns a Boolean
value indicating whether the change occurred. After compareAndSet() has been
called n times, however, the object enters a faulty state, and all subsequent method
calls return ⊥.

Show that an n-bounded compareAndSet() object has consensus number
exactly n.

Exercise 71. Provide a wait-free implementation of a two-thread three-location
Assign23 multiple assignment object from three compareAndSet() objects (that
is, objects supporting the operations compareAndSet() and get()).

Exercise 72. In the proof of Theorem 5.5.1, we claimed that it is enough to show
that we can solve 2-consensus given two threads and an (2, 3)-assignment object.
Justify this claim.

Exercise 73. Prove Corollary 5.8.1.

Exercise 74. We can treat the scheduler as an adversary who uses the knowledge
of our protocols and input values to frustrate our attempts at reaching consensus.
One way to outwit an adversary is through randomization. Assume there are two
threads that want to reach consensus, each can flip an unbiased coin, and the
adversary cannot control future coin flips.

5.10 Exercises 123

1 Object prefer[2] = {null, null};
2
3 Object decide(Object input) {
4 int i = Thread.getID();
5 int j = 1-i;
6 prefer[i] = input;
7 while (true) {
8 if (prefer[j] == null) {
9 return prefer[i];
10 } else if (prefer[i] == prefer[j]) {
11 return prefer[i];
12 } else {
13 if (flip()) {
14 prefer[i] = prefer[j];
15 }
16 }
17 }
18 }

Figure 5.18 Is this a randomized consensus protocol?

Assume the adversary scheduler can observe the result of each coin flip and
each value read or written. It can stop a thread before or after a coin flip or a read
or write to a shared register.

A randomized consensus protocol terminates with probability one against an
adversary scheduler. Fig. 5.18 shows a plausible-looking randomized consensus
protocol. Give an example showing that this protocol is incorrect.

Exercise 75. One can implement a consensus object using read–write registers by
implementing a deadlock- or starvation-free mutual exclusion lock. However,
this implementation provides only dependent progress, and the operating sys-
tem must make sure that threads do not get stuck in the critical section so that
the computation as a whole progresses.

� Is the same true for obstruction-freedom, the nonblocking dependent progress
condition? Show an obstruction-free implementation of a consensus object
using only atomic registers.

� What is the role of the operating system in the obstruction-free solution to
consensus? Explain where the critical-state-based proof of the impossibility of
consensus breaks down if we repeatedly allow an oracle to halt threads so as to
allow others to make progress.

(Hint, think of how you could restrict the set of allowed executions.)

This page intentionally left blank

6Universality of Consensus

6.1 Introduction

In Chapter 5, we considered a simple technique for proving statements of the form
“there is no wait-free implementation of X by Y.” We considered object classes
with deterministic sequential specifications.1 We derived a hierarchy in which no
object from one level can implement an object at a higher level (see Fig. 6.1).
Recall that each object has an associated consensus number, which is the maximum
number of threads for which the object can solve the consensus problem. In a
system of n or more concurrent threads, it is impossible to construct a wait-free
implementation of an object with consensus number n from an object with a
lower consensus number. The same result holds for lock-free implementations,
and henceforth unless we explicitly state otherwise, it will be implied that a result
that holds for wait-free implementations holds for lock-free ones.

The impossibility results of Chapter 5 do not by any means imply that wait-
free synchronization is impossible or infeasible. In this chapter, we show that there
exist classes of objects that are universal: given sufficiently many of them, one can
construct a wait-free linearizable implementation of any concurrent object.

A class is universal in a system of n threads if, and only if it has a consensus
number greater than or equal to n. In Fig. 6.1, each class at level n is universal
for a system of n threads. A machine architecture or programming language is
computationally powerful enough to support arbitrary wait-free synchronization
if, and only if it provides objects of a universal class as primitives. For example,
modern multiprocessor machines that provide a compareAndSet() operation are
universal for any number of threads: they can implement any concurrent object
in a wait-free manner.

This chapter describes how to use consensus objects to build a universal con-
struction that implements any concurrent object. The chapter does not describe

1 The situation with nondeterministic objects is significantly more complicated.

125

126 Chapter 6 Universality of Consensus

Consensus

Number Object

1 atomic registers

2 getAndSet(), getAndAdd(), Queue, Stack
...

...

m (m,m(m + 1)/2)-register assignment
...

...

∞ memory-to-memory move, compareAndSet(), Load-Linked/StoreConditional 2

Figure 6.1 Concurrent computability and the universality hierarchy of synchronization
operations.

practical techniques for implementing wait-free objects. Like classical com-
putability theory, understanding the universal construction and its implications
will allow us to avoid the naı̈ve mistake of trying to solve unsolvable problems.
Once we understand why consensus is powerful enough to implement any kind
of object, we will be better prepared to undertake the engineering effort needed
to make such constructions efficient.

6.2 Universality

A classC is universal if one can construct a wait-free implementation of any object
from some number of objects of C and some number of read–write registers. Our
construction uses multiple objects of class C because we are ultimately interested
in understanding the synchronization power of machine instructions, and most
machines allow their instructions to be applied to multiple memory locations.
We allow an implementation to use multiple read–write registers because it is
convenient for bookkeeping, and memory is usually in plentiful supply on mod-
ern architectures. To avoid distraction, we use an unlimited number of read–write
registers and consensus objects, leaving the question of recycling memory as an
exercise. We begin by presenting a lock-free implementation, later extending it to
a slightly more complex wait-free one.

6.3 A Lock-Free Universal Construction

Fig. 6.2 shows a generic definition for a sequential object, based on the invocation–
response formulation of Chapter 3. Each object is created in a fixed initial state.

2 See Appendix B for details.

6.3 A Lock-Free Universal Construction 127

1 public interface SeqObject {
2 public abstract Response apply(Invocation invoc);
3 }

Figure 6.2 A Generic sequential object: the apply() method applies the invocation and
returns a response.

1 public class Node {
2 public Invoc invoc; // method name and args
3 public Consensus<Node> decideNext; // decide next Node in list
4 public Node next; // the next node
5 public int seq; // sequence number
6 public Node(Invoc invoc) {
7 invoc = invoc;
8 decideNext = new Consensus<Node>()
9 seq = 0;
10 }
11 public static Node max(Node[] array) {
12 Node max = array[0];
13 for (int i = 1; i < array.length; i++)
14 if (max.seq < array[i].seq)
15 max = array[i];
16 return max;
17 }
18 }

Figure 6.3 The Node class.

The apply() method takes as argument an invocation which describes the method
being called and its arguments, and returns a response, containing the call’s termi-
nation condition (normal or exceptional) and the return value, if any. For exam-
ple, a stack invocation might be push() with an argument, and the corresponding
response would be normal and void.

Figs. 6.3 and 6.4 show a universal construction that transforms any sequential
object into a lock-free linearizable concurrent object. This construction assumes
that sequential objects are deterministic: if we apply a method to an object in a
particular state, then there is only one possible response, and one possible new
object state. We can represent any object as a combination of a sequential object in
its initial state and a log: a linked list of nodes representing the sequence of method
calls applied to the object (and hence the object’s sequence of state transitions).
A thread executes a method call by adding the new call to the head of the list. It
then traverses the list, from tail to head, applying the method calls to a private copy
of the object. The thread finally returns the result of applying its own operation.
It is important to understand that only the head of the log is mutable: the initial
state and nodes preceding the head never change.

How do we make this log-based construction concurrent, that is, allow threads
to make concurrent calls to apply()? A thread attempting to call apply() creates a
node to hold its invocation. The threads then compete to append their respective

128 Chapter 6 Universality of Consensus

1 public class LFUniversal {
2 private Node[] head;
3 private Node tail;
4 public Universal() {
5 tail = new Node();
6 tail.seq = 1;
7 for (int i = 0; i < n; i++)
8 head[i] = tail
9 }
10 public Response apply(Invoc invoc) {
11 int i = ThreadID.get();
12 Node prefer = new Node(invoc);
13 while (prefer.seq == 0) {
14 Node before = Node.max(head);
15 Node after = before.decideNext.decide(prefer);
16 before.next = after;
17 after.seq = before.seq + 1;
18 head[i] = after;
19 }
20 SeqObject myObject = new SeqObject();
21 current = tail.next;
22 while (current != prefer){
23 myObject.apply(current.invoc);
24 current = current.next;
25 }
26 return myObject.apply(current.invoc);
27 }
28 }

Figure 6.4 The lock-free universal algorithm.

nodes to the head of the log by running an n-thread consensus protocol to agree
which node was appended to the log. The inputs to this consensus are references
to the threads’ nodes, and the result is the unique winning node.

The winner can then proceed to compute its response. It does so by creating a
local copy of the sequential object and traversing the log, followingnext references
from tail to head, applying the operations in the log to its copy, finally returning
the response associated with its own invocation. This algorithm works even when
apply() calls are concurrent, because the prefix of the log up to the thread’s own
node never changes. The losing threads, which were not chosen by the consensus
object, must try again to set the node currently at the head of the log (which
changes between attempts) to point to them.

We now consider this construction in detail. The code for the lock-free univer-
sal construction appears in Fig. 6.4. A sample execution appears in Fig. 6.5. The
object state is defined by a linked list of nodes, each one containing an invocation.
The code for a node appears in Fig. 6.3. The node’s decideNext field is a consen-
sus object used to decide which node is appended next in the list, and next is the
field in which the outcome of that consensus, the reference to the next node, is
recorded. The seq field is the node’s sequence number in the list. This field is zero
while the node is not yet threaded onto the list, and positive otherwise. Sequence

6.3 A Lock-Free Universal Construction 129

Tail

in
vo

c(
)

dec
id

eN
ex

t
nex

t

sentinel

se
q

Head

4

3 2

0 2 n 215 7

1

Figure 6.5 Execution of the lock-free universal construction. Thread 2 appends the second
node in the log winning consensus on decideNext in the sentinel node. It then sets the node’s
sequence number from 0 to 2, and refers to it from its entry in the head[] array. Thread 7
loses the decideNext consensus at the sentinel node, sets the next reference and sequence
number of the decided successor node to 2 (they were already set to the same values by
thread 2), and refers to the node from its entry in the head[] array. Thread 5 appends the
third node, updates its sequence number to 3 and updates its entry in the head[] array to this
node. Finally, thread 2 appends the fourth node, sets its sequence number to 4, and refers to
it from its entry in the head[] array. The maximal value in the head array keeps track of the
head of the log.

numbers for successive nodes in the list increase by one. Initially, the log consists
of a unique sentinel node with sequence number 1.

The hard part about designing the concurrent lock-free universal construction
is that consensus objects can be used only once.3

In our lock-free algorithm in Fig. 6.4, each thread allocates a node holding
its invocation, and repeatedly tries to append that node to the head of the log.
Each node has a decideNext field, which is a consensus object. A thread tries
to append its node by proposing as input to a consensus protocol on the head’s
decideNext field. Because threads that do not participate in this consensus may
need to traverse the list, the result of this consensus is stored in the node’s next
field. Multiple threads may update this field simultaneously, but they all write
the same value. When the thread’s node is appended, it sets the node’s sequence
number.

Once a thread’s node is part of the log, it computes the response to its invo-
cation by traversing the log from the tail to the newly added node. It applies
each of the invocations to a private copy of the object, and returns the response

3 Creating a reusable consensus object, or even one whose decision is readable, is not a simple
task. It is essentially the same problem as the universal construction we are about to design. For
example, consider the queue-based consensus protocol in Chapter 5. It is not obvious how to use
a Queue to allow repeated reading of the consensus object state after it is decided.

130 Chapter 6 Universality of Consensus

from its own invocation. Notice that when a thread computes its response, all its
predecessors’ next references must already be set, because these nodes have
already have been added to the head of the list. Any thread that added a node to the
list has updated its next reference with the result of the decideNext consensus.

How do we locate the head of the log? We cannot track the head with a consen-
sus object because the head must be updated repeatedly, and consensus objects
can only be accessed once by each thread. Instead, we create a per-thread struc-
ture of the kind used in the Bakery algorithm of Chapter 2. We use an n-entry
array head[], where head[i] is the last node in the list that thread i has observed.
Initially all entries refer to the tail sentinel node. The head is the node with the
maximum sequence number among the nodes referenced in the head[] array.
The max() method in Fig. 6.3 performs a collect, reading the head[] entries and
returning the node with the highest sequence number.

The construction is a linearizable implementation of the sequential object.
Each apply() call can be linearized at the point of the consensus call adding the
node to the log.

Why is this construction lock-free? The head of the log, the latest node appen-
ded, is added to the head[] array within a finite number of steps. The node’s pre-
decessor must appear in the head array, so any node repeatedly attempting to add
a new node will repeatedly run the max() function on the head array. It detects
this predecessor, applies consensus on its decideNext field, and then updates the
winning node’s fields, and including its sequence number. Finally, it stores the
decided node in that thread’s head array entry. The new head node always even-
tually appears in head[]. It follows that the only way a thread can repeatedly fail
to add its own node to the log is if other threads repeatedly succeed in appending
their own nodes to the log. Thus, a node can starve only if other nodes are con-
tinually completing their invocations, implying that the construction is lock-free.

6.4 A Wait-Free Universal Construction

How do we make a lock-free algorithm wait-free? The full wait-free algorithm
appears in Fig. 6.6. We must guarantee that every thread completes an apply()
call within a finite number of steps, that is, no thread starves. To guarantee this
property, threads making progress must help less fortunate threads to complete
their calls. This helping pattern will show up later in a specialized form in other
wait-free algorithms.

To allow helping, each thread must share with other threads the apply()
call that it is trying to complete. We add an n-element announce[] array,
where announce[i] is the node thread i is currently trying to append to the
list. Initially, all entries refer to the sentinel node, which has a sequence num-
ber 1. A thread i announces a node when it stores the node in announce[i].

To execute apply(), a thread first announces its new node. This step ensures
that if the thread itself does not succeed in appending its node onto the list,

6.4 A Wait-Free Universal Construction 131

1 public class Universal {
2 private Node[] announce; // array added to coordinate helping
3 private Node[] head;
4 private Node tail = new node(); tail.seq = 1;
5 for (int j=0; j < n; j++){head[j] = tail; announce[j] = tail};
6 public Response apply(Invoc invoc) {
7 int i = ThreadID.get();
8 announce[i] = new Node(invoc);
9 head[i] = Node.max(head);
10 while (announce[i].seq == 0) {
11 Node before = head[i];
12 Node help = announce[(before.seq + 1 % n)];
13 if (help.seq == 0)
14 prefer = help;
15 else
16 prefer = announce[i];
17 after = before.decideNext.decide(prefer);
18 before.next = after;
19 after.seq = before.seq + 1;
20 head[i] = after;
21 }
22 SeqObject MyObject = new SeqObject();
23 current = tail.next;
24 while (current != announce[i]){
25 MyObject.apply(current.invoc);
26 current = current.next;
27 }
28 head[i] = announce[i];
29 return MyObject.apply(current.invoc);
30 }
31 }

Figure 6.6 The wait-free universal algorithm.

some other thread will append that node on its behalf. It then proceeds as before,
attempting to append the node into the log. To do so, it reads the head[] array only
once (Line 9), and then enters the main loop of the algorithm, which it executes
until its own node has been threaded onto the list (detected when its sequence
number becomes non zero in Line 10). Here is a change from the lock-free
algorithm. A thread first checks to see if there is a node that needs help ahead
of it in the announce[] array (Line 12). The node to be helped must be deter-
mined dynamically because nodes are continually added to the log. A thread
attempts to help nodes in the announce[] array in increasing order, determined
by the sequence number modulo the width n of the announce[] array. We will
prove that this approach guarantees that any node that does not make progress
on its own will eventually be helped by others once its owner thread’s index
matches the maximal sequence number modulo n. If this helping step were
omitted, then an individual thread could be overtaken an arbitrary number of
times. If the node selected for help does not require help (its sequence num-
ber is non zero in Line 13), then each thread attempts to append its own node

132 Chapter 6 Universality of Consensus

(Line 16). (All announce[] array entries are initialized to the sentinel node which
has a non zero sequence number.) The rest of the algorithm is almost the same
as in the lock-free algorithm. A node is appended when its sequence num-
ber becomes non zero. In this case, the thread proceeds as before to compute
its result based on the immutable segment of the log from the tail to its own
node.

Fig. 6.7 shows an execution of the wait-free universal construction in which,
starting from the initial state, thread 5 announces its new node and appends it
to the log, and pauses before adding the node to head[]. Thread 7 then takes
steps. The value of before.seq 1 mod n+ is 2, so thread 7 tries to help thread 2.
Thread 7 loses the consensus on the sentinel node’s decideNext reference since
thread 5 already won it, and thus completes the operations of thread 5, setting the
node’s sequence number to 2 and adding thread 5’s node to the head[] array.
Now imagine that thread 2 immediately announces its node. Then thread 7

0 2 n 215 7

0 2 n 215 7

Head Tail

sentinel

Announce

(all entries initially point to the sentinel)

(all entries initially point to the sentinel)

0 3

2 1

Figure 6.7 Execution of the wait-free universal construction. Thread 5 announces its new
node and appends it to the log, but halts before adding the node to the head[] array. Another
thread 7 will not see thread 5’s node in the head[] array, and will attempt to help thread
(before.seq + 1 mod n), which is equal to 2. When attempting to help thread 2, thread 7
loses the consensus on the sentinel node’s decideNext reference since thread 5 already
won. Thread 7 therefore completes updating the fields of thread 5’s node, setting the node’s
sequence number to 2, and adding the node to the head[] array. Notice that thread 5’s own
entry in the head[] array is not yet set to its announced node. Next, thread 2 announces its
node and thread 7 succeeds in appending thread 2’s node, setting thread 2’s node’s sequence
number to 3. Now thread 2 wakes up. It will not enter the main loop because its node’s
sequence number is non zero, but will continue to update the head[] array and compute its
output value using a copy of the sequential object.

6.4 A Wait-Free Universal Construction 133

succeeds in appending thread 2’s node, but again pauses immediately after
setting thread 2’s node’s sequence number to 3, but before adding it to head[].
Now thread 2 wakes up. It will not enter the main loop because its node’s sequence
number is non zero, but will continue to update head[] at Line 28 and compute
its output value using a copy of the sequential object.

There is a delicate point to understand about these modifications to the lock-
free algorithm. Since more than one thread can attempt to append a particu-
lar node to the log, we must make sure that no node is appended twice. One
thread might append the node, and set the node’s sequence number, at the same
time that another thread appended the same node and set its sequence number.
The algorithm avoids this error because of the order in which threads read
the maximum head[] array value and the sequence number of a node in the
announce[] array. Let a be a node created by thread A and appended by threads
A and B. It must be added at least once to head[] before the second append.
Notice, however, that the before node read from head[A] by B (Line 11) must
be a itself, or a successor of a in the log. Moreover, before any node is added
to head[] (either in Line 20 or in Line 28), its sequence number is made non
zero (Line 19). The order of operations ensures that B sets its head[B] entry (the
entry based on which B’s before variable will be set, resulting in an erroneous
append) in Lines 9 or 20, and only then validates that the sequence number of a
is non zero in Lines 10 or 13 (depending whether A or another thread performs
the operation). It follows that the validation of the erroneous second append will
fail because the sequence number of node a will already be non zero, and it will
not be added to the log a second time.

Linearizability follows because no node is ever added twice, and the order in
which nodes are appended to the log is clearly compatible with the natural partial
order of the corresponding method calls.

To prove that the algorithm is wait-free, we need to show that the helping
mechanism will guarantee that any node that is announced is eventually added
to the head[] array (implying that it is in the log) and the announcing thread
can complete computation of its outcome. To assist in the proof, it is convenient
to define some notation. Let max(head[]) be the node with the largest sequence
number in the head[] array, and let “c ∈head[]” denote the assertion that node c
has been assigned to head[i], for some i.

An auxiliary variable (sometimes called a ghost variable) is one that does not
appear explicitly in the code, does not alter the program’s behavior in any way,
yet helps us reason about the behavior of the algorithm. We use the following
auxiliary variables:

� concur(A) is the set of nodes that have been stored in the head[] array since
thread A’s last announcement.

� start(A) is the sequence number of max(head[]) when thread A last
announced.

134 Chapter 6 Universality of Consensus

The code reflecting the auxiliary variables and how they are updated appears in
Fig. 6.8. For example, the statement

(∀j)concur(j) = concur(j) ∪ after

means that the node after is added to concur(j) for all threads j. The code state-
ments within the angled brackets are considered to be executed atomically. This
atomicity can be assumed because auxiliary variables do not affect the computa-
tion in any way. For brevity let us slightly abuse the notation by letting the func-
tion max() applied to a node or array of nodes return the maximal among their
sequence numbers.

Notice that the following property is invariant throughout the execution of the
universal algorithm:

|concur(A)| + start(A) = max(head[]). (6.4.1)

1 public class Universal {
2 private Node[] announce;
3 private Node[] head;
4 private Node tail = new node(); tail.seq = 1;
5 for (int j=0; j < n; j++){head[j] = tail; announce[j] = tail};
6 public Response apply(Invoc invoc) {
7 int i = ThreadID.get();
8 <announce[i] = new Node(invoc); start(i) = max(head);>
9 head[i] = Node.max(head);
10 while (announce[i].seq == 0) {
11 Node before = head[i];
12 Node help = announce[(before.seq + 1 % n)];
13 if (help.seq == 0)
14 prefer = help;
15 else
16 prefer = announce[i];
17 after = before.decideNext.decide(prefer);
18 before.next = after;
19 after.seq = before.seq + 1;
20 <head[i] = after; (∀j) (concur(j) = concur(j)∪{after})>
21 }
22 SeqObject MyObject = new SeqObject();
23 current = tail.next;
24 while (current != announce[i]){
25 MyObject.apply(current.invoc);
26 current = current.next;
27 }
28 <head[i] = announce[i]; (∀j) (concur(j) = concur(j)∪{after})>
29 return MyObject.apply(current.invoc);
30 }
31 }

Figure 6.8 The wait-free universal algorithm with auxiliary variables. Operations in angled
brackets are assumed to happen atomically.

6.4 A Wait-Free Universal Construction 135

Lemma 6.4.1. For all threads A, the following claim is always true:

|concur(A)| > n⇒ announce[A] ∈ head[].

Proof: If |concur(A)| > n, then concur(A) includes successive nodes b and c
(appended to the log by threads B and C) whose respective sequence numbers
plus one modulo n are equal to A − 1 and A (note that b and c are the nodes
thread B and C added to the log, not necessarily the ones they announced).
thread C will, based on the code of Lines 12 through 16, append to the log a
node located in A’s entry in the announce[] array. We need to show that when
it does so, announce[A] was already announced, so c appends announce[A],
or announce[A] was already appended. Later, when c is added to head[] and
|concur(A)| > n, announce[A] will be in head[] as the Lemma requires.

To see why announce[A] was already announced when C reached Lines 12
through 16, notice that (1) because C appended its node c to b, it must have read
b as the before node in Line 11, implying that B appended b before it was read
from head[] by C in Line 11, and (2) because b is in concur(A), A announced
before b was added to head[]. From (1) and (2) by transitivity it follows that A
announced before C executed Lines 12 through 16, and the claim follows. �

Lemma 6.4.1 places a bound on the number of nodes that can be appended
while a method call is in progress. We now give a sequence of lemmas showing
that when A finishes scanning the head[] array, either announce[A] is appended,
or head[A] lies within n + 1 nodes of the end of the list.

Lemma 6.4.2. The following property always holds:

max(head[]) � start(A).

Proof: The sequence number for each head[i] is nondecreasing. �

Lemma 6.4.3. The following is a loop invariant for Line 13 of Fig. 6.3 (i.e., it holds
during each iteration of the loop):

max(head[A],head[j], . . . ,head[n] − 1) � start(A).

where j is the loop index.

In other words, the maximum sequence number of head[A] and all head[]
entries from the current value of j to the end of the loop never become smaller
than the maximum value in the array when A announced.

Proof: When j is 0, the assertion is implied by Lemma 6.4.2. The truth of the
assertion is preserved at each iteration, when head[A] is replaced by the node
with the sequence number max(head[A],head[j]). �

136 Chapter 6 Universality of Consensus

Lemma 6.4.4. The following assertion holds just before Line 10:

head[A].seq � start(A).

Proof: Notice that head[A] is set to point to A’s last appended node either in
Line 20 or Line 28. Thus, after the call to Node.max() at Line 9, max(head[A],
head[0], . . . ,head[n− 1]) is just head[A].seq, and the result follows from
Lemma 6.4.3. �

Lemma 6.4.5. The following property always holds:

|concur(A)|� head[A].seq − start(A) � 0.

Proof: The lower bound follows from Lemma 6.4.4, and the upper bound follows
from Eq. 6.4.1. �

Theorem 6.4.1. The algorithm in Fig. 6.6 is correct and wait-free.

Proof: To see that the algorithm is wait-free, notice that A can execute the main
loop no more than n+ 1 times. At each successful iteration, head[A]. seq increases
by one. After n + 1 iterations, Lemma 6.4.5 implies that

|concur(A)|� head[A].seq − start(A) � n.

Lemma 6.4.1 implies that announce[A] must have been added to head[]. �

6.5 Chapter Notes

The universal construction described here is adapted from Maurice Herlihy’s
1991 paper [62]. An alternative lock-free universal construction using load-
linked–store-conditional appears in [60]. The complexity of this construction can
be improved in several ways. Yehuda Afek, Dalia Dauber, and Dan Touitou [3]
show how to improve the time complexity to depend on the number of concur-
rent threads, not the maximum possible number of threads. Mark Moir [119]
shows how to design lock-free and wait-free constructions that do not require
copying the entire object. James Anderson and Mark Moir [11] extend the con-
struction to allow multiple objects to be updated. Prasad Jayanti [80] shows that
any universal construction has worst-case Ω(n) complexity, where n is the max-
imal number of threads. Tushar Chandra, Prasad Jayanti, and King Tan [26]
identify a large class of objects for which a more efficient universal construction
exists.

6.6 Exercises 137

6.6 Exercises

Exercise 76. Give an example showing how the universal construction can fail for
objects with nondeterministic sequential specifications.

Exercise 77. Propose a way to fix the universal construction to work for objects
with nondeterministic sequential specifications.

Exercise 78. In both the lock-free and wait-free universal constructions, the
sequence number of the sentinel node at the tail of the list is initially set to
1. Which of these algorithms, if any, would cease to work correctly if the sentinel
node’s sequence number was initially set to 0?

Exercise 79. Suppose, instead of a universal construction, you simply want to
use consensus to implement a wait-free linearizable register with read() and
compareAndSet() methods. Show how you would adapt this algorithm to
do so.

Exercise 80. In the construction shown here, each thread first looks for another
thread to help, and then tries to to append its own node.

Suppose instead, each thread first tries to append its own node, and then tries
to help the other thread. Explain whether this alternative approach works. Justify
your answer.

Exercise 81. In the construction in Fig. 6.4 we use a “distributed” implementation
of a “head” reference (to the node whose decideNext field it will try to modify)
to avoid having to create an object that allows repeated consensus. Replace this
implementation with one that has no head reference at all, and finds the next
“head” by traversing down the log from the start until it reaches a node with a
sequence number of 0 or with the highest non zero sequence.

Exercise 82. A small addition we made to the lock-free protocol was to have a
thread add its newly appended node to the head array in Line 28 even though
it may have already added it in Line 20. This is necessary because, unlike in the
lock-free protocol, it could be that the thread’s node was added by another thread
in Line 20, and that “helping” thread stopped at Line 20 right after updating the
node’s sequence number but before updating the head array.

1. Explain how removing Line 28 would violate Lemma 6.4.4.

2. Would the algorithm still work correctly?

138 Chapter 6 Universality of Consensus

Exercise 83. Propose a way to fix the universal construction to work with a
bounded amount of memory, that is, a bounded number of consensus objects
and a bounded number of read–write registers.

Hint: add a before field to the nodes and build a memory recycling scheme into
the code.

Exercise 84. Implement a consensus object that is accessed more than once by
each thread using read() and compareAndSet() methods, creating a “multiple
access” consensus object. Do not use the universal construction.

IIPractice

This page intentionally left blank

7Spin Locks and Contention

When writing programs for uniprocessors, it is usually safe to ignore the
underlying system’s architectural details. Unfortunately, multiprocessor pro-
gramming has yet to reach that state, and for the time being, it is crucial to
understand the underlying machine architecture. The goal of this chapter is
to understand how architecture affects performance, and how to exploit this
knowledge to write efficient concurrent programs. We revisit the familiar mutual
exclusion problem, this time with the aim of devising mutual exclusion protocols
that work well with today’s multiprocessors.

Any mutual exclusion protocol poses the question: what do you do if you can-
not acquire the lock? There are two alternatives. If you keep trying, the lock is
called a spin lock, and repeatedly testing the lock is called spinning, or busy–
waiting. The Filter and Bakery algorithms are spin locks. Spinning is sensi-
ble when you expect the lock delay to be short. For obvious reasons, spinning
makes sense only on multiprocessors. The alternative is to suspend yourself and
ask the operating system’s scheduler to schedule another thread on your proces-
sor, which is sometimes called blocking. Because switching from one thread to
another is expensive, blocking makes sense only if you expect the lock delay to
be long. Many operating systems mix both strategies, spinning for a short time
and then blocking. Both spinning and blocking are important techniques. In this
chapter, we turn our attention to locks that use spinning.

7.1 Welcome to the Real World

We approach real-world mutual exclusion using the Lock interface from the
java.util.concurrent.locks package. For now, we consider only the two principal

141

142 Chapter 7 Spin Locks and Contention

methods: lock() and unlock(). In most cases, these methods should be used in
the following structured way:

1 Lock mutex = new LockImpl(...); // lock implementation
2 ...
3 mutex.lock();
4 try {
5 ... // body
6 } finally {
7 mutex.unlock();
8 }

We create a new Lock object called mutex (Line 1). Because Lock is an inter-
face and not a class, we cannot create Lock objects directly. Instead, we create an
object that implements the Lock interface. (The java.util.concurrent.locks pack-
age includes a number of classes that implement Lock, and we provide others in
this chapter.) Next, we acquire the lock (Line 3), and enter the critical section,
a try block (Line 4). The finally block (Line 6) ensures that no matter what,
the lock is released when control leaves the critical section. Do not put the lock()
call inside the try block, because the lock() call might throw an exception before
acquiring the lock, causing the finally block to call unlock() when the lock has
not actually been acquired.

If we want to implement an efficient Lock, why not use one of the algorithms
we studied in Chapter 2, such as Filter or Bakery? One problem with this
approach is clear from the space lower bound we proved in Chapter 2: no matter
what we do, mutual exclusion using reads and writes requires space linear in n,
the number of threads that may potentially access the location. It gets worse.

Consider, for example, the 2-thread Peterson lock algorithm of Chapter 2,
presented again in Fig. 7.1. There are two threads, A and B, with IDs either 0 or
1. When thread A wants to acquire the lock, it sets flag[A] to true, sets victim
to A, and tests victim and flag[1 −A]. As long as the test fails, the thread spins,
repeating the test. Once it succeeds, it enters the critical section, lowering flag[A]
to false as it leaves. We know, from Chapter 2, that the Peterson lock provides
starvation-free mutual exclusion.

1 class Peterson implements Lock {
2 private boolean[] flag = new boolean[2];
3 private int victim;
4 public void lock() {
5 int i = ThreadID.get(); // either 0 or 1
6 int j = 1-i;
7 flag[i] = true;
8 victim = i;
9 while (flag[j] && victim == i) {}; // spin
10 }
11 }

Figure 7.1 The Peterson class (Chapter 2): the order of reads–writes in Lines 7, 8, and 9 is
crucial to providing mutual exclusion.

7.1 Welcome to the Real World 143

Suppose we write a simple concurrent program in which each of the two
threads repeatedly acquires the Peterson lock, increments a shared counter, and
then releases the lock. We run it on a multiprocessor, where each thread exe-
cutes this acquire–increment–release cycle, say, half a million times. On most
modern architectures, the threads finish quickly. Alarmingly, however, we may
discover that the counter’s final value may be slightly off from the expected million
mark. Proportionally, the error is probably tiny, but why is there any error at all?
Somehow, it must be that both threads are occasionally in the critical section at
the same time, even though we have proved that this cannot happen. To quote
Sherlock Holmes

How often have I said to you that when you have eliminated the impossible,
whatever remains, however improbable, must be the truth?

It must be that our proof fails, not because there is anything wrong with our logic,
but because our assumptions about the real world are mistaken.

When programming our multiprocessor, we naturally assumed that read–
write operations are atomic, that is, they are linearizable to some sequential exe-
cution, or at the very least, that they are sequentially consistent. (Recall that
linearizability implies sequential consistency.) As we saw in Chapter 3, sequen-
tial consistency implies that there is some global order on all operations in which
each thread’s operations take effect as ordered by its program. Without calling
attention to it at the time, we relied on the assumption that memory is sequen-
tially consistent when proving the Peterson lock correct. In particular, mutual
exclusion depends on the order of the steps in Lines 7, 8, and 9 of Fig. 7.1. Our
proof that the Peterson lock provided mutual exclusion implicitly relied on the
assumption that any two memory accesses by the same thread, even to separate
variables, take effect in program order. (Specifically, it was crucial that B’s write
to flag[B] take effect before its write to victim (Eq. 2.3.9) and that A’s write to
victim take effect before its read of flag[B] (Eq. 2.3.11).)

Unfortunately, modern multiprocessors typically do not provide sequentially
consistent memory, nor do they necessarily guarantee program order among
reads–writes by a given thread.

Why not? The first culprits are compilers that reorder instructions to enhance
performance. Most programming languages preserve program order for each
individual variable, but not across multiple variables. It is therefore possible that
the order of writes of flag[B] and victim by thread B will be reversed by the
compiler, invalidating Eq. 2.3.9. A second culprit is the multiprocessor hardware
itself. (Appendix B has a much more complete discussion of the multiprocessor
architecture issues raised in this chapter.) Hardware vendors make no secret of the
fact that writes to multiprocessor memory do not necessarily take effect when they
are issued, because in most programs the vast majority of writes do not need to
take effect in shared memory right away. Thus, on many multiprocessor architec-
tures, writes to shared memory are buffered in a special write buffer (sometimes
called a store buffer), to be written to memory only when needed. If thread A’s
write to victim is delayed in a write buffer, it may arrive in memory only after A
reads flag[B], invalidating Eq. 2.3.11.

144 Chapter 7 Spin Locks and Contention

How then does one program multiprocessors given such weak memory
consistency guarantees? To prevent the reordering of operations resulting from
write buffering, modern architectures provide a special memory barrier instruc-
tion (sometimes called a memory fence) that forces outstanding operations to take
effect. It is the programmer’s responsibility to know where to insert a memory
barrier (e.g., the Peterson lock can be fixed by placing a barrier right before
each read). Not surprisingly, memory barriers are expensive, about as expensive
as an atomic compareAndSet() instruction, so we want to minimize their use.
In fact, synchronization instructions such as getAndSet() or compareAndSet()
described in earlier chapters include a memory barrier on many architectures,
as do reads and writes to volatile fields.

Given that barriers cost about as much as synchronization instructions, it
may be sensible to design mutual exclusion algorithms directly to use operations
such as getAndSet() or compareAndSet(). These operations have higher con-
sensus numbers than reads and writes, and they can be used in a straightfor-
ward way to reach a kind of consensus on who can and cannot enter the critical
section.

7.2 Test-And-Set Locks

The testAndSet() operation, with consensus number two, was the principal
synchronization instruction provided by many early multiprocessor architec-
tures. This instruction operates on a single memory word (or byte). That word
holds a binary value, true or false. The testAndSet() instruction atomically stores
true in the word, and returns that word’s previous value, swapping the value true
for the word’s current value. At first glance, this instruction seems ideal for imple-
menting a spin lock. The lock is free when the word’s value is false, and busy
when it is true. The lock() method repeatedly applies testAndSet() to the loca-
tion until that instruction returns false (i.e., until the lock is free). The unlock()
method simply writes the value false to it.

The java.util.concurrent package includes an AtomicBoolean class that stores
a Boolean value. It provides a set(b) method to replace the stored value with
value b, and a getAndSet(b) that atomically replaces the current value with b,
and returns the previous value. The archaic testAndSet() instruction is the same
as a call to getAndSet(true). We use the term test-and-set in prose to remain
compatible with common usage, but we use the expression getAndSet(true) in
our code examples to remain compatible with Java. The TASLock class shown
in Fig. 7.2 shows a lock algorithm based on the testAndSet() instruction.

Now consider the alternative to the TASLock algorithm illustrated in Fig. 7.3.
Instead of performing the testAndSet() directly, the thread repeatedly reads the
lock until it appears to be free (i.e., until get() returns false). Only after the lock
appears to be free does the thread apply testAndSet(). This technique is called
test-and-test-and-set and the lock a TTASLock.

7.2 Test-And-Set Locks 145

1 public class TASLock implements Lock {
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 while (state.getAndSet(true)) {}
5 }
6 public void unlock() {
7 state.set(false);
8 }
9 }

Figure 7.2 The TASLock class.

1 public class TTASLock implements Lock {
2 AtomicBoolean state = new AtomicBoolean(false);
3 public void lock() {
4 while (true) {
5 while (state.get()) {};
6 if (!state.getAndSet(true))
7 return;
8 }
9 }
10 public void unlock() {
11 state.set(false);
12 }
13 }

Figure 7.3 The TTASLock class.

Clearly, the TASLock and TTASLock algorithms are equivalent from the point
of view of correctness: each one guarantees deadlock-free mutual exclusion.
Under the simple model we have been using so far, there should be no difference
between these two algorithms.

How do they compare on a real multiprocessor? Experiments that measure
the elapsed time for n threads to execute a short critical section invariably yield
the results shown schematically in Fig. 7.4. Each data point represents the same
amount of work, so in the absence of contention effects, all curves would be flat.
The top curve is the TASLock, the middle curve is the TTASLock, and the bottom
curve shows the time that would be needed if the threads did not interfere at all.
The difference is dramatic: the TASLock performs very poorly, and the TTASLock
performance, while substantially better, still falls far short of the ideal.

These differences can be explained in terms of modern multiprocessor archi-
tectures. First, a word of caution. Modern multiprocessors encompass a variety
of architectures, so we must be careful about overgeneralizing. Nevertheless,
(almost) all modern architectures have similar issues concerning caching and
locality. The details differ, but the principles remain the same.

For simplicity, we consider a typical multiprocessor architecture in which pro-
cessors communicate by a shared broadcast medium called a bus (like a tiny Ether-
net). Both the processors and the memory controller can broadcast on the bus, but

146 Chapter 7 Spin Locks and Contention

TASLock

TTASLock

IdealLock

tim
e

number of threads

Figure 7.4 Schematic performance of a TASLock, a TTASLock, and an ideal lock with no over-
head.

only one processor (or memory) can broadcast on the bus at a time. All processors
(and memory) can listen. Today, bus-based architectures are common because
they are easy to build, although they scale poorly to large numbers of processors.

Each processor has a cache, a small high-speed memory where the processor
keeps data likely to be of interest. A memory access typically requires orders of
magnitude more machine cycles than a cache access. Technology trends are not
helping: it is unlikely that memory access times will catch up with processor cycle
times in the near future, so cache performance is critical to the overall perfor-
mance of a multiprocessor architecture.

When a processor reads from an address in memory, it first checks whether
that address and its contents are present in its cache. If so, then the processor has
a cache hit, and can load the value immediately. If not, then the processor has a
cache miss, and must find the data either in the memory, or in another processor’s
cache. The processor then broadcasts the address on the bus. The other processors
snoop on the bus. If one processor has that address in its cache, then it responds
by broadcasting the address and value. If no processor has that address, then the
memory itself responds with the value at that address.

7.3 TAS-Based Spin Locks Revisited

We now consider how the simple TTASLock algorithm performs on a shared-bus
architecture. Each getAndSet() call is broadcast on the bus. Because all threads
must use the bus to communicate with memory, these getAndSet() calls delay
all threads, even those not waiting for the lock. Even worse, the getAndSet()
call forces other processors to discard their own cached copies of the lock, so

7.4 Exponential Backoff 147

every spinning thread encounters a cache miss almost every time, and must use
the bus to fetch the new, but unchanged value. Adding insult to injury, when the
thread holding the lock tries to release it, it may be delayed because the bus is
monopolized by the spinners. We now understand why the TASLock performs
so poorly.

Now consider the behavior of the TTASLock algorithm while the lock is held by
a thread A. The first time thread B reads the lock it takes a cache miss, forcing B
to block while the value is loaded into B’s cache. As long as A holds the lock,
B repeatedly rereads the value, but hits in the cache every time. B thus pro-
duces no bus traffic, and does not slow down other threads’ memory accesses.
Moreover, a thread that releases a lock is not delayed by threads spinning on
that lock.

The situation deteriorates, however, when the lock is released. The lock holder
releases the lock by writing false to the lock variable, which immediately invali-
dates the spinners’ cached copies. Each one takes a cache miss, rereads the new
value, and they all (more-or-less simultaneously) call getAndSet() to acquire the
lock. The first to succeed invalidates the others, who must then reread the value,
causing a storm of bus traffic. Eventually, the threads settle down once again to
local spinning.

This notion of local spinning, where threads repeatedly reread cached values
instead of repeatedly using the bus, is an important principle critical to the design
of efficient spin locks.

7.4 Exponential Backoff

We now consider how to refine the TTASLock algorithm. First, some terminology:
contention occurs when multiple threads try to acquire a lock at the same time.
High contention means there are many such threads, and low contention means
the opposite.

Recall that in the TTASLock class, the lock() method takes two steps: it repeat-
edly reads the lock, and when the lock appears to be free, it attempts to acquire the
lock by calling getAndSet(true). Here is a key observation: if some other thread
acquires the lock between the first and second step, then, most likely, there is high
contention for that lock. Clearly, it is a bad idea to try to acquire a lock for which
there is high contention. Such an attempt contributes to bus traffic (making the
traffic jam worse), at a time when the thread’s chances of acquiring the lock are
slim. Instead, it is more effective for the thread to back off for some duration,
giving competing threads a chance to finish.

For how long should the thread back off before retrying? A good rule of
thumb is that the larger the number of unsuccessful tries, the higher the likely
contention, and the longer the thread should back off. Here is a simple approach.
Whenever the thread sees the lock has become free but fails to acquire it, it backs

148 Chapter 7 Spin Locks and Contention

off before retrying. To ensure that concurrent conflicting threads do not fall into
lock-step, all trying to acquire the lock at the same time, the thread backs off for
a random duration. Each time the thread tries and fails to get the lock, it doubles
the expected back-off time, up to a fixed maximum.

Because backing off is common to several locking algorithms, we encapsulate
this logic in a simple Backoff class, shown in Fig. 7.5. The constructor takes these
arguments: minDelay is the initial minimum delay (it makes no sense for the
thread to back off for too short a duration), and maxDelay is the final maximum
delay (a final limit is necessary to prevent unlucky threads from backing off for
much too long). The limit field controls the current delay limit. The backoff()
method computes a random delay between zero and the current limit, and blocks
the thread for that duration before returning. It doubles the limit for the next
back-off, up to maxDelay.

Fig. 7.6 illustrates the BackoffLock class. It uses a Backoff object whose min-
imum and maximum back-off durations are governed by the constants minDelay
and maxDelay. It is important to note that the thread backs off only when
it fails to acquire a lock that it had immediately before observed to be free.
Observing that the lock is held by another thread says nothing about the level of
contention.

The BackoffLock is easy to implement, and typically performs significantly
better than TASLock on many architectures. Unfortunately, its performance is
sensitive to the choice of minDelay and maxDelay constants. To deploy this
lock on a particular architecture, it is easy to experiment with different values,
and to choose the ones that work best. Experience shows, however, that these
optimal values are sensitive to the number of processors and their speed, so

1 public class Backoff {
2 final int minDelay, maxDelay;
3 int limit;
4 final Random random;
5 public Backoff(int min, int max) {
6 minDelay = min;
7 maxDelay = min;
8 limit = minDelay;
9 random = new Random();
10 }
11 public void backoff() throws InterruptedException {
12 int delay = random.nextInt(limit);
13 limit = Math.min(maxDelay, 2 * limit);
14 Thread.sleep(delay);
15 }
16 }

Figure 7.5 The Backoff class: adaptive backoff logic. To ensure that concurrently contending
threads do not repeatedly try to acquire the lock at the same time, threads back off for a
random duration. Each time the thread tries and fails to get the lock, it doubles the expected
time to back off, up to a fixed maximum.

7.5 Queue Locks 149

1 public class BackoffLock implements Lock {
2 private AtomicBoolean state = new AtomicBoolean(false);
3 private static final int MIN_DELAY = ...;
4 private static final int MAX_DELAY = ...;
5 public void lock() {
6 Backoff backoff = new Backoff(MIN_DELAY, MAX_DELAY);
7 while (true) {
8 while (state.get()) {};
9 if (!state.getAndSet(true)) {

10 return;
11 } else {
12 backoff.backoff();
13 }
14 }
15 }
16 public void unlock() {
17 state.set(false);
18 }
19 ...
20 }

Figure 7.6 The Exponential Backoff lock. Whenever the thread fails to acquire a lock that
became free, it backs off before retrying.

it is not easy to tune the BackoffLock class to be portable across a range of
different machines.

7.5 Queue Locks

We now explore a different approach to implementing scalable spin locks, one
that is slightly more complicated than backoff locks, but inherently more portable.
There are two problems with the BackoffLock algorithm.

� Cache-coherence Traffic: All threads spin on the same shared location causing
cache-coherence traffic on every successful lock access (though less than with
the TASLock).

� Critical Section Underutilization: Threads delay longer than necessary, causing
the the critical section to be underutilized.

One can overcome these drawbacks by having threads form a queue. In a queue,
each thread can learn if its turn has arrived by checking whether its predecessor
has finished. Cache-coherence traffic is reduced by having each thread spin on
a different location. A queue also allows for better utilization of the critical sec-
tion, since there is no need to guess when to attempt to access it: each thread is
notified directly by its predecessor in the queue. Finally, a queue provides first-
come-first-served fairness, the same high level of fairness achieved by the Bakery

150 Chapter 7 Spin Locks and Contention

algorithm. We now explore different ways to implement queue locks, a family of
locking algorithms that exploit these insights.

7.5.1 Array-Based Locks

Figs. 7.7 and 7.8 show the ALock,1 a simple array-based queue lock. The threads
share an AtomicInteger tailfield, initially zero. To acquire the lock, each thread
atomically increments tail (Line 17). Call the resulting value the thread’s slot.
The slot is used as an index into a Boolean flag array. If flag[j] is true, then the
thread with slot j has permission to acquire the lock. Initially, flag[0] is true. To
acquire the lock, a thread spins until the flag at its slot becomes true (Line 19). To
release the lock, the thread sets the flag at its slot to false (Line 23), and sets the
flag at the next slot to true (Line 24). All arithmetic is modulo n, where n is at least
as large as the maximum number of concurrent threads.

In the ALock algorithm, mySlotIndex is a thread-local variable (see App-
endix A). Thread-local variables differ from their regular counterparts in that

1 public class ALock implements Lock {
2 ThreadLocal<Integer> mySlotIndex = new ThreadLocal<Integer> (){
3 protected Integer initialValue() {
4 return 0;
5 }
6 };
7 AtomicInteger tail;
8 boolean[] flag;
9 int size;
10 public ALock(int capacity) {
11 size = capacity;
12 tail = new AtomicInteger(0);
13 flag = new boolean[capacity];
14 flag[0] = true;
15 }
16 public void lock() {
17 int slot = tail.getAndIncrement() % size;
18 mySlotIndex.set(slot);
19 while (! flag[slot]) {};
20 }
21 public void unlock() {
22 int slot = mySlotIndex.get();
23 flag[slot] = false;
24 flag[(slot + 1) % size] = true;
25 }
26 }

Figure 7.7 Array-based Queue Lock.

1 Most of our lock classes use the initials of their inventors, as explained in Section 7.10

7.5 Queue Locks 151

each thread has its its own, independently initialized copy of each variable.
Thread-local variables need not be stored in shared memory, do not require syn-
chronization, and do not generate any coherence traffic since they are accessed
by only one thread. The value of a thread-local variable is accessed by get() and
set() methods.

The flag[] array, on the other hand, is shared. However, contention on the
array locations is minimized since each thread, at any given time, spins on its
locally cached copy of a single array location, greatly reducing invalidation traffic.

Note that contention may still occur because of a phenomenon called false
sharing, which occurs when adjacent data items (such as array elements) share
a single cache line. A write to one item invalidates that item’s cache line, which
causes invalidation traffic to processors that are spinning on unchanged but near
items that happen to fall in the same cache line. In the example in Fig. 7.8, threads
accessing the 8 ALock locations may suffer unnecessary invalidations because the
locations were all cached in the same two 4-word lines. One way to avoid false
sharing is to pad array elements so that distinct elements are mapped to distinct
cache lines. Padding is easier in low-level languages like C or C++ where the pro-
grammer has a direct control over the layout of objects in memory. In the example
in Fig. 7.8, we pad the eight original ALock locations by increasing the lock array
size fourfold, and placing the locations four words apart so that no two locations
can fall in the same cache line. (We increment from one location i to the next by
computing 4(i + 1) mod 32 instead of i + 1 mod 8).

7.5.2 The CLH Queue Lock

The ALock improves on BackoffLock because it reduces invalidations to a mini-
mum, and minimizes the interval between when a lock is freed by one thread and
when it is acquired by another. Unlike the TASLock and BackoffLock, this algo-
rithm guarantees that no starvation occurs, and provides first-come-first-served
fairness.

Unfortunately, the ALock lock is not space-efficient. It requires a known bound
n on the maximum number of concurrent threads, and it allocates an array of that
size per lock. Thus, synchronizing L distinct objects requires O(Ln) space, even
if a thread accesses only one lock at a time.

We now turn our attention to a different style of queue lock. Fig. 7.9 shows
the CLHLock class’s fields, constructor, and QNode class. This class records each
thread’s status in a QNode object, which has a Boolean locked field. If that field is
true, then the corresponding thread has either acquired the lock, or is waiting for
the lock. If that field is false, then the thread has released the lock. The lock itself
is represented as a virtual linked list of QNode objects. We use the term “virtual”
because the list is implicit: each thread refers to its predecessor through a thread-
local pred variable. The public tail field is an AtomicReference<QNode> to the
node most recently added to the queue.

As shown in Fig. 7.10, to acquire the lock, a thread sets the locked field of its
QNode to true, indicating that the thread is not ready to release the lock. The thread

152 Chapter 7 Spin Locks and Contention

(a)

(b)

mySlot

Thread C
(will get
slot 4)

mySlot

Thread A
(in CS)

mySlot

Thread B
(spinning)

1

0

2

3

7

6

4

5

false

false

true

falsefalse

false

false

false

4

tail
line k

line k11

line n

Cache

line 0

truefalse false false

falsefalse false false
i11 mod 8

line n

Cache

line 0

line k17

line k12

line k11

line k4

0

8

12

28

24

16

20

false

false

true

false

false

false

false

false

16

tail

4(i11) mod 32

mySlot mySlot mySlot

Thread C
(will get
slot 16)

Thread B
(spinning)

Thread A
(in CS)

false

false

true

false

Figure 7.8 The ALock with padding to avoid false sharing. In Part (a) the ALock has 8 slots which are accessed
via a modulo 8 counter. Array entries are typically mapped into cache lines consecutively. As can be seen,
when thread A changes the status of its entry, thread B whose entry is mapped to the same cache line k
incurs a false invalidation. In Part (b) each location is padded so it is 4 apart from the others with a modulo
32 counter. Even if array entries are mapped consecutively, the entry for B is mapped to a different cache line
from that of A, so if A invalidates its entry this does not cause B to be invalidated.

7.5 Queue Locks 153

1 public class CLHLock implements Lock {
2 AtomicReference<QNode> tail = new AtomicReference<QNode>(new QNode());
3 ThreadLocal<QNode> myPred;
4 ThreadLocal<QNode> myNode;
5 public CLHLock() {
6 tail = new AtomicReference<QNode>(new QNode());
7 myNode = new ThreadLocal<QNode>() {
8 protected QNode initialValue() {
9 return new QNode();
10 }
11 };
12 myPred = new ThreadLocal<QNode>() {
13 protected QNode initialValue() {
14 return null;
15 }
16 };
17 }
18 ...
19 }

Figure 7.9 The CLHLock class: fields and constructor.

20 public void lock() {
21 QNode qnode = myNode.get();
22 qnode.locked = true;
23 QNode pred = tail.getAndSet(qnode);
24 myPred.set(pred);
25 while (pred.locked) {}
26 }
27 public void unlock() {
28 QNode qnode = myNode.get();
29 qnode.locked = false;
30 myNode.set(myPred.get());
31 }
32 }

Figure 7.10 The CLHLock class: lock() and unlock() methods.

applies getAndSet() to the tail field to make its own node the tail of the queue,
simultaneously acquiring a reference to its predecessor’s QNode. The thread then
spins on the predecessor’s locked field until the predecessor releases the lock. To
release the lock, the thread sets its node’s locked field to false. It then reuses its
predecessor’s QNode as its new node for future lock accesses. It can do so because
at this point the thread’s predecessor’s QNode is no longer used by the predecessor,
and the thread’s old QNode could be referenced both by the thread’s successor and
by the tail.2 Although we do not do so in our examples, it is possible to recycle

2 It is not necessary for correctness to reuse nodes in garbage-collected languages such as Java or
C#, but reuse would be needed in languages such as C++ or C.

154 Chapter 7 Spin Locks and Contention

(a) (b)

(c)

tail.getAndSet()
A:lock()

A:unlock()
B:lock()

Thread A

myNode5myPred

myNode myPred

Thread B Thread A

myNode myPred myNode myPred

false falsetrue

falsefalsetrue

Initially

tail tail

tail

Figure 7.11 CLHLock class: lock acquisition and release. Initially the tail field refers to a QNodewhose locked
field is false. Thread A then applies getAndSet() to the tail field to insert its QNode at the tail of the queue,
simultaneously acquiring a reference to its predecessor’s QNode. Next, B does the same to insert its QNode
at the tail of the queue. A then releases the lock by setting its node’s locked field to false. It then recycles
the QNode referenced by pred for future lock accesses.

nodes so that if there are L locks, and each thread accesses at most one lock at a
time, then the CLHLock class needs only O(L + n) space, as compared to O(Ln)
for the ALock class. Fig. 7.11 shows a typical CLHLock execution.

Like the ALock, this algorithm has each thread spin on a distinct location, so
when one thread releases its lock, it invalidates only its successor’s cache. This
algorithm requires much less space than the ALock class, and does not require
knowledge of the number of threads that might access the lock. Like the ALock
class, it provides first-come-first-served fairness.

Perhaps the only disadvantage of this lock algorithm is that it performs poorly
on cache-less NUMA architectures. Each thread spins waiting for its predeces-
sor’s node’s locked field to become false. If this memory location is remote, then
performance suffers. On cache-coherent architectures, however, this approach
should work well.

7.5.3 The MCS Queue Lock

Fig. 7.12 shows the fields and constructor for the MCSLock class. Here, too, the
lock is represented as a linked list of QNode objects, where each QNode represents

7.5 Queue Locks 155

1 public class MCSLock implements Lock {
2 AtomicReference<QNode> tail;
3 ThreadLocal<QNode> myNode;
4 public MCSLock() {
5 queue = new AtomicReference<QNode>(null);
6 myNode = new ThreadLocal<QNode>() {
7 protected QNode initialValue() {
8 return new QNode();
9 }

10 };
11 }
12 ...
13 class QNode {
14 boolean locked = false;
15 QNode next = null;
16 }
17 }

Figure 7.12 MCSLock class: fields, constructor and QNode class.

18 public void lock() {
19 QNode qnode = myNode.get();
20 QNode pred = tail.getAndSet(qnode);
21 if (pred != null) {
22 qnode.locked = true;
23 pred.next = qnode;
24 // wait until predecessor gives up the lock
25 while (qnode.locked) {}
26 }
27 }
28 public void unlock() {
29 QNode qnode = myNode.get();
30 if (qnode.next == null) {
31 if (tail.compareAndSet(qnode, null))
32 return;
33 // wait until predecessor fills in its next field
34 while (qnode.next == null) {}
35 }
36 qnode.next.locked = false;
37 qnode.next = null;
38 }

Figure 7.13 MCSLock class: lock() and unlock() methods.

either a lock holder or a thread waiting to acquire the lock. Unlike the CLHLock
class, the list is explicit, not virtual: instead of embodying the list in thread-local
variables, it is embodied in the (globally accessible) QNode objects, via their next
fields.

Fig. 7.13 shows the MCSLock class’s lock() and unlock() methods. To acquire
the lock, a thread appends its own QNode at the tail of the list (Line 20). If the

156 Chapter 7 Spin Locks and Contention

queue was not previously empty, it sets the predecessor’s QNode’s next field to
refer to its own QNode. The thread then spins on a (local) locked field in its own
QNode waiting until its predecessor sets this field to false (Lines 21–26).

The unlock() method checks whether the node’s next field is null (Line 30).
If so, then either no other thread is contending for the lock, or there is another
thread, but it is slow. Let q be the thread’s current node. To distinguish between
these cases, the method applies compareAndSet(q, null) to the tail field. If the
call succeeds, then no other thread is trying to acquire the lock, tail is set to null,
and the method returns. Otherwise, another (slow) thread is trying to acquire the
lock, so the method spins waiting for it to finish (Line 34). In either case, once the
successor has appeared, the unlock() method sets its successor’s locked field to
false, indicating that the lock is now free. At this point, no other thread can access
this QNode, and so it can be reused. Fig. 7.14 shows an example execution of the
MCSLock.

This lock shares the advantages of the CLHLock, in particular, the property that
each lock release invalidates only the successor’s cache entry. It is better suited
to cache-less NUMA architectures because each thread controls the location on
which it spins. Like the CLHLock, nodes can be recycled so that this lock has

false

(a)

Initially

A:lock()

B:lock()

C:lock()

A:unlock()

falsetruetrue

false true false

Thread C

myNode

tail

Thread B

myNode

Thread A

myNode

(c)

(b) (d)

Thread C

myNode

Thread B

myNode

Thread A

myNode

Thread A

myNode

tail

tail tail

tail.getAndSet()

Figure 7.14 A lock acquisition and release in an MCSLock. (a) Initially the tail is null. (b) To acquire the lock,
thread A places its own QNode at the tail of the list and since it has no predecessor it enters the critical section.
(c) thread B enqueues its own QNode at the tail of the list and modifies its predecessor’s QNode to refer back
to its own. Thread B then spins on its locked field waiting until A, its predecessor, sets this field from true to
false. Thread C repeats this sequence. (d) To release the lock, A follows its next field to its successor B and
sets B’s locked field to false. It can now reuse its QNode.

7.6 A Queue Lock with Timeouts 157

space complexity O(L + n). One drawback of the MCSLock algorithm is that
releasing a lock requires spinning. Another is that it requires more reads, writes,
and compareAndSet() calls than the CLHLock algorithm.

7.6 A Queue Lock with Timeouts

The Java Lock interface includes a tryLock() method that allows the caller to
specify a timeout: a maximum duration the caller is willing to wait to acquire
the lock. If the timeout expires before the caller acquires the lock, the attempt is
abandoned. A Boolean return value indicates whether the lock attempt succeeded.
(For an explanation why these methods throw InterruptedException, see
Pragma 8.2.3 in Chapter 8.)

Abandoning a BackoffLock request is trivial, because a thread can simply
return from the tryLock() call. Timing out is wait-free, requiring only a con-
stant number of steps. By contrast, timing out any of the queue lock algorithms
is far from trivial: if a thread simply returns, the threads queued up behind it will
starve.

Here is a bird’s-eye view of a queue lock with timeouts. As in the CLHLock,
the lock is a virtual queue of nodes, and each thread spins on its predecessor’s
node waiting for the lock to be released. As noted, when a thread times out, it
cannot simply abandon its queue node, because its successor will never notice
when the lock is released. On the other hand, it seems extremely difficult to unlink
a queue node without disrupting concurrent lock releases. Instead, we take a lazy
approach: when a thread times out, it marks its node as abandoned. Its successor
in the queue, if there is one, notices that the node on which it is spinning has
been abandoned, and starts spinning on the abandoned node’s predecessor. This
approach has the added advantage that the successor can recycle the abandoned
node.

Fig. 7.15 shows the fields, constructor, and QNode class for the TOLock (timeout
lock) class, a queue lock based on the CLHLock class that supports wait-free time-
out even for threads in the middle of the list of nodes waiting for the lock.

When a QNode’s pred field is null, the associated thread has either not acquired
the lock or has released it. When a QNode’s pred field refers to a distinguished,
static QNode called AVAILABLE, the associated thread has released the lock. Finally,
if the pred field refers to some other QNode, the associated thread has abandoned
the lock request, so the thread owning the successor node should wait on the
abandoned node’s predecessor.

Fig. 7.16 shows the TOLock class’s tryLock() and unlock() methods. The
tryLock() method creates a new QNode with a null pred field and appends it
to the list as in the CLHLock class (Lines 5–8). If the lock was free (Line 9), the
thread enters the critical section. Otherwise, it spins waiting for its predecessor’s
QNode’s pred field to change (Lines 12–19). If the predecessor thread times out, it
sets the pred field to its own predecessor, and the thread spins instead on the new

158 Chapter 7 Spin Locks and Contention

1 public class TOLock implements Lock{
2 static QNode AVAILABLE = new QNode();
3 AtomicReference<QNode> tail;
4 ThreadLocal<QNode> myNode;
5 public TOLock() {
6 tail = new AtomicReference<QNode>(null);
7 myNode = new ThreadLocal<QNode>() {
8 protected QNode initialValue() {
9 return new QNode();
10 }
11 };
12 }
13 ...
14 static class QNode {
15 public QNode pred = null;
16 }
17 }

Figure 7.15 TOLock class: fields, constructor, and QNode class.

1 public boolean tryLock(long time, TimeUnit unit)
2 throws InterruptedException {
3 long startTime = System.currentTimeMillis();
4 long patience = TimeUnit.MILLISECONDS.convert(time, unit);
5 QNode qnode = new QNode();
6 myNode.set(qnode);
7 qnode.pred = null;
8 QNode myPred = tail.getAndSet(qnode);
9 if (myPred == null || myPred.pred == AVAILABLE) {
10 return true;
11 }
12 while (System.currentTimeMillis() - startTime < patience) {
13 QNode predPred = myPred.pred;
14 if (predPred == AVAILABLE) {
15 return true;
16 } else if (predPred != null) {
17 myPred = predPred;
18 }
19 }
20 if (!tail.compareAndSet(qnode, myPred))
21 qnode.pred = myPred;
22 return false;
23 }
24 public void unlock() {
25 QNode qnode = myNode.get();
26 if (!tail.compareAndSet(qnode, null))
27 qnode.pred = AVAILABLE;
28 }
29 }

Figure 7.16 TOLock class: tryLock() and unlock() methods.

7.7 A Composite Lock 159

Thread E

myNode myPred

Thread C

myNode myPred

tail

Thread A

myNode myPred

Thread D Thread B

avail

Figure 7.17 Timed-out nodes that must be skipped to acquire the TOLock. Threads B and D
have timed out, redirecting their pred fields to their predecessors in the list. Thread C notices
that B’s field is directed at A and so it starts spinning on A. Similarly thread E spins waiting for
C. When A completes and sets its pred to AVAILABLE, C will access the critical section and
upon leaving it will set its pred to AVAILABLE, releasing E.

predecessor. An example of such a sequence appears in Fig. 7.17. Finally, if the
thread itself times out (Line 20), it attempts to remove its QNode from the list
by applying compareAndSet() to the tail field. If the compareAndSet() call
fails, indicating that the thread has a successor, the thread sets its QNode’s pred
field, previously null, to its predecessor’s QNode, indicating that it has abandoned
the queue.

In the unlock() method, a thread checks, using compareAndSet(), whether
it has a successor (Line 26), and if so sets its pred field to AVAILABLE. Note that
it is not safe to recycle a thread’s old node at this point, since the node may be
referenced by its immediate successor, or by a chain of such references. The nodes
in such a chain can be recycled as soon as a thread skips over the timed-out nodes
and enters the critical section.

The TOLock has many of the advantages of the original CLHLock: local
spinning on a cached location and quick detection that the lock is free. It also
has the wait-free timeout property of the BackoffLock. However, it has some
drawbacks, among them the need to allocate a new node per lock access, and the
fact that a thread spinning on the lock may have to go up a chain of timed-out
nodes before it can access the critical section.

7.7 A Composite Lock

Spin-lock algorithms impose trade-offs. Queue locks provide first-come-first-
served fairness, fast lock release, and low contention, but require nontrivial pro-
tocols for recycling abandoned nodes. By contrast, backoff locks support trivial
timeout protocols, but are inherently not scalable, and may have slow lock release
if timeout parameters are not well-tuned. In this section, we consider an advanced
lock algorithm that combines the best of both approaches.

160 Chapter 7 Spin Locks and Contention

Consider the following simple observation: in a queue lock, only the threads
at the front of the queue need to perform lock handoffs. One way to balance the
merits of queue locks versus backoff locks is to keep a small number of waiting
threads in a queue on the way to the critical section, and have the rest use exponen-
tial backoff while attempting to enter this short queue. It is trivial for the threads
employing backoff to quit.

The CompositeLock class keeps a short, fixed-size array of lock nodes. Each
thread that tries to acquire the lock selects a node in the array at random. If
that node is in use, the thread backs off (adaptively), and tries again. Once the
thread acquires a node, it enqueues that node in a TOLock-style queue. The thread
spins on the preceding node, and when that node’s owner signals it is done, the
thread enters the critical section. When it leaves, either because it completed or
timed-out, it releases ownership of the node, and another backed-off thread may
acquire it. The tricky part of course, is how to recycle the freed nodes of the array
while multiple threads attempt to acquire control over them.

The CompositeLock’s fields, constructor, and unlock() method appear in
Fig. 7.18. The waiting field is a constant-size QNode array, and the tail
field is an AtomicStampedReference<QNode> that combines a reference to
the queue tail with a version number needed to avoid the ABA problem on
updates (see Pragma 10.6.1 of Chapter 10 for a more detailed explanation of

1 public class CompositeLock implements Lock{
2 private static final int SIZE = ...;
3 private static final int MIN_BACKOFF = ...;
4 private static final int MAX_BACKOFF = ...;
5 AtomicStampedReference<QNode> tail;
6 QNode[] waiting;
7 Random random;
8 ThreadLocal<QNode> myNode = new ThreadLocal<QNode>() {
9 protected QNode initialValue() { return null; };
10 };
11 public CompositeLock() {
12 tail = new AtomicStampedReference<QNode>(null,0);
13 waiting = new QNode[SIZE];
14 for (int i = 0; i < waiting.length; i++) {
15 waiting[i] = new QNode();
16 }
17 random = new Random();
18 }
19 public void unlock() {
20 QNode acqNode = myNode.get();
21 acqNode.state.set(State.RELEASED);
22 myNode.set(null);
23 }
24 ...
25 }

Figure 7.18 The CompositeLock class: fields, constructor, and unlock() method.

7.7 A Composite Lock 161

1 enum State {FREE, WAITING, RELEASED, ABORTED};
2 class QNode {
3 AtomicReference<State> state;
4 QNode pred;
5 public QNode() {
6 state = new AtomicReference<State>(State.FREE);
7 }
8 }

Figure 7.19 The CompositeLock class: the QNode class.

1 public boolean tryLock(long time, TimeUnit unit)
2 throws InterruptedException {
3 long patience = TimeUnit.MILLISECONDS.convert(time, unit);
4 long startTime = System.currentTimeMillis();
5 Backoff backoff = new Backoff(MIN_BACKOFF, MAX_BACKOFF);
6 try {
7 QNode node = acquireQNode(backoff, startTime, patience);
8 QNode pred = spliceQNode(node, startTime, patience);
9 waitForPredecessor(pred, node, startTime, patience);

10 return true;
11 } catch (TimeoutException e) {
12 return false;
13 }
14 }

Figure 7.20 The CompositeLock class: the tryLock() method.

the AtomicStampedReference<T> class, and Chapter 11 for a more complete
discussion of the ABA problem3). The tail field is either null or refers to the last
node inserted in the queue. Fig. 7.19 shows the QNode class. Each QNode includes
a State field and a reference to the predecessor node in the queue.

A QNode has four possible states: WAITING, RELEASED, ABORTED, or FREE.
A WAITING node is linked into the queue, and the owning thread is either in the
critical section, or waiting to enter. A node becomes RELEASED when its owner
leaves the critical section and releases the lock. The other two states occur when a
thread abandons its attempt to acquire the lock. If the quitting thread has acquired
a node but not enqueued it, then it marks the thread as FREE. If the node is
enqueued, then it is marked as ABORTED.

Fig. 7.20 shows the tryLock() method. A thread acquires the lock in three
steps. First, it acquires a node in the waiting array (Line 7), then it enqueues that
node in the queue (Line 12), and finally it waits until that node is at the head of
the queue (Line 9).

3 ABA is typically a problem only when using dynamically allocated memory in non garbage col-
lected languages. We encounter it here because we are implementing a dynamic linked list using
an array.

162 Chapter 7 Spin Locks and Contention

1 private QNode acquireQNode(Backoff backoff, long startTime,
2 long patience)
3 throws TimeoutException, InterruptedException {
4 QNode node = waiting[random.nextInt(SIZE)];
5 QNode currTail;
6 int[] currStamp = {0};
7 while (true) {
8 if (node.state.compareAndSet(State.FREE, State.WAITING)) {
9 return node;

10 }
11 currTail = tail.get(currStamp);
12 State state = node.state.get();
13 if (state == State.ABORTED || state == State.RELEASED) {
14 if (node == currTail) {
15 QNode myPred = null;
16 if (state == State.ABORTED) {
17 myPred = node.pred;
18 }
19 if (tail.compareAndSet(currTail, myPred,
20 currStamp[0], currStamp[0]+1)) {
21 node.state.set(State.WAITING);
22 return node;
23 }
24 }
25 }
26 backoff.backoff();
27 if (timeout(patience, startTime)) {
28 throw new TimeoutException();
29 }
30 }
31 }

Figure 7.21 The CompositeLock class: the acquireQNode() method.

The algorithm for acquiring a node in the waiting array appears in Fig. 7.21.
The thread selects a node at random and tries to acquire the node by changing
that node’s state from FREE to WAITING (Line 8). If it fails, it examines the node’s
status. If the node is ABORTED or RELEASED (Line 13), the thread may “clean up”
the node. To avoid synchronization conflicts with other threads, a node can be
cleaned up only if it is the last queue node (that is, the value of tail). If the
tail node is ABORTED, tail is redirected to that node’s predecessor; otherwise
tail is set to null. If, instead, the allocated node is WAITING, then the thread
backs off and retries. If the thread times out before acquiring its node, it throws
TimeoutException (Line 28).

Once the thread acquires a node, the spliceQNode() method, shown in
Fig. 7.22, splices that node into the queue. The thread repeatedly tries to set
tail to the allocated node. If it times out, it marks the allocated node as FREE
and throws TimeoutException. If it succeeds, it returns the prior value of tail,
acquired by the node’s predecessor in the queue.

7.7 A Composite Lock 163

1 private QNode spliceQNode(QNode node, long startTime, long patience)
2 throws TimeoutException {
3 QNode currTail;
4 int[] currStamp = {0};
5 do {
6 currTail = tail.get(currStamp);
7 if (timeout(startTime, patience)) {
8 node.state.set(State.FREE);
9 throw new TimeoutException();

10 }
11 } while (!tail.compareAndSet(currTail, node,
12 currStamp[0], currStamp[0]+1));
13 return currTail;
14 }

Figure 7.22 The CompositeLock class: the spliceQNode() method.

1 private void waitForPredecessor(QNode pred, QNode node, long startTime,
2 long patience)
3 throws TimeoutException {
4 int[] stamp = {0};
5 if (pred == null) {
6 myNode.set(node);
7 return;
8 }
9 State predState = pred.state.get();
10 while (predState != State.RELEASED) {
11 if (predState == State.ABORTED) {
12 QNode temp = pred;
13 pred = pred.pred;
14 temp.state.set(State.FREE);
15 }
16 if (timeout(patience, startTime)) {
17 node.pred = pred;
18 node.state.set(State.ABORTED);
19 throw new TimeoutException();
20 }
21 predState = pred.state.get();
22 }
23 pred.state.set(State.FREE);
24 myNode.set(node);
25 return;
26 }

Figure 7.23 The CompositeLock class: the waitForPredecessor() method.

Finally, once the node has been enqueued, the thread must wait its turn by
calling waitForPredecessor() (Fig. 7.23). If the predecessor is null, then the
thread’s node is first in the queue, so the thread saves the node in the thread-local
myNode field (for later use by unlock()), and enters the critical section. If the pre-
decessor node is not RELEASED, the thread checks whether it is ABORTED (Line 11).

164 Chapter 7 Spin Locks and Contention

myNode myNode myNode myNode myNodemyPred myPred myPred myPred myPred

Thread C
(waiting on
Node 4)

Thread B
(times out
holding
Node 4)

Thread A
(in CS)

Thread D
(backing off
on Node 1)

Thread E
(backing off
on Node 4)

(a)

1 3

F W
null null null null

W AW

2 4

(b)

myNode myNode myPred myNode myPred myNode myPredmyNodemyPred myPred

Thread C
(waiting on
Node 3)

Thread B
(timed out)

Thread A
(in CS)

Thread D
(backing off
on Node 1)

Thread E
(acquires
Node 4)

1 3

F W
null null null null

F AW

2 4

(c)

myNode myNode myPred myNode myPred myNode myPredmyNodemyPred myPred

Thread C
(waiting on
Node 3)

Thread B
(timed out)

Thread A
(in CS)

Thread D
(backing off
on Node 1)

Thread E
(acquires
Node 4)

1 3

F W
null null null

W FW

2 v

Figure 7.24 The CompositeLock class: an execution. In Part (a) thread A (which acquired Node 3) is in the
critical section. Thread B (Node 4) is waiting for A to release the critical section and thread C (Node 1) is
in turn waiting for B. Threads D and E are backing off, waiting to acquire a node. Node 2 is free. The tail
field refers to Node 1, the last node to be inserted into the queue. At this point B times out, inserting an
explicit reference to its predecessor, and changing Node 4’s state from WAITING (denoted by W), to ABORTED
(denoted by A). In Part (b), thread C cleans up the ABORTED Node 4, setting its state to FREE and following
the explicit reference from 4 to 3 (by redirecting its local myPred field). It then starts waiting for A (Node 3)
to leave the critical section. In Part (c) E acquires the FREE Node 4, using compareAndSet() to set its state
to WAITING. Thread E then inserts Node 4 into the queue, using compareAndSet() to swap Node 4 into the
tail, then waiting on Node 1, which was previously referred to the tail.

7.7 A Composite Lock 165

If so, the thread marks the node FREE and waits on the aborted node’s predeces-
sor. If the thread times out, then it marks its own node as ABORTED and throws
TimeoutException. Otherwise, when the predecessor node becomes RELEASED
the thread marks it FREE, records its own node in the thread-local myPred field,
and enters the critical section.

The unlock() method (Fig. 7.18) simply retrieves its node from myPred and
marks it RELEASED.

The CompositeLock has a number of interesting properties. When threads
back off, they access different locations, reducing contention. Lock hand-off is
fast, just as in the CLHLock and TOLock algorithms. Abandoning a lock request is
trivial for threads in the backoff stage, and relatively straightforward for threads
that have acquired queue nodes. For L locks and n threads, the CompositeLock
class, requires only O(L) space in the worst case, as compared to the TOLock
class’s O(L · n). There is one drawback: the CompositeLock class does not
guarantee first-come-first-served access.

7.7.1 A Fast-Path Composite Lock

Although the CompositeLock is designed to perform well under contention,
performance in the absence of concurrency is also important. Ideally, for a thread
running alone, acquiring a lock should be as simple as acquiring an uncon-
tended TASLock. Unfortunately, in the CompositeLock algorithm, a thread run-
ning alone must redirect the tailfield away from a released node, claim the node,
and then splice it into the queue.

A fast path is a shortcut through a complex algorithm taken by a thread running
alone. We can extend the CompositeLock algorithm to encompass a fast path in
which a solitary thread acquires an idle lock without acquiring a node and splicing
it into the queue.

Here is a bird’s-eye view. We add an extra state, distinguishing between a lock
held by an ordinary thread and a lock held by a fast-path thread. If a thread dis-
covers the lock is free, it tries a fast-path acquire. If it succeeds, then it has acquired
the lock in a single atomic step. If it fails, then it enqueues itself just as before.

We now examine the algorithm in detail. To reduce code duplication, we
define the CompositeFastPathLock class to be a subclass of CompositeLock (see
Fig. 7.25).

We use a FASTPATH flag to indicate that a thread has acquired the lock through
the fast path. Because we need to manipulate this flag together with the tail
field’s reference, we “steal” a high-order bit from the tail field’s integer stamp
(Line 2). The private fastPathLock() method checks whether the tail field’s
stamp has a clear FASTPATH flag and a null reference. If so, it tries to acquire
the lock simply by applying compareAndSet() to set the FASTPATH flag to true,
ensuring that the reference remains null. An uncontended lock acquisition thus
requires a single atomic operation. The fastPathLock() method returns true if
it succeeds, and false otherwise.

166 Chapter 7 Spin Locks and Contention

1 public class CompositeFastPathLock extends CompositeLock {
2 private static final int FASTPATH = ...;
3 private boolean fastPathLock() {
4 int oldStamp, newStamp;
5 int stamp[] = {0};
6 QNode qnode;
7 qnode = tail.get(stamp);
8 oldStamp = stamp[0];
9 if (qnode != null) {
10 return false;
11 }
12 if ((oldStamp & FASTPATH) != 0) {
13 return false;
14 }
15 newStamp = (oldStamp + 1) | FASTPATH;
16 return tail.compareAndSet(qnode, null, oldStamp, newStamp);
17 }
18 public boolean tryLock(long time, TimeUnit unit)
19 throws InterruptedException {
20 if (fastPathLock()) {
21 return true;
22 }
23 if (super.tryLock(time, unit)) {
24 while ((tail.getStamp() & FASTPATH) != 0){};
25 return true;
26 }
27 return false;
28 }

Figure 7.25 CompositeFastPathLock class: the private fastPathLock() method returns
true if it succeeds in acquiring the lock through the fast path.

1 private boolean fastPathUnlock() {
2 int oldStamp, newStamp;
3 oldStamp = tail.getStamp();
4 if ((oldStamp & FASTPATH) == 0) {
5 return false;
6 } int[] stamp = {0};
7 QNode qnode;
8 do {
9 qnode = tail.get(stamp);

10 oldStamp = stamp[0];
11 newStamp = oldStamp & (ˆFASTPATH);
12 } while (!tail.compareAndSet(qnode, qnode, oldStamp, newStamp));
13 return true;
14 }
15 public void unlock() {
16 if (!fastPathUnlock()) {
17 super.unlock();
18 };
19 }

Figure 7.26 CompositeFastPathLock class: fastPathLock() and unlock() methods.

7.8 Hierarchical Locks 167

The tryLock() method (Lines 18–28) first tries the fast path by calling
fastPathLock(). If it fails, then it pursues the slow path by calling the
CompositeLock class’s tryLock() method. Before it can return from the slow
path, however, it must ensure that no other thread holds the fast-path lock by
waiting until the FASTPATH flag is clear (Line 24).

The fastPathUnlock() method returns false if the fast-path flag is not set
(Line 4). Otherwise, it repeatedly tries to clear the flag, leaving the reference com-
ponent unchanged (Lines 8–12), returning true when it succeeds.

The CompositeFastPathLock class’s unlock() method first calls
fastPathUnlock() (Line 16). If that call fails to release the lock, it then calls
the CompositeLock’s unlock() method (Line 17).

7.8 Hierarchical Locks

Many of today’s cache-coherent architectures organize processors in clusters,
where communication within a cluster is significantly faster than communication
between clusters. For example, a cluster might correspond to a group of proces-
sors that share memory through a fast interconnect, or it might correspond to
the threads running on a single core in a multicore architecture. We would like to
design locks that are sensitive to these differences in locality. Such locks are called
hierarchical because they take into account the architecture’s memory hierarchy
and access costs.

Architectures can easily have two, three, or more levels of memory hier-
archy, but to keep things simple, we assume there are two. We consider an
architecture consisting of clusters of processors, where processors in the same
cluster communicate efficiently through a shared cache. Inter-cluster communi-
cation is significantly more expensive than intra-cluster communication.

We assume that each cluster has a unique cluster id known to each thread in the
cluster, available via ThreadID.getCluster(). Threads do not migrate between
clusters.

7.8.1 A Hierarchical Backoff Lock

A test–and–test–and–set lock can easily be adapted to exploit clustering. Sup-
pose the lock is held by thread A. If threads from A’s cluster have shorter backoff
times, then when the lock is released, local threads are more likely to acquire the
lock than remote threads, reducing the overall time needed to switch lock owner-
ship. Fig. 7.27 shows the HBOLock class, a hierarchical backoff lock based on this
principle.

One drawback of the HBOLock is that it may be too successful in exploiting
locality. There is a danger that threads from the same cluster will repeatedly trans-
fer the lock among themselves while threads from other clusters starve. Moreover,
acquiring and releasing the lock invalidates remotely cached copies of the lock
field, which can be expensive on cache-coherent NUMA architectures.

168 Chapter 7 Spin Locks and Contention

1 public class HBOLock implements Lock {
2 private static final int LOCAL_MIN_DELAY = ...;
3 private static final int LOCAL_MAX_DELAY = ...;
4 private static final int REMOTE_MIN_DELAY = ...;
5 private static final int REMOTE_MAX_DELAY = ...;
6 private static final int FREE = -1;
7 AtomicInteger state;
8 public HBOLock() {
9 state = new AtomicInteger(FREE);
10 }
11 public void lock() {
12 int myCluster = ThreadID.getCluster();
13 Backoff localBackoff =
14 new Backoff(LOCAL_MIN_DELAY, LOCAL_MAX_DELAY);
15 Backoff remoteBackoff =
16 new Backoff(REMOTE_MIN_DELAY, REMOTE_MAX_DELAY);
17 while (true) {
18 if (state.compareAndSet(FREE, myCluster)) {
19 return;
20 }
21 int lockState = state.get();
22 if (lockState == myCluster) {
23 localBackoff.backoff();
24 } else {
25 remoteBackoff.backoff();
26 }
27 }
28 }
29 public void unlock() {
30 state.set(FREE);
31 }
32 }

Figure 7.27 The HBOLock class: a hierarchical backoff lock.

7.8.2 A Hierarchical CLH Queue Lock

To provide a more balanced way to exploit clustering, we now consider the design
of a hierarchical queue lock. The challenge is to reconcile conflicting fairness
requirements. We would like to favor transferring locks within the same cluster
to avoid high communication costs, but we also want to ensure some degree of
fairness, so that remote lock requests are not excessively postponed in favor of
local requests. We balance these demands by scheduling sequences of requests
from the same cluster together.

The HCLHLock queue lock (Fig. 7.28) consists of a collection of local queues,
one per cluster, and a single global queue. Each queue is a linked list of nodes,
where the links are implicit, in the sense that they are held in thread-local fields,
myQNode and myPred.

We say that a thread owns its myQNode node. For any node in a queue
(other than at the head), its predecessor is its owner’s myPred node. Fig. 7.30

7.8 Hierarchical Locks 169

(a)

(b)

(c)

localQueue

myNode myNodemyPred

1

Thread B

B: insert to local

C: release lock, recycle qnode

1

myPred

Thread A (master)

1T 1

myNode myPred myNode myPred myNode myPred myNode myPred

Thread B Thread A Thread D Thread C

0

globalQueue

1T 0

localQueue

1T 1

myNode myPred

Thread A (master)Thread B

0

globalQueue

1T 1

A: splice to global

myPredmyNode

myNode myNodemyPred myPred

Thread D Thread C

Figure 7.28 Lock acquisition and release in a HCLHLock. The successorMustWait field is marked in the
nodes by a 0 (for false) or a 1 (for true). A node is marked as a local tail when it is being spliced by adding the
symbol T. In Part (a), B inserts its node into the local queue. In Part (b), A splices the local queue containing A
and B’s nodes onto the global queue, which already contains C and D’s nodes. In Part (c), C releases the lock
by setting its node’s successorMustWait flag to false, and then setting myQNode to the predecessor node.

170 Chapter 7 Spin Locks and Contention

1 public class HCLHLock implements Lock {
2 static final int MAX_CLUSTERS = ...;
3 List<AtomicReference<QNode>> localQueues;
4 AtomicReference<QNode> globalQueue;
5 ThreadLocal<QNode> currNode = new ThreadLocal<QNode>() {
6 protected QNode initialValue() { return new QNode(); };
7 };
8 ThreadLocal<QNode> predNode = new ThreadLocal<QNode>() {
9 protected QNode initialValue() { return null; };
10 };
11 public HCLHLock() {
12 localQueues = new ArrayList<AtomicReference<QNode>>(MAX_CLUSTERS);
13 for (int i = 0; i < MAX_CLUSTERS; i++) {
14 localQueues.add(new AtomicReference <QNode>());
15 }
16 QNode head = new QNode();
17 globalQueue = new AtomicReference<QNode>(head);
18 }

Figure 7.29 The HCLHLock class: fields and constructor.

1 class QNode {
2 // private boolean tailWhenSpliced;
3 private static final int TWS_MASK = 0x80000000;
4 // private boolean successorMustWait = false;
5 private static final int SMW_MASK = 0x40000000;
6 // private int clusterID;
7 private static final int CLUSTER_MASK = 0x3FFFFFFF;
8 AtomicInteger state;
9 public QNode() {
10 state = new AtomicInteger(0);
11 }
12 public void unlock() {
13 int oldState = 0;
14 int newState = ThreadID.getCluster();
15 // successorMustWait = true;
16 newState |= SMW_MASK;
17 // tailWhenSpliced = false;
18 newState &= (ˆTWS_MASK);
19 do {
20 oldState = state.get();
21 } while (! state.compareAndSet(oldState, newState));
22 }
23 public int getClusterID() {
24 return state.get() & CLUSTER_MASK;
25 }
26 // other getters and setters omitted.
27 }

Figure 7.30 The HCLHLock class: the inner QNode class.

7.8 Hierarchical Locks 171

shows the QNode class. Each node has three virtual fields: the current (or most
recent) owner’s ClusterId, and two Boolean fields, successorMustWait and
tailWhenSpliced. These fields are virtual in the sense that they need to be
updated atomically, so we represent them as bit-fields in an AtomicInteger
field, using simple masking and shifting operations to extract their values.
The tailWhenSpliced field indicates whether the node is the last node in the
sequence currently being spliced onto the global queue. The successorMustWait
field is the same as in the original CLH algorithm: it is set to true before
being enqueued, and set to false by the node’s owner on releasing the lock.
Thus, a thread waiting to acquire the lock may proceed when its predeces-
sor’s successorMustWait field becomes false. Because we need to update these
fields atomically, they are private, accessed indirectly through synchronized
methods.

Fig. 7.28 illustrates how the HCLHLock class acquires and releases a lock. The
lock() method first adds the thread’s node to the local queue, and then waits
until either the thread can enter the critical section or its node is at the head of
the local queue. In the latter case, we say the thread is the cluster master, and it is
responsible for splicing the local queue onto the global queue.

The code for the lock() method appears in Fig. 7.31. The thread’s node has
been initialized so that successorMustWait is true, tailWhenSpliced is false,
and the ClusterId field is the caller’s cluster. The thread then adds its node to
the end (tail) of its local cluster’s queue, using compareAndSet() to change the
tail to its node (Line 9). Upon success, the thread sets its myPred to the node it
replaced as the tail. We call this node the predecessor.

The thread then calls waitForGrantOrClusterMaster() (Line 11), which
causes the thread to spin until one of the following conditions is true:

1. the predecessor node is from the same cluster, and tailWhenSpliced and
successorMustWait are both false, or

2. the predecessor node is from a different cluster or the predecessor’s flag
tailWhenSpliced is true.

In the first case, the thread’s node is at the head of the global queue, so it enters
the critical section and returns (Line 14). In the second case, as explained here,
the thread’s node is at the head of the local queue, so the thread is the clus-
ter master, making it responsible for splicing the local queue onto the global
queue. (If there is no predecessor, that is, if the local queue’s tail is null, then the
thread becomes the cluster master immediately.) Most of the spinning required
by waitForGrantOrClusterMaster() is local and incurs little or no communi-
cation cost.

Otherwise, either the predecessor’s cluster is different from the thread’s, or
the predecessor’s tailWhenSpliced flag is true. If the predecessor belongs to a
different cluster, then it cannot be in this thread’s local queue. The predecessor
must have already been moved to the global queue and recycled to a thread in a
different cluster. On the other hand, if the predecessor’s tailWhenSpliced flag

172 Chapter 7 Spin Locks and Contention

1 public void lock() {
2 QNode myNode = currNode.get();
3 AtomicReference<QNode> localQueue = localQueues.get
4 (ThreadID.getCluster());
5 // splice my QNode into local queue
6 QNode myPred = null;
7 do {
8 myPred = localQueue.get();
9 } while (!localQueue.compareAndSet(myPred, myNode));
10 if (myPred != null) {
11 boolean iOwnLock = myPred.waitForGrantOrClusterMaster();
12 if (iOwnLock) {
13 predNode.set(myPred);
14 return;
15 }
16 }
17 // I am the cluster master: splice local queue into global queue.
18 QNode localTail = null;
19 do {
20 myPred = globalQueue.get();
21 localTail = localQueue.get();
22 } while(!globalQueue.compareAndSet(myPred, localTail));
23 // inform successor it is the new master
24 localTail.setTailWhenSpliced(true);
25 while (myPred.isSuccessorMustWait()) {};
26 predNode.set(myPred);
27 return;
28 }

Figure 7.31 The HCLHLock class: lock() method. As in the CLHLock, lock() saves the pre-
decessor’s recently released node to be used for next lock acquisition attempt.

is true, then the predecessor node was the last that moved to the global queue,
and therefore the thread’s node is now at the head of the local queue. It can-
not have been moved to the global queue because only the cluster master, the
thread whose node is at the head of the local queue, moves nodes onto the global
queue.

As cluster master, a thread’s role is to splice the nodes accumulated in the
local queue onto the global queue. The threads in the local queue spin, each on
its predecessor’s node. The cluster master reads the local queue’s tail and calls
compareAndSet() to change the global queue’s tail to the node it saw at the tail
of its local queue (Line 22). When it succeeds, myPred is the tail of the global queue
that it replaced (Line 20). It then sets to true the tailWhenSpliced flag of the last
node it spliced onto the global queue (Line 24), indicating to that node’s (local)
successor that it is now the head of the local queue. This sequence of operations
transfers the local nodes (up to the local tail) into the CLH-style global queue in
the same order as in the local queue.

7.10 Chapter Notes 173

29 public void unlock() {
30 QNode myNode = currNode.get();
31 myNode.setSuccessorMustWait(false);
32 QNode node = predNode.get();
33 node.unlock();
34 currNode.set(node);
35 }

Figure 7.32 The HCLHLock class: unlock() method. This method promotes the node saved
by the lock() operation and initializes the QNode to be used in the next lock acquisition
attempt.

Once in the global queue, the cluster master acts as though it were in an
ordinary CLHLock queue, entering the critical section when its (new) prede-
cessor’s successorMustWait field is false (Line 25). The other threads whose
nodes were spliced in are not aware that anything has changed, so they
continue spinning as before. Each will enter the critical section when its
predecessor’s successorMustWait field becomes false.

As in the original CLHLock algorithm, a thread releases the lock by setting its
node’s successorMustWait field to false (Fig. 7.32). When unlocking, the thread
saves its predecessor’s node to be used in its next lock acquisition attempt
(Line 34).

The HCLHLock lock favors sequences of local threads, one waiting for the other,
within the waiting list in the global queue. As with the CLHLock lock, the use of
implicit references minimizes cache misses, and threads spin on locally cached
copies of their successor’s node state.

7.9 One Lock To Rule Them All

In this chapter, we have seen a variety of spin locks that vary in characteristics
and performance. Such a variety is useful, because no single algorithm is ideal
for all applications. For some applications, complex algorithms work best, and
for others, simple algorithms are preferable. The best choice usually depends on
specific aspects of the application and the target architecture.

7.10 Chapter Notes

The TTASLock is due to Clyde Kruskal, Larry Rudolph, and Marc Snir [87].
Exponential back off is a well-known technique used in Ethernet routing, pre-
sented in the context of multiprocessor mutual exclusion by Anant Agarwal and

174 Chapter 7 Spin Locks and Contention

Mathews Cherian [6]. Tom Anderson [14] invented the ALock algorithm and was
one of the first to empirically study the performance of spin locks in shared mem-
ory multiprocessors. The MCSLock, due to John Mellor-Crummey and Michael
Scott [114], is perhaps the best-known queue lock algorithm. Today’s Java Vir-
tual Machines use object synchronization based on simplified monitor algorithms
such as the Thinlock of David Bacon, Ravi Konuru, Chet Murthy, and Mauricio
Serrano [17], the Metalock of Ole Agesen, Dave Detlefs, Alex Garthwaite, Ross
Knippel, Y. S. Ramakrishna and Derek White [7], or the RelaxedLock of Dave
Dice [31]. All these algorithms are variations of the MCSLock lock.

The CLHLock lock is due to Travis Craig, Erik Hagersten, and Anders Landin
[30, 111]. The TOLock with nonblocking timeout is due to Bill Scherer and
Michael Scott [138, 139]. The CompositeLock and its variations are due to Viren-
dra Marathe, Mark Moir, and Nir Shavit [121]. The notion of using a fast-path
in a mutual exclusion algorithm is due to Leslie Lamport [96]. Hierarchical locks
were invented by Zoran Radović and Erik Hagersten. The HBOLock is a variant of
their original algorithm [131] and the particular HCLHLock presented here is due
to Victor Luchangco, Daniel Nussbaum, and Nir Shavit [110].

Danny Hendler, Faith Fich, and Nir Shavit [39] have extended the work of
Jim Burns and Nancy Lynch to show that any starvation-free mutual exclusion
algorithm requires Ω(n) space, even if strong operations such as getAndSet()
or compareAndSet() are used, implying that all the queue-lock algorithms
considered here are space-optimal.

The schematic performance graph in this chapter is loosely based on empirical
studies by Tom Anderson [14], as well as on data collected by the authors on
various modern machines. We chose to use schematics rather than actual data
because of the great variation in machine architectures and their significant effect
on lock performance.

The Sherlock Holmes quote is from The Sign of Four [36].

7.11 Exercises

Exercise 85. Fig. 7.33 shows an alternative implementation of CLHLock in which
a thread reuses its own node instead of its predecessor node. Explain how this
implementation can go wrong.

Exercise 86. Imagine n threads, each of which executes method foo() followed by
method bar(). Suppose we want to make sure that no thread starts bar() until all
threads have finished foo(). For this kind of synchronization, we place a barrier
between foo() and bar().

First barrier implementation: We have a counter protected by a test–and–test–
and–set lock. Each thread locks the counter, increments it, releases the lock, and
spins, rereading the counter until it reaches n.

7.11 Exercises 175

1 public class BadCLHLock implements Lock {
2 // most recent lock holder
3 AtomicReference<Qnode> tail;
4 // thread-local variable
5 ThreadLocal<Qnode> myNode;
6 public void lock() {
7 Qnode qnode = myNode.get();
8 qnode.locked = true; // I’m not done
9 // Make me the new tail, and find my predecessor
10 Qnode pred = tail.getAndSet(qnode);
11 // spin while predecessor holds lock
12 while (pred.locked) {}
13 }
14 public void unlock() {
15 // reuse my node next time
16 myNode.get().locked = false;
17 }
18 static class Qnode { // Queue node inner class
19 public boolean locked = false;
20 }
21 }

Figure 7.33 An incorrect attempt to implement a CLHLock.

Second barrier implementation: We have an n-element Boolean array b, all
false. Thread zero sets b[0] to true. Every thread i, for 0 < i � n, spins until b[i−1]
is true, sets b[i] to true, and proceeds.

Compare the behavior of these two implementations on a bus-based cache-
coherent architecture.

Exercise 87. Prove that the CompositeFastPathLock implementation guarantees
mutual exclusion, but is not starvation-free.

Exercise 88. Notice that, in the HCLHLock lock, for a given cluster master thread,
in the interval between setting the global tail reference and raising the
tailWhenSpliced flag of the last spliced node, the nodes spliced onto the global
queue are in both its local queue and the global queue. Explain why the algorithm
is still correct.

Exercise 89. Notice that, in the HCLHLock lock, what will happen if the time
between becoming cluster master and successfully splicing the local queue into
the global queue is too small? Suggest a remedy to this problem.

Exercise 90. Why is it important that the fields of the State object accessed
by the HCLHLock lock’s waitForGrantOrClusterMaster() method be read
and modified atomically? Provide the code for the HCLHLock lock’s
waitForGrantOrClusterMaster() method. Does your implementation require
the use of a compareAndSet(), and if so, can it be implemented efficiently
without it?

176 Chapter 7 Spin Locks and Contention

Exercise 91. Design an isLocked() method that tests whether a thread is holding
a lock (but does not acquire that lock). Give implementations for

� Any testAndSet() spin lock

� The CLH queue lock, and

� The MCS queue lock.

Exercise 92. (Hard) Where does the Ω(n) space complexity lower bound proof for
deadlock-free mutual exclusion of Chapter 2 break when locks are allowed to use
read–modify–write operations?

8Monitors and Blocking
Synchronization

8.1 Introduction

Monitors are a structured way of combining synchronization and data. A class
encapsulates both data and methods in the same way that a monitor combines
data, methods, and synchronization in a single modular package.

Here is why modular synchronization is important. Let us imagine our appli-
cation has two threads, a producer and a consumer, that communicate through
a shared FIFO queue. We could have the threads share two objects: an unsyn-
chronized queue, and a lock to protect the queue. The producer looks something
like this:

mutex.lock();
try {
queue.enq(x)

} finally {
mutex.unlock();

}

This is no way to run a railroad. Suppose the queue is bounded, meaning that an
attempt to add an item to a full queue cannot proceed until the queue has room.
Here, the decision whether to block the call or to let it proceed depends on the
queue’s internal state, which is (and should be) inaccessible to the caller. Even
worse, suppose the application grows to have multiple producers, consumers, or
both. Each such thread must keep track of both the lock and the queue objects,
and the application will be correct only if each thread follows the same locking
conventions.

A more sensible approach is to allow each queue to manage its own synchro-
nization. The queue itself has its own internal lock, acquired by each method
when it is called and released when it returns. There is no need to ensure that
every thread that uses the queue follows a cumbersome synchronization protocol.
If a thread tries to enqueue an item to a queue that is already full, then the enq()
method itself can detect the problem, suspend the caller, and resume the caller
when the queue has room.

177

178 Chapter 8 Monitors and Blocking Synchronization

8.2 Monitor Locks and Conditions

Just as in Chapters 2 and 7, a Lock is the basic mechanism for ensuring mutual
exclusion. Only one thread at a time can hold a lock. A thread acquires a lock when
it first starts to hold the lock. A thread releases a lock when it stops holding the
lock. A monitor exports a collection of methods, each of which acquires the lock
when it is called, and releases it when it returns.

If a thread cannot immediately acquire a lock, it can either spin, repeatedly
testing whether the desired event has happened, or it can block, giving up the
processor for a while to allow another thread to run.1 Spinning makes sense on
a multiprocessor if we expect to wait for a short time, because blocking a thread
requires an expensive call to the operating system. On the other hand, blocking
makes sense if we expect to wait for a long time, because a spinning thread keeps
a processor busy without doing any work.

For example, a thread waiting for another thread to release a lock should
spin if that particular lock is held briefly, while a consumer thread waiting to
dequeue an item from an empty buffer should block, since there is usually no
way to predict how long it may have to wait. Often, it makes sense to combine
spinning and blocking: a thread waiting to dequeue an item might spin for a brief
duration, and then switch to blocking if the delay appears to be long. Blocking
works on both multiprocessors and uniprocessors, while spinning works only on
multiprocessors.

Pragma 8.2.1. Most of the locks in this book follow the interface shown in
Fig. 8.1. Here is an explanation of the Lock interface’s methods:

� The lock() method blocks the caller until it acquires the lock.

� The lockInterruptibly() method acts like lock(), but throws
an exception if the thread is interrupted while it is waiting. (See
Pragma 8.2.2.)

� The unlock() method releases the lock.

� The newCondition() method is a factory that creates and returns a
Condition object associated with the lock (explained below.)

� The tryLock() method acquires the lock if it is free, and immediately
returns a Boolean indicating whether it acquired the lock. This method
can also be called with a timeout.

1 Elsewhere we make a distinction between blocking and nonblocking synchronization algorithms.
There, we mean something entirely different: a blocking algorithm is one where a delay by one
thread can cause a delay in another.

8.2 Monitor Locks and Conditions 179

1 public interface Lock {
2 void lock();
3 void lockInterruptibly() throws InterruptedException;
4 boolean tryLock();
5 boolean tryLock(long time, TimeUnit unit);
6 Condition newCondition();
7 void unlock();
8 }

Figure 8.1 The Lock Interface.

8.2.1 Conditions

While a thread is waiting for something to happen, say, for another thread to place
an item in a queue, it is a very good idea to release the lock on the queue, because
otherwise the other thread will never be able to enqueue the anticipated item.
After the waiting thread has released the lock, it needs a way to be notified when
to reacquire the lock and try again.

In the Java concurrency package (and in related packages such as Pthreads),
the ability to release a lock temporarily is provided by a Condition object associ-
ated with a lock. Fig. 8.2 shows the use of the Condition interface provided in the
java.util.concurrent.locks library. A condition is associated with a lock, and is cre-
ated by calling that lock’s newCondition() method. If the thread holding that lock
calls the associated condition’s await() method, it releases that lock and suspends
itself, giving another thread the opportunity to acquire the lock. When the call-
ing thread awakens, it reacquires the lock, perhaps competing with other threads.

Pragma 8.2.2. Threads in Java can be interrupted by other threads. If a thread
is interrupted during a call to a Condition’s await() method, then the
call throws InterruptedException. The proper response to an interrupt
is application-dependent. (It is not good programming practice simply to
ignore interrupts).
Fig. 8.2 shows a schematic example

1 Condition condition = mutex.newCondition();
2 ...
3 mutex.lock()
4 try {
5 while (!property) { // not happy
6 condition.await(); // wait for property
7 } catch (InterruptedException e) {
8 ... // application-dependent response
9 }

10 ... // happy: property must hold
11 }

Figure 8.2 How to use Condition objects.

180 Chapter 8 Monitors and Blocking Synchronization

To avoid clutter, we usually omit InterruptedException handlers from
example code, even though they would be required in actual code.

Like locks, Condition objects must be used in a stylized way. Suppose a thread
wants to wait until a certain property holds. The thread tests the property while
holding the lock. If the property does not hold, then the thread calls await() to
release the lock and sleep until it is awakened by another thread. Here is the key
point: there is no guarantee that the property will hold at the time the thread
awakens. The await() method can return spuriously (i.e., for no reason), or the
thread that signaled the condition may have awakened too many sleeping threads.
Whatever the reason, the thread must retest the property, and if it finds the prop-
erty still does not hold, it must call await() again.

The Condition interface in Fig. 8.3 provides several variations of this call,
some of which provide the ability to specify a maximum time the caller can be sus-
pended, or whether the thread can be interrupted while it is waiting. When the
queue changes, the thread that made the change can notify other threads wait-
ing on a condition. Calling signal() wakes up one thread waiting on a condi-
tion, while calling signalAll() wakes up all waiting threads. Fig. 8.4 describes a
schematic execution of a monitor lock.

Fig. 8.5 shows how to implement a bounded FIFO queue using explicit locks
and conditions. The lock field is a lock that must be acquired by all meth-
ods. We must initialize it to hold an instance of a class that implements the
Lock interface. Here, we choose ReentrantLock, a useful lock type provided
by the java.util.concurrent.locks package. As discussed in Section 8.4, this lock is
reentrant: a thread that is holding the lock can acquire it again without blocking.

There are two condition objects: notEmpty notifies waiting dequeuers when
the queue goes from being empty to nonempty, and notFull for the opposite
direction. Using two conditions instead of one is more efficient, since fewer
threads are woken up unnecessarily, but it is more complex.

1 public interface Condition {
2 void await() throws InterruptedException;
3 boolean await(long time, TimeUnit unit)
4 throws InterruptedException;
5 boolean awaitUntil(Date deadline)
6 throws InterruptedException;
7 long awaitNanos(long nanosTimeout)
8 throws InterruptedException;
9 void awaitUninterruptibly();
10 void signal(); // wake up one waiting thread
11 void signalAll(); // wake up all waiting threads
12 }

Figure 8.3 The Condition interface: await() and its variants release the lock, give up the
processor, and later awaken and reacquire the lock. The signal() and signalAll() methods
awaken one or more waiting threads.

8.2 Monitor Locks and Conditions 181

waiting
room

critical
section

lock()

(b)

C

C

unlock()
signalAll()

C

A B
A B A BA B

(c)

waiting
room

lock()D

D
critical
section

waiting
room

critical
section

B await(cond)

lock()

(a)

B

Figure 8.4 A schematic representation of a monitor execution. In Part (a) thread A has acquired the monitor
lock, called await() on a condition, released the lock, and is now in the waiting room. Thread B then goes
through the same sequence of steps, entering the critical section, calling await() on the condition, relinquish-
ing the lock and entering the waiting room. In Part (b) both A and B leave the waiting room after thread C
exits the critical section and calls signalAll(). A and B then attempt to reacquire the monitor lock. How-
ever, thread D manages to acquire the critical section lock first, and so both A and B spin until C leaves the
critical section. Notice that if C would have issued a signal() instead of a signalAll(), only one of A or B
would have left the waiting room, and the other would have continued to wait.

This combination of methods, mutual exclusion locks, and condition objects
is called a monitor.

8.2.2 The Lost-Wakeup Problem

Just as locks are inherently vulnerable to deadlock, Condition objects are inher-
ently vulnerable to lost wakeups, in which one or more threads wait forever
without realizing that the condition for which they are waiting has become true.

Lost wakeups can occur in subtle ways. Fig. 8.6 shows an ill-considered opti-
mization of the Queue<T> class. Instead of signaling the notEmpty condition
each time enq() enqueues an item, would it not be more efficient to signal the
condition only when the queue actually transitions from empty to non-empty?
This optimization works as intended if there is only one producer and one
consumer, but it is incorrect if there are multiple producers or consumers. Con-
sider the following scenario: consumersA andB both try to dequeue an item from
an empty queue, both detect the queue is empty, and both block on the notEmpty
condition. Producer C enqueues an item in the buffer, and signals notEmpty,
waking A. Before A can acquire the lock, however, another producer D puts a
second item in the queue, and because the queue is not empty, it does not signal
notEmpty. Then A acquires the lock, removes the first item, butB, victim of a lost
wakeup, waits forever even though there is an item in the buffer to be consumed.

Although there is no substitute for reasoning carefully about our program,
there are simple programming practices that will minimize vulnerability to lost
wakeups.

� Always signal all processes waiting on a condition, not just one.

� Specify a timeout when waiting.

182 Chapter 8 Monitors and Blocking Synchronization

1 class LockedQueue<T> {
2 final Lock lock = new ReentrantLock();
3 final Condition notFull = lock.newCondition();
4 final Condition notEmpty = lock.newCondition();
5 final T[] items;
6 int tail, head, count;
7 public LockedQueue(int capacity) {
8 items = (T[])new Object[100];
9 }
10 public void enq(T x) {
11 lock.lock();
12 try {
13 while (count == items.length)
14 notFull.await();
15 items[tail] = x;
16 if (++tail == items.length)
17 tail = 0;
18 ++count;
19 notEmpty.signal();
20 } finally {
21 lock.unlock();
22 }
23 }
24 public T deq() {
25 lock.lock();
26 try {
27 while (count == 0)
28 notEmpty.await();
29 T x = items[head];
30 if (++head == items.length)
31 head = 0;
32 --count;
33 notFull.signal();
34 return x;
35 } finally {
36 lock.unlock();
37 }
38 }
39 }

Figure 8.5 The LockedQueue class: a FIFO queue using locks and conditions. There are two
condition fields, one to detect when the queue becomes nonempty, and one to detect when
it becomes nonfull.

Either of these two practices would fix the bounded buffer error we just described.
Each has a small performance penalty, but negligible compared to the cost of a lost
wakeup.

Java provides built-in support for monitors in the form of synchronized
blocks and methods, as well as built-in wait(), notify(), and notifyAll() meth-
ods. (See Appendix A.)

8.3 Readers–Writers Locks 183

1 public void enq(T x) {
2 lock.lock();
3 try {
4 while (count == items.length)
5 notFull.await();
6 items[tail] = x;
7 if (++tail == items.length)
8 tail = 0;
9 ++count;

10 if (count == 1) { // Wrong!
11 notEmpty.signal();
12 }
13 } finally {
14 lock.unlock();
15 }
16 }

Figure 8.6 This example is incorrect. It suffers from lost wakeups. The enq() method signals
notEmpty only if it is the first to place an item in an empty buffer. A lost wakeup occurs if
multiple consumers are waiting, but only the first is awakened to consume an item.

8.3 Readers–Writers Locks

Many shared objects have the property that most method calls, called readers,
return information about the object’s state without modifying the object, while
only a small number of calls, called writers, actually modify the object.

There is no need for readers to synchronize with one another; it is perfectly safe
for them to access the object concurrently. Writers, on the other hand, must lock
out readers as well as other writers. A readers–writers lock allows multiple readers
or a single writer to enter the critical section concurrently. We use the following
interface:

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

This interface exports two lock objects: the read lock and the write lock. They
satisfy the following safety properties:

� No thread can acquire the write lock while any thread holds either the write
lock or the read lock.

� No thread can acquire the read lock while any thread holds the write lock.

Naturally, multiple threads may hold the read lock at the same time.

184 Chapter 8 Monitors and Blocking Synchronization

8.3.1 Simple Readers–Writers Lock

We consider a sequence of increasingly sophisticated reader–writer lock
implementations. The SimpleReadWriteLock class appears in Figs. 8.7–8.9. This

1 public class SimpleReadWriteLock implements ReadWriteLock {
2 int readers;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public SimpleReadWriteLock() {
8 writer = false;
9 readers = 0;
10 lock = new ReentrantLock();
11 readLock = new ReadLock();
12 writeLock = new WriteLock();
13 condition = lock.newCondition();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }

Figure 8.7 The SimpleReadWriteLock class: fields and public methods.

21 class ReadLock implements Lock {
22 public void lock() {
23 lock.lock();
24 try {
25 while (writer) {
26 condition.await();
27 }
28 readers++;
29 } finally {
30 lock.unlock();
31 }
32 }
33 public void unlock() {
34 lock.lock();
35 try {
36 readers--;
37 if (readers == 0)
38 condition.signalAll();
39 } finally {
40 lock.unlock();
41 }
42 }
43 }

Figure 8.8 The SimpleReadWriteLock class: the inner read lock.

8.3 Readers–Writers Locks 185

44 protected class WriteLock implements Lock {
45 public void lock() {
46 lock.lock();
47 try {
48 while (readers > 0) {
49 condition.await();
50 }
51 writer = true;
52 } finally {
53 lock.unlock();
54 }
55 }
56 public void unlock() {
57 writer = false;
58 condition.signalAll();
59 }
60 }
61 }

Figure 8.9 The SimpleReadWriteLock class: inner write lock.

class uses a counter to keep track of the number of readers that have acquired
the lock, and a Boolean field indicating whether a writer has acquired the lock.
To define the associated read–write locks, this code uses inner classes, a Java
feature that allows one object (the SimpleReadWriteLock lock) to create other
objects (the read–write locks) that share the first object’s private fields. Both
the readLock() and the writeLock() methods return objects that implement
the Lock interface. These objects communicate via the writeLock() object’s
fields. Because the read–write lock methods must synchronize with one another,
they both synchronize on the mutex and condition fields of their common
SimpleReadWriteLock object.

8.3.2 Fair Readers–Writers Lock

Even though the SimpleReadWriteLock algorithm is correct, it is still not quite
satisfactory. If readers are much more frequent than writers, as is usually the case,
then writers could be locked out for a long time by a continual stream of readers.
The FifoReadWriteLock class, shown in Figs. 8.10–8.12, shows one way to give
writers priority. This class ensures that once a writer calls the write lock’s lock()
method, then no more readers will be able to acquire the read lock until the writer
has acquired and released the write lock. Eventually, the readers holding the read
lock will drain out without letting any more readers in, and the writer will acquire
the write lock.

The readAcquires field counts the total number of read lock acquisitions,
and the readReleases field counts the total number of read lock releases. When
these quantities match, no thread is holding the read lock. (We are, of course,
ignoring potential integer overflow and wraparound problems.) The class has a

186 Chapter 8 Monitors and Blocking Synchronization

1 public class FifoReadWriteLock implements ReadWriteLock {
2 int readAcquires, readReleases;
3 boolean writer;
4 Lock lock;
5 Condition condition;
6 Lock readLock, writeLock;
7 public FifoReadWriteLock() {
8 readAcquires = readReleases = 0;
9 writer = false;
10 lock = new ReentrantLock();
11 condition = lock.newCondition();
12 readLock = new ReadLock();
13 writeLock = new WriteLock();
14 }
15 public Lock readLock() {
16 return readLock;
17 }
18 public Lock writeLock() {
19 return writeLock;
20 }
21 ...
22 }

Figure 8.10 The FifoReadWriteLock class: fields and public methods.

23 private class ReadLock implements Lock {
24 public void lock() {
25 lock.lock();
26 try {
27 readAcquires++;
28 while (writer) {
29 condition.await();
30 }
31 } finally {
32 lock.unlock();
33 }
34 }
35 public void unlock() {
36 lock.lock();
37 try {
38 readReleases++;
39 if (readAcquires == readReleases)
40 condition.signalAll();
41 } finally {
42 lock.unlock();
43 }
44 }
45 }

Figure 8.11 The FifoReadWriteLock class: inner read lock class.

8.4 Our Own Reentrant Lock 187

46 private class WriteLock implements Lock {
47 public void lock() {
48 lock.lock();
49 try {
50 while (readAcquires != readReleases)
51 condition.await();
52 writer = true;
53 } finally {
54 lock.unlock();
55 }
56 }
57 public void unlock() {
58 writer = false;
59 }
60 }
61 }

Figure 8.12 The FifoReadWriteLock class: inner write lock class.

private lockfield, held by readers for short durations: they acquire the lock, incre-
ment the readAcquires field, and release the lock. Writers hold this lock from
the time they try to acquire the write lock to the time they release it. This locking
protocol ensures that once a writer has acquired the lock, no additional reader
can increment readAcquires, so no additional reader can acquire the read lock,
and eventually all readers currently holding the read lock will release it, allowing
the writer to proceed.

How are waiting writers notified when the last reader releases its lock? When
a writer tries to acquire the write lock, it acquires the FifoReadWriteLock
object’s lock. A reader releasing the read lock also acquires that lock, and calls
the associated condition’s signal() method if all readers have released their
locks.

8.4 Our Own Reentrant Lock

Using the locks described in Chapters 2 and 7, a thread that attempts to reacquire
a lock it already holds will deadlock with itself. This situation can arise if a method
that acquires a lock makes a nested call to another method that acquires the
same lock.

A lock is reentrant if it can be acquired multiple times by the same thread.
We now examine how to create a reentrant lock from a non-reentrant lock. This
exercise is intended to illustrate how to use locks and conditions. In practice, the
java.util.concurrent.locks package provides reentrant lock classes, so there is no
need to write our own.

188 Chapter 8 Monitors and Blocking Synchronization

1 public class SimpleReentrantLock implements Lock{
2 Lock lock;
3 Condition condition;
4 int owner, holdCount;
5 public SimpleReentrantLock() {
6 lock = new SimpleLock();
7 condition = lock.newCondition();
8 owner = 0;
9 holdCount = 0;
10 }
11 public void lock() {
12 int me = ThreadID.get();
13 lock.lock();
14 if (owner == me) {
15 holdCount++;
16 return;
17 }
18 while (holdCount != 0) {
19 condition.await();
20 }
21 owner = me;
22 holdCount = 1;
23 }
24 public void unlock() {
25 lock.lock();
26 try {
27 if (holdCount == 0 || owner != ThreadID.get())
28 throw new IllegalMonitorStateException();
29 holdCount--;
30 if (holdCount == 0) {
31 condition.signal();
32 }
33 } finally {
34 lock.unlock();
35 }
36 }
37
38 public Condition newCondition() {
39 throw new UnsupportedOperationException("Not supported yet.");
40 }
41 ...
42 }

Figure 8.13 The SimpleReentrantLock class: lock() and unlock() methods.

Fig. 8.13 shows the SimpleReentrantLock class. The owner field holds
the ID of the last thread to acquire the lock, and the holdCount field is incre-
mented each time the lock is acquired, and decremented each time it is released.
The lock is free when the holdCount value is zero. Because these two fields are
manipulated atomically, we need an internal, short-term lock. The lock field is

8.6 Chapter Notes 189

a lock used by lock() and unlock() to manipulate the fields, and the condition
field is used by threads waiting for the lock to become free. In Fig. 8.13, we ini-
tialze the internal lock field to an object of a (fictitious) SimpleLock class which
is presumably not reentrant (Line 6).

The lock() method acquires the internal lock (Line 13). If the current thread is
already the owner, it increments the hold count and returns (Line 14). Otherwise,
if the hold count is not zero, the lock is held by another thread, and the caller
releases the lock and waits until the condition is signaled (Line 19). When the
caller awakens, it must still check that the hold count is zero. When the hold count
is established to be zero, the calling thread makes itself the owner and sets the hold
count to 1.

The unlock() method acquires the internal lock (Line 25). It throws an
exception if either the lock is free, or the caller is not the owner (Line 27).
Otherwise, it decrements the hold count. If the hold count is zero, then the
lock is free, so the caller signals the condition to wake up a waiting thread
(Line 31).

8.5 Semaphores

As we have seen, a mutual exclusion lock guarantees that only one thread at a
time can enter a critical section. If another thread wants to enter the critical
section while it is occupied, then it blocks, suspending itself until another thread
notifies it to try again. A Semaphore is a generalization of mutual exclusion locks.
Each Semaphore has a capacity, denoted by c for brevity. Instead of allowing
only one thread at a time into the critical section, a Semaphore allows at most c
threads, where the capacity c is determined when the Semaphore is initialized.
As discussed in the chapter notes, semaphores were one of the earliest forms of
synchronization.

The Semaphore class of Fig. 8.14 provides two methods: a thread calls
acquire() to request permission to enter the critical section, and release()
to announce that it is leaving the critical section. The Semaphore itself is just
a counter: it keeps track of the number of threads that have been granted permis-
sion to enter. If a new acquire() call is about to exceed the capacity c, the calling
thread is suspended until there is room. When a thread leaves the critical section,
it calls release() to notify a waiting thread that there is now room.

8.6 Chapter Notes

Monitors were invented by Per Brinch-Hansen [52] and Tony Hoare [71].
Semaphores were invented by Edsger Dijkstra [33]. McKenney [113] surveys
different kinds of locking protocols.

190 Chapter 8 Monitors and Blocking Synchronization

1 public class Semaphore {
2 final int capacity;
3 int state;
4 Lock lock;
5 Condition condition;
6 public Semaphore(int c) {
7 capacity = c;
8 state = 0;
9 lock = new ReentrantLock();
10 condition = lock.newCondition();
11 }
12 public void acquire() {
13 lock.lock();
14 try {
15 while (state == capacity) {
16 condition.await();
17 }
18 state++;
19 } finally {
20 lock.unlock();
21 }
22 }
23 public void release() {
24 lock.lock();
25 try {
26 state--;
27 condition.signalAll();
28 } finally {
29 lock.unlock();
30 }
31 }
32 }

Figure 8.14 Semaphore implementation.

8.7 Exercises

Exercise 93. Reimplement the SimpleReadWriteLock class using Java
synchronized, wait(), notify(), and notifyAll() constructs in place of explict
locks and conditions.

Hint: you must figure out how methods of the inner read–write lock classes
can lock the outer SimpleReadWriteLock object.

Exercise 94. The ReentrantReadWriteLock class provided by the
java.util.concurrent.locks package does not allow a thread holding the lock in
read mode to then access that lock in write mode (the thread will block). Jus-
tify this design decision by sketching what it would take to permit such lock
upgrades.

8.7 Exercises 191

Exercise 95. A savings account object holds a nonnegative balance, and provides
deposit(k) and withdraw(k) methods, where deposit(k) adds k to the balance,
and withdraw(k) subtracts k, if the balance is at least k, and otherwise blocks
until the balance becomes k or greater.

1. Implement this savings account using locks and conditions.

2. Now suppose there are two kinds of withdrawals: ordinary and preferred.
Devise an implementation that ensures that no ordinary withdrawal occurs
if there is a preferred withdrawal waiting to occur.

3. Now let us add a transfer() method that transfers a sum from one account
to another:

void transfer(int k, Account reserve) {
lock.lock();
try {
reserve.withdraw(k);
deposit(k);

} finally {lock.unlock();}
}

We are given a set of 10 accounts, whose balances are unknown. At 1:00, each
of n threads tries to transfer $100 from another account into its own account.
At 2:00, a Boss thread deposits $1000 to each account. Is every transfer method
called at 1:00 certain to return?

Exercise 96. In the shared bathroom problem, there are two classes of threads, called
male and female. There is a single bathroom resource that must be used in the
following way:

1. Mutual exclusion: persons of opposite sex may not occupy the bathroom
simultaneously,

2. Starvation-freedom: everyone who needs to use the bathroom eventually
enters.

The protocol is implemented via the following four procedures: enterMale()
delays the caller until it is ok for a male to enter the bathroom, leaveMale() is
called when a male leaves the bathroom, while enterFemale() and
leaveFemale() do the same for females. For example,

enterMale();
teeth.brush(toothpaste);
leaveMale();

1. Implement this class using locks and condition variables.

2. Implement this class using synchronized, wait(), notify(), and
notifyAll().

For each implementation, explain why it satisfies mutual exclusion and starvation-
freedom.

192 Chapter 8 Monitors and Blocking Synchronization

Exercise 97. The Rooms class manages a collection of rooms, indexed from 0 to m
(where m is an argument to the constructor). Threads can enter or exit any room
in that range. Each room can hold an arbitrary number of threads simultaneously,
but only one room can be occupied at a time. For example, if there are two rooms,
indexed 0 and 1, then any number of threads might enter the room 0, but no
thread can enter the room 1 while room 0 is occupied. Fig. 8.15 shows an outline
of the Rooms class.

Each room can be assigned an exit handler: calling setHandler(i,h) sets the
exit handler for room i to handler h. The exit handler is called by the last thread to

1 public class Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 public Rooms(int m) { ... };
6 void enter(int i) { ... };
7 boolean exit() { ... };
8 public void setExitHandler(int i, Rooms.Handler h) { ... };
9 }

Figure 8.15 The Rooms class.

1 class Driver {
2 void main() {
3 CountDownLatch startSignal = new CountDownLatch(1);
4 CountDownLatch doneSignal = new CountDownLatch(n);
5 for (int i = 0; i < n; ++i) // start threads
6 new Thread(new Worker(startSignal, doneSignal)).start();
7 doSomethingElse(); // get ready for threads
8 startSignal.countDown(); // unleash threads
9 doSomethingElse(); // biding my time ...
10 doneSignal.await(); // wait for threads to finish
11 }
12 class Worker implements Runnable {
13 private final CountDownLatch startSignal, doneSignal;
14 Worker(CountDownLatch myStartSignal, CountDownLatch myDoneSignal) {
15 startSignal = myStartSignal;
16 doneSignal = myDoneSignal;
17 }
18 public void run() {
19 startSignal.await(); // wait for driver’s OK to start
20 doWork();
21 doneSignal.countDown(); // notify driver we’re done
22 }
23 ...
24 }
25 }

Figure 8.16 The CountDownLatch class: an example usage.

8.7 Exercises 193

leave a room, but before any threads subsequently enter any room. This method
is called once and while it is running, no threads are in any rooms.

Implement the Rooms class. Make sure that:

� If some thread is in room i, then no thread is in room j �= i.

� The last thread to leave a room calls the room’s exit handler, and no threads
are in any room while that handler is running.

� Your implementation must be fair: any thread that tries to enter a room even-
tually succeeds. Naturally, you may assume that every thread that enters a room
eventually leaves.

Exercise 98. Consider an application with distinct sets of active and passive
threads, where we want to block the passive threads until all active threads give
permission for the passive threads to proceed.

A CountDownLatch encapsulates a counter, initialized to be n, the number of
active threads. When an active method is ready for the passive threads to run,
it calls countDown(), which decrements the counter. Each passive thread calls
await(), which blocks the thread until the counter reaches zero. (See Fig. 8.16.)

Provide a CountDownLatch implementation. Do not worry about reusing the
CountDownLatch object.

Exercise 99. This exercise is a follow-up to Exercise 98. Provide a
CountDownLatch implementation where the CountDownLatch object can be
reused.

This page intentionally left blank

9Linked Lists: The Role
of Locking

9.1 Introduction

In Chapter 7 we saw how to build scalable spin locks that provide mutual
exclusion efficiently, even when they are heavily used. We might think that it
is now a simple matter to construct scalable concurrent data structures: take
a sequential implementation of the class, add a scalable lock field, and ensure
that each method call acquires and releases that lock. We call this approach
coarse-grained synchronization.

Often, coarse-grained synchronization works well, but there are important
cases where it does not. The problem is that a class that uses a single lock to medi-
ate all its method calls is not always scalable, even if the lock itself is scalable.
Coarse-grained synchronization works well when levels of concurrency are low,
but if too many threads try to access the object at the same time, then the object
becomes a sequential bottleneck, forcing threads to wait in line for access.

This chapter introduces several useful techniques that go beyond coarse-
grained locking to allow multiple threads to access a single object at the same time.

� Fine-grained synchronization: Instead of using a single lock to synchronize
every access to an object, we split the object into independently synchronized
components, ensuring that method calls interfere only when trying to access
the same component at the same time.

� Optimistic synchronization: Many objects, such as trees or lists, consist of mul-
tiple components linked together by references. Some methods search for a
particular component (e.g., a list or tree node containing a particular key).
One way to reduce the cost of fine-grained locking is to search without acquir-
ing any locks at all. If the method finds the sought-after component, it locks
that component, and then checks that the component has not changed in the
interval between when it was inspected and when it was locked. This technique
is worthwhile only if it succeeds more often than not, which is why we call it
optimistic.

195

196 Chapter 9 Linked Lists: The Role of Locking

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

Figure 9.1 The Set interface: add() adds an item to the set (no effect if that item is already
present), remove() removes it (if present), and contains() returns a Boolean indicating
whether the item is present.

� Lazy synchronization: Sometimes it makes sense to postpone hard work. For
example, the task of removing a component from a data structure can be split
into two phases: the component is logically removed simply by setting a tag bit,
and later, the component can be physically removed by unlinking it from the
rest of the data structure.

� Nonblocking synchronization: Sometimes we can eliminate locks entirely,
relying on built-in atomic operations such as compareAndSet() for synchro-
nization.

Each of these techniques can be applied (with appropriate customization) to a
variety of common data structures. In this chapter we consider how to use linked
lists to implement a set, a collection of items that contains no duplicate elements.

For our purposes, as illustrated in Fig. 9.1, a set provides the following three
methods:

� The add(x) method adds x to the set, returning true if, and only if x was not
already there.

� The remove(x) method removes x from the set, returning true if, and only if
x was there.

� The contains(x) returns true if, and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuccessful
otherwise. It is typical that in applications using sets, there are significantly more
contains() calls than add() or remove() calls.

9.2 List-Based Sets

This chapter presents a range of concurrent set algorithms, all based on the same
basic idea. A set is implemented as a linked list of nodes. As shown in Fig. 9.2,
the Node<T> class has three fields. The item field is the actual item of interest.
The key field is the item’s hash code. Nodes are sorted in key order, providing
an efficient way to detect when an item is absent. The next field is a reference to
the next node in the list. (Some of the algorithms we consider require technical
changes to this class, such as adding new fields, or changing the types of existing
fields.) For simplicity, we assume that each item’s hash code is unique (relaxing
this assumption is left as an exercise). We associate an item with the same node

9.2 List-Based Sets 197

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

Figure 9.2 The Node<T> class: this internal class keeps track of the item, the item’s key, and
the next node in the list. Some algorithms require technical changes to this class.

remove b

b

head

pred

tail

c

curr

a

b

head

pred

tail

c

curr

a

add b

(a)

(b)

Figure 9.3 A seqential Set implementation: adding and removing nodes. In Part (a), a thread
adding a node b uses two variables: curr is the current node, and pred is its predecessor.
The thread moves down the list comparing the keys for curr and b. If a match is found, the
item is already present, so it returns false. If curr reaches a node with a higher key, the item
is not in the set so Set b’s next field to curr , and pred ’s next field to b. In Part (b), to delete
curr , the thread sets pred ’s next field to curr ’s next field.

and key throughout any given example, which allows us to abuse notation and
use the same symbol to refer to a node, its key, and its item. That is, node a may
have key a and item a, and so on.

The list has two kinds of nodes. In addition to regular nodes that hold items
in the set, we use two sentinel nodes, called head and tail, as the first and last
list elements. Sentinel nodes are never added, removed, or searched for, and their
keys are the minimum and maximum integer values.1 Ignoring synchronization
for the moment, the top part of Fig. 9.3 schematically describes how an item is

1 All algorithms presented here work for any any ordered set of keys that have maximum and min-
imum values and that are well-founded, that is, there are only finitely many keys smaller than any
given key. For simplicity, we assume here that keys are integers.

198 Chapter 9 Linked Lists: The Role of Locking

added to the set. Each thread A has two local variables used to traverse the list:
currA is the current node and predA is its predecessor. To add an item to the set,
thread A sets local variables predA and currA to head, and moves down the list,
comparing currA’s key to the key of the item being added. If they match, the item
is already present in the set, so the call returns false. If predA precedes currA in
the list, then predA’s key is lower than that of the inserted item, and currA’s key
is higher, so the item is not present in the list. The method creates a new node b
to hold the item, sets b’s nextA field to currA, then sets predA to b. Removing
an item from the set works in a similar way.

9.3 Concurrent Reasoning

Reasoning about concurrent data structures may seem impossibly difficult, but it
is a skill that can be learned. Often, the key to understanding a concurrent data
structure is to understand its invariants: properties that always hold. We can show
that a property is invariant by showing that:

1. The property holds when the object is created, and

2. Once the property holds, then no thread can take a step that makes the
property false.

Most interesting invariants hold trivially when the list is created, so it makes sense
to focus on how invariants, once established, are preserved.

Specifically, we can check that each invariant is preserved by each invocation
of insert(), remove(), and contains() methods. This approach works only if
we can assume that these methods are the only ones that modify nodes, a prop-
erty sometimes called freedom from interference. In the list algorithms considered
here, nodes are internal to the list implementation, so freedom from interference
is guaranteed because users of the list have no opportunity to modify its internal
nodes.

We require freedom from interference even for nodes that have been removed
from the list, since some of our algorithms permit a thread to unlink a node
while it is being traversed by others. Fortunately, we do not attempt to reuse list
nodes that have been removed from the list, relying instead on a garbage collector
to recycle that memory. The algorithms described here work in languages with-
out garbage collection, but sometimes require nontrivial modifications that are
beyond the scope of this chapter.

When reasoning about concurrent object implementations, it is important to
understand the distinction between an object’s abstract value (here, a set of items),
and its concrete representation (here, a list of nodes).

Not every list of nodes is a meaningful representation for a set. An algorithm’s
representation invariant characterizes which representations make sense as
abstract values. If a and b are nodes, we say that a points to b if a’s next field is a

9.3 Concurrent Reasoning 199

reference to b. We say that b is reachable if there is a sequence of nodes, starting
at head, and ending at b, where each node in the sequence points to its successor.

The set algorithms in this chapter require the following invariants (some
require more, as explained later). First, sentinels are neither added nor removed.
Second, nodes are sorted by key, and keys are unique.

Let us think of the representation invariant as a contract among the object’s
methods. Each method call preserves the invariant, and also relies on the other
methods to preserve the invariant. In this way, we can reason about each method
in isolation, without having to consider all the possible ways they might interact.

Given a list satisfying the representation invariant, which set does it represent?
The meaning of such a list is given by an abstraction map carrying lists that satisfy
the representation invariant to sets. Here, the abstraction map is simple: an item
is in the set if and only if it is reachable from head.

What safety and liveness properties do we need? Our safety property is
linearizability. As we saw in Chapter 3, to show that a concurrent data structure
is a linearizable implementation of a sequentially specified object, it is enough to
identify a linearization point, a single atomic step where the method call “takes
effect.” This step can be a read, a write, or a more complex atomic operation.
Looking at any execution history of a list-based set, it must be the case that if the
abstraction map is applied to the representation at the linearization points, the
resulting sequence of states and method calls defines a valid sequential set exe-
cution. Here, add(a) adds a to the abstract set, remove(a) removes a from the
abstract set, and contains(a) returns true or false, depending on whether a was
already in the set.

Different list algorithms make different progress guarantees. Some use locks,
and care is required to ensure they are deadlock- and starvation-free. Some
nonblocking list algorithms do not use locks at all, while others restrict locking
to certain methods. Here is a brief summary, from Chapter 3, of the nonblocking
properties we use2:

� A method is wait-free if it guarantees that every call finishes in a finite number
of steps.

� A method is lock-free if it guarantees that some call always finishes in a finite
number of steps.

We are now ready to consider a range of list-based set algorithms. We start with
algorithms that use coarse-grained synchronization, and successively refine them
to reduce granularity of locking. Formal proofs of correctness lie beyond the scope
of this book. Instead, we focus on informal reasoning useful in everyday problem-
solving.

As mentioned, in each of these algorithms, methods scan through the list using
two local variables: curr is the current node and pred is its predecessor. These

2 Chapter 3 introduces an even weaker nonblocking property called obstruction-freedom.

200 Chapter 9 Linked Lists: The Role of Locking

variables are thread-local,3 so we use predA and currA to denote the instances
used by thread A.

9.4 Coarse-Grained Synchronization

We start with a simple algorithm using coarse-grained synchronization. Figs. 9.4
and 9.5 show the add() and remove() methods for this coarse-grained algorithm.
(The contains() method works in much the same way, and is left as an exercise.)
The list itself has a single lock which every method call must acquire. The principal
advantage of this algorithm, which should not be discounted, is that it is obviously
correct. All methods act on the list only while holding the lock, so the execution
is essentially sequential. To simplify matters, we follow the convention (for now)

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList() {
5 head = new Node(Integer.MIN_VALUE);
6 head.next = new Node(Integer.MAX_VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr;
10 int key = item.hashCode();
11 lock.lock();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr.key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock.unlock();
29 }
30 }

Figure 9.4 The CoarseList class: the add() method.

3 Appendix A describes how thread-local variables work in Java.

9.5 Fine-Grained Synchronization 201

31 public boolean remove(T item) {
32 Node pred, curr;
33 int key = item.hashCode();
34 lock.lock();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr.key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false;
47 }
48 } finally {
49 lock.unlock();
50 }
51 }

Figure 9.5 The CoarseList class: the remove() method. All methods acquire a single lock,
which is released on exit by the finally block.

that the linearization point for any method call that acquires a lock is the instant
the lock is acquired.

The CoarseList class satisfies the same progress condition as its lock: if the
Lock is starvation-free, so is our implementation. If contention is very low, this
algorithm is an excellent way to implement a list. If, however, there is contention,
then even if the lock itself performs well, threads will still be delayed waiting for
one another.

9.5 Fine-Grained Synchronization

We can improve concurrency by locking individual nodes, rather than locking
the list as a whole. Instead of placing a lock on the entire list, let us add a Lock
to each node, along with lock() and unlock() methods. As a thread traverses
the list, it locks each node when it first visits, and sometime later releases it. Such
fine-grained locking permits concurrent threads to traverse the list together in a
pipelined fashion.

Let us consider two nodes a and b where a points to b. It is not safe to unlock
a before locking b because another thread could remove b from the list in the
interval between unlocking a and locking b. Instead, thread A must acquire locks
in a kind of “hand-over-hand” order: except for the initial head sentinel node,
acquire the lock for currA only while holding the lock for predA. This locking

202 Chapter 9 Linked Lists: The Role of Locking

protocol is sometimes called lock coupling. (Notice that there is no obvious way
to implement lock coupling using Java’s synchronized methods.)

Fig. 9.6 shows the FineList algorithm’s add() method, and Fig. 9.7 its
remove() method. Just as in the coarse-grained list, remove() makes currA
unreachable by setting predA’s next field to currA’s successor. To be safe,
remove() must lock both predA and currA. To see why, let us consider the
following scenario, illustrated in Fig. 9.8. Thread A is about to remove node a, the
first node in the list, while threadB is about to remove node b, where a points to b.
Suppose A locks head, and B locks a. A then sets head.next to b, while B sets
a.next to c. The net effect is to remove a, but not b. The problem is that there
is no overlap between the locks held by the two remove() calls. Fig. 9.9 illustrates
how this “hand-over-hand” locking avoids this problem.

To guarantee progress, it is important that all methods acquire locks in the
same order, starting at the head and following next references toward the tail.
As Fig. 9.10 shows, a deadlock could occur if different method calls were to acquire
locks in different orders. In this example, thread A, trying to add a, has locked b
and is attempting to lock head, while B, trying to remove b, has locked head and

1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15 if (curr.key == key) {
16 return false;
17 }
18 Node newNode = new Node(item);
19 newNode.next = curr;
20 pred.next = newNode;
21 return true;
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

Figure 9.6 The FineList class: the add() method uses hand-over-hand locking to traverse
the list. The finally blocks release locks before returning.

9.5 Fine-Grained Synchronization 203

29 public boolean remove(T item) {
30 Node pred = null, curr = null;
31 int key = item.hashCode();
32 head.lock();
33 try {
34 pred = head;
35 curr = pred.next;
36 curr.lock();
37 try {
38 while (curr.key < key) {
39 pred.unlock();
40 pred = curr;
41 curr = curr.next;
42 curr.lock();
43 }
44 if (curr.key == key) {
45 pred.next = curr.next;
46 return true;
47 }
48 return false;
49 } finally {
50 curr.unlock();
51 }
52 } finally {
53 pred.unlock();
54 }
55 }

Figure 9.7 The FineList class: the remove() method locks both the node to be removed
and its predecessor before removing that node.

b

head tail

c

remove bremove a

a

Figure 9.8 The FineList class: why remove() must acquire two locks. Thread A is about
to remove a, the first node in the list, while thread B is about to remove b, where a points
to b. Suppose A locks head, and B locks a. Thread A then sets head.next to b, while B sets
a’s next field to c. The net effect is to remove a, but not b.

is trying to lock b. Clearly, these method calls will never finish. Avoiding deadlocks
is one of the principal challenges of programming with locks.

The FineList algorithm maintains the representation invariant: sentinels are
never added or removed, and nodes are sorted by key value without duplicates.

204 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

Figure 9.9 The FineList class: Hand-over-hand locking ensures that if concurrent remove()
calls try to remove adjacent nodes, then they acquire conflicting locks. Thread A is about to
remove node a, the first node in the list, while thread B is about to remove node b, where
a points to b. Because A must lock both head and A and B must lock both a and b, they are
guaranteed to conflict on a, forcing one call to wait for the other.

b

head tail

c

a

B: remove bA: add a

Figure 9.10 The FineList class: a deadlock can occur if, for example, remove() and add()
calls acquire locks in opposite order. Thread A is about to insert a by locking first b and then
head, and thread B is about to remove node b by locking first head and then b. Each thread
holds the lock the other is waiting to acquire, so neither makes progress.

The abstraction map is the same as for the course-grained list: an item is in the
set if, and only if its node is reachable.

The linearization point for an add(a) call depends on whether the call was
successful (i.e., whether a was already present). A successful call (a absent) is lin-
earized when the node with the next higher key is locked (either Line 7 or 13).

The same distinctions apply to remove(a) calls. A successful call (a present) is
linearized when the predecessor node is locked (Lines 36 or 42). A successful call
(a absent) is linearized when the node containing the next higher key is locked
(Lines 36 or 42). An unsuccessful call (a present) is linearized when the node
containing a is locked.

Determining linearization points for contains() is left as an exercise.
The FineList algorithm is starvation-free, but arguing this property is

harder than in the course-grained case. We assume that all individual locks are

9.6 Optimistic Synchronization 205

starvation-free. Because all methods acquire locks in the same down-the-list
order, deadlock is impossible. If thread A attempts to lock head, eventually it
succeeds. From that point on, because there are no deadlocks, eventually all locks
held by threads ahead ofA in the list will be released, andAwill succeed in locking
predA and currA.

9.6 Optimistic Synchronization

Although fine-grained locking is an improvement over a single, coarse-grained
lock, it still imposes a potentially long sequence of lock acquisitions and releases.
Moreover, threads accessing disjoint parts of the list may still block one another.
For example, a thread removing the second item in the list blocks all concurrent
threads searching for later nodes.

One way to reduce synchronization costs is to take a chance: search without
acquiring locks, lock the nodes found, and then confirm that the locked nodes
are correct. If a synchronization conflict causes the wrong nodes to be locked,
then release the locks and start over. Normally, this kind of conflict is rare, which
is why we call this technique optimistic synchronization.

In Fig. 9.11, thread A makes an optimistic add(a). It traverses the list with-
out acquiring any locks (Lines 6 through 8). In fact, it ignores the locks com-
pletely. It stops the traversal when currA’s key is greater than, or equal to a’s.
It then locks predA and currA, and calls validate() to check that predA is
reachable and its next field still refers to currA. If validation succeeds, then
thread A proceeds as before: if currA’s key is greater than a, thread A adds a
new node with item a between predA and currA, and returns true. Otherwise it
returns false. The remove() and contains() methods (Figs. 9.12 and 9.13) oper-
ate similarly, traversing the list without locking, then locking the target nodes
and validating they are still in the list.

The code of validate() appears in Fig. 9.14. We are reminded of the following
story:

A tourist takes a taxi in a foreign town. The taxi driver speeds through a red
light. The tourist, frightened, asks “What are you are doing?” The driver answers:
“Do not worry, I am an expert.” He speeds through more red lights, and the
tourist, on the verge of hysteria, complains again, more urgently. The driver
replies, “Relax, relax, you are in the hands of an expert.” Suddenly, the light turns
green, the driver slams on the brakes, and the taxi skids to a halt. The tourist picks
himself off the floor of the taxi and asks “For crying out loud, why stop now that
the light is finally green?” The driver answers “Too dangerous, could be another
expert crossing.”

Traversing any dynamically changing lock-based data structure while ignor-
ing locks requires careful thought (there are other expert threads out there). We
must make sure to use some form of validation and guarantee freedom from
interference.

206 Chapter 9 Linked Lists: The Role of Locking

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key <= key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock(); curr.lock();

10 try {
11 if (validate(pred, curr)) {
12 if (curr.key == key) {
13 return false;
14 } else {
15 Node node = new Node(item);
16 node.next = curr;
17 pred.next = node;
18 return true;
19 }
20 }
21 } finally {
22 pred.unlock(); curr.unlock();
23 }
24 }
25 }

Figure 9.11 The OptimisticList class: the add() method traverses the list ignoring locks,
acquires locks, and validates before adding the new node.

26 public boolean remove(T item) {
27 int key = item.hashCode();
28 while (true) {
29 Node pred = head;
30 Node curr = pred.next;
31 while (curr.key < key) {
32 pred = curr; curr = curr.next;
33 }
34 pred.lock(); curr.lock();
35 try {
36 if (validate(pred, curr)) {
37 if (curr.key == key) {
38 pred.next = curr.next;
39 return true;
40 } else {
41 return false;
42 }
43 }
44 } finally {
45 pred.unlock(); curr.unlock();
46 }
47 }
48 }

Figure 9.12 The OptimisticList class: the remove() method traverses ignoring locks,
acquires locks, and validates before removing the node.

9.6 Optimistic Synchronization 207

49 public boolean contains(T item) {
50 int key = item.hashCode();
51 while (true) {
52 Entry pred = this.head; // sentinel node;
53 Entry curr = pred.next;
54 while (curr.key < key) {
55 pred = curr; curr = curr.next;
56 }
57 try {
58 pred.lock(); curr.lock();
59 if (validate(pred, curr)) {
60 return (curr.key == key);
61 }
62 } finally { // always unlock
63 pred.unlock(); curr.unlock();
64 }
65 }
66 }

Figure 9.13 The OptimisticList class: the contains() method searches, ignoring locks,
then it acquires locks, and validates to determine if the node is in the list.

67 private boolean validate(Node pred, Node curr) {
68 Node node = head;
69 while (node.key <= pred.key) {
70 if (node == pred)
71 return pred.next == curr;
72 node = node.next;
73 }
74 return false;
75 }

Figure 9.14 The OptimisticList: validation checks that predA points to currA and is
reachable from head.

As Fig. 9.15 shows, validation is necessary because the trail of references lead-
ing to predA or the reference from predA to currA could have changed between
when they were last read by A and when A acquired the locks. In particular, a
thread could be traversing parts of the list that have already been removed. For
example, the node currA and all nodes between currA and a (including a) may
be removed while A is still traversing currA. Thread A discovers that currA
points to a, and, without validation, “successfully” removes a, even though a is
no longer in the list. A validate() call detects that a is no longer in the list,
and the caller restarts the method.

Because we are ignoring the locks that protect concurrent modifications, each
of the method calls may traverse nodes that have been removed from the list.
Nevertheless, absence of interference implies that once a node has been unlinked
from the list, the value of its next field does not change, so following a sequence of
such links eventually leads back to the list. Absence of interference, in turn, relies
on garbage collection to ensure that no node is recycled while it is being traversed.

208 Chapter 9 Linked Lists: The Role of Locking

a

currA

head

predA

tail

...

Figure 9.15 The OptimisticList class: why validation is needed. Thread A is attempting to
remove a node a. While traversing the list, currA and all nodes between currA and a (including
a) might be removed (denoted by a lighter node color). In such a case, thread A would proceed
to the point where currA points to a, and, without validation, would successfully remove a,
even though it is no longer in the list. Validation is required to determine that a is no longer
reachable from head.

The OptimisticList algorithm is not starvation-free, even if all node locks
are individually starvation-free. A thread might be delayed forever if new nodes
are repeatedly added and removed (see Exercise 107). Nevertheless, we would
expect this algorithm to do well in practice, since starvation is rare.

9.7 Lazy Synchronization

The OptimisticList implementation works best if the cost of traversing the
list twice without locking is significantly less than the cost of traversing the list
once with locking. One drawback of this particular algorithm is that contains()
acquires locks, which is unattractive since contains() calls are likely to be much
more common than calls to other methods.

The next step is to refine this algorithm so that contains() calls are wait-free,
and add() and remove() methods, while still blocking, traverse the list only once
(in the absence of contention). We add to each node a Boolean marked field indi-
cating whether that node is in the set. Now, traversals do not need to lock the target
node, and there is no need to validate that the node is reachable by retraversing
the whole list. Instead, the algorithm maintains the invariant that every unmarked
node is reachable. If a traversing thread does not find a node, or finds it marked,
then that item is not in the set. As a result, contains() needs only one wait-free
traversal. To add an element to the list, add() traverses the list, locks the target’s
predecessor, and inserts the node. The remove() method is lazy, taking two steps:
first, mark the target node, logically removing it, and second, redirect its prede-
cessor’s next field, physically removing it.

9.7 Lazy Synchronization 209

In more detail, all methods traverse the list (possibly traversing logically and
physically removed nodes) ignoring the locks. The add() and remove() methods
lock the predA and currA nodes as before (Figs. 9.16 and 9.17), but validation
does not retraverse the entire list (Fig. 9.18) to determine whether a node is in
the set. Instead, because a node must be marked before being physically removed,
validation need only check that currA has not been marked. However, as Fig. 9.19
shows, for insertion and deletion, since predA is the one being modified, one must
also check that predA itself is not marked, and that it points to currA. Logical
removals require a small change to the abstraction map: an item is in the set if, and
only if it is referred to by an unmarked reachable node. Notice that the path along

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

Figure 9.16 The LazyList class: validation checks that neither the pred nor the curr nodes
has been logically deleted, and that pred points to curr .

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();

10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key == key) {
15 return false;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr.unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

Figure 9.17 The LazyList class: add() method.

210 Chapter 9 Linked Lists: The Role of Locking

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();

10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key != key) {
15 return false;
16 } else {
17 curr.marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18 The LazyList class: the remove() method removes nodes in two steps, logical
and physical.

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr.key < key)
5 curr = curr.next;
6 return curr.key == key && !curr.marked;
7 }

Figure 9.19 The LazyList class: the contains() method.

which the node is reachable may contain marked nodes. The reader should check
that any unmarked reachable node remains reachable, even if its predecessor is
logically or physically deleted. As in the OptimisticList algorithm, add() and
remove() are not starvation-free, because list traversals may be arbitrarily delayed
by ongoing modifications.

The contains() method (Fig. 9.20) traverses the list once ignoring locks and
returns true if the node it was searching for is present and unmarked, and false

9.7 Lazy Synchronization 211

0

00 a0

head tail

0 00 a1

predA

head tail

currA(a)

(b)

0

predA currA

Figure 9.20 The LazyList class: why validation is needed. In Part (a) of the figure, thread A
is attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, the node predA is logically and physically removed.
After A acquires the locks, validation will detect the problem. In Part (b) of the figure, A
is attempting to remove node a. After it reaches the point where predA equals currA , and
before it acquires locks on these nodes, a new node is added between predA and currA . After
A acquires the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA , and A’s call to remove() will be restarted.

otherwise. It is thus wait-free.4 A marked node’s value is ignored. Each time the
traversal moves to a new node, the new node has a larger key than the previous
one, even if the node is logically deleted.

Logical removal requires a small change to the abstraction map: an item is in
the set if, and only if it is referred to by an unmarked reachable node. Notice that
the path along which the node is reachable may contain marked nodes. Physical
list modifications and traversals occur exactly as in the OptimisticList class,
and the reader should check that any unmarked reachable node remains reachable
even if its predecessor is logically or physically deleted.

The linearization points for LazyList add() and unsuccessful remove() calls
are the same as for the OptimisticList. A successful remove() call is linearized
when the mark is set (Line 17), and a successful contains() call is linearized when
an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), let us consider
the scenario depicted in Fig. 9.21. In Part (a), node a is marked as removed (its
marked field is set) and thread A is attempting to find the node matching a’s key.

4 Notice that the list ahead of a given traversing thread cannot grow forever due to newly inserted
keys, since the key size is finite.

212 Chapter 9 Linked Lists: The Role of Locking

0

a1 1

0 00 b0

0 b

(a)

(b)

predA

currA

head tail

head tail

...

a1 1

currA

...

0

0a

0

Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

While A is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.

Now let us consider the scenario depicted in Part (b). While A is traversing
the removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing thread A’s unsuccessful contains() method at the point
it finds the marked node a would be wrong, since this point occurs after the
insertion of the new node with key a to the list. We therefore linearize an unsuc-
cessful contains() method call within its execution interval at the earlier of the

9.8 Non-Blocking Synchronization 213

following points: (1) the point where a removed matching node, or a node with
a key greater than the one being searched for is found, and (2) the point imme-
diately before a new matching node is added to the list. Notice that the second is
guaranteed to be within the execution interval because the insertion of the new
node with the same key must have happened after the start of the contains()
method, or the contains() method would have found that item. As can be
seen, the linearization point of the unsuccessful contains() is determined by
the ordering of events in the execution, and is not a predetermined point in the
method’s code.

One benefit of lazy synchronization is that we can separate unobtrusive logical
steps such as setting a flag, from disruptive physical changes to the structure, such
as disconnecting a node. The example presented here is simple because we discon-
nect one node at a time. In general, however, delayed operations can be batched
and performed lazily at a convenient time, reducing the overall disruptiveness of
physical modifications to the structure.

The principal disadvantage of the LazyList algorithm is that add() and
remove() calls are blocking: if one thread is delayed, then others may also be
delayed.

9.8 Non-Blocking Synchronization

We have seen that it is sometimes a good idea to mark nodes as logically removed
before physically removing them from the list. We now show how to extend this
idea to eliminate locks altogether, allowing all three methods, add(), remove(),
and contains(), to be nonblocking. (The first two methods are lock-free and the
last wait-free). A naı̈ve approach would be to use compareAndSet() to change
the next fields. Unfortunately, this idea does not work. The bottom part of
Fig. 9.22 shows a thread A attempting to add node a between nodes predA and
currA. It sets a’s next field to currA, and then calls compareAndSet() to set
predA’s next field to a. If B wants to remove currB from the list, it might call
compareAndSet() to set predB ’s next field to currB ’s successor. It is not hard
to see that if these two threads try to remove these adjacent nodes concurrently,
the list would end up with b not being removed. A similar situation for a pair of
concurrent add() and remove() methods is depicted in the upper part of Fig. 9.22.

Clearly, we need a way to ensure that a node’s fields cannot be updated, after
that node has been logically or physically removed from the list. Our approach is
to treat the node’s next and marked fields as a single atomic unit: any attempt to
update the next field when the marked field is true will fail.

Pragma 9.8.1. An AtomicMarkableReference<T> is an object from the
java.util.concurrent.atomic package that encapsulates both a reference to an
object of type T and a Boolean mark. These fields can be updated atomically,

214 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

remove a

b

head tail

ca

add b

(a)

(b)

Figure 9.22 The LazyList class: why mark and reference fields must be modified atomi-
cally. In Part (a) of the figure, thread A is about to remove a, the first node in the list, while
B is about to add b. Suppose A applies compareAndSet() to head.next, while B applies
compareAndSet() to a.next. The net effect is that a is correctly deleted but b is not added
to the list. In Part (b) of the figure, thread A is about to remove a, the first node in the list,
while B is about to remove b, where a points to b. Suppose A applies compareAndSet() to
head.next, while B applies compareAndSet() to a.next. The net effect is to remove a, but
not b.

either together or individually. For example, the compareAndSet() method
tests the expected reference and mark values, and if both tests succeed,
replaces them with updated reference and mark values. As shorthand, the
attemptMark() method tests an expected reference value and if the test suc-
ceeds, replaces it with a new mark value. The get() method has an unusual
interface: it returns the object’s reference value and stores the mark value in a
Boolean array argument. Fig. 9.23 illustrates the interfaces of these methods.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public boolean attemptMark(T expectedReference,
6 boolean newMark);
7 public T get(boolean[] marked);

Figure 9.23 Some AtomicMarkableReference<T> methods: the compareAndSet()
method tests and updates both the mark and reference fields, while the attemptMark()
method updates the mark if the reference field has the expected value. The get() method
returns the encapsulated reference and stores the mark at position 0 in the argument
array.

9.8 Non-Blocking Synchronization 215

In C or C++, one could provide this functionality efficiently by “stealing”
a bit from a pointer, using bit-wise operators to extract the mark and the
pointer from a single word. In Java, of course, one cannot manipulate pointers
directly, so this functionality must be provided by a library.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<T>
object encapsulates both a reference to an object of type T and a Boolean mark.
These fields can be atomically updated, either together or individually.

We make each node’s next field an AtomicMarkableReference<Node>.
Thread A logically removes currA by setting the mark bit in the node’s next
field, and shares the physical removal with other threads performing add()
or remove(): as each thread traverses the list, it cleans up the list by physi-
cally removing (using compareAndSet()) any marked nodes it encounters. In
other words, threads performing add() and remove() do not traverse marked
nodes, they remove them before continuing. The contains() method remains
the same as in the LazyList algorithm, traversing all nodes whether they
are marked or not, and testing if an item is in the list based on its key and
mark.

It is worth pausing to consider a design decision that differentiates the
LockFreeList algorithm from the LazyList algorithm. Why do threads that
add or remove nodes never traverse marked nodes, and instead physically remove
all marked nodes they encounter? Suppose that thread A were to traverse marked
nodes without physically removing them, and after logically removing currA,
were to attempt to physically remove it as well. It could do so by calling
compareAndSet() to try to redirect predA’s next field, simultaneously veri-
fying that predA is not marked and that it refers to currA. The difficulty is that
because A is not holding locks on predA and currA, other threads could insert
new nodes or remove predA before the compareAndSet() call.

Consider a scenario in which another thread marks predA. As illustrated
in Fig. 9.22, we cannot safely redirect the next field of a marked node, so A
would have to restart the physical removal by retraversing the list. This time,
however, A would have to physically remove predA before it could remove
currA. Even worse, if there is a sequence of logically removed nodes leading to
predA, A must remove them all, one after the other, before it can remove currA
itself.

This example illustrates why add() and remove() calls do not traverse marked
nodes: when they arrive at the node to be modified, they may be forced to
retraverse the list to remove previous marked nodes. Instead, we choose to have
both add() and remove() physically remove any marked nodes on the path to
their target node. The contains() method, by contrast, performs no modifi-
cation, and therefore need not participate in the cleanup of logically removed
nodes, allowing it, as in the LazyList, to traverse both marked and unmarked
nodes.

216 Chapter 9 Linked Lists: The Role of Locking

In presenting our LockFreeList algorithm, we factor out functionality
common to the add() and remove() methods by creating an inner Window class to
help navigation. As shown in Fig. 9.24, a Window object is a structure with pred
and curr fields. The Window class’s find() method takes a head node and a key
a, and traverses the list, seeking to set pred to the node with the largest key less
than a, and curr to the node with the least key greater than or equal to a. As
thread A traverses the list, each time it advances currA, it checks whether that
node is marked (Line 16). If so, it calls compareAndSet() to attempt to physi-
cally remove the node by setting predA’s next field to currA’s next field. This
call tests both the field’s reference and Boolean mark values, and fails if either
value has changed. A concurrent thread could change the mark value by logically
removing predA, or it could change the reference value by physically removing
currA. If the call fails, A restarts the traversal from the head of the list; otherwise
the traversal continues.

The LockFreeList algorithm uses the same abstraction map as the LazyList
algorithm: an item is in the set if, and only if it is in an unmarked reachable node.

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 public Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};

10 boolean snip;
11 retry: while (true) {
12 pred = head;
13 curr = pred.next.getReference();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false, false);
18 if (!snip) continue retry;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr.key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

Figure 9.24 The Window class: the find() method returns a structure containing the nodes
on either side of the key. It removes marked nodes when it encounters them.

9.8 Non-Blocking Synchronization 217

The compareAndSet() call at Line 17 of the find() method is an example of a
benevolent side effect: it changes the concrete list without changing the abstract
set, because removing a marked node does not change the value of the abstrac-
tion map.

Fig. 9.25 shows the LockFreeList class’s add() method. Suppose thread A
calls add(a). A uses find() to locate predA and currA. If currA’s key is
equal to a’s, the call returns false. Otherwise, add() initializes a new node a
to hold a, and sets a to refer to currA. It then calls compareAndSet() (Line 10)
to set predA to a. Because the compareAndSet() tests both the mark and
the reference, it succeeds only if predA is unmarked and refers to currA. If
the compareAndSet() is successful, the method returns true, and otherwise it
starts over.

Fig. 9.26 shows the LockFreeList algorithm’s remove() method. When A
calls remove() to remove item a, it uses find() to locate predA and currA.
If currA’s key fails to match a’s, the call returns false. Otherwise, remove()
calls attemptMark() to mark currA as logically removed (Line 27). This call
succeeds only if no other thread has set the mark first. If it succeeds, the call
returns true. A single attempt is made to physically remove the node, but there
is no need to try again because the node will be removed by the next thread
to traverse that region of the list. If the attemptMark() call fails, remove()
starts over.

The LockFreeList algorithm’s contains() method is virtually the same as
that of the LazyList (Fig. 9.27). There is one small change: to test if curr is
marked we must apply curr.next.get(marked) and check that marked[0] is
true.

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Window window = find(head, key);
5 Node pred = window.pred, curr = window.curr;
6 if (curr.key == key) {
7 return false;
8 } else {
9 Node node = new Node(item);
10 node.next = new AtomicMarkableReference(curr, false);
11 if (pred.next.compareAndSet(curr, node, false, false)) {
12 return true;
13 }
14 }
15 }
16 }

Figure 9.25 The LockFreeList class: the add() method calls find() to locate predA and
currA . It adds a new node only if predA is unmarked and refers to currA .

218 Chapter 9 Linked Lists: The Role of Locking

17 public boolean remove(T item) {
18 int key = item.hashCode();
19 boolean snip;
20 while (true) {
21 Window window = find(head, key);
22 Node pred = window.pred, curr = window.curr;
23 if (curr.key != key) {
24 return false;
25 } else {
26 Node succ = curr.next.getReference();
27 snip = curr.next.attemptMark(succ, true);
28 if (!snip)
29 continue;
30 pred.next.compareAndSet(curr, succ, false, false);
31 return true;
32 }
33 }
34 }

Figure 9.26 The LockFreeList class: the remove() method calls find() to locate predA and
currA , and atomically marks the node for removal.

35 public boolean contains(T item) {
36 boolean[] marked = false{};
37 int key = item.hashCode();
38 Node curr = head;
39 while (curr.key < key) {
40 curr = curr.next;
41 Node succ = curr.next.get(marked);
42 }
43 return (curr.key == key && !marked[0])
44 }

Figure 9.27 The LockFreeList class: the wait-free contains() method is the almost the
same as in the LazyList class. There is one small difference: it calls curr.next.get(marked)
to test whether curr is marked.

9.9 Discussion

We have seen a progression of list-based lock implementations in which the
granularity and frequency of locking was gradually reduced, eventually reach-
ing a fully nonblocking list. The final transition from the LazyList to the
LockFreeList exposes some of the design decisions that face concurrent
programmers. As we will see, approaches such as optimistic and lazy synchro-
nization will appear time and again as when designing more complex data
structures.

9.11 Exercises 219

On the one hand, the LockFreeList algorithm guarantees progress in the face
of arbitrary delays. However, there is a price for this strong progress guarantee:

� The need to support atomic modification of a reference and a Boolean mark
has an added performance cost.5

� As add() and remove() traverse the list, they must engage in concurrent
cleanup of removed nodes, introducing the possibility of contention among
threads, sometimes forcing threads to restart traversals, even if there was no
change near the node each was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress in the
face of arbitrary delays: its add() and remove() methods are blocking. However,
unlike the lock-free algorithm, it does not require each node to include an atom-
ically markable reference. It also does not require traversals to clean up logically
removed nodes; they progress down the list, ignoring marked nodes.

Which approach is preferable depends on the application. In the end, the
balance of factors such as the potential for arbitrary thread delays, the relative
frequency of calls to the add() and remove() methods, the overhead of imple-
menting an atomically markable reference, and so on determine the choice of
whether to lock, and if so, at what granularity.

9.10 Chapter Notes

Lock coupling was invented by Rudolf Bayer and Mario Schkolnick [19]. The first
designs of lock-free linked-list algorithms are credited to John Valois [147]. The
Lock-free list implementation shown here is a variation on the lists of Maged
Michael [115], who based his work on earlier linked-list algorithms by Tim Harris
[53]. This algorithm is referred to by many as the Harris-Michael algorithm. The
Harris-Michael algorithm is the one used in the Java Concurrency Package. The
OptimisticList algorithm was invented for this chapter, and the lazy algorithm
is credited to Steven Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Nir
Shavit, and Bill Scherer [55].

9.11 Exercises

Exercise 100. Describe how to modify each of the linked list algorithms if object
hash codes are not guaranteed to be unique.

5 In the Java Concurrency Package, for example, this cost is somewhat reduced by using a reference
to an intermediate dummy node to signify that the marked bit is set.

220 Chapter 9 Linked Lists: The Role of Locking

Exercise 101. Explain why the fine-grained locking algorithm is not subject to
deadlock.

Exercise 102. Explain why the fine-grained list’s add() method is linearizable.

Exercise 103. Explain why the optimistic and lazy locking algorithms are not sub-
ject to deadlock.

Exercise 104. Show a scenario in the optimistic algorithm where a thread is forever
attempting to delete a node.

Hint: since we assume that all the individual node locks are starvation-free, the
livelock is not on any individual lock, and a bad execution must repeatedly add
and remove nodes from the list.

Exercise 105. Provide the code for the contains() method missing from the fine-
grained algorithm. Explain why your implementation is correct.

Exercise 106. Is the optimistic list implementation still correct if we switch the
order in which add() locks the pred and curr entries?

Exercise 107. Show that in the optimistic list algorithm, if predA is not null, then
tail is reachable from predA, even if predA itself is not reachable.

Exercise 108. Show that in the optimistic algorithm, the add() method needs to
lock only pred.

Exercise 109. In the optimistic algorithm, the contains() method locks two
entries before deciding whether a key is present. Suppose, instead, it locks no
entries, returning true if it observes the value, and false otherwise.

Either explain why this alternative is linearizable, or give a counterexample
showing it is not.

Exercise 110. Would the lazy algorithm still work if we marked a node as removed
simply by setting its next field to null? Why or why not? What about the lock-free
algorithm?

Exercise 111. In the lazy algorithm, can predA ever be unreachable? Justify your
answer.

Exercise 112. Your new employee claims that the lazy list’s validation method
(Fig. 9.16) can be simplified by dropping the check that pred.next is equal to
curr. After all, the code always sets pred to the old value of curr, and before
pred.next can be changed, the new value of curr must be marked, causing the
validation to fail. Explain the error in this reasoning.

Exercise 113. Can you modify the lazy algorithm’s remove() so it locks only one
node?

9.11 Exercises 221

Exercise 114. In the lock-free algorithm, argue the benefits and drawbacks of
having the contains() method help in the cleanup of logically removed entries.

Exercise 115. In the lock-free algorithm, if an add() method call fails because pred
does not point to curr, but pred is not marked, do we need to traverse the list
again from head in order to attempt to complete the call?

Exercise 116. Would the contains() method of the lazy and lock-free algorithms
still be correct if logically removed entries were not guaranteed to be sorted?

Exercise 117. The add() method of the lock-free algorithm never finds a marked
node with the same key. Can one modify the algorithm so that it will simply insert
its new added object into the existing marked node with same key if such a node
exists in the list, thus saving the need to insert a new node?

Exercise 118. Explain why this cannot happen in the LockFreeList algorithm.
A node with item x is logically but not yet physically removed by some thread,
then the same item x is added into the list by another thread, and finally a
contains() call by a third thread traverses the list, finding the logically removed
node, and returning false, even though the linearization order of the remove()
and add() implies that x is in the set.

This page intentionally left blank

10Concurrent Queues and
the ABA Problem

10.1 Introduction

In the subsequent chapters, we look at a broad class of objects known as pools.
A pool is similar to the Set class studied in Chapter 9, with two main differences:
a pool does not necessarily provide a contains() method to test membership, and
it allows the same item to appear more than once. The Pool has get() and set()
methods as in Fig. 10.1. Pools show up in many places in concurrent systems. For
example, in many applications, one or more producer threads produce items to be
consumed by one or more consumer threads. These items may be jobs to perform,
keystrokes to interpret, purchase orders to execute, or packets to decode. Some-
times, producers are bursty, suddenly and briefly producing items faster than con-
sumers can consume them. To allow consumers to keep up, we can place a buffer
between the producers and the consumers. Items produced faster than they can
be consumed accumulate in the buffer, from which they are consumed as quickly
as possible. Often, pools act as producer–consumer buffers.

Pools come in several varieties.

� A pool can be bounded or unbounded. A bounded pool holds a limited number
of items. This limit is called its capacity. By contrast, an unbounded pool can
hold any number of items. Bounded pools are useful when we want to keep
producer and consumer threads loosely synchronized, ensuring that producers
do not get too far ahead of consumers. Bounded pools may also be simpler to
implement than unbounded pools. On the other hand, unbounded pools are
useful when there is no need to set a fixed limit on how far producers can
outstrip consumers.

� Pool methods may be total, partial, or synchronous.

— A method is total if calls do not wait for certain conditions to become true.
For example, a get() call that tries to remove an item from an empty pool
immediately returns a failure code or throws an exception. If the pool is
bounded, a total set() that tries to add an item to a full pool immediately

223

224 Chapter 10 Concurrent Queues and the ABA Problem

1 public interface Pool<T> {
2 void put(T item);
3 T get();
4 }

Figure 10.1 The Pool<T> interface.

returns a failure code or an exception. A total interface makes sense when
the producer (or consumer) thread has something better to do than wait
for the method call to take effect.

— A method is partial if calls may wait for conditions to hold. For example,
a partial get() call that tries to remove an item from an empty pool blocks
until an item is available to return. If the pool is bounded, a partial set()
call that tries to add an item to a full pool blocks until an empty slot is avail-
able to fill. A partial interface makes sense when the producer (or consumer)
has nothing better to do than to wait for the pool to become nonempty
(or nonfull).

— A method is synchronous if it waits for another method to overlap its call
interval. For example, in a synchronous pool, a method call that adds an
item to the pool is blocked until that item is removed by another method
call. Symmetrically, a method call that removes an item from the pool is
blocked until another method call makes an item available to be removed.
(Such methods are partial.) Synchronous pools are used for communica-
tion in programming languages such as CSP and Ada in which threads
rendezvous to exchange information.

� Pools provide different fairness guarantees. They can be first-in-first-out
(a queue), last-in-last-out (a stack), or other, weaker properties. The impor-
tance of fairness when buffering using a pool is clear to anyone who has ever
called a bank or a technical support line, only to be placed in a pool of waiting
calls. The longer you wait, the more consolation you draw from the recorded
message asserting that calls are answered in the order they arrive. Perhaps.

10.2 Queues

In this chapter we consider a kind of pool that provides first-in-first-out (FIFO)
fairness. A sequential Queue<T> is an ordered sequence of items (of type T). It
provides an enq(x) method that puts item x at one end of the queue, called the
tail, and a deq() method that removes and returns the item at the other end of the
queue, called the head. A concurrent queue is linearizable to a sequential queue.
Queues are pools, where enq() implements put(), and deq() implements get().
We use queue implementations to illustrate a number of important principles. In
later chapters we consider pools that provide other fairness guarantees.

10.3 A Bounded Partial Queue 225

10.3 A Bounded Partial Queue

For simplicity, we assume it is illegal to add a null value to a queue. Of course,
there may be circumstances where it makes sense to add and remove null values,
but we leave it as an exercise to adapt our algorithms to accommodate null values.

How much concurrency can we expect a bounded queue implementation with
multiple concurrent enqueuers and dequeuers to provide? Very informally, the
enq() and deq() methods operate on opposite ends of the queue, so as long as
the queue is neither full nor empty, an enq() call and a deq() call should, in prin-
ciple, be able to proceed without interference. For the same reason, concurrent
enq() calls probably will interfere, and also for deq() calls. This informal reason-
ing may sound convincing, and it is in fact mostly correct, but realizing this level
of concurrency is not trivial.

Here, we implement a bounded queue as a linked list. (We could also have used
an array.) Fig. 10.2 shows the queue’s fields and constructor, Figs. 10.3 and 10.4
show the enq() and deq() methods, and Fig. 10.5 shows a queue node. Like the
lists studied in Chapter 9, a queue node has value and next fields.

As seen in Fig. 10.6, the queue itself has head and tail fields that respectively
refer to the first and last nodes in the queue. The queue always contains a sen-
tinel node acting as a place-holder. Like the sentinel nodes in Chapter 9, it marks
a position in the queue, though its value is meaningless. Unlike the list algo-
rithms in Chapter 9, in which the same nodes always act as sentinels, the queue
repeatedly replaces the sentinel node. We use two distinct locks, enqLock and
deqLock, to ensure that at most one enqueuer, and at most one dequeuer at a
time can manipulate the queue object’s fields. Using two locks instead of one
ensures that an enqueuer does not lock out a dequeuer unnecessarily, and vice
versa. Each lock has an associated condition field. The enqLock is associated with

1 public class BoundedQueue<T> {
2 ReentrantLock enqLock, deqLock;
3 Condition notEmptyCondition, notFullCondition;
4 AtomicInteger size;
5 Node head, tail;
6 int capacity;
7 public BoundedQueue(int _capacity) {
8 capacity = _capacity;
9 head = new Node(null);
10 tail = head;
11 size = new AtomicInteger(0);
12 enqLock = new ReentrantLock();
13 notFullCondition = enqLock.newCondition();
14 deqLock = new ReentrantLock();
15 notEmptyCondition = deqLock.newCondition();
16 }

Figure 10.2 The BoundedQueue class: fields and constructor.

226 Chapter 10 Concurrent Queues and the ABA Problem

17 public void enq(T x) {
18 boolean mustWakeDequeuers = false;
19 enqLock.lock();
20 try {
21 while (size.get() == capacity)
22 notFullCondition.await();
23 Node e = new Node(x);
24 tail.next = tail = e;
25 if (size.getAndIncrement() == 0)
26 mustWakeDequeuers = true;
27 } finally {
28 enqLock.unlock();
29 }
30 if (mustWakeDequeuers) {
31 deqLock.lock();
32 try {
33 notEmptyCondition.signalAll();
34 } finally {
35 deqLock.unlock();
36 }
37 }
38 }

Figure 10.3 The BoundedQueue class: the enq() method.

39 public T deq() {
40 T result;
41 boolean mustWakeEnqueuers = true;
42 deqLock.lock();
43 try {
44 while (size.get() == 0)
45 notEmptyCondition.await();
46 result = head.next.value;
47 head = head.next;
48 if (size.getAndIncrement() == capacity) {
49 mustWakeEnqueuers = true;
50 }
51 } finally {
52 deqLock.unlock();
53 }
54 if (mustWakeEnqueuers) {
55 enqLock.lock();
56 try {
57 notFullCondition.signalAll();
58 } finally {
59 enqLock.unlock();
60 }
61 }
62 return result;
63 }

Figure 10.4 The BoundedQueue class: the deq() method.

10.3 A Bounded Partial Queue 227

64 protected class Node {
65 public T value;
66 public Node next;
67 public Node(T x) {
68 value = x;
69 next = null;
70 }
71 }
72 }

Figure 10.5 BoundedQueue class: List Node.

the notFullCondition condition, used to notify waiting enqueuers when the
queue is no longer full. The deqLock is associated with notEmptyCondition,
used to notify waiting enqueuers when the queue is no longer empty.

Since the queue is bounded, we must keep track of the number of empty
slots. The size field is an AtomicInteger that tracks the number of objects cur-
rently in the queue. This field is decremented by deq() calls and incremented by
enq() calls.

The enq() method (Fig. 10.3) works as follows. A thread acquires the enqLock
(Line 19), and reads the size field (Line 21). While that field is equal to the
capacity, the queue is full, and the enqueuer must wait until a dequeuer makes
room. The enqueuer waits on the notFullCondition field (Line 22), releasing
the enqueue lock temporarily, and blocking until that condition is signaled. Each
time the thread awakens (Line 22), it checks whether there is room, and if not,
goes back to sleep.

Once the number of empty slots exceeds zero, however, the enqueuer may pro-
ceed. We note that once the enqueuer observes an empty slot, while the enqueue
is in progress no other thread can fill the queue, because all the other enqueuers
are locked out, and a concurrent dequeuer can only increase the number of empty
slots. (Synchronization for the enq() method is symmetric.)

We must carefully check that this implementation does not suffer from the kind
of “lost-wakeup” bug described in Chapter 8. Care is needed because an enqueuer
encounters a full queue in two steps: first, it sees that size is the queue capac-
ity, and second, it waits on notFullCondition until there is room in the queue.
When a dequeuer changes the queue from full to not-full, it acquires enqLock
and signals notFullCondition. Even though the size field is not protected by
the enqLock, the dequeuer acquires the enqLock before it signals the condition,
so the dequeuer cannot signal between the enqueuer’s two steps.

The deq() method proceeds as follows. It reads the head’s next field, and
checks whether the sentinel’s next field is null. If so, the queue is empty, and
the dequeuer must wait until an item is enqueued. Like the enq() method, the
dequeuer waits on notEmptyCondition, which temporarily releases deqLock,
and blocks until the condition is signaled. Each time the thread awakens, it checks
whether the queue is empty, and if so, goes back to sleep.

It is important to understand that the abstract queue’s head and tail items
are not always the same as those referenced by head and tail. An item is log-
ically added to the queue as soon as the last node’s next field is redirected to the

228 Chapter 10 Concurrent Queues and the ABA Problem

 c abd

e
next

sentinel

tail head

enq
lock

deq
locksize

new sentinel

3 4 3 010010

1

2
3

new

Figure 10.6 The enq() and deq() methods of the BoundedQueue with 4 slots. First a node is
enqueued into the queue by acquiring the enqLock. The enq() checks that the size is 3 which
is less than the bound. It then redirects the next field of the node referenced by the tail
field (step 1), redirects tail to the new node (step 2), increments the size to 4, and releases
the lock. Since size is now 4, any further calls to enq() will cause the threads to block until
the notFullCondition is signalled by some deq(). Next, a node is dequeued from the queue
by some thread. The deq() acquires the deqLock, reads the new value b from the successor
of the node referenced by head (this node is the current sentinel), redirects head to this
successor node (step 3), decrements the size to 3, and releases the lock. Before completing
the deq(), because the size was 4 when it started, the thread acquires the enqLock and
signals any enqueuers waiting on notFullCondition that they can proceed.

new item (the linearization point of the enq()), even if the enqueuer has not yet
updated tail. For example, a thread can hold the enqLock and be in the pro-
cess of inserting a new node. Suppose it has not yet redirected the tail field.
A concurrent dequeuing thread could acquire the deqLock, read and return the
new node’s value, and redirect the head to the new node, all before the enqueuer
redirects tail to the newly inserted node.

Once the dequeuer establishes that the queue is nonempty, the queue will
remain nonempty for the duration of the deq() call, because all other dequeuers
have been locked out. Consider the first nonsentinel node in the queue (i.e., the
node referenced by the sentinel node’s next field). The dequeuer reads this node’s
value field, and sets the queue’s head to refer to it, making it the new sentinel
node. The dequeuer then releases deqLock and decrements size. If the dequeuer
found the former size was the queue capacity, then there may be enqueuers wait-
ing on notEmptyCondition, so the dequeuer acquires enqLock, and signals all
such threads to wake up.

One drawback of this implementation is that concurrent enq() and deq()
calls interfere with each other, but not through locks. All method calls apply
getAndIncrement() or getAndDecrement() calls to the size field. These meth-
ods are more expensive than ordinary reads–writes, and they could cause a
sequential bottleneck.

10.4 An Unbounded Total Queue 229

One way to reduce such interactions is to split this field into two counters:
enqSideSize is an integer field decremented by deq(), and deqSideSize is an
integer field incremented by enq(). A thread calling enq() tests enqSideSize, and
as long as it is less than the capacity, it proceeds. When the field reaches the capac-
ity, the thread locks deqLock, and adds deqSideSize to enqSideSize. Instead
of synchronizing on every method call, this technique synchronizes sporadically
when the enqueuer’s size estimate becomes too large.

10.4 An Unbounded Total Queue

We now describe a different kind of queue that can hold an unbounded number
of items. The enq() method always enqueues its item, and deq() throws
EmptyException if there is no item to dequeue. The representation is the same
as the bounded queue, except there is no need to count the number of items in
the queue, or to provide conditions on which to wait. As illustrated in Figs. 10.7
and 10.8, this algorithm is simpler than the bounded algorithm.

1 public void enq(T x) {
2 enqLock.lock();
3 try {
4 Node e = new Node(x);
5 tail.next = e;
6 tail = e;
7 } finally {
8 enqLock.unlock();
9 }
10 }

Figure 10.7 The UnboundedQueue<T> class: the enq() method.

11 public T deq() throws EmptyException {
12 T result;
13 deqLock.lock();
14 try {
15 if (head.next == null) {
16 throw new EmptyException();
17 }
18 result = head.next.value;
19 head = head.next;
20 } finally {
21 deqLock.unlock();
22 }
23 return result;
24 }

Figure 10.8 The UnboundedQueue<T> class: the deq() method.

230 Chapter 10 Concurrent Queues and the ABA Problem

This queue cannot deadlock, because each method acquires only one lock,
either enqLock or deqLock. A sentinel node alone in the queue will never be
deleted, so each enq() call will succeed as soon as it acquires the lock. Of course, a
deq() method may fail if the queue is empty (i.e., if head.next is null). As in the
earlier queue implementations, an item is actually enqueued when the enq() call
sets the last node’s next field to the new node, even before enq() resets tail to
refer to the new node. After that instant, the new item is reachable along a chain of
the next references. As usual, the queue’s actual head and tail are not necessarily
the items referenced by head and tail. Instead, the actual head is the successor
of the node referenced by head, and the actual tail is the last item reachable from
the head. Both the enq() and deq() methods are total as they do not wait for the
queue to become empty or full.

10.5 An Unbounded Lock-Free Queue

We now describe the LockFreeQueue<T> class, an unbounded lock-free queue
implementation. This class, depicted in Figs. 10.9 through 10.11, is a natural

1 public class Node {
2 public T value;
3 public AtomicReference<Node> next;
4 public Node(T value) {
5 value = value;
6 next = new AtomicReference<Node>(null);
7 }
8 }

Figure 10.9 The LockFreeQueue<T> class: list node.

9 public void enq(T value) {
10 Node node = new Node(value);
11 while (true) {
12 Node last = tail.get();
13 Node next = last.next.get();
14 if (last == tail.get()) {
15 if (next == null) {
16 if (last.next.compareAndSet(next, node)) {
17 tail.compareAndSet(last, node);
18 return;
19 }
20 } else {
21 tail.compareAndSet(last, next);
22 }
23 }
24 }

Figure 10.10 The LockFreeQueue<T> class: the enq() method.

10.5 An Unbounded Lock-Free Queue 231

25 public T deq() throws EmptyException {
26 while (true) {
27 Node first = head.get();
28 Node last = tail.get();
29 Node next = first.next.get();
30 if (first == head.get()) {
31 if (first == last) {
32 if (next == null) {
33 throw new EmptyException();
34 }
35 tail.compareAndSet(last, next);
36 } else {
37 T value = next.value;
38 if (head.compareAndSet(first, next))
39 return value;
40 }
41 }
42 }
43 }

Figure 10.11 The LockFreeQueue<T> class: the deq() method.

extension of the unbounded total queue of Section 10.4. Its implementation
prevents method calls from starving by having the quicker threads help the slower
threads.

As done earlier, we represent the queue as a list of nodes. However, as shown
in Fig. 10.9, each node’s next field is an AtomicReference<Node> that refers to
the next node in the list. As can be seen in Fig. 10.12, the queue itself consists of
two AtomicReference<Node> fields: head refers to the first node in the queue,
and tail to the last. Again, the first node in the queue is a sentinel node, whose
value is meaningless. The queue constructor sets both head and tail to refer to
the sentinel.

An interesting aspect of the enq() method is that it is lazy: it takes place in
two distinct steps. To make this method lock-free, threads may need to help one
another. Fig. 10.12 illustrates these steps.

In the following description the line numbers refer to Figs. 10.9 through 10.11.
Normally, the enq() method creates a new node (Line 10), locates the last node
in the queue (Lines 12–13), and performs the following two steps:

1. It calls compareAndSet() to append the new node (Line 16), and

2. calls compareAndSet() to change the queue’s tail field from the prior last
node to the current last node (Line 17).

Because these two steps are not executed atomically, every other method call must
be prepared to encounter a half-finished enq() call, and to finish the job. This
is a real-world example of the “helping” technique we first saw in the universal
construction of Chapter 6.

232 Chapter 10 Concurrent Queues and the ABA Problem

next

released node
 CAS next

CAS tail

tail head

1

2 read value1

CAS tail2

value sentinel

new

Figure 10.12 The lazy lock-free enq() and deq() methods of the LockFreeQueue. A node
is inserted into the queue in two steps. First, a compareAndSet() call changes the next
field of the node referenced by the queue’s tail from null to the new node. Then a
compareAndSet() call advances tail itself to refer to the new node. An item is removed
from the queue in two steps. A compareAndSet() call reads the item from the node referred
to by the sentinel node, and then redirects head from the current sentinel to the sentinel’s
next node, making the latter the new sentinel. Both enq() and deq() methods help complete
unfinished tail updates.

We now review all the steps in detail. An enqueuer creates a new node with
the new value to be enqueued (Line 10), reads tail, and finds the node that
appears to be last (Lines 12–13). To verify that node is indeed last, it checks whether
that node has a successor (Line 15). If so, the thread attempts to append the new
node by calling compareAndSet() (Line 16). (A compareAndSet() is required
because other threads may be trying the same thing.) If the compareAndSet()
succeeds, the thread uses a second compareAndSet() to advance tail to the
new node (Line 17). Even if this second compareAndSet() call fails, the thread
can still return successfully because, as we will see, the call fails only if some
other thread “helped” it by advancing tail. If the tail node has a successor (Line
20), then the method tries to “help”other threads by advancing tail to refer
directly to the successor (Line 21) before trying again to insert its own node.
This enq() is total, meaning that it never waits for a dequeuer. A successful enq()
is linearized at the instant where the executing thread (or a concurrent helping
thread) calls compareAndSet() to redirect the tail field to the new node at
Line 21.

The deq() method is similar to its total counterpart from the UnboundedQueue.
If the queue is nonempty, the dequeuer calls compareAndSet() to change head
from the sentinel node to its successor, making the successor the new sentinel
node. The deq() method makes sure that the queue is not empty in the same way
as before: by checking that the next field of the head node is not null.

There is, however, a subtle issue in the lock-free case, depicted in Fig. 10.13:
before advancing head one must make sure that tail is not left referring to the
sentinel node which is about to be removed from the queue. To avoid this problem
we add a test: if head equals tail (Line 31) and the (sentinel) node they refer to
has a non-null next field (Line 32), then the tail is deemed to be lagging behind.

10.6 Memory Reclamation and the ABA Problem 233

released
node

tail head

sentinel

new

a

b

Figure 10.13 Why dequeuers must help advance tail in Line 35 of Fig. 10.11. Consider the
scenario in which a thread enqueuing node b has redirected a’s next field to b, but has yet
to redirect tail from a to b. If another thread starts dequeuing, it will read b’s value and
redirect head from a to b, effectively removing a while tail still refers to it. To avoid this
problem, the dequeuing thread must help advance tail from a to b before redirecting head.

As in the enq() method, deq() then attempts to help make tail consistent by
swinging it to the sentinel node’s successor (Line 35), and only then updates head
to remove the sentinel (Line 38). As in the partial queue, the value is read from
the successor of the sentinel node (Line 37). If this method returns a value, then
its linearization point occurs when it completes a successful compareAndSet()
call at Line 38, and otherwise it is linearized at Line 33.

It is easy to check that the resulting queue is lock-free. Every method call first
checks for an incomplete enq() call, and tries to complete it. In the worst case,
all threads are trying to advance the queue’s tail field, and one of them must
succeed. A thread fails to enqueue or dequeue a node only if another thread’s
method call succeeds in changing the reference, so some method call always com-
pletes. As it turns out, being lock-free substantially enhances the performance
of queue implementations, and the lock-free algorithms tend to outperform the
most efficient blocking ones.

10.6 Memory Reclamation and the ABA Problem

Our queue implementations so far rely on the Java garbage collector to recycle
nodes after they have been dequeued. What happens if we choose to do our own
memory management? There are several reasons we might want to do this. Lan-
guages such as C or C++ do not provide garbage collection. Even if garbage col-
lection is available, it is often more efficient for a class to do its own memory
management, particularly if it creates and releases many small objects. Finally, if
the garbage collection process is not lock-free, we might want to supply our own
lock-free memory reclamation.

A natural way to recycle nodes in a lock-free manner is to have each thread
maintain its own private free list of unused queue entries.

234 Chapter 10 Concurrent Queues and the ABA Problem

ThreadLocal<Node> freeList = new ThreadLocal<Node>() {
protected Node initialValue() { return null; };

};

When an enqueuing thread needs a new node, it tries to remove one from the
thread-local free list. If the free list is empty, it simply allocates a node using
the new operator. When a dequeuing thread is ready to retire a node, it links it
back onto the thread-local list. Because the list is thread-local, there is no need
for expensive synchronization. This design works well, as long as each thread

tail head

Thread A : about to CAS head from
a to b

1

Threads B and C : deq a
and b into local pools

head

Thread A : CAS succeeds, incorrectly
 pointing to b which is still
 in the local pool

ab

a

tail

c

b

Threads B and C : enq a, b, and d

d

(a)

(b)

2

3 4

Figure 10.14 An ABA scenario: Assume that we use local pools of recycled nodes in our lock-free queue
algorithm. In Part (a), the dequeuer thread A of Fig. 10.11 observes that the sentinel node is a, and next
node is b. (Step 1) It then prepares to update head by applying a compareAndSet() with old value a and
new value b. (Step 2) Suppose however, that before it takes another step, other threads dequeue b, then its
successor, placing both a and b in the free pool. In Part (b) (Step 3) node a is reused, and eventually reappears
as the sentinel node in the queue. (Step 4) thread A now wakes up, calls compareAndSet(), and succeeds
in setting head to b, since the old value of head is indeed a. Now, head is incorrectly set to a recycled
node.

10.6 Memory Reclamation and the ABA Problem 235

performs roughly the same number of enqueues and dequeues. If there is an
imbalance, then there may be a need for more complex techniques, such as peri-
odically stealing nodes from other threads.

Surprisingly, perhaps, the lock-free queue will not work if nodes are recycled
in the most straightforward way. Consider the scenario depicted in Fig. 10.14.
In Part (a) of Fig. 10.14, the dequeuing thread 1 observes the sentinel node
is a, and the next node is b. It then prepares to update head by applying a
compareAndSet() with old value a and new value b. Before it takes another
step, other threads dequeue b and its successor, placing both a and b in the free
pool. Node a is recycled, and eventually reappears as the sentinel node in the
queue, as depicted in Part (b) of Fig. 10.14. The thread now wakes up, calls
compareAndSet(), and succeeds, since the old value of the head is indeed a.
Unfortunately, it has redirected head to a recycled node!

This phenomenon is called the “ABA” problem. It shows up often, espe-
cially in dynamic memory algorithms that use conditional synchronization oper-
ations such as compareAndSet(). Typically, a reference about to be modified by
a compareAndSet() changes from a, to b, and back to a again. As a result, the
compareAndSet() call succeeds even though its effect on the data structure has
changed, and no longer has the desired effect.

One straightforward way to fix this problem is to tag each atomic reference
with a unique stamp. As described in detail in Pragma 10.6.1, an
AtomicStampedReference<T> object encapsulates both a reference to an object
of Type T and an integer stamp. These fields can be atomically updated either
together or individually.

Pragma 10.6.1. The AtomicStampedReference<T> class encapsulates both
a reference to an object of Type T and an integer stamp. It generalizes the
AtomicMarkableReference<T> class (Pragma 9.8.1), replacing the Boolean
mark with an integer stamp.

We usually use this stamp to avoid the ABA problem, incrementing the
value of the stamp each time we modify the object, although sometimes, as
in the LockFreeExchanger class of Chapter 11, we use the stamp to hold one
of a finite set of states.

The stamp and reference fields can be updated atomically, either together
or individually. For example, the compareAndSet() method tests expected
reference and stamp values, and if both tests succeed, replaces them with
updated reference and stamp values. As shorthand, the attemptStamp()
method tests an expected reference value and if the test succeeds, replaces
it with a new stamp value. The get() method has an unusual inter-
face: it returns the object’s reference value and stores the stamp value in
an integer array argument. Fig. 10.15 illustrates the signatures for these
methods.

236 Chapter 10 Concurrent Queues and the ABA Problem

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 int expectedStamp,
4 int newStamp);
5 public T get(int[] stampHolder);
6 public void set(T newReference, int newStamp);

Figure 10.15 The AtomicReference<T> class: the compareAndSet() and get() meth-
ods. The compareAndSet() method tests and updates both the stamp and reference
fields, the get() method returns the encapsulated reference and stores the stamp at
position 0 in the argument array, and set() updates the encapsulated reference and the
stamp.

In a language like C or C++, one could provide this functionality efficiently
in a 64-bit architecture by “stealing” bits from pointers, although a 32-bit
architecture would probably require a level of indirection.

As shown in Fig. 10.16, each time through the loop, deq() reads both the
reference and stamp values for the first, next, and last nodes (Lines 7–9). It
uses compareAndSet() to compare both the reference and the stamp (Line 18).

1 public T deq() throws EmptyException {
2 int[] lastStamp = new int[1];
3 int[] firstStamp = new int[1];
4 int[] nextStamp = new int[1];
5 int[] stamp = new int[1];
6 while (true) {
7 Node first = head.get(firstStamp);
8 Node last = tail.get(lastStamp);
9 Node next = first.next.get(nextStamp);

10 if (first == last) {
11 if (next == null) {
12 throw new EmptyException();
13 }
14 tail.compareAndSet(last, next,
15 lastStamp[0], lastStamp[0]+1);
16 } else {
17 T value = next.value;
18 if (head.compareAndSet(first, next, firstStamp[0],

firstStamp[0]+1)) {
19 free(first);
20 return value;
21 }
22 }
23 }
24 }

Figure 10.16 The LockFreeQueueRecycle<T> class: the deq() method uses stamps to
avoid ABA.

10.6 Memory Reclamation and the ABA Problem 237

It increments the stamp each time it uses compareAndSet() to update a reference
(Lines 15 and 18).1

The ABA problem can occur in many synchronization scenarios, not just
those involving conditional synchronization. For example, it can occur when
using only loads and stores. Conditional synchronization operations such as load-
linked/store-conditional, available on some architectures (see Appendix B), avoid
ABA by testing not whether a value is the same at two points in time, but whether
the value has ever changed between those points.

10.6.1 A Naı̈ve Synchronous Queue

We now turn our attention to an even tighter kind of synchronization. One or
more producer threads produce items to be removed, in first-in-first-out order,
by one or more consumer threads. Here, however, producers and consumers ren-
dezvous with one another: a producer that puts an item in the queue blocks until
that item is removed by a consumer, and vice versa. Such rendezvous synchro-
nization is built into languages such as CSP and Ada.

Fig. 10.17 illustrates the SynchronousQueue<T> class, a straightforward
monitor-based synchronous queue implementation. It has the following fields:
item is the first item waiting to be dequeued, enqueuing is a Boolean value used
by enqueuers to synchronize among themselves, lock is the lock used for mutual
exclusion, and condition is used to block partial methods. If the enq() method
finds enqueuing to be true (Line 10) then another enqueuer has supplied an item
and is waiting to rendezvous with a dequeuer, so the enqueuer repeatedly releases
the lock, sleeps, and checks whether enqueuing has become false (Line 11). When
this condition is satisfied, the enqueuer then sets enqueuing to true, which locks
out other enqueuers until the current rendezvous is complete, and sets item to
refer to the new item (Lines 12–13). It then notifies any waiting threads (Line 14),
and waits until item becomes null (Lines 15–16). When the wait is over, the ren-
dezvous has occurred, so the enqueuer sets enqueuing to false, notifies any wait-
ing threads, and returns (Lines 17 and 19).

The deq() method simply waits until item is non-null (Lines 26–27), records
the item, sets the item field to null, and notifies any waiting threads before return-
ing the item (Lines 28–31).

While the design of the queue is relatively simple, it incurs a high synchro-
nization cost. At every point where one thread might wake up another, both
enqueuers and dequeuers wake up all waiting threads, leading to a number of
wakeups quadratic in the number of waiting threads. While it is possible to use
condition objects to reduce the number of wakeups, it is still necessary to block
on every call, which is expensive.

1 We ignore the remote possibility that the stamp could wrap around and cause an error.

238 Chapter 10 Concurrent Queues and the ABA Problem

1 public class SynchronousQueue<T> {
2 T item = null;
3 boolean enqueuing;
4 Lock lock;
5 Condition condition;
6 ...
7 public void enq(T value) {
8 lock.lock();
9 try {
10 while (enqueuing)
11 condition.await();
12 enqueuing = true;
13 item = value;
14 condition.signalAll();
15 while (item != null)
16 condition.await();
17 enqueuing = false;
18 condition.signalAll();
19 } finally {
20 lock.unlock();
21 }
22 }
23 public T deq() {
24 lock.lock();
25 try {
26 while (item == null)
27 condition.await();
28 T t = item;
29 item = null;
30 condition.signalAll();
31 return t;
32 } finally {
33 lock.unlock();
34 }
35 }
36 }

Figure 10.17 The SynchronousQueue<T> class.

10.7 Dual Data Structures

To reduce the synchronization overheads of the synchronous queue, we consider
an alternative synchronous queue implementation that splits enq() and deq()
methods into two steps. Here is how a dequeuer tries to remove an item from
an empty queue. In the first step, it puts a reservation object in the queue, indicat-
ing that the dequeuer is waiting for an enqueuer with which to rendezvous. The
dequeuer then spins on a flag in the reservation. Later, when an enqueuer discov-
ers the reservation, it fulfills the reservation by depositing an item and notifying

10.7 Dual Data Structures 239

the dequeuer by setting the reservation’s flag. Similarly, an enqueuer can wait
for a rendezvous partner by creating its own reservation, and spinning on the
reservation’s flag. At any time the queue itself contains either enq() reservations,
deq() reservations, or it is empty.

This structure is called a dual data structure, since the methods take effect in
two stages, reservation and fulfillment. It has a number of nice properties. First,
waiting threads can spin on a locally cached flag, which we have seen is essential
for scalability. Second, it ensures fairness in a natural way. Reservations are queued
in the order they arrive, ensuring that requests are fulfilled in the same order.
Note that this data structure is linearizable, since each partial method call can be
ordered when it is fulfilled.

The queue is implemented as a list of nodes, where a node represents either an
item waiting to be dequeued, or a reservation waiting to be fulfilled (Fig. 10.18).
A node’s type field indicates which. At any time, all queue nodes have the same
type: either the queue consists entirely of items waiting to be dequeued, or entirely
of reservations waiting to be fulfilled.

When an item is enqueued, the node’s item field holds the item, which is reset
to null when that item is dequeued. When a reservation is enqueued, the node’s
item field is null, and is reset to an item when fulfilled by an enqueuer.

Fig. 10.19 shows the SynchronousDualQueue’s constructor and enq() method.
(The deq() method is symmetric.) Just like the earlier queues we have considered,
the head field always refers to a sentinel node that serves as a place-holder, and
whose actual value is unimportant. The queue is empty when head and tail
agree. The constructor creates a sentinel node with an arbitrary value, referred to
by both head and tail.

The enq() method first checks whether the queue is empty or whether it con-
tains enqueued items waiting to be dequeued (Line 10). If so, then just as in the
lock-free queue, the method reads the queue’s tail field (Line 11), and checks
that the values read are consistent (Line 12). If the tail field does not refer to
the last node in the queue, then the method advances the tail field and starts
over (Lines 13–14). Otherwise, the enq() method tries to append the new node
to the end of the queue by resetting the tail node’s next field to refer to the new

1 private enum NodeType {ITEM, RESERVATION};
2 private class Node {
3 volatile NodeType type;
4 volatile AtomicReference<T> item;
5 volatile AtomicReference<Node> next;
6 Node(T myItem, NodeType myType) {
7 item = new AtomicReference<T>(myItem);
8 next = new AtomicReference<Node>(null);
9 type = myType;

10 }
11 }

Figure 10.18 The SynchronousDualQueue<T> class: queue node.

240 Chapter 10 Concurrent Queues and the ABA Problem

1 public SynchronousDualQueue() {
2 Node sentinel = new Node(null, NodeType.ITEM);
3 head = new AtomicReference<Node>(sentinel);
4 tail = new AtomicReference<Node>(sentinel);
5 }
6 public void enq(T e) {
7 Node offer = new Node(e, NodeType.ITEM);
8 while (true) {
9 Node t = tail.get(), h = head.get();

10 if (h == t || t.type == NodeType.ITEM) {
11 Node n = t.next.get();
12 if (t == tail.get()) {
13 if (n != null) {
14 tail.compareAndSet(t, n);
15 } else if (t.next.compareAndSet(n, offer)) {
16 tail.compareAndSet(t, offer);
17 while (offer.item.get() == e);
18 h = head.get();
19 if (offer == h.next.get())
20 head.compareAndSet(h, offer);
21 return;
22 }
23 }
24 } else {
25 Node n = h.next.get();
26 if (t != tail.get() || h != head.get() || n == null) {
27 continue;
28 }
29 boolean success = n.item.compareAndSet(null, e);
30 head.compareAndSet(h, n);
31 if (success)
32 return;
33 }
34 }
35 }

Figure 10.19 The SynchronousDualQueue<T> class: enq() method and constructor.

node (Line 15). If it succeeds, it tries to advance the tail to the newly appended
node (Line 16), and then spins, waiting for a dequeuer to announce that it has
dequeued the item by setting the node’s item field to null. Once the item is
dequeued, the method tries to clean up by making its node the new sentinel.
This last step serves only to enhance performance, because the implementation
remains correct, whether or not the method advances the head reference.

If, however, the enq() method discovers that the queue contains dequeuers’
reservations waiting to be fulfilled, then it tries to find a reservation to fulfill.
Since the queue’s head node is a sentinel with no meaningful value, enq() reads
the head’s successor (Line 25), checks that the values it has read are consistent
(Lines 26–28), and tries to switch that node’s itemfield from null to the item being
enqueued. Whether or not this step succeeds, the method tries to advance head

10.9 Exercises 241

(Line 30). If the compareAndSet() call succeeds (Line 29), the method returns;
otherwise it retries.

10.8 Chapter Notes

The partial queue employs a mixture of techniques adapted from Doug Lea [99]
and from an algorithm by Maged Michael and Michael Scott [116]. The lock-free
queue is a slightly simplified version of a queue algorithm by Maged Michael and
Michael Scott [116]. The synchronous queue implementations are adapted from
algorithms by Bill Scherer, Doug Lea, and Michael Scott [136].

10.9 Exercises

Exercise 119. Change the SynchronousDualQueue<T> class to work correctly
with null items.

Exercise 120. Consider the simple lock-free queue for a single enqueuer and a sin-
gle dequeuer, described earlier in Chapter 3. The queue is presented in Fig. 10.20.

1 class TwoThreadLockFreeQueue<T> {
2 int head = 0, tail = 0;
3 T[] items;
4 public TwoThreadLockFreeQueue(int capacity) {
5 head = 0; tail = 0;
6 items = (T[]) new Object[capacity];
7 }
8 public void enq(T x) {
9 while (tail - head == items.length) {};
10 items[tail % items.length] = x;
11 tail++;
12 }
13 public Object deq() {
14 while (tail - head == 0) {};
15 Object x = items[head % items.length];
16 head++;
17 return x;
18 }
19 }

Figure 10.20 A Lock-free FIFO queue with blocking semantics for a single enqueuer and single
dequeuer. The queue is implemented in an array. Initially the head and tail fields are equal
and the queue is empty. If the head and tail differ by capacity, then the queue is full. The
enq() method reads the head field, and if the queue is full, it repeatedly checks the head until
the queue is no longer full. It then stores the object in the array, and increments the tail
field. The deq() method works in a symmetric way.

242 Chapter 10 Concurrent Queues and the ABA Problem

This queue is blocking, that is, removing an item from an empty queue or
inserting an item to a full one causes the threads to block (spin). The surpris-
ing thing about this queue is that it requires only loads and stores and not a more
powerful read–modify–write synchronization operation. Does it however require
the use of a memory barrier? If not, explain, and if so, where in the code is such a
barrier needed and why?

Exercise 121. Design a bounded lock-based queue implementation using an array
instead of a linked list.

1. Allow parallelism by using two separate locks for head and tail.

2. Try to transform your algorithm to be lock-free. Where do you run into diffi-
culty?

Exercise 122. Consider the unbounded lock-based queue’s deq() method in
Fig. 10.8. Is it necessary to hold the lock when checking that the queue is not
empty? Explain.

Exercise 123. In Dante’s Inferno, he describes a visit to Hell. In a very recently
discovered chapter, he encounters five people sitting at a table with a pot of stew
in the middle. Although each one holds a spoon that reaches the pot, each spoon’s
handle is much longer than each person’s arm, so no one can feed him- or herself.
They are famished and desperate.

Dante then suggests “why do not you feed one another?”
The rest of the chapter is lost.

1. Write an algorithm to allow these unfortunates to feed one another. Two or
more people may not feed the same person at the same time. Your algorithm
must be, well, starvation-free.

2. Discuss the advantages and disadvantages of your algorithm. Is it centralized,
decentralized, high or low in contention, deterministic or randomized?

Exercise 124. Consider the linearization points of the enq() and deq() methods of
the lock-free queue:

1. Can we choose the point at which the returned value is read from a node as
the linearization point of a successful deq()?

2. Can we choose the linearization point of the enq() method to be the point
at which the tail field is updated, possibly by other threads (consider if it is
within the enq()’s execution interval)? Argue your case.

Exercise 125. Consider the unbounded queue implementation shown in Fig. 10.21.
This queue is blocking, meaning that the deq() method does not return until it
has found an item to dequeue.

10.9 Exercises 243

1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 ...
5 public void enq(T x) {
6 int i = tail.getAndIncrement();
7 items[i].set(x);
8 }
9 public T deq() {
10 while (true) {
11 int range = tail.get();
12 for (int i = 0; i < range; i++) {
13 T value = items[i].getAndSet(null);
14 if (value != null) {
15 return value;
16 }
17 }
18 }
19 }
20 }

Figure 10.21 Queue used in Exercise 125.

The queue has two fields: items is a very large array, and tail is the index of
the next unused element in the array.

1. Are the enq() and deq() methods wait-free? If not, are they lock-free? Explain.

2. Identify the linearization points for enq() and deq(). (Careful! They may be
execution-dependent.)

This page intentionally left blank

11Concurrent Stacks
and Elimination

11.1 Introduction

The Stack<T> class is a collection of items (of type T) that provides push()
and pop() methods satisfying the last-in-first-out (LIFO) property: the last item
pushed is the first popped. This chapter considers how to implement concurrent
stacks. At first glance, stacks seem to provide little opportunity for concurrency,
because push() and pop() calls seem to need to synchronize at the top of the stack.

Surprisingly, perhaps, stacks are not inherently sequential. In this chapter, we
show how to implement concurrent stacks that can achieve a high degree of par-
allelism. As a first step, we consider how to build a lock-free stack in which pushes
and pops synchronize at a single location.

11.2 An Unbounded Lock-Free Stack

Fig. 11.1 shows a concurrent LockFreeStack class, whose code appears in
Figs. 11.2, 11.3 and 11.4. The lock-free stack is a linked list, where the top field
points to the first node (or null if the stack is empty.) For simplicity, we usually
assume it is illegal to add a null value to a stack.

A pop() call that tries to remove an item from an empty stack throws an excep-
tion. A push() method creates a new node (Line 13), and then calls tryPush()
to try to swing the top reference from the current top-of-stack to its succes-
sor. If tryPush() succeeds, push() returns, and if not, the tryPush() attempt
is repeated after backing off. The pop() method calls tryPop(), which uses
compareAndSet() to try to remove the first node from the stack. If it succeeds, it
returns the node, otherwise it returns null. (It throws an exception if the stack is

245

246 Chapter 11 Concurrent Stacks and Elimination

A:pop()

(b)

A:push()

(a)
top

value value

value

a

top

value value value

a

Figure 11.1 A Lock-free stack. In Part (a) a thread pushes value a into the stack by applying a
compareAndSet() to the top field. In Part (b) a thread pops value a from the stack by applying
a compareAndSet() to the top field.

1 public class LockFreeStack<T> {
2 AtomicReference<Node> top = new AtomicReference<Node>(null);
3 static final int MIN_DELAY = ...;
4 static final int MAX_DELAY = ...;
5 Backoff backoff = new Backoff(MIN_DELAY, MAX_DELAY);
6
7 protected boolean tryPush(Node node){
8 Node oldTop = top.get();
9 node.next = oldTop;
10 return(top.compareAndSet(oldTop, node));
11 }
12 public void push(T value) {
13 Node node = new Node(value);
14 while (true) {
15 if (tryPush(node)) {
16 return;
17 } else {
18 backoff.backoff();
19 }
20 }
21 }

Figure 11.2 The LockFreeStack<T> class: in the push() method, threads alternate between
trying to alter the top reference by calling tryPush(), and backing off using the Backoff class
from Fig. 7.5 of Chapter 7.

empty.) The tryPop() method is called until it succeeds, at which point push()
returns the value from the removed node.

As we have seen in Chapter 7, one can significantly reduce contention at the
top field using exponential backoff (see Fig. 7.5 of Chapter 7). Accordingly, both

11.2 An Unbounded Lock-Free Stack 247

1 public class Node {
2 public T value;
3 public Node next;
4 public Node(T value) {
5 value = value;
6 next = null;
7 }
8 }

Figure 11.3 Lock-free stack list node.

1 protected Node tryPop() throws EmptyException {
2 Node oldTop = top.get();
3 if (oldTop == null) {
4 throw new EmptyException();
5 }
6 Node newTop = oldTop.next;
7 if (top.compareAndSet(oldTop, newTop)) {
8 return oldTop;
9 } else {
10 return null;
11 }
12 }
13 public T pop() throws EmptyException {
14 while (true) {
15 Node returnNode = tryPop();
16 if (returnNode != null) {
17 return returnNode.value;
18 } else {
19 backoff.backoff();
20 }
21 }
22 }

Figure 11.4 The LockFreeStack<T> class: The pop() method alternates between trying to
change the top field and backing off.

the push() and pop() methods back off after an unsuccessful call to tryPush() or
tryPop().

This implementation is lock-free because a thread fails to complete a push() or
pop() method call only if there were infinitely many successful calls that modified
the top of the stack. The linearization point of both the push() and the pop()
methods is the successful compareAndSet(), or the throwing of the exception
in case of a pop() on an empty stack. Note that the compareAndSet() call by
pop() does not have an ABA problem (see Chapter 10) because the Java garbage
collector ensures that a node cannot be reused by one thread, as long as that node
is accessible to another thread. Designing a lock-free stack that avoids the ABA
problem without a garbage collector is left as an exercise.

248 Chapter 11 Concurrent Stacks and Elimination

11.3 Elimination

The LockFreeStack implementation scales poorly, not so much because the
stack’s top field is a source of contention, but primarily because it is a sequential
bottleneck: method calls can proceed only one after the other, ordered by success-
ful compareAndSet() calls applied to the stack’s top field.

Although exponential backoff can significantly reduce contention, it does
nothing to alleviate the sequential bottleneck. To make the stack parallel, we
exploit this simple observation: if a push() is immediately followed by a pop(),
the two operations cancel out, and the stack’s state does not change. It is as if
both operations never happened. If one could somehow cause concurrent pairs
of pushes and pops to cancel, then threads calling push() could exchange values
with threads calling pop(), without ever modifying the stack itself. These two calls
would eliminate one another.

As depicted in Fig. 11.5, threads eliminate one another through an
EliminationArray in which threads pick random array entries to try to meet
complementary calls. Pairs of complementary push() and pop() calls exchange
values and return. A thread whose call cannot be eliminated, either because it has
failed to find a partner, or found a partner with the wrong kind of method call
(such as a push() meeting a push()), can either try again to eliminate at a new
location, or can access the shared LockFreeStack. The combined data structure,
array, and shared stack, is linearizable because the shared stack is linearizable, and
the eliminated calls can be ordered as if they happened at the point in which they
exchanged values.

We can use the EliminationArray as a backoff scheme on a shared
LockFreeStack. Each thread first accesses the LockFreeStack, and if it fails

A :pop()
top

d e fB :push(b)

C :pop()

B : return()

A : return(b)

C : return(d)

Figure 11.5 The EliminationBackoffStack<T> class. Each thread selects a random location
in the array. If thread A’s pop() and B’s push() calls arrive at the same location at about the
same time, then they exchange values without accessing the shared LockFreeStack. Thread
C that does not meet another thread eventually pops the shared LockFreeStack.

11.4 The Elimination Backoff Stack 249

to complete its call (that is, the compareAndSet() attempt fails), it attempts to
eliminate its call using the array instead of simply backing off. If if fails to elimi-
nate itself, it calls the LockFreeStack again, and so on. We call this structure an
EliminationBackoffStack.

11.4 The Elimination Backoff Stack

Here is how to construct an EliminationBackoffStack, a lock-free linearizable
stack implementation.

We are reminded of a story about two friends who are discussing poli-
tics on election day, each trying, to no avail, to convince the other to switch
sides.

Finally, one says to the other: “Look, it’s clear that we are unalterably opposed
on every political issue. Our votes will surely cancel out. Why not save ourselves
some time and both agree to not vote today?”

The other agrees enthusiastically and they part.
Shortly after that, a friend of the first one who had heard the conversation says,

“That was a sporting offer you made.”
“Not really,” says the second. “This is the third time I’ve done this today.”
The principle behind our construction is the same. We wish to allow threads

with pushes and pops to coordinate and cancel out, but must avoid a situation in
which a thread can make a sporting offer to more than one other thread. We do
so by implementing the EliminationArray using coordination structures called
exchangers, objects that allow exactly two threads (and no more) to rendezvous
and exchange values.

We already saw how to exchange values using locks in the synchronous queue
of Chapter 10. Here, we need a lock-free exchange, one in which threads spin
rather than block, as we expect them to wait only for very short durations.

11.4.1 A Lock-Free Exchanger

A LockFreeExchanger<T> object permits two threads to exchange values of
type T. If thread A calls the object’s exchange() method with argument a, and
B calls the same object’s exchange() method with argument b, then A’s call will
return value b and vice versa. On a high level, the exchanger works by having
the first thread arrive to write its value, and spin until a second arrives. The sec-
ond then detects that the first is waiting, reads its value, and signals the exchange.
They each have now read the other’s value, and can return. The first thread’s call
may timeout if the second does not show up, allowing it to proceed and leave the
exchanger, if it is unable to exchange a value within a reasonable duration.

250 Chapter 11 Concurrent Stacks and Elimination

1 public class LockFreeExchanger<T> {
2 static final int EMPTY = ..., WAITING = ..., BUSY = ...;
3 AtomicStampedReference<T> slot = new AtomicStampedReference<T>(null, 0);
4 public T exchange(T myItem, long timeout, TimeUnit unit)
5 throws TimeoutException {
6 long nanos = unit.toNanos(timeout);
7 long timeBound = System.nanoTime() + nanos;
8 int[] stampHolder = {EMPTY};
9 while (true) {

10 if (System.nanoTime() > timeBound)
11 throw new TimeoutException();
12 T yrItem = slot.get(stampHolder);
13 int stamp = stampHolder[0];
14 switch(stamp) {
15 case EMPTY:
16 if (slot.compareAndSet(yrItem, myItem, EMPTY, WAITING)) {
17 while (System.nanoTime() < timeBound){
18 yrItem = slot.get(stampHolder);
19 if (stampHolder[0] == BUSY) {
20 slot.set(null, EMPTY);
21 return yrItem;
22 }
23 }
24 if (slot.compareAndSet(myItem, null, WAITING, EMPTY)) {
25 throw new TimeoutException();
26 } else {
27 yrItem = slot.get(stampHolder);
28 slot.set(null, EMPTY);
29 return yrItem;
30 }
31 break;
32 case WAITING:
33 if (slot.compareAndSet(yrItem, myItem, WAITING, BUSY))
34 return yrItem;
35 break;
36 case BUSY:
37 break;
38 default: // impossible
39 ...
40 }
41 }
42 }
43 }

Figure 11.6 The LockFreeExchanger<T> Class.

The LockFreeExchanger<T> class appears in Fig. 11.6. It has a single
AtomicStampedReference<T> field,1 slot. The exchanger has three possible
states: EMPTY, BUSY, or WAITING. The reference’s stamp records the exchanger’s
state (Line 14). The exchanger’s main loop continues until the timeout limit

1 See Chapter 10, Pragma 10.6.1.

11.4 The Elimination Backoff Stack 251

passes, when it throws an exception (Line 10). In the meantime, a thread reads
the state of the slot (Line 12) and proceeds as follows:

� If the state is EMPTY, then the thread tries to place its item in the slot and set
the state to WAITING using a compareAndSet() (Line 16). If it fails, then some
other thread succeeds and it retries. If it was successful (Line 17), then its item
is in the slot and the state is WAITING, so it spins, waiting for another thread
to complete the exchange. If another thread shows up, it will take the item in
the slot, replace it with its own, and set the state to BUSY (Line 19), indicat-
ing to the waiting thread that the exchange is complete. The waiting thread
will consume the item and reset the state to 0. Resetting to empty() can be
done using a simple write because the waiting thread is the only one that can
change the state from BUSY to EMPTY (Line 20). If no other thread shows up,
the waiting thread needs to reset the state of the slot to EMPTY. This change
requires a compareAndSet() because other threads might be attempting to
exchange by setting the state from WAITING to BUSY (Line 24). If the call is suc-
cessful, it raises a timeout exception. If, however, the call fails, some exchang-
ing thread must have shown up, so the waiting thread completes the exchange
(Line 26).

� If the state is WAITING, then some thread is waiting and the slot contains its
item. The thread takes the item, and tries to replace it with its own by changing
the state from WAITING to BUSY using a compareAndSet() (Line 33). It may
fail if another thread succeeds, or the other thread resets the state to EMPTY
following a timeout. If so, the thread must retry. If it does succeed changing
the state to BUSY, then it can return the item.

� If the state is BUSY then two other threads are currently using the slot for an
exchange and the thread must retry (Line 36).

Notice that the algorithm allows the inserted item to be null, something
used later in the elimination array construction. There is no ABA problem
because the compareAndSet() call that changes the state never inspects the item.
A successful exchange’s linearization point occurs when the second thread to
arrive changes the state from WAITING to BUSY (Line 33). At this point both
exchange() calls overlap, and the exchange is committed to being successful. An
unsuccessful exchange’s linearization point occurs when the timeout exception is
thrown.

The algorithm is lock-free because overlapping exchange() calls with suffi-
cient time to exchange will fail only if other exchanges are repeatedly succeeding.
Clearly, too short an exchange time can cause a thread never to succeed, so care
must be taken when choosing timeout durations.

11.4.2 The Elimination Array

An EliminationArray is implemented as an array of Exchanger objects of
maximal size capacity. A thread attempting to perform an exchange picks an

252 Chapter 11 Concurrent Stacks and Elimination

1 public class EliminationArray<T> {
2 private static final int duration = ...;
3 LockFreeExchanger<T>[] exchanger;
4 Random random;
5 public EliminationArray(int capacity) {
6 exchanger = (LockFreeExchanger<T>[]) new LockFreeExchanger[capacity];
7 for (int i = 0; i < capacity; i++) {
8 exchanger[i] = new LockFreeExchanger<T>();
9 }
10 random = new Random();
11 }
12 public T visit(T value, int range) throws TimeoutException {
13 int slot = random.nextInt(range);
14 return (exchanger[slot].exchange(value, duration,
15 TimeUnit.MILLISECONDS));
16 }
17 }

Figure 11.7 The EliminationArray<T> class: in each visit, a thread can choose dynamically
the sub-range of the array from which it will will randomly select a slot.

array entry at random, and calls that entry’s exchange() method, providing
its own input as an exchange value with another thread. The code for the
EliminationArray appears in Fig. 11.7. The constructor takes as an argu-
ment the capacity of the array (the number of distinct exchangers). The
EliminationArray class provides a single method, visit(), which takes timeout
arguments. (Following the conventions used in the java.util.concurrent package, a
timeout is expressed as a number and a time unit.) The visit() call takes a value
of type T and either returns the value input by its exchange partner, or throws an
exception if the timeout expires without exchanging a value with another thread.
At any point in time, each thread will select a random location in a subrange
of the array (Line 13). This subrange will be determined dynamically based on
the load on the data structure, and will be passed as a parameter to the visit()
method.

The EliminationBackoffStack is a subclass of LockFreeStack that over-
rides the push() and pop() methods, and adds an EliminationArray field.
Figs. 11.8 and 11.9 show the new push() and pop() methods. Upon failure
of a tryPush() or tryPop() attempt, instead of simply backing off, these
methods try to use the EliminationArray to exchange values (Lines 15 and
34). A push() call calls visit() with its input value as argument, and a
pop() call with null as argument. Both push() and pop() have a thread-local
RangePolicy object that determines the EliminationArray subrange to be
used.

When push() calls visit(), it selects a random array entry within its range and
attempts to exchange a value with another thread. If the exchange is successful,
the pushing thread checks whether the value was exchanged with a pop() method

11.4 The Elimination Backoff Stack 253

1 public class EliminationBackoffStack<T> extends LockFreeStack<T> {
2 static final int capacity = ...;
3 EliminationArray<T> eliminationArray = new EliminationArray<T>(capacity);
4 static ThreadLocal<RangePolicy> policy = new ThreadLocal<RangePolicy>() {
5 protected synchronized RangePolicy initialValue() {
6 return new RangePolicy();
7 }
8
9 public void push(T value) {
10 RangePolicy rangePolicy = policy.get();
11 Node node = new Node(value);
12 while (true) {
13 if (tryPush(node)) {
14 return;
15 } else try {
16 T otherValue = eliminationArray.visit
17 (value, rangePolicy.getRange());
18 if (otherValue == null) {
19 rangePolicy.recordEliminationSuccess();
20 return; // exchanged with pop
21 }
22 } catch (TimeoutException ex) {
23 rangePolicy.recordEliminationTimeout();
24 }
25 }
26 }
27 }

Figure 11.8 The EliminationBackoffStack<T> class: this push() method overrides the
LockFreeStack push() method. Instead of using a simple Backoff class, it uses an
EliminationArray and a dynamic RangePolicy to select the subrange of the array within
which to eliminate.

28 public T pop() throws EmptyException {
29 RangePolicy rangePolicy = policy.get();
30 while (true) {
31 Node returnNode = tryPop();
32 if (returnNode != null) {
33 return returnNode.value;
34 } else try {
35 T otherValue = eliminationArray.visit(null, rangePolicy.getRange());
36 if (otherValue != null) {
37 rangePolicy.recordEliminationSuccess();
38 return otherValue;
39 }
40 } catch (TimeoutException ex) {
41 rangePolicy.recordEliminationTimeout();
42 }
43 }
44 }

Figure 11.9 The EliminationBackoffStack<T> class: this pop() method overrides the
LockFreeStack push() method.

254 Chapter 11 Concurrent Stacks and Elimination

(Line 18) by testing if the value exchanged was null. (Recall that pop() always offers
null to the exchanger while push() always offers a non-null value.) Symmetrically,
when pop() calls visit(), it attempts an exchange, and if the exchange is success-
ful it checks (Line 36) whether the value was exchanged with a push() call by
checking whether it is not null.

It is possible that the exchange will be unsuccessful, either because no exchange
took place (the call to visit() timed out) or because the exchange was with the
same type of operation (such as a pop() with a pop()). For brevity, we choose a
simple approach to deal with such cases: we retry the tryPush() or tryPop() calls
(Lines 13 and 31).

One important parameter is the range of the EliminationArray from which
a thread selects an Exchanger location. A smaller range will allow a greater
chance of a successful collision when there are few threads, while a larger range
will lower the chances of threads waiting on a busy Exchanger (recall that an
Exchanger can only handle one exchange at a time). Thus, if few threads access
the array, they should choose smaller ranges, and as the number of threads
increase, so should the range. One can control the range dynamically using a
RangePolicy object that records both successful exchanges (as in Line 37) and
timeout failures (Line 40). We ignore exchanges that fail because the operations
do not match (such as push() with push()), because they account for a fixed
fraction of the exchanges for any given distribution of push() and pop() calls).
One simple policy is to shrink the range as the number of failures increases and
vice versa.

There are many other possible policies. For example, one can devise a more
elaborate range selection policy, vary the delays on the exchangers dynamically,
add additional backoff delays before accessing the shared stack, and control
whether to access the shared stack or the array dynamically. We leave these as
exercises.

The EliminationBackoffStack is a linearizable stack: any successful
push() or pop() call that completes by accessing the LockFreeStack can be
linearized at the point of its LockFreeStack access. Any pair of eliminated
push() and pop() calls can be linearized when they collide. As noted earlier,
the method calls completed through elimination do not affect the linearizabil-
ity of those completed in the LockFreeStack, because they could have taken
effect in any state of the LockFreeStack, and having taken effect, the state of
the LockFreeStack would not have changed.

Because the EliminationArray is effectively used as a backoff scheme,
we expect it to deliver performance comparable to the LockFreeStack at
low loads. Unlike the LockFreeStack, it has the potential to scale. As
the load increases, the number of successful eliminations will grow, allow-
ing many operations to complete in parallel. Moreover, contention at the
LockFreeStack is reduced because eliminated operations never access the
stack.

11.6 Exercises 255

11.5 Chapter Notes

The LockFreeStack is credited to Treiber [145] and Danny Hendler, Nir Shavit,
and Lena Yerushalmi [57] is credited for the EliminationBackoffStack.
An efficient exchanger, which quite interestingly uses an elimination array,
was introduced by Doug Lea, Michael Scott, and Bill Scherer [136]. A vari-
ant of this exchanger appears in the Java Concurrency Package. The
EliminationBackoffStack we present here is modular, making use of exchang-
ers, but somewhat inefficient. Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir
Shavit present a highly effective implementation of an EliminationArray [118].

11.6 Exercises

Exercise 126. Design an unbounded lock-based Stack<T> implementation based
on a linked list.

Exercise 127. Design a bounded lock-based Stack<T> using an array.

1. Use a single lock and a bounded array.

2. Try to make your algorithm lock-free. Where do you run into difficulty?

Exercise 128. Modify the unbounded lock-free stack of Section 11.2 to work
in the absence of a garbage collector. Create a thread-local pool of preallo-
cated nodes and recycle them. To avoid the ABA problem, consider using the
AtomicStampedReference<T> class from java.util.concurrent.atomic that encap-
sulates both a reference and an integer stamp.

Exercise 129. Discuss the backoff policies used in our implementation. Does it
make sense to use the same shared Backoff object for both pushes and pops in
our LockFreeStack<T> object? How else could we structure the backoff in space
and time in the EliminationBackoffStack<T>?

Exercise 130. Implement a stack algorithm assuming there is a bound, in any state
of the execution, on the total difference between the number of pushes and pops
to the stack.

Exercise 131. Consider the problem of implementing a bounded stack using an
array indexed by a top counter, initially zero. In the absence of concurrency, these
methods are almost trivial. To push an item, increment top to reserve an array
entry, and then store the item at that index. To pop an item, decrement top, and
return the item at the previous top index.

Clearly, this strategy does not work for concurrent implementations, because
one cannot make atomic changes to multiple memory locations. A single

256 Chapter 11 Concurrent Stacks and Elimination

synchronization operation can either increment or decrement the top counter,
but not both, and there is no way atomically to increment the counter and store
a value.

Nevertheless, Bob D. Hacker decides to solve this problem. He decides to adapt
the dual-data structure approach of Chapter 10 to implement a dual stack. His
DualStack<T> class splits push() and pop() methods into reservation and fulfill-
ment steps. Bob’s implementation appears in Fig. 11.10.

1 public class DualStack<T> {
2 private class Slot {
3 boolean full = false;
4 volatile T value = null;
5 }
6 Slot[] stack;
7 int capacity;
8 private AtomicInteger top = new AtomicInteger(0); // array index
9 public DualStack(int myCapacity) {
10 capacity = myCapacity;
11 stack = (Slot[]) new Object[capacity];
12 for (int i = 0; i < capacity; i++) {
13 stack[i] = new Slot();
14 }
15 }
16 public void push(T value) throws FullException {
17 while (true) {
18 int i = top.getAndIncrement();
19 if (i > capacity - 1) { // is stack full?
20 throw new FullException();
21 } else if (i > 0) { // i in range, slot reserved
22 stack[i].value = value;
23 stack[i].full = true; //push fulfilled
24 return;
25 }
26 }
27 }
28 public T pop() throws EmptyException {
29 while (true) {
30 int i = top.getAndDecrement();
31 if (i < 0) { // is stack empty?
32 throw new EmptyException();
33 } else if (i < capacity - 1) {
34 while (!stack[i].full){};
35 T value = stack[i].value;
36 stack[i].full = false;
37 return value; //pop fulfilled
38 }
39 }
40 }
41 }

Figure 11.10 Bob’s problematic dual stack.

11.6 Exercises 257

The stack’s top is indexed by the top field, an AtomicInteger manipu-
lated only by getAndIncrement() and getAndDecrement() calls. Bob’s push()
method’s reservation step reserves a slot by applying getAndIncrement() to top.
Suppose the call returns index i. If i is in the range 0 . . .capacity− 1, the reser-
vation is complete. In the fulfillment phase, push(x) stores x at index i in the
array, and raises the full flag to indicate that the value is ready to be read. The
value field must be volatile to guarantee that once flag is raised, the value has
already been written to index i of the array.

If the index returned from push()’s getAndIncrement() is less than 0,
the push() method repeatedly retries getAndIncrement() until it returns an
index greater than or equal to 0. The index could be less than 0 due to
getAndDecrement() calls of failed pop() calls to an empty stack. Each such failed
getAndDecrement() decrements the top by one more past the 0 array bound.
If the index returned is greater than capacity −1, push() throws an exception
because the stack is full.

The situation is symmetric for pop(). It checks that the index is within the
bounds and removes an item by applying getAndDecrement() to top, returning
index i. If i is in the range 0 . . .capacity− 1, the reservation is complete. For the
fulfillment phase, pop() spins on the full flag of array slot i, until it detects that
the flag is true, indicating that the push() call is successful.

What is wrong with Bob’s algorithm? Is this an inherent problem or can you
think of a way to fix it?

Exercise 132. In Exercise 97 we ask you to implement the Rooms interface, repro-
duced in Fig. 11.11. The Rooms class manages a collection of rooms, indexed from
0 to m (where m is a known constant). Threads can enter or exit any room in that
range. Each room can hold an arbitrary number of threads simultaneously, but
only one room can be occupied at a time. The last thread to leave a room triggers
an onEmpty() handler, which runs while all rooms are empty.

Fig. 11.12 shows an incorrect concurrent stack implementation.

1. Explain why this stack implementation does not work.

2. Fix it by adding calls to a two-room Rooms class: one room for pushing and
one for popping.

1 public interface Rooms {
2 public interface Handler {
3 void onEmpty();
4 }
5 void enter(int i);
6 boolean exit();
7 public void setExitHandler(int i, Rooms.Handler h) ;
8 }

Figure 11.11 The Rooms interface.

258 Chapter 11 Concurrent Stacks and Elimination

1 public class Stack<T> {
2 private AtomicInteger top;
3 private T[] items;
4 public Stack(int capacity) {
5 top = new AtomicInteger();
6 items = (T[]) new Object[capacity];
7 }
8 public void push(T x) throws FullException {
9 int i = top.getAndIncrement();
10 if (i >= items.length) { // stack is full
11 top.getAndDecrement(); // restore state
12 throw new FullException();
13 }
14 items[i] = x;
15 }
16 public T pop() throws EmptyException {
17 int i = top.getAndDecrement() - 1;
18 if (i < 0) { // stack is empty
19 top.getAndIncrement(); // restore state
20 throw new EmptyException();
21 }
22 return items[i];
23 }
24 }

Figure 11.12 Unsynchronized concurrent stack.

Exercise 133. This exercise is a follow-on to Exercise 132. Instead of having the
push() method throw FullException, exploit the push room’s exit handler to
resize the array. Remember that no thread can be in any room when an exit han-
dler is running, so (of course) only one exit handler can run at a time.

12Counting, Sorting, and
Distributed Coordination

12.1 Introduction

This chapter shows how some important problems that seem inherently
sequential can be made highly parallel by “spreading out” coordination tasks
among multiple parties. What does this spreading out buy us?

To answer this question, we need to understand how to measure the perfor-
mance of a concurrent data structure. There are two measures that come to mind:
latency, the time it takes an individual method call to complete, and throughput,
the overall rate at which method calls complete. For example, real-time appli-
cations might care more about latency, and databases might care more about
throughput.

In Chapter 11 we saw how to apply distributed coordination to the
EliminationBackoffStack class. Here, we cover several useful patterns for dis-
tributed coordination: combining, counting, diffraction, and sampling. Some are
deterministic, while others use randomization. We also cover two basic structures
underlying these patterns: trees and combinatorial networks. Interestingly, for
some data structures based on distributed coordination, high throughput does
not necessarily mean high latency.

12.2 Shared Counting

We recall from Chapter 10 that a pool is a collection of items that provides put()
and get() methods to insert and remove items (Fig. 10.1). Familiar classes such
as stacks and queues can be viewed as pools that provide additional fairness guar-
antees.

One way to implement a pool is to use coarse-grained locking, perhaps making
both put() and get() synchronized methods. The problem, of course, is that
coarse-grained locking is too heavy-handed, because the lock itself creates both a
sequential bottleneck, forcing all method calls to synchronize, as well as a hot spot,

259

260 Chapter 12 Counting, Sorting, and Distributed Coordination

a source of memory contention. We would prefer to have Pool method calls work
in parallel, with less synchronization and lower contention.

Let us consider the following alternative. The pool’s items reside in a cyclic
array, where each array entry contains either an item or null. We route threads
through two counters. Threads calling put() increment one counter to choose an
array index into which the new item should be placed. (If that entry is full, the
thread waits until it becomes empty.) Similarly, threads calling get() increment
another counter to choose an array index from which the new item should be
removed. (If that entry is empty, the thread waits until it becomes full.)

This approach replaces one bottleneck: the lock, with two: the counters. Nat-
urally, two bottlenecks are better than one (think about that claim for a second).
We now explore the idea that shared counters need not be bottlenecks, and can
be effectively parallelized. We face two challenges.

1. We must avoid memory contention, where too many threads try to access the
same memory location, stressing the underlying communication network and
cache coherence protocols.

2. We must achieve real parallelism. Is incrementing a counter an inherently
sequential operation, or is it possible for n threads to increment a counter faster
than it takes one thread to increment a counter n times?

We now look at several ways to build highly parallel counters through data struc-
tures that coordinate the distribution of counter indexes.

12.3 Software Combining

Here is a linearizable shared counter class using a pattern called software com-
bining. A CombiningTree is a binary tree of nodes, where each node contains
bookkeeping information. The counter’s value is stored at the root. Each thread
is assigned a leaf, and at most two threads share a leaf, so if there are p physical
processors, then there are p/2 leaves. To increment the counter, a thread starts at
its leaf, and works its way up the tree to the root. If two threads reach a node at
approximately the same time, then they combine their increments by adding them
together. One thread, the active thread, propagates their combined increments up
the tree, while the other, the passive thread, waits for the active thread to complete
their combined work. A thread may be active at one level and become passive at
a higher level.

For example, suppose threads A and B share a leaf node. They start at the same
time, and their increments are combined at their shared leaf. The first one, say, B,
actively continues up to the next level, with the mission of adding 2 to the counter
value, while the second, A, passively waits for B to return from the root with an
acknowledgment that A’s increment has occurred. At the next level in the tree, B
may combine with another thread C , and advance with the renewed intention of
adding 3 to the counter value.

12.3 Software Combining 261

When a thread reaches the root, it adds the sum of its combined increments to
the counter’s current value. The thread then moves back down the tree, notifying
each waiting thread that the increments are now complete.

Combining trees have an inherent disadvantage with respect to locks: each
increment has a higher latency, that is, the time it takes an individual method call
to complete. With a lock, a getAndIncrement() call takes O(1) time, while with a
CombiningTree, it takes O(logp) time. Nevertheless, a CombiningTree is attrac-
tive because it promises far better throughput, that is, the overall rate at which
method calls complete. For example, using a queue lock, p getAndIncrement()
calls complete in O(p) time, at best, while using a CombiningTree, under ideal
conditions where all threads move up the tree together, p getAndIncrement()
calls complete in O(logp) time, an exponential improvement. Of course, the
actual performance is often less than ideal, a subject examined in detail later on.
Still, the CombiningTree class, like other techniques we consider later, is intended
to benefit throughput, not latency.

Combining trees are also attractive because they can be adapted to apply any
commutative function, not just increment, to the value maintained by the tree.

12.3.1 Overview

Although the idea behind a CombiningTree is quite simple, the implementation
is not. To keep the overall (simple) structure from being submerged in (not-so-
simple) detail, we split the data structure into two classes: the CombiningTree
class manages navigation within the tree, moving up and down the tree as
needed, while the Node class manages each visit to a node. As you go through the
algorithm’s description, it might be a good idea to consult Fig. 12.3 that describes
an example CombiningTree execution.

This algorithm uses two kinds of synchronization. Short-term synchronization
is provided by synchronized methods of the Node class. Each method locks the
node for the duration of the call to ensure that it can read–write node fields
without interference from other threads. The algorithm also requires excluding
threads from a node for durations longer than a single method call. Such
long-term synchronization is provided by a Boolean locked field. When this field
is true, no other thread is allowed to access the node.

Every tree node has a combining status, which defines whether the node is in
the early, middle, or late stages of combining concurrent requests.

enum CStatus{FIRST, SECOND, RESULT, IDLE, ROOT};

These values have the following meanings:

� FIRST: One active thread has visited this node, and will return to check
whether another passive thread has left a value with which to combine.

� SECOND: A second thread has visited this node and stored a value in the node’s
value field to be combined with the active thread’s value, but the combined
operation is not yet complete.

262 Chapter 12 Counting, Sorting, and Distributed Coordination

� RESULT: Both threads’ operations have been combined and completed, and
the second thread’s result has been stored in the node’s result field.

� ROOT: This value is a special case to indicate that the node is the root, and
must be treated specially.

Fig. 12.1 shows the Node class’s other fields.
To initialize the CombiningTree for p threads, we create a width w = 2p array

of Node objects. The root is node[0], and for 0 < i < w, the parent of node[i] is
node[(i − 1)/2]. The leaf nodes are the last (w + 1)/2 nodes in the array, where
thread i is assigned to leaf i/2. The root’s initial combining state is ROOT and the
other nodes combining state is IDLE. Fig 12.2 shows the CombiningTree class
constructor.

The CombiningTree’s getAndIncrement() method, shown in Fig. 12.4, has
four phases. In the precombining phase (Lines 16 through 19), the CombiningTree
class’s getAndIncrement() method moves up the tree applying precombine() to

1 public class Node {
2 enum CStatus{IDLE, FIRST, SECOND, RESULT, ROOT};
3 boolean locked;
4 CStatus cStatus;
5 int firstValue, secondValue;
6 int result;
7 Node parent;
8 public Node() {
9 cStatus = CStatus.ROOT;
10 locked = false;
11 }
12 public Node(Node myParent) {
13 parent = myParent;
14 cStatus = CStatus.IDLE;
15 locked = false;
16 }
17 ...
18 }

Figure 12.1 The Node class: the constructors and fields.

1 public CombiningTree(int width) {
2 Node[] nodes = new Node[width - 1];
3 nodes[0] = new Node();
4 for (int i = 1; i < nodes.length; i++) {
5 nodes[i] = new Node(nodes[(i-1)/2]);
6 }
7 leaf = new Node[(width + 1)/2];
8 for (int i = 0; i < leaf.length; i++) {
9 leaf[i] = nodes[nodes.length - i - 1];
10 }
11 }

Figure 12.2 The CombiningTree class: constructor.

12.3 Software Combining 263

(b)
cstatus

locked
D stops

result

0

R

1

S

0

F

1

S

0

F

0

F

0

I

AB C stops D E

B stops

A stops

3

Threads

(a) result
second
locked

parent
cstatus
first

0

R

0

F

0

I

0

F

0

F

0

I

0

I

AB C D E

3

(c)

0

R

1

S

1

F

0

S

1

F

1

F

0

F

AB combines
with C

C sets
second
releases lock

D E precombining

A waits
for B

D updates result4

111 1

2B sets
second

1

E missed
precombining
waits for D

(d)

0

R

0

S

0

F

1

S

1

F

0

F

0

F

AB C waits
for result

D
returns 3

E

A sets lock
combines
with B

D decends
7

111 1

2

B releases
lock waits
for result

1

D releases
lock and E
continues

1

A updates
result

(e)

0

R

0

S

0

F

0

S

0

F

0

I

0

F

A
returns 4

B
returns 5

C
returns 6

D
returned 3

E

A decends
with value
4

7

111

2

B decends
with value
5

E continues
precombining1

A decends
with value 4

5

6

Figure 12.3 The concurrent traversal of a width 8 combining tree by 5 threads. The structure is initialized with all nodes
unlocked, the root node having the CStatus ROOT and all other nodes having the CStatus IDLE.

264 Chapter 12 Counting, Sorting, and Distributed Coordination

12 public int getAndIncrement() {
13 Stack<Node> stack = new Stack<Node>();
14 Node myLeaf = leaf[ThreadID.get()/2];
15 Node node = myLeaf;
16 // precombining phase
17 while (node.precombine()) {
18 node = node.parent;
19 }
20 Node stop = node;
21 // combining phase
22 node = myLeaf;
23 int combined = 1;
24 while (node != stop) {
25 combined = node.combine(combined);
26 stack.push(node);
27 node = node.parent;
28 }
29 // operation phase
30 int prior = stop.op(combined);
31 // distribution phase
32 while (!stack.empty()) {
33 node = stack.pop();
34 node.distribute(prior);
35 }
36 return prior;
37 }

Figure 12.4 The CombiningTree class: the getAndIncrement() method.

each node. The precombine() method returns a Boolean indicating whether the
thread was the first to arrive at the node. If so, the getAndIncrement() method
continues moving up the tree. The stop variable is set to the last node visited,
which is either the last node at which the thread arrived second, or the root.
For example, Fig. 12.6 shows a precombining phase example. Thread A, which is
fastest, stops at the root, while B stops in the middle-level node where it arrived
after A, and C stops at the leaf where it arrived after B.

Fig. 12.5 shows the Node’s precombine() method. In Line 20, the thread
waits until the synchronization status is FREE. In Line 21, it tests the combining
status.

IDLE

The thread sets the node’s status to FIRST to indicate that it will return to look for
a value for combining. If it finds such a value, it proceeds as the active thread, and
the thread that provided that value is passive. The call then returns true, instruct-
ing the thread to move up the tree.

FIRST

An earlier thread has recently visited this node, and will return to look for a
value to combine. The thread instructs the thread to stop moving up the tree (by

12.3 Software Combining 265

19 synchronized boolean precombine() {
20 while (locked) wait();
21 switch (cStatus) {
22 case IDLE:
23 cStatus = CStatus.FIRST;
24 return true;
25 case FIRST:
26 locked = true;
27 cStatus = CStatus.SECOND;
28 return false;
29 case ROOT:
30 return false;
31 default:
32 throw new PanicException("unexpected Node state" + cStatus);
33 }
34 }

Figure 12.5 The Node class: the precombining phase.

returning false), and to start the next phase, computing the value to combine.
Before it returns, the thread places a long-term lock on the node (by setting
locked to true) to prevent the earlier visiting thread from proceeding without
combining with the thread’s value.

ROOT

If the thread has reached the root node, it instructs the thread to start the next
phase.
Line 31 is a default case that is executed only if an unexpected status is encoun-
tered.

Pragma 12.3.1. It is good programming practice always to provide an arm
for every possible enumeration value, even if we know it cannot happen. If
we are wrong, the program is easier to debug, and if we are right, the program
may later be changed even by someone who does not know as much as we do.
Always program defensively.

In the combining phase, (Fig. 12.4, Lines 21–28), the thread revisits the nodes
it visited in the precombining phase, combining its value with values left by other
threads. It stops when it arrives at the node stop where the precombining phase
ended. Later on, we traverse these nodes in reverse order, so as we go we push the
nodes we visit onto a stack.

The Node class’s combine() method, shown in Fig. 12.6, adds any values left
by a recently arrived passive process to the values combined so far. As before, the
thread first waits until the locked field is false. It then sets a long-term lock on
the node, to ensure that late-arriving threads do not expect to combine with it.
If the status is SECOND, it adds the other thread’s value to the accumulated value,
otherwise it returns the value unchanged. In Part (c) of Fig. 12.3, thread A starts

266 Chapter 12 Counting, Sorting, and Distributed Coordination

35 synchronized int combine(int combined) {
36 while (locked) wait();
37 locked = true;
38 firstValue = combined;
39 switch (cStatus) {
40 case FIRST:
41 return firstValue;
42 case SECOND:
43 return firstValue + secondValue;
44 default:
45 throw new PanicException("unexpected Node state " + cStatus);
46 }
47 }

Figure 12.6 The Node class: the combining phase. This method applies addition to
FirstValue and SecondValue, but any other commutative operation would work just as well.

48 synchronized int op(int combined) {
49 switch (cStatus) {
50 case ROOT:
51 int prior = result;
52 result += combined;
53 return prior;
54 case SECOND:
55 secondValue = combined;
56 locked = false;
57 notifyAll(); // wake up waiting threads
58 while (cStatus != CStatus.RESULT) wait();
59 locked = false;
60 notifyAll();
61 cStatus = CStatus.IDLE;
62 return result;
63 default:
64 throw new PanicException("unexpected Node state");
65 }
66 }

Figure 12.7 The Node class: applying the operation.

ascending the tree in the combining phase. It reaches the second level node locked
by thread B and waits. In Part (d), B releases the lock on the second level node,
and A, seeing that the node is in a SECOND combining state, locks the node and
moves to the root with the combined value 3, the sum of the FirstValue and
SecondValue fields written respectively by A and B.

At the start of the operation phase (Lines 29 and 30), the thread has now com-
bined all method calls from lower-level nodes, and now examines the node where
it stopped at the end of the precombining phase (Fig. 12.7). If the node is the root,
as in Part (d) of Fig. 12.3, then the thread, in this case A, carries out the combined
getAndIncrement() operations: it adds its accumulated value (3 in the example)
to the result and returns the prior value. Otherwise, the thread unlocks the
node, notifies any blocked thread, deposits its value as the SecondValue, and

12.3 Software Combining 267

67 synchronized void distribute(int prior) {
68 switch (cStatus) {
69 case FIRST:
70 cStatus = CStatus.IDLE;
71 locked = false;
72 break;
73 case SECOND:
74 result = prior + firstValue;
75 cStatus = CStatus.RESULT;
76 break;
77 default:
78 throw new PanicException("unexpected Node state");
79 }
80 notifyAll();
81 }

Figure 12.8 The Node class: the distribution phase.

waits for the other thread to return a result after propagating the combined oper-
ations toward the root. For example, this is the sequence of actions taken by
thread B in Parts (c) and (d) of Fig. 12.3.

When the result arrives, A enters the distribution phase, propagating the result
down the tree. In this phase (Lines 31–36), the thread moves down the tree, releas-
ing locks, and informing passive partners of the values they should report to
their own passive partners, or to the caller (at the lowest level). The distribute
method is shown in Fig. 12.8. If the state of the node is FIRST, no thread com-
bines with the distributing thread, and it can reset the node to its initial state by
releasing the lock and setting the state to IDLE. If, on the other hand, the state
is SECOND, the distributing thread updates the result to be the sum of the prior
value brought from higher up the tree, and the FIRST value. This reflects a situ-
ation in which the active thread at the node managed to perform its increment
before the passive one. The passive thread waiting to get a value reads the result
once the distributing thread sets the status to RESULT. For example, in Part (e) of
Fig. 12.3, the active thread A executes its distribution phase in the middle level
node, setting the result to 5, changing the state to RESULT, and descending down
to the leaf, returning the value 4 as its output. The passive thread B awakes and
sees that the middle-level node’s state has changed, and reads result 5.

12.3.2 An Extended Example

Fig. 12.3 describes the various phases of a CombiningTree execution. There are
five threads labeled A through E. Each node has six fields, as shown in Fig. 12.1.
Initially, all nodes are unlocked and all but the root are in an IDLE combin-
ing state. The counter value in the initial state in Part (a) is 3, the result of an
earlier computation. In Part (a), to perform a getAndIncrement(), threads A
and B start the precombining phase. A ascends the tree, changing the nodes it
visits from IDLE to FIRST, indicating that it will be the active thread in combining
the values up the tree. Thread B is the active thread at its leaf node, but has not

268 Chapter 12 Counting, Sorting, and Distributed Coordination

yet arrived at the second-level node shared with A. In Part (b), B arrives at the
second-level node and stops, changing it from FIRST to SECOND, indicating that
it will collect its combined values and wait here for A to proceed with them to the
root. B locks the node (changing the locked field from false to true), preventing
A from proceeding with the combining phase without B’s combined value. But
B has not combined the values. Before it does so, C starts precombining, arrives
at the leaf node, stops, and changes its state to SECOND. It also locks the node to
prevent B from ascending without its input to the combining phase. Similarly,
D starts precombining and successfully reaches the root node. Neither A nor D
changes the root node state, and in fact it never changes. They simply mark it as
the node where they stopped precombining. In Part (c) A starts up the tree in
the combining phase. It locks the leaf so that any later thread will not be able to
proceed in its precombining phase, and will wait until A completes its combin-
ing and distribution phases. It reaches the second-level node, locked by B, and
waits. In the meantime, C starts combining, but since it stopped at the leaf node,
it executes the op() method on this node, setting SecondValue to 1 and then
releasing the lock. When B starts its combining phase, the leaf node is unlocked
and marked SECOND, so B writes 1 to FirstValue and ascends to the second-
level node with a combined value of 2, the result of adding the FirstValue and
SecondValue fields.

When it reaches the second level node, the one at which it stopped in the
precombining phase, it calls the op() method on this node, setting SecondValue
to 2. A must wait until it releases the lock. Meanwhile, in the right-hand side of
the tree, D executes its combining phase, locking nodes as it ascends. Because
it meets no other threads with which to combine, it reads 3 in the result field
in the root and updates it to 4. Thread E then starts precombining, but is late
in meeting D. It cannot continue precombining as long as D locks the second-
level node. In Part (d), B releases the lock on the second-level node, and A,
seeing that the node is in state SECOND, locks the node and moves to the root
with the combined value 3, the sum of the FirstValue and SecondValue fields
written, respectively, by A and B. A is delayed while D completes updating the
root. Once D is done, A reads 4 in the root’s result field and updates it to 7.
D descends the tree (by popping its local Stack), releasing the locks and return-
ing the value 3 that it originally read in the root’s result field. E now continues
its ascent in the precombining phase. Finally, in Part (e), A executes its distribu-
tion phase. It returns to the middle-level node, setting result to 5, changing the
state to RESULT, and descending to the leaf, returning the value 4 as its output.
B awakens and sees the state of the middle-level node has changed, reads 5 as the
result, and descends to its leaf where it sets the result field to 6 and the state
to RESULT. B then returns 5 as its output. Finally, C awakens and observes that
the leaf node state has changed, reads 6 as the result, which it returns as its
output value. Threads A through D return values 3 to 6 which fit the root’s
result field value of 7. The linearization order of the getAndIncrement()
method calls by the different threads is determined by their order in the tree
during the precombining phase.

12.4 Quiescently Consistent Pools and Counters 269

12.3.3 Performance and Robustness

Like all the algorithms described in this chapter, CombiningTree throughput
depends in complex ways on the characteristics both of the application and of
the underlying architecture. Nevertheless, it is worthwhile to review, in qualita-
tive terms, some experimental results from the literature. Readers interested in
detailed experimental results (mostly for obsolete architectures) may consult the
chapter notes.

As a thought experiment, a CombiningTree should provide high through-
put under ideal circumstances when each thread can combine its increment with
another’s. But it may provide poor throughput under worst-case circumstances,
where many threads arrive late at a locked node, missing the chance to combine,
and are forced to wait for the earlier request to ascend and descend the tree.

In practice, experimental evidence supports this informal analysis. The higher
the contention, the greater the observed rate of combining, and the greater the
observed speed-up. Worse is better. Combining trees are less attractive when con-
currency is low. The combining rate decreases rapidly as the arrival rate of incre-
ment requests is reduced. Throughput is sensitive to the arrival rate of requests.

Because combining increases throughput, and failure to combine does not, it
makes sense for a request arriving at a node to wait for a reasonable duration
for another thread to arrive with a increment with which to combine. Not sur-
prisingly, it makes sense to wait for a short time when the contention is low, and
longer when contention is high. When contention is sufficiently high, unbounded
waiting works very well.

An algorithm is robust if it performs well in the presence of large fluctuations in
request arrival times. The literature suggests that the CombiningTree algorithm
with a fixed waiting time is not robust, because high variance in request arrival
rates seems to reduce the combining rate.

12.4 Quiescently Consistent Pools and Counters

First shalt thou take out the Holy Pin. Then shalt thou count to three, no more, no
less. Three shall be the number thou shalt count, and the number of the counting
shall be three. . .. Once the number three, being the third number, be reached,
then lobbest thou thy Holy Hand Grenade of Antioch towards thy foe, who, being
naughty in my sight, shall snuff it.

From Monty Python and the Holy Grail.

Not all applications require linearizable counting. Indeed, counter-based Pool
implementations require only quiescently consistent1 counting: all that matters is
that the counters produce no duplicates and no omissions. It is enough that for

1 See Chapter 3 for a detailed definition of quiescent consistency.

270 Chapter 12 Counting, Sorting, and Distributed Coordination

every item placed by a put() in an array entry, another thread eventually executes
a get() that accesses that entry, eventually matching put() and get() calls. (Wrap-
around may still cause multiple put() calls or get() calls to compete for the same
array entry.)

12.5 Counting Networks

Students of Tango know that the partners must be tightly coordinated: if they do
not move together, the dance does not work, no matter how skilled the dancers
may be as individuals. In the same way, combining trees must be tightly coordi-
nated: if requests do not arrive together, the algorithm does not work efficiently,
no matter how fast the individual processes.

In this chapter, we consider counting networks, which look less like Tango and
more like a Rave: each participant moves at its own pace, but collectively the
counter delivers a quiescently consistent set of indexes with high throughput.

Let us imagine that we replace the combining tree’s single counter with mul-
tiple counters, each of which distributes a subset of indexes (see Fig. 12.9). We
allocate w counters (in the figure w = 4), each of which distributes a set of unique
indexes modulo w (in the figure, for example, the second counter distributes 2,
6, 10, . . . i · w + 2 for increasing i). The challenge is how to distribute the threads
among the counters so that there are no duplications or omissions, and how to
do so in a distributed and loosely coordinated style.

12.5.1 Networks That Count

A balancer is a simple switch with two input wires and two output wires, called
the top and bottom wires (or sometimes the north and south wires). Tokens arrive
on the balancer’s input wires at arbitrary times, and emerge on their output wires,
at some later time. A balancer can be viewed as a toggle: given a stream of input
tokens, it sends one token to the top output wire, and the next to the bottom,
and so on, effectively balancing the number of tokens between the two wires
(see Fig. 12.10). More precisely, a balancer has two states: up and down. If

w shared
countersn threads

threads
return indexes

...

4

3

2

1 5

6width w
counting
network

i * w 1 4

i * w 1 2

i * w 1 1

Figure 12.9 A quiescently consistent shared counter based on w = 4 counters preceded by a counting net-
work. Threads traverse the counting network to choose which counters to access.

12.5 Counting Networks 271

x0

x1

y0

y1
balancer

Figure 12.10 A balancer. Tokens arrive at arbitrary times on arbitrary input lines and are
redirected to ensure that when all tokens have exited the balancer, there is at most one more
token on the top wire than on the bottom one.

the state is up, the next token exits on the top wire, otherwise it exits on the
bottom wire.

We use x0 and x1 to denote the number of tokens that respectively arrive on a
balancer’s top and bottom input wires, and y0 and y1 to denote the number that
exit on the top and bottom output wires. A balancer never creates tokens: at all
times.

x0 + x1 � y0 + y1.

A balancer is said to be quiescent if every token that arrived on an input wire has
emerged on an output wire:

x0 + x1 = y0 + y1.

A balancing network is constructed by connecting some balancers’ output wires
to other balancers’ input wires. A balancing network of width w has input wires
x0,x1, . . . ,xw−1 (not connected to output wires of balancers), and w output wires
y0,y1, . . . ,yw−1 (similarly unconnected). The balancing network’s depth is the
maximum number of balancers one can traverse starting from any input wire.
We consider only balancing networks of finite depth (meaning the wires do not
form a loop). Like balancers, balancing networks do not create tokens:∑

xi �
∑

yi.

(We usually drop indexes from summations when we sum over every element in
a sequence.) A balancing network is quiescent if every token that arrived on an
input wire has emerged on an output wire:∑

xi =
∑

yi.

So far, we have described balancing networks as if they were switches in a net-
work. On a shared-memory multiprocessor, however, a balancing network can
be implemented as an object in memory. Each balancer is an object, whose wires
are references from one balancer to another. Each thread repeatedly traverses the
object, starting on some input wire, and emerging at some output wire, effectively
shepherding a token through the network.

Some balancing networks have interesting properties. The network shown in
Fig. 12.11 has four input wires and four output wires. Initially, all balancers are
up. We can check for ourselves that if any number of tokens enter the network, in
any order, on any set of input wires, then they emerge in a regular pattern on the
output wires. Informally, no matter how token arrivals are distributed among the

272 Chapter 12 Counting, Sorting, and Distributed Coordination

35

1 5

2 6

4

3

4

2

6

1

x0

x1

x2

x3

y0

y1

y2

y3
3

4

2

3

2

4

1

4

3

2

1

5

1 5

5

6

6

6

Figure 12.11 A sequential execution of a BITONIC [4] counting network. Each vertical line
represents a balancer, and each balancer’s two input and output wires are the horizontal lines
it connects to at the dots. In this sequential execution, tokens pass through the network, one
completely after the other in the order specified by the numbers on the tokens. We track
every token as it passes through the balancers on the way to an output wire. For example,
token number 3 enters on wire 2, goes down to wire 1, and ends up on wire 3. Notice how
the step property is maintained in every balancer, and also in the network as a whole.

input wires, the output distribution is balanced across the output wires, where
the top output wires are filled first. If the number of tokens n is a multiple of four
(the network width), then the same number of tokens emerges from each wire. If
there is one excess token, it emerges on output wire 0, if there are two, they emerge
on output wires 0 and 1, and so on. In general,
if

n =
∑

xi

then

yi = (n/w) + (i mod w).

We call this property the step property.
Any balancing network that satisfies the step property is called a counting net-

work, because it can easily be adapted to count the number of tokens that have
traversed the network. Counting is done, as we described earlier in Fig. 12.9, by
adding a local counter to each output wire i, so that tokens emerging on that wire
are assigned consecutive numbers i, i + w, . . . , i + (yi − 1)w.

The step property can be defined in a number of ways which we use inter-
changeably.

Lemma 12.5.1. If y0, . . . ,yw−1 is a sequence of nonnegative integers, the following
statements are all equivalent:

1. For any i < j, 0 � yi − yj � 1.

2. Either yi = yj for all i, j, or there exists some c such that for any i < c and j � c,
yi − yj = 1.

3. If m =
∑

yi, yi =
⌈
m−i
w

⌉
.

12.5 Counting Networks 273

12.5.2 The Bitonic Counting Network

In this section we describe how to generalize the counting network of Fig. 12.11
to a counting network whose width is any power of 2. We give an inductive con-
struction.

When describing counting networks, we do not care about when tokens arrive,
we care only that when the network is quiescent, the number of tokens exiting on
the output wires satisfies the step property. Define a width w sequence of inputs or
outputs x = x0, . . . ,xw−1 to be a collection of tokens, partitioned into w subsets
xi. The xi are the input tokens that arrive or leave on wire i.

We define the width-2k balancing network Merger [2k] as follows. It has two
input sequences of width k, x and x′, and a single output sequence y of width
2k. In any quiescent state, if x and x′ both have the step property, then so does
y. The Merger [2k] network is defined inductively (see Fig. 12.12). When k is
equal to 1, the Merger [2k] network is a single balancer. For k > 1, we construct
the Merger [2k] network with input sequences x and x′ from two Merger [k]
networks and k balancers. Using a Merger [k] network, we merge the even sub-
sequence x0,x2, . . . ,xk−2 of x with the odd subsequence x′1,x′3, . . . ,x′k−1 of x′

(that is, the sequence x0, . . . ,xk−2,x′1, . . . ,x′k−1 is the input to the Merger [k]
network), while with a second Merger [k] network we merge the odd subse-
quence of x with the even subsequence of x′. We call the outputs of these two
Merger [k] networks z and z′. The final stage of the network combines z and
z′ by sending each pair of wires zi and z′i into a balancer whose outputs yield y2i

and y2i+1.
The Merger [2k] network consists of log 2k layers of k balancers each. It

provides the step property for its outputs only when its two input sequences also
have the step property, which we ensure by filtering the inputs through smaller
balancing networks.

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

y0
y1
y2
y3
y4
y5
y6
y7

Merger[4]

Merger[4]

Figure 12.12 On the left-hand side we see the logical structure of a MERGER [8] network,
into which feed two BITONIC [4] networks, as depicted in Fig. 12.12. The gray MERGER [4] net-
work has as inputs the odd wires coming out of the top BITONIC [4] network, and the even
ones from the lower BITONIC [4] network. In the lower MERGER [4] the situation is reversed.
Once the wires exit the two MERGER [4] networks, each pair of identically numbered wires is
combined by a balancer. On the right-hand side we see the physical layout of a MERGER [8] net-
work. The different balancers are color coded to match the logical structure in the left-hand
figure.

274 Chapter 12 Counting, Sorting, and Distributed Coordination

Bitonic[k]

Merger[2k]

Bitonic[k]

Figure 12.13 The recursive structure of a BITONIC [2k] Counting Network. Two BITONIC [k]
counting networks feed into a MERGER [2k] balancing network.

The Bitonic [2k] network is constructed by passing the outputs from two
Bitonic [k] networks into a Merger [2k] network, where the induction is
grounded in the Bitonic [2] network consisting of a single balancer, as depicted

in Fig. 12.13. This construction gives us a network consisting of
(

log 2k+1
2

)
layers

each consisting of k balancers.

A Software Bitonic Counting Network

So far, we have described counting networks as if they were switches in a net-
work. On a shared-memory multiprocessor however, a balancing network can be
implemented as an object in memory. Each balancer is an object, whose wires
are references from one balancer to another. Each thread repeatedly traverses the
object, starting on some input wire and emerging at some output wire, effectively
shepherding a token through the network. Here, we show how to implement a
Bitonic [2] network as a shared-memory data structure.

The Balancer class (Fig. 12.14) has a single Boolean field: toggle. The syn-
chronized traverse() method complements the toggle field and returns as out-
put wire, either 0 or 1. The Balancer class’s traverse() method does not need
an argument because the wire on which a token exits a balancer does not depend
on the wire on which it enters.

The Merger class (Fig. 12.15) has three fields: the width field must be a power
of 2, half[] is a two-element array of half-width Merger objects (empty if the
network has width 2), and layer[] is an array of width balancers implement-
ing the final network layer. The layer[] array is initialized so that layer[i] and
layer[width− i− 1] refer to the same balancer.

The class provides a traverse(i) method, where i is the wire on which the
token enters. (For merger networks, unlike balancers, a token’s path depends on
its input wire.) If the token entered on the lower width/2 wires, then it passes
through half[0], otherwise half[1]. No matter which half-width merger net-
work it traverses, a balancer that emerges on wire i is fed to the ith balancer at
layer[i].

The Bitonic class (Fig. 12.16) also has three fields: width is the width
(a power of 2), half[] is a two-element array of half-width Bitonic[] objects,

12.5 Counting Networks 275

1 public class Balancer {
2 Boolean toggle = true;
3 public synchronized int traverse(t) {
4 try {
5 if (toggle) {
6 return 0;
7 } else {
8 return 1;
9 }

10 } finally {
11 toggle = !toggle;
12 }
13 }
14 }

Figure 12.14 The Balancer class: a synchronized implementation.

1 public class Merger {
2 Merger[] half; // two half-width merger networks
3 Balancer[] layer; // final layer
4 final int width;
5 public Merger(int myWidth) {
6 width = myWidth;
7 layer = new Balancer[width / 2];
8 for (int i = 0; i < width / 2; i++) {
9 layer[i] = new Balancer();
10 }
11 if (width > 2) {
12 half = new Merger[]{new Merger(width/2), new Merger(width/2)};
13 }
14 }
15 public int traverse(int input) {
16 int output = 0;
17 if (input < width / 2) {
18 output = half[input % 2].traverse(input / 2);
19 } else {
20 output = half[1 - (input % 2)].traverse(input / 2);
21 }
22 }

Figure 12.15 The Merger class.

and merger is a full width Merger network width. If the network has width 2,
the half[] array is uninitialized. Otherwise, each element of half[] is initialized
to a half-width Bitonic[] network. The merger[] array is initialized to a Merger
network of full width.

The class provides a traverse(i) method. If the token entered on the lower
width/2 wires, then it passes through half[0], otherwise half[1]. A token that

276 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Bitonic {
2 Bitonic[] half; // two half-width bitonic networks
3 Merger merger; // final merger layer
4 final int width; // network width
5 public Bitonic(int myWidth) {
6 width = myWidth;
7 merger = new Merger(width);
8 if (width > 2) {
9 half = new Bitonic[]{new Bitonic(width/2), new Bitonic(width/2)};
10 }
11 }
12 public int traverse(int input) {
13 int output = 0;
14 if (width > 2) {
15 output = half[input / (width / 2)].traverse(input / 2);
16 }
17 return merger.traverse(output / (width/2) * (width/2) + width);
18 }
19 }

Figure 12.16 The Bitonic[] class.

emerges from the half-merger subnetwork on wire i then traverses the final
merger network from input wire i.

Notice that this class uses a simple synchronized Balancer implementation,
but that if the Balancer implementation were lock-free (or wait-free) the net-
work implementation as a whole would be lock-free (or wait-free).

Proof of Correctness

We now show that Bitonic [w] is a counting network. The proof proceeds as a
progression of arguments about the token sequences passing through the net-
work. Before examining the network itself, here are some simple lemmas about
sequences with the step property.

Lemma 12.5.2. If a sequence has the step property, then so do all its subsequences.

Lemma 12.5.3. If x0, . . . ,xk−1 has the step property, then its even and odd subse-
quences satisfy:

k/2−1∑
i=0

x2i =

⌈
k−1∑
i=0

xi/2

⌉
and

k/2−1∑
i=0

x2i+1 =

⌊
k−1∑
i=0

xi/2

⌋
.

Proof: Either x2i = x2i+1 for 0 � i < k/2, or by Lemma 12.5.1, there exists a
unique j such that x2j = x2j+1 + 1 and x2i = x2i+1 for all i �= j, 0 � i < k/2. In
the first case,

∑
x2i =

∑
x2i+1 =

∑
xi/2, and in the second case

∑
x2i =

⌈∑
xi/2

⌉
and

∑
x2i+1 =

⌊∑
xi/2

⌋
. �

12.5 Counting Networks 277

Lemma 12.5.4. Let x0, . . . ,xk−1 and y0, . . . ,yk−1 be arbitrary sequences having
the step property. If

∑
xi =

∑
yi, then xi = yi for all 0 � i < k.

Proof: Let m =
∑

xi =
∑

yi. By Lemma 12.5.1, xi = yi =
⌈
m−i
k

⌉
. �

Lemma 12.5.5. Let x0, . . . ,xk−1 and y0, . . . ,yk−1 be arbitrary sequences having
the step property. If

∑
xi =

∑
yi + 1, then there exists a unique j, 0 � j < k, such

that xj = yj + 1, and xi = yi for i �= j, 0 � i < k.

Proof: Let m =
∑

xi =
∑

yi + 1. By Lemma 12.5.1, xi =
⌈
m−1
k

⌉
and yi =

⌈
m−1−i

k

⌉
.

These two terms agree for all i, 0 � i < k, except for the unique i such that
i = m− 1 (mod k). �

We now show that the Merger [w] network preserves the step property.

Lemma 12.5.6. If Merger [2k] is quiescent, and its inputs x0, . . . ,xk−1 and
x′0, . . . ,x′k−1 both have the step property, then its outputs y0, . . . ,y2k−1 also have
the step property.

Proof: We argue by induction on logk. It may be worthwhile to consult Fig. 12.17
which shows an example of the proof structure for a Merger [8] network.

12

10

y

x

13

z11

b

b

b

b

even

odd

od
d

even

Merger[4]

Merger[4]

z ′

x ′

Figure 12.17 The inductive proof that a MERGER [8] network correctly merges two width 4 sequences x
and x’ that have the step property into a single width 8 sequence y that has the step property. The
odd and even width 2 subsequences of x and x’ all have the step property. Moreover, the difference
in the number of tokens between the even sequence from one and the odd sequence from the other
is at most 1 (in this example, 11 and 12 tokens, respectively). It follows from the induction hypothe-
sis that the outputs z and z’ of the two MERGER [4] networks have the step property, with at most 1
extra token in one of them. This extra token must fall on a specific numbered wire (wire 3 in this
case) leading into the same balancer. In this figure, these tokens are darkened. They are passed to the
southern-most balancer, and the extra token is pushed north, ensuring the final output has the step
property.

278 Chapter 12 Counting, Sorting, and Distributed Coordination

If 2k = 2, Merger [2k] is just a balancer, and its outputs are guaranteed to
have the step property by the definition of a balancer.

If 2k > 2, let z0, . . . ,zk−1 be the outputs of the first Merger [k] subnetwork
which merges the even subsequence of x with the odd subsequence of x′. Let
z′0, . . . ,z′k−1 be the outputs of the second Merger [k] subnetwork. Since x and
x′ have the step property by assumption, so do their even and odd subsequences
(Lemma 12.5.2), and hence so do z and z′ (induction hypothesis). Furthermore,∑

zi =
⌈∑

xi/2
⌉

+
⌊∑

x′i/2
⌋

and
∑

z′i =
⌊∑

xi/2
⌋

+
⌈∑

x′i/2
⌉

(Lemma 12.5.3).
A straightforward case analysis shows that

∑
zi and

∑
z′i can differ by at most 1.

We claim that 0 � yi − yj � 1 for any i < j. If
∑

zi =
∑

z′i, then Lemma 12.5.4
implies that zi = z′i for 0 � i < k/2. After the final layer of balancers,

yi − yj = z�i/2	 − z�j/2	,

and the result follows because z has the step property.
Similarly, if

∑
zi and

∑
z′i differ by one, Lemma 12.5.5 implies that zi = z′i

for 0 � i < k/2, except for a unique � such that z� and z′� differ by one. Let
max(z� ,z′�) = x + 1 and min(z� ,z′�) = x for some nonnegative integer x. From
the step property for z and z′ we have, for all i < �, zi = z′i = x+ 1 and for all i > �
zi = z′i = x. Since z� and z′� are joined by a balancer with outputs y2� and y2�+1,
it follows that y2� = x + 1 and y2�+1 = x. Similarly, zi and z′i for i �= � are joined
by the same balancer. Thus, for any i < �, y2i = y2i+1 = x + 1 and for any i > �,
y2i = y2i+1 = x. The step property follows by choosing c = 2� + 1 and applying
Lemma 12.5.1. �

The proof of the following theorem is now immediate.

Theorem 12.5.1. In any quiescent state, the outputs of Bitonic [w] have the step
property.

A Periodic Counting Network

In this section, we show that the Bitonic network is not the only counting network
with depth O(log2w). We introduce a new counting network with the remarkable
property that it is periodic, consisting of a sequence of identical subnetworks, as
depicted in Fig. 12.18. We define the network Block [k] as follows. When k is
equal to 2, the Block [k] network consists of a single balancer. The Block [2k]
network for larger k is constructed recursively. We start with two Block [k] net-
works A and B. Given an input sequence x, the input to A is xA, and the input to
B is xB . Let y be the output sequence for the two subnetworks, where yA is the
output sequence for A and yB the output sequence for B. The final stage of the
network combines each yAi and yBi in a single balancer, yielding final outputs z2i

and z2i+1.
Fig. 12.19 describes the recursive construction of a Block [8] network. The

Periodic [2k] network consists of logk Block [2k] networks joined so that the

12.5 Counting Networks 279

y0
y1
y2
y3
y4
y5
y6
y7

x0
x1
x2
x3
x4
x5
x6
x7

1st Block[8] 2nd Block[8] 3rd Block[8]

Periodic[8]

Figure 12.18 A PERIODIC [8] counting network constructed from 3 identical BLOCK [8]
networks.

Block[4]

Block[4]

x0
x1
x2
x3
x4
x5
x6
x7

x0
x1
x2
x3
x4
x5
x6
x7

y0
y1
y2
y3
y4
y5
y6
y7

y0
y1
y2
y3
y4
y5
y6
y7

Figure 12.19 The left-hand side illustrates a BLOCK [8] network, into which feed two
PERIODIC [4] networks. The right-hand illustrates the physical layout of a MERGER [8] network.
The balancers are color-coded to match the logical structure in the left-hand figure.

ith output wire of one is the ith wire of the next. Fig. 12.18 is a Periodic [8] count-
ing network.2

A Software Periodic Counting Network

Here is how to implement the Periodic network in software. We reuse the
Balancer class in Fig. 12.14. A single layer of a Block [w] network is imple-
mented by the Layer [w] network (Fig. 12.20). A Layer [w] network joins input
wires i and w − i− 1 to the same balancer.

In the Block [w] class (Fig. 12.21), after the token emerges from the initial
Layer [w] network, it passes through one of two half-width Block [w/2] net-
works (called north and south).

The Periodic [w] network (Fig. 12.22) is implemented as an array of logw
Block [w] networks. Each token traverses each block in sequence, where the out-
put wire taken on each block is the input wire for its successor. (The chapter notes
cite the proof that the Periodic [w] is a counting network.)

2 While the Block [2k] and Merger [2k] networks may look the same, they are not: there is no
permutation of wires that yields one from the other.

280 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Layer {
2 int width;
3 Balancer[] layer;
4 public Layer(int width) {
5 this.width = width;
6 layer = new Balancer[width];
7 for (int i = 0; i < width / 2; i++) {
8 layer[i] = layer[width-i-1] = new Balancer();
9 }
10 }
11 public int traverse(int input) {
12 int toggle = layer[input].traverse();
13 int hi, lo;
14 if (input < width / 2) {
15 lo = input;
16 hi = width - input - 1;
17 } else {
18 lo = width - input - 1;
19 hi = input;
20 }
21 if (toggle == 0) {
22 return lo;
23 } else {
24 return hi;
25 }
26 }
27 }

Figure 12.20 The Layer network.

12.5.3 Performance and Pipelining

How does counting network throughput vary as a function of the number of
threads and the network width? For a fixed network width, throughput rises with
the number of threads up to a point, and then the network saturates, and through-
put remains constant or declines. To understand these results, let us think of a
counting network as a pipeline.

� If the number of tokens concurrently traversing the network is less than
the number of balancers, then the pipeline is partly empty, and throughput
suffers.

� If the number of concurrent tokens is greater than the number of balancers,
then the pipeline becomes clogged because too many tokens arrive at each bal-
ancer at the same time, resulting in per-balancer contention.

� Throughput is maximized when the number of tokens is roughly equal to the
number of balancers.

If an application needs a counting network, then the best size network to choose
is one that ensures that the number of tokens traversing the balancer at any time
is roughly equal to the number of balancers.

12.5 Counting Networks 281

1 public class Block {
2 Block north;
3 Block south;
4 Layer layer;
5 int width;
6 public Block(int width) {
7 this.width = width;
8 if (width > 2) {
9 north = new Block(width / 2);

10 south = new Block(width / 2);
11 }
12 layer = new Layer(width);
13 }
14 public int traverse(int input) {
15 int wire = layer.traverse(input);
16 if (width > 2) {
17 if (wire < width / 2) {
18 return north.traverse(wire);
19 } else {
20 return (width / 2) + south.traverse(wire - (width / 2));
21 }
22 } else {
23 return wire;
24 }
25 }
26 }

Figure 12.21 The BLOCK [w] network.

1 public class Periodic {
2 Block[] block;
3 public Periodic(int width) {
4 int logSize = 0;
5 int myWidth = width;
6 while (myWidth > 1) {
7 logSize++;
8 myWidth = myWidth / 2;
9 }
10 block = new Block[logSize];
11 for (int i = 0; i < logSize; i++) {
12 block[i] = new Block(width);
13 }
14 }
15 public int traverse(int input) {
16 int wire = input;
17 for (Block b : block) {
18 wire = b.traverse(wire);
19 }
20 return wire;
21 }
22 }

Figure 12.22 The Periodic network.

282 Chapter 12 Counting, Sorting, and Distributed Coordination

12.6 Diffracting Trees

Counting networks provide a high degree of pipelining, so throughput is largely
independent of network depth. Latency, however, does depend on network depth.
Of the counting networks we have seen, the most shallow has depth Θ(log2 w).
Can we design a logarithmic-depth counting network? The good news is yes, such
networks exist, but the bad news is that for all known constructions, the constant
factors involved render these constructions impractical.

Here is an alternative approach. Consider a set of balancers with a single input
wire and two output wires, with the top and bottom labeled 0 and 1, respectively.
The Tree [w] network (depicted in Fig. 12.23) is a binary tree structured as fol-
lows. Let w be a power of two, and define Tree [2k] inductively. When k is equal
to 1, Tree [2k] consists of a single balancer with output wires y0 and y1. For k > 1,
construct Tree [2k] from two Tree [k] trees and one additional balancer. Make
the input wire x of the single balancer the root of the tree and connect each of
its output wires to the input wire of a tree of width k. Redesignate output wires
y0,y1, . . . ,yk−1 of the Tree [k] subtree extending from the “0” output wire as the
even output wires y0,y2, . . . ,y2k−2 of the final Tree [2k] network and the wires
y0,y1, . . . ,yk−1 of the Tree [k] subtree extending from the balancer’s “1” output
wire as the odd output wires y1,y3, . . . ,y2k−1 of final Tree [2k] network.

To understand why the Tree [2k] network has the step property in a quiescent
state, let us assume inductively that a quiescent Tree [2k] has the step property.
The root balancer passes at most one token more to the Tree [k] subtree on its
“0” (top) wire than on its“1” (bottom) wire. The tokens exiting the top Tree [k]
subtree have a step property differing from that of the bottom subtree at exactly
one wire j among their k output wires. The Tree [2k] outputs are a perfect shuf-
fle of the wires leaving the two subtrees, and it follows that the two step-shaped
token sequences of width k form a new step of width 2k where the possible single

1 1

1

12

2
2

2

3

3

33

b

b

b

b

b

b

b

Figure 12.23 The TREE [8] class: a tree that counts. Notice how the network maintains the
step property.

12.6 Diffracting Trees 283

excess token appears at the higher of the two wires j, that is, the one from the top
Tree [k] tree.

The Tree [w] network may be a counting network, but is it a good counting
network? The good news is that it has shallow depth: while a Bitonic [w] net-
work has depth log2 w, the Tree [w] network depth is just logw. The bad news
is contention: every token that enters the network passes through the same root
balancer, causing that balancer to become a bottleneck. In general, the higher the
balancer in the tree, the higher the contention.

We can reduce contention by exploiting a simple observation similar to one we
made about the EliminationBackoffStack of Chapter 11:

If an even number of tokens pass through a balancer, the outputs are evenly bal-
anced on the top and bottom wires, but the balancer’s state remains unchanged.

The basic idea behind diffracting trees is to place a Prism at each balancer, an
out-of-band mechanism similar to the EliminationArray which allowed tokens
(threads) accessing a stack to exchange items. The Prism allows tokens to pair off
at random array locations and agree to diffract in different directions, that is, to
exit on different wires without traversing the balancer’s toggle bit or changing its
state. A token traverses the balancer’s toggle bit only if it is unable to pair off with
another token within a reasonable period of time. If it did not manage to diffract,
the token toggles the bit to determine which way to go. It follows that we can avoid
excessive contention at balancers if the prism can pair off enough tokens without
introducing too much contention.

A Prism is an array of Exchanger<Integer> objects, like the
EliminationArray. An Exchanger<T> object permits two threads to exchange T
values. If thread A calls the object’s exchange() method with argument a, and B
calls the same object’s exchange() method with argument b, then A’s call returns
value b and vice versa. The first thread to arrive is blocked until the second arrives.
The call includes a timeout argument allowing a thread to proceed if it is unable
to exchange a value within a reasonable duration.

The Prism implementation appears in Fig. 12.24. Before thread A visits the
balancer’s toggle bit, it visits associated Prism. In the Prism, it picks an array entry
at random, and calls that slot’s exchange() method, providing its own thread ID
as an exchange value. If it succeeds in exchanging ids with another thread, then
the lower thread ID exits on wire 0, and the higher on wire 1.

Fig. 12.24 shows a Prism implementation. The constructor takes as an argu-
ment the capacity of the prism (the maximal number of distinct exchangers).
The Prism class provides a single method, visit(), that chooses the random
exchanger entry. The visit() call returns true if the caller should exit on the top
wire, false if the bottom wire, and it throws a TimeoutException if the timeout
expires without exchanging a value. The caller acquires its thread ID (Line 13),
chooses a random entry in the array (Line 14), and tries to exchange its own ID
with its partner’s (Line 15). If it succeeds, it returns a Boolean value, and if it times
out, it rethrows TimeoutException.

284 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public class Prism {
2 private static final int duration = 100;
3 Exchanger<Integer>[] exchanger;
4 Random random;
5 public Prism(int capacity) {
6 exchanger = (Exchanger<Integer>[]) new Exchanger[capacity];
7 for (int i = 0; i < capacity; i++) {
8 exchanger[i] = new Exchanger<Integer>();
9 }
10 random = new Random();
11 }
12 public boolean visit() throws TimeoutException,InterruptedException {
13 int me = ThreadID.get();
14 int slot = random.nextInt(exchanger.length);
15 int other = exchanger[slot].exchange(me,duration,TimeUnit.MILLISECONDS);
16 return (me < other);
17 }
18 }

Figure 12.24 The Prism class.

1 public class DiffractingBalancer {
2 Prism prism;
3 Balancer toggle;
4 public DiffractingBalancer(int capacity) {
5 prism = new Prism(capacity);
6 toggle = new Balancer();
7 }
8 public int traverse() {
9 boolean direction = false;
10 try{
11 if (prism.visit())
12 return 0;
13 else
14 return 1;
15 } catch(TimeoutException ex) {
16 return toggle.traverse();
17 }
18 }
19 }

Figure 12.25 The DiffractingBalancer class: if the caller pairs up with a concurrent caller
through the prism, it does not need to traverse the balancer.

A DiffractingBalancer (Fig. 12.25), like a regular Balancer, provides a
traverse() method whose return value alternates between 0 and 1. This class
has two fields: prism is a Prism, and toggle is a Balancer. When a thread calls
traverse(), it tries to find a partner through the prism. If it succeeds, then the
partners return with distinct values, without creating contention at the toggle

12.6 Diffracting Trees 285

1 public class DiffractingTree {
2 DiffractingBalancer root;
3 DiffractingTree[] child;
4 int size;
5 public DiffractingTree(int mySize) {
6 size = mySize;
7 root = new DiffractingBalancer(size);
8 if (size > 2) {
9 child = new DiffractingTree[]{

10 new DiffractingTree(size/2),
11 new DiffractingTree(size/2)};
12 }
13 }
14 public int traverse() {
15 int half = root.traverse();
16 if (size > 2) {
17 return (2 * (child[half].traverse()) + half);
18 } else {
19 return half;
20 }
21 }
22 }

Figure 12.26 The DiffractingTree class: fields, constructor, and traverse() method.

(Line 11). Otherwise, if the thread is unable to find a partner, it traverses (Line 16)
the toggle (implemented as a balancer).

The DiffractingTree class (Fig. 12.26) has two fields. The child array is
a two-element array of child trees. The root field is a DiffractingBalancer
that alternates between forwarding calls to the left or right subtree. Each
DiffractingBalancer has a capacity, which is actually the capacity of its inter-
nal prism. Initially this capacity is the size of the tree, and the capacity shrinks by
half at each level.

As with the EliminationBackoffStack, DiffractingTree performance
depends on two parameters: prism capacities and timeouts. If the prisms are too
big, threads miss one another, causing excessive contention at the balancer. If the
arrays are too small, then too many threads concurrently access each exchanger
in a prism, resulting in excessive contention at the exchangers. If prism timeouts
are too short, threads miss one another, and if they are too long, threads may be
delayed unnecessarily. There are no hard-and-fast rules for choosing these val-
ues, since the optimal values depend on the load and the characteristics of the
underlying multiprocessor architecture.

Nevertheless, experimental evidence suggests that it is sometimes possible
to choose these values to outperform both the CombiningTree and
CountingNetwork classes. Here are some heuristics that work well in practice.
Because balancers higher in the tree have more contention, we use larger prisms
near the top of the tree, and add the ability to dynamically shrink and grow the

286 Chapter 12 Counting, Sorting, and Distributed Coordination

random range chosen. The best timeout interval choice depends on the load:
if only a few threads are accessing the tree, then time spent waiting is mostly
wasted, while if there are many threads, then time spent waiting pays off. Adap-
tive schemes are promising: lengthen the timeout while threads succeed in pairing
off, and shorten it otherwise.

12.7 Parallel Sorting

Sorting is one of the most important computational tasks, dating back to
Hollerith’s Nineteenth-Century sorting machine, through the first electronic
computer systems in the 1940s, and culminating today, when a high fraction
of programs use sorting in some form or another. As most Computer Science
undergraduates learn early on, the choice of sorting algorithm depends crucially
on the number of items being sorted, the numerical properties of their keys, and
whether the items reside in memory or in an external storage device. Parallel
sorting algorithms can be classified in the same way.

We present two classes of sorting algorithms: sorting networks, which typically
work well for small in-memory data sets, and sample sorting algorithms, which
work well for large data sets in external memory. In our presentation, we sacri-
fice performance for simplicity. More complex techniques are cited in the chapter
notes.

12.8 Sorting Networks

In much the same way that a counting network is a network of balancers, a sorting
network is a network of comparators.3 A comparator is a computing element with
two input wires and two output wires, called the top and bottom wires. It receives
two numbers on its input wires, and forwards the larger to its top wire and the
smaller to its bottom wire. A comparator, unlike a balancer, is synchronous: it out-
puts values only when both inputs have arrived (see Fig. 12.27).

y0 5 max(x0,x1)

y1 5 min(x0,x1)

x0

x1
comparator

Figure 12.27 A comparator.

3 Historically sorting networks predate counting networks by several decades.

12.8 Sorting Networks 287

A comparison network, like a balancing network, is an acyclic network of com-
parators. An input value is placed on each of its w input lines. These values pass
through each layer of comparators synchronously, finally leaving together on the
network output wires.

A comparison network with input values xi and output values yi, i ∈ {0 . . .1},
each on wire i, is a valid sorting network if its output values are the input values
sorted in descending order, that is, yi−1 � yi.

The following classic theorem simplifies the process of proving that a given
network sorts.

Theorem 12.8.1 (0-1-principle). If a sorting network sorts every input sequence
of 0s and 1s, then it sorts any sequence of input values.

12.8.1 Designing a Sorting Network

There is no need to design sorting networks, because we can recycle counting
network layouts. A balancing network and a comparison network are isomorphic
if one can be constructed from the other by replacing balancers with comparators,
or vice versa.

Theorem 12.8.2. If a balancing network counts, then its isomorphic comparison
network sorts.

Proof: We construct a mapping from comparison network transitions to isomor-
phic balancing network transitions.

By Theorem 12.8.1, a comparison network which sorts all sequences of 0s and
1s is a sorting network. Take any arbitrary sequence of 0s and 1s as inputs to the
comparison network, and for the balancing network place a token on each 1 input
wire and no token on each 0 input wire. If we run both networks in lock-step, the
balancing network simulates the comparison network.

The proof is by induction on the depth of the network. For level 0 the claim
holds by construction. Assuming it holds for wires of a given level k, let us prove it
holds for level k + 1. On every comparator where two 1s meet in the comparison
network, two tokens meet in the balancing network, so one 1 leaves on each wire
in the comparison network on level k + 1, and one token leaves on each wire in
the balancing network on level k + 1. On every comparator where two 0s meet in
the comparison network, no tokens meet in the balancing network, so a 0 leaves
on each level k + 1 wire in the comparison network, and no tokens leave in the
balancing network. On every comparator where a 0 and 1 meet in the comparison
network, the 1 leaves on the north (upper) wire and the 1 on the south (lower)
wire on level k + 1, while in the balancing network the token leaves on the north
wire, and no token leaves on the south wire.

If the balancing network is a counting network, that is, it has the step property
on its output level wires, then the comparison network must have sorted the input
sequence of 0s and 1s. �

288 Chapter 12 Counting, Sorting, and Distributed Coordination

1

4

3

2

2

4

3

1

4

3

1

2

1

4

2

3

inputs outputs

4

2

1

3

Figure 12.28 The OddEven sorting network.

The converse is false: not all sorting networks are counting networks. We leave it
as an exercise to verify that the OddEven network in Fig. 12.28 is a sorting network
but not a counting network.

Corollary 12.8.1. Comparison networks isomorphic to Bitonic [] and Peri-

odic [] networks are sorting networks.

Sorting a set of sizew by comparisons requiresΩ(w logw) comparisons. A sort-
ing network with w input wires has at most O(w) comparators in each level, so
its depth can be no smaller than Ω(logw).

Corollary 12.8.2. The depth of any counting network is at least Ω(logw).

A Bitonic Sorting Algorithm

We can represent any width-w sorting network, such as Bitonic [w], as a collec-
tion of d layers of w/2 balancers each. We can represent a sorting network lay-
out as a table, where each entry is a pair that describes which two wires meet at
that balancer at that layer. (E.g., in the Bitonic [4] network of Fig. 12.11, wires
0 and 1 meet at the first balancer in the first layer, and wires 0 and 3 meet at
the first balancer of the second layer.) Let us assume, for simplicity, that we are
given an unbounded table bitonicTable[i][d][j], where each array entry con-
tains the index of the associated north (0) or south (1) input wire to balancer i at
depth d.

An in-place array-based sorting algorithm takes as input an array of items to be
sorted (here we assume these items have unique integer keys) and returns the same
array with the items sorted by key. Here is how we implement BitonicSort, an
in-place array-based sorting algorithm based on a Bitonic sorting network. Let us

12.8 Sorting Networks 289

assume that we wish to sort an array of 2 ·p · s elements, where p is the number of
threads (and typically also the maximal number of available processors on which
the threads run) and p · s is a power of 2. The network has p · s comparators at
every layer.

Each of the p threads emulates the work of s comparators. Unlike counting
networks, which act like uncoordinated raves, sorting networks are synchronous:
all inputs to a comparator must arrive before it can compute the outputs. The
algorithm proceeds in rounds. In each round, a thread performs s comparisons
in a layer of the network, switching the array entries of items if necessary, so that
they are properly ordered. In each network layer, the comparators join different
wires, so no two threads attempt to exchange the items of the same entry, avoiding
the need to synchronize operations at any given layer.

To ensure that the comparisons of a given round (layer) are complete before
proceeding to the next one, we use a synchronization construct called a Barrier
(studied in more detail in Chapter 17). A barrier for p threads provides an await()
method, whose call does not return until all p threads have called await().
The BitonicSort implementation appears in Fig. 12.29. Each thread proceeds
through the layers of the network round by round. In each round, it awaits
the arrival of the other threads (Line 12), ensuring that the items array con-
tains the prior round’s results. It then emulates the behavior of s balancers at
that layer by comparing the items at the array positions corresponding to the

1 public class BitonicSort {
2 static final int[][][] bitonicTable = ...;
3 static final int width = ...; // counting network width
4 static final int depth = ...; // counting network depth
5 static final int p = ...; // number of threads
6 static final int s = ...; // a power of 2
7 Barrier barrier;
8 ...
9 public <T> void sort(Item<T>[] items) {
10 int i = ThreadID.get();
11 for (int d = 0; d < depth; d++) {
12 barrier.await();
13 for (int j = 0; j < s; j++) {
14 int north = bitonicTable[(i*s)+j][d][0];
15 int south = bitonicTable[(i*s)+j][d][1];
16 if (items[north].key < items[south].key) {
17 Item<T> temp = items[north];
18 items[north] = items[south];
19 items[south] = temp;
20 }
21 }
22 }
23 }

Figure 12.29 The BitonicSort class.

290 Chapter 12 Counting, Sorting, and Distributed Coordination

comparator’s wires, and exchanging them if their keys are out of order (Lines 14
through 19).

The BitonicSort takesO(s log2 p) time for p threads running on p processors,
which, if s is constant, is O(log2 p) time.

12.9 Sample Sorting

The BitonicSort is appropriate for small data sets that reside in memory. For
larger data sets (where n, the number of items, is much larger than p, the num-
ber of threads), especially ones that reside on out-of-memory storage devices, we
need a different approach. Because accessing a data item is expensive, we must
maintain as much locality-of-reference as possible, so having a single thread sort
items sequentially is cost-effective. A parallel sort like BitonicSort, where an
item is accessed by multiple threads, is simply too expensive.

We attempt to minimize the number of threads that access a given item through
randomization. Thisuseof randomnessdiffers fromthat in theDiffractingTree,
where it was used to distribute memory accesses. Here we use randomness to guess
the distribution of items in the data set to be sorted.

Since the data set to be sorted is large, we split it into buckets, throwing into
each bucket the items that have keys within a given range. Each thread then sorts
the items in one of the buckets using a sequential sorting algorithm, and the result
is a sorted set (when viewed in the appropriate bucket order). This algorithm is
a generalization of the well-known quicksort algorithm, but instead of having a
single splitter key to divide the items into two subsets, we have p− 1 splitter keys
that split the input set into p subsets.

The algorithm for n items and p threads involves three phases:

1. Threads choose p− 1 splitter keys to partition the data set into p buckets. The
splitters are published so all threads can read them.

2. Each thread sequentially processes n/p items, moving each item to its bucket,
where the appropriate bucket is determined by performing a binary search
with the item’s key among the splitter keys.

3. Each thread sequentially sorts the items in its bucket.

Barriers between the phases ensure that all threads have completed one phase
before the next starts.

Before we consider Phase one, we look at the second and third phases.
The second phase’s time complexity is (n/p) logp, consisting of reading each

item from memory, disk, or tape, followed by a binary search among p splitters
cached locally, and finally adding the item into the appropriate bucket. The buc-
kets into which the items are moved could be in memory, on disk, or on tape, so
the dominating cost is that of the n/p accesses to the stored data items.

12.10 Distributed Coordination 291

Let b be the number of items in a bucket. The time complexity of the third
phase for a given thread is O(b logb), to sort the items using a sequential version
of, say, quicksort.4 This part has the highest cost because it consists of read–write
phases that access relatively slow memory, such as disk or tape.

The time complexity of the algorithm is dominated by the thread with the most
items in its bucket in the third phase. It is therefore important to choose the split-
ters to be as evenly distributed as possible, so each bucket receives approximately
n− p items in the second phase.

The key to choosing good splitters is to have each thread pick a set of sam-
ple splitters that represent its own n − p size data set, and choose the final p − 1
splitters from among all the sample splitter sets of all threads. Each thread selects
uniformly at random s keys from its data set of size n− p. (In practice, it suffices
to choose s to be 32 or 64 keys.) Each thread then participates in running the par-
allel BitonicSort (Fig. 12.29) on the s · p sample keys selected by the p threads.
Finally, each thread reads the p− 1 splitter keys in positions s, 2s, . . . , (p− 1)s in
the sorted set of splitters, and uses these as the splitters in the second phase. This
choice of s samples, and the later choice of the final splitters from the sorted set
of all samples, reduces the effects of an uneven key distribution among the n− p
size data sets accessed by the threads.

For example, a sample sort algorithm could choose to have each thread pick
p− 1 splitters for its second phase from within its own n/p size data set, without
ever communicating with other threads. The problem with this approach is that
if the distribution of the data is uneven, the size of the buckets may differ greatly,
and performance would suffer. For example, if the number of items in the largest
bucket is doubled, so is the worst-case time complexity of sorting algorithm.

The first phase’s complexity is s (a constant) to perform the random sampling,
and O(log2 p) for the parallel Bitonic sort. The overall time complexity of sample
sort with a good splitter set (where every bucket gets O(n/p) of the items) is

O(log2 p) + O((n/p) logp) + O((n/p) log(n/p))

which overall is O((n/p) log(n/p)).

12.10 Distributed Coordination

This chapter covered several distributed coordination patterns. Some, such as
combining trees, sorting networks, and sample sorting, have high parallelism and
low overheads. All these algorithms contain synchronization bottlenecks, that is,
points in the computation where threads must wait to rendezvous with others. In
the combining trees, threads must synchronize to combine, and in sorting, when
threads wait at barriers.

4 If the item’s key size is known and fixed, one could use algorithms like Radixsort.

292 Chapter 12 Counting, Sorting, and Distributed Coordination

In other schemes, such as counting networks and diffracting trees, threads
never wait for one another. (Although we implement balancers using
synchronized methods, they could be implemented in a lock-free manner using
compareAndSet().) Here, the distributed structures pass information from one
thread to another, and while a rendezvous could prove advantageous (as in the
Prism array), it is not necessary.

Randomization, which is useful in many places, helps to distribute work evenly.
For diffracting trees, randomization distributes work over multiple memory loca-
tions, reducing the chance that too many threads simultaneously access the same
location. For sample sort, randomization helps distribute work evenly among
buckets, which threads later sort in parallel.

Finally, we saw that pipelining can ensure that some data structures can have
high throughput, even though they have high latency.

Although we focus on shared-memory multiprocessors, it is worth mentioning
that the distributed algorithms and structures considered in this chapter also work
in message-passing architectures. The message-passing model might be imple-
mented directly in hardware, as in a network of processors, or it could be pro-
vided on top of a shared-memory architecture through a software layer such
as MPI.

In shared-memory architectures, switches (such as combining tree nodes or
balancers) are naturally implemented as shared-memory counters. In message-
passing architectures, switches are naturally implemented as processor-local
data structures, where wires that link one processor to another also link one
switch to another. When a processor receives a message, it atomically updates
its local data structure and forwards messages to the processors managing other
switches.

12.11 Chapter Notes

The idea behind combining trees is due to Allan Gottlieb, Ralph Grishman, Clyde
Kruskal, Kevin McAuliffe, Larry Rudolph, and Marc Snir [47]. The software
CombiningTree presented here is a adapted from an algorithm by PenChung
Yew, Nian-Feng Tzeng, and Duncan Lawrie [151] with modifications by Beng-
Hong Lim et al. [65], all based on an original proposal by James Goodman, Mary
Vernon, and Philip Woest [45].

Counting networks were invented by Jim Aspnes, Maurice Herlihy, and Nir
Shavit [16]. Counting networks are related to sorting networks, including the
ground breaking Bitonic network of Kenneth Batcher [18], and the periodic net-
work of Martin Dowd, Yehoshua Perl, Larry Rudolph, and Mike Saks [35]. Miklós
Ajtai, János Komlós, and Endre Szemerédi discovered the AKS sorting network,
an O(logw) depth sorting network [8]. (This asymptotic expression hides large
constants which make networks based on AKS impractical.)

12.12 Exercises 293

Mike Klugerman and Greg Plaxton [85, 84] were the first to provide an AKS-
based counting network construction with O(logw) depth. The 0-1 principle for
sorting networks is by Donald Knuth [86]. A similar set of rules for balancing
networks is provided by Costas Busch and Marios Mavronicolas [25]. Diffracting
trees were invented by Nir Shavit and Asaph Zemach [143].

Sample sorting was suggested by John Reif and Leslie Valiant [133] and by
Huang and Chow [73]. The sequential Quicksort algorithm to which all sample
sorting algorithms relate is due to Tony Hoare [70]. There are numerous par-
allel radix sort algorithms in the literature such as the one by Daniel Jiménez-
González, Joseph Larriba-Pey, and Juan Navarro [82] or the one by Shin-Jae Lee
and Minsoo Jeon and Dongseung Kim and Andrew Sohn [102].

Monty Python and the Holy Grail was written by Graham Chapman, John
Cleese, Terry Gilliam, Eric Idle, Terry Jones, and Michael Palin and co-directed
by Terry Gilliam and Terry Jones [27].

12.12 Exercises

Exercise 134. Prove Lemma 12.5.1.

Exercise 135. Implement a trinary CombiningTree, that is, one that allows up to
three threads coming from three subtrees to combine at a given node. Can you
estimate the advantages and disadvantages of such a tree when compared to a
binary combining tree?

Exercise 136. Implement a CombiningTree using Exchanger objects to per-
form the coordination among threads ascending and descending the tree. What
are the possible disadvantages of your construction when compared to the
CombiningTree class presented in Section 12.3?

Exercise 137. Implement the cyclic array based shared pool described in
Section 12.2 using two simple counters and a ReentrantLock per array entry.

Exercise 138. Provide an efficient lock-free implementation of a Balancer.

Exercise 139. (Hard) Provide an efficient wait-free implementation of a Balancer
(i.e. not by using the universal construction).

Exercise 140. Prove that the Tree [2k] balancing network constructed in Section
12.6 is a counting network, that is, that in any quiescent state, the sequences of
tokens on its output wires have the step property.

294 Chapter 12 Counting, Sorting, and Distributed Coordination

Exercise 141. Let B be a width-w balancing network of depth d in a quiescent
state s. Let n = 2d. Prove that if n tokens enter the network on the same wire, pass
through the network, and exit, then B will have the same state after the tokens
exit as it did before they entered.

In the following exercises, a k-smooth sequence is a sequence y0, ...,yw−1 that
satisfies

if i < j then |yi − yj|� k.

Exercise 142. Let X and Y be k-smooth sequences of length w. A matching layer
of balancers for X and Y is one where each element of X is joined by a balancer
to an element of Y in a one-to-one correspondence.

Prove that if X and Y are each k-smooth, and Z is the result of matching X
and Y , then Z is (k + 1)-smooth.

Exercise 143. Consider a Block [k] network in which each balancer has been ini-
tialized to an arbitrary state (either up or down). Show that no matter what the
input distribution is, the output distribution is (logk)-smooth.

Hint: you may use the claim in Exercise 142.

Exercise 144. A smoothing network is a balancing network that ensures that in any
quiescent state, the output sequence is 1-smooth.

Counting networks are smoothing networks, but not vice versa.
A Boolean sorting network is one in which all inputs are guaranteed to be

Boolean. Define a pseudo-sorting balancing network to be a balancing network
with a layout isomorphic to a Boolean sorting network.

Let N be the balancing network constructed by taking a smoothing network
S of width w, a pseudo-sorting balancing network P also of width w, and joining
the ith output wire of S to the ith input wire of P .

Show that N is a counting network.

Exercise 145. A 3-balancer is a balancer with three input lines and three output
lines. Like its 2-line relative, its output sequences have the step property in any
quiescent state. Construct a depth-3 counting network with 6 input and output
lines from 2-balancers and 3-balancers. Explain why it works.

Exercise 146. Suggest ways to modify the BitonicSort class so that it will sort an
input array of width w where w is not a power of 2.

Exercise 147. Consider the following w-thread counting algorithm. Each thread
first uses a bitonic counting network of width w to take a counter value v. It then
goes through a waiting filter, in which each thread waits for threads with lesser
values to catch up.

12.12 Exercises 295

The waiting filter is an array filter[] of w Boolean values. Define the phase
function

φ(v) = �(v/w)	 mod 2.

A thread that exits with value v spins on filter[(v − 1) mod n] until that value
is set to φ(v − 1). The thread responds by setting filter[v mod w] to φ(v), and
then returns v.

1. Explain why this counter implementation is linearizable.

2. An exercise here shows that any linearizable counting network has depth at
least w. Explain why the filter[] construction does not contradict this claim.

3. On a bus-based multiprocessor, would this filter[] construction have better
throughput than a single variable protected by a spin lock? Explain.

Exercise 148. If a sequence X = x0, . . . xw−1 is k-smooth, then the result of passing
X through a balancing network is k-smooth.

Exercise 149. Prove that the Bitonic[w] network has depth (logw)(1 + logw)/2
and uses (w logw)(1 + logw)/4 balancers.

Exercise 150. (Hard) Provide an implementation of a DiffractingBalancer
that is lock-free.

Exercise 151. Add an adaptive timeout mechanism to the Prism of the
DiffractingBalancer.

Exercise 152. Show that the OddEven network in Fig. 12.28 is a sorting network
but not a counting network.

Exercise 153. Can counting networks do anything besides increments? Consider
a new kind of token, called an antitoken, which we use for decrements. Recall that
when a token visits a balancer, it executes a getAndComplement(): it atomically
reads the toggle value and complements it, and then departs on the output wire
indicated by the old toggle value. Instead, an antitoken complements the toggle
value, and then departs on the output wire indicated by the new toggle value.
Informally, an antitoken “cancels” the effect of the most recent token on the bal-
ancer’s toggle state, and vice versa.

Instead of simply balancing the number of tokens that emerge on each wire, we
assign a weight of +1 to each token and −1 to each antitoken. We generalize the
step property to require that the sums of the weights of the tokens and antitokens
that emerge on each wire have the step property. We call this property the weighted
step property.

296 Chapter 12 Counting, Sorting, and Distributed Coordination

1 public synchronized int antiTraverse() {
2 try {
3 if (toggle) {
4 return 1;
5 } else {
6 return 0;
7 }
8 } finally {
9 toggle = !toggle;

10 }
11 }

Figure 12.30 The antiTraverse() method.

Fig. 12.30 shows how to implement an antiTraverse() method that moves
an antitoken though a balancer. Adding an antiTraverse() method to the other
networks is left as an exercise.

Let B be a width-w balancing network of depth d in a quiescent state s. Let
n = 2d. Show that if n tokens enter the network on the same wire, pass through
the network, and exit, then B will have the same state after the tokens exit as it
did before they entered.

Exercise 154. Let B be a balancing network in a quiescent state s, and suppose a
token enters on wire i and passes through the network, leaving the network in
state s′. Show that if an antitoken now enters on wire i and passes through the
network, then the network goes back to state s.

Exercise 155. Show that if balancing network B is a counting network for tokens
alone, then it is also a balancing network for tokens and antitokens.

Exercise 156. A switching network is a directed graph, where edges are called wires
and node are called switches. Each thread shepherds a token through the network.
Switches and tokens are allowed to have internal states. A token arrives at a switch
via an input wire. In one atomic step, the switch absorbs the token, changes its
state and possibly the token’s state, and emits the token on an output wire. Here,
for simplicity, switches have two input and output wires. Note that switching net-
works are more powerful than balancing networks, since switches can have arbi-
trary state (instead of a single bit) and tokens also have state.

An adding network is a switching network that allows threads to add (or sub-
tract) arbitrary values.

We say that a token is in front of a switch if it is on one of the switch’s input
wires. Start with the network in a quiescent state q0, where the next token to
run will take value 0. Imagine we have one token t of weight a and n–1 tokens
t1, . . . , tn−1 all of weight b, where b > a, each on a distinct input wire. Denote by
S the set of switches that t traverses if it traverses the network by starting in q0.

12.12 Exercises 297

Prove that if we run the t1, . . . , tn−1 one at a time though the network, we can
halt each ti in front of a switch of S .

At the end of this construction, n − 1 tokens are in front of switches of S .
Since switches have two input wires, it follows that t’s path through the network
encompasses at least n − 1 switches, so any adding network must have depth at
least n − 1, where n is the maximum number of concurrent tokens. This bound
is discouraging because it implies that the size of the network depends on the
number of threads (also true for CombiningTrees, but not counting networks),
and that the network has inherently high latency.

Exercise 157. Extend the proof of Exercise 156 to show that a linearizable count-
ing network has depth at least n.

This page intentionally left blank

13Concurrent Hashing
and Natural Parallelism

13.1 Introduction

In earlier chapters, we studied how to extract parallelism from data structures
like queues, stacks, and counters, that seemed to provide few opportunities for
parallelism. In this chapter we take the opposite approach. We study concurrent
hashing, a problem that seems to be “naturally parallelizable” or, using a more
technical term, disjoint–access–parallel, meaning that concurrent method calls
are likely to access disjoint locations, implying that there is little need for
synchronization.

Hashing is a technique commonly used in sequential Set implementations
to ensure that contains(), add(), and remove() calls take constant average
time. The concurrent Set implementations studied in Chapter 9 required time
linear in the size of the set. In this chapter, we study ways to make hashing
concurrent, sometimes using locks and sometimes not. Even though hashing
seems naturally parallelizable, devising an effective concurrent hash algorithm
is far from trivial.

As in earlier chapters, the Set interface provides the following methods, which
return Boolean values:

� add(x) adds x to the set. Returns true if x was absent, and false otherwise,

� remove(x) removes x from the set. Returns true if x was present, and false
otherwise, and

� contains(x) returns true if x is present, and false otherwise.

When designing set implementations, we need to keep the following principle in
mind: we can buy more memory, but we cannot buy more time. Given a choice
between an algorithm that runs faster but consumes more memory, and a slower
algorithm that consumes less memory, we tend to prefer the faster algorithm
(within reason).

A hash set (sometimes called a hash table) is an efficient way to implement a
set. A hash set is typically implemented as an array, called the table. Each table

299

300 Chapter 13 Concurrent Hashing and Natural Parallelism

entry is a reference to one or more items. A hash function maps items to integers
so that distinct items usually map to distinct values. (Java provides each object
with a hashCode() method that serves this purpose.) To add, remove, or test an
item for membership, apply the hash function to the item (modulo the table size)
to identify the table entry associated with that item. (We call this step hashing the
item.)

In some hash-based set algorithms, each table entry refers to a single item, an
approach known as open addressing. In others, each table entry refers to a set of
items, traditionally called a bucket, an approach known as closed addressing.

Any hash set algorithm must deal with collisions: what to do when two distinct
items hash to the same table entry. Open-addressing algorithms typically resolve
collisions by applying alternative hash functions to test alternative table entries.
Closed-addressing algorithms place colliding items in the same bucket, until that
bucket becomes too full. In both kinds of algorithms, it is sometimes necessary to
resize the table. In open-addressing algorithms, the table may become too full to
find alternative table entries, and in closed-addressing algorithms, buckets may
become too large to search efficiently.

Anecdotal evidence suggests that in most applications, sets are subject to
the following distribution of method calls: 90% contains(), 9% add(), and
1% remove() calls. As a practical matter, sets are more likely to grow than to
shrink, so we focus here on extensible hashing in which hash sets only grow
(shrinking them is a problem for the exercises).

It is easier to make closed-addressing hash set algorithms parallel, so we con-
sider them first.

13.2 Closed-Address Hash Sets

Pragma 13.2.1. Here and elsewhere, we use the standard Java List<T> inter-
face (in package java.util.List). A List<T> is an ordered collection of T objects,
where T is a type. Here, we make use of the following List methods: add(x)
appends x to the end of the list, get(i) returns (but does not remove) the
item at position i, contains(x) returns true if the list contains x. There are
many more.

The List interface can be implemented by a number of classes. Here, it is
convenient to use the ArrayList class.

We start by defining a base hash set implementation common to all the con-
current closed-addressing hash sets we consider here. The BaseHashSet<T> class
is an abstract class, that is, it does not implement all its methods. Later, we look
at three alternative synchronization techniques: one using a single coarse-grained
lock, one using a fixed-size array of locks, and one using a resizable array of locks.

13.2 Closed-Address Hash Sets 301

1 public abstract class BaseHashSet<T> {
2 protected List<T>[] table;
3 protected int setSize;
4 public BaseHashSet(int capacity) {
5 setSize = 0;
6 table = (List<T>[]) new List[capacity];
7 for (int i = 0; i < capacity; i++) {
8 table[i] = new ArrayList<T>();
9 }
10 }
11 ...
12 }

Figure 13.1 BaseHashSet<T> class: fields and constructor.

Fig. 13.1 shows the base hash set’s fields and constructor. The table[] field is an
array of buckets, each of which is a set implemented as a list (Line 2). We use
ArrayList<T> lists for convenience, supporting the standard sequential add(),
remove(), and contains() methods. The setSize field is the number of items in
the table (Line 3). We sometimes refer to the length of the table[] array, that is,
the number of buckets in it, as its capacity.

The BaseHashSet<T> class does not implement the following abstract
methods: acquire(x) acquires the locks necessary to manipulate item x,
release(x) releases them, policy() decides whether to resize the set, and
resize() doubles the capacity of the table[] array. The acquire(x) method
must be reentrant (Chapter 8, Section 8.4), meaning that if a thread that has
already called acquire(x) makes the same call, then it will proceed without dead-
locking with itself.

Fig. 13.2 shows the contains(x) and add(x) methods of the
BaseHashSet<T> class. Each method first calls acquire(x) to perform the
necessary synchronization, then enters a try block whose finally block calls
release(x). The contains(x) method simply tests whether x is present in the
associated bucket (Line 17), while add(x) adds x to the list if it is not already
present (Line 27).

How big should the bucket array be to ensure that method calls take constant
expected time? Consider an add(x) call. The first step, hashing x, takes constant
time. The second step, adding the item to the bucket, requires traversing a linked
list. This traversal takes constant expected time only if the lists have constant
expected length, so the table capacity should be proportional to the number of
items in the table. This number may vary unpredictably over time, so to ensure
that method call times remain (more-or-less) constant, we must resize the table
every now and then to ensure that list lengths remain (more-or-less) constant.

We still need to decide when to resize the hash set, and how the resize()
method synchronizes with the others. There are many reasonable alternatives.
For closed-addressing algorithms, one simple strategy is to resize the set when
the average bucket size exceeds a fixed threshold. An alternative policy employs
two fixed integer quantities: the bucket threshold and the global threshold.

302 Chapter 13 Concurrent Hashing and Natural Parallelism

13 public boolean contains(T x) {
14 acquire(x);
15 try {
16 int myBucket = x.hashCode() % table.length;
17 return table[myBucket].contains(x);
18 } finally {
19 release(x);
20 }
21 }
22 public boolean add(T x) {
23 boolean result = false;
24 acquire(x);
25 try {
26 int myBucket = x.hashCode() % table.length;
27 result = table[myBucket].add(x);
28 setSize = result ? setSize + 1 : setSize;
29 } finally {
30 release(x);
31 }
32 if (policy())
33 resize();
34 return result;
35 }

Figure 13.2 BaseHashSet<T> class: the contains() and add() methods hash the item to
choose a bucket.

� If more than, say, 1/4 of the buckets exceed the bucket threshold, then double
the table capacity, or

� If any single bucket exceeds the global threshold, then double the table
capacity.

Both these strategies work well in practice, as do others. Open-addressing
algorithms are slightly more complicated, and are discussed later.

13.2.1 A Coarse-Grained Hash Set

Fig. 13.3 shows the CoarseHashSet<T> class’s fields, constructor, acquire(x),
and release(x) methods. The constructor first initializes its superclass (Line 4).
Synchronization is provided by a single reentrant lock (Line 2), acquired by
acquire(x) (Line 8) and released by release(x) (Line 11).

Fig. 13.4 shows the CoarseHashSet<T> class’s policy() and resize()
methods. We use a simple policy: we resize when the average bucket length
exceeds 4 (Line 16). The resize() method locks the set (Line 20), and checks that
no other thread has resized the table in the meantime (Line 23). It then allocates
and initializes a new table with double the capacity (Lines 25–29) and transfers
items from the old to the new buckets (Lines 30–34). Finally, it unlocks the set
(Line 36).

13.2 Closed-Address Hash Sets 303

1 public class CoarseHashSet<T> extends BaseHashSet<T>{
2 final Lock lock;
3 CoarseHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock();
6 }
7 public final void acquire(T x) {
8 lock.lock();
9 }
10 public void release(T x) {
11 lock.unlock();
12 }
13 ...
14 }

Figure 13.3 CoarseHashSet<T> class: fields, constructor, acquire(), and release()
methods.

15 public boolean policy() {
16 return setSize / table.length > 4;
17 }
18 public void resize() {
19 int oldCapacity = table.length;
20 lock.lock();
21 try {
22 if (oldCapacity != table.length) {
23 return; // someone beat us to it
24 }
25 int newCapacity = 2 * oldCapacity;
26 List<T>[] oldTable = table;
27 table = (List<T>[]) new List[newCapacity];
28 for (int i = 0; i < newCapacity; i++)
29 table[i] = new ArrayList<T>();
30 for (List<T> bucket : oldTable) {
31 for (T x : bucket) {
32 table[x.hashCode() % table.length].add(x);
33 }
34 }
35 } finally {
36 lock.unlock();
37 }
38 }

Figure 13.4 CoarseHashSet<T> class: the policy() and resize() methods.

13.2.2 A Striped Hash Set

Like the coarse-grained list studied in Chapter 9, the coarse-grained hash set
shown in the last section is easy to understand and easy to implement. Unfortu-
nately, it is also a sequential bottleneck. Method calls take effect in a one-at-a-time
order, even when there is no logical reason for them to do so.

304 Chapter 13 Concurrent Hashing and Natural Parallelism

We now present a closed address hash table with greater parallelism and less
lock contention. Instead of using a single lock to synchronize the entire set, we
split the set into independently synchronized pieces. We introduce a technique
called lock striping, which will be useful for other data structures as well. Fig. 13.5
shows the fields and constructor for the StripedHashSet<T> class. The set is ini-
tialized with an array locks[] of L locks, and an array table[] of N = L buckets,
where each bucket is an unsynchronized List<T>. Although these arrays are ini-
tially of the same capacity, table[] will grow when the set is resized, but lock[]
will not. Every now and then, we double the table capacity N without chang-
ing the lock array size L, so that lock i eventually protects each table entry j,
where j = i (mod L). The acquire(x) and release(x) methods use x’s hash
code to pick which lock to acquire or release. An example illustrating how a
StripedHashSet<T> is resized appears in Fig. 13.6.

There are two reasons not to grow the lock array every time we grow the table:

� Associating a lock with every table entry could consume too much space, espe-
cially when tables are large and contention is low.

� While resizing the table is straightforward, resizing the lock array (while in use)
is more complex, as discussed in Section 13.2.3.

Resizing a StripedHashSet (Fig. 13.7) is almost identical to resizing a
CoarseHashSet. One difference is that resize() acquires the locks in lock[]
in ascending order (Lines 18–20). It cannot deadlock with a contains(), add(),
or remove() call because these methods acquire only a single lock. A resize()
call cannot deadlock with another resize() call because both calls start with-
out holding any locks, and acquire the locks in the same order. What if two or
more threads try to resize at the same time? As in the CoarseHashSet<T>, when
a thread starts to resize the table, it records the current table capacity. If, after it has
acquired all the locks, it discovers that some other thread has changed the table

1 public class StripedHashSet<T> extends BaseHashSet<T>{
2 final ReentrantLock[] locks;
3 public StripedHashSet(int capacity) {
4 super(capacity);
5 locks = new Lock[capacity];
6 for (int j = 0; j < locks.length; j++) {
7 locks[j] = new ReentrantLock();
8 }
9 }
10 public final void acquire(T x) {
11 locks[x.hashCode() % locks.length].lock();
12 }
13 public void release(T x) {
14 locks[x.hashCode() % locks.length].unlock();
15 }

Figure 13.5 StripedHashSet<T> class: fields, constructor, acquire(), and release()
methods.

13.2 Closed-Address Hash Sets 305

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7

5 (mod 8) 5 i

13 (mod 8) 5 i

i

locks

table

Figure 13.6 Resizing a StripedHashSet lock-based hash table. As the table grows, the
striping is adjusted to ensure that each lock covers 2N/L entries. In the figure above, N=16 and
L= 8. When N is doubled from 8 to 16, the memory is striped so that lock i= 5 for example
covers both locations that are equal to 5 modulo L.

capacity (Line 23), then it releases the locks and gives up. (It could just double
the table size anyway, since it already holds all the locks.)

Otherwise, it creates a new table[] array with twice the capacity (Line 25),
and transfer items from the old table to the new (Line 30). Finally, it releases the
locks (Line 36). Because the initializeFrom() method calls add(), it may trigger
nested calls to resize(). We leave it as an exercise to check that nested resizing
works correctly in this and later hash set implementations.

To summarize, striped locking permits more concurrency than a single coarse-
grained lock because method calls whose items hash to different locks can proceed
in parallel. The add(), contains(), and remove() methods take constant expected
time, but resize() takes linear time and is a “stop-the-world” operation: it halts
all concurrent method calls while it increases the table’s capacity.

13.2.3 A Refinable Hash Set

What if we want to refine the granularity of locking as the table size grows, so
that the number of locations in a stripe does not continuously grow? Clearly, if
we want to resize the lock array, then we need to rely on another form of synchro-
nization. Resizing is rare, so our principal goal is to devise a way to permit the lock
array to be resized without substantially increasing the cost of normal method
calls.

306 Chapter 13 Concurrent Hashing and Natural Parallelism

16 public void resize() {
17 int oldCapacity = table.length;
18 for (Lock lock : locks) {
19 lock.lock();
20 }
21 try {
22 if (oldCapacity != table.length) {
23 return; // someone beat us to it
24 }
25 int newCapacity = 2 * oldCapacity;
26 List<T>[] oldTable = table;
27 table = (List<T>[]) new List[newCapacity];
28 for (int i = 0; i < newCapacity; i++)
29 table[i] = new ArrayList<T>();
30 for (List<T> bucket : oldTable) {
31 for (T x : bucket) {
32 table[x.hashCode() % table.length].add(x);
33 }
34 }
35 } finally {
36 for (Lock lock : locks) {
37 lock.unlock();
38 }
39 }
40 }

Figure 13.7 StripedHashSet<T> class: to resize the set, lock each lock in order, then check
that no other thread has resized the table in the meantime.

1 public class RefinableHashSet<T> extends BaseHashSet<T>{
2 AtomicMarkableReference<Thread> owner;
3 volatile ReentrantLock[] locks;
4 public RefinableHashSet(int capacity) {
5 super(capacity);
6 locks = new ReentrantLock[capacity];
7 for (int i = 0; i < capacity; i++) {
8 locks[i] = new ReentrantLock();
9 }
10 owner = new AtomicMarkableReference<Thread>(null, false);
11 }
12 ...
13 }

Figure 13.8 RefinableHashSet<T> class: fields and constructor.

Fig. 13.8 shows the fields and constructor for the RefinableHashSet<T> class.
To add a higher level of synchronization, we introduce a globally shared owner
field that combines a Boolean value with a reference to a thread. Normally, the
Boolean value is false, meaning that the set is not in the middle of resizing.
While a resizing is in progress, however, the Boolean value is true, and the
associated reference indicates the thread that is in charge of resizing. These

13.2 Closed-Address Hash Sets 307

two values are combined in an AtomicMarkableReference<Thread> to allow
them to be modified atomically (see Pragma 9.8.1 in Chapter 9). We use the
owner as a mutual exclusion flag between the resize() method and any of the
add() methods, so that while resizing, there will be no successful updates, and
while updating, there will be no successful resizes. Every add() call must read
the owner field. Because resizing is rare, the value of owner should usually be
cached.

Each method locks the bucket for x by calling acquire(x), shown in Fig. 13.9.
It spins until no other thread is resizing the set (Lines 19–21), and then reads
the lock array (Line 22). It then acquires the item’s lock (Line 24), and checks
again, this time while holding the locks (Line 26), to make sure no other thread
is resizing, and that no resizing took place between Lines 21 and 26.

If it passes this test, the thread can proceed. Otherwise, the locks it has acquired
could be out-of-date because of an ongoing update, so it releases them and starts
over. When starting over, it will first spin until the current resize completes
(Lines 19–21) before attempting to acquire the locks again. The release(x)
method releases the locks acquired by acquire(x).

The resize() method is almost identical to the resize() method for the
StripedHashSet class. The one difference appears on Line 46: instead of acquir-
ing all the locks in lock[], the method calls quiesce() (Fig. 13.10) to ensure that
no other thread is in the middle of an add(), remove(), or contains() call. The
quiesce() method visits each lock and waits until it is unlocked.

14 public void acquire(T x) {
15 boolean[] mark = {true};
16 Thread me = Thread.currentThread();
17 Thread who;
18 while (true) {
19 do {
20 who = owner.get(mark);
21 } while (mark[0] && who != me);
22 ReentrantLock[] oldLocks = locks;
23 ReentrantLock oldLock = oldLocks[x.hashCode() % oldLocks.length];
24 oldLock.lock();
25 who = owner.get(mark);
26 if ((!mark[0] || who == me) && locks == oldLocks) {
27 return;
28 } else {
29 oldLock.unlock();
30 }
31 }
32 }
33 public void release(T x) {
34 locks[x.hashCode() % locks.length].unlock();
35 }

Figure 13.9 RefinableHashSet<T> class: acquire() and release() methods.

308 Chapter 13 Concurrent Hashing and Natural Parallelism

36 public void resize() {
37 int oldCapacity = table.length;
38 boolean[] mark = {false};
39 int newCapacity = 2 * oldCapacity;
40 Thread me = Thread.currentThread();
41 if (owner.compareAndSet(null, me, false, true)) {
42 try {
43 if (table.length != oldCapacity) { // someone else resized first
44 return;
45 }
46 quiesce();
47 List<T>[] oldTable = table;
48 table = (List<T>[]) new List[newCapacity];
49 for (int i = 0; i < newCapacity; i++)
50 table[i] = new ArrayList<T>();
51 locks = new ReentrantLock[newCapacity];
52 for (int j = 0; j < locks.length; j++) {
53 locks[j] = new ReentrantLock();
54 }
55 initializeFrom(oldTable);
56 } finally {
57 owner.set(null, false);
58 }
59 }
60 }

Figure 13.10 RefinableHashSet<T> class: resize() method.

61 protected void quiesce() {
62 for (ReentrantLock lock : locks) {
63 while (lock.isLocked()) {}
64 }
65 }

Figure 13.11 RefinableHashSet<T> class: quiesce() method.

The acquire() and the resize() methods guarantee mutually exclusive access
via the flag principle using the mark field of the owner flag and the table’s locks
array: acquire() first acquires its locks and then reads the mark field, while
resize() first sets mark and then reads the locks during the quiesce() call. This
ordering ensures that any thread that acquires the locks after quiesce() has com-
pleted will see that the set is in the processes of being resized, and will back off
until the resizing is complete. Similarly, resize() will first set the mark field, then
read the locks, and will not proceed while any add(), remove(), or contains()
call’s lock is set.

To summarize, we have seen that one can design a hash table in which both
the number of buckets and the number of locks can be continuously resized. One
limitation of this algorithm is that threads cannot access the items in the table
during a resize.

13.3 A Lock-Free Hash Set 309

13.3 A Lock-Free Hash Set

The next step is to make the hash set implementation lock-free, and to make
resizing incremental, meaning that each add() method call performs a small frac-
tion of the work associated with resizing. This way, we do not need to “stop-the-
world” to resize the table. Each of the contains(), add(), and remove() methods
takes constant expected time.

To make resizable hashing lock-free, it is not enough to make the individual
buckets lock-free, because resizing the table requires atomically moving entries
from old buckets to new buckets. If the table doubles in capacity, then we must
split the items in the old bucket between two new buckets. If this move is not done
atomically, entries might be temporarily lost or duplicated.

Without locks, we must synchronize using atomic methods such as
compareAndSet(). Unfortunately, these methods operate only on a single
memory location, which makes it difficult to move a node atomically from one
linked list to another.

13.3.1 Recursive Split-Ordering

We now describe a hash set implementation that works by flipping the conven-
tional hashing structure on its head:

Instead of moving the items among the buckets, move the buckets among the
items.

More specifically, keep all items in a single lock-free linked list, similar to the
LockFreeList class studied in Chapter 9. A bucket is just a reference into the
list. As the list grows, we introduce additional bucket references so that no object
is ever too far from the start of a bucket. This algorithm ensures that once an item
is placed in the list, it is never moved, but it does require that items be inserted
according to a recursive split-order algorithm that we describe shortly.

Part (b) of Fig. 13.12 illustrates a lock-free hash set implementation. It shows
two components: a lock-free linked list, and an expanding array of references
into the list. These references are logical buckets. Any item in the hash set can
be reached by traversing the list from its head, while the bucket references pro-
vide short-cuts into the list to minimize the number of list nodes traversed when
searching. The principal challenge is ensuring that the bucket references into the
list remain well-distributed as the number of items in the set grows. Bucket ref-
erences should be spaced evenly enough to allow constant-time access to any
node. It follows that new buckets must be created and assigned to sparsely covered
regions in the list.

As before, the capacity N of the hash set is always a power of two. The bucket
array initially has Capacity 2 and all bucket references are null, except for the
bucket at index 0, which refers to an empty list. We use the variable bucketSize
to denote this changing capacity of the bucket structure. Each entry in the bucket

310 Chapter 13 Concurrent Hashing and Natural Parallelism

0
1
2
3

0
1
2
3

(a) (b)
000 001 100011 101 110 111

0 4 1 36 752

010000 001 100011 101 111

0 4 16 75

Figure 13.12 This figure explains the recursive nature of the split ordering. Part (a) shows a split-ordered list
consisting of two buckets. The array of buckets refer into a single linked list. The split-ordered keys (above
each node) are the reverse of the bitwise representation of the items’ keys. The active bucket array entries
0 and 1 have special sentinel nodes within the list (square nodes), while other (ordinary) nodes are round.
Items 4 (whose reverse bit order is “001”) and 6 (whose reverse bit order is “011”) are in Bucket 0 since the
LSB of the original key, is “0.” Items 5 and 7 (whose reverse bit orders are “101” and “111” respectively) are
in Bucket 1, since the LSB of their original key is 1. Part (b) shows how each of the two buckets is split in half
once the table capacity grows from 2 buckets to four. The reverse bit values of the two added Buckets 2 and
3 happen to perfectly split the Buckets 0 and 1.

array is initialized when first accessed, and subsequently refers to a node in
the list.

When an item with hash code k is inserted, removed, or searched for, the hash
set uses bucket index k (mod N). As with earlier hash set implementations, we
decide when to double the table capacity by consulting a policy() method. Here,
however, the table is resized incrementally by the methods that modify it, so there
is no explicit resize() method. If the table capacity is 2i, then the bucket index is
the integer represented by the key’s i least significant bits (LSBs); in other words,
each bucket b contains items each of whose hash code k satisfies k = b (mod 2i).

Because the hash function depends on the table capacity, we must be careful
when the table capacity changes. An item inserted before the table was resized
must be accessible afterwards from both its previous and current buckets. When
the capacity grows to 2i+1, the items in bucket b are split between two buck-
ets: those for which k = b (mod 2i+1) remain in bucket b, while those for which
k = b + 2i (mod 2i+1) migrate to bucket b + 2i. Here is the key idea behind the
algorithm: we ensure that these two groups of items are positioned one after the
other in the list, so that splitting bucket b is achieved by simply setting bucket
b+ 2i after the first group of items and before the second. This organization keeps
each item in the second group accessible from bucket b.

As depicted in Fig. 13.12, items in the two groups are distinguished by their
ith binary digits (counting backwards, from least-significant to most-significant).
Those with digit 0 belong to the first group, and those with 1 to the second. The
next hash table doubling will cause each group to split again into two groups dif-
ferentiated by the (i+ 1)st bit, and so on. For example, the items 4 (“100” binary)
and 6 (“110”) share the same least significant bit. When the table capacity is 21,
they are in the same bucket, but when it grows to 22, they will be in distinct buckets
because their second bits differ.

13.3 A Lock-Free Hash Set 311

This process induces a total order on items, which we call recursive split-
ordering, as can be seen in Fig. 13.12. Given a key’s hash code, its order is defined
by its bit-reversed value.

To recapitulate: a split-ordered hash set is an array of buckets, where each bucket
is a reference into a lock-free list where nodes are sorted by their bit-reversed
hash codes. The number of buckets grows dynamically, and each new bucket is
initialized when accessed for the first time.

To avoid an awkward “corner case” that arises when deleting a node referenced
by a bucket reference, we add a sentinel node, which is never deleted, to the start
of each bucket. Specifically, suppose the table capacity is 2i+1. The first time that
bucket b + 2i is accessed, a sentinel node is created with key b + 2i. This node is
inserted in the list via bucket b, the parent bucket of b + 2i. Under split-ordering,
b + 2i precedes all items of bucket b + 2i, since those items must end with (i + 1)
bits forming the value b + 2i. This value also comes after all the items of bucket b
that do not belong to b+ 2i: they have identical LSBs, but their ith bit is 0. There-
fore, the new sentinel node is positioned in the exact list location that separates the
items of the new bucket from the remaining items of bucket b. To distinguish sen-
tinel items from ordinary items, we set the most significant bit (MSB) of ordinary
items to 1, and leave the sentinel items with 0 at the MSB. Fig. 13.17 illustrates
two methods: makeOrdinaryKey(), which generates a split-ordered key for an
object, and makeSentinelKey(), which generates a split-ordered key for a bucket
index.

Fig. 13.13 illustrates how inserting a new key into the set can cause a bucket
to be initialized. The split-order key values are written above the nodes using
8-bit words. For instance, the split-order value of 3 is the bit-reverse of its binary
representation, which is 11000000. The square nodes are the sentinel nodes cor-
responding to buckets with original keys that are 0,1, and 3 modulo 4 with their
MSB being 0. The split-order keys of ordinary (round) nodes are exactly the bit-
reversed images of the original keys after turning on their MSB. For example,
items 9 and 13 are in the “1 mod 4” bucket, which can be recursively split in two
by inserting a new node between them. The sequence of figures describes an object
with hash code 10 being added when the table capacity is 4 and Buckets 0, 1, and
3 are already initialized.

The table is grown incrementally, that is, there is no explicit resize operation.
Recall that each bucket is a linked list, with nodes ordered based on the split-
ordered hash values. As mentioned earlier, the table resizing mechanism is inde-
pendent of the policy used to decide when to resize. To keep the example concrete,
we implement the following policy: we use a shared counter to allow add() calls
to track the average bucket load. When the average load crosses a threshold, we
double the table capacity.

To avoid technical distractions, we keep the array of buckets in a large,
fixed-size array. We start out using only the first array entry, and use progres-
sively more of the array as the set grows. When the add() method accesses an
uninitialized bucket that should have been initialized given the current table
capacity, it initializes it. While conceptually simple, this design is far from ideal,

312 Chapter 13 Concurrent Hashing and Natural Parallelism

0
1
2
3

00000000

00010001

10000000 10010001

10110001

11000000

11100001

01010001

0 8 1 39 713

10
(c)

(b)(a)

(d)

0
1
2
3

00000000

00010001

01000000

10000000 10010001

10110001

11000000

2

0 8 1 39 713

11100001

0
1
2
3

00000000

00010001

01000000

10000000 10010001

10110001

11000000

2

0 8 1 39 713

11100001

0
1
2
3

00000000

00010001

01000000

10000000

10010001

10110001

11000000

2

0 8 1 39 713

11100001

Figure 13.13 How the add() method places key 10 to the lock-free table. As in earlier figures, the split-order
key values, expressed as 8-bit binary words, appear above the nodes. For example, the split-order value of 1
is the bit-wise reversal of its binary representation. In Step (a) Buckets 0, 1, and 3 are initialized, but Bucket
2 is uninitialized. In Step (b) an item with hash value 10 is inserted, causing Bucket 2 to be initialized. A new
sentinel is inserted with split-order key 2. In Step (c) Bucket 2 is assigned a new sentinel. Finally, in Step (d),
the split-order ordinary key 10 is added to Bucket 2.

since the fixed array size limits the ultimate number of buckets. In practice, it
would be better to represent the buckets as a multilevel tree structure which would
cover the machine’s full memory size, a task we leave as an exercise.

13.3.2 The BucketList Class

Fig. 13.14 shows the fields, constructor, and some utility methods of the
BucketList class that implements the lock-free list used by the split-ordered
hash set. Although this class is essentially the same as the LockFreeList
class, there are two important differences. The first is that items are sorted
in recursive-split order, not simply by hash code. The makeOrdinaryKey() and
makeSentinelKey() methods (Lines 10 and 14) show how we compute these
split-ordered keys. (To ensure that reversed keys are positive, we use only the lower
three bytes of the hash code.) Fig. 13.15 shows how the contains() method is
modified to use the split-ordered key. (As in the LockFreeList class, the find(x)
method returns a record containing the x’s node, if it it exists, along with the
immediately preceding and subsequent nodes.)

The second difference is that while the LockFreeList class uses only two
sentinels, one at each end of the list, the BucketList<T> class places a sentinel

13.3 A Lock-Free Hash Set 313

1 public class BucketList<T> implements Set<T> {
2 static final int HI_MASK = 0x00800000;
3 static final int MASK = 0x00FFFFFF;
4 Node head;
5 public BucketList() {
6 head = new Node(0);
7 head.next =
8 new AtomicMarkableReference<Node>(new Node(Integer.MAX_VALUE), false);
9 }
10 public int makeOrdinaryKey(T x) {
11 int code = x.hashCode() & MASK; // take 3 lowest bytes
12 return reverse(code | HI_MASK);
13 }
14 private static int makeSentinelKey(int key) {
15 return reverse(key & MASK);
16 }
17 ...
18 }

Figure 13.14 BucketList<T> class: fields, constructor, and utilities.

19 public boolean contains(T x) {
20 int key = makeOrdinaryKey(x);
21 Window window = find(head, key);
22 Node pred = window.pred;
23 Node curr = window.curr;
24 return (curr.key == key);
25 }

Figure 13.15 BucketList<T> class: the contains() method.

at the start of each new bucket whenever the table is resized. It requires the
ability to insert sentinels at intermediate positions within the list, and to tra-
verse the list starting from such sentinels. The BucketList<T> class provides a
getSentinel(x) method (Fig. 13.16) that takes a bucket index, finds the associ-
ated sentinel (inserting it if absent), and returns the tail of the BucketList<T>
starting from that sentinel.

13.3.3 The LockFreeHashSet<T> Class

Fig. 13.17 shows the fields and constructor for the LockFreeHashSet<T>
class. The set has the following mutable fields: bucket is an array of
LockFreeHashSet<T> references into the list of items, bucketSize is an atomic
integer that tracks how much of the bucket array is currently in use, and setSize
is an atomic integer that tracks how many objects are in the set, used to decide
when to resize.

Fig. 13.18 shows the LockFreeHashSet<T> class’s add() method. If x has hash
code k, add(x) retrieves bucket k (mod N), where N is the current table size,
initializing it if necessary (Line 15). It then calls the BucketList<T>’s add(x)

314 Chapter 13 Concurrent Hashing and Natural Parallelism

26 public BucketList<T> getSentinel(int index) {
27 int key = makeSentinelKey(index);
28 boolean splice;
29 while (true) {
30 Window window = find(head, key);
31 Node pred = window.pred;
32 Node curr = window.curr;
33 if (curr.key == key) {
34 return new BucketList<T>(curr);
35 } else {
36 Node node = new Node(key);
37 node.next.set(pred.next.getReference(), false);
38 splice = pred.next.compareAndSet(curr, node, false, false);
39 if (splice)
40 return new BucketList<T>(node);
41 else
42 continue;
43 }
44 }
45 }

Figure 13.16 BucketList<T> class: getSentinel() method.

1 public class LockFreeHashSet<T> {
2 protected BucketList<T>[] bucket;
3 protected AtomicInteger bucketSize;
4 protected AtomicInteger setSize;
5 public LockFreeHashSet(int capacity) {
6 bucket = (BucketList<T>[]) new BucketList[capacity];
7 bucket[0] = new BucketList<T>();
8 bucketSize = new AtomicInteger(2);
9 setSize = new AtomicInteger(0);
10 }
11 ...
12 }

Figure 13.17 LockFreeHashSet<T> class: fields and constructor.

13 public boolean add(T x) {
14 int myBucket = BucketList.hashCode(x) % bucketSize.get();
15 BucketList<T> b = getBucketList(myBucket);
16 if (!b.add(x))
17 return false;
18 int setSizeNow = setSize.getAndIncrement();
19 int bucketSizeNow = bucketSize.get();
20 if (setSizeNow / bucketSizeNow > THRESHOLD)
21 bucketSize.compareAndSet(bucketSizeNow, 2 * bucketSizeNow);
22 return true;
23 }

Figure 13.18 LockFreeHashSet<T> class: add() method.

13.3 A Lock-Free Hash Set 315

24 private BucketList<T> getBucketList(int myBucket) {
25 if (bucket[myBucket] == null)
26 initializeBucket(myBucket);
27 return bucket[myBucket];
28 }
29 private void initializeBucket(int myBucket) {
30 int parent = getParent(myBucket);
31 if (bucket[parent] == null)
32 initializeBucket(parent);
33 BucketList<T> b = bucket[parent].getSentinel(myBucket);
34 if (b != null)
35 bucket[myBucket] = b;
36 }
37 private int getParent(int myBucket){
38 int parent = bucketSize.get();
39 do {
40 parent = parent >> 1;
41 } while (parent > myBucket);
42 parent = myBucket - parent;
43 return parent;
44 }

Figure 13.19 LockFreeHashSet<T> class: if a bucket is uninitialized, initialize it by adding a
new sentinel. Initializing a bucket may require initializing its parent.

method. If x was not already present (Line 18) it increments setSize, and checks
whether to increase bucketSize, the number of active buckets. The contains(x)
and remove(x) methods work in much the same way.

Fig. 13.19 shows the initialBucket() method, whose role is to initialize the
bucket array entry at a particular index, setting that entry to refer to a new sen-
tinel node. The sentinel node is first created and added to an existing parent
bucket, and then the array entry is assigned a reference to the sentinel. If the parent
bucket is not initialized (Line 31), initialBucket() is applied recursively to the
parent. To control the recursion we maintain the invariant that the parent index
is less than the new bucket index. It is also prudent to choose the parent index as
close as possible to the new bucket index, but still preceding it. We compute this
index by unsetting the bucket index’s most significant nonzero bit (Line 39).

The add(), remove(), and contains() methods require a constant expected
number of steps to find a key (or determine that the key is absent). To initialize a
bucket in a table of bucketSize N , the initialBucket() method may need to
recursively initialize (i.e., split) as many as O(logN) of its parent buckets to allow
the insertion of a new bucket. An example of this recursive initialization is shown
in Fig. 13.20. In Part (a) the table has four buckets; only Bucket 0 is initialized.
In Part (b) the item with key 7 is inserted. Bucket 3 now requires initialization,
further requiring recursive initialization of Bucket 1. In Part (c) Bucket 1 is ini-
tialized. Finally, in Part (d), Bucket 3 is initialized. Although the total complexity
in such a case is logarithmic, not constant, it can be shown that the expected length
of any such recursive sequence of splits is constant, making the overall expected
complexity of all the hash set operations constant.

316 Chapter 13 Concurrent Hashing and Natural Parallelism

30 18 12 7

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

(a) (b)

(c) (d)

0 8 12 0 8 12 7

0 18 12 7

Figure 13.20 Recursive initialization of lock-free hash table buckets. (a) Table has four
buckets; only bucket 0 is initialized. (b) We wish to insert the item with key 7. Bucket 3
now requires initialization, which in turn requires recursive initialization of Bucket 1.
(c) Bucket 1 is initialized by first adding the 1 sentinel to the list, then setting the bucket
to this sentinel. (d) Then Bucket 3 is initialized in a similar fashion, and finally 7 is added to
the list. In the worst case, insertion of an item may require recursively initializing a number
of buckets logarithmic in the table size, but it can be shown that the expected length of
such a recursive sequence is constant.

13.4 An Open-Addressed Hash Set

We now turn our attention to a concurrent open hashing algorithm. Open
hashing, in which each table entry holds a single item rather than a set, seems
harder to make concurrent than closed hashing. We base our concurrent algo-
rithm on a sequential algorithm known as Cuckoo Hashing.

13.4.1 Cuckoo Hashing

Cuckoo hashing is a (sequential) hashing algorithm in which a newly added item
displaces any earlier item occupying the same slot.1 For brevity, a table is a k-entry
array of items. For a hash set of size N = 2k we use a two-entry array table[] of
tables,2 and two independent hash functions,

h0,h1 : KeyRange → 0, . . . ,k − 1.

1 Cuckoos are a family of birds (not clocks) found in North America and Europe. Most species
are nest parasites: they lay their eggs in other birds’ nests. Cuckoo chicks hatch early, and quickly
push the other eggs out of the nest.

2 This division of the table into two arrays will help in presenting the concurrent algorithm. There
are sequential Cuckoo hashing algorithms that use, for the same number of hashed items, only a
single array of size 2k.

13.4 An Open-Addressed Hash Set 317

1 public boolean add(T x) {
2 if (contains(x)) {
3 return false;
4 }
5 for (int i = 0; i < LIMIT; i++) {
6 if ((x = swap(hash0(x), x)) == null) {
7 return true;
8 } else if ((x = swap(hash1(x), x)) == null) {
9 return true;
10 }
11 }
12 resize();
13 add(x);
14 }

Figure 13.21 Sequential Cuckoo Hashing: the add() method.

table [1] table [0]

14

h0(x) 5x (mod 9) (mod 8)0

1

2

3

4

6

7

523

12

39

0

1

2

3

4

6

7

 5

h1(x) 5x (mod 11) (mod 8)

3

Figure 13.22 A sequence of displacements started when an item with key 14 finds both loca-
tions Table[0][h0(14)] and Table[1][h1(14)] taken by the values 23 and 25, and ends when the
item with key 39 is successfully placed in Table[1][h1(39)].

(denoted as hash0() and hash1() in the code) mapping the set of possible
keys to entries in the array. To test whether a value x is in the set, contains(x)
tests whether either table[0][h0(x)] or table[1][h1(x)] is equal to x. Similarly,
remove(x) checks whether x is in either table[0][h0(x)] or table[1][h1(x)],
and removes it if found.

The add(x) method (Fig. 13.21) is the most interesting. It successively “kicks
out” conflicting items until every key has a slot. To add x, the method swaps x
with y, the current occupant of table[0][h0(x)] (Line 6). If the prior value y was
null, it is done (Line 7). Otherwise, it swaps the newly nest-less value y for the
current occupant of table[1][h1(y)] in the same way (Line 8). As before, if the
prior value was null, it is done. Otherwise, the method continues swapping entries
(alternating tables) until it finds an empty slot. An example of such a sequence of
displacements appears in Fig. 13.22.

We might not find an empty slot, either because the table is full, or because
the sequence of displacements forms a cycle. We therefore need an upper limit
on the number of successive displacements we are willing to undertake (Line 5).
When this limit is exceeded, we resize the hash table, choose new hash functions
(Line 12), and start over (Line 13).

318 Chapter 13 Concurrent Hashing and Natural Parallelism

Sequential cuckoo hashing is attractive for its simplicity. It provides constant-
time contains() and remove() methods, and it can be shown that over time,
the average number of displacements caused by each add() call will be constant.
Experimental evidence shows that sequential Cuckoo hashing works well in
practice.

13.4.2 Concurrent Cuckoo Hashing

The principal obstacle to making the sequential Cuckoo hashing algorithm
concurrent is the add() method’s need to perform a long sequence of swaps. To
address this problem, we now define an alternative Cuckoo hashing algorithm, the
PhasedCuckooHashSet<T> class. We break up each method call into a sequence
of phases, where each phase adds, removes, or displaces a single item x.

Rather than organizing the set as a two-dimensional table of items, we use
a two-dimensional table of probe sets, where a probe set is a constant-sized set
of items with the same hash code. Each probe set holds at most PROBE_SIZE
items, but the algorithm tries to ensure that when the set is quiescent (i.e., no
method calls are in progress) each probe set holds no more than THRESHOLD
< PROBE_SIZE items. An example of the PhasedCuckooHashSet structure
appears in Fig. 13.24, where the PROBE_SIZE is 4 and the THRESHOLD is 2.
While method calls are in-flight, a probe set may temporarily hold more than
THRESHOLD but never more than PROBE_SIZE items. (In our examples, it is con-
venient to implement each probe set as a fixed-size List<T>.) Fig. 13.23 shows
the PhasedCuckooHashSet<T>’s fields and constructor.

To postpone our discussion of synchronization, the PhasedCuckooHashSet<T>
class is defined to be abstract, that is, it does not implement all its methods.
The PhasedCuckooHashSet<T> class has the same abstract methods as the
BaseHashSet<T> class: The acquire(x) method acquires all the locks necessary
to manipulate item x, release(x) releases them, and resize() resizes the set.
(As before, we require acquire(x) to be reentrant).

From a bird’s eye view, the PhasedCuckooHashSet<T> works as follows. It
adds and removes items by first locking the associated probe sets in both tables.

1 public abstract class PhasedCuckooHashSet<T> {
2 volatile int capacity;
3 volatile List<T>[][] table;
4 public PhasedCuckooHashSet(int size) {
5 capacity = size;
6 table = (List<T>[][]) new java.util.ArrayList[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 table[i][j] = new ArrayList<T>(PROBE_SIZE);
10 }
11 }
12 }
13 ...
14 }

Figure 13.23 PhasedCuckooHashSet<T> class: fields and constructor.

13.4 An Open-Addressed Hash Set 319

table [1]

h0(x) =x (mod 9) (mod 8)

1

2

3

0

2

3

 1

h1(x) 5x (mod 11) (mod 8) h0(x) =x (mod 9) (mod 8)h1(x) 5x (mod 11) (mod 8)

0

1

2

3

0

2

3

 1

0

table [0]

1

2

4

5

threshold

threshold

threshold

threshold
13

14 14

5

23

4

40

24

12

13

?

?

table [1] table[0]

?

(a) (b)

1

2

3

0

2

3

 1

0

1

2

3

0

2

3

 1

0

1

2

4

5

threshold

threshold

threshold

threshold
13

14

5

23

4

40

24

12

Figure 13.24 The PhasedCuckooHashSet<T> class: add() and relocate() methods. The figure shows the
array segments consisting of 8 probe sets of size 4 each, with a threshold of 2. Shown are probe sets 4 and 5
of Table[0][] and 1 and 2 of Table[1][]. In Part (a) an item with key 13 finds Table[0][4] above threshold and
Table[1][2] above threshold so it adds the item to the probe set Table[1][2]. The item with key 14 on the
other hand finds that both of its probe sets are above threshold, so it adds its item to Table[0][5] and signals
that the item should be relocated. In Part (b), the method tries to relocate the item with key 23, the oldest
item in Table[0][5]. Since Table[1][1] is below threshold, the item is successfully relocated. If Table[1][1] were
above threshold, the algorithm would attempt to relocate item 12 from Table[1][1], and if Table[1][1] were
at the probe set’s size limit of 4 items, it would attempt to relocate the item with key 5, the next oldest item,
from Table[0][5].

To remove an item, it proceeds as in the sequential algorithm, checking if it is in
one of the probe sets and removing it if so. To add an item, it attempts to add
it to one of the probe sets. An item’s probe sets serves as temporary overflow
buffer for long sequences of consecutive displacements that might occur when
adding an item to the table. The THRESHOLD value is essentially the size of the
probe sets in a sequential algorithm. If the probe sets already has this many items,
the item is added anyway to one of the PROBE_SIZE–THRESHOLD overflow slots.
The algorithm then tries to relocate another item from the probe set. There are
various policies one can use to choose which item to relocate. Here, we move the
oldest items out first, until the probe set is below threshold. As in the sequen-
tial cuckoo hashing algorithm, one relocation may trigger another, and so on.
Fig. 13.24 shows an example execution of the PhasedCuckooHashSet<T>.

Fig. 13.25 shows the PhasedCuckooHashSet<T> class’s remove(x) method. It
calls the abstract acquire(x) method to acquire the necessary locks, then enters
a try block whose finally block calls release(x). In the try block, the method
simply checks whether x is present in Table[0][h0(x)] or Table[1][h1(x)]. If so,
it removes x and returns true, and otherwise returns false. The contains(x)
method works in a similar way.

Fig. 13.26 illustrates the add(x) method. Like remove(), it calls acquire(x) to
acquire the necessary locks, then enters a try block whose finally block calls
release(x). It returns false if the item is already present (Line 41). If either of

320 Chapter 13 Concurrent Hashing and Natural Parallelism

15 public boolean remove(T x) {
16 acquire(x);
17 try {
18 List<T> set0 = table[0][hash0(x) % capacity];
19 if (set0.contains(x)) {
20 set0.remove(x);
21 return true;
22 } else {
23 List<T> set1 = table[1][hash1(x) % capacity];
24 if (set1.contains(x)) {
25 set1.remove(x);
26 return true;
27 }
28 }
29 return false;
30 } finally {
31 release(x);
32 }
33 }

Figure 13.25 PhasedCuckooHashSet<T> class: the remove() method.

34 public boolean add(T x) {
35 T y = null;
36 acquire(x);
37 int h0 = hash0(x) % capacity, h1 = hash1(x) % capacity;
38 int i = -1, h = -1;
39 boolean mustResize = false;
40 try {
41 if (present(x)) return false;
42 List<T> set0 = table[0][h0];
43 List<T> set1 = table[1][h1];
44 if (set0.size() < THRESHOLD) {
45 set0.add(x); return true;
46 } else if (set1.size() < THRESHOLD) {
47 set1.add(x); return true;
48 } else if (set0.size() < PROBE_SIZE) {
49 set0.add(x); i = 0; h = h0;
50 } else if (set1.size() < PROBE_SIZE) {
51 set1.add(x); i = 1; h = h1;
52 } else {
53 mustResize = true;
54 }
55 } finally {
56 release(x);
57 }
58 if (mustResize) {
59 resize(); add(x);
60 } else if (!relocate(i, h)) {
61 resize();
62 }
63 return true; // x must have been present
64 }

Figure 13.26 PhasedCuckooHashSet<T> class: the add() method.

13.4 An Open-Addressed Hash Set 321

the item’s probe sets is below threshold (Lines 44 and 46), it adds the item and
returns. Otherwise, if either of the item’s probe sets is above threshold but not full
(Lines 48 and 50), it adds the item and makes a note to rebalance the probe set
later. Finally, if both sets are full, it makes a note to resize the entire set (Line 53).
It then releases the lock on x (Line 56).

If the method was unable to add x because both its probe sets were full, it
resizes the hash set and tries again (Line 58). If the probe set at row r and column
c was above threshold, it calls relocate(r, c) (described later) to rebalance probe
set sizes. If the call returns false, indicating that it failed to rebalance the probe
sets, then add() resizes the table.

The relocate() method appears in Fig. 13.27. It takes the row and column
coordinates of a probe set observed to have more than THRESHOLD items, and

65 protected boolean relocate(int i, int hi) {
66 int hj = 0;
67 int j = 1 - i;
68 for (int round = 0; round < LIMIT; round++) {
69 List<T> iSet = table[i][hi];
70 T y = iSet.get(0);
71 switch (i) {
72 case 0: hj = hash1(y) % capacity; break;
73 case 1: hj = hash0(y) % capacity; break;
74 }
75 acquire(y);
76 List<T> jSet = table[j][hj];
77 try {
78 if (iSet.remove(y)) {
79 if (jSet.size() < THRESHOLD) {
80 jSet.add(y);
81 return true;
82 } else if (jSet.size() < PROBE_SIZE) {
83 jSet.add(y);
84 i = 1 - i;
85 hi = hj;
86 j = 1 - j;
87 } else {
88 iSet.add(y);
89 return false;
90 }
91 } else if (iSet.size() >= THRESHOLD) {
92 continue;
93 } else {
94 return true;
95 }
96 } finally {
97 release(y);
98 }
99 }

100 return false;
101 }

Figure 13.27 PhasedCuckooHashSet<T> class: the relocate() method.

322 Chapter 13 Concurrent Hashing and Natural Parallelism

tries to reduce its size below threshold by moving items from this probe set to
alternative probe sets.

This method makes a fixed number(LIMIT) of attempts before giving up. Each
time around the loop, the following invariants hold: iSet is the probe set we are
trying to shrink, y is the oldest item in iSet, and jSet is the other probe set
where y could be. The loop identifies y (Line 70), locks both probe sets to which
y could belong (Line 75), and tries to remove y from the probe set (Line 78).
If it succeeds (another thread could have removed y between Lines 70 and 78),
then it prepares to add y to jSet. If jSet is below threshold (Line 79), then
the method adds y to jSet and returns true (no need to resize). If jSet is above
threshold but not full (Line 82), then it tries to shrink jSet by swapping iSet
and jSet (Lines 82–86) and resuming the loop. If jSet is full (Line 87), the
method puts y back in iSet and returns false (triggering a resize). Otherwise it
tries to shrink jSet by swapping iSet and jSet (Lines 82–86). If the method
does not succeed in removing y at Line 78, then it rechecks the size of iSet. If
it is still over threshold (Line 91), then the method resumes the loop and tries
again to remove an item. Otherwise, iSet is below threshold, and the method
returns true (no resize needed). Fig. 13.24 shows an example execution of the
PhasedCuckooHashSet<T> where the item with key 14 causes a relocation of the
oldest item 23 from the probe set table[0][5].

13.4.3 Striped Concurrent Cuckoo Hashing

We first consider a concurrent Cuckoo hash set implementation using lock strip-
ing (Chapter 13, Section 13.2.2). The StripedCuckooHashSet class extends
PhasedCuckooHashSet, providing a fixed 2-by-L array of reentrant locks. As
usual, lock[i][j] protects table[i][k], where k (mod L) = j. Fig. 13.28 shows
the StripedCuckooHashSet class’s fields and constructor. The constructor calls
the PhasedCuckooHashSet<T> constructor (Line 4) and then initializes the lock
array.

1 public class StripedCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 final ReentrantLock[][] lock;
3 public StripedCuckooHashSet(int capacity) {
4 super(capacity);
5 lock = new ReentrantLock[2][capacity];
6 for (int i = 0; i < 2; i++) {
7 for (int j = 0; j < capacity; j++) {
8 lock[i][j] = new ReentrantLock();
9 }

10 }
11 }
12 ...
13 }

Figure 13.28 StripedCuckooHashSet class: fields and constructor.

13.4 An Open-Addressed Hash Set 323

The StripedCuckooHashSet class’s acquire(x) method (Fig. 13.29) locks
lock[0][h0(x)] and lock[1][h1(x)] in that order, to avoid deadlock. The
release(x) method unlocks those locks.

The only difference between theresize() methods ofStripedCuckooHashSet
(Fig. 13.30) and StripedHashSet is that the latter acquires the locks in lock[0]

14 public final void acquire(T x) {
15 lock[0][hash0(x) % lock[0].length].lock();
16 lock[1][hash1(x) % lock[1].length].lock();
17 }
18 public final void release(T x) {
19 lock[0][hash0(x) % lock[0].length].unlock();
20 lock[1][hash1(x) % lock[1].length].unlock();
21 }

Figure 13.29 StripedCuckooHashSet class: acquire() and release().

22 public void resize() {
23 int oldCapacity = capacity;
24 for (Lock aLock : lock[0]) {
25 aLock.lock();
26 }
27 try {
28 if (capacity != oldCapacity) {
29 return;
30 }
31 List<T>[][] oldTable = table;
32 capacity = 2 * capacity;
33 table = (List<T>[][]) new List[2][capacity];
34 for (List<T>[] row : table) {
35 for (int i = 0; i < row.length; i++) {
36 row[i] = new ArrayList<T>(PROBE_SIZE);
37 }
38 }
39 for (List<T>[] row : oldTable) {
40 for (List<T> set : row) {
41 for (T z : set) {
42 add(z);
43 }
44 }
45 }
46 } finally {
47 for (Lock aLock : lock[0]) {
48 aLock.unlock();
49 }
50 }
51 }

Figure 13.30 StripedCuckooHashSet class: the resize() method.

324 Chapter 13 Concurrent Hashing and Natural Parallelism

in ascending order (Line 24). Acquiring these locks in this order ensures that no
other thread is in the middle of an add(), remove(), or contains() call, and avoids
deadlocks with other concurrent resize() calls.

13.4.4 A Refinable Concurrent Cuckoo Hash Set

We can use the methods of Chapter 13, Section 13.2.3 to resize the lock arrays
as well. This section introduces the RefinableCuckooHashSet class (Fig. 13.31).
Just as for the RefinableHashSet class, we introduce an owner field of type
AtomicMarkableReference<Thread> that combines a Boolean value with a
reference to a thread. If the Boolean value is true, the set is resizing, and the
reference indicates which thread is in charge of resizing.

Each phase locks the buckets for x by calling acquire(x), shown in Fig. 13.32.
It reads the lock array (Line 24), and then spins until no other thread is resizing
the set (Lines 21–23). It then acquires the item’s two locks (Lines 27 and 28),
and checks if the lock array is unchanged (Line 30). If the lock array has not
changed between Lines 24 and 30, then the thread has acquired the locks it needs
to proceed. Otherwise, the locks it has acquired are out of date, so it releases
them and starts over. The release(x) method releases the locks acquired by
acquire(x).

The resize() method in (Fig. 13.33) is almost identical to the resize()
method for the StripedCuckooHashSet class. One difference is that the lock[]
array has two dimensions.

The quiesce() method, like its counterpart in the RefinableHashSet class,
visits each lock and waits until it is unlocked. The only difference is that it visits
only the locks in lock[0].

1 public class RefinableCuckooHashSet<T> extends PhasedCuckooHashSet<T>{
2 AtomicMarkableReference<Thread> owner;
3 volatile ReentrantLock[][] locks;
4 public RefinableCuckooHashSet(int capacity) {
5 super(capacity);
6 locks = new ReentrantLock[2][capacity];
7 for (int i = 0; i < 2; i++) {
8 for (int j = 0; j < capacity; j++) {
9 locks[i][j] = new ReentrantLock();
10 }
11 }
12 owner = new AtomicMarkableReference<Thread>(null, false);
13 }
14 ...
15 }

Figure 13.31 RefinableCuckooHashSet<T>: fields and constructor.

13.5 Chapter Notes 325

16 public void acquire(T x) {
17 boolean[] mark = {true};
18 Thread me = Thread.currentThread();
19 Thread who;
20 while (true) {
21 do { // wait until not resizing
22 who = owner.get(mark);
23 } while (mark[0] && who != me);
24 ReentrantLock[][] oldLocks = locks;
25 ReentrantLock oldLock0 = oldLocks[0][hash0(x) % oldLocks[0].length];
26 ReentrantLock oldLock1 = oldLocks[1][hash1(x) % oldLocks[1].length];
27 oldLock0.lock();
28 oldLock1.lock();
29 who = owner.get(mark);
30 if ((!mark[0] || who == me) && locks == oldLocks) {
31 return;
32 } else {
33 oldLock0.unlock();
34 oldLock1.unlock();
35 }
36 }
37 }
38 public void release(T x) {
39 locks[0][hash0(x)].unlock();
40 locks[1][hash1(x)].unlock();
41 }

Figure 13.32 RefinableCuckooHashSet<T>: acquire() and release() methods.

13.5 Chapter Notes

The term disjoint-access-parallelism was coined by Amos Israeli and Lihu
Rappoport [76]. Maged Michael [115] has shown that simple algorithms using
a reader-writer lock [114] per bucket have reasonable performance without
resizing. The lock-free hash set based on split-ordering described in Section 13.3.1
is by Ori Shalev and Nir Shavit [141]. The optimistic and fine-grained hash
sets are adapted from a hash set implementation by Doug Lea [100], used in
java.util.concurrent.

Other concurrent closed-addressing schemes include Meichun Hsu and
Wei-Pang Yang [72], Vijay Kumar [88], Carla Schlatter Ellis [38], and Michael
Greenwald [48]. Hui Gao, Jan Friso Groote, and Wim Hesselink [44] propose
an almost wait-free extensible open-addressing hashing algorithm and Chris
Purcell and Tim Harris [130] propose a concurrent non-blocking hash table
with open addressing. Cuckoo hashing is credited to Rasmus Pagh and Flem-
ming Rodler [123], and the concurrent version is by Maurice Herlihy, Nir Shavit,
and Moran Tzafrir [68].

326 Chapter 13 Concurrent Hashing and Natural Parallelism

42 public void resize() {
43 int oldCapacity = capacity;
44 Thread me = Thread.currentThread();
45 if (owner.compareAndSet(null, me, false, true)) {
46 try {
47 if (capacity != oldCapacity) { // someone else resized first
48 return;
49 }
50 quiesce();
51 capacity = 2 * capacity;
52 List<T>[][] oldTable = table;
53 table = (List<T>[][]) new List[2][capacity];
54 locks = new ReentrantLock[2][capacity];
55 for (int i = 0; i < 2; i++) {
56 for (int j = 0; j < capacity; j++) {
57 locks[i][j] = new ReentrantLock();
58 }
59 }
60 for (List<T>[] row : table) {
61 for (int i = 0; i < row.length; i++) {
62 row[i] = new ArrayList<T>(PROBE_SIZE);
63 }
64 }
65 for (List<T>[] row : oldTable) {
66 for (List<T> set : row) {
67 for (T z : set) {
68 add(z);
69 }
70 }
71 }
72 } finally {
73 owner.set(null, false);
74 }
75 }
76 }

Figure 13.33 RefinableCuckooHashSet<T>: the resize() method.

78 protected void quiesce() {
79 for (ReentrantLock lock : locks[0]) {
80 while (lock.isLocked()) {}
81 }
82 }

Figure 13.34 RefinableCuckooHashSet<T>: the quiesce() method.

13.6 Exercises

Exercise 158. Modify the StripedHashSet to allow resizing of the range lock array
using read/write locks.

13.6 Exercises 327

Exercise 159. For the LockFreeHashSet, show an example of the problem that
arises when deleting an entry pointed to by a bucket reference, if we do not add a
sentinel entry, which is never deleted, to the start of each bucket.

Exercise 160. For the LockFreeHashSet, when an uninitialized bucket is accessed
in a table of size N , it might be necessary to recursively initialize (i.e., split) as
many as O(logN) of its parent buckets to allow the insertion of a new bucket.
Show an example of such a scenario. Explain why the expected length of any such
recursive sequence of splits is constant.

Exercise 161. For the LockFreeHashSet, design a lock-free data structure to
replace the fixed-size bucket array. Your data structure should allow an arbitrary
number of buckets.

Exercise 162. Outline correctness arguments for LockFreeHashSet’s add(),
remove(), and contains() methods.

Hint: you may assume the LockFreeList algorithm’s methods are correct.

This page intentionally left blank

14Skiplists and Balanced Search

14.1 Introduction

We have seen several concurrent implementations of sets based on linked lists and
on hash tables. We now turn our attention to concurrent search structures with
logarithmic depth. There are many concurrent logarithmic search structures in
the literature. Here, we are interested in search structures intended for in-memory
data, as opposed to data residing on outside storage such as disks.

Many popular sequential search structures, such as red-black trees or AVL-
trees, require periodic rebalancing to maintain the structure’s logarithmic depth.
Rebalancing works well for sequential tree-based search structures, but for
concurrent structures, rebalancing may cause bottlenecks and contention. Instead,
we focus here on concurrent implementations of a proven data structure that
provides expected logarithmic time search without the need to rebalance: the
SkipList. In the following sections we present two SkipList implemen-
tations. The LazySkipList class is a lock-based implementation, while the
LockFreeSkipList class is not. In both algorithms, the typically most frequent
method, contains(), which searches for an item, is wait-free. These construc-
tions follow the design patterns outlined earlier in Chapter 9.

14.2 Sequential Skiplists

For simplicity we treat the list as a set, meaning that keys are unique. A SkipList
is a collection of sorted linked lists, which mimics, in a subtle way, a balanced
search tree. Nodes in a SkipList are ordered by key. Each node is linked into a
subset of the lists. Each list has a level, ranging from 0 to a maximum. The bottom-
level list contains all the nodes, and each higher-level list is a sublist of the lower-
level lists. Fig. 14.1 shows a SkipList with integer keys. The higher-level lists are
shortcuts into the lower-level lists, because, roughly speaking, each link at level i

329

330 Chapter 14 Skiplists and Balanced Search

95 1811 251582

23

2222

level

3

2

1

0

head tail

keys2` 1`

Figure 14.1 The SkipList class: this example has four levels of lists. Each node has a key,
and the head and tail sentinels have ±∞ keys. The list at level i is a shortcut where each
reference skips over 2i nodes of the next lower level list. For example, at level 3, references
skip 23 nodes, at level 2, 22 nodes, and so on.

skips over about 2i nodes in next lower-level list, (e.g., in the SkipList shown in
Fig. 14.1, each reference at level 3 skips over 23 nodes.) Between any two nodes at
a given level, the number of nodes in the level immediately below it is effectively
constant, so the total height of the SkipList is roughly logarithmic in the number
of nodes. One can find a node with a given key by searching first through the lists
in higher levels, skipping over large numbers of lower nodes, and progressively
descending until a node with the target key is found (or not) at the bottom level.

The SkipList is a probabilistic data structure. (No one knows how to provide
this kind of performance without randomization.) Each node is created with a
random top level (topLevel), and belongs to all lists up to that level. Top levels
are chosen so that the expected number of nodes in each level’s list decreases expo-
nentially. Let 0 < p < 1 be the conditional probability that a node at level i also
appears at level i + 1. All nodes appear at level 0. The probability that a node at
level 0 also appears at level i > 0 is pi. For example, with p = 1/2, 1/2 of the nodes
are expected to appear at level 1, 1/4 at level 2 and so on, providing a balancing
property like the classical sequential tree-based search structures, except without
the need for complex global restructuring.

We put head and tail sentinel nodes at the beginning and end of the lists
with the maximum allowed height. Initially, when the SkipList is empty, the
head (left sentinel) is the predecessor of the tail (right sentinel) at every level.
The head’s key is less than any key that may be added to the set, and the tail’s
key is greater.

Each SkipList node’s next field is an array of references, one for each list to
which it belongs and so finding a node means finding its predecessors and suc-
cessors. Searching the SkipList always begins at the head. The find() method
proceeds down the levels one after the other, and traverses each level as in the
LazyList using references to a predecessor node pred and a current node curr.
Whenever it finds a node with a greater or matching key, it records the pred and
curr as the predecessor and successor of a node in arrays called preds[] and
succs[], and continues to the next lower level. The traversal ends at the bottom
level. Fig. 14.2 (Part a) shows a sequential find() call.

14.3 A Lock-Based Concurrent Skiplist 331

95 1811 251582

3

level

2

1

0

2` 1`

A : find(12)

preds[0] succs[0]preds[1]
and
preds[2]

succs[1] succs[2]
and
succs[3]

preds[3]

(a)

95 82

3

level

2

1

0

2` 1811 2515
12

1`

A : add(12)

(b)

Figure 14.2 The SkipList class: add() and find() methods. In Part (a), find() traverses at each level, starting
at the highest level, for as long as curr is less than or equal to the target key 12. Otherwise, it stores pred and
curr in the preds[] and succs[] arrays at each level and descends to the next level. For example, the node
with key 9 is preds[2] and preds[1], while tail is succs[2] and the node with key 18 is succs[1]. Here,
find() returns false since the node with key 12 was not found in the lowest-level list and so an add(12) call
in Part (b) can proceed. In Part (b) a new node is created with a random topLevel= 2. The new node’s next
references are redirected to the corresponding succs[] nodes, and each predecessor node’s next reference
is redirected to the new node.

To add a node to a skiplist, a find() call fills in the preds[] and succs[] arrays.
The new node is created and linked between its predecessors and successors.
Fig. 14.2, Part (b) shows an add(12) call.

To remove a victim node from the skiplist, the find() method initializes the
victim’s preds[] and succs[] arrays. The victim is then removed from the
list at all levels by redirecting each predecessor’s next reference to the victim’s
successor.

14.3 A Lock-Based Concurrent Skiplist

We now describe the first concurrent skiplist design, the LazySkipList class.
This class builds on the LazyList algorithm of Chapter 9: each level of the
SkipList structure is a LazyList, and as in the LazyList algorithm, the add()
and remove() methods use optimistic fine-grained locking, while the contains()
method is wait-free.

14.3.1 A Bird’s-Eye View

Here is a bird’s-eye view of the LazySkipList class. Start with Fig. 14.3. As in the
LazySkipList class, each node has its own lock and a marked field indicating
whether it is in the abstract set, or has been logically removed. All along, the

332 Chapter 14 Skiplists and Balanced Search

B : remove(8)
will succeed

0

1

(a)

2

level

3

2

1

0

A : add(18)
will fail

0

1
5

0

1
8

0

1
9

0

1
11

0

1

0

1
18

0

0
25

0

1

0

1
key
fullyLinked
marked

lock

00 0 0 0 0 0 0 0 0

C : remove(18)
fails

2` 1`

B : remove(8)
succeeds

(b)
level

3

2

1

0

A : add(18)
fails

key
fullyLinked
marked

lock

00 0 0 0 0 0 0 0 0

C : remove(18)
suceeds

2`

0

1
2

0

1
5

1

1
8

1

1
9

0

1
11

0

1

0

1
18

0

0
25

0

1

0

1
1`

Figure 14.3 The LazySkipList class: failed and successful add() and remove() calls. In Part (a) the add(18)
call finds the node with key 18 unmarked but not yet fullyLinked. It spins waiting for the node to become
fullyLinked in Part (b), at which point it returns false. In Part (a) the remove(8) call finds the node with key
8 unmarked and fully linked, which means that it can acquire the node’s lock in Part (b). It then sets the mark
bit, and proceeds to lock the node’s predecessors, in this case the node with key 5. Once the predecessor
is locked, it physically removes the node from the list by redirecting the bottom-level reference of the node
with key 5, completing the successful remove(). In Part (a) a remove(18) fails, because it found the node not
fully linked. The same remove(18) call succeeds in Part (b) because it found that the node is fully linked.

algorithm maintains the skiplist property: higher-level lists are always contained
in lower-level lists.

The skiplist property is maintained using locks to prevent structural changes
in the vicinity of a node while it is being added or removed, and by delaying any
access to a node until it has been inserted into all levels of the list.

To add a node, it must be linked into the list at several levels. Every add() call
calls find(), which traverses the skiplist and returns the node’s predecessors and
successors at all levels. To prevent changes to the node’s predecessors while the
node is being added, add() locks the predecessors, validates that the locked pre-
decessors still refer to their successors, then adds the node in a manner similar to
the sequential add() shown in Fig. 14.2. To maintain the skiplist property, a node
is not considered to be logically in the set until all references to it at all levels have
been properly set. Each node has an additional flag, fullyLinked, set to true once
it has been linked in all its levels. We do not allow access to a node until it is fully
linked, so for example, the add() method, when trying to determine whether the
node it wishes to add is already in the list, must spin waiting for it to become fully
linked. Fig. 14.3 shows a call to add(18) that spins waiting until the node with key
18 becomes fully linked.

To remove a node from the list, remove() uses find() to check whether a victim
node with the target key is already in the list. If so, it checks whether the victim is
ready to be deleted, that is, is fully linked and unmarked. In Part (a) of Fig. 14.3,
remove(8) finds the node with key 8 unmarked and fully linked, which means

14.3 A Lock-Based Concurrent Skiplist 333

that it can remove it. The remove(18) call fails, because it found that the victim is
not fully linked. The same remove(18) call succeeds in Part (b) because it found
that the victim is fully linked.

If the victim can be removed, remove() logically removes it by setting its mark
bit. It completes the physical deletion of the victim by locking its predecessors
at all levels and then the victim node itself, validating that the predecessors are
unmarked and still refer to the victim, and then splicing out the victim node one
level at a time. To maintain the skiplist property, the victim is spliced out from
top to bottom.

For example, in Part (b) of Fig. 14.3, remove(8) locks the predecessor node
with key 5. Once this predecessor is locked, remove() physically removes the node
from the list by redirecting the bottom-level reference of the node with key 5 to
refer to the node with key 9.

In both the add() and remove() methods, if validation fails, find() is called
again to find the newly changed set of predecessors, and the attempt to complete
the method resumes.

The wait-free contains() method calls find() to locate the node containing
the target key. If it finds a node, it determines whether the node is in the set by
checking whether it is unmarked and fully linked. This method, like the LazyList
class’s contains(), is wait-free because it ignores any locks or concurrent changes
in the SkipList structure.

To summarize, the LazySkipList class uses a technique familiar from earlier
algorithms: it holds lock on all locations to be modified, validates that nothing
important has changed, completes the modifications, and releases the locks (in
this context, the fullyLinked flag acts like a lock).

14.3.2 The Algorithm

Fig. 14.4 shows the LazySkipList’s Node class. A key is in the set if, and only if
the list contains an unmarked, fully linked node with that key. The key 8 in Part
(a) of Fig. 14.3, is an example of such a key.

Fig. 14.5 shows the skiplist find() method. (The same method works in both
the sequential and concurrent algorithms). The find() method returns −1 if the
item is not found. It traverses the SkipList using pred and curr references start-
ing at the head and at the highest level. This highest level can be maintained
dynamically to reflect the highest level actually in the SkipList, but for brevity,
we do not do so here. The find() method goes down the levels one after the other.
At each level it sets curr to be the pred node’s successor. If it finds a node with a
matching key, it records the level (Line 48). If it does not find a node with a match-
ing key, then find() records the pred and curr as the predecessor and successor
at that level in the preds[] and succs[] arrays (Lines 51–52), continuing to the
next lower level starting from the current pred node. Part (a) of Fig. 14.2 shows
how find() traverses a SkipList. Part (b) shows how find() results would be
used to add() a new item to a SkipList.

334 Chapter 14 Skiplists and Balanced Search

1 public final class LazySkipList<T> {
2 static final int MAX_LEVEL = ...;
3 final Node<T> head = new Node<T>(Integer.MIN_VALUE);
4 final Node<T> tail = new Node<T>(Integer.MAX_VALUE);
5 public LazySkipList() {
6 for (int i = 0; i < head.next.length; i++) {
7 head.next[i] = tail;
8 }
9 }
10 ...
11 private static final class Node<T> {
12 final Lock lock = new ReentrantLock();
13 final T item;
14 final int key;
15 final Node<T>[] next;
16 volatile boolean marked = false;
17 volatile boolean fullyLinked = false;
18 private int topLevel;
19 public Node(int key) { // sentinel node constructor
20 this.item = null;
21 this.key = key;
22 next = new Node[MAX_LEVEL + 1];
23 topLevel = MAX_LEVEL;
24 }
25 public Node(T x, int height) {
26 item = x;
27 key = x.hashCode();
28 next = new Node[height + 1];
29 topLevel = height;
30 }
31 public void lock() {
32 lock.lock();
33 }
34 public void unlock() {
35 lock.unlock();
36 }
37 }
38 }

Figure 14.4 The LazySkipList class: constructor, fields, and Node class.

Because we start with pred at the head sentinel node and always advance the
window only if curr is less than the target key, pred is always a predecessor of
the target key, and never refers to the node with the key itself. The find() method
returns the preds[] and succs[] arrays as well as the level at which the node with
a matching key was found.

The add(k) method, shown in Fig. 14.6, uses find() (Fig. 14.5) to determine
whether a node with the target key k is already in the list (Line 42). If an unmarked
node with the key is found (Lines 62–67) then add(k) returns false, indicating that
the key k is already in the set. However, if that node is not yet fully linked (indi-
cated by the fullyLinked field), then the thread waits until it is linked (because

14.3 A Lock-Based Concurrent Skiplist 335

39 int find(T x, Node<T>[] preds, Node<T>[] succs) {
40 int key = x.hashCode();
41 int lFound = -1;
42 Node<T> pred = head;
43 for (int level = MAX_LEVEL; level >= 0; level--) {
44 Node<T> curr = pred.next[level];
45 while (key > curr.key) {
46 pred = curr; curr = pred.next[level];
47 }
48 if (lFound == -1 && key == curr.key) {
49 lFound = level;
50 }
51 preds[level] = pred;
52 succs[level] = curr;
53 }
54 return lFound;
55 }

Figure 14.5 The LazySkipList class: the wait-free find() method. This algorithm is the
same as in the sequential SkipList implementation. The preds[] and succs[] arrays are
filled from the maximum level to level 0 with the predecessor and successor references for
the given key.

the key k is not in the abstract set until the node is fully linked). If the node found
is marked, then some other thread is in the process of deleting it, so the add()
call simply retries. Otherwise, it checks whether the node is unmarked and fully
linked, indicating that the add() call should return false. It is safe to check if the
node is unmarked before the node is fully linked, because remove() methods do
not mark nodes unless they are fully linked. If a node is unmarked and not yet fully
linked, it must become unmarked and fully linked before it can become marked
(see Fig. 14.6). This step is the linearization point (Line 66) of an unsuccessful
add() method call.

The add() method calls find() to initialize the preds[] and succs[] arrays
to hold the ostensible predecessor and successor nodes of the node to be added.
These references are unreliable, because they may no longer be accurate by the
time the nodes are accessed. If no unmarked fully linked node was found with key
k, then the thread proceeds to lock and validate each of the predecessors returned
by find() from level 0 up to the topLevel of the new node (Lines 74–80). To
avoid deadlocks, both add() and remove() acquire locks in ascending order. The
topLevel value is determined at the very beginning of the add() method using
the randomLevel() method.1 The validation (Line 79) at each level checks that
the predecessor is still adjacent to the successor and that neither is marked. If

1 The randomLevel() method is designed based on empirical measurements to maintain the
SkipList property. For example, in the Java concurrency package, for a maximal SkipList level
of 31, randomLevel() returns 0 with probability 3

4 , i with probability 2−(i+2) for i ∈ [1, 30], and
31 with probability 2−32.

336 Chapter 14 Skiplists and Balanced Search

56 boolean add(T x) {
57 int topLevel = randomLevel();
58 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
59 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
60 while (true) {
61 int lFound = find(x, preds, succs);
62 if (lFound != -1) {
63 Node<T> nodeFound = succs[lFound];
64 if (!nodeFound.marked) {
65 while (!nodeFound.fullyLinked) {}
66 return false;
67 }
68 continue;
69 }
70 int highestLocked = -1;
71 try {
72 Node<T> pred, succ;
73 boolean valid = true;
74 for (int level = 0; valid && (level <= topLevel); level++) {
75 pred = preds[level];
76 succ = succs[level];
77 pred.lock.lock();
78 highestLocked = level;
79 valid = !pred.marked && !succ.marked && pred.next[level]==succ;
80 }
81 if (!valid) continue;
82 Node<T> newNode = new Node(x, topLevel);
83 for (int level = 0; level <= topLevel; level++)
84 newNode.next[level] = succs[level];
85 for (int level = 0; level <= topLevel; level++)
86 preds[level].next[level] = newNode;
87 newNode.fullyLinked = true; // successful add linearization point
88 return true;
89 } finally {
90 for (int level = 0; level <= highestLocked; level++)
91 preds[level].unlock();
92 }
93 }
94 }

Figure 14.6 The LazySkipList class: the add() method.

validation fails, the thread must have encountered the effects of a conflicting
method, so it releases (in the finally block at Line 87) the locks it acquired and
retries.

If the thread successfully locks and validates the results of find() up to the
topLevel of the new node, then the add() call will succeed because the thread
holds all the locks it needs. The thread then allocates a new node with the appro-
priate key and randomly chosen topLevel, links it in, and sets the new node’s
fullyLinked flag. Setting this flag is the linearization point of a successful add()
method (Line 87). It then releases all its locks and returns true (Lines 89). The
only time a thread modifies an unlocked node’s next field is when it initializes the

14.3 A Lock-Based Concurrent Skiplist 337

new node’s next references (Line 83). This initialization is safe because it occurs
before the new node is accessible.

The remove() method appears in Fig. 14.7. It calls find() to determine whether
a node with the appropriate key is in the list. If so, the thread checks whether the

95 boolean remove(T x) {
96 Node<T> victim = null; boolean isMarked = false; int topLevel = -1;
97 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
98 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
99 while (true) {

100 int lFound = find(x, preds, succs);
101 if (lFound != -1) victim = succs[lFound];
102 if (isMarked |
103 (lFound != -1 &&
104 (victim.fullyLinked
105 && victim.topLevel == lFound
106 && !victim.marked))) {
107 if (!isMarked) {
108 topLevel = victim.topLevel;
109 victim.lock.lock();
110 if (victim.marked) {
111 victim.lock.unlock();
112 return false;
113 }
114 victim.marked = true;
115 isMarked = true;
116 }
117 int highestLocked = -1;
118 try {
119 Node<T> pred, succ; boolean valid = true;
120 for (int level = 0; valid && (level <= topLevel); level++) {
121 pred = preds[level];
122 pred.lock.lock();
123 highestLocked = level;
124 valid = !pred.marked && pred.next[level]==victim;
125 }
126 if (!valid) continue;
127 for (int level = topLevel; level >= 0; level--) {
128 preds[level].next[level] = victim.next[level];
129 }
130 victim.lock.unlock();
131 return true;
132 } finally {
133 for (int i = 0; i <= highestLocked; i++) {
134 preds[i].unlock();
135 }
136 }
137 } else return false;
138 }
139 }

Figure 14.7 The LazySkipList class: the remove() method.

338 Chapter 14 Skiplists and Balanced Search

node is ready to be deleted (Line 104): meaning it is fully linked, unmarked, and
at its top level. A node found below its top level was either not yet fully linked
(see the node with key 18 in Part (a) of Fig. 14.3), or marked and already partially
unlinked by a concurrent remove() method call. (The remove() method could
continue, but the subsequent validation would fail.)

If the node is ready to be deleted, the thread locks the node (Line 109) and
verifies that it is still not marked. If it is still not marked, the thread marks the
node, logically deleting that item. This step (Line 114), is the linearization point
of a successful remove() call. If the node was marked, then the thread returns
false since the node was already deleted. This step is one linearization point of an
unsuccessful remove(). Another occurs when find() does not find a node with a
matching key, or when the node with the matching key was marked, or not fully
linked, or not found at its top level (Line 104).

The rest of the method completes the physical deletion of the victim node.
To remove the victim from the list, the remove() method first locks (in ascending
order, to avoid deadlock) the victim’s predecessors at all levels up to the victim’s
topLevel (Lines 120–124). After locking each predecessor, it validates that the
predecessor is still unmarked and still refers to the victim. It then splices out the
victim one level at a time (Line 128). To maintain the SkipList property, that any
node reachable at a given level is reachable at lower levels, the victim is spliced out
from top to bottom. If the validation fails at any level, then the thread releases the
locks for the predecessors (but not the victim) and calls find() to acquire the new
set of predecessors. Because it has already set the victim’s isMarked field, it does
not try to mark the node again. After successfully removing the victim node from
the list, the thread releases all its locks and returns true.

Finally, we recall that if no node was found, or the node found was marked,
or not fully linked, or not found at its top level, then the method simply returns
false. It is easy to see that it is correct to return false if the node is not marked,
because for any key, there can at any time be at most one node with this key in
the SkipList (i.e., reachable from the head). Moreover, once a node is entered
into the list, (which must have occurred before it is found by find()), it cannot
be removed until it is marked. It follows that if the node is not marked, and not all
its links are in place, it must be in the process of being added into the SkipList,
but the adding method has not reached the linearization point (see the node with
key 18 in Part (a) of Fig. 14.3).

If the node is marked at the time it is found, it might not be in the list, and
some unmarked node with the same key may be in the list. However, in that case,
just like for the LazyList remove() method, there must have been some point
during the remove() call when the key was not in the abstract set.

The wait-free contains() method (Fig. 14.8) calls find() to locate the node
containing the target key. If it finds a node it checks whether it is unmarked and
fully linked. This method, like that of the LazyList class of Chapter 9, is wait-free,
ignoring any locks or concurrent changes in the SkipList list structure. A suc-
cessful contains() call’s linearization point occurs when the predecessor’s next
reference is traversed, having been observed to be unmarked and fully linked.

14.4 A Lock-Free Concurrent Skiplist 339

140 boolean contains(T x) {
141 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
142 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
143 int lFound = find(x, preds, succs);
144 return (lFound != -1
145 && succs[lFound].fullyLinked
146 && !succs[lFound].marked);
147 }

Figure 14.8 The LazySkipList class: the wait-free contains() method.

An unsuccessful contains() call, like the remove() call, occurs if the method
finds a node that is marked. Care is needed, because at the time the node is found,
it might not be in the list, while an unmarked node with the same key may be in
the list. As with remove(), however, there must have been some point during the
contains() call when the key was not in the abstract set.

14.4 A Lock-Free Concurrent Skiplist

The basis of our LockFreeSkipList implementation is the LockFreeList
algorithm of Chapter 9: each level of the SkipList structure is a LockFreeList,
each next reference in a node is an AtomicMarkableReference<Node>, and
list manipulations are performed using compareAndSet().

14.4.1 A Bird’s-Eye View

Here is a bird’s-eye view of the of the LockFreeSkipList class.
Because we cannot use locks to manipulate references at all levels at the same

time, the LockFreeSkipList cannot maintain the SkipList property that each
list is a sublist of the list at levels below it.

Since we cannot maintain the skiplist property, we take the approach that the
abstract set is defined by the bottom-level list: a key is in the set if there is a node
with that key whose next reference is unmarked in the bottom-level list. Nodes in
higher-level lists in the skiplist serve only as shortcuts to the bottom level. There
is no need for a fullyLinked flag as in the LazySkipList.

How do we add or remove a node? We treat each level of the list as a
LockFreeList. We use compareAndSet() to insert a node at a given level, and
we mark the next references of a node to remove it.

As in the LockFreeList, the find() method cleans up marked nodes. The
method traverses the skiplist, proceeding down each list at each level. As in the
LockFreeList class’s find() method, it repeatedly snips out marked nodes as
they are encountered, so that it never looks at a marked node’s key. Unfortunately,
this means that a node may be physically removed while it is in the process of being

340 Chapter 14 Skiplists and Balanced Search

linked at the higher levels. A find() call that passes through a node’s middle-
level references may remove these references, so, as noted earlier, the SkipList
property is not maintained.

The add() method calls find() to determine whether a node is already in the
list, and to find its set of predecessors and successors. A new node is prepared with
a randomly chosen topLevel, and its next references are directed to the potential
successors returned by the find() call. The next step is to try to logically add the
new node to the abstract set by linking it into the bottom-level list, using the same
approach as in the LockFreeList. If the addition succeeds, the item is logically in
the set. The add() call then links the node in at higher levels (up to its top level).

Fig. 14.9 shows theLockFreeSkipList class. In Part (a)add(12) callsfind(12)
while there are three ongoing remove() calls. Part (b) shows the results of

95 1811 251582

3

2

1

0

2` 1`

(a) A : add(12)
A : find(12)level

0

0

0

0

0

0

0

00

1

1

0

0

1

0

00 010

B : remove(2) C : remove(9) D : remove(15)

B : remove(2) C : remove(9)
A : insert(12)

95 1811 2582

3

2

1

0

2` 1`

(b) A : add(12)
A : find(12)level

0

0

0

0

0

0

0

00

1

1

0

0

1

0

00 00

B : remove(2) C : remove(9) D : remove(15)

95 1811 2582

3

2

1

0

2` 1`

(c) A: add(12)
level

0

0

0

0

0

0

0

00

1

1

0

0

1

0

0

12

0

0
0 00

C : remove(9)
A : insert(12)

B : remove(11)

95 18 258

3

2

1

0

2` 1`

(d) A: add(12) after remove(11)
level

0

0

0

0

0

0

0

00

1

1

0

0 0

0

12

0

0
00

Figure 14.9 The LockFreeSkipList class: an add() call. Each node consists of links that are unmarked (a 0)
or marked (a 1). In Part (a), add(12) calls find(12) while there are three ongoing remove() calls. The find()
method “cleans” the marked links (denoted by 1s) as it traverses the skiplist. The traversal is not the same
as a sequential find(12), because marked nodes are unlinked whenever they are encountered. The path in
the figure shows the nodes traversed by the pred reference, which always refers to unmarked nodes with
keys less than the target key. Part (b) shows the result of redirecting the dotted links. We denote bypassing a
node by placing the link in front of it. Node 15, whose bottom-level next reference was marked, is removed
from the skiplist. Part (c) shows the subsequent addition of the new node with key 12. Part (d) shows an
alternate addition scenario which would occur if the node with key 11 were removed before the addition of
the node with key 12. The bottom-level next reference of the node with key 9 is not yet marked, and so the
bottom-level predecessor node, whose next reference is marked, is redirected by the add() method to the
new node. Once thread C completes marking this reference, the node with key 9 is removed and the node
with key 5 becomes the immediate predecessor of the newly added node.

14.4 A Lock-Free Concurrent Skiplist 341

redirecting the dotted links. Part (c) shows the subsequent addition of the new
node with key 12. Part (d) shows an alternate addition scenario which would occur
if the node with key 11 were removed before the addition of the node with key 12.

The remove() method calls find() to determine whether an unmarked node
with the target key is in the bottom-level list. If an unmarked node is found, it
is marked starting from the topLevel. All next references up to, but not includ-
ing the bottom-level reference are logically removed from their appropriate level
list by marking them. Once all levels but the bottom one have been marked,
the method marks the bottom-level’s next reference. This marking, if success-
ful, removes the item from the abstract set. The physical removal of the node is
the result of its physical removal from the lists at all levels by the remove() method
itself and the find() methods of other threads that access it while traversing the
skiplist. In both add() and remove(), if at any point a compareAndSet() fails, the
set of predecessors and successors might have changed, and so find() must be
called again.

The key to the interaction between the add(), remove(), and find() meth-
ods is the order in which list manipulations take place. The add() method sets
its next references to the successors before it links the node into the bottom-
level list, meaning that a node is ready to be removed from the moment it is logi-
cally added to the list. Similarly, the remove() method marks the next references
top-down, so that once a node is logically removed, it is not traversed by a find()
method call.

As noted, in most applications, calls to contains() usually outnumber calls to
other methods. As a result contains() should not call find(). While it may be
effective to have individual find() calls physically remove logically deleted nodes,
contention results if too many concurrent find() calls try to clean up the same
nodes at the same time. This kind of contention is much more likely with frequent
contains() calls than with calls to the other methods.

However, contains() cannot use the approach taken by the LockFreeList’s
wait-free contains(): look at the keys and simply ignore marked nodes. The
problem is that add() and remove() may violate the skiplist property. It is possi-
ble for a marked node to be reachable in a higher-level list after being physically
deleted from the lowest-level list. Ignoring the mark could lead to skipping over
nodes reachable in the lowest level.

Notice, however, that the find() method of the LockFreeSkipList is not sub-
ject to this problem because it never looks at keys of marked nodes, removing
them instead. We will have the contains() method mimic this behavior, but
without cleaning up marked nodes. Instead, contains() traverses the skiplist,
ignoring the keys of marked nodes, and skipping over them instead of physically
removing them. Avoiding the physical removal allows the method to be wait-free.

14.4.2 The Algorithm in Detail

As we present the algorithmic details, the reader should keep in mind that the
abstract set is defined only by the bottom-level list. Nodes in the higher-level lists

342 Chapter 14 Skiplists and Balanced Search

are used only as shortcuts into the bottom-level list. Fig. 14.10 shows the structure
of the list’s nodes.

The add() method, shown in Fig. 14.11, uses find(), shown in Fig. 14.13, to
determine whether a node with key k is already in the list (Line 61). As in the
LazySkipList, add() calls find() to initialize the preds[] and succs[] arrays to
hold the new node’s ostensible predecessors and successors.

If an unmarked node with the target key is found in the bottom-level list,
find() returns true and the add() method returns false, indicating that the key
is already in the set. The unsuccessful add()’s linearization point is the same as
the successful find()’s (Line 42). If no node is found, then the next step is to try
to add a new node with the key into the structure.

1 public final class LockFreeSkipList<T> {
2 static final int MAX_LEVEL = ...;
3 final Node<T> head = new Node<T>(Integer.MIN_VALUE);
4 final Node<T> tail = new Node<T>(Integer.MAX_VALUE);
5 public LockFreeSkipList() {
6 for (int i = 0; i < head.next.length; i++) {
7 head.next[i]
8 = new AtomicMarkableReference<LockFreeSkipList.Node<T>>(tail, false);
9 }
10 }
11 public static final class Node<T> {
12 final T value; final int key;
13 final AtomicMarkableReference<Node<T>>[] next;
14 private int topLevel;
15 // constructor for sentinel nodes
16 public Node(int key) {
17 value = null; key = key;
18 next = (AtomicMarkableReference<Node<T>>[])
19 new AtomicMarkableReference[MAX_LEVEL + 1];
20 for (int i = 0; i < next.length; i++) {
21 next[i] = new AtomicMarkableReference<Node<T>>(null,false);
22 }
23 topLevel = MAX_LEVEL;
24 }
25 // constructor for ordinary nodes
26 public Node(T x, int height) {
27 value = x;
28 key = x.hashCode();
29 next = (AtomicMarkableReference<Node<T>>[])

new AtomicMarkableReference[height + 1];
30 for (int i = 0; i < next.length; i++) {
31 next[i] = new AtomicMarkableReference<Node<T>>(null,false);
32 }
33 topLevel = height;
34 }
35 }

Figure 14.10 The LockFreeSkipList class: fields and constructor.

14.4 A Lock-Free Concurrent Skiplist 343

A new node is created with a randomly chosen topLevel. The node’s next
references are unmarked and set to the successors returned by the find() method
(Lines 46–49).

The next step is to try to add the new node by linking it into the bottom-level
list between the preds[0] and succs[0] nodes returned by find(). As in the
LockFreeList, we use compareAndSet() to set the reference while validating
that these nodes still refer one to the other and have not been removed from the
list (Line 55). If the compareAndSet() fails, something has changed and the call
restarts. If the compareAndSet() succeeds, the item is added, and Line 55 is the
call’s linearization point.

The add() then links the node in at higher levels (Line 58). For each level, it
attempts to splice the node in by setting the predecessor, if it refers to the valid

36 boolean add(T x) {
37 int topLevel = randomLevel();
38 int bottomLevel = 0;
39 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
40 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
41 while (true) {
42 boolean found = find(x, preds, succs);
43 if (found) {
44 return false;
45 } else {
46 Node<T> newNode = new Node(x, topLevel);
47 for (int level = bottomLevel; level <= topLevel; level++) {
48 Node<T> succ = succs[level];
49 newNode.next[level].set(succ, false);
50 }
51 Node<T> pred = preds[bottomLevel];
52 Node<T> succ = succs[bottomLevel];
53 newNode.next[bottomLevel].set(succ, false);
54 if (!pred.next[bottomLevel].compareAndSet(succ, newNode,
55 false, false)) {
56 continue;
57 }
58 for (int level = bottomLevel+1; level <= topLevel; level++) {
59 while (true) {
60 pred = preds[level];
61 succ = succs[level];
62 if (pred.next[level].compareAndSet(succ, newNode, false, false))
63 break;
64 find(x, preds, succs);
65 }
66 }
67 return true;
68 }
69 }
70 }

Figure 14.11 The LockFreeSkipList class: the add() method.

344 Chapter 14 Skiplists and Balanced Search

successor, to the new node (Line 62). If successful, it breaks and moves on to the
next level. If unsuccessful, then the node referenced by the predecessor must have
changed, and find() is called again to find a new valid set of predecessors and
successors. We discard the result of calling find() (Line 64) because we care only
about recomputing the ostensible predecessors and successors on the remaining
unlinked levels. Once all levels are linked, the method returns true (Line 67).

The remove() method, shown in Fig. 14.12, calls find() to determine whether
an unmarked node with a matching key is in the bottom-level list. If no node is
found in the bottom-level list, or the node with a matching key is marked, the
method returns false. The linearization point of the unsuccessful remove() is that
of the find() method called in Line 77. If an unmarked node is found, then the
method logically removes the associated key from the abstract set, and prepares

71 boolean remove(T x) {
72 int bottomLevel = 0;
73 Node<T>[] preds = (Node<T>[]) new Node[MAX_LEVEL + 1];
74 Node<T>[] succs = (Node<T>[]) new Node[MAX_LEVEL + 1];
75 Node<T> succ;
76 while (true) {
77 boolean found = find(x, preds, succs);
78 if (!found) {
79 return false;
80 } else {
81 Node<T> nodeToRemove = succs[bottomLevel];
82 for (int level = nodeToRemove.topLevel;
83 level >= bottomLevel+1; level--) {
84 boolean[] marked = {false};
85 succ = nodeToRemove.next[level].get(marked);
86 while (!marked[0]) {
87 nodeToRemove.next[level].attemptMark(succ, true);
88 succ = nodeToRemove.next[level].get(marked);
89 }
90 }
91 boolean[] marked = {false};
92 succ = nodeToRemove.next[bottomLevel].get(marked);
93 while (true) {
94 boolean iMarkedIt =
95 nodeToRemove.next[bottomLevel].compareAndSet(succ, succ,
96 false, true);
97 succ = succs[bottomLevel].next[bottomLevel].get(marked);
98 if (iMarkedIt) {
99 find(x, preds, succs);
100 return true;
101 }
102 else if (marked[0]) return false;
103 }
104 }
105 }
106 }

Figure 14.12 The LockFreeSkipList class: the remove() method.

14.4 A Lock-Free Concurrent Skiplist 345

it for physical removal. This step uses the set of ostensible predecessors (stored
by find() in preds[]) and the victim (returned from find() in succs[]). First,
starting from the topLevel, all links up to and not including the bottom-level link
are marked (Lines 83–89) by repeatedly reading next and its mark and applying
attemptMark(). If the link is found to be marked (either because it was already
marked or because the attempt succeeded) the method moves on to the next-level
link. Otherwise, the current level’s link is reread since it must have been changed
by another concurrent thread, so the marking attempt must be repeated. Once
all levels but the bottom one have been marked, the method marks the bottom-
level’s next reference. This marking (Line 96), if successful, is the linearization
point of a successful remove(). The remove() method tries to mark the next field
using compareAndSet(). If successful, it can determine that it was the thread that
changed the mark from false to true. Before returning true, the find() method
is called again. This call is an optimization: as a side effect, find() physically
removes all links to the node it is searching for if that node is already logically
removed.

On the other hand, if the compareAndSet() call failed, but the next reference
is marked, then another thread must have concurrently removed it, so remove()
returns false. The linearization point of this unsuccessful remove() is the lin-
earization point of the remove() method by the thread that successfully marked
the nextfield. Notice that this linearization point must occur during theremove()
call because the find() call found the node unmarked before it found it marked.

Finally, if the compareAndSet() fails and the node is unmarked, then the next
node must have changed concurrently. Since the victim is known, there is no
need to call find() again, and remove() simply uses the new value read from
next to retry the marking.

As noted, both the add() and remove() methods rely on find(). This method
searches the LockFreeSkipList, returning true if and only if a node with the
target key is in the set. It fills in the preds[] and succs[] arrays with the tar-
get node’s ostensible predecessors and successors at each level. It maintains the
following two properties:

� It never traverses a marked link. Instead, it removes the node referred to by a
marked link from the list at that level.

� Every preds[] reference is to a node with a key strictly less than the target.

The find() method in Fig. 14.13 proceeds as follows. It starts traversing
the SkipList from the topLevel of the head sentinel, which has the maximal
allowed node level. It then proceeds in each level down the list, filling in preds
and succs nodes that are repeatedly advanced until pred refers to a node with
the largest value on that level that is strictly less than the target key (Lines 118–
132). As in the LockFreeList, it repeatedly snips out marked nodes from the
given level as they are encountered (Lines 120–126) using a compareAndSet().
Notice that the compareAndSet() validates that the next field of the predecessor
references the current node. Once an unmarked curr is found (Line 127), it is
tested to see if its key is less than the target key. If so, pred is advanced to curr.

346 Chapter 14 Skiplists and Balanced Search

107 boolean find(T x, Node<T>[] preds, Node<T>[] succs) {
108 int bottomLevel = 0;
109 int key = x.hashCode();
110 boolean[] marked = {false};
111 boolean snip;
112 Node<T> pred = null, curr = null, succ = null;
113 retry:
114 while (true) {
115 pred = head;
116 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
117 curr = pred.next[level].getReference();
118 while (true) {
119 succ = curr.next[level].get(marked);
120 while (marked[0]) {
121 snip = pred.next[level].compareAndSet(curr, succ,
122 false, false);
123 if (!snip) continue retry;
124 curr = pred.next[level].getReference();
125 succ = curr.next[level].get(marked);
126 }
127 if (curr.key < key){
128 pred = curr; curr = succ;
129 } else {
130 break;
131 }
132 }
133 preds[level] = pred;
134 succs[level] = curr;
135 }
136 return (curr.key == key);
137 }
138 }

Figure 14.13 The LockFreeSkipList class: a more complex find() than in LazySkipList.

Otherwise, curr’s key is greater than or equal to the target’s, so the current value
of pred is the target node’s immediate predecessor. The find() method breaks
out of the current level search loop, saving the current values of pred and curr
(Line 133).

The find() method proceeds this way until it reaches the bottom level. Here
is an important point: the traversal at each level maintains the two properties
described earlier. In particular, if a node with the target key is in the list, it
will be found at the bottom level even if traversed nodes are removed at higher
levels. When the traversal stops, pred refers to a predecessor of the target node.
The method descends to each next lower level without skipping over the target
node. If the node is in the list, it will be found at the bottom level. Moreover, if
the node is found, it cannot be marked because if it were marked, it would have
been snipped out in Lines 120–126. Therefore, the test in Line 136 need only check
if the key of curr is equal to the target key to determine if the target is in the set.

The linearization points of both successful and unsuccessful calls to the find()
methods occur when the curr reference at the bottom-level list is set, at either

14.4 A Lock-Free Concurrent Skiplist 347

Line 117 or 124, for the last time before the find() call’s success or failure is
determined in Line 136. Fig. 14.9 shows how a node is successfully added to the
LockFreeSkipList.

The wait-free contains() method appears in Fig. 14.14. It traverses the
SkipList in the same way as the find() method, descending level-by-level from
the head. Like find(), contains() ignores keys of marked nodes. Unlike find(),
it does not try to remove marked nodes. Instead, it simply jumps over them
(Line 148–151). For an example execution, see Fig. 14.15.

The method is correct because contains() preserves the same properties as
find(), among them, that pred, in any level, never refers to an unmarked node
whose key is greater than or equal to the target key. The pred variable arrives at the
bottom-level list at a node before, and never after, the target node. If the node is
added before the contains() method call starts, then it will be found. Moreover,
recall that add() calls find(), which unlinks marked nodes from the bottom-level
list before adding the new node. It follows that if contains() does not find the
desired node, or finds the desired node at the bottom level but marked, then any
concurrently added node that was not found must have been added to the bottom
level after the start of the contains() call, so it is correct to return false in Line 160.

Fig. 14.16 shows an execution of the contains() method. In Part (a), a
contains(18) call traverses the list starting from the top level of the head node.
In Part (b) the contains(18) call traverses the list after the node with key 18 has
been logically removed.

139 boolean contains(T x) {
140 int bottomLevel = 0;
141 int v = x.hashCode();
142 boolean[] marked = {false};
143 Node<T> pred = head, curr = null, succ = null;
144 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
145 curr = pred.next[level].getReference();
146 while (true) {
147 succ = curr.next[level].get(marked);
148 while (marked[0]) {
149 curr = pred.next[level].getReference();
150 succ = curr.next[level].get(marked);
151 }
152 if (curr.key < v){
153 pred = curr;
154 curr = succ;
155 } else {
156 break;
157 }
158 }
159 }
160 return (curr.key == v);
161 }

Figure 14.14 The LockFreeSkipList class: the wait-free contains() method.

348 Chapter 14 Skiplists and Balanced Search

95 1811 251582

3

2

1

0

2` 1`

A : contains(18) returns true

level

0

0

0

0

0

0

0

01

1

1

0

0

0

0

00 010

B : remove(9) C : remove(15)

curr

pred

curr

curr

curr

Figure 14.15 Thread A calls contains(18), which traverses the list starting from the top
level of the head node. The dotted line marks the traversal by the pred field, and the sparse
dotted line marks the path of the curr field. The curr field is advanced to tail on level 3.
Since its key is greater than 18, pred descends to level 2. The curr field advances past the
marked reference in the node with key 9, again reaching tail which is greater than 18, so
pred descends to level 1. Here pred is advanced to the unmarked node with key 5, and
curr advances past the marked node with key 9 to reach the unmarked node with key 18, at
which point curr is no longer advanced. Though 18 is the target key, the method continues
to descend with pred to the bottom level, advancing pred to the node with key 8. From this
point, curr traverses past marked Nodes 9 and 15 and Node 11 whose key is smaller than
18. Eventually curr reaches the unmarked node with key 18, returning true.

14.5 Concurrent Skiplists

We have seen two highly concurrent SkipList implementations, each provid-
ing logarithmic search without the need to rebalance. In the LazySkipList class,
the add() and remove() methods use optimistic fine-grained locking, meaning
that the method searches for its target node without locking, and acquires locks
and validates only when it discovers the target. The contains() method, usu-
ally the most common, is wait-free. In the LockFreeSkipList class, the add()
and remove() methods are lock-free, building on the LockFreeList class of
Chapter 9. In this class too, the contains() method is wait-free.

In Chapter 15 we will see how one can build highly concurrent priority queues
based on the concurrent SkipList we presented here.

14.6 Chapter Notes

Bill Pugh invented skiplists, both sequential [129] and concurrent [128]. The
LazySkipList is by Yossi Lev, Maurice Herlihy, Victor Luchangco, and Nir Shavit
[104]. The LockFreeSkipList presented here is credited to Maurice Herlihy,

14.7 Exercises 349

95 1811 251582

3

2

1

0

2` 1`

(a) A : contains(18) traversing
level

0

0

0

0

0

0

0

01

1

1

0

0

0

1

10 010

B : remove(15)
B : remove(9) D : remove(18)

95
18

11 2582

3

2

1

0

2` 1`

(b) A : contains(18) returns false
level

0

0

0

0

0

0

0

0

1

1

1

18

0

0

0

0

0

1

1

1
0

0

15

1

0

B : remove(9)

pred pred

curr

E : add(18)

curr

Figure 14.16 The LockFreeSkipList class: a contains() call. In Part (a), contains(18) traverses the list
starting from the top level of the head node. The dotted line marks the traversal by the pred field. The pred
field eventually reaches Node 8 at the bottom level and we show the path of curr from that point on using a
sparser dotted line. The curr traverses past Node 9 and reaches the marked Node 15. In Part (b) a new node
with key 18 is added to the list by a thread E. Thread E, as part of its find(18) call, physically removes the old
nodes with keys 9, 15, and 18. Now thread A continues its traversal with the curr field from the removed
node with key 15 (the nodes with keys 15 and 18 are not recycled since they are reachable by thread A).
Thread A reaches the node with key 25 which is greater than 18, returning false. Even though at this point
there is an unmarked node with key 18 in the LockFreeSkipList, this node was inserted by E concurrently
with A’s traversal and is linearized after A’s add(18).

Yossi Lev, and Nir Shavit [64]. It is partly based on an earlier lock-free SkipList
algorithm developed by to Kier Fraser [42], a variant of which was incorporated
into the Java Concurrency Package by Doug Lea [101].

14.7 Exercises

Exercise 163. Recall that a skiplist is a probabilistic data structure. Although the
expected peformance of a contains() call is O(logn), where n is the number of
items in the list, the worst-case peformance could be O(n). Draw a picture of an
8-element skiplist with worst-case performance, and explain how it got that way.

Exercise 164. You are given a skiplist with probability p and MAX_LEVELM . If the
list contains N nodes, what is the expected number of nodes at each level from 0
to M − 1?

Exercise 165. Modify the LazySkipList class so find() starts at the level of
the highest node currently in the structure, instead of the highest level possible
(MAX_LEVEL).

Exercise 166. Modify the LazySkipList to support multiple items with the same
key.

350 Chapter 14 Skiplists and Balanced Search

Exercise 167. Suppose we modify the LockFreeSkipList class so that at Line 102
of Fig. 14.12, remove() restarts the main loop instead of returning false.

Is the algorithm still correct? Address both safety and liveness issues. That is,
what is an unsuccessful remove() call’s new linearization point, and is the class
still lock-free?

Exercise 168. Explain how, in the LockFreeSkipList class, a node might end up
in the list at levels 0 and 2, but not at level 1. Draw pictures.

Exercise 169. Modify the LockFreeSkipList so that the find() method snips out
a sequence of marked nodes with a single compareAndSet(). Explain why your
implementation cannot remove a concurrently inserted unmarked node.

Exercise 170. Will the add() method of the LockFreeSkipList work even if the
bottom level is linked and then all other levels are linked in some arbitrary order?
Is the same true for the marking of the next references in the remove() method:
the bottom level next reference is marked last, but references at all other levels
are marked in an arbitrary order?

Exercise 171. (Hard) Modify the LazySkipList so that the list at each level is
bidirectional, and allows threads to add and remove items in parallel by traversing
from either the head or the tail.

Exercise 172. Fig. 14.17 shows a buggy contains() method for the
LockFreeSkipList class. Give a scenario where this method returns a wrong
answer. Hint: the reason this method is wrong is that it takes into account keys of
nodes that have been removed.

1 boolean contains(T x) {
2 int bottomLevel = 0;
3 int key = x.hashCode();
4 Node<T> pred = head;
5 Node<T> curr = null;
6 for (int level = MAX_LEVEL; level >= bottomLevel; level--) {
7 curr = pred.next[level].getReference();
8 while (curr.key < key) {
9 pred = curr;

10 curr = pred.next[level].getReference();
11 }
12 }
13 return curr.key == key;
14 }

Figure 14.17 The LockFreeSkipList class: an incorrect contains().

15Priority Queues

15.1 Introduction

A priority queue is a multiset of items, where each item has an associated priority,
a score that indicates its importance (by convention, smaller scores are more
important, indicating a higher priority). A priority queue typically provides an
add() method to add an item to the set, and a removeMin() method to remove
and return the item of minimal score (highest priority). Priority queues appear
everywhere from high-level applications to low-level operating system kernels.

A bounded-range priority queue is one where each item’s score is taken from
a discrete set of items, while an unbounded-range priority queue is one where
scores are taken from a very large set, say 32-bit integers, or floating-point values.
Not surprisingly, bounded-range priority queues are generally more efficient, but
many applications require unbounded ranges. Fig. 15.1 shows the priority queue
interface.

15.1.1 Concurrent Priority Queues

In a concurrent setting, where add() and removeMin() method calls can overlap,
what does it mean for an item to be in the set?

Here, we consider two alternative consistency conditions, both introduced in
Chapter 3. The first is linearizability, which requires that each method call appear
to take effect at some instant between its invocation and its response. The sec-
ond is quiescent consistency, a weaker condition that requires that in any execu-
tion, at any point, if no additional method calls are introduced, then when all

public interface PQueue<T> {
void add(T item, int score);
T removeMin();

}

Figure 15.1 Priority Queue Interface.

351

352 Chapter 15 Priority Queues

pending method calls complete, the values they return are consistent with some
valid sequential execution of the object. If an application does not require its pri-
ority queues to be linearizable, then it is usually more efficient to require them
to be quiescently consistent. Careful thought is usually required to decide which
approach is correct for a particular application.

15.2 An Array-Based Bounded Priority Queue

A bounded-range priority queue has range m if its priorities are taken from the
range 0, . . . ,m − 1. For now, we consider bounded priority queue algorithms
that use two component data structures: Counter and Bin. A Counter (see
Chapter 12) holds an integer value, and supports getAndIncrement() and
getAndDecrement() methods that atomically increment and decrement the
counter value and return the counter’s prior value. These methods may option-
ally be bounded, meaning they do not advance the counter value beyond some
specified bound.

A Bin is a pool that holds arbitrary items, and supports a put(x) method for
inserting an item x, and a get() method for removing and returning an arbitrary
item, returning null if the bin is empty. Bins can be implemented using locks or
in a lock-free manner using the stack algorithms of Chapter 11.

Fig. 15.2 shows the SimpleLinear class, which maintains an array of bins.
To add an item with score i a thread simply places the item in the i-th bin. The

1 public class SimpleLinear<T> implements PQueue<T> {
2 int range;
3 Bin<T>[] pqueue;
4 public SimpleLinear(int myRange) {
5 range = myRange;
6 pqueue = (Bin<T>[])new Bin[range];
7 for (int i = 0; i < pqueue.length; i++){
8 pqueue[i] = new Bin();
9 }
10 }
11 public void add(T item, int key) {
12 pqueue[key].put(item);
13 }
14 public T removeMin() {
15 for (int i = 0; i < range; i++) {
16 T item = pqueue[i].get();
17 if (item != null) {
18 return item;
19 }
20 }
21 return null;
22 }
23 }

Figure 15.2 The SimpleLinear class: add() and removeMin() methods.

15.3 A Tree-Based Bounded Priority Queue 353

removeMin() method scans the bins in decreasing priority and returns the first
item it successfully removes. If no item is found it returns null. If the bins are
linearizable, so is SimpleLinear. The add() and removeMin() methods are lock-
free if the Bin methods are lock-free.

15.3 A Tree-Based Bounded Priority Queue

The SimpleTree (Fig. 15.3) is a lock-free quiescently consistent bounded-range
priority queue. It is a binary tree (Fig. 15.4) of treeNode objects (Fig. 15.5). As
depicted in Fig. 15.3, the tree has m leaves where the i-th leaf node has a bin hold-
ing items of score i. There are m−1 shared bounded counters in the tree’s internal

A:add(a,2)

(a) B:deleteMin()

D:add(d,4) A:add(a,2)

(b)

D:add(d,3)

*

A:add(a,2)

(c) B:deleteMin()
A:add(a,2)

(d)

D:add(d,3)

**

C:deleteMin()

7

1

1

1

a d a d

a da d

0

0

0 1

1

1

0

0 0 0

0

0 0

0

0 0

0

0 0

0

0 0

0

0

1

6543210

76543210 76543210

76543210

Figure 15.3 The SimpleTree priority queue is a tree of bounded counters. Items reside in bins at the leaves. Internal nodes
hold the number of items in the subtree rooted at the node’s left child. In Part (a) threads A and D add items by traversing
up the tree, incrementing the counters in the nodes when they ascend from the left. Thread B follows the counters down
the tree, descending left if the counter had a nonzero value (we do not show the effect of B’s decrements). Parts (b), (c),
and (d) show a sequence in which concurrent threads A and B meet at the node marked by a star. In Part (b) thread D adds
d, then A adds a and ascends to the starred node, incrementing a counter along the way. In Part (c) B traverses down the
tree, decrementing counters to zero and popping a. In Part (d), A continues its ascent, incrementing the counter at the root
even though B already removed any trace of a from the starred node down. Nevertheless, all is well, because the nonzero
root counter correctly leads C to item d, the item with the highest priority.

354 Chapter 15 Priority Queues

1 public class SimpleTree<T> implements PQueue<T> {
2 int range;
3 List<TreeNode> leaves;
4 TreeNode root;
5 public SimpleTree(int logRange) {
6 range = (1 << logRange);
7 leaves = new ArrayList<TreeNode>(range);
8 root = buildTree(logRange, 0);
9 }
10 public void add(T item, int score) {
11 TreeNode node = leaves.get(score);
12 node.bin.put(item);
13 while(node != root) {
14 TreeNode parent = node.parent;
15 if (node == parent.left) {
16 parent.counter.getAndIncrement();
17 }
18 node = parent;
19 }
20 }
21 public T removeMin() {
22 TreeNode node = root;
23 while(!node.isLeaf()) {
24 if (node.counter.boundedGetAndDecrement() > 0) {
25 node = node.left;
26 } else {
27 node = node.right;
28 }
29 }
30 return node.bin.get();
31 }
32 }

Figure 15.4 The SimpleTree bounded-range priority queue.

33 public class TreeNode {
34 Counter counter;
35 TreeNode parent, right, left;
36 Bin<T> bin;
37 public boolean isLeaf() {
38 return right == null;
39 }
40 }

Figure 15.5 The SimpleTree class: the inner treeNode class.

nodes that keep track of the number of items in the leaves of the subtree rooted
in each node’s left (lower score/higher priority) child.

An add(x,k) call adds x to the bin at the kth leaf, and increments node counters
in leaf-to-root order. The removeMin() method traverses the tree in root-to-leaf
order. Starting from the root, it finds the leaf with highest priority whose bin is

15.4 An Unbounded Heap-Based Priority Queue 355

non empty. It examines each node’s counter, going right if the counter is zero and
decrementing it and going left otherwise (Line 24).

An add() traversal by a thread A moving up may meet a removeMin() traversal
by a thread B moving down. As in the story of Hansel and Gretel, the descending
thread B follows the trail of non-zero counters left by the ascending add() to
locate and remove A’s item from its bin. Part (a) of Fig. 15.3 shows an execution
of the SimpleTree.

One may be concerned about the following “Grimm” scenario. thread A, mov-
ing up, meets threadB, moving down, at a tree node marked by a star, as described
in Fig. 15.3. Thread B moves down from the starred node to collect A’s item at
the leaf, while A continues up the tree, incrementing counters until it reaches
the root. What if another thread, C , starts to follow A’s path of nonzero counters
from the root down to the starred node where B encountered A? When C reaches
the starred node, it may be stranded there in the middle of the tree, and seeing
no marks it would follow the right child branches to an empty Bin, even though
there might be other items in the queue.

Fortunately, this scenario cannot happen. As depicted in Parts (b) through
(d) of Fig. 15.3, the only way the descending thread B could meet the ascend-
ing thread A at the starred node is if another add() call by an earlier thread D
incremented the same set of counters from the starred node to the root, allowing
the descending thread B to reach the starred node in the first place. The ascend-
ing thread A, when incrementing counters from the starred node to the root, is
simply completing the increment sequence leading to the item inserted by some
other thread D. To summarize, if the item returned by some thread in Line 24 is
null, then the priority queue is indeed empty.

The SimpleTree algorithm is not linearizable, since threads may overtake each
other, but it is quiescently consistent. The add() and removeMin() methods are
lock-free if the bins and counters are lock-free (the number of steps needed by
add() is bounded by the tree depth and removeMin() can fail to complete only if
items are continually being added and removed from the tree.) A typical insertion
or deletion takes a number of steps logarithmic in the lowest priority (maximal
score) in the range.

15.4 An Unbounded Heap-Based Priority Queue

This section presents a linearizable priority queue that supports priorities from
an unbounded range. It uses fine-grained locking for synchronization.

A heap is a tree where each tree node contains an item and a score. If b is
a child node of a, then b’s priority is no greater than a’s priority (i.e., items
higher in the tree have lower scores and are more important). The removeMin()
method removes and returns the root of the tree, and then rebalances the root’s
subtrees. Here, we consider binary trees, where there are only two subtrees to
rebalance.

356 Chapter 15 Priority Queues

15.4.1 A Sequential Heap

Figs. 15.6 and 15.7 show a sequential heap implementation. An efficient way to
represent a binary heap is as an array of nodes, where the tree’s root is array entry
1, and the right and left children of array entry i are entries 2 · i and (2 · i) + 1,
respectively. The next field is the index of the first unused node.

Each node has an item and a score field. To add an item, the add() method
sets child to the index of the first empty array slot (Line 13). (For brevity, we
omit code to resize a full array.) The method then initializes that node to hold the
new item and score (Line 14). At this point, the heap property may be violated,
because the new node, which is a leaf of the tree, may have higher priority (smaller
score) than an ancestor. To restore the heap property, the new node “percolates
up” the tree. We repeatedly compare the new node’s priority with its parent’s,
swapping them if the parent’s priority is lower (it has a larger score). When we
encounter a parent with a higher priority, or we reach the root, the new node is
correctly positioned, and the method returns.

To remove and return the highest-priority item, the removeMin() method
records the root’s item, which is the highest-priority item in the tree. (For brevity,
we omit the code to deal with an empty heap.) It then moves a leaf entry up
to replace the root (Lines 27–29). If the tree is empty, the method returns the
recorded item (Line 30). Otherwise, the heap property may be violated, because

1 public class SequentialHeap<T> implements PQueue<T> {
2 private static final int ROOT = 1;
3 int next;
4 HeapNode<T>[] heap;
5 public SequentialHeap(int capacity) {
6 next = ROOT;
7 heap = (HeapNode<T>[]) new HeapNode[capacity + 1];
8 for (int i = 0; i < capacity + 1; i++) {
9 heap[i] = new HeapNode<T>();
10 }
11 }
12 public void add(T item, int score) {
13 int child = next++;
14 heap[child].init(item, score);
15 while (child > ROOT) {
16 int parent = child / 2;
17 int oldChild = child;
18 if (heap[child].score < heap[parent].score) {
19 swap(child, parent);
20 child = parent;
21 } else {
22 return;
23 }
24 }
25 }

Figure 15.6 The SequentialHeap class: inner node class and add() method.

15.4 An Unbounded Heap-Based Priority Queue 357

26 public T removeMin() {
27 int bottom = --next;
28 T item = heap[ROOT].item;
29 heap[ROOT] = heap[bottom];
30 if (bottom == ROOT) {
31 return item;
32 }
33 int child = 0;
34 int parent = ROOT;
35 while (parent < heap.length / 2) {
36 int left = parent * 2; int right = (parent * 2) + 1;
37 if (left >= next) {
38 return item;
39 } else if (right >= next || heap[left].score < heap[right].score) {
40 child = left;
41 } else {
42 child = right;
43 }
44 if (heap[child].score < heap[parent].score) {
45 swap(parent, child);
46 parent = child;
47 } else {
48 return item;
49 }
50 }
51 return item;
52 }
53 ...
54 }

Figure 15.7 The SequentialHeap class: the removeMin() method.

the leaf node recently promoted to the root may have lower priority than some of
its descendants. To restore the heap property, the new root “percolates down” the
tree. If both children are empty, we are done (Line 37). If the right child is empty,
or if the right child has lower priority than the left, then we examine the left child
(Line 39). Otherwise, we examine the right child (Line 41). If the child has higher
priority than the parent, then we swap the child and parent, and continue moving
down the tree (Line 44). When both children have lower priorities, or we reach a
leaf, the displaced node is correctly positioned, and the method returns.

15.4.2 A Concurrent Heap

Bird’s-Eye View

The FineGrainedHeap class is mostly just a concurrent version of the
SequentialHeap class. As in the sequential heap, add() creates a new leaf node,
and percolates it up the tree until the heap property is restored. To allow con-
current calls to proceed in parallel, the FineGrainedHeap class percolates items
up the tree as a sequence of discrete atomic steps that can be interleaved with

358 Chapter 15 Priority Queues

other such steps. In the same way, removeMin() deletes the root node, moves a
leaf node to the root, and percolates that node down the tree until the heap prop-
erty is restored. The FineGrainedHeap class percolates items down the tree as a
sequence of discrete atomic steps that can be interleaved with other such steps.

In Detail

Warning: The code presented here does not deal with heap overflow (adding an
item when the heap is full) or underflow (removing an item when the heap is
empty). Dealing with these cases makes the code longer, without adding much of
interest.

The class uses a heapLock field to make short, atomic modifications to two or
more fields (Fig. 15.8).

The HeapNode class (Fig. 15.9) provides the following fields. The lock field
is a lock (Line 21) held for short-lived modifications, and also while the node is
being percolated down the tree. For brevity, the class exports lock() and unlock()
methods to lock and unlock the node directly. The tag field has one of the follow-
ing states: EMPTY means the node is not in use, AVAILABLE means the node holds
an item and a score, and BUSY means that the node is being percolated up the tree,
and is not yet in its proper position. While the node is BUSY, the owner field holds
the ID of the thread responsible for moving it. For brevity, the class provides an
amOwner method that returns true if and only if the node’s tag is BUSY and the
owner is the current thread.

The asymmetry in synchronization between the removeMin() method, which
percolates down the tree holding the lock, and the add() method (Fig. 15.10),
which percolates up the tree with the tag field set to BUSY, ensures that a
removeMin() call is not delayed if it encounters a node that is in the middle of
being shepherded up the tree by an add() call. As a result, an add() call must be
prepared to have its node swapped out from underneath it. If the node vanishes,
the add() call simply moves up the tree. It is sure to encounter that node some-
where between its present position and the root.

1 public class FineGrainedHeap<T> implements PQueue<T> {
2 private static int ROOT = 1;
3 private static int NO_ONE = -1;
4 private Lock heapLock;
5 int next;
6 HeapNode<T>[] heap;
7 public FineGrainedHeap(int capacity) {
8 heapLock = new ReentrantLock();
9 next = ROOT;
10 heap = (HeapNode<T>[]) new HeapNode[capacity + 1];
11 for (int i = 0; i < capacity + 1; i++) {
12 heap[i] = new HeapNode<T>();
13 }
14 }

Figure 15.8 The FineGrainedHeap class: fields.

15.4 An Unbounded Heap-Based Priority Queue 359

15 private static enum Status {EMPTY, AVAILABLE, BUSY};
16 private static class HeapNode<S> {
17 Status tag;
18 int score;
19 S item;
20 int owner;
21 Lock lock;
22 public void init(S myItem, int myScore) {
23 item = myItem;
24 score = myScore;
25 tag = Status.BUSY;
26 owner = ThreadID.get();
27 }
28 public HeapNode() {
29 tag = Status.EMPTY;
30 lock = new ReentrantLock();
31 }
32 public void lock() {lock.lock();}
33 }

Figure 15.9 The FineGrainedHeap class: inner HeapNode class.

The removeMin() method (Fig. 15.11) acquires the global heapLock, decre-
ments the next field, returning the index of a leaf node, locks the first unused slot
in the array, and releases heapLock (Lines 75–79). It then stores the root’s item in
a local variable to be returned later as the result of the call (Line 80). It marks the
node as EMPTY and unowned, swaps it with the leaf node, and unlocks the (now
empty) leaf (Lines 81–83).

At this point, the method has recorded its eventual result in a local variable,
moved the leaf to the root, and marked the leaf ’s former position as EMPTY. It
retains the lock on the root. If the heap had only one item, then the leaf and the
root are the same, so the method checks whether the root has just been marked
as EMPTY. If so, it unlocks the root and returns the item (Lines 84–88).

The new root node is now percolated down the tree until it reaches its proper
position, following much the same logic as the sequential implementation. The
node being percolated down is locked until it reaches its proper position. When
we swap two nodes, we lock them both, and swap their fields. At each step, the
method locks the node’s right and left children (Line 94). If the left child is empty,
we unlock both children and return (Line 96). If the right child is empty, but the
left child has higher priority, then we unlock the right child and examine the left
(Line 101). Otherwise, we unlock the left child and examine the right (Line 104).

If the child has higher priority, then we swap the parent and child, and unlock
the parent (Line 108). Otherwise, we unlock the child and the parent and return.

The concurrent add() method acquires the heapLock, allocates, locks, initial-
izes, and unlocks an empty leaf node (Lines 35–40). This leaf node has tag BUSY,
and the owner is the calling thread. It then unlocks the leaf node.

It then proceeds to percolate that node up the tree, using the child variable to
keep track of the node. It locks the parent, then the child (all locks are acquired in

360 Chapter 15 Priority Queues

34 public void add(T item, int score) {
35 heapLock.lock();
36 int child = next++;
37 heap[child].lock();
38 heap[child].init(item, score);
39 heapLock.unlock();
40 heap[child].unlock();
41
42 while (child > ROOT) {
43 int parent = child / 2;
44 heap[parent].lock();
45 heap[child].lock();
46 int oldChild = child;
47 try {
48 if (heap[parent].tag == Status.AVAILABLE && heap[child].amOwner()) {
49 if (heap[child].score < heap[parent].score) {
50 swap(child, parent);
51 child = parent;
52 } else {
53 heap[child].tag = Status.AVAILABLE;
54 heap[child].owner = NO_ONE;
55 return;
56 }
57 } else if (!heap[child].amOwner()) {
58 child = parent;
59 }
60 } finally {
61 heap[oldChild].unlock();
62 heap[parent].unlock();
63 }
64 }
65 if (child == ROOT) {
66 heap[ROOT].lock();
67 if (heap[ROOT].amOwner()) {
68 heap[ROOT].tag = Status.AVAILABLE;
69 heap[child].owner = NO_ONE;
70 }
71 heap[ROOT].unlock();
72 }
73 }

Figure 15.10 The FineGrainedHeap class: the add() method.

ascending order). If the parent is AVAILABLE and the child is owned by the caller,
then it compares their priorities. If the child has higher priority, then the method
swaps their fields, and moves up (Line 49). Otherwise the node is where it belongs,
and it is marked AVAILABLE and unowned (Line 52). If the child is not owned by
the caller, then the node must have been moved up by a concurrent removeMin()
call so the method simply moves up the tree to search for its node (Line 57).

Fig. 15.12 shows an execution of the FineGrainedHeap class. In Part (a) the
heap tree structure is depicted, with the priorities written in the nodes and the
respective array entries above the nodes. The next field is set to 10, the next array

15.4 An Unbounded Heap-Based Priority Queue 361

74 public T removeMin() {
75 heapLock.lock();
76 int bottom = --next;
77 heap[bottom].lock();
78 heap[ROOT].lock();
79 heapLock.unlock();
80 T item = heap[ROOT].item;
81 heap[ROOT].tag = Status.EMPTY;
82 heap[ROOT].owner = NO_ONE;
83 swap(bottom, ROOT);
84 heap[bottom].unlock();
85 if (heap[ROOT].tag == Status.EMPTY) {
86 heap[ROOT].unlock();
87 return item;
88 }
89 int child = 0;
90 int parent = ROOT;
91 while (parent < heap.length / 2) {
92 int left = parent * 2;
93 int right = (parent * 2) + 1;
94 heap[left].lock();
95 heap[right].lock();
96 if (heap[left].tag == Status.EMPTY) {
97 heap[right].unlock();
98 heap[left].unlock();
99 break;
100 } else if (heap[right].tag == Status.EMPTY || heap[left].score
101 < heap[right].score) {
102 heap[right].unlock();
103 child = left;
104 } else {
105 heap[left].unlock();
106 child = right;
107 }
108 if (heap[child].score < heap[parent].score) {
109 swap(parent, child);
110 heap[parent].unlock();
111 parent = child;
112 } else {
113 heap[child].unlock();
114 break;
115 }
116 }
117 heap[parent].unlock();
118 return item;
119 }
120 ...
121 }

Figure 15.11 The FineGrainedHeap class: the removeMin() method.

362 Chapter 15 Priority Queues

(a)

avail

avail

7

0

avail

8

0

avail

5

0

3

0

avail

avail

4

0

avail

12

0

14

0

10

0

1

2 3

4 5 6 7

8 9

status

priority owner

lockitem

0

heapLock

10

next

1

0

A: removeMin
will return 1

9

(b)

avail

7

1

avail

8

0

5

0

3 3

1

12

0

avail

14

0

 busy

 2

1

1

2 3

4 5 6 7

8 9

status

priority owner

lockitem

0

heapLock next

10

1

10 9

B: add(2)

B

A: swap

B: swap

(c)

2

1

8

0

5

0

10

1

4

0

12

0

14

0 1

10

1

2 3

4 5 6 7

8 9

status

priority owner

lockitem

0

heapLock next

 3

0

10

B

A: swap

(d)

 7

0

8

0

5

0

 2

0

4

0

12

0

14

0

10

0

1

2 3

4 5 6 7

8 9

status

priority owner

lockitem

0

heapLock next

 busy avail avail

avail avail

avail

avail avail

avail

avail avail avail

busy avail

avail

avail avail

avail

 3

0

10

B

A: swap

B: where

 is 2?

avail avail

avail

avail

avail avail

avail

4

0

Figure 15.12 The FineGrainedHeap class: a heap-based priority queue.

15.5 A Skiplist-Based Unbounded Priority Queue 363

entry into which a new item can be added. As can be seen, thread A starts a
removeMin() method call, collecting the value 1 from the root as the one to be
returned, moving the leaf node with score 10 to the root, and setting next back
to 9. The removeMin() method checks whether 10 needs to be percolated down
the heap. In Part (b) thread A percolates 10 down the heap, while thread B adds
a new item with score 2 to the heap in the recently emptied array entry 9. The
owner of the new node is B, and B starts to percolate 2 up the heap, swapping it
with its parent node of score 7. After this swap, it releases the locks on the nodes.
At the same time A swaps the node with scores 10 and 3. In Part (c), A, ignor-
ing the busy state of 2, swaps 10 and 2 and then 10 and 7 using hand-over-hand
locking. It has thus swapped 2, which was not locked, from under thread B. In
Part (d), when B moves to the parent node in array entry 4, it finds that the busy
node with score 2 it was percolating up has disappeared. However, it continues
up the heap and locates the node with 2 as it ascends, moving it to its correct
position in the heap.

15.5 A Skiplist-Based Unbounded Priority Queue

One drawback of the FineGrainedHeap priority queue algorithm is that the
underlying heap structure requires complex, coordinated rebalancing. In this
section, we examine an alternative that requires no rebalancing.

Recall from Chapter 14 that a skiplist is a collection of ordered lists. Each list
is a sequence of nodes, and each node contains an item. Each node belongs to a
subset of the lists, and nodes in each list are sorted by their hash values. Each
list has a level, ranging from 0 to a maximum. The bottom-level list contains all
the nodes, and each higher-level list is a sublist of the lower-level lists. Each list
contains about half the nodes of the next lower-level list. As a result, inserting or
removing a node from a skiplist containing k items takes expected time O(logk).

In Chapter 14 we used skiplists to implement sets of items. Here, we adapt
skiplists to implement a priority queue of items tagged with priorities. We
describe a PrioritySkipList class that provides the basic functionality needed
to implement an efficient priority queue. We base the PrioritySkipList
(Figs. 15.13 and 15.14) class on the LockFreeSkipList class of Chapter 14,
though we could just as easily have based it on the LazySkipList class. Later,
we describe a SkipQueue wrapper to cover some of the PrioritySkipList<T>
class’s rough edges.

Here is a bird’s-eye view of the algorithm. The PrioritySkipList class sorts
items by priority instead of by hash value, ensuring that high-priority items (the
ones we want to remove first) appear at the front of the list. Fig. 15.15 shows
such a PrioritySkipList structure. Removing the item with highest prior-
ity is done lazily (See Chapter 9). A node is logically removed by marking it
as removed, and is later physically removed by unlinking it from the list. The
removeMin() method works in two steps: first, it scans through the bottom-level

364 Chapter 15 Priority Queues

1 public final class PrioritySkipList<T> {
2 public static final class Node<T> {
3 final T item;
4 final int score;
5 AtomicBoolean marked;
6 final AtomicMarkableReference<Node<T>>[] next;
7 // sentinel node constructor
8 public Node(int myPriority) { ... }
9 // ordinary node constructor
10 public Node(T x, int myPriority) { ... }
11 }
12 boolean add(Node node) { ... }
13 boolean remove(Node<T> node) { ... }
14 public Node<T> findAndMarkMin() {
15 Node<T> curr = null, succ = null;
16 curr = head.next[0].getReference();
17 while (curr != tail) {
18 if (!curr.marked.get()) {
19 if (curr.marked.compareAndSet(false, true)) {
20 return curr;
21 } else {
22 curr = curr.next[0].getReference();
23 }
24 }
25 }
26 return null; // no unmarked nodes
27 }

Figure 15.13 The PrioritySkipList<T> class: inner Node<T> class.

1 public class SkipQueue<T> {
2 PrioritySkipList<T> skiplist;
3 public SkipQueue() {
4 skiplist = new PrioritySkipList<T>();
5 }
6 public boolean add(T item, int score) {
7 Node<T> node = (Node<T>)new Node(item, score);
8 return skiplist.add(node);
9 }
10 public T removeMin() {
11 Node<T> node = skiplist.findAndMarkMin();
12 if (node != null) {
13 skiplist.remove(node);
14 return node.item;
15 } else{
16 return null;
17 }
18 }
19 }

Figure 15.14 The SkipQueue<T> class.

15.5 A Skiplist-Based Unbounded Priority Queue 365

(a)

0

0

0

0

0

0

0

0

0

0

0

9

1

1

5

0

2

0

11

0

25

0

15

0

8

level

3

2

1

0

2 1 1

A: deleteMin()
1 1 1 1 1 1 1 0 0 marked

(b)

0

0

0

0

0

0

0

0

0

0

0

9

1

1

5

0

2

0

0

18

0

11

0

25

0

15

0

8

level

3

2

1

0

A: deleteMin()
1 1 1 1 01 1 0 0 marked

0

0

3
0

B: add(3)

z

B: add(18)

12

Figure 15.15 The SkipQueue priority queue: an execution that is quiescently consistent but not linearizable. In Part (a)
thread A starts a removeMin() method call. It traverses the lowest-level list in the PrioritySkipList to find and logically
remove the first unmarked node. It traverses over all marked nodes, even ones like the node with score 5 which is in the
process of being physically removed from the SkipList. In Part (b) while A is visiting the node with score 9, thread B adds a
node with score 3, and then adds a node with score 18. Thread A marks and returns the node with score 18. A linearizable
execution could not return an item with score 18 before the item with score 3 is returned.

list for the first unmarked node. When it finds one, it tries to mark it. If it fails,
it continues scanning down the list, but if it succeeds, then removeMin() calls
the PrioritySkipList class’s logarithmic-time remove() method to physically
remove the marked node.

We now turn our attention to the algorithm details. Fig. 15.13 shows
an outline of the the PrioritySkipList class, a modified version of the
LockFreeSkipList class of Chapter 14. It is convenient to have the add()
and remove() calls take skiplist nodes instead of items as arguments and
results. These methods are straightforward adaptations of the corresponding
LockFreeSkipList methods, and are left as exercises. This class’s nodes differ
from LockFreeSkipList nodes in two fields: an integer score field (Line 4),
and an AtomicBoolean marked field used for logical deletion from the priority
queue (not from the skiplist) (Line 5). The findAndMarkMin() method scans
the lowest-level list until it finds a node whose marked field is false, and then
atomically tries to set that field to true (Line 19). If it fails, it tries again. When
it succeeds, it returns the newly marked node to the caller (Line 20).

Fig. 15.14 shows the SkipQueue<T> class. This class is just a wrapper for a
PrioritySkipList<T>. The add(x,p) method adds item x with score p by cre-
ating a node to hold both values, and passing that node to the PrioritySkipList
class’s add() method. The removeMin() method calls the PrioritySkipList
class’s findAndMarkMin() method to mark a node as logically deleted, and then
calls remove() to physically remove that node.

The SkipQueue class is quiescently consistent: if an item x was present before
the start of a removeMin() call, then the item returned will have a score less
than or equal to that of x. This class is not linearizable: a thread might add a
higher priority (lower score) item and then a lower priority item, and the travers-
ing thread might find and return the later inserted lower priority item, violating

366 Chapter 15 Priority Queues

linearizability. This behavior is quiescently consistent, however, because one can
reorder add() calls concurrent with any removeMin() to be consistent with a
sequential priority queue.

The SkipQueue class is lock-free. A thread traversing the lowest level of the
SkipList might always be beaten to the next logically undeleted node by another
call, but it can fail repeatedly only if other threads repeatedly succeed.

In general, the quiescently consistent SkipQueue tends to outperform the lin-
earizable heap-based queue. If there are n threads, then the first logically undeleted
node is always among the first n nodes in the bottom-level list. Once a node has
been logically deleted, then it will be physically deleted in worst-caseO(logk) steps,
wherek is the size of the list. In practice, a node will probably be deleted much more
quickly, since that node is likely to be close to the start of the list.

There are, however, several sources of contention in the algorithm that affect
its performance and require the use of backoff and tuning. Contention could
occur if several threads concurrently try to mark a node, where the losers pro-
ceed together to try to mark the next node, and so on. Contention can also arise
when physically removing an item from the skiplist. All nodes to be removed are
likely to be neighbors at the start of the skiplist, so chances are high that they
share predecessors, which could cause repeated compareAndSet() failures when
attempting to snip out references to the nodes.

15.6 Chapter Notes

The FineGrainedHeap priority queue is by Galen Hunt, Maged Michael,
Srinivasan Parthasarathy, and Michael Scott [74]. The SimpleLinear and
SimpleTree priority queues are credited to Nir Shavit and Asaph Zemach [143].
The SkipQueue is by Itai Lotan and Nir Shavit [107] who also present a lin-
earizable version of the algorithm.

15.7 Exercises

Exercise 173. Give an example of a quiescently consistent priority queue execution
that is not linearizable.

Exercise 174. Implement a quiescently consistent Counter with a lock-free imple-
mentation of the boundedGetAndIncrement() and boundedGetAndDecrement()
methods using a counting network or diffracting tree.

Exercise 175. In the SimpleTree algorithm, what would happen if the
boundedGetAndDecrement() method were replaced with a regular
getAndDecrement()?

Exercise 176. Devise a SimpleTree algorithm with bounded capacity using
boundedGetAndIncrement() methods in treeNode counters.

15.7 Exercises 367

Exercise 177. In the SimpleTree class, what would happen if add(), after placing
an item in the appropriate Bin, incremented counters in the same top-down man-
ner as in the removeMin() method? Give a detailed example.

Exercise 178. Prove that the SimpleTree is a quiescently consistent priority queue
implementation.

Exercise 179. Modify FineGrainedHeap to allocate new heap nodes dynamically.
What are the performance limitations of this approach?

Exercise 180. Fig. 15.16 shows a bit-reversed counter. We could use the bit-reversed
counter to manage the next field of the FineGrainedHeap class. Prove the fol-

1 public class BitReversedCounter {
2 int counter, reverse, highBit;
3 BitReversedCounter(int initialValue) {
4 counter = initialValue;
5 reverse = 0;
6 highBit = -1;
7 }
8 public int reverseIncrement() {
9 if (counter++ == 0) {

10 reverse = highBit = 1;
11 return reverse;
12 }
13 int bit = highBit >> 1;
14 while (bit != 0) {
15 reverse ˆ= bit;
16 if ((reverse & bit) != 0) break;
17 bit >>= 1;
18 }
19 if (bit == 0)
20 reverse = highBit <<= 1;
21 return reverse;
22 }
23 public int reverseDecrement() {
24 counter--;
25 int bit = highBit >> 1;
26 while (bit != 0) {
27 reverse ˆ= bit;
28 if ((reverse & bit) == 0) {
29 break;
30 }
31 bit >>= 1;
32 }
33 if (bit == 0) {
34 reverse = counter;
35 highBit >>= 1;
36 }
37 return reverse;
38 }
39 }

Figure 15.16 A bit-reversed counter.

368 Chapter 15 Priority Queues

lowing: for any two consecutive insertions, the two paths from the leaves to the
root have no common nodes other than the root. Why is this a useful property
for the FineGrainedHeap?

Exercise 181. Provide the code for the PrioritySkipList class’s add() and
remove() methods.

Exercise 182. The PrioritySkipList class used in this chapter is based on the
LockFreeSkipList class. Write another PrioritySkipList class based on the
LazySkipList class.

Exercise 183. Describe a scenario in the SkipQueue implementation in which con-
tention would arise from multiple concurrent removeMin() method calls.

Exercise 184. The SkipQueue class is quiescently consistent but not linearizable.
Here is one way to make this class linearizable by adding a simple time-stamping
mechanism. After a node is completely inserted into the SkipQueue, it acquires a
timestamp. A thread performing a removeMin() notes the time at which it starts
its traversal of the lower level of the SkipQueue, and only considers nodes whose
timestamp is earlier than the time at which it started its traversal, effectively ignor-
ing nodes inserted during its traversal. Implement this class and justify why it
works.

16Futures, Scheduling, and
Work Distribution

16.1 Introduction

In this chapter we show how to decompose certain kinds of problems into
components that can be executed in parallel. Some applications break down
naturally into parallel threads. For example, when a request arrives at a web server,
the server can just create a thread (or assign an existing thread) to handle the
request. Applications that can be structured as producers and consumers also tend
to be easily parallelizable. In this chapter, however, we look at applications that
have inherent parallelism, but where it is not obvious how to take advantage of it.

Let us start by thinking about how to multiply two matrices in parallel. Recall
that if aij is the value at position (i, j) of matrix A, then the product C of two
n× n matrices A and B is given by:

cij =
n−1∑
k=0

aki · bjk.

As a first step, we could put one thread in charge of computing each cij . Fig. 16.1
shows a matrix multiplication program that creates an n × n array of Worker
threads (Fig. 16.2), where the worker thread in position (i, j) computes cij . The
program starts each task, and waits for them all to finish.1

In principle, this might seem like an ideal design. The program is highly
parallel, and the threads do not even have to synchronize. In practice, however,
while this design might perform well for small matrices, it would perform very
poorly for matrices large enough to be interesting. Here is why: threads require
memory for stacks and other bookkeeping information. Creating, scheduling,
and destroying threads takes a substantial amount of computation. Creating
lots of short-lived threads is an inefficient way to organize a multi-threaded
computation.

1 In real code, you should check that all the dimensions agree. Here we omit most safety checks for
brevity.

369

370 Chapter 16 Futures, Scheduling, and Work Distribution

1 class MMThread {
2 double[][] a, b, c;
3 int n;
4 public MMThread(double[][] myA, double[][] myB) {
5 n = ymA.length;
6 a = myA;
7 b = myB;
8 c = new double[n][n];
9 }
10 void multiply() {
11 Worker[][] worker = new Worker[n][n];
12 for (int row = 0; row < n; row++)
13 for (int col = 0; col < n; col++)
14 worker[row][col] = new Worker(row,col);
15 for (int row = 0; row < n; row++)
16 for (int col = 0; col < n; col++)
17 worker[row][col].start();
18 for (int row = 0; row < n; row++)
19 for (int col = 0; col < n; col++)
20 worker[row][col].join();
21 }

Figure 16.1 The MMThread task: matrix multiplication using threads.

22 class Worker extends Thread {
23 int row, col;
24 Worker(int myRow, int myCol) {
25 row = myRow; col = myCol;
26 }
27 public void run() {
28 double dotProduct = 0.0;
29 for (int i = 0; i < n; i++)
30 dotProduct += a[row][i] * b[i][col];
31 c[row][col] = dotProduct;
32 }
33 }
34 }

Figure 16.2 The MMThread task: inner Worker thread class.

A more effective way to organize such a program is to create a pool of long-
lived threads. Each thread in the pool repeatedly waits until it is assigned a task,
a short-lived unit of computation. When a thread is assigned a task, it executes
that task, and then rejoins the pool to await its next assignment. Thread pools can
be platform-dependent: it makes sense for large-scale multiprocessors to provide
large pools, and vice versa. Thread pools avoid the cost of creating and destroying
threads in response to short-lived fluctuations in demand.

In addition to performance benefits, thread pools have another equally
important, but less obvious advantage: they insulate the application programmer
from platform-specific details such as the number of concurrent threads that can
be scheduled efficiently. Thread pools make it possible to write a single program

16.1 Introduction 371

that runs equally well on a uniprocessor, a small-scale multiprocessor, and a
large-scale multiprocessor. They provide a simple interface that hides complex,
platform-dependent engineering trade-offs.

In Java, a thread pool is called an executor service (interface java.util.Executor-
Service). It provides the ability to submit a task, the ability to wait for a set
of submitted tasks to complete, and the ability to cancel uncompleted tasks.
A task that does not return a result is usually represented as a Runnable object,
where the work is performed by a run() method that takes no arguments and
returns no results. A task that returns a value of type T is usually represented as a
Callable<T> object, where the result is returned by a call() with the T method
that takes no arguments.

When a Callable<T> object is submitted to an executor service, the ser-
vice returns an object implementing the Future<T> interface. A Future<T> is a
promise to deliver the result of an asynchronous computation, when it is ready.
It provides a get() method that returns the result, blocking if necessary until
the result is ready. (It also provides methods for canceling uncompleted com-
putations, and for testing whether the computation is complete.) Submitting a
Runnable task also returns a future. Unlike the future returned for a Callable<T>
object, this future does not return a value, but the caller can use that future’s get()
method to block until the computation finishes. A future that does not return an
interesting value is declared to have class Future<?>.

It is important to understand that creating a future does not guarantee that
any computations actually happen in parallel. Instead, these methods are advi-
sory: they tell an underlying executor service that it may execute these methods in
parallel.

We now consider how to implement parallel matrix operations using an execu-
tor service. Fig. 16.3 shows a Matrix class that provides put() and get() methods
to access matrix elements, along with a constant-time split() method that splits
an n-by-n matrix into four (n/2)-by-(n/2) submatrices. In Java terminology, the
four submatrices are backed by the original matrix, meaning that changes to the
submatrices are reflected in the original, and vice versa.

Our job is to devise a MatrixTask class that provides parallel methods to add
and multiply matrices. This class has one static field, an executor service called
exec, and two static methods to add and multiply matrices.

For simplicity, we consider matrices whose dimension n is a power of 2. Any
such matrix can be decomposed into four submatrices:

A =

(
A00 A01

A10 A11

)

Matrix addition C = A + B can be decomposed as follows:
(
C00 C01

C10 C11

)
=

(
A00 A01

A10 A11

)
+

(
B00 B01

B10 B11

)

=

(
A00 + B00 A01 + B01

A10 + B10 A11 + B11

)

372 Chapter 16 Futures, Scheduling, and Work Distribution

1 public class Matrix {
2 int dim;
3 double[][] data;
4 int rowDisplace, colDisplace;
5 public Matrix(int d) {
6 dim = d;
7 rowDisplace = colDisplace = 0;
8 data = new double[d][d];
9 }
10 private Matrix(double[][] matrix, int x, int y, int d) {
11 data = matrix;
12 rowDisplace = x;
13 colDisplace = y;
14 dim = d;
15 }
16 public double get(int row, int col) {
17 return data[row+rowDisplace][col+colDisplace];
18 }
19 public void set(int row, int col, double value) {
20 data[row+rowDisplace][col+colDisplace] = value;
21 }
22 public int getDim() {
23 return dim;
24 }
25 Matrix[][] split() {
26 Matrix[][] result = new Matrix[2][2];
27 int newDim = dim / 2;
28 result[0][0] =
29 new Matrix(data, rowDisplace, colDisplace, newDim);
30 result[0][1] =
31 new Matrix(data, rowDisplace, colDisplace + newDim, newDim);
32 result[1][0] =
33 new Matrix(data, rowDisplace + newDim, colDisplace, newDim);
34 result[1][1] =
35 new Matrix(data, rowDisplace + newDim, colDisplace + newDim, newDim);
36 return result;
37 }
38 }

Figure 16.3 The Matrix class.

These four sums can be done in parallel.
The code for multithreaded matrix addition appears in Fig. 16.4. The AddTask

class has three fields, initialized by the constructor: a and b are the matrices to
be summed, and c is the result, which is updated in place. Each task does the
following. At the bottom of the recursion, it simply adds the two scalar val-
ues (Line 19).2 Otherwise, it splits each of its arguments into four sub-matrices

2 In practice, it is usually more efficient to stop the recursion well before reaching a matrix size of
one. The best size will be platform-dependent.

16.1 Introduction 373

1 public class MatrixTask {
2 static ExecutorService exec = Executors.newCachedThreadPool();
3 ...
4 static Matrix add(Matrix a, Matrix b) throws ExecutionException {
5 int n = a.getDim();
6 Matrix c = new Matrix(n);
7 Future<?> future = exec.submit(new AddTask(a, b, c));
8 future.get();
9 return c;
10 }
11 static class AddTask implements Runnable {
12 Matrix a, b, c;
13 public AddTask(Matrix myA, Matrix myB, Matrix myC) {
14 a = myA; b = myB; c = myC;
15 }
16 public void run() {
17 try {
18 int n = a.getDim();
19 if (n == 1) {
20 c.set(0, 0, a.get(0,0) + b.get(0,0));
21 } else {
22 Matrix[][] aa = a.split(), bb = b.split(), cc = c.split();
23 Future<?>[][] future = (Future<?>[][]) new Future[2][2];
24 for (int i = 0; i < 2; i++)
25 for (int j = 0; j < 2; j++)
26 future[i][j] =
27 exec.submit(new AddTask(aa[i][j], bb[i][j], cc[i][j]));
28 for (int i = 0; i < 2; i++)
29 for (int j = 0; j < 2; j++)
30 future[i][j].get();
31 }
32 } catch (Exception ex) {
33 ex.printStackTrace();
34 }
35 }
36 }
37 }

Figure 16.4 The MatrixTask class: parallel matrix addition.

(Line 22), and launches a new task for each sub-matrix (Lines 24–27). Then,
it waits until all futures can be evaluated, meaning that the sub-computations
have finished (Lines 28–30). At that point, the task simply returns, the result of
the computation having been stored in the result matrix. Matrix multiplication
C = A ·B can be decomposed as follows:

(
C00 C01

C10 C11

)
=

(
A00 A01

A10 A11

)
·
(
B00 B01

B10 B11

)

=

(
A00 ·B00 + A01 ·B10 A00 ·B01 + A01 ·B11

A10 ·B00 + A11 ·B10 A10 ·B01 + A11 ·B11

)

374 Chapter 16 Futures, Scheduling, and Work Distribution

The eight product terms can be computed in parallel, and when those
computations are done, the four sums can then be computed in parallel.

Fig. 16.5 shows the code for the parallel matrix multiplication task. Matrix
multiplication is structured in a similar way to addition. The MulTask class creates
two scratch arrays to hold the matrix product terms (Line 42). It splits all five
matrices (Line 50), submits tasks to compute the eight product terms in parallel
(Line 56), and waits for them to complete (Line 60). Once they are complete, the
thread submits tasks to compute the four sums in parallel (Line 64), and waits for
them to complete (Line 65).

The matrix example uses futures only to signal when a task is complete.
Futures can also be used to pass values from completed tasks. To illustrate
this use of futures, we consider how to decompose the well-known Fibonacci

38 static class MulTask implements Runnable {
39 Matrix a, b, c, lhs, rhs;
40 public MulTask(Matrix myA, Matrix myB, Matrix myC) {
41 a = myA; b = myB; c = myC;
42 lhs = new Matrix(a.getDim());
43 rhs = new Matrix(a.getDim());
44 }
45 public void run() {
46 try {
47 if (a.getDim() == 1) {
48 c.set(0, 0, a.get(0,0) * b.get(0,0));
49 } else {
50 Matrix[][] aa = a.split(), bb = b.split(), cc = c.split();
51 Matrix[][] ll = lhs.split(), rr = rhs.split();
52 Future<?>[][][] future = (Future<?>[][][]) new Future[2][2][2];
53 for (int i = 0; i < 2; i++)
54 for (int j = 0; j < 2; j++) {
55 future[i][j][0] =
56 exec.submit(new MulTask(aa[i][0], bb[0][i], ll[i][j]));
57 future[i][j][1] =
58 exec.submit(new MulTask(aa[1][i], bb[i][1], rr[i][j]));
59 }
60 for (int i = 0; i < 2; i++)
61 for (int j = 0; j < 2; j++)
62 for (int k = 0; k < 2; k++)
63 future[i][j][k].get();
64 Future<?> done = exec.submit(new AddTask(lhs, rhs, c));
65 done.get();
66 }
67 } catch (Exception ex) {
68 ex.printStackTrace();
69 }
70 }
71 }
72 ...
73 }

Figure 16.5 The MatrixTask class: parallel matrix multiplication.

16.2 Analyzing Parallelism 375

1 class FibTask implements Callable<Integer> {
2 static ExecutorService exec = Executors.newCachedThreadPool();
3 int arg;
4 public FibTask(int n) {
5 arg = n;
6 }
7 public Integer call() {
8 if (arg > 2) {
9 Future<Integer> left = exec.submit(new FibTask(arg-1));

10 Future<Integer> right = exec.submit(new FibTask(arg-2));
11 return left.get() + right.get();
12 } else {
13 return 1;
14 }
15 }
16 }

Figure 16.6 The FibTask class: a Fibonacci task with futures.

function into a multithreaded program. Recall that the Fibonacci sequence is
defined as follows:

F (n) =

⎧⎨
⎩

1 if n = 0,

1 if n = 1,

F (n− 1) + F (n− 2) if n > 1,

Fig. 16.6 shows one way to compute Fibonacci numbers in parallel. This imple-
mentation is very inefficient, but we use it here to illustrate multithreaded depen-
dencies. The call() method creates two futures, one that computes F (n− 2) and
another that computes F (n− 1), and then sums them. On a multiprocessor, time
spent blocking on the future for F (n− 1) can be used to compute F (n− 2).

16.2 Analyzing Parallelism

Think of a multithreaded computation as a directed acyclic graph (DAG), where
each node represents a task, and each directed edge links a predecessor task to a
successor task, where the successor depends on the predecessor’s result. For exam-
ple, a conventional thread is just a chain of nodes where each node depends on
its predecessor. By contrast, a node that creates a future has two successors: one
node is its successor in the same thread, and the other is the first node in the
future’s computation. There is also an edge in the other direction, from child to
parent, that occurs when a thread that has created a future calls that future’s get()
method, waiting for the child computation to complete. Fig. 16.7 shows the DAG
corresponding to a short Fibonacci execution.

Some computations are inherently more parallel than others. Let us make
this notion precise. Assume that all individual computation steps take the
same amount of time, which constitutes our basic measuring unit. Let TP be

376 Chapter 16 Futures, Scheduling, and Work Distribution

submit get
1

2

3 4

5

6

7

8
fib(4)

fib(3)

fib(2)

fib(1) fib(1)

fib(1)

fib(2)

fib(1) fib(1)

Figure 16.7 The DAG created by a multithreaded Fibonacci execution. The caller creates
a FibTask(4) task, which in turn creates FibTask(3) and FibTask(2) tasks. The round nodes
represent computation steps and the arrows between the nodes represent dependencies.
For example, there are arrows pointing from the first two nodes in FibTask(4) to the first
nodes in FibTask(3) and FibTask(2) respectively, representing submit() calls, and arrows from
the last nodes in FibTask(3) and FibTask(2) to the last node in FibTask(4) representing get()
calls. The computation’s critical path has length 8 and is marked by numbered nodes.

the minimum time (measured in computation steps) needed to execute a multi-
threaded program on a system ofP dedicated processors. TP is thus the program’s
latency, the time it would take it to run from start to finish, as measured by an
outside observer. We emphasize that TP is an idealized measure: it may not always
be possible for every processor to find steps to execute, and actual computation
time may be limited by other concerns, such as memory usage. Nevertheless,
TP is clearly a lower bound on how much parallelism one can extract from a
multithreaded computation.

Some values of T are important enough that they have special names. T1, the
number of steps needed to execute the program on a single processor, is called
the computation’s work. Work is also the total number of steps in the entire com-
putation. In one time step (of the outside observer), P processors can execute at
most P computation steps, so

TP � T1/P.

The other extreme is also of special importance: T∞, the number of steps to exe-
cute the program on an unlimited number of processors, is called the critical-path
length. Because finite resources cannot do better than infinite resources,

TP � T∞.

16.2 Analyzing Parallelism 377

The speedup on P processors is the ratio:

T1/TP

We say a computation has linear speedup if T1/TP = Θ(P). Finally, a computa-
tion’s parallelism is the maximum possible speedup: T1/T∞. A computation’s par-
allelism is also the average amount of work available at each step along the critical
path, and so provides a good estimate of the number of processors one should
devote to a computation. In particular, it makes little sense to use substantially
more than that number of processors.

To illustrate these concepts, we now revisit the concurrent matrix add and mul-
tiply implementations introduced in Section 16.1.

Let AP (n) be the number of steps needed to add two n × n matrices on P
processors. Recall that matrix addition requires four half-size matrix additions,
plus a constant amount of work to split the matrices. The work A1(n) is given by
the recurrence:

A1(n) = 4A1(n/2) +Θ(1)

= Θ(n2).

This program has the same work as the conventional doubly-nested loop imple-
mentation.

Because the half-size additions can be done in parallel, the critical path length
is given by the following formula.

A∞(n) = A∞(n/2) +Θ(1)

= Θ(logn)

Let MP (n) be the number of steps needed to multiply two n × n matrices on P
processors. Recall that matrix multiplication requires eight half-size matrix mul-
tiplications and four matrix additions. The workM1(n) is given by the recurrence:

M1(n) = 8M1(n/2) + 4A1(n)

M1(n) = 8M1(n/2) +Θ(n2)

= Θ(n3).

This work is also the same as the conventional triply-nested loop implementation.
The half-size multiplications can be done in parallel, and so can the additions,
but the additions must wait for the multiplications to complete. The critical path
length is given by the following formula:

M∞(n) = M∞(n/2) + A∞(n)

= M∞(n/2) +Θ(logn)

= Θ(log2n)

The parallelism for matrix multiplication is given by:

M1(n)/M∞(n) = Θ(n3/ log2 n),

378 Chapter 16 Futures, Scheduling, and Work Distribution

which is pretty high. For example, suppose we want to multiply two 1000-by-1000
matrices. Here, n3 = 109, and logn = log 1000 ≈ 10 (logs are base two), so the
parallelism is approximately 109/102 = 107. Roughly speaking, this instance of
matrix multiplication could, in principle, keep roughly a million processors busy
well beyond the powers of any multiprocessor we are likely to see in the immediate
future.

We should understand that the parallelism in the computation given here is a
highly idealized upper bound on the performance of any multithreaded matrix
multiplication program. For example, when there are idle threads, it may not be
easy to assign those threads to idle processors. Moreover, a program that displays
less parallelism but consumes less memory may perform better because it encoun-
ters fewer page faults. The actual performance of a multithreaded computation
remains a complex engineering problem, but the kind of analysis presented in
this chapter is an indispensable first step in understanding the degree to which a
problem can be solved in parallel.

16.3 Realistic Multiprocessor Scheduling

Our analysis so far has been based on the assumption that each multithreaded
program has P dedicated processors. This assumption, unfortunately, is not real-
istic. Multiprocessors typically run a mix of jobs, where jobs come and go dynami-
cally. One might start, say, a matrix multiplication application on P processors.
At some point, the operating system may decide to download a new software
upgrade, preempting one processor, and the application then runs on P − 1 pro-
cessors. The upgrade program pauses waiting for a disk read or write to complete,
and in the interim the matrix application has P processors again.

Modern operating systems provide user-level threads that encompass a pro-
gram counter and a stack. (A thread that includes its own address space is often
called a process.) The operating system kernel includes a scheduler that runs
threads on physical processors. The application, however, typically has no control
over the mapping between threads and processors, and so cannot control when
threads are scheduled.

As we have seen, one way to bridge the gap between user-level threads and
operating system-level processors is to provide the software developer with a
three-level model. At the top level, multithreaded programs (such as matrix mul-
tiplication) decompose an application into a dynamically-varying number of
short-lived tasks. At the middle level, a user-level scheduler maps these tasks to
a fixed number of threads. At the bottom level, the kernel maps these threads onto
hardware processors, whose availability may vary dynamically. This last level of
mapping is not under the application’s control: applications cannot tell the ker-
nel how to schedule threads (especially because commercially available operating
systems kernels are hidden from users).

16.3 Realistic Multiprocessor Scheduling 379

Assume for simplicity that the kernel works in discrete steps: at step i, the kernel
chooses an arbitrary subset of 0 � pi � P user-level threads to run for one step.
The processor average PA over T steps is defined to be:

PA =
1

T

T−1∑
i=0

pi. (16.3.1)

Instead of designing a user-level schedule to achieve a P -fold speedup, we can
try to achieve a PA-fold speedup. A schedule is greedy if the number of program
steps executed at each time step is the minimum of pi, the number of available
processors, and the number of ready nodes (ones whose associated step is ready
to be executed) in the program DAG. In other words, it executes as many of the
ready nodes as possible, given the number of available processors.

Theorem 16.3.1. Consider a multithreaded program with work T1, critical-path
length T∞, and P user-level threads. We claim that any greedy execution has
length T which is at most

T1

PA

+
T∞(P − 1)

PA

.

Proof: Equation 16.3.1 implies that:

T =
1

PA

T−1∑
i=0

pi.

We bound T by bounding the sum of the pi. At each kernel-level step i, let us
imagine getting a token for each thread that was assigned a processor. We can
place these tokens in one of two buckets. For each user-level thread that executes
a node at step i, we place a token in a work bucket, and for each thread that remains
idle at that step (that is, it was assigned to a processor but was not ready to execute
because the node associated with its next step had dependencies that force it to
wait for some other threads), we place a token in an idle bucket. After the last step,
the work bucket contains T1 tokens, one for each node of the computation DAG.
How many tokens does the idle bucket contain?

We define an idle step as one in which some thread places a token in the idle
bucket. Because the application is still running, at least one node is ready for exe-
cution in each step. Because the scheduler is greedy, at least one node will be exe-
cuted, so at least one processor is not idle. Thus, of the pi threads scheduled at
step i, at most pi − 1 � P − 1 can be idle.

How many idle steps could there be? Let Gi be a sub-DAG of the computation
consisting of the nodes that have not been executed at the end of step i. Fig. 16.8
shows such a sub-DAG.

Every node that does not have incoming edges (apart from its predecessor in
program order) in Gi−1 (such as the last node of FibTask(2) at the end of step 6)
was ready at the start of step i. There must be fewer than pi such nodes, because

380 Chapter 16 Futures, Scheduling, and Work Distribution

submit get

2

3 4 6

7

fib(4)

fib(3)

fib(2)

fib(1)

fib(1)

fib(2)

fib(1) fib(1)

1 8
submit get

2

3 4 6

7

fib(4)

fib(3)

fib(2)

fib(1)

fib(1)

fib(2)

fib(1) fib(1)

1 8

Figure 16.8 A sub-DAG in the 6th step of the FibTask(4) computation. The grey line marks
the longest path. We know that the last step of FibTask(2), which is next on the critical path,
is ready to execute because the steps it depends on have been completed (it has no incoming
edges apart from its preceding step in program order). Moreover, we know this is an idle
step: there is not enough work for all the processors. But the scheduler is greedy, so we must
have scheduled the last step of FibTask(2) in this step. This is an example of how every idle
round shortens this critical path by one node (other steps may shorten it too, but we do not
count them).

otherwise the greedy schedule could execute pi of them, and the step i would
not be idle. Thus, the scheduler must have executed this step. It follows that the
longest directed path in Gi is one shorter than the longest directed path in Gi−1.
The longest directed path before step 0 is T∞, so the greedy schedule can have at
most T∞ idle steps. Combining these observations we deduce that at most T∞ idle
steps are executed with at most (P − 1) tokens added in each, so the idle bucket
contains at most T∞(P − 1) tokens.

The total number of tokens in both buckets is therefore

T−1∑
i=0

pi � T1 + T∞(P − 1),

yielding the desired bound. �

It turns out that this bound is within a factor of two of optimal. Actu-
ally, achieving an optimal schedule is NP-complete, so greedy schedules are a
simple and practical way to achieve performance that is reasonably close to
optimal.

16.4 Work Distribution 381

16.4 Work Distribution

We now understand that the key to achieving a good speedup is to keep
user-level threads supplied with tasks, so that the resulting schedule is as greedy as
possible. Multithreaded computations, however, create and destroy tasks dynami-
cally, sometimes in unpredictable ways. A work distribution algorithm is needed
to assign ready tasks to idle threads as efficiently as possible.

One simple approach to work distribution is work dealing: an overloaded task
tries to offload tasks to other, less heavily loaded threads. This approach may seem
sensible, but it has a basic flaw: if most threads are overloaded, then they waste
effort in a futile attempt to exchange tasks. Instead, we first consider work stealing,
in which a thread that runs out of work tries to “steal” work from others. An
advantage of work stealing is that if all threads are already busy, then they do not
waste time trying to offload work on one another.

16.4.1 Work Stealing

Each thread keeps a pool of tasks waiting to be executed in the form of a
double-ended queue (DEQueue), providing pushBottom(), popBottom(), and
popTop() methods (there is no need for a pushTop() method). When a thread
creates a new task, it calls pushBottom() to push that task onto its DEQueue. When
a thread needs a task to work on, it calls popBottom() to remove a task from its
own DEQueue. If the thread discovers its queue is empty, then it becomes a thief:
it chooses a victim thread at random, and calls that thread’s DEQueue’s popTop()
method to “steal” a task for itself.

In Section 16.5 we devise an efficient linearizable implementation of a DEQueue.
Fig. 16.9 shows one possible way to implement a thread used by a work-stealing
executor service. The threads share an array of DEQueues (Line 2), one for each
thread. Each thread repeatedly removes a task from its own DEQueue and runs it
(Lines 13–16). If it runs out, then it repeatedly chooses a victim thread at random
and tries to steal a task from the top of the victim’s DEQueue (Lines 17–23). To
avoid code clutter, we ignore the possibility that stealing may trigger an exception.

This simplified executer pool may keep trying to steal forever, long after all
work in all queues has been completed. To prevent threads from endlessly search-
ing for nonexistent work, we can use a termination-detecting barrier of the kind
described in Chapter 17, Section 17.6.

16.4.2 Yielding and Multiprogramming

As noted earlier, multiprocessors provide a three-level model of computation:
short-lived tasks are executed by system-level threads, which are scheduled
by the operating system on a fixed number of processors. A multiprogrammed
environment is one in which there are more threads than processors, implying

382 Chapter 16 Futures, Scheduling, and Work Distribution

1 public class WorkStealingThread {
2 DEQueue[] queue;
3 int me;
4 Random random;
5 public WorkStealingThread(DEQueue[] myQueue) {
6 queue = myQueue;
7 random = new Random();
8 }
9 public void run() {
10 int me = ThreadID.get();
11 Runnable task = queue[me].popBottom();
12 while (true) {
13 while (task != null) {
14 task.run();
15 task = queue[me].popBottom();
16 }
17 while (task == null) {
18 Thread.yield();
19 int victim = random.nextInt(queue.length);
20 if (!queue[victim].isEmpty()) {
21 task = queue[victim].popTop();
22 }
23 }
24 }
25 }
26 }

Figure 16.9 The WorkStealingThread class: a simplified work stealing executer pool.

that not all threads can run at the same time, and that any thread can be pre-
emptively suspended at any time. To guarantee progress, we must ensure that
threads that have work to do are not unreasonably delayed by (thief) threads
which are idle except for task-stealing. To prevent this situation, we have each
thief call Thread.yield() immediately before trying to steal a task (Line 18
in Fig. 16.9). This call yields the thief ’s processor to another thread, allowing
descheduled threads to regain a processor and make progress. (We note that call-
ing yield() has no effect if there are no descheduled threads capable of running.)

16.5 Work-Stealing Dequeues

Here is how to implement a work-stealing DEQueue. Ideally, a work-stealing algo-
rithm should provide a linearizable implementation whose pop methods always
return a task if one is available. In practice, however, we can settle for something
weaker, allowing a popTop() call to return null if it conflicts with a concurrent
popTop() call. Though we could have the unsuccessful thief simply try again, it
makes more sense in this context to have a thread retry the popTop() operation
on a different, randomly chosen DEQueue each time. To support such a retry, a
popTop() call may return null if it conflicts with a concurrent popTop() call.

16.5 Work-Stealing Dequeues 383

We now describe two implementations of the work-stealing DEQueue. The first
is simpler, because it has bounded capacity. The second is somewhat more com-
plex, but virtually unbounded in its capacity; that is, it does not suffer from the
possibility of overflow.

16.5.1 A Bounded Work-Stealing Dequeue

For the executer pool DEQueue, the common case is for a thread to push and pop
a task from its own queue, calling pushBottom() and popBottom(). The uncom-
mon case is to steal a task from another thread’s DEQueue by calling popTop().
Naturally, it makes sense to optimize the common case. The idea behind the
BoundedDEQueue in Figs. 16.10 and 16.11 is thus to have the pushBottom()
and popBottom() methods use only reads–writes in the common case. The
BoundedDEQueue consists of an array of tasks indexed by bottom and top fields
that reference the top and bottom of the dequeue, and depicted in Fig. 16.12.
The pushBottom() and popBottom() methods use reads–writes to manipulate the
bottom reference. However, once the top and bottom fields are close (there might
be only a single item in the array), popBottom() switches to compareAndSet()
calls to coordinate with potential popTop() calls.

Let us describe the algorithm in more detail. The BoundedDEQueue algo-
rithm is ingenious in the way it avoids the use of costly compareAndSet() calls.
This elegance comes at a cost: it is delicate and the order among instructions
is crucial. We suggest the reader take time to understand how method interac-
tions among methods are determined by the order in which reads-writes and
compareAndSet() calls occur.

1 public class BDEQueue {
2 Runnable[] tasks;
3 volatile int bottom;
4 AtomicStampedReference<Integer> top;
5 public BDEQueue(int capacity) {
6 tasks = new Runnable[capacity];
7 top = new AtomicStampedReference<Integer>(0, 0);
8 bottom = 0;
9 }
10 public void pushBottom(Runnable r){
11 tasks[bottom] = r;
12 bottom++;
13 }
14 // called by thieves to determine whether to try to steal
15 boolean isEmpty() {
16 return (top.getReference() < bottom);
17 }
18 }
19 }

Figure 16.10 The BoundedDEQueue class: fields, constructor, pushBottom() and isEmpty()
methods.

384 Chapter 16 Futures, Scheduling, and Work Distribution

1 public Runnable popTop() {
2 int[] stamp = new int[1];
3 int oldTop = top.get(stamp), newTop = oldTop + 1;
4 int oldStamp = stamp[0], newStamp = oldStamp + 1;
5 if (bottom <= oldTop)
6 return null;
7 Runnable r = tasks[oldTop];
8 if (top.compareAndSet(oldTop, newTop, oldStamp, newStamp))
9 return r;
10 return null;
11 }
12 public Runnable popBottom() {
13 if (bottom == 0)
14 return null;
15 bottom--;
16 Runnable r = tasks[bottom];
17 int[] stamp = new int[1];
18 int oldTop = top.get(stamp), newTop = 0;
19 int oldStamp = stamp[0], newStamp = oldStamp + 1;
20 if (bottom > oldTop)
21 return r;
22 if (bottom == oldTop) {
23 bottom = 0;
24 if (top.compareAndSet(oldTop, newTop, oldStamp, newStamp))
25 return r;
26 }
27 top.set(newTop,newStamp);
28 return null;
29 }

Figure 16.11 The BoundedDEQueue class: popTop() and popBottom() methods.

The BoundedDEQueue class has three fields: tasks, bottom, and top (Fig. 16.10,
Lines 2–4). The tasks field is an array of Runnable tasks that holds the tasks
in the queue, bottom is the index of the first empty slot in tasks, and top
is an AtomicStampedReference<Integer>.3 The top field encompasses two
logical fields; the reference is the index of the first task in the queue, and
the stamp is a counter incremented each time the reference is changed. The
stamp is needed to avoid an “ABA” problem of the type that often arises when
using compareAndSet(). Suppose thread A tries to steal a task from index 3.
A reads a reference to the task at that position, and tries to steal it by calling
compareAndSet() to set the index to 2. It is delayed before making the call, and
in the meantime, threadB removes all the tasks and inserts three new tasks. When
A awakens, its compareAndSet() call will succeed in changing the index from 3
to 2, but it will have removed a task that is already complete. The stamp ensures
that A’s compareAndSet() call will fail because the stamps no longer match.

The popTop() method (Fig. 16.11) checks whether the BoundedDEQueue is
empty, and if not, tries to steal the top element by calling compareAndSet()

3 See Chapter 10, Pragma 10.6.1.

16.5 Work-Stealing Dequeues 385

top

bottom

0

1

2

3

4

5
6

stamp

top

bottom

0

1
2

3

4

5
6

stamp

(a) (b)

Figure 16.12 The BoundedDEQueue implementation. In Part (a) popTop() and popBottom()
are called concurrently while there is more than one task in the BoundedDEQueue. The
popTop() method reads the element in entry 2 and calls compareAndSet() to redirect the
top reference to entry 3. The popBottom() method redirects the bottom reference from 5
to 4 using a simple store and then, after checking that bottom is greater than top it removes
the task in entry 4. In Part (b) there is only a single task. When popBottom() detects that
after redirecting from 4 to 3 top and bottom are equal, it attempts to redirect top with a
compareAndSet(). Before doing so it redirects bottom to 0 because this last task will be
removed by one of the two popping methods. If popTop() detects that top and bottom are
equal it gives up, and otherwise it tries to advance top using compareAndSet(). If both meth-
ods apply compareAndSet() to the top, one wins and removes the task. In any case, win or
lose, popBottom() resets top to 0 since the BoundedDEQueue is empty.

to increment top. If the compareAndSet() succeeds, the theft is successful, and
otherwise the method simply returns null. This method is nondeterministic:
returning null does not necessarily mean that the queue is empty.

As we noted earlier, we optimize for the common case where each thread pushes
and pops from its own local BoundedDEQueue. Most of the time, a thread can push
and pop tasks on and off its own BoundedDEQueue object, simply by loading and
storing the bottom index. If there is only one task in the queue, then the caller
might encounter interference from a thief trying to steal that task. So if bottom is
close to top, the calling thread switches to using compareAndSet() to pop tasks.

The pushBottom() method (Fig. 16.10, Line 10) simply stores the new task at
the bottom queue location and increments bottom.

The popBottom() method (Fig. 16.11) is more complex. If the queue is empty,
the method returns immediately (Line 13), and otherwise, it decrements bottom,
claiming a task (Line 15). Here is a subtle but important point. If the claimed
task was the last in the queue, then it is important that thieves notice that the
BoundedDEQueue is empty (Line 5). But, because popBottom()’s decrement is
neither atomic nor synchronized, the Java memory model does not guarantee
that the decrement will be observed right away by concurrent thieves. To ensure
that thieves can recognize an empty BoundedDEQueue, the bottom field must be
declared volatile.4

4 In a C or C++ implementation you would need to introduce a write barrier as described in
Appendix B.

386 Chapter 16 Futures, Scheduling, and Work Distribution

After the decrement, the caller reads the task at the new bottom index (Line
16), and tests whether the current top field refers to a higher index. If so, the caller
cannot conflict with a thief, and the method returns (Line 20). Otherwise, if thetop
andbottomfields are equal, then there is only one task left in theBoundedDEQueue,
but there is a danger that the caller conflicts with a thief. The caller resets bottom
to 0 (Line 23). (Either the caller will succeed in claiming the task, or a thief will
steal it first.) The caller resolves the potential conflict by calling compareAndSet()
to reset top to 0, matching bottom (Line 22). If this compareAndSet() suc-
ceeds, the top has been reset to 0, and the task has been claimed, so the
method returns. Otherwise the queue must be empty because a thief succeeded,
but this means that top points to some entry greater than bottom which was
set to 0 earlier. So before the the caller returns null, it resets top to 0 (Line 27).

As noted, an attractive aspect of this design is that an expensive
compareAndSet() call is needed only rarely when the BoundedDEQueue is almost
empty.

We linearize each unsuccessful popTop() call at the point where it detects
that the BoundedDEQueue is empty, or at a failed compareAndSet(). Successful
popTop() calls are linearized at the point when a successful compareAndSet()
took place. We linearize pushBottom() calls when bottom is incremented, and
popBottom() calls when bottom is decremented or set to 0, though the outcome
of popBottom() in the latter case is determined by the success or failure of the
compareAndSet() that follows.

The isEmpty() method (Fig. 16.14) first reads top, then bottom, checking
whether bottom is less than or equal to top (Line 4). The order is important for
linearizability, because top never decreases unless bottom is first reset to 0, and
so if a thread reads bottom after top and sees it is no greater, the queue is indeed
empty because a concurrent modification of top could only have increased top.
On the other hand, if top is greater than bottom, then even if top is increased
after it was read and before bottom is read (and the queue becomes empty), it
is still true that the BoundedDEQueue must not have been empty when top was
read. The only alternative is that bottom is reset to 0 and then top is reset to 0,
so reading top and then bottom will correctly return empty. It follows that the
isEmpty() method is linearizable.

16.5.2 An Unbounded Work-Stealing DEQueue

A limitation of the BoundedDEQueue class is that the queue has a fixed size.
For some applications, it may be difficult to predict this size, especially if some
threads create significantly more tasks than others. Assigning each thread its own
BoundedDEQueue of maximal capacity wastes space.

To address these limitations, we now consider an unbounded double-ended
queue UnboundedDEQueue class that dynamically resizes itself as needed.

We implement the UnboundedDEQueue in a cyclic array, with top and bottom
fields as in the BoundedDEQueue (except indexed modulo the array’s capacity). As

16.5 Work-Stealing Dequeues 387

before, if bottom is less than or equal to top, the UnboundedDEQueue is empty.
Using a cyclic array eliminates the need to reset bottom and top to 0. Moreover, it
permits top to be incremented but never decremented, eliminating the need for
top to be an AtomicStampedReference. Moreover, in the UnboundedDEQueue
algorithm, if pushBottom() discovers that the current circular array is full, it can
resize (enlarge) it, copying the tasks into a bigger array, and pushing the new task
into the new (larger) array. Because the array is indexed modulo its capacity, there
is no need to update the top or bottom fields when moving the elements into
a bigger array (although the actual array indexes where the elements are stored
might change).

The CircularTaskArray() class is depicted in Fig. 16.13. It provides get()
and put() methods that add and remove tasks, and a resize() method that allo-
cates a new circular array and copies the old array’s contents into the new array.
The use of modular arithmetic ensures that even though the array has changed
size and the tasks may have shifted positions, thieves can still use the top field to
find the next task to steal.

The UnboundedDEQueue class has three fields: tasks, bottom, and top
(Fig. 16.14, Lines 3–5). The popBottom() (Fig. 16.14) and popTop() methods
(Fig. 16.15) are almost the same as those of the BoundedDEQueue, with one key
difference: the use of modular arithmetic to compute indexes means the top index

1 class CircularArray {
2 private int logCapacity;
3 private Runnable[] currentTasks;
4 CircularArray(int myLogCapacity) {
5 logCapacity = myLogCapacity;
6 currentTasks = new Runnable[1 << logCapacity];
7 }
8 int capacity() {
9 return 1 << logCapacity;
10 }
11 Runnable get(int i) {
12 return currentTasks[i % capacity()];
13 }
14 void put(int i, Runnable task) {
15 currentTasks[i % capacity()] = task;
16 }
17 CircularArray resize(int bottom, int top) {
18 CircularArray newTasks =
19 new CircularArray(logCapacity+1);
20 for (int i = top; i < bottom; i++) {
21 newTasks.put(i, get(i));
22 }
23 return newTasks;
24 }
25 }

Figure 16.13 The UnboundedDEQueue class: the circular task array.

388 Chapter 16 Futures, Scheduling, and Work Distribution

1 public class UnboundedDEQueue {
2 private final static int LOG_CAPACITY = 4;
3 private volatile CircularArray tasks;
4 volatile int bottom;
5 AtomicReference<Integer> top;;
6 public UnboundedDEQueue(int LOG_CAPACITY) {
7 tasks = new CircularArray(LOG_CAPACITY);
8 top = new AtomicReference<Integer>(0);
9 bottom = 0;
10 }
11 boolean isEmpty() {
12 int localTop = top.get();
13 int localBottom = bottom;
14 return (localBottom <= localTop);
15 }
16
17 public void pushBottom(Runnable r) {
18 int oldBottom = bottom;
19 int oldTop = top.get();
20 CircularArray currentTasks = tasks;
21 int size = oldBottom - oldTop;
22 if (size >= currentTasks.capacity()-1) {
23 currentTasks = currentTasks.resize(oldBottom, oldTop);
24 tasks = currentTasks;
25 }
26 tasks.put(oldBottom, r);
27 bottom = oldBottom + 1;
28 }

Figure 16.14 The UnboundedDEQueue class: fields, constructor, pushBottom(), and
isEmpty() methods.

need never be decremented. As noted, there is no need for a timestamp to pre-
vent ABA problems. Both methods, when competing for the last task, steal it by
incrementing top. To reset the UnboundedDEQueue to empty, simply increment
the bottom field to equal top. In the code, popBottom(), immediately after the
compareAndSet() in Line 27, sets bottom to equal top+1 whether or not the
compareAndSet() succeeds, because, even if it failed, a concurrent thief must
have stolen the last task. Storing top+1 into bottommakes top and bottom equal,
resetting the UnboundedDEQueue object to an empty state.

The isEmpty() method (Fig. 16.14) first reads top, then bottom, checking
whether bottom is less than or equal to top (Line 4). The order is important
because top never decreases, and so if a thread reads bottom after top and sees
it is no greater, the queue is indeed empty because a concurrent modification of
top could only have increased the top value. The same principle applies in the
popTop() method call. An example execution is provided in Fig. 16.16.

The pushBottom() method (Fig. 16.14) is almost the same as that of the
BoundedDEQueue. One difference is that the method must enlarge the circular
array if the current push is about to cause it to exceed its capacity. Another is that

16.5 Work-Stealing Dequeues 389

1 public Runnable popTop() {
2 int oldTop = top.get();
3 int newTop = oldTop + 1;
4 int oldBottom = bottom;
5 CircularArray currentTasks = tasks;
6 int size = oldBottom - oldTop;
7 if (size <= 0) return null;
8 Runnable r = tasks.get(oldTop);
9 if (top.compareAndSet(oldTop, newTop))

10 return r;
11 return null;
12 }
13
14 public Runnable popBottom() {
15 CircularArray currentTasks = tasks;
16 bottom--;
17 int oldTop = top.get();
18 int newTop = oldTop + 1;
19 int size = bottom - oldTop;
20 if (size < 0) {
21 bottom = oldTop;
22 return null;
23 }
24 Runnable r = tasks.get(bottom);
25 if (size > 0)
26 return r;
27 if (!top.compareAndSet(oldTop, newTop))
28 r = null;
29 bottom = oldTop + 1;
30 return r;
31 }

Figure 16.15 The UnboundedDEQueue class: popTop() and popBottom() methods.

popTop() does not need to manipulate a timestamp. The ability to resize carries
a price: every call must read top (Line 21) to determine if a resize is necessary,
possibly causing more cache misses because top is modified by all processes. We
can reduce this overhead by having threads save a local value of top and using it
to compute the size of the UnboundedDEQueue object. A thread reads the topfield
only when this bound is exceeded, indicating that a resize() may be necessary.
Even though the local copy may become outdated because of changes to the shared
top, top is never decremented, so the real size of the UnboundedDEQueue object
can only be smaller than the one calculated using the local variable.

In summary, we have seen two ways to design a nonblocking linearizable
DEQueue class. We can get away with using only loads and stores in the most
common manipulations of the DEQueue, but at the price of having more com-
plex algorithms. Such algorithms are justifiable for an application such as an
executer pool whose performance may be critical to a concurrent multithreaded
system.

390 Chapter 16 Futures, Scheduling, and Work Distribution

topbottom

(b)

1

0

2

3

7

6

4

5

topbottom

(a)

1

0

2

3

7

6

4

5

Figure 16.16 The UnboundedDEQueue class implementation. In Part (a) popTop() and popBottom() are exe-
cuted concurrently while there is more than one task in the UnboundedDEQueue object. In Part (b) there is
only a single task, and initially bottom refers to Entry 3 and top to 2. The popBottom() method first decre-
ments bottom from 3 to 2 (we denote this change by a dashed line pointing to Entry 2 since it will change
again soon). Then, when popBottom() detects that the gap between the newly-set bottom and top is 0, it
attempts to increment top by 1 (rather than reset it to 0 as in the BoundedDEQueue). The popTop() method
attempts to do the same. The top field is incremented by one of them, and the winner takes the last task.
Finally, the popBottom() method sets bottom back to Entry 3, which is equal to top.

16.5.3 Work Balancing

We have seen that in work-stealing algorithms, idle threads steal tasks from others.
An alternative approach is to have each thread periodically balance its workloads
with a randomly chosen partner. To ensure that heavily loaded threads do not
waste effort trying to rebalance, we make lightly-loaded threads more likely to
initiate rebalancing. More precisely, each thread periodically flips a biased coin
to decide whether to balance with another. The thread’s probability of balancing
is inversely proportional to the number of tasks in the thread’s queue. In other
words, threads with few tasks are likely to rebalance, and threads with nothing to
do are certain to rebalance. A thread rebalances by selecting a victim uniformly
at random, and, if the difference between its workload and the victim’s exceeds
a predefined threshold, they transfer tasks until their queues contain the same
number of tasks. It can be shown that this algorithm provides strong fairness
guarantees: the expected length of each thread’s task queue is pretty close to the
average. One advantage of this approach is that the balancing operation moves
multiple tasks at each exchange. A second advantage occurs if one thread has
much more work than the others, especially if tasks require approximately equal
computation. In the work-stealing algorithm presented here, contention could
occur if many threads try to steal individual tasks from the overloaded
thread.

16.5 Work-Stealing Dequeues 391

In such a case, in the work-stealing executer pool, if some thread has a lot of
work, chances are that that other threads will have to repeatedly compete on the
same local task queue in an attempt to steal at most a single task each time. On
the other hand, in the work-sharing executer pool, balancing multiple tasks at a
time means that work will quickly be spread out among tasks, and there will not
be a synchronization overhead per individual task.

Fig. 16.17 illustrates a work-sharing executor. Each thread has its own queue
of tasks, kept in an array shared by all threads (Line 2). Each thread repeatedly
dequeues the next task from its queue (Line 12). If the queue was empty, the
deq() call returns null, and otherwise, the thread runs the task (Line 13). At this
point, the thread decides whether to rebalance. If the thread’s task queue has size
s, then the thread decides to rebalance with probability 1/(s + 1) (Line 15). To

1 public class WorkSharingThread {
2 Queue[] queue;
3 Random random;
4 private static final int THRESHOLD = ...;
5 public WorkSharingThread(Queue[] myQueue) {
6 queue = myQueue;
7 random = new Random();
8 }
9 public void run() {
10 int me = ThreadID.get();
11 while (true) {
12 Runnable task = queue[me].deq();
13 if (task != null) task.run();
14 int size = queue[me].size();
15 if (random.nextInt(size+1) == size) {
16 int victim = random.nextInt(queue.length);
17 int min = (victim <= me) ? victim : me;
18 int max = (victim <= me) ? me : victim;
19 synchronized (queue[min]) {
20 synchronized (queue[max]) {
21 balance(queue[min], queue[max]);
22 }
23 }
24 }
25 }
26 }
27 private void balance(Queue q0, Queue q1) {
28 Queue qMin = (q0.size() < q1.size()) ? q0 : q1;
29 Queue qMax = (q0.size() < q1.size()) ? q1 : q0;
30 int diff = qMax.size() - qMin.size();
31 if (diff > THRESHOLD)
32 while (qMax.size() > qMin.size())
33 qMin.enq(qMax.deq());
34 }
35 }

Figure 16.17 The WorkSharingThread class: a simplified work sharing executer pool.

392 Chapter 16 Futures, Scheduling, and Work Distribution

rebalance, the thread chooses a victim thread uniformly at random. The thread
locks both queues (Lines 17–20), in thread ID order (to avoid deadlock). If the
difference in queue sizes exceeds a threshold, it evens out the queue sizes.
(Fig. 16.17, Lines 27–35).

16.6 Chapter Notes

The DAG-based model for analysis of multithreaded computation was introduced
by Robert Blumofe and Charles Leiserson [20]. They also gave the first deque-
based implementation of work stealing. Some of the examples in this chapter
were adapted from a tutorial by Charles Leiserson and Harald Prokop [103]. The
bounded lock-free dequeue algorithm is credited to Anish Arora, Robert Blumofe,
and Greg Plaxton [15]. The unbounded timestamps used in this algorithm can
be made bounded using a technique due to Mark Moir [118]. The unbounded
dequeue algorithm is credited to David Chase and Yossi Lev [28]. Theorem 16.3.1
and its proof are by Anish Arora, Robert Blumofe, and Greg Plaxton [15]. The
work-sharing algorithm is by Larry Rudolph, Tali Slivkin-Allaluf, and Eli Upfal
[134]. The algorithm of Anish Arora, Robert Blumofe, and Greg Plaxton [15]
was later improved by Danny Hendler and Nir Shavit [56] to include the ability
to steal half of the items in a dequeue.

16.7 Exercises

Exercise 185. Consider the following code for an in-place merge-sort:

void mergeSort(int[] A, int lo, int hi) {
if (hi > lo) {
int mid = (hi - lo)/2;
executor.submit(new mergeSort(A, lo, mid));
executor.submit(new mergeSort(A, mid+1, hi));
awaitTermination();
merge(A, lo, mid, hi);

}

Assuming that the merge method has no internal parallelism, give the work, criti-
cal path length, and parallelism of this algorithm. Give your answers both as recur-
rences and as Θ(f(n)), for some function f .

Exercise 186. You may assume that the actual running time of a parallel program
on a dedicated P -processor machine is

TP = T1/P + T∞.

Your research group has produced two chess programs, a simple one and an
optimized one. The simple one has T1 = 2048 seconds and T∞ = 1 second. When

16.7 Exercises 393

you run it on your 32-processor machine, sure enough, the running time is 65
steps. Your students then produce an “optimized” version with T ′

1 = 1024 seconds
and T∞ = 8 seconds. Why is it optimized? When you run it on your 32-processor
machine, the running time is 40 steps, as predicted by our formula.

Which program will scale better to a 512-processor machine?

Exercise 187. Write a class, ArraySum that provides a method

static public int sum(int[] a)

that uses divide-and-conquer to sum the elements of the array argument in
parallel.

Exercise 188. Professor Jones takes some measurements of his (deterministic)
multithreaded program, which is scheduled using a greedy scheduler, and finds
that T4 = 80 seconds and T64 = 10 seconds. What is the fastest that the professor’s
computation could possibly run on 10 processors? Use the following inequalities
and the bounds implied by them to derive your answer. Note that P is the number
of processors.

TP � T1

P

TP � T∞

TP � (T1 − T∞)

P
+ T∞

(The last inequality holds on a greedy scheduler.)

Exercise 189. Give an implementation of the Matrix class used in this chapter.
Make sure your split() method takes constant time.

Exercise 190. LetP (x) =
∑d

i=0 pix
i andQ(x) =

∑d
i=0 qix

i be polynomials of degree
d, where d is a power of 2. We can write

P (x) = P0(x) + (P1(x) · xd/2)

Q(x) = Q0(x) + (Q1(x) · xd/2)

where P0(x),P1(x),Q0(x), and Q1(x) are polynomials of degree d/2.
The Polynomial class shown in Fig. 16.18 provides put() and get() methods

to access coefficients and it provides a constant-time split() method that splits
a d-degree polynomial P (x) into the two (d/2)-degree polynomials P0(x) and
P1(x) defined above, where changes to the split polynomials are reflected in the
original, and vice versa.

Your task is to devise parallel addition and multiplication algorithms for this
polynomial class.

1. The sum of P (x) and Q(x) can be decomposed as follows:

P (x) + Q(x) = (P0(x) + Q0(x)) + (P1(x) + Q1(x)) · xd/2.

394 Chapter 16 Futures, Scheduling, and Work Distribution

1 public class Polynomial {
2 int[] coefficients; // possibly shared by several polynomials
3 int first; // index of my constant coefficient
4 int degree; // number of coefficients that are mine
5 public Polynomial(int d) {
6 coefficients = new int[d];
7 degree = d;
8 first = 0;
9 }
10 private Polynomial(int[] myCoefficients, int myFirst, int myDegree) {
11 coefficients = myCoefficients;
12 first = myFirst;
13 degree = myDegree;
14 }
15 public int get(int index) {
16 return coefficients[first + index];
17 }
18 public void set(int index, int value) {
19 coefficients[first + index] = value;
20 }
21 public int getDegree() {
22 return degree;
23 }
24 public Polynomial[] split() {
25 Polynomial[] result = new Polynomial[2];
26 int newDegree = degree / 2;
27 result[0] = new Polynomial(coefficients, first, newDegree);
28 result[1] = new Polynomial(coefficients, first + newDegree, newDegree);
29 return result;
30 }
31 }

Figure 16.18 The Polynomial class.

a) Use this decomposition to construct a task-based concurrent polynomial
addition algorithm in the manner of Fig. 16.14.

b) Compute the work and critical path length of this algorithm.

2. The product of P (x) and Q(x) can be decomposed as follows:

P (x) ·Q(x) = (P0(x) ·Q0(x)) + (P0(x) ·Q1(x) + P1(x) ·Q0(x)) · xd/2 + (P1(x) ·Q1(x))

a) Use this decomposition to construct a task-based concurrent polynomial
multiplication algorithm in the manner of Fig. 16.4

b) Compute the work and critical path length of this algorithm.

Exercise 191. Give an efficient and highly parallel multithreaded algorithm for
multiplying an n × nmatrixA by a length-n vectorx that achieves workΘ(n2) and

16.7 Exercises 395

1 Queue qMin = (q0.size() < q1.size()) ? q0 : q1;
2 Queue qMax = (q0.size() < q1.size()) ? q1 : q0;
3 synchronized (qMin) {
4 synchronized (qMax) {
5 int diff = qMax.size() - qMin.size();
6 if (diff > THRESHOLD)
7 while (qMax.size() > qMin.size())
8 qMin.enq(qMax.deq());
9 }

10 }

Figure 16.19 Alternate rebalancing code.

critical path Θ(logn). Analyze the work and critical-path length of your imple-
mentation, and give the parallelism.

Exercise 192. Fig. 16.19 shows an alternate way of rebalancing two work queues:
first, lock the larger queue, then lock the smaller queue, and rebalance if their
difference exceeds a threshold. What is wrong with this code?

Exercise 193.

1. In the popBottom() method of Fig. 16.11, the bottom field is volatile to assure
that in popBottom() the decrement at Line 15 is immediately visible. Describe
a scenario that explains what could go wrong if bottom were not declared as
volatile.

2. Why should we attempt to reset the bottom field to zero as early as possible in
the popBottom() method? Which line is the earliest in which this reset can be
done safely? Can our BoundedDEQueueoverflow anyway? Describe how.

Exercise 194.

� In popTop(), if the compareAndSet() in Line 9 succeeds, it returns the
element it read right before the successful compareAndSet() operation.
Why is it important to read the element from the array before we do the
compareAndSet()?

� Can we use isEmpty() in Line 7 of popTop()?

Exercise 195. What are the linearization points of the UnboundedDEQueue meth-
ods? Justify your answers.

Exercise 196. Modify the popTop() method of the linearizable BoundedDEQueue
implementation so it will return null only if there are no tasks in the queue. Notice
that you may need to make its implementation blocking.

Exercise 197. Do you expect that the isEmpty() method call of a BoundedDEQueue
in the executer pool code will actually improve its performance?

This page intentionally left blank

17Barriers

17.1 Introduction

Imagine you are writing the graphical display for a computer game. Your program
prepares a sequence of frames to be displayed by a graphics package (perhaps a
hardware coprocessor). This kind of program is sometimes called a soft real-time
application: real-time because it must display at least 35 frames per second to
be effective, and soft because occasional failure is not catastrophic. On a single-
threaded machine, you might write a loop like this:

while (true) {
frame.prepare();
frame.display();
}

If, instead, you have n parallel threads available, then it makes sense to split the
frame into n disjoint parts, and to have each thread prepare its own part in parallel
with the others.

int me = ThreadID.get();
while (true) {
frame[me].prepare();
frame[me].display();
}

The problem with this approach is that different threads will require different
amounts of time to prepare and display their portions of the frame. Some threads
might start displaying the ith frame before others have finished the (i− 1)st.

To avoid such synchronization problems, we can organize computations such
as this as a sequence of phases, where no thread should start the ith phase until
the others have finished the (i− 1)st. We have already seen this phased computa-
tion pattern before. In Chapter 12, the sorting network algorithms required each
comparison phase to be separate from the others. Similarly, in the sample sorting
algorithm, each phase had to make sure that prior phases had completed before
proceeding.

397

398 Chapter 17 Barriers

1 public interface Barrier {
2 public void await();
3 }

Figure 17.1 The Barrier interface.

1 private Barrier b;
2 ...
3 while (true) {
4 frame[my].prepare();
5 b.await();
6 frame[my].display();
7 }

Figure 17.2 Using a barrier to synchronize concurrent displays.

The mechanism for enforcing this kind of synchronization is called a barrier
(Fig. 17.1). A barrier is a way of forcing asynchronous threads to act almost as if
they were synchronous. When a thread finishing phase i calls the barrier’s await()
method, it is blocked until all n threads have also finished that phase. Fig.17.2
shows how one could use a barrier to make the parallel rendering program work
correctly. After preparing frame i, all threads synchronize at a barrier before start-
ing to display that frame. This structure ensures that all threads concurrently dis-
playing a frame display the same frame.

Barrier implementations raise many of the same performance issues as spin
locks in Chapter 7, as well as some new issues. Clearly, barriers should be fast, in
the sense that we want to minimize the duration between when the last thread
reaches the barrier and when the last thread leaves the barrier. It is also impor-
tant that threads leave the barrier at roughly the same time. A thread’s notifica-
tion time is the interval between when some thread has detected that all threads
have reached the barrier, and when that specific thread leaves the barrier. Having
uniform notification times is important for many soft real-time applications. For
example, picture quality is enhanced if all portions of the frame are updated at
more-or-less the same time.

17.2 Barrier Implementations

Fig. 17.3 shows the SimpleBarrier class, which creates an AtomicInteger
counter initialized to n, the barrier size. Each thread applies getAndDecrement()
to lower the counter. If the call returns 1 (Line 10), then that thread is the last to
reach the barrier, so it resets the counter for the next use (Line 11). Otherwise,
the thread spins on the counter, waiting for the value to fall to zero (Line 13).
This barrier class may look like it works, but it does so only if the barrier object is
used once.

17.3 Sense-Reversing Barrier 399

1 public class SimpleBarrier implements Barrier {
2 AtomicInteger count;
3 int size;
4 public SimpleBarrier(int n){
5 count = new AtomicInteger(n);
6 size = n;
7 }
8 public void await() {
9 int position = count.getAndDecrement();
10 if (position == 1) {
11 count.set(size);
12 } else {
13 while (count.get() != 0);
14 }
15 }
16 }

Figure 17.3 The SimpleBarrier class.

Unfortunately, this simple design does not work if the barrier is used more
than once (see Fig. 17.2). Suppose there are only two threads. Thread A applies
getAndDecrement() to the counter, discovers it is not the last thread to reach the
barrier, and spins waiting for the counter value to reach zero. When B arrives, it
discovers it is the last thread to arrive, so it resets the counter to n in this case 2.
It finishes the next phase and calls await(). Meanwhile, A continues to spin, and
the counter never reaches zero. Eventually, A is waiting for phase 0 to finish, while
B is waiting for phase 1 to finish, and the two threads starve.

Perhaps the simplest way to fix this problem is just to alternate between two
barriers, using one for even-numbered phases, and another for odd-numbered
ones. However, such an approach wastes space, and requires too much book-
keeping from applications.

17.3 Sense-Reversing Barrier

A sense-reversing barrier is a more elegant and practical solution to the problem
of reusing barriers. As depicted in Fig. 17.4, a phase’s sense is a Boolean value:
true for even-numbered phases and false otherwise. Each SenseBarrier object
has a Boolean sense field indicating the sense of the currently executing phase.
Each thread keeps its current sense as a thread-local object (see Pragma 17.3.1).
Initially the barrier’s sense is the complement of the local sense of all the threads.
When a thread calls await(), it checks whether it is the last thread to decre-
ment the counter. If so, it reverses the barrier’s sense and continues. Other-
wise, it spins waiting for the balancer’s sense field to change to match its own
local sense.

400 Chapter 17 Barriers

1 public SenseBarrier(int n) {
2 count = new AtomicInteger(n);
3 size = n;
4 sense = false;
5 threadSense = new ThreadLocal<Boolean>() {
6 protected Boolean initialValue() { return !sense; };
7 };
8 }
9 public void await() {
10 boolean mySense = threadSense.get();
11 int position = count.getAndDecrement();
12 if (position == 1) {
13 count.set(size);
14 sense = mySense;
15 } else {
16 while (sense != mySense) {}
17 }
18 threadSense.set(!mySense);
19 }

Figure 17.4 The SenseBarrier class: a sense-reversing barrier.

1 public SenseBarrier(int n) {
2 count = new AtomicInteger(n);
3 size = n;
4 sense = false;
5 threadSense = new ThreadLocal<Boolean>() {
6 protected Boolean initialValue() { return !sense; };
7 };
8 }

Figure 17.5 The SenseBarrier class: constructor.

Decrementing the shared counter may cause memory contention, since all the
threads are trying to access the counter at about the same time. Once the counter
has been decremented, each thread spins on the sense field. This implementa-
tion is well suited for cache-coherent architectures, since threads spin on locally
cached copies of the field, and the field is modified only when threads are ready
to leave the barrier. The sense field is an excellent way of maintaining a uniform
notification time on symmetric cache-coherent multiprocessors.

Pragma 17.3.1. The constructor code for the sense-reversing barrier, shown
in Fig. 17.5, is mostly straightforward. The one exception occurs on lines
5 and 6, where we initialize the thread-local threadSense field. This some-
what complicated syntax defines a thread-local Boolean value whose initial
value is the complement of the sense field’s initial value. See Appendix A.2.4
for a more complete explanation of thread-local objects in Java.

17.4 Combining Tree Barrier 401

17.4 Combining Tree Barrier

One way to reduce memory contention (at the cost of increased latency) is to use
the combining paradigm of Chapter 12. Split a large barrier into a tree of smaller
barriers, and have threads combine requests going up the tree and distribute noti-
fications going down the tree. As shown in Fig. 17.6, a tree barrier is characterized
by a size n, the total number of threads, and a radix r, each node’s number of
children. For convenience, we assume there are exactly n = rd threads, where d is
the depth of the tree.

Specifically, the combining tree barrier is a tree of nodes, where each node
has a counter and a sense, just as in the sense-reversing barrier. A node’s imple-
mentation is shown in Fig. 17.7. Thread i starts at leaf node �i/r�. The node’s
await() method is similar to the sense-reversing barrier’s await(), the principal
difference being that the last thread to arrive, the one that completes the bar-
rier, visits the parent barrier before waking up the other threads. When r threads
have arrived at the root, the barrier is complete, and the sense is reversed. As
before, thread-local Boolean sense values allow the barrier to be reused without
reinitialization.

The tree-structured barrier reduces memory contention by spreading memory
accesses across multiple barriers. It may or may not reduce latency, depending on
whether it is faster to decrement a single location or to visit a logarithmic number
of barriers.

The root node, once its barrier is complete, lets notifications percolate down
the tree. This approach may be good for a NUMA architecture, but it may cause
nonuniform notification times. Because threads visit an unpredictable sequence
of locations as they move up the tree, this approach may not work well on cache-
less NUMA architectures.

1 public class TreeBarrier implements Barrier {
2 int radix;
3 Node[] leaf;
4 ThreadLocal<Boolean> threadSense;
5 ...
6 public void await() {
7 int me = ThreadID.get();
8 Node myLeaf = leaf[me / radix];
9 myLeaf.await();
10 }
11 ...
12 }

Figure 17.6 The TreeBarrier class: each thread indexes into an array of leaf nodes and calls
that leaf’s await() method.

402 Chapter 17 Barriers

1 private class Node {
2 AtomicInteger count;
3 Node parent;
4 volatile boolean sense;
5 public Node() {
6 sense = false;
7 parent = null;
8 count = new AtomicInteger(radix);
9 }
10 public Node(Node myParent) {
11 this();
12 parent = myParent;
13 }
14 public void await() {
15 boolean mySense = threadSense.get();
16 int position = count.getAndDecrement();
17 if (position == 1) { // I’m last
18 if (parent != null) { // Am I root?
19 parent.await();
20 }
21 count.set(radix);
22 sense = mySense;
23 } else {
24 while (sense != mySense) {};
25 }
26 threadSense.set(!mySense);
27 }
28 }
29 }

Figure 17.7 The TreeBarrier class: internal tree node.

Pragma 17.4.1. Tree nodes are declared as an inner class of the tree barrier
class, so nodes are not accessible outside the class. As shown in Fig. 17.8, the
tree is initialized by a recursive build() method. The method takes a parent
node and a depth. If the depth is nonzero, it creates radix children, and recur-
sively creates the children’s children. If the depth is zero, it places each node in
a leaf[] array. When a thread enters the barrier, it uses this array to choose a
leaf to start from. See Appendix A.2.1 for a more complete discussion of inner
classes in Java.

17.5 Static Tree Barrier

The barriers seen so far either suffer from contention (the simple and sense-
reversing barriers) or have excessive communication (the combining-tree barrier).
In the last two barriers, threads traverse an unpredictable sequence of nodes,

17.5 Static Tree Barrier 403

1 public class TreeBarrier implements Barrier {
2 int radix;
3 Node[] leaf;
4 int leaves;
5 ThreadLocal<Boolean> threadSense;
6 public TreeBarrier(int n, int r) {
7 radix = r;
8 leaves = 0;
9 leaf = new Node[n / r];
10 int depth = 0;
11 threadSense = new ThreadLocal<Boolean>() {
12 protected Boolean initialValue() { return true; };
13 };
14 // compute tree depth
15 while (n > 1) {
16 depth++;
17 n = n / r;
18 }
19 Node root = new Node();
20 build(root, depth - 1);
21 }
22 // recursive tree constructor
23 void build(Node parent, int depth) {
24 if (depth == 0) {
25 leaf[leaves++] = parent;
26 } else {
27 for (int i = 0; i < radix; i++) {
28 Node child = new Node(parent);
29 build(child, depth - 1);
30 }
31 }
32 }
33 ...
34 }

Figure 17.8 The TreeBarrier class: initializing a combining tree barrier. The build() method
creates r children for each node, and then recursively creates the children’s children. At the
bottom, it places leaves in an array.

which makes it difficult to lay out the barriers on cacheless NUMA architectures.
Surprisingly, there is another simple barrier that allows both static layout and low
contention.

The static tree barrier of Fig. 17.9 works as follows. Each thread is assigned to
a node in a tree (see Fig. 17.10). The thread at a node waits until all nodes below
it in the tree have finished, and then informs its parent. It then spins waiting for
the global sense bit to change. Once the root learns that its children are done, it
toggles the global sense bit to notify the waiting threads that all threads are done.
On a cache-coherent multiprocessor, completing the barrier requires log(n) steps
moving up the tree, while notification simply requires changing the global sense,
which is propagated by the cache-coherence mechanism. On machines without

404 Chapter 17 Barriers

1 public class StaticTreeBarrier implements Barrier {
2 int radix;
3 boolean sense;
4 Node[] node;
5 ThreadLocal<Boolean> threadSense;
6 int nodes;
7 public StaticTreeBarrier(int size, int myRadix) {
8 radix = myRadix;
9 nodes = 0;
10 node = new Node[size];
11 int depth = 0;
12 while (size > 1) {
13 depth++;
14 size = size / radix;
15 }
16 build(null, depth);
17 sense = false;
18 threadSense = new ThreadLocal<Boolean>() {
19 protected Boolean initialValue() { return !sense; };
20 };
21 }
22 // recursive tree constructor
23 void build(Node parent, int depth) {
24 if (depth == 0) {
25 node[nodes++] = new Node(parent, 0);
26 } else {
27 Node myNode = new Node(parent, radix);
28 node[nodes++] = myNode;
29 for (int i = 0; i < radix; i++) {
30 build(myNode, depth - 1);
31 }
32 }
33 }
34 public void await() {
35 node[ThreadID.get()].await();
36 }
37 }

Figure 17.9 The StaticTreeBarrier class: each thread indexes into a statically assigned tree
node and calls that node’s await() method.

coherent caches threads propagate notification down the tree as in the combining
barrier we saw earlier.

17.6 Termination Detecting Barriers

All the barriers considered so far were directed at computations organized in
phases, where each thread finishes the work for a phase, reaches the barrier, and
then starts a new phase.

17.6 Termination Detecting Barriers 405

1 public Node(Node myParent, int count) {
2 children = count;
3 childCount = new AtomicInteger(count);
4 parent = myParent;
5 }
6 public void await() {
7 boolean mySense = threadSense.get();
8 while (childCount.get() > 0) {};
9 childCount.set(children);
10 if (parent != null) {
11 parent.childDone();
12 while (sense != mySense) {};
13 } else {
14 sense = !sense;
15 }
16 threadSense.set(!mySense);
17 }
18 public void childDone() {
19 childCount.getAndDecrement();
20 }

Figure 17.10 The StaticTreeBarrier class: internal Node class.

There is, however, another interesting class of programs, in which each thread
finishes its own part of the computation, only to be put to work again when
another thread generates new work. An example of such a program is the
simplified work stealing executer pool from Chapter 16 (see Fig. 17.11). Here,
once a thread exhausts the tasks in its local queue, it tries to steal work from other
threads’ queues. The execute() method itself may push new tasks onto the call-
ing thread’s local queue. Once all threads have exhausted all tasks in their queues,
the threads will run forever while repeatedly attempting to steal items. Instead,
we would like to devise a termination detection barrier so that these threads can
all terminate once they have finished all their tasks.

Each thread is either active (it has a task to execute) or inactive (it has none).
Note that any inactive thread may become active as long as some other thread is
active, since an inactive thread may steal a task from an active one. Once all threads
have become inactive, then no thread will ever become active again. Detecting that
the computation as a whole has terminated is the problem of determining that at
some instant in time there are no longer any active threads.

None of the barrier algorithms studied so far can solve this problem. Termi-
nation cannot be detected by having each thread announce that it has become
inactive, and simply count how many have done so, because threads may repeat-
edly change from inactive to active and back. For example, consider threads A, B,
and C running as shown in Fig. 17.11, and assume that each has a Boolean value
indicating whether it is active or inactive. When A becomes inactive, it may then
observe that B is also inactive, and then observe that C is inactive. Nevertheless,
A cannot conclude that the overall computation has completed; as B might have
stolen work from C after A checked B, but before it checked C .

406 Chapter 17 Barriers

1 public class WorkStealingThread {
2 DEQueue[] queue;
3 int size;
4 Random random;
5 public WorkStealingThread(int n) {
6 queue = new DEQueue[n];
7 size = n;
8 random = new Random();
9 for (int i = 0; i < n; i++) {
10 queue[i] = new DEQueue();
11 }
12 }
13 public void run() {
14 int me = ThreadID.get();
15 Runnable task = queue[me].popBottom();
16 while (true) {
17 while (task != null) {
18 task.run();
19 task = queue[me].popBottom();
20 }
21 while (task == null) {
22 int victim = random.nextInt() % size;
23 if (!queue[victim].isEmpty()) {
24 task = queue[victim].popTop();
25 }
26 }
27 }
28 }
29 }

Figure 17.11 Work stealing executer pool revisited.

1 public interface TDBarrier {
2 void setActive(boolean state);
3 boolean isTerminated();
4 }

Figure 17.12 Termination detection barrier interface.

A termination-detection barrier (Fig. 17.12) provides methods setActive(v)
and isTerminated(). Each thread calls setActive(true) to notify the barrier
when it becomes active, and setActive(false) to notify the barrier when it
becomes inactive. The isTerminated() method returns true if and only if all
threads had become inactive at some earlier instant. Fig. 17.13 shows a simple
implementation of a termination-detection barrier.

The barrier encompasses an AtomicInteger initialized to n, the number of
threads. Each thread that becomes active decrements the counter (Line 8) and
each thread that becomes inactive increments it (Line 10). The computation is
deemed to have terminated when the counter reaches zero (Line 14).

17.6 Termination Detecting Barriers 407

1 public class SimpleTDBarrier implements TDBarrier {
2 AtomicInteger count;
3 public SimpleTDBarrier(int n){
4 count = new AtomicInteger(n);
5 }
6 public void setActive(boolean active) {
7 if (active) {
8 count.getAndDecrement();
9 } else {
10 count.getAndIncrement();
11 }
12 }
13 public boolean isTerminated() {
14 return count.get() == 0;
15 }
16 }

Figure 17.13 A simple termination detecting barrier.

1 public void run() {
2 int me = ThreadID.get();
3 tdBarrier.setActive(true);
4 Runnable task = queue[me].popBottom();
5 while (true) {
6 while (task != null) {
7 task.run();
8 task = queue[me].popBottom();
9 }

10 tdBarrier.setActive(false);
11 while (task == null) {
12 int victim = random.nextInt() % queue.length;
13 if (!queue[victim].isEmpty()) {
14 tdBarrier.setActive(true);
15 task = queue[victim].popTop();
16 if (task == null) {
17 tdBarrier.setActive(false);
18 }
19 }
20 if (tdBarrier.isTerminated()) {
21 return;
22 }
23 }
24 }
25 }
26 }

Figure 17.14 Work-stealing executer pool: the run()method with termination.

The termination-detection barrier works only if used correctly. Fig. 17.14
shows how to modify the work-stealing thread’s run() method to return when
the computation has terminated. Initially, every thread registers as active (Line 3).
Once a thread has exhausted its local queue, it registers as inactive (Line 10).

408 Chapter 17 Barriers

Before it tries to steal a new task, however, it must register as active (Line 14).
If the theft fails, it registers as inactive again (Line 17).

Notice that a thread sets its state to active before stealing a task. Otherwise, if
a thread were to steal a task while inactive, then the thread whose task was stolen
might also declare itself inactive, resulting in a computation where all threads
declare themselves inactive while the computation continues.

Here is a subtle point. A thread tests whether the queue is empty (Line 13)
before it attempts to steal a task. This way, it avoids declaring itself active if there
is no chance the theft will succeed. Without this precaution, it is possible that the
threads will not detect termination because each one repeatedly switches to an
active state before a steal attempt that is doomed to fail.

Correct use of the termination-detection barrier must satisfy both a safety and
a liveness property. The safety property is that if isTerminated() returns true,
then the computation really has terminated. Safety requires that no active thread
ever declare itself inactive, because it could trigger an incorrect termination detec-
tion. For example, the work-stealing thread of Fig. 17.14 would be incorrect if the
thread declared itself to be active only after successfully stealing a task. By con-
trast, it is safe for an inactive thread to declare itself active, which may occur if the
thread is unsuccessful in stealing work at Line 15.

The liveness property is that if the computation terminates, then
isTerminated() eventually returns true. (It is not necessary that termination be
detected instantly.) While safety is not jeopardized if an inactive thread declares
itself active, liveness will be violated if a thread that does not succeed in stealing
work fails to declare itself inactive again (Line 15), because termination will not
be detected when it occurs.

17.7 Chapter Notes

John Mellor–Crummey and Michael Scott [114] provide a survey of several
barrier algorithms, though the performance numbers they provide should be
viewed from a historical perspective. The combining tree barrier is based on
code due to John Mellor–Crummey and Michael Scott [114], which is in turn
based on the combining tree algorithm of Pen-Chung Yew, Nian-Feng Tzeng, and
Duncan Lawrie [151]. The dissemination barrier is credited to Debra Hensgen,
Raphael Finkel, and Udi Manber [59]. The tournament tree barrier used in the
exercises is credited to John Mellor–Crummey and Michael Scott [114]. The sim-
ple barriers and the static tree barrier are most likely folklore. We learned of
the static tree barrier from Beng-Hong Lim. The termination detection barrier
and its application to an executer pool are based on a variation suggested by
Peter Kessler to an algorithm by Dave Detlefs, Christine Flood, Nir Shavit, and
Xiolan Zhang [41].

17.8 Exercises 409

17.8 Exercises

Exercise 198. Fig. 17.15 shows how to use barriers to make a parallel prefix
computation work on an asynchronous architecture.

A parallel prefix computation, given a sequence a0, . . . ,am−1, of numbers,
computes in parallel the partial sums:

bi =
i∑

j=0

aj.

In a synchronous system, where all threads take steps at the same time, there are
simple, well-known algorithms for m threads to compute the partial sums in logm
steps. The computation proceeds in a sequence of rounds, starting at round zero.
In round r, if i� 2r , thread i reads the value at a[i−2r] into a local variable. Next,
it adds that value to a[i]. Rounds continue until 2r � m. It is not hard to see that
after log2(m) rounds, the array a contains the partial sums.

1. What could go wrong if we executed the parallel prefix on n > m threads?

2. Modify this program, adding one or more barriers, to make it work properly in
a concurrent setting with n threads. What is the minimum number of barriers
that are necessary?

Exercise 199. Change the sense-reversing barrier implementation so that waiting
threads call wait() instead of spinning.

1 class Prefix extends java.lang.Thread {
2 private int[] a;
3 private int i;
4 public Prefix(int[] myA, int myI) {
5 a = myA;
6 i = myI;
7 }
8 public void run() {
9 int d = 1, sum = 0;
10 while (d < m) {
11 if (i >= d)
12 sum = a[i-d];
13 if (i >= d)
14 a[i] += sum;
15 d = d * 2;
16 }
17 }
18 }

Figure 17.15 Parallel prefix computation.

410 Chapter 17 Barriers

� Give an example of a situation where suspending threads is better than
spinning.

� Give an example of a situation where the other choice is better.

Exercise 200. Change the tree barrier implementation so that it takes a Runnable
object whose run() method is called once after the last thread arrives at the barrier,
but before any thread leaves the barrier.

Exercise 201. Modify the combining tree barrier so that nodes can use any barrier
implementation, not just the sense-reversing barrier.

Exercise 202. A tournament tree barrier (Class TourBarrier in Fig. 17.16) is an
alternative tree-structured barrier. Assume there are n threads, where n is a power
of 2. The tree is a binary tree consisting of 2n − 1 nodes. Each leaf is owned
by a single, statically determined thread. Each node’s two children are linked as
partners. One partner is statically designated as active, and the other as passive.
Fig. 17.17 illustrates the tree structure.

1 private class Node {
2 volatile boolean flag; // signal when done
3 boolean active; // active or passive?
4 Node parent; // parent node
5 Node partner; // partner node
6 // create passive node
7 Node() {
8 flag = false;
9 active = false;

10 partner = null;
11 parent = null;
12 }
13 // create active node
14 Node(Node myParent) {
15 this();
16 parent = myParent;
17 active = true;
18 }
19 void await(boolean sense) {
20 if (active) { // I’m active
21 if (parent != null) {
22 while (flag != sense) {}; // wait for partner
23 parent.await(sense); // wait for parent
24 partner.flag = sense; // tell partner
25 }
26 } else { // I’m passive
27 partner.flag = sense; // tell partner
28 while (flag != sense) {}; // wait for partner
29 }
30 }
31 }

Figure 17.16 The TourBarrier class.

17.8 Exercises 411

root

loser

loser

winner

winnerwinner loser

Figure 17.17 The TourBarrier class: information flow. Nodes are paired statically in active/
passive pairs. Threads start at the leaves. Each thread in an active node waits for its passive
partner to show up; then it proceeds up the tree. Each passive thread waits for its active
partner for notification of completion. Once an active thread reaches the root, all threads
have arrived, and notifications flow down the tree in the reverse order.

Each thread keeps track of the current sense in a thread-local variable. When a
thread arrives at a passive node, it sets its active partner’s sensefield to the current
sense, and spins on its own sense field until its partner changes that field’s value
to the current sense. When a thread arrives at an active node, it spins on its sense
field until its passive partner sets it to the current sense. When the field changes,
that particular barrier is complete, and the active thread follows the parent refer-
ence to its parent node. Note that an active thread at one level may become passive
at the next level. When the root node barrier is complete, notifications percolate
down the tree. Each thread moves back down the tree setting its partner’s sense
field to the current sense.

This barrier improves a little on the combining tree barrier of Fig. 17.6.
Explain how.

The tournament barrier code uses parent and partner references to navigate
the tree. We could save space by eliminating these fields and keeping all the nodes
in a single array with the root at index 0, the root’s children at indexes 1 and 2, the
grandchildren at indexes 3–6, and so on. Re-implement the tournament barrier
to use indexing arithmetic instead of references to navigate the tree.

Exercise 203. The combining tree barrier uses a single thread-local sense field for
the entire barrier. Suppose instead we were to associate a thread-local sense with
each node as in Fig. 17.6. Either:

� Explain why this implementation is equivalent to the other one, except that it
consumes more memory, or.

� Give a counterexample showing that this implementation is incorrect.

412 Chapter 17 Barriers

1 private class Node {
2 AtomicInteger count;
3 Node parent;
4 volatile boolean sense;
5 int d;
6 // construct root node
7 public Node() {
8 sense = false;
9 parent = null;
10 count = new AtomicInteger(radix);
11 ThreadLocal<Boolean> threadSense;
12 threadSense = new ThreadLocal<Boolean>() {
13 protected Boolean initialValue() { return true; };
14 };
15 }
16 public Node(Node myParent) {
17 this();
18 parent = myParent;
19 }
20 public void await() {
21 boolean mySense = threadSense.get();
22 int position = count.getAndDecrement();
23 if (position == 1) { // I’m last
24 if (parent != null) { // root?
25 parent.await();
26 }
27 count.set(radix); // reset counter
28 sense = mySense;
29 } else {
30 while (sense != mySense) {};
31 }
32 threadSense.set(!mySense);
33 }
34 }

Figure 17.18 Thread-local tree barrier.

Exercise 204. The tree barrier works “bottom-up,” in the sense that barrier com-
pletion moves from the leaves up to the root, while wake-up information moves
from the root back down to the leaves. Figs. 17.19 and 17.20 show an alternative
design, called a reverse tree barrier, which works just like a tree barrier except for
the fact that barrier completion starts at the root and moves down to the leaves.
Either:

� Sketch an argument why this is correct, perhaps by reduction to the standard
tree barrier, or

� Give a counterexample showing why it is incorrect.

Exercise 205. Implement an n-thread reusable barrier from an n-wire counting
network and a single Boolean variable. Sketch a proof that the barrier works.

17.8 Exercises 413

1 public class RevBarrier implements Barrier {
2 int radix;
3 ThreadLocal<Boolean> threadSense;
4 int leaves;
5 Node[] leaf;
6 public RevBarrier(int mySize, int myRadix) {
7 radix = myRadix;
8 leaves = 0;
9 leaf = new Node[mySize / myRadix];
10 int depth = 0;
11 threadSense = new ThreadLocal<Boolean>() {
12 protected Boolean initialValue() { return true; };
13 };
14 // compute tree depth
15 while (mySize > 1) {
16 depth++;
17 mySize = mySize / myRadix;
18 }
19 Node root = new Node();
20 root.d = depth;
21 build(root, depth - 1);
22 }
23 // recursive tree constructor
24 void build(Node parent, int depth) {
25 // are we at a leaf node?
26 if (depth == 0) {
27 leaf[leaves++] = parent;
28 } else {
29 for (int i = 0; i < radix; i++) {
30 Node child = new Node(parent);
31 child.d = depth;
32 build(child, depth - 1);
33 }
34 }
35 }

Figure 17.19 Reverse tree barrier Part 1.

Exercise 206. Can you devise a “distributed” termination detection algorithm for
the executer pool in which threads do not repeatedly update or test a central loca-
tion for termination, but rather use only local uncontended variables? Variables
may be unbounded, but state changes should take constant time, (so you cannot
parallelize the shared counter).

Hint: adapt the atomic snapshot algorithm from Chapter 4.

Exercise 207. A dissemination barrier is a symmetric barrier implementation in
which threads spin on statically-assigned locally-cached locations using only
loads and stores. As illustrated in Fig. 17.21, the algorithm runs in a series of
rounds. At round r, thread i notifies thread i+2r (mod n), (where n is the number
of threads) and waits for notification from thread i− 2r (mod n).

414 Chapter 17 Barriers

36 public void await() {
37 int me = ThreadInfo.getIndex();
38 Node myLeaf = leaf[me / radix];
39 myLeaf.await(me);
40 }
41 private class Node {
42 AtomicInteger count;
43 Node parent;
44 volatile boolean sense;
45 int d;
46 // construct root node
47 public Node() {
48 sense = false;
49 parent = null;
50 count = new AtomicInteger(radix);
51 }
52 public Node(Node myParent) {
53 this();
54 parent = myParent;
55 }
56 public void await(int me) {
57 boolean mySense = threadSense.get();
58 // visit parent first
59 if ((me % radix) == 0) {
60 if (parent != null) { // root?
61 parent.await(me / radix);
62 }
63 }
64 int position = count.getAndDecrement();
65 if (position == 1) { // I’m last
66 count.set(radix); // reset counter
67 sense = mySense;
68 } else {
69 while (sense != mySense) {};
70 }
71 threadSense.set(!mySense);
72 }
73 }
74 }

Figure 17.20 Reverse tree barrier Part 2: correct or not?

For how many rounds must this protocol run to implement a barrier? What if
n is not a power of 2? Justify your answers.

Exercise 208. Give a reusable implementation of a dissemination barrier in Java.

Hint: you may want to keep track of both the parity and the sense of the current
phase.

Exercise 209. Create a table that summarizes the total number of operations in the
static tree, combining tree, and dissemination barriers.

17.8 Exercises 415

i + 1 mod(6) i + 2 mod(6) i + 4 mod(6)
Thread i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

Figure 17.21 Communication in the dissemination barrier. In each round r a thread i
communicates with thread i+2r(mod n).

Exercise 210. In the termination detection barrier, the state is set to active before
stealing the task; otherwise the stealing thread could be declared inactive; then
it would steal a task, and before setting its state back to active, the thread it stole
from could become inactive. This would lead to an undesirable situation in which
all threads are declared inactive yet the computation continues. Can you devise a
terminating executer pool in which the state is set to active only after successfully
stealing a task?

This page intentionally left blank

18Transactional Memory

18.1 Introduction

We now turn our attention from devising data structures and algorithms to
critiquing the tools we use to solve these problems. These tools are the syn-
chronization primitives provided by today’s architectures, encompassing vari-
ous kinds of locking, both spinning and blocking, and atomic operations such
as compareAndSet() and its relatives. They have mostly served us well. We, the
community of multiprocessor programmers, have been able to construct many
useful and elegant data structures. Nevertheless, everyone knows that the tools
are flawed. In this chapter, we review and analyze the strengths and weaknesses of
the standard synchronization primitives, and describe some emerging alternatives
that are likely to extend, and perhaps even to displace many of today’s standard
primitives.

18.1.1 What is Wrong with Locking?

Locking, as a synchronization discipline, has many pitfalls for the inexperienced
programmer. Priority inversion occurs when a lower-priority thread is preempted
while holding a lock needed by higher-priority threads. Convoying occurs when a
thread holding a lock is descheduled, perhaps by exhausting its scheduling quan-
tum by a page fault, or by some other kind of interrupt. While the thread holding
the lock is inactive, other threads that require that lock will queue up, unable to
progress. Even after the lock is released, it may take some time to drain the queue,
in much the same way that an accident can slow traffic even after the debris has
been cleared away. Deadlock can occur if threads attempt to lock the same objects
in different orders. Deadlock avoidance can be awkward if threads must lock many
objects, particularly if the set of objects is not known in advance. In the past, when
highly scalable applications were rare and valuable, these hazards were avoided by

417

418 Chapter 18 Transactional Memory

/*
* When a locked buffer is visible to the I/O layer BH_Launder
* is set. This means before unlocking we must clear BH_Launder,
* mb() on alpha and then clear BH_Lock, so no reader can see
* BH_Launder set on an unlocked buffer and then risk to deadlock.
*/

Figure 18.1 Synchronization by convention: a typical comment from the Linux kernel.

deploying teams of dedicated expert programmers. Today, when highly scalable
applications are becoming commonplace, the conventional approach is just too
expensive.

The heart of the problem is that no one really knows how to organize and
maintain large systems that rely on locking. The association between locks
and data is established mostly by convention. Ultimately, it exists only in the
mind of the programmer, and may be documented only in comments. Fig. 18.1
shows a typical comment from a Linux header file1 describing the conventions
governing the use of a particular kind of buffer. Over time, interpreting and
observing many such conventions spelled out in this way may complicate code
maintenance.

18.1.2 What is Wrong with compareAndSet()?

One way to bypass the problems of locking is to rely on atomic primitives like
compareAndSet(). Algorithms that use compareAndSet() and its relatives are
often hard to devise, and sometimes, though not always, have a high overhead.
The principal difficulty is that nearly all synchronization primitives, whether
reading, writing, or applying an atomic compareAndSet(), operate only on a
single word. This restriction often forces a complex and unnatural structure on
algorithms.

Let us review the lock-free queue of Chapter 10 (reproduced in Fig. 18.2), this
time with an eye toward the underlying synchronization primitives.

A complication arises between Lines 12 and 13. The enq() method calls
compareAndSet() to change both the tail node’s next field and the tail
field itself to the new node. Ideally, we would like to atomically combine both
compareAndSet() calls, but because these calls occur one-at-a-time both enq()
and deq() must be prepared to encounter a half-finished enq() (Line 12).
One way to address this problem is to introduce a multiCompareAndSet()
primitive, as shown in Fig. 18.3. This method takes as arguments an array of
AtomicReference<T> objects, an array of expected T values, and an array of
T-values used for updates. It performs a simultaneous compareAndSet() on all

1 Kernel v2.4.19 /fs/buffer.c

18.1 Introduction 419

1 public class LockFreeQueue<T> {
2 private AtomicReference<Node> head;
3 private AtomicReference<Node> tail;
4 ...
5 public void enq(T item) {
6 Node node = new Node(item);
7 while (true) {
8 Node last = tail.get();
9 Node next = last.next.get();

10 if (last == tail.get()) {
11 if (next == null) {
12 if (last.next.compareAndSet(next, node)) {
13 tail.compareAndSet(last, node);
14 return;
15 }
16 } else {
17 tail.compareAndSet(last, next);
18 }
19 }
20 }
21 }
22 }

Figure 18.2 The LockFreeQueue class: the enq() method.

1 <T> boolean multiCompareAndSet(
2 AtomicReference<T>[] target,
3 T[] expect,
4 T[] update) {
5 atomic {
6 for (int i = 0; i < target.length)
7 if (!target[i].get().equals(expected[i].get()))
8 return false;
9 for (int i = 0; i < target.length)
10 target[i].set(update[i].get);
11 return true;
12 }
13 }

Figure 18.3 Pseudocode for multiCompareAndSet(). This code is executed atomically.

array elements, and if any one fails, they all do. In more detail: if, for all i, the
value of target[i] is expected[i], then set target[i]’s value to update[i] and
return true. Otherwise leave target[i] unchanged, and return false.

Note that there is no obvious way to implement multiCompareAndSet() on
conventional architectures. If there were, comparing the LockFreeQueue imple-
mentations in Figs. 18.2 and 18.4 illustrates how multiCompareAndSet() simpli-
fies concurrent data structures. The complex logic of Lines 11–12 is replaced by a
call to a single multiCompareAndSet() call.

420 Chapter 18 Transactional Memory

1 public void enq(T item) {
2 Node node = new Node(item);
3 while (true) {
4 Node last = tail.get();
5 Node next = last.next.get();
6 if (last == tail.get()) {
7 AtomicReference[] target = {last.next, tail};
8 T[] expect = {next, last};
9 T[] update = {node, node};

10 if (multiCompareAndSet(target, expect, update)) return;
11 }
12 }
13 }

Figure 18.4 The LockFreeQueue class: simplified enq() method with
multiCompareAndSet().

While multi-word extensions such as multiCompareAndSet() might be useful,
they do not help with another serious flaw, discussed in Section 18.1.3.

18.1.3 What is Wrong with Compositionality?

All the synchronization mechanisms we have considered so far, with or without
locks, have a major drawback: they cannot easily be composed. Let us imagine that
we want to dequeue an item x from queue q0 and enqueue it at another, q1. The
transfer must be atomic: no concurrent thread should observe either that x has
vanished, or that it is present in both queues. In Queue implementations based on
monitors, each method acquires the lock internally, so it is essentially impossible
to combine two method calls in this way.

Failure to compose is not restricted to mutual exclusion. Let us consider a
bounded queue class whose deq() method blocks as long as the queue is empty
(using either wait/notify or explicit condition objects). We imagine that we have
two such queues, and we want to dequeue an item from either queue. If both
queues are empty, then we want to block until an item shows up in either one.
In Queue implementations based on monitors, each method provides its own
conditional waiting, so it is essentially impossible to wait on two conditions in
this way.

Naturally, there are always ad hoc solutions. For the atomic transfer, we could
introduce a lock to be acquired by any thread attempting an atomic modifica-
tion to both q0 and q1. But such a lock would be a concurrency bottleneck (no
concurrent transfers) and it requires knowing in advance the identities of the two
queues. Or, the queues themselves might export their synchronization state, (say,
via lock() and unlock() methods), and rely on the caller to manage multi-object
synchronization. Exposing synchronization state in this way would have a dev-
astating effect on modularity, complicating interfaces, and relying on callers to

18.2 Transactions and Atomicity 421

follow complicated conventions. Also, this approach simply would not work for
nonblocking queue implementations.

18.1.4 What can We Do about It?

We can summarize the problems with conventional synchronization primitives
as follows.

� Locks are hard to manage effectively, especially in large systems.

� Atomic primitives such as compareAndSet() operate on only one word at a
time, resulting in complex algorithms.

� It is difficult to compose multiple calls to multiple objects into atomic units.

In Section 18.2, we introduce transactional memory, an emerging programming
model that proposes a solution to each of these problems.

18.2 Transactions and Atomicity

A transaction is a sequence of steps executed by a single thread. Transactions
must be serializable, meaning that they appear to execute sequentially, in a one-
at-a-time order. Serializability is a kind of coarse-grained version of lineariz-
ability. Linearizability defined atomicity of individual objects by requiring that
each method call of a given object appear to take effect instantaneously between
its invocation and response, Serializability, on the other hand, defines atomicity
for entire transactions, that is, blocks of code that may include calls to multiple
objects. It ensures that a transaction appears to take effect between the invoca-
tion of its first call and the response to its last call.2 Properly implemented, trans-
actions do not deadlock or livelock.

We now describe some simple programming language extensions to Java that
support a transactional model of synchronization. These extensions are not cur-
rently part of Java, but they illustrate the model. The features described here are
a kind of average of features provided by contemporary transactional memory
systems. Not all systems provide all these features: some provide weaker guaran-
tees, some stronger. Nevertheless, understanding these features will go a long way
toward understanding modern transactional memory models.

The atomic keyword delimits a transaction in much the same way the
synchronized keyword delimits a critical section. While synchronized blocks
acquire a specific lock, and are atomic only with respect to other synchronized

2 Some definitions of serializability in the literature do not require transactions to be serialized in
an order compatible with their real-time precedence order.

422 Chapter 18 Transactional Memory

1 public class TransactionalQueue<T> {
2 private Node head;
3 private Node tail;
4 public TransactionalQueue() {
5 Node sentinel = new Node(null);
6 head = sentinel;
7 tail = sentinel;
8 }
9 public void enq(T item) {
10 atomic {
11 Node node = new Node(item);
12 node.next = tail;
13 tail = node;
14 }
15 }

Figure 18.5 An unbounded transactional queue: the enq() method.

blocks that acquire the same lock, an atomic block is atomic with respect to all
other atomic blocks. Nested synchronized blocks can deadlock if they acquire
locks in opposite orders, while nested atomic blocks cannot.

Because transactions allow atomic updates to multiple locations, they elim-
inate the need for multiCompareAndSet(). Fig. 18.5 shows the enq() method
for a transactional queue. Let us compare this code with the lock-free code of
Fig. 18.2: there is no need for AtomicReference fields, compareAndSet() calls,
or retry loops. Here, the code is essentially sequential code bracketed by atomic
blocks.

To explain how transactions are used to write concurrent programs, it is con-
venient to say something about how they are implemented. Transactions are
executed speculatively: as a transaction executes, it makes tentative changes to
objects. If it completes without encountering a synchronization conflict, then
it commits (the tentative changes become permanent) or it aborts (the tentative
changes are discarded).

Transactions can be nested. Transactions must be nested for simple modular-
ity: one method should be able to start a transaction and then call another method
without caring whether the nested call starts a transaction. Nested transactions
are especially useful if a nested transaction can abort without aborting its parent.
This property will be important when we discuss conditional synchronization
later on.

Recall that atomically transferring an item from one queue to another was
essentially impossible with objects that use internal monitor locks. With trans-
actions, composing such atomic method calls is almost trivial. Fig. 18.6 shows
how to compose a deq() call that dequeues an item x from a queue q0 and an
enq(x) call that enqueues that item to another queue q0.

What about conditional synchronization? Fig. 18.7 shows the enq() method
for a bounded buffer. The method enters an atomic block (Line 2), and tests

18.2 Transactions and Atomicity 423

1 public void enq(T x) {
2 atomic {
3 if (count == items.length)
4 retry;
5 items[tail] = x;
6 if (++tail == items.length)
7 tail = 0;
8 ++count;
9 }
10 }

Figure 18.6 A bounded transactional queue: the enq() method with retry.

1 atomic {
2 x = q0.deq();
3 q1.deq(x);
4 }

Figure 18.7 Composing atomic method calls.

1 atomic {
2 x = q0.deq();
3 } orElse {
4 x = q1.deq();
5 }

Figure 18.8 The orElse statement: waiting on multiple conditions.

whether the buffer is full (Line 3). If so, it calls retry (Line 4), which rolls back the
enclosing transaction, pauses it, and restarts it when the object state has changed.
Conditional synchronization is one reason it may be convenient to roll back a
nested transaction without rolling back the parent. Unlike the wait() method or
explicit condition variables, retry does not easily lend itself to lost wake-up bugs.

Recall that waiting for one of several conditions to become true was impossible
using objects with internal monitor condition variables. A novel aspect of retry
is that such composition becomes easy. Fig. 18.8 shows a code snippet illustrating
the orElse statement, which joins two or more code blocks. Here, the thread
executes the first block (Line 2). If that block calls retry, then that subtransaction
is rolled back, and the thread executes the second block (Line 4). If that block also
calls retry, then the orElse as a whole pauses, and later reruns each of the blocks
(when something changes) until one completes.

In the rest of this chapter, we examine techniques for implementing transac-
tional memory. Transactional synchronization can be implemented in hardware
(HTM), in software (STM), or both. In the following sections, we examine STM
implementations.

424 Chapter 18 Transactional Memory

18.3 Software Transactional Memory

Unfortunately, the language support sketched in Section 18.2 is not currently
available. Instead, this section describes how to support transactional synchro-
nization using a software library. We present TinyTM, a simple Software Trans-
actional Memory package that could be the target of the language extensions
described in Section 18.2. For brevity, we ignore such important issues as nested
transactions, retry, and orElse. There are two elements to a software transac-
tional memory construction: the threads that run the transactions, and the objects
that they access.

We illustrate these concepts by walking though part of a concurrent SkipList
implementation, like those found in Chapter 14. This class uses a skiplist to imple-
ment a set providing the usual methods: add(x) adds x to the set, remove(x)
removes x from the set, and contains(x) returns true if, and only if x is in
the set.

Recall that a skiplist is a collection of linked lists. Each node in the list contains
an item field (an element of the set), a key field (the item’s hash code), and a
next field, which is an array of references to successor nodes in the list. Array slot
zero refers to the very next node in the list, and higher-numbered slots refer to
successively later successors. To find a given key, search first though higher levels,
moving to a lower level each time a search overshoots. In this way, one can find an
item in time logarithmic in the length of the list. (Refer to Chapter 14 for a more
complete description of skiplists.)

Using TinyTM, threads communicate via shared atomic objects, which provide
synchronization, ensuring that transactions cannot see one another’s uncommit-
ted effects, and recovery, undoing the effects of aborted transactions. Fields of
atomic objects are not directly accessible. Instead, they are accessed indirectly
through getter and setter methods. For example, the getter method for the key
field has the form

int getKey();

while the matching setter method has the form

void setKey(int value);

Accessing fields through getters and setters provides the ability to interpose trans-
actional synchronization and recovery on each field access. Fig. 18.9 shows the
complete SkipNode interface.

In a similar vein, the transactional SkipList implementation cannot use a
standard array, because TinyTM cannot intercept access to the array. Instead,
TinyTM provides an AtomicArray<T> class that serves the same functionality as
a regular array.

Fig. 18.10 shows the fields and constructor for the SkipListSet class, and
Fig. 18.11 shows the code for the add() method. Except for the syntactic clutter

18.3 Software Transactional Memory 425

1 public interface SkipNode<T> {
2 public int getKey();
3 public void setKey(int value);
4 public T getItem();
5 public void setItem(T value);
6 public AtomicArray<SkipNode<T>> getNext();
7 public void setNext(AtomicArray<SkipNode<T>> value);
8 }

Figure 18.9 The SkipNode interface.

1
2 public final class SkipListSet<T> {
3 final SkipNode<T> head;
4 final SkipNode<T> tail;
5 public SkipListSet() {
6 head = new TSkipNode<T>(MAX_HEIGHT, Integer.MIN_VALUE, null);
7 tail = new TSkipNode<T>(0, Integer.MAX_VALUE, null);
8 AtomicArray<SkipNode<T>> next = head.getNext();
9 for (int i = 0; i < next.length; i++) {
10 next.set(i, tail);
11 }
12 }
13 ...

Figure 18.10 The SkipListSet class: fields and constructor.

14 public boolean add(T v) {
15 int topLevel = randomLevel();
16 SkipNode<T>[] preds = (SkipNode<T>[]) new SkipNode[MAX_HEIGHT];
17 SkipNode<T>[] succs = (SkipNode<T>[]) new SkipNode[MAX_HEIGHT];
18 if (find(v, preds, succs) != -1) {
19 return false;
20 }
21 SkipNode<T> newNode = new TSkipNode<T>(topLevel+1, v);
22 for (int level = 0; level <= topLevel; level++) {
23 newNode.getNext().set(level, succs[level]);
24 preds[level].getNext().set(level, newNode);
25 }
26 return true;
27 }

Figure 18.11 The SkipListSet class: the add() method.

caused by the getters and setters, this code is almost identical to that of a sequential
implementation. (The getter and setter calls could be generated by a compiler or
preprocessor, but here we will make the calls explicit.) In Line 21 we create a new
TSkipNode (transactional skip node) implementing the SkipNode interface. We
will examine this class later on.

426 Chapter 18 Transactional Memory

1 public class TThread extends java.lang.Thread {
2 static Runnable onAbort = ...;
3 static Runnable onCommit = ...;
4 static Callable<Boolean> onValidate = ...;
5 public static <T> T doIt(Callable<T> xaction) throws Exception {
6 T result = null;
7 while (true) {
8 Transaction me = new Transaction();
9 Transaction.setLocal(me);

10 try {
11 result = xaction.call();
12 } catch (AbortedException e) {
13 } catch (Exception e) {
14 throw new PanicException(e);
15 }
16 if (onValidate.call()) {
17 if (me.commit()) {
18 onCommit.run(); return result;
19 }
20 }
21 me.abort();
22 onAbort.run();
23 }
24 }
25 }

Figure 18.12 The TThread class.

1 SkipListSet<Integer> list = new SkipListSet<Integer>();
2 for (int i = 0; i < 100; i++) {
3 result = TThread.doIt(new Callable<Boolean>() {
4 public Boolean call() {
5 return list.add(i);
6 }
7 });
8 }

Figure 18.13 Adding items to an integer list.

A transaction that returns a value of type T is implemented by a Callable<T>
object (see Chapter 16) where the code to be executed is encapsulated in the
object’s call() method.

A transactional thread (class TThread) is a thread capable of running transac-
tions. A TThread (Fig. 18.12) runs a transaction by calling the doIt() method
with the Callable<T> object as an argument. Fig. 18.13 shows a code snippet
in which a transactional thread inserts a sequence of values into a skiplist tree.
The list variable is a skiplist shared by multiple transactional threads. Here, the
argument to doIt() is an anonymous inner class, a Java construct that allows short-
lived classes to be declared in-line. The result variable is a Boolean indicating
whether the value was already present in the list.

18.3 Software Transactional Memory 427

We now describe the TinyTM implementation in detail. In Section 18.3.1, we
describe the transactional thread implementation, and then we describe how to
implement transactional atomic objects.

18.3.1 Transactions and Transactional Threads

A transaction’s status is encapsulated in a thread-local Transaction object
(Fig. 18.14) which can assume one of three states: ACTIVE, ABORTED, or COMMITTED
(Line 2). When a transaction is created, its default status is ACTIVE (Line 11). It
is convenient to define a constant Transaction.COMMITTED transaction object
for threads that are not currently executing within a transaction (Line 3). The
Transaction class also keeps track of each thread’s current transaction through
a thread-local field local (Lines 5–8).

The commit() method tries to change the transaction state from ACTIVE
to COMMITTED (Line 19), and the abort() method from ACTIVE to ABORTED

1 public class Transaction {
2 public enum Status {ABORTED, ACTIVE, COMMITTED};
3 public static Transaction COMMITTED = new Transaction(Status.COMMITTED);
4 private final AtomicReference<Status> status;
5 static ThreadLocal<Transaction> local = new ThreadLocal<Transaction>() {
6 protected Transaction initialValue() {
7 return new Transaction(Status.COMMITTED);
8 }
9 };
10 public Transaction() {
11 status = new AtomicReference<Status>(Status.ACTIVE);
12 }
13 private Transaction(Transaction.Status myStatus) {
14 status = new AtomicReference<Status>(myStatus);
15 }
16 public Status getStatus() {
17 return status.get();
18 }
19 public boolean commit() {
20 return status.compareAndSet(Status.ACTIVE, Status.COMMITTED);
21 }
22 public boolean abort() {
23 return status.compareAndSet(Status.ACTIVE, Status.ABORTED);
24 }
25 public static Transaction getLocal() {
26 return local.get();
27 }
28 public static void setLocal(Transaction transaction) {
29 local.set(transaction);
30 }
31 }

Figure 18.14 The Transaction class.

428 Chapter 18 Transactional Memory

(Line 22). A thread can test its current transaction state by calling getStatus()
(Line 16). If a thread discovers that its current transaction has been aborted, it
throws AbortedException. A thread can get and set its current transaction by
calling static getLocal() or setLocal() methods.

The TThread (transactional thread) class is a subclass of the standard Java
Thread class. Each transactional thread has several associated handlers. The
onCommit and onAbort handlers are called when a transaction commits or aborts,
and the validation handler is called when a transaction is about to commit. It
returns a Boolean indicating whether the thread’s current transaction should try
to commit. These handlers can be defined at run-time. Later, we will see how these
handlers can be used to implement different techniques for transaction synchro-
nization and recovery.

The doIt() method (Line 5) takes a Callable<T> object and executes its
call() method as a transaction. It creates a new ACTIVE transaction (Line 8), and
calls the transaction’s call() method. If that method throws AbortedException
(Line 12), then the doIt() method simply retries the loop. Any other excep-
tion means the application has made an error (Line 13), and (for simplicity) the
method throws PanicException, which prints an error message and shuts down
everything. If the transaction returns, then doIt() calls the validation handler to
test whether to commit (Line 16), and if the validation succeeds, then it tries to
commit the transaction (Line 17). If the commit succeeds, then it runs the com-
mit hander and returns (Line 18). Otherwise, if validation fails, it explicitly aborts
the transaction. If commit fails for any reason, it runs the abort handler before
retrying (Line 22).

18.3.2 Zombies and Consistency

Synchronization conflicts cause transactions to abort, but it is not always possible
to halt a transaction’s thread immediately after the conflict occurs. Instead, such
zombie 3 transactions may continue to run even after it has become impossible
for them to commit. This prospect raises another important design issue: how to
prevent zombie transactions from seeing inconsistent states.

Here is how an inconsistent state could arise. An object has two fields x and
y, initially 1 and 2. Each transaction preserves the invariant that y is always equal
to 2x. Transaction Z reads y, and sees value 2. Transaction A changes x and y
to 2 and 4, respectively, and commits. Z is now a zombie, since it keeps running,
but will never commit. Z later reads y, and sees the value 2, which is inconsistent
with the value it read for x.

One approach is to deny that inconsistent states are a problem. Since zombie
transactions must eventually abort, their updates will be discarded, so why should
we care what they observe? Unfortunately, a zombie can cause problems, even if

3 A zombie is a reanimated human corpse. Stories of zombies originated in the Afro-Caribbean
spiritual belief system of Vodou.

18.3 Software Transactional Memory 429

its updates never take effect. In the scenario described earlier, where y = 2x in
every consistent state, but Z has read the inconsistent value 2 for both x and y, if
Z evaluates the expression

1/(x-y)

it will throw an “impossible” divide-by-zero exception, halting the thread, and
possibly crashing the application. For the same reason, if Z now executes the loop

int i = x + 1; // i is 3
while (i++ != y) { // y is actually 2, should be 4
...

}

it would never terminate.
There is no practical way to avoid “impossible” exceptions and infinite loops in

a programming model where invariants cannot be relied on. As a result, TinyTM
guarantees that all transactions, even zombies, see consistent states.

18.3.3 Atomic Objects

As mentioned earlier, concurrent transactions communicate through shared
atomic objects. As we have seen (Fig. 18.9), access to an atomic object is provided
by a stylized interface that provides a set of matching getter and setter methods.
The AtomicObject interface appears in Fig. 18.15

We will need to construct two classes that implement this interface: a sequential
implementation that provides no synchronization or recovery, and a transactional
implementation that does. Here too, these classes could easily be generated by a
compiler, but we will do these constructions by hand.

The sequential implementation is straightforward. For each matching getter–
setter pair, for example:

T getItem();
void setItem(T value);

1 public abstract class AtomicObject <T extends Copyable<T>> {
2 protected Class<T> internalClass;
3 protected T internalalInit;
4 public AtomicObject(T init) {
5 internalInit = init;
6 internalClass = (Class<T>) init.getClass();
7 }
8 public abstract T openRead();
9 public abstract T openWrite();
10 public abstract boolean validate();
11 }

Figure 18.15 The AtomicObject<T> abstract class.

430 Chapter 18 Transactional Memory

the sequential implementation defines a private field item of type T. We also
require the sequential implementation to satisfy a simple Copyable<T> inter-
face that provides a copyTo() method that copies the fields of one object to
another (Fig. 18.16). As a technical matter, we also require the type to provide
a no-argument constructor. For brevity, we use the term version to refer to an
instance of a sequential, Copyable<T> implementation of an atomic object inter-
face.

Fig. 18.17 shows the SSkipNode class, a sequential implementation of the
SkipNode interface. This class has three parts. The class must provide a
no-argument constructor for use by atomic object implementations (as described
later), and may provide any other constructors convenient to the class. Second,
it provides the getters and setters defined by the interface, where each getter or
setter simply reads or writes its associated field. Finally, the class also implements
the Copyable interface, which provides a copyTo() method that initializes one

1 public interface Copyable<T> {
2 void copyTo(T target);
3 }

Figure 18.16 The Copyable<T> interface.

1 public class SSkipNode<T>
2 implements SkipNode<T>, Copyable<SSkipNode<T>> {
3 AtomicArray<SkipNode<T>> next;
4 int key;
5 T item;
6 public SSkipNode() {}
7 public SSkipNode(int level) {
8 next = new AtomicArray<SkipNode<T>>(SkipNode.class, level);
9 }
10 public SSkipNode(int level, int myKey, T myItem) {
11 this(level); key = myKey; item = myItem;
12 }
13 public AtomicArray<SkipNode<T>> getNext() {return next;}
14 public void setNext(AtomicArray<SkipNode<T>> value) {next = value;}
15 public int getKey() {return key;}
16 public void setKey(int value) {key = value;}
17 public T getItem() {return item;}
18 public void setItem(T value) {item = value;}
19
20 public void copyTo(SSkipNode<T> target) {
21 target.forward = forward;
22 target.key = key;
23 target.item = item;
24 }
25 }

Figure 18.17 The SSkipNode class: a sequential SkipNode implementation.

18.3 Software Transactional Memory 431

object’s fields from another’s. This method is needed to make back-up copies of
the sequential object.

18.3.4 Dependent or Independent Progress?

One goal of transactional memory is to free the programmer from worrying about
starvation, deadlock, and “the thousand natural shocks” that locking is heir to.
Nevertheless, those who implement STMs must decide which progress condition
to meet.

We recall from Chapter 3 that implementations that meet strong independent
progress conditions such as wait-freedom or lock-freedom guarantee that a thread
always makes progress. While it is possible to design wait-free or lock-free STM
systems, no one knows how to make them efficient enough to be practical.

Instead, research on nonblocking STMs has focused on weaker dependent
progress conditions. There are two approaches that promise good performance:
nonblocking STMs that are obstruction-free, and blocking, lock-based STMs that
are deadlock-free. Like the other nonblocking conditions, obstruction-freedom
ensures that not all threads can be blocked by delays or failures of other threads.
This property is weaker than lock-free synchronization, because it does not guar-
antee progress when two or more conflicting threads are executing concurrently.

The deadlock-free property does not guarantee progress if threads halt in criti-
cal sections. Fortunately, as with many of the lock-based data structures we saw
earlier, scheduling in modern operating systems can minimize the possibility of
threads getting swapped out in the middle of a transaction. Like obstruction-
freedom, deadlock-freedom does not guarantee progress when two or more
conflicting threads are executing concurrently.

For both the nonblocking obstruction-free and blocking deadlock-free STMs,
progress for conflicting transactions is guaranteed by a contention manager, a
mechanism that decides when to delay contending threads, through spinning or
yielding, so that some thread can always make progress.

18.3.5 Contention Managers

In TinyTM, as in many other STMs, a transaction can detect when it is about
to cause a synchronization conflict. The requester transaction then consults a
contention manager. The contention manager serves as an oracle,4 advising the
transaction whether to abort the other transaction immediately, or stall to allow
the other a chance to complete. Naturally, no transaction should stall forever wait-
ing for another.

4 Dating back to 1400 BC, Pythia, the Oracle of Delphi, provided advice and predictions about
crops and wars.

432 Chapter 18 Transactional Memory

1 public abstract class ContentionManager {
2 static ThreadLocal<ContentionManager> local
3 = new ThreadLocal<ContentionManager>() {
4 protected ContentionManager initialValue() {
5 try {
6 return (ContentionManager) Defaults.MANAGER.newInstance();
7 } catch (Exception ex) {
8 throw new PanicException(ex);
9 }
10 }
11 };
12 public abstract void resolve(Transaction me, Transaction other);
13 public static ContentionManager getLocal() {
14 return local.get();
15 }
16 public static void setLocal(ContentionManager m) {
17 local.set(m);
18 }
19 }

Figure 18.18 Contention manager base class.

Fig. 18.18 shows a simplified base class for contention managers. It provides a
single method, resolve() (Line 12), that takes two transactions, the requester’s
and the other’s, and either pauses the requester, or aborts the other. It also keeps
track of each thread’s local contention manager (Line 2), accessible by getLocal()
and setLocal() methods (Lines 16 and 13).

The ContentionManager class is abstract because it does not implement any
conflict resolution policy. Here are some possible contention manager policies.
Suppose transaction A is about to conflict with transaction B.

� Backoff: A repeatedly backs off for a random duration, doubling the expected
time up to some limit. When that limit is reached, it aborts B.

� Priority: Each transaction takes a timestamp when it starts. If A has an older
timestamp than B, it aborts B, and otherwise it waits. A transaction that
restarts after an abort keeps its old timestamp, ensuring that every transaction
eventually completes.

� Greedy: Each transaction takes a timestamp when it starts. A aborts B if either
A has an older timestamp than B, or B is waiting for another transaction. This
strategy eliminates chains of waiting transactions. As in the priority policy,
every transaction eventually completes.

� Karma: Each transaction keeps track of how much work it has accomplished,
and the transaction that has accomplished more has priority.

Fig. 18.19 shows a contention manager implementation that uses the back-off
policy. The manager imposes minimum and maximum delays (Lines 2–3). The
resolve() method checks whether this is the first time it has encountered the
other thread (Line 8). If so, it resets its delay to the minimum, and otherwise it
uses its current delay. If the current delay is less than the maximum, the thread

18.3 Software Transactional Memory 433

1 public class BackoffManager extends ContentionManager {
2 private static final int MIN_DELAY = ...;
3 private static final int MAX_DELAY = ...;
4 Random random = new Random();
5 Transaction previous = null;
6 int delay = MIN_DELAY;
7 public void resolve(Transaction me, Transaction other) {
8 if (other != rival) {
9 previous = other;

10 delay = MIN_DELAY;
11 }
12 if (delay < MAX_DELAY) {
13 Thread.sleep(random.nextInt(delay));
14 delay = 2 * delay;
15 } else {
16 other.abort();
17 delay = MIN_DELAY;
18 }
19 }
20 }

Figure 18.19 A simple contention manager implementation.

sleeps for a random duration bounded by the delay (Line 13), and doubles the
next delay. If the current delay exceeds the maximum, the caller aborts the other
transaction (Line 16).

18.3.6 Implementing Atomic Objects

Linearizability requires that individual method calls appear to take place atomi-
cally. We now consider how to guarantee serializability: that multiple atomic calls
have the same property.

A transactional implementation of an atomic object must provide getter and
setter methods that invoke transactional synchronization and recovery. We review
two alternative approaches to synchronization and recovery: the FreeObject
class is obstruction-free, while the LockObject class uses locking for synchro-
nization, These alternatives are implementations of the abstract AtomicObject
class, shown in Fig. 18.15. The init() method takes the atomic object’s class as
argument and records it for later use. The openRead() method returns a version
suitable for reading (that is, one can call its getter methods only), while the
openWrite() method returns a version that may be written (that is, one can call
both getters and setters).

The validate() method returns true if and only if the value to be returned
is guaranteed to be consistent. It is necessary to call validate() before returning
any information extracted from an atomic object. The openRead(), openWrite(),
and validate() methods are all abstract.

Fig. 18.20 shows the TSkipNode class a transactional SkipNode implementa-
tion. This class uses the LockObject atomic object implementation for synchro-
nization and recovery (Line 8).

434 Chapter 18 Transactional Memory

1 public class TSkipNode<T> implements SkipNode<T> {
2 AtomicObject<SSkipNode<T>> atomic;
3 public TSkipNode(int level) {
4 atomic = new LockObject<SSkipNode<T>>(new SSkipNode<T>(level));
5 }
6 public TSkipNode(int level, int key, T item){
7 atomic =
8 new LockObject<SSkipNode<T>>(new SSkipNode<T>(level, key, item));
9 }
10 public TSkipNode(int level, T item){
11 atomic = new LockObject<SSkipNode<T>>(new SSkipNode<T>(level,
12 item.hashCode(), item));
13 }
14 public AtomicArray<SkipNode<T>> getNext() {
15 AtomicArray<SkipNode<T>> forward = atomic.openRead().getNext();
16 if (!atomic.validate())
17 throw new AbortedException();
18 return forward;
19 }
20 public void setNext(AtomicArray<SkipNode<T>> value) {
21 atomic.openWrite().setNext(value);
22 }
23 // getKey, setKey, getItem, and setItem omitted ...
24 }

Figure 18.20 The TSkipNode class: a transactional SkipNode implementation.

This class has a single AtomicObject<SSkipNode> field. The constructor takes
as argument a SSkipNode object to initialize the AtomicObject<SSkipNode>
field. Each getter performs the following sequence of steps.

1. It calls openRead() to extract a version.

2. It calls the version’s getter to extract the field value, which it stores in a local
variable.

3. It calls validate() to ensure the value read is consistent.

The last step is needed to ensure that the object did not change between the first
and second step, and that the value recorded in the second step is consistent with
all the other values observed by that transaction.

Setters are implemented in a symmetric way, calling the getter in the second
step.

We now have two alternative atomic object implementations. The implemen-
tations will be relatively unoptimized to simplify the presentation.

18.3.7 An Obstruction-Free Atomic Object

Recall that an algorithm is obstruction-free if any thread that runs by itself for
long enough makes progress. In practice, this condition means that a thread
makes progress if it runs for long enough without a synchronization conflict from

18.3 Software Transactional Memory 435

a concurrent thread. Here, we describe an obstruction-free implementation of
AtomicObject.

Bird’s-Eye View

Each object has three logical fields: an owner field, an old version, and a new ver-
sion. (We call them logical fields because they may not be implemented as fields.)
The owner is the last transaction to access the object. The old version is the object
state before that transaction arrived, and the new version reflects that transac-
tion’s updates, if any. If owner is COMMITTED, then the new version is the current
object state, while if it is ABORTED, then the old version is current. If the owner is
ACTIVE, there is no current version, and the future current version depends on
whether the owner commits or aborts.

When a transaction starts, it creates a Transaction object to hold the trans-
action’s status, initially ACTIVE. If that transaction commits, it sets the status to
COMMITTED, and if it is aborted by another transaction, the other transaction sets
the status to ABORTED.

Each time transaction A accesses an object it first opens that object, possibly
resetting the owner, old value, and new value fields. Let B be the object’s prior
owner.

1. If B was COMMITTED, then the new version is current. A installs itself as the
object’s current owner, sets the old version to the prior new version, and the
new version to a copy of the prior new version (if the call is a setter), or to
the new version itself (if the call is a getter).

2. Symmetrically, if B was ABORTED, then the old version is current. A installs
itself as the object’s current owner, sets the old version to the prior old version,
and the new version to a copy of the prior old version (if the call is a setter), or
to the old version itself (if the call is a getter).

3. If B is still ACTIVE, then A and B conflict, so A consults the contention man-
ager for advice whether to abort B, or to pause, giving B a chance to finish.
One transaction aborts another by successfully calling compareAndSet() to
change the victim’s status to ABORTED.

We leave it to the readers to extend this algorithm to allow concurrent readers.
After opening the object, the getter reads the version’s field into a local variable.

Before returning that value, it calls validate() to check that the calling transac-
tion has not been aborted. If all is well, it returns the field value to the caller.
(Setters work symmetrically.).

When it is time for A to commit, it calls compareAndSet() to change its status
to COMMITTED. If it succeeds, the commit is complete. The next transaction to
access an object owned by A will observe that A has committed, and will treat
the object’s new version (the one installed by A) as current. If it fails, it has been
aborted by another transaction. The next transaction to access an object updated
by A will observe that A has been aborted, and will treat the object’s old version
(the one prior to A) as current. Fig. 18.21 shows an example execution.

436 Chapter 18 Transactional Memory

Atomic Memory
(Objects)

seqential
object

seqential
object

old new writer

old new writer

status

local transaction
of thread A

active

locator

locator

status

local transaction
of thread B

committed

old new writer

locator

Figure 18.21 The FreeObject class: an obstruction-free atomic object implementation. Thread A has com-
pleted the writing of one object and is in the process of switching a copy of the a second object that was last
written by thread B. It prepares a new locator with a fresh new copy of the object and an old object field that
refers to the new field of thread B’s locator. It then uses a compareAndSet() to switch the object to refer
to the newly created locator.

Why It Works

Here is why every transaction observes a consistent state. When a transaction A
calls a getter method to read an object field, it opens the object, installing itself
as the object’s owner. If the object already had an active owner, B, then A aborts
B. A then reads the field value into a local variable. Before the getter returns that
value to the application, however, it calls validate() to check that the value is
consistent. If another transaction C displaced A as owner of any object, then C
aborted A, and A’s validation fails. It follows that if a setter returns a value, that
value is consistent.

Here is why transactions are serializable. If a transactionA successfully changes
its status from ACTIVE to COMMITTED, then it must still be owner of all the objects
it accessed, because any transaction that usurps A’s ownership must abort A first.

18.3 Software Transactional Memory 437

It follows that none of the objects it read or wrote have changed since A accessed
them, so A is effectively updating a snapshot of the objects it accessed.

In Detail

Opening an object requires changing multiple fields atomically, modifying the
owner, old version, and new version fields. Without locks, the only way to accom-
plish this atomic multi-field update is to introduce a level of indirection. As
shown in Fig. 18.22, the FreeObject class has a single field, start, that is an
AtomicReference to a Locator object (Line 3), which holds the object’s current
transaction, old version, and new version (Lines 5–7).

Recall that an object field is modified in the following steps: (1) call
openWrite() to acquire an object version, (2) tentatively modify that version,
and (3) call validate() to ensure the version is still good. Fig. 18.23 shows the
FreeObject class’s openWrite() method. First, the thread tests its own transac-
tional state (Line 14). If that state is committed, then the thread is not running
in a transaction, and updates the object directly (Line 15). If that state is aborted,
then the thread immediately throws an AbortedException exception (Line 16).
Finally, if the transaction is active, then the thread reads the current locator and
checks whether it has already opened this object for writing, returning imme-
diately if so (Line 19). Otherwise, it enters a loop (Line 22) where it repeatedly
initializes and tries to install a new locator. To determine the object’s current
value, the thread checks the status of the last transaction to write the object (Line
25), using the new version if the owner is committed (Line 27) and the old ver-
sion if it is ABORTED (Line 30). If the owner is still active (Line 30), there there is a
synchronization conflict, and the thread calls the contention manager module to
resolve the conflict. In the absence of conflict, the thread creates and initializes a
new version (Lines 37–39). Finally, the thread calls compareAndSet() to replace
the old locator with the new, returning if it succeeds, and retrying if it fails.

The openRead() method (not shown) works in the same way, except that it
does not need to make a copy of the old version.

The FreeObject class’s validate() method (not shown) simply checks that
current thread’s transaction status is ACTIVE.

1 public class FreeObject<T extends Copyable<T>>
2 extends TinyTM.AtomicObject<T> {
3 AtomicReference<Locator> start;
4 private class Locator {
5 Transaction owner;
6 T oldVersion;
7 T newVersion;
8 ...
9 }
10 ...
11 }

Figure 18.22 The FreeObject class: the inner Locator class.

438 Chapter 18 Transactional Memory

12 public T openWrite() {
13 Transaction me = Transaction.getLocal();
14 switch (me.getStatus()) {
15 case COMMITTED: return openSequential();
16 case ABORTED: throw new AbortedException();
17 case ACTIVE:
18 Locator locator = start.get();
19 if (locator.owner == me)
20 return locator.newVersion;
21 Locator newLocator = new Locator();
22 while (!Thread.currentThread().isInterrupted()) {
23 Locator oldLocator = start.get();
24 Transaction owner = oldLocator.owner;
25 switch (owner.getStatus()) {
26 case COMMITTED:
27 newLocator.oldVersion = oldLocator.newVersion;
28 break;
29 case ABORTED:
30 newLocator.oldVersion = oldLocator.oldVersion;
31 break;
32 case ACTIVE:
33 ContentionManager.getLocal().resolve(me, owner);
34 continue;
35 }
36 try {
37 newLocator.newVersion = (T) _class.newInstance();
38 } catch (Exception ex) {throw new PanicException(ex);}
39 newLocator.oldVersion.copyTo(newLocator.newVersion);;
40 if (start.compareAndSet(oldLocator, newLocator))
41 return newLocator.newVersion;
42 }
43 me.abort();
44 throw new AbortedException();
45 default: throw new PanicException("Unexpected transaction state");
46 }
47 }

Figure 18.23 The FreeObject class: the openWrite() method.

18.3.8 A Lock-Based Atomic Object

The obstruction-free implementation is somewhat inefficient because writes con-
tinually allocate locators and versions and reads must go through two levels of
indirection (two references) to reach the actual data to be read. In this section,
we present a more efficient atomic object implementation that uses short critical
sections to eliminate the need for a locator and to remove a level of indirection.

A lock-based STM could lock each object as it is read or written. Many
applications, however, follow the 80/20 rule: roughly 80% of accesses are reads
and roughly 20% are writes. Locking an object is expensive, since it requires
a compareAndSet() call, which seems excessive when read/write conflicts are

18.3 Software Transactional Memory 439

expected to be infrequent. Is it really necessary to lock objects for reading? The
answer is no.

Bird’s-Eye View

The lock-based atomic object implementation reads objects optimistically, and
later checks for conflicts. It detects conflicts using a global version clock, a
counter shared by all transactions and incremented each time a transaction com-
mits. When a transaction starts, it records the current version clock value in a
thread-local read stamp.

Each object has the following fields: the stamp field is the read stamp of the last
transaction to write to that object, the version field is an instance of the sequential
object, and the lock field is a lock. As explained earlier, the sequential type must
implement the Copyable interface, and provide a no-argument constructor.

The transaction virtually executes a sequence of read and write accesses to
objects. By “virtually”, we mean that no objects are actually modified. Instead,
the transaction uses a thread-local read set to keep track of the objects it has read,
and a thread-local write set to keep track of the objects it intends to modify, and
their tentative new versions.

When a transaction calls a getter to return a field value, the LockObject’s
openRead() method first checks whether the object already appears in the write
set. If so, it returns the tentative new version. Otherwise, it checks whether the
object is locked. If so, there is a synchronization conflict, and the transaction
aborts. If not, openRead() adds the object to the read set and returns its version.

The openWrite() method is similar. If the object is not found in the write set,
the method creates a new, tentative version, adds the tentative version to the write
set, and returns that version.

The validate() method checks that the object’s stamp is not greater than the
transaction’s read stamp. If so, a conflict exists, and the transaction aborts. If not,
the getter returns the value read in the previous step.

It is important to understand that the LockObject’s validate() method guar-
antees only that the value is consistent. It does not guarantee that the caller is
not a zombie transaction. Instead, a transaction must take the following steps to
commit.

1. It locks each of the objects in its write set, in any convenient order, using time-
outs to avoid deadlock.

2. It uses compareAndSet() to increment the global version clock, storing the
result in a thread-local write stamp. If the transaction commits, this is the point
where it is serialized.

3. The transaction checks that each object in its read set is not locked by another
thread, and that each object’s stamp is not greater than the transaction’s read
stamp. If this validation succeeds, the transaction commits. (In the special case
where the transaction’s write stamp is one more than its read stamp, there is no

440 Chapter 18 Transactional Memory

need to validate the read set, because no concurrent modification could have
happened.)

4. The transaction updates the stamp field of each object in its write set. Once
the stamps are updated, the transaction releases its locks.

If any of these tests fails, the transaction aborts, discards its read and write sets,
and releases any locks it is holding.

Fig. 18.24 shows an example execution.

Why It Works

Transactions are serializable in the order they increment the global version clock.
Here is why every transaction observes a consistent state. If A, with read stamp r,
observes that the object is not locked, then this version will have the latest stamp
not exceeding r. Any transaction that modifies the object at a later time locks the
object, increments the global version clock, and sets that object’s stamp to the
new version clock value, which exceeds r. If A observes the object is not locked,
then A cannot miss an update with a stamp less than or equal to r. A also checks

Atomic
Memory
(Objects)

Atomic
Memory
(Objects)

locks

85

34

82

87

44

50

0

0

0

0

0

0

global
version
clock

global
version
clock

97

B’s local
stamps

B’s local
stamps

A’s local
stamps

A’s local
stamps

read
stamp

read
stamp

write
stamp

write
stamp

(a)

9790

98

98

a

b

c

d

e

f

98

stampsvalues locksstampsvalues

ć

85

98

87

50

0

1

0

0

1

0

98

(b)

9890

98

121

a

b

ć

d

e

f

99 34

4499 121

A aborts A commits

b́

é

Figure 18.24 The LockObject class: A lock-based transactional memory implementation. In Part (a) thread
A starts its transaction, setting its read stamp rs to 97, the global version clock value. Before A starts reading
and writing objects, thread B commits: it increments the global version clock to 98, records 98 in its local
write stamp ws field, and after a successful validation writes a new value c ′ with stamp 98. (B’s acquisition
and release of the object locks is not shown.) When A reads the object with stamp 98, it detects thread
B’s modification because its read stamp is less than 98, so A aborts. In Part (b) on the other hand, A starts
its transaction after B completed, and reads a read stamp value of 98, and does not abort when reading c ′.
A creates read–write sets, and increments the global version clock. (Notice that other threads have incre-
mented the clock to 120.). It locks the objects it intends to modify, and successfully validates. It then updates
the values and stamps of these objects based on the write stamp value. In the figure, we do not show A’s final
release of the locks on the written objects.

18.3 Software Transactional Memory 441

that the object’s stamp does not exceed r by reading and testing the stamp after it
reads the field.

Here is why transactions are serializable. We claim that if A reads x and A later
commits, then x could not have changed between the time A first reads x and the
time A increments the global version clock. As noted earlier, if A with read stamp
r observes x is unlocked at time t, then any subsequent modifications to x will
give x a stamp larger than r. If a transaction B commits before A, and modifies an
object read by A, then A’s validation handler will either observe that x is locked
by B, or that x’s stamp is greater than r, and will abort either way.

In Detail

Before we describe the algorithm, we describe the basic data structures.
Fig. 18.25 shows the WriteSet class used by the locking implementation. This
class is essentially a map from objects to versions, sending each object written by

1 public class WriteSet {
2 static ThreadLocal<Map<LockObject<?>, Object>> map
3 = new ThreadLocal<Map<LockObject<?>,Object>>() {
4 protected synchronized Map<LockObject<?>, Object> initialValue() {
5 return new HashMap();
6 }
7 };
8 public static Object get(LockObject<?> x) {
9 return map.get().get(x);
10 }
11 public static void put(LockObject<?> x, Object y) {
12 map.get().put(x, y);
13 }
14 public static boolean tryLock(long timeout, TimeUnit timeUnit) {
15 Stack<LockObject<?>> stack = new Stack<LockObject<?>>();
16 for (LockObject<?> x : map.get().keySet()) {
17 if (!x.tryLock(timeout, timeUnit)) {
18 for (LockObject<?> y : stack) {
19 y.unlock();
20 }
21 throw new AbortedException();
22 }
23 }
24 return true;
25 }
26 public static void unlock() {
27 for (LockObject<?> x : map.get().keySet()) {
28 x.unlock();
29 }
30 }
31 ...
32 }

Figure 18.25 The LockObject class: the inner WriteSet class.

442 Chapter 18 Transactional Memory

the transaction to its tentative new version. In addition to the get() and set()
methods, the class also includes methods to lock and unlock each object in the
table. The ReadSet class (not shown) is just a set of objects.

Fig. 18.26 shows the version clock. All fields and methods are static. The
class manages a singe global version counter, and a set of thread-local read
stamps. The getWriteStamp() method returns the current global version and
setWriteStamp() advances it by one. The getReadStamp() method returns the
caller’s thread-local read stamp, and setReadStamp() sets the thread-local read
stamp to the current global clock value.

The LockObject class (Fig. 18.27) has three fields: the object’s lock, its read
stamp, and the object’s actual data. Fig. 18.28 shows how to open an object for
reading. If a copy of the object is not already in the transaction’s write set (Line
13), then it places the object in the transaction’s read set. If, however, the object
is locked, then it is in the middle of an update by a concurrent transaction, and

1 public class VersionClock {
2 // global clock read and advanced by all
3 static AtomicLong global = new AtomicLong();
4 // thread-local cached copy of global clock
5 static ThreadLocal<Long> local = new ThreadLocal<Long>() {
6 protected Long initialValue() {
7 return 0L;
8 }
9 };
10 public static void setReadStamp() {
11 local.set(global.get());
12 }
13 public static long getReadStamp() {
14 return local.get();
15 }
16 public static void setWriteStamp() {
17 local.set(global.incrementAndGet());
18 }
19 public static long getWriteStamp() {
20 return local.get();
21 }
22 }

Figure 18.26 The VersionClock class.

1 public class LockObject<T extends Copyable<T>> extends AtomicObject<T> {
2 ReentrantLock lock;
3 volatile long stamp;
4 T version;
5 ...

Figure 18.27 The LockObject class: fields.

18.3 Software Transactional Memory 443

6 public T openRead() {
7 ReadSet readSet = ReadSet.getLocal();
8 switch (Transaction.getLocal().getStatus()) {
9 case COMMITTED:

10 return version;
11 case ACTIVE:
12 WriteSet writeSet = WriteSet.getLocal();
13 if (writeSet.get(this) == null) {
14 if (lock.isLocked()) {
15 throw new AbortedException();
16 }
17 readSet.add(this);
18 return version;
19 } else {
20 T scratch = (T)writeSet.get(this);
21 return scratch;
22 }
23 case ABORTED:
24 throw new AbortedException();
25 default:
26 throw new PanicException("unexpected transaction state");
27 }
28 }

Figure 18.28 The LockObject class: the openRead() method.

the reader aborts (Line 15). If the object has a tentative version in the write set, it
returns that version (Line 19).

Fig. 18.29 shows the LockObject class’s openWrite() method. If the call
occurs outside a transaction (Line 31), it simply returns the object’s current ver-
sion. If the transaction is active (Line 33), it tests whether the object is in its
write set (Line 35). If so, it returns that version. If not, the caller aborts if the
object is locked (Line 37). Otherwise it creates a new, tentative version using the
type’s no-argument constructor (Line 39), initializes it by copying the old version
(Line 40), puts it in the write set (Line 41), and returns the tentative version.

The validate() method simply checks whether the object’s read stamp is less
than or equal to the transaction’s read stamp (Line 56).

We now look at how a transaction commits. Recall that TinyTM allows users
to register handlers to be executed on validation, commit, and abort. Fig. 18.31
shows how the locking TM validates transactions. It first locks each object in the
write set (Line 66). If the lock acquisition times out, there may be a deadlock,
so the method returns false, meaning the transaction should not commit. It then
validates the read set. For each object, it checks that it is not locked by another
transaction (Line 70) and that the object’s stamp does not exceed the transaction’s
read stamp (Line 72).

If validation succeeds, the transaction may now commit. Fig. 18.32 shows the
onCommit() handler. It increments the version clock (Line 83), copies the ten-
tative versions from the write set back to the original objects (Lines 86–89) and

444 Chapter 18 Transactional Memory

29 public T openWrite() {
30 switch (Transaction.getLocal().getStatus()) {
31 case COMMITTED:
32 return version;
33 case ACTIVE:
34 WriteSet writeSet = WriteSet.getLocal();
35 T scratch = (T) writeSet.get(this);
36 if (scratch == null) {
37 if (lock.isLocked())
38 throw new AbortedException();
39 scratch = myClass.newInstance();
40 version.copyTo(scratch);
41 writeSet.put(this, scratch);
42 }
43 return scratch;
44 case ABORTED:
45 throw new AbortedException();
46 default:
47 throw new PanicException("unexpected transaction state");
48 }
49 }

Figure 18.29 The LockObject class: the openWrite() method.

50 public boolean validate() {
51 Transaction.Status status = Transaction.getLocal().getStatus();
52 switch (status) {
53 case COMMITTED:
54 return true;
55 case ACTIVE:
56 return stamp <= VersionClock.getReadStamp(); ;
57 case ABORTED:
58 return false;
59 }
60 }
61 }

Figure 18.30 The LockObject class: the validate() method.

sets each object’s stamp to the newly incremented version clock value (Line 90).
Finally, it releases the locks, and clears the thread-local read–write sets for the next
transaction.

What have we learned so far? We have seen how a single transactional mem-
ory framework can support two substantially different kinds of synchronization
mechanisms: one obstruction-free, and one employing short-lived locking. Each
of these implementations, by itself, provides weak progress guarantees, so we rely
on a separate contention manager to ensure progress.

18.4 Hardware Transactional Memory 445

62 public class OnValidate implements Callable<Boolean>{
63 public Boolean call() throws Exception {
64 WriteSet writeSet = WriteSet.getLocal();
65 ReadSet readSet = ReadSet.getLocal();
66 if (!writeSet.tryLock(TIMEOUT, TimeUnit.MILLISECONDS)) {
67 return false;
68 }
69 for (LockObject x : readSet) {
70 if (x.lock.isLocked() && !x.lock.isHeldByCurrentThread())
71 return false;
72 if (stamp > VersionClock.getReadStamp()) {
73 return false;
74 }
75 }
76 return true;
77 }
78 }

Figure 18.31 The LockObject class: the onValidate() hander.

79 public class OnCommit implements Runnable {
80 public void run() {
81 WriteSet writeSet = WriteSet.getLocal();
82 ReadSet readSet = ReadSet.getLocal();
83 VersionClock.setWriteStamp();
84 long writeVersion = VersionClock.getWriteStamp();
85 for (Map.Entry<LockObject<?>, Object> entry : writeSet) {
86 LockObject<?> key = (LockObject<?>) entry.getKey();
87 Copyable destin = (Copyable) key.openRead();
88 Copyable source = (Copyable) entry.getValue();
89 source.copyTo(destin);
90 key.stamp = writeVersion;
91 }
92 writeSet.unlock();
93 writeSet.clear();
94 readSet.clear();
95 }
96 }

Figure 18.32 The LockObject class: the onCommit() handler.

18.4 Hardware Transactional Memory

We now describe how a standard hardware architecture can be augmented
to support short, small transactions directly in hardware. The HTM design
presented here is high-level and simplified, but it covers the principal aspects

446 Chapter 18 Transactional Memory

of HTM design. Readers unfamiliar with cache coherence protocols may consult
Appendix B.

The basic idea behind HTM is that modern cache-coherence protocols already
do most of what we need to do to implement transactions. They already detect
and resolve synchronization conflicts between writers, and between readers and
writers, and they already buffer tentative changes instead of updating memory
directly. We need change only a few details.

18.4.1 Cache Coherence

In most modern multiprocessors, each processor has an attached cache, a small,
high-speed memory used to avoid communicating with large and slow main
memory. Each cache entry holds a group of neighboring words called a line, and
has some way of mapping addresses to lines. Consider a simple architecture in
which processors and memory communicate over a shared broadcast medium
called a bus. Each cache line has a tag, which encodes state information. We start
with the standard MESI protocol, in which each cache line is marked with one of
the following states:

� Modified: the line in the cache has been modified, and must eventually be
written back to memory. No other processor has this line cached.

� Exclusive: the line has not been modified, but no other processor has this line
cached. (A line is typically loaded in exclusive mode before being modified.)

� Shared: the line has not been modified, and other processors may have this line
cached.

� Invalid: the line does not contain meaningful data.

The cache coherence protocol detects synchronization conflicts among indivi-
dual loads and stores, and ensures that different processors agree on the state
of the shared memory. When a processor loads or stores a memory address a,
it broadcasts the request on the bus, and the other processors and memory listen
in (sometimes called snooping).

A full description of a cache coherence protocol can be complex, but here are
the principal transitions of interest to us.

� When a processor requests to load a line in exclusive mode, the other proces-
sors invalidate any copies of that line. Any processor with a modified copy of
that line must write the line back to memory before the load can be fulfilled.

� When a processor requests to load a line into its cache in shared mode, any
processor with an exclusive copy must change its state to shared, and any pro-
cessor with a modified copy must write that line back to memory before the
load can be fulfilled.

18.4 Hardware Transactional Memory 447

� If the cache becomes full, it may be necessary to evict a line. If the line is shared
or exclusive, it can simply be discarded, but if it is modified, it must be written
back to memory.

We now show how to adapt this protocol to support transactions.

18.4.2 Transactional Cache Coherence

We keep the same MESI protocol as before, except that we add a transactional bit
to each cache line’s tag. Normally, this bit is unset. When a value is placed in the
cache on behalf of a transaction, this bit is set, and we say the entry is transactional.
We only need to ensure that modified transactional lines cannot be written back
to memory, and that invalidating a transactional line aborts the transaction.

Here are the rules in more detail.

� If the MESI protocol invalidates a transactional entry, then that transaction
is aborted. Such an invalidation represents a synchronization conflict, either
between two stores, or a load and a store.

� If a modified transactional line is invalidated or evicted, its value is discarded
instead of being written to memory. Because any transactionally written value
is tentative, we cannot let it “escape” while the transaction is active. Instead,
we must abort the transaction.

� If the cache evicts a transactional line, then that transaction must be aborted,
because once the line is no longer in the cache, then the cache-coherence pro-
tocol cannot detect synchronization conflicts.

If, when a transaction finishes, none of its transactional lines have been invali-
dated or evicted, then it can commit, clearing the transactional bits in its cache
lines. If an invalidation or eviction causes the transaction to abort, its transac-
tional cache lines are invalidated. These rules ensure that commit and abort are
processor-local steps.

18.4.3 Enhancements

Although the scheme correctly implements a transactional memory in hardware,
it has a number of flaws and limitations. One limitation, common to nearly all
HTM proposals, is that the size of the transaction is limited by the size of the
cache. Most operating systems clean out the cache when a thread is descheduled,
so the duration of the transaction may be limited by the length of the platform’s
scheduling quantum. It follows that HTM is best suited for short, small transac-
tions. Applications that need longer transactions should use STM, or a combina-
tion of HTM and STM. When a transaction aborts, however, it is important that
the hardware return a condition code indicating whether the abort was due to a

448 Chapter 18 Transactional Memory

synchronization conflict (so the transaction should be retried), or whether it was
due to resource exhaustion (so there is no point in retrying the transaction).

This particular design, however, has some additional drawbacks. Many caches
are direct-mapped, meaning that an address a maps to exactly one cache line. Any
transaction that accesses two addresses that map to the same cache line is doomed
to fail, because the second access will evict the first, aborting the transaction. Some
caches are set-associative, mapping each address to a set of k lines. Any transaction
that accesses k+1 addresses that map to the same set is doomed to fail. Few caches
are fully-associative, mapping each address to any line in the cache.

There are several ways to alleviate this problem by splitting the cache. One is to
split the cache into a large, direct-mapped main cache and a small fully associated
victim cache used to hold entries that overflow from the main cache. Another is
to split the cache into a large set-associated non-transactional cache, and a small
fully-associative transactional cache for transactional lines. Either way, the cache
coherence protocol must be adapted to handle coherence between the split caches.

Another flaw is the absence of contention management, which means that
transactions can starve one another. Transaction A loads address a in exclusive
mode, then transaction B loads a in exclusive mode, aborting A. A immediately
restarts, aborting B, and so on. This problem could be addressed at the level of
the coherence protocol, allowing a processor to refuse or delay an invalidation
request, or it could be addressed at the software level, perhaps by having aborted
transactions execute exponential backoff in software.

Readers interested in addressing these issues in depth may consult the chapter
notes.

18.5 Chapter Notes

Maurice Herlihy and Eliot Moss [67] were the first to propose hardware trans-
actional memory as a general-purpose programming model for multiprocessors.
Nir Shavit and Dan Touitou [142] proposed the first software transactional mem-
ory. The retry and orElse constructs are credited to Tim Harris, Simon Mar-
lowe, Simon Peyton-Jones, and Maurice Herlihy [54]. Many papers, both earlier
and later, have contributed to this area. Larus and Rajwar [98] provide the author-
itative survey of both the technical issues and the literature.

The Karma contention manager is taken from William Scherer and Michael
Scott [137], and the Greedy contention manager from Rachid Guerraoui,
Maurice Herlihy, and Bastian Pochon [49]. The obstruction-free STM is based
on the Dynamic Software Transactional Memory algorithm of Maurice Herlihy,
Victor Luchangco, Mark Moir, and Bill Scherer [66]. The lock-based STM is
based on the Transactional Locking 2 algorithm of Dave Dice, Ori Shalev, and
Nir Shavit [32].

18.6 Exercises 449

18.6 Exercises

Exercise 211. Implement the Priority, Greedy, and Karma contention managers.

Exercise 212. Describe the meaning of orElse without mentioning transaction
roll-back.

Exercise 213. In TinyTM, implement the openRead() method of the FreeObject
class. Notice that the order in which the Locator fields are read is important.
Argue why your implementation provides a serializable read of an object.

Exercise 214. Invent a way to reduce the contention on the global version clock in
TinyTM.

Exercise 215. Extend the LockObject class to support concurrent readers.

Exercise 216. In TinyTM, the LockObject class’s onCommit() handler first checks
whether the object is locked by another transaction, and then whether its stamp
is less than or equal to the transaction’s read stamp.

� Give an example showing why it is necessary to check whether the object is
locked.

� Is it possible that the object could be locked by the committing transaction?

� Give an example showing why it is necessary to check whether the object is
locked before checking the version number.

Exercise 217. Design an AtomicArray<T> implementation optimized for small
arrays such as used in a skiplist.

Exercise 218. Design an AtomicArray<T> implementation optimized for large
arrays in which transactions access disjoint regions within the array.

This page intentionally left blank

IIIAppendix

This page intentionally left blank

ASoftware Basics

A.1 Introduction

This appendix describes the basic programming language constructs needed to
understand our examples and to write your own concurrent programs. Mostly,
we use Java, but the same ideas could be equally well expressed in other high-level
languages and libraries. Here, we review the basic software concepts needed to
understand this text, first in Java, and then in other important models such as C#
or the Pthreads library for C and C++. Unfortunately, our discussion here must
be incomplete: if in doubt, consult the current documentation for the language
or library of interest.

A.2 Java

The Java programming language uses a concurrency model in which threads and
objects are separate entities.1 Threads manipulate objects by calling the objects’
methods, coordinating these possibly concurrent calls using various language and
library constructs. We begin by explaining the basic Java constructs used in this
text.

A.2.1 Threads

A thread executes a single, sequential program. In Java, a thread is usually a
subclass of java.lang.Thread, which provides methods for creating threads,
starting them, suspending them, and waiting for them to finish.

1 Technically, threads are objects.

453

454 Appendix A Software Basics

First, create a class that implements the Runnable interface. The class’s run()
method does all the work. For example, here is a simple thread that prints a
string.

public class HelloWorld implements Runnable {
String message;
public HelloWorld(String m) {
message = m;

}
public void run() {
System.out.println(message);

}
}

A Runnable object can be turned into a thread by calling the Thread class
constructor that takes a Runnable object as its argument, like this:

String m = "Hello World from Thread" + i;
Thread thread = new Thread(new HelloWorld(m));

Java provides a syntactic shortcut, called an anonymous inner class, that allows you
to avoid defining an explicit HelloWorld class:

final String m = "Hello world from thread" + i;
thread = new Thread(new Runnable() {

public void run() {
System.out.println(m);

}
});

This snippet creates an anonymous class implementing the Runnable interface,
whose run() method behaves as shown.

After a thread has been created, it must be started:

thread.start();

This method causes the thread to run. The thread that calls this method returns
immediately. If the caller wants to wait for the thread to finish, it must join the
thread:

thread.join();

The caller is blocked until the thread’s run() method returns.
Fig. A.1 shows a method that initializes multiple threads, starts them, waits

for them to finish, and then prints out a message. The method creates an array
of threads, and initializes them in Lines 2–10, using the anonymous inner class
syntax. At the end of this loop, it has created an array of dormant threads. In
Lines 11–13, it starts the threads, and each thread executes its run() method, dis-
playing its message. Finally, in Lines 14–16, it waits for each thread to finish, and
displays a message when they are done.

A.2 Java 455

1 public static void main(String[] args) {
2 Thread[] thread = new Thread[8];
3 for (int i = 0; i < thread.length; i++) {
4 final String message = "Hello world from thread" + i;
5 thread[i] = new Thread(new Runnable() {
6 public void run() {
7 System.out.println(message);
8 }
9 });

10 }
11 for (int i = 0; i < thread.length; i++) {
12 thread[i].start();
13 }
14 for (int i = 0; i < thread.length; i++) {
15 thread[i].join();
16 }
17 }

Figure A.1 This method initializes a number of Java threads, starts them, waits for them to
finish, and then prints out a message.

A.2.2 Monitors

Java provides a number of ways to synchronize access to shared data, both built-in
and through packages. Here we describe the built-in model, called the monitor
model, which is the simplest and most commonly used approach. We discuss
monitors in Chapter 8.

Imagine you are in charge of software for a call center. During peak hours, calls
arrive faster than they can be answered. When a call arrives, your switchboard
software places that call in a queue, and it plays a recorded announcement assur-
ing the caller that you consider this call to be very important, and that calls will be
answered in the order received. An employee in charge of answering a call is called
an operator. Each operator dispatches an operator thread to dequeue and answer
the next call. When an operator has finished with one call, he or she dequeues the
next call from the queue and answers it.

Fig. A.2 is a simple (but incorrect) queue class. The calls are kept in an array
calls, where head is the index of the next call to remove, and tail is the index
of the next free slot in the array.

It is easy to see that this class does not work correctly if two operators try to
dequeue a call at the same time. The expression

return calls[(head++) % QSIZE]

does not happen as an indivisible, atomic step. Instead, the compiler produces
code that looks something like this:

int temp0 = head;
head = temp0 + 1;
int temp1 = (temp0 % QSIZE);
return calls[temp1];

456 Appendix A Software Basics

1 class CallQueue {
2 final static int QSIZE = 100; // arbitrary size
3 int head = 0; // next item to dequeue
4 int tail = 0; // next empty slot
5 Call[] calls = new Call[QSIZE];
6 public enq(Call x) { // called by switchboard
7 calls[(tail++) % QSIZE] = x;
8 }
9 public Call deq() { // called by operators

10 return calls[(head++) % QSIZE]
11 }
12 }

Figure A.2 An incorrect queue class.

Two operators might execute these statements together: they execute Line 1 at
the same time, then Line 2, and so on. In the end, both operators dequeue and
answer the same call, possibly annoying the customer.

To make this queue work correctly, we must ensure that only one operator at
a time can dequeue the next call, a property called mutual exclusion. Java pro-
vides a useful built-in mechanism to support mutual exclusion. Each object has
an (implicit) lock. If a thread A acquires the object’s lock (or, equivalently, locks
that object), then no other thread can acquire that lock until A releases the lock
(or, equivalently, until it unlocks that object). If a class declares a method to be
synchronized, then that method implicitly acquires the lock when it is called,
and releases it when it returns.

Here is one way to ensure mutual exclusion for the enq() and deq() methods:

public synchronized T deq() {
return call[(head++) % QSIZE]

}
public synchronized enq(T x) {
call[(tail++) % QSIZE] = x;

}

Once a call to a synchronized method has acquired the object’s lock, any call to
another synchronized method for that object is blocked until the lock is released.
(Calls to other objects, subject to other locks, are not blocked.) The body of a
synchronized method is often called a critical section.

There is more to synchronization than mutual exclusion. What should an oper-
ator do if he or she tries to dequeue a call, but there are no calls waiting in the
queue? The call might throw an exception or return null, but what could the oper-
ator do then, other than try again? Instead, it makes sense for the operator to wait
for a call to appear. Here is a first attempt at a solution:

public synchronized T deq() {
while (head == tail) {}; // spin while empty
call[(head++) % QSIZE];

}

A.2 Java 457

This solution is not just wrong, it is disastrously wrong. The dequeuing thread
waits inside a synchronized method, locking out every other thread, including
the switchboard thread that could be trying to enqueue a call. This is a deadlock:
the dequeuing thread holds the lock waiting for an enqueuing thread, while the
enqueuing thread waits for the dequeuing thread to release the lock. Nothing will
ever happen.

From this we learn that if a thread executing a synchronized method needs
to wait for something to happen, then it must unlock the object while it waits.
The waiting thread should periodically reacquire the lock to test whether it can
proceed. If so, it proceeds, and if not, it releases the lock and goes back to
waiting.

In Java, each object provides a wait() method that unlocks the object and sus-
pends the caller. While that thread is waiting, another thread can lock and change
the object. Later, when the suspended thread resumes, it locks the object again
before it returns from the wait() call. Here is a revised (but still not correct)
dequeue method2

public synchronized T deq() {
while (head == tail) {wait();}
return call[(head++) % QSIZE];

}

Here, each operator thread, seeking a call to answer, repeatedly tests whether the
queue is empty. If so, it releases the lock and waits, and if not, it removes and
returns the item. In a similar way, an enqueuing thread checks whether the buffer
is full.

When does a waiting thread wake up? It is the programmer’s responsibi-
lity to notify waiting threads when something significant happens. The notify()
method wakes up one waiting thread, eventually, chosen arbitrarily from the set
of waiting threads. When that thread awakens, it competes for the lock like any
other thread. When that thread reacquires the lock, it returns from its wait() call.
You cannot control which waiting thread is chosen. By contrast, the notifyAll()
method wakes up all waiting threads, eventually. Each time the object is unlocked,
one of these newly awakened threads will reacquire the lock and return from
its wait() call. You cannot control the order in which the threads reacquire
the lock.

In the call center example, there are multiple operators and one switchboard.
Suppose the switchboard software decides to optimize its use of notify() as fol-
lows. If it adds a call to an empty queue, then it should notify only one blocked
dequeuer, since there is only one call to consume. While this optimization may
seem reasonable, it is flawed. Suppose the operator threads A and B discover the

2 This program will not compile because the wait() call can throw InterruptedException, which
must be caught or rethrown. As discussed in Pragma 8.2.3 in Chapter 8, we often ignore such
exceptions to make the examples easier to read.

458 Appendix A Software Basics

queue is empty, and block waiting for calls to answer. The switchboard thread
S puts a call in the queue, and calls notify() to wake up one operator thread.
Because the notification is asynchronous, however, there is a delay. S then returns
and places another call in the queue, and because the queue already had a waiting
call, it does not notify other threads. The switchboard’s notify() finally takes
effect, waking up A, but not B, even though there is a call for B to answer.
This pitfall is called the lost wakeup problem: one or more waiting threads fail
to be notified that the condition for which they are waiting has become true. See
Section 8.2.2 (chapter 8) for a more detailed discussion.

A.2.3 Yielding and Sleeping

In addition to the wait() method, which allows a thread holding a lock to release
the lock and pause, Java provides other ways for a thread that does not hold a lock
to pause. A yield() call pauses the thread, asking the schedule to run something
else. The scheduler decides whether to pause the thread, and when to restart it.
If there are no other threads to run, the schedule may ignore the yield() call.
Section 16.4.1 in Chapter 16 describes how yielding can be an effective way to
prevent livelock. A call to sleep(t), where t is a time value, instructs the scheduler
not to run that thread for that duration. The scheduler is free to restart the thread
at any later time.

A.2.4 Thread-Local Objects

Often it is useful for each thread to have its own private instance of a variable. Java
supports such thread-local objects through the ThreadLocal<T> class, which
manages a collection of objects of type T, one for each thread. Because thread-local
variables were not built into Java, they have a somewhat complicated and awkward
interface. Nevertheless, they are extremely useful, and we use them often, so we
review how to use them here.

The ThreadLocal<T> class provides get() and set() methods that read and
update the thread’s local value. The initialValue() method is called the first
time a thread tries to get the value of a thread-local object. We cannot use the
ThreadLocal<T> class directly. Instead, we must define a thread-local variable
as a subclass of ThreadLocal<T> that overrides the parent’s initialValue()
method to initialize each thread’s object appropriately.

This mechanism is best illustrated by an example. In many of our algorithms,
we assume that each of n concurrent threads has a unique thread-local iden-
tifier between 0 and n − 1. To provide such an identifier, we show how to
define a ThreadID class with a single static method: get() returns the calling
thread’s identifier. When a thread calls get() for the first time, it is assigned the
next unused identifier. Each subsequent call by that thread returns that thread’s
identifier.

A.2 Java 459

1 public class ThreadID {
2 private static volatile int nextID = 0;
3 private static class ThreadLocalID extends ThreadLocal<Integer> {
4 protected synchronized Integer initialValue() {
5 return nextID++;
6 }
7 }
8 private static ThreadLocalID threadID = new ThreadLocalID();
9 public static int get() {
10 return threadID.get();
11 }
12 public static void set(int index) {
13 threadID.set(index);
14 }

Figure A.3 The ThreadID class: give each thread a unique identifier.

Fig. A.3 shows the simplest way to use a thread-local object to implement this
useful class. Line 2 declares an integer nextID field that holds the next identifier to
be issued. Lines 3 through 7 define an inner class accessible only within the body
of the enclosing ThreadID class. This inner class manages the thread’s identifier.
It is a subclass of ThreadLocal<Integer> that overrides the initialValue()
method to assign the next unused identifier to the current thread.

Because the inner ThreadLocalID class is used exactly once, it makes little
sense to give it a name (for the same reason that it makes little sense to name your
Thanks-giving turkey). Instead, it is more common to use an anonymous class as
described earlier.

Here is an example how the ThreadID class might be used:

thread = new Thread(new Runnable() {
public void run() {
System.out.println("Hello world from thread" + ThreadID.get());

}
});

Pragma A.2.1. In the type expression ThreadLocal<Integer>, you must
use Integer instead of int because int is a primitive type, while Integer is
a reference type, and only reference types are allowed in angle brackets. Since
Java 1.5, a feature called auto-boxing allows you to use int and Integer values
more-or-less interchangeably, for example:

Integer x = 5;
int y = 6;
Integer z = x + y;

Consult your Java reference manual for complete details.

460 Appendix A Software Basics

A.3 C#

C# is a Java-like language that runs on Microsoft’s .Net platform.

A.3.1 Threads

C# provides a threading model similar to Java’s. C# threads are implemented by
the System.Threading.Thread class. When you create a thread, you tell it what
to do by passing it a ThreadStart delegate, a kind of pointer to the method you
want to call. For example, here is a method that prints a simple message:

void HelloWorld()
{
Console.WriteLine("Hello World");

}

We then turn this method into a ThreadStart delegate, and pass that delegate to
the thread constructor.

ThreadStart hello = new ThreadStart(HelloWorld);
Thread thread = new Thread(hello);

C# provides a syntactic shortcut, called an anonymous method, that allows you
to define a delegate directly, for example, by combining the previous steps into a
single expression:

Thread thread = new Thread(delegate()
{

Console.WriteLine("Hello World");
});

As in Java, after a thread has been created, it must be started:

thread.Start();

This call causes the thread to run, while the caller returns immediately. If the caller
wants to wait for the thread to finish, it must join the thread:

thread.Join();

The caller is blocked until the thread’s method returns.
Fig. A.4 shows a method that initializes a number of threads, starts them, waits

for them to finish, and then prints out a message. The method creates an array
of threads, initializing each thread with its own ThreadStart delegate. We then
start the threads, and each thread executes its delegate, displaying its message.
Finally, we wait for each thread to finish, and display a message when they are

A.3 C# 461

1 static void Main(string[] args)
2 {
3 Thread[] thread = new Thread[8];
4 // create threads
5 for (int i = 0; i < thread.Length; i++)
6 {
7 String message = "Hello world from thread" + i;
8 ThreadStart hello = delegate()
9 {
10 Console.WriteLine(message);
11 };
12 thread[i] = new Thread(hello);
13 }
14 // start threads
15 for (int i = 0; i < thread.Length; i++)
16 {
17 thread[i].Start();
18 }
19 // wait for them to finish
20 for (int i = 0; i < thread.Length; i++)
21 {
22 thread[i].Join();
23 }
24 Console.WriteLine("done!");
25 }

Figure A.4 This method initializes a number of C# threads, starts them, waits for them to
finish, and then prints out a message.

all done. Except for minor syntactic differences, this code is similar to what you
would write in Java.

A.3.2 Monitors

For simple mutual exclusion, C# provides the ability to lock an object much like
the synchronized modifier in Java:

int GetAndIncrement()
{

lock (this)
{

return value++;
}

}

Unlike Java, C# does not allow you to use a lock statement to modify a method
directly. Instead, the lock statement is used to enclose the method body.

Concurrent data structures require more than mutual exclusion: they also
require the ability to wait and signal conditions. Unlike in Java, where every object

462 Appendix A Software Basics

is an implicit monitor, in C# you must explicitly create the monitor associated
with an object. To acquire a monitor lock, call Monitor.Enter(this), and to
release the lock, call Monitor.Exit(this). Each monitor has a single implicit
condition, which is waited upon by Monitor.Wait(this), and signaled by
Monitor.Pulse(this) or Monitor.PulseAll(this), which respectively wake
up one or all sleeping threads. Figs. A.5 and A.6 show how to implement a simple
bounded queue using C# monitor calls.

A.3.3 Thread-Local Objects

C# provides a very simple way to make a static field thread-local: simply prefix
the field declaration with the attribute [ThreadStatic].

[ThreadStatic]
static int value;

Do not provide an initial value for a [ThreadStatic] field, because the initial-
ization happens once, not once per thread. Instead, each thread will find the field

1 class Queue<T>
2 {
3 int head, tail;
4 T[] call;
5 public Queue(int capacity)
6 {
7 call = new T[capacity];
8 head = tail = 0;
9 }

10 public void Enq(T x)
11 {
12 Monitor.Enter(this);
13 try
14 {
15 while (tail - head == call.Length)
16 {
17 Monitor.Wait(this); // queue is empty
18 }
19 calls[(tail++) % call.Length] = x;
20 Monitor.Pulse(this); // notify waiting dequeuers
21 }
22 finally
23 {
24 Monitor.Exit(this);
25 }
26 }
27 }
28 }

Figure A.5 A bounded Queue class: fields and enq() method.

A.3 C# 463

29 public T Deq()
30 {
31 Monitor.Enter(this);
32 try
33 {
34 while (tail == head)
35 {
36 Monitor.Wait(this); // queue is full
37 }
38 T y = calls[(head++) % call.Length];
39 Monitor.Pulse(this); // notify waiting enqueuers
40 return y;
41 }
42 finally
43 {
44 Monitor.Exit(this);
45 }
46 }
47 }

Figure A.6 A bounded Queue class: the deq() method.

1 class ThreadID
2 {
3 [ThreadStatic] static int myID;
4 static int counter;
5 public static int get()
6 {
7 if (myID == 0)
8 {
9 myID = Interlocked.Increment(ref counter);
10 }
11 return myID - 1;
12 }
13 }

Figure A.7 The ThreadID class provides each thread a unique identifier implemented using
[ThreadStatic].

initially has that type’s default value: zero for integers, null for references, and
so on.

Fig. A.7 shows how to implement the ThreadID class (Java version in Fig. A.3).
There is one point about this program that may require comment. The first time
a thread inspects its [ThreadStatic] identifier, that field will be zero, the default
value for integers. To distinguish between an uninitialized zero and a thread ID
zero, this field holds the thread ID displaced by one: thread 0 has field value 1,
and so on.

464 Appendix A Software Basics

A.4 Pthreads

Pthreads provides much of the same functionality for C or C++. Programs that
use Pthreads must import the include file:

#include <pthread.h>

The following function creates and starts a thread:

int pthread_create (
pthread_t* thread_id,
const pthread_attr_t* attributes,
void* (*thread_function)(void*),
void* argument);

The first argument is a pointer to the thread itself. The second allows you to specify
various aspects of the thread, the third is a pointer to the code the thread is to run
(in C# this would be a delegate, and in Java a Runnable object), and the fourth is
the argument to the thread function. Unlike Java or C#, a single call both creates
and starts a thread.

A thread terminates when the function returns or calls pthread_exit().
Threads can also join by the call:

int pthread_join (pthread_t thread, void** status_ptr);

The exit status is stored in the last argument. For example, the following program
prints out a simple per-thread message.

#include <pthread.h>
#define NUM_THREADS 8
void* hello(void* arg) {
printf("Hello from thread %i\n", (int)arg);

}
int main() {
pthread_t thread[NUM_THREADS];
int status;
int i;
for (i = 0; i < NUM_THREADS; i++) {
if (pthread_create(&thread[i], NULL, hello, (void*)i) != 0) {
printf("pthread_create() error");
exit();

}
}
for (i = 0; i < NUM_THREADS; i++) {
pthread_join(thread[i], NULL);

}
}

The Pthreads library calls locks mutexes. A mutex is created by calling

int pthread_mutex_init (pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr);

A.4 Pthreads 465

A mutex can be locked:

int pthread_mutex_lock (pthread_mutex_t* mutex);

and unlocked:

int pthread_mutex_unlock (pthread_mutex_t* mutex);

Like a Java lock, it is possible to return immediately if a mutex is busy:

int pthread_mutex_trylock (pthread_mutex_t* mutex);

The Pthreads library provides condition variables, which can be created by
calling:

int pthread_cond_init (pthread_cond_t* cond, pthread_condattr_t* attr);

As usual, the second argument sets attributes to nondefault values. Unlike in Java
or C#, the association between a lock and a condition variable is explicit, not
implicit. The following call releases a lock and waits on a condition variable:

int pthread_cond_wait (pthread_cond_t* cond, pthread_mutex_t* mutex);

(Just as in the other languages, when a thread awakens, there is no guarantee that
the condition it is awaiting holds, so it must be checked explicitly.) It is also pos-
sible to wait with a timeout.

The following call is similar to Java’s notify(), awakening at least one
suspended thread:

int pthread_cond_signal (pthread_cond_t *cond);

The following is like Java’s notifyAll(), awakening all suspended threads:

int pthread_cond_broadcast (pthread_cond_t* cond);

Because C is not garbage collected, threads, locks, and condition variables all pro-
vide destroy() functions that allow their resources to be reclaimed.

Figs. A.8 and A.9 illustrate a simple concurrent FIFO queue. Call are kept in an
array, and head and tailfields count the number of call enqueued and dequeued.
Like the Java implementation, it uses a single condition variable to wait for the
buffer to become either not full or not empty.

A.4.1 Thread-Local Storage

Fig. A.10 illustrates how Pthreads manages thread-local storage. The Pthreads
library associates a thread-specific value with a key, which is declared at Line 1
and initialized at Line 6. The value is a pointer, initially null. A thread acquires
an ID by calling threadID_get(). This method looks up the thread-local value
bound to the key (Line 10). On the first call, that value is null (Line 11), so the
thread must take a new unique ID by incrementing the counter variable. Here,
we use a mutex to synchronize access to a counter (Lines 12–16).

466 Appendix A Software Basics

1 #include <pthread.h>
2 #define QSIZE 16
3 typedef struct {
4 int buf[QSIZE];
5 long head, tail;
6 pthread_mutex_t *mutex;
7 pthread_cond_t *notFull, *notEmpty;
8 } queue;
9 void queue_enq(queue* q, int item) {
10 // lock object
11 pthread_mutex_lock (q->mutex);
12 // wait while full
13 while (q->tail - q->head == QSIZE) {
14 pthread_cond_wait (q->notFull, q->mutex);
15 }
16 q->buf[q->tail % QSIZE] = item;
17 q->tail++;
18 // release lock
19 pthread_mutex_unlock (q->mutex);
20 // inform waiting dequeuers
21 pthread_cond_signal (q->notEmpty);
22 }
23 queue *queue_init (void) {
24 queue *q;
25 q = (queue*)malloc (sizeof (queue));
26 if (q == NULL) return (NULL);
27 q->head = 0;
28 q->tail = 0;
29 q->mutex = (pthread_mutex_t*) malloc (sizeof (pthread_mutex_t));
30 pthread_mutex_init (q->mutex, NULL);
31 q->notFull = (pthread_cond_t*) malloc (sizeof (pthread_cond_t));
32 pthread_cond_init (q->notFull, NULL);
33 q->notEmpty = (pthread_cond_t*) malloc (sizeof (pthread_cond_t));
34 pthread_cond_init (q->notEmpty, NULL);
35 return (q);
36 }

Figure A.8 Initialization and Enqueue methods of a concurrent FIFO Queue using Pthreads.

A.5 Chapter Notes

The Java programming language was created by James Gosling [46]. Dennis
Ritchie is credited with creating C. Pthreads was invented as part of the IEEE Posix
package. The basic monitor model is credited to Tony Hoare [71] and Per Brinch
Hansen [52], although they used different mechanisms for waiting and notifica-
tion. The mechanisms used by Java (and later by C#) were originally proposed by
Butler Lampson and David Redell [97].

A.5 Chapter Notes 467

37 int queue_deq(queue* q) {
38 int result;
39 // lock object
40 pthread_mutex_lock (q->mutex);
41 // wait while full
42 while (q->tail == q->head) {
43 pthread_cond_wait (q->notEmpty, q->mutex);
44 }
45 result = q->buf[q->head % QSIZE];
46 q->head++;
47 // release lock
48 pthread_mutex_unlock (q->mutex);
49 // inform waiting dequeuers
50 pthread_cond_signal (q->notFull);
51 return result;
52 }
53 void queue_delete (queue* q) {
54 pthread_mutex_destroy (q->mutex);
55 free (q->mutex);
56 pthread_cond_destroy (q->notFull);
57 free (q->notFull);
58 pthread_cond_destroy (q->notEmpty);
59 free (q->notEmpty);
60 free (q);
61 }

Figure A.9 Pthreads: a concurrent FIFO queue’s dequeue and delete methods.

1 pthread_key_t key; /* key */
2 int counter; /* generates unique value */
3 pthread_mutex_t mutex; /* synchronizes counter */
4 threadID_init() {
5 pthread_mutex_init(&mutex, NULL);
6 pthread_key_create(&key, NULL);
7 counter = 0;
8 }
9 int threadID_get() {
10 int* id = (int*)pthread_getspecific(key);
11 if (id == NULL) { /* first time? */
12 id = (int*)malloc(sizeof(int));
13 pthread_mutex_lock(&mutex);
14 *id = counter++;
15 pthread_setspecific(key, id);
16 pthread_mutex_unlock(&mutex);
17 }
18 return *id;
19 }

Figure A.10 This program provides each thread a unique identifier using Pthreads thread-local
storage management calls.

This page intentionally left blank

BHardware Basics

A novice was trying to fix a broken Lisp machine by turning the power off and
on. Knight, seeing what the student was doing spoke sternly: “You cannot fix a
machine just by power-cycling it with no understanding of what is going wrong.”
Knight turned the machine off and on. The machine worked.

(From “AI Koans”, a collection of jokes popular at MIT in the 1980s).

B.1 Introduction (and a Puzzle)

You cannot program a multiprocessor effectively unless you know what a multi-
processor is. You can do a pretty good job of programming a uniprocessor without
understanding much about computer architecture, but the same is not true of
multiprocessors. We will illustrate this point by a puzzle. We will consider two
programs that are logically equivalent, except that one is much less efficient than
the other. Ominously, the simpler program is the inefficient one. This discrepancy
cannot be explained, nor the danger avoided, without a basic understanding of
modern multiprocessor architectures.

Here is the background to the puzzle. Suppose two threads share a resource
that can be used by only one thread at a time. To prevent concurrent use, each
thread must lock the resource before using it, and unlock it afterward. We studied
many ways to implement locks in Chapter 7. For the puzzle, we consider two
simple implementations in which the lock is a single Boolean field. If the field
is false, the lock is free, and otherwise it is in use. We manipulate the lock with
the getAndSet(v) method, which atomically swaps its argument v with the field
value. To acquire the lock, a thread calls getAndSet(true). If the call returns false,
then the lock was free, and the caller succeeded in locking the object. Otherwise,
the object was already locked, and the thread must try again later. A thread releases
a lock simply by storing false into the Boolean field.

In Fig. B.1, the test-and-set (TASLock) lock repeatedly calls getAndSet(true)
(Line 4) until it returns false. By contrast, in Fig. B.2, the test-and-test-and-set lock
(TTASLock) repeatedly reads the lock field (by calling state.get() at Line 5)

469

470 Appendix B Hardware Basics

1 public class TASLock implements Lock {
2 ...
3 public void lock() {
4 while (state.getAndSet(true)) {} // spin
5 }
6 ...
7 }

Figure B.1 The TASLock class.

1 public class TTASLock implements Lock {
2 ...
3 public void lock() {
4 while (true) {
5 while (state.get()) {}; // spin
6 if (!state.getAndSet(true))
7 return;
8 }
9 }
10 ...
11 }

Figure B.2 The TTASLock class.

until it returns false, and only then calls getAndSet() (Line 6). It is important to
understand that reading the lock value is atomic, and applying getAndSet() to
the lock value is atomic, but the combination is not atomic: between the time a
thread reads the lock value and the time it calls getAndSet(), the lock value may
have changed.

Before you proceed, you should convince yourself that the TASLock and
TTASLock algorithms are logically the same. The reason is simple: in the TTASLock
algorithm, reading that the lock is free does not guarantee that the next call to
getAndSet() will succeed, because some other thread may have acquired the lock
in the interval between reading the lock and trying to acquire it. So why bother
reading the lock before trying to acquire it?

Here is the puzzle. While the two lock implementations may be logically
equivalent, they perform very differently. In a classic 1989 experiment, Anderson
measured the time needed to execute a simple test program on several contem-
porary multiprocessors. He measured the elapsed time for n threads to execute
a short critical section one million times. Fig. B.3 shows how long each lock
takes, plotted as a function of the number of threads. In a perfect world, both the
TASLock and TTASLock curves would be as flat as the ideal curve on the bottom,
since each run does the same number of increments. Instead, we see that both
curves slope up, indicating that lock-induced delay increases with the number
of threads. Curiously, however, the TASLock is much slower than the TTASLock
lock, especially as the number of threads increases. Why?

B.1 Introduction (and a Puzzle) 471

TASLock

TTASLock

IdealLock

tim
e

number of threads

Figure B.3 Schematic performance of a TASLock, a TTASLock, and an ideal lock.

This chapter covers much of what you need to know about multiprocessor
architecture to write efficient concurrent algorithms and data structures. (Along
the way, we will explain the divergent curves in Fig. B.3.)

We will be concerned with the following components:

� The processors are hardware devices that execute software threads. There are
typically more threads than processors, and each processor runs a thread for a
while, sets it aside, and turns its attention to another thread.

� The interconnect is a communication medium that links processors to proces-
sors and processors to memory.

� The memory is actually a hierarchy of components that store data, ranging
from one or more levels of small, fast caches to a large and relatively slow main
memory. Understanding how these levels interact is essential to understan-
ding the actual performance of many concurrent algorithms.

From our point of view, one architectural principle drives everything else:
processors and main memory are far apart. It takes a long time for a processor to
read a value from memory. It also takes a long time for a processor to write a value
to memory, and longer still for the processor to be sure that value has actually
been installed in memory. Accessing memory is more like mailing a letter than
making a phone call. Almost everything we examine in this chapter is the result
of trying to alleviate the long time it takes (“high latency”) to access memory.

Both processor and memory speed change over time, but their relative perfor-
mance changes slowly. Let us consider the following analogy. We imagine that it
is 1980, and you are in charge of a messenger service in mid-town Manhattan.
While cars outperform bicycles on the open road, bicycles outperform cars in
heavy traffic, so you choose to use bicycles. Even though the technology behind
both bicycles and cars has advanced, the architectural comparison remains the

472 Appendix B Hardware Basics

same. Then as now, if you are designing an urban messenger service, you should
use bicycles, not cars.

B.2 Processors and Threads

A multiprocessor consists of multiple hardware processors, each of which executes
a sequential program. When discussing multiprocessor architectures, the basic
unit of time is the cycle: the time it takes a processor to fetch and execute a single
instruction. In absolute terms, cycle times change as technology advances (from
about 10 million cycles per second in 1980 to about 3000 million in 2005), and
they vary from one platform to another (processors that control toasters have
longer cycles than processors that control web servers). Nevertheless, the rela-
tive cost of instructions such as memory access changes slowly when expressed in
terms of cycles.

A thread is a sequential program. While a processor is a hardware device, a
thread is a software construct. A processor can run a thread for a while and then
set it aside and run another thread, an event known as a context switch. A proces-
sor may set aside a thread, or deschedule it, for a variety of reasons. Perhaps the
thread has issued a memory request that will take some time to satisfy, or perhaps
that thread has simply run long enough, and it is time for another thread to make
progress. When a thread is descheduled, it may resume execution on another
processor.

B.3 Interconnect

The interconnect is the medium by which processors communicate with the mem-
ory and with other processors. There are essentially two kinds of interconnect
architectures in use: SMP (symmetric multiprocessing) and NUMA (nonuniform
memory access).

In an SMP architecture, processors and memory are linked by a bus intercon-
nect, a broadcast medium that acts like a tiny Ethernet. Both processors and the
main memory have bus controller units in charge of sending and listening for mes-
sages broadcast on the bus. (Listening is sometimes called snooping). Today, SMP
architectures are the most common, because they are the easiest to build, but
they are not scalable to large numbers of processors because eventually the bus
becomes overloaded.

In a NUMA architecture, a collection of nodes are linked by a point-to-point
network, like a tiny local area network. Each node contains one or more processors
and a local memory. One node’s local memory is accessible to the other nodes,
and together, the nodes’ memories form a global memory shared by all processors.
The NUMA name reflects the fact that a processor can access memory residing on

B.5 Caches 473

processors

caches

busmemory

memory

processors

Figure B.4 An SMP architecture with caches on the left and a cacheless NUMA architecture
on the right.

its own node faster than it can access memory residing on other nodes. Networks
are more complex than buses, and require more elaborate protocols, but they scale
better than buses to large numbers of processors.

The division between SMP and NUMA architectures is a bit of a simplifica-
tion: one could design hybrid architectures, where processors within a cluster
communicate over a bus, but processors in different clusters communicate over a
network.

From the programmer’s point of view, it may not seem important whether the
underlying platform is based on a bus, a network, or a hybrid interconnect. It
is important, however, to realize that the interconnect is a finite resource shared
among the processors. If one processor uses too much of the interconnect’s band-
width, then the others may be delayed.

B.4 Memory

Processors share a main memory, which is a large array of words, indexed by
address. Depending on the platform, a word is typically either 32 or 64 bits, and
so is an address. Simplifying somewhat, a processor reads a value from memory
by sending a message containing the desired address to memory. The response
message contains the associated data, that is, the contents of memory at that
address. A processor writes a value by sending the address and the new data to
memory, and the memory sends back an acknowledgment when the new data
has been installed.

B.5 Caches

Unfortunately, on modern architectures a main memory access may take hun-
dreds of cycles, so there is a real danger that a processor may spend much of its
time just waiting for the memory to respond to requests. We can alleviate this
problem by introducing one or more caches: small memories that are situated
closer to the processors and are therefore much faster than memory. These caches

474 Appendix B Hardware Basics

are logically situated “between” the processor and the memory: when a processor
attempts to read a value from a given memory address, it first looks to see if the
value is already in the cache, and if so, it does not need to perform the slower
access to memory. If the desired address’s value was found, we say the processor
hits in the cache, and otherwise it misses. In a similar way, if a processor attempts
to write an address that is in the cache, it does not need to perform the slower
access to memory. The proportion of requests satisfied in the cache is called the
cache hit ratio (or hit rate).

Caches are effective because most programs display a high degree of locality: if a
processor reads or writes a memory address (also called a memory location), then
it is likely to read or write the same location again soon. Moreover, if a processor
reads or writes a memory location, then it is also likely to read or write nearby
locations soon. To exploit this second observation, caches typically operate at a
granularity larger than a single word: a cache holds a group of neighboring words
called cache lines (sometimes called cache blocks).

In practice, most processors have two levels of caches, called the L1 and L2
caches. The L1 cache typically resides on the same chip as the processor, and takes
one or two cycles to access. The L2 cache may reside either on or off-chip, and
may take tens of cycles to access. Both are significantly faster than the hundreds of
cycles required to access the memory. Of course, these times vary from platform to
platform, and many multiprocessors have even more elaborate cache structures.

The original proposals for NUMA architectures did not include caches because
it was felt that local memory was enough. Later, however, commercial NUMA
architectures did include caches. Sometimes the term cc-NUMA (for cache-
coherent NUMA) is used to mean NUMA architectures with caches. Here, to avoid
ambiguity, we use NUMA to include cache-coherence unless we explicitly state
otherwise.

Caches are expensive to build and therefore significantly smaller than the
memory: only a fraction of the memory locations will fit in a cache at the same
time. We would therefore like the cache to maintain values of the most highly used
locations. This implies that when a location needs to be cached and the cache is full,
it is necessary to evict a line, discarding it if it has not been modified, and writing it
back to main memory if it has. A replacement policy determines which cache line to
replace to make room for a given new location. If the replacement policy is free to
replace any line then we say the cache is fully associative. If, on the other hand,
there is only one line that can be replaced then we say the cache is direct mapped.
If we split the difference, allowing any line from a set of size k to be replaced to
make room for a given line, then we say the cache is k-way set associative.

B.5.1 Coherence

Sharing (or, less politely, memory contention), occurs when one processor reads or
writes a memory address that is cached by another. If both processors are reading
the data without modifying it, then the data can be cached at both processors.
If, however, one processor tries to update the shared cache line, then the other’s
copy must be invalidated to ensure that it does not read an out-of-date value. In its

B.5 Caches 475

most general form, this problem is called cache coherence. The literature contains
a variety of very complex and clever cache coherence protocols. Here we review
one of the most commonly used, called the MESI protocol (pronounced “messy”)
after the names of possible cache line states. This protocol has been used in the
Pentium and PowerPC processors. Here are the cache line states.

� Modified: the line has been modified in the cache. and it must eventually be
written back to main memory. No other processor has this line cached.

� Exclusive: the line has not been modified, and no other processor has this line
cached.

� Shared: the line has not been modified, and other processors may have this line
cached.

� Invalid: the line does not contain meaningful data.

We illustrate this protocol by a short example depicted in Fig. B.5. For simplicity,
we assume processors and memory are linked by a bus.

Processor A reads data from address a, and stores the data in its cache in
the exclusive state. When processor B attempts to read from the same address,
A detects the address conflict, and responds with the associated data. Now a is

A B

E

a

a

C

(a)
A B

S

a a

a

S

C

(b)

A B

I

a a

a

C

(c)
A B

S

a a

a

S

C

(d)

M

Figure B.5 Example of the MESI cache coherence protocol’s state transitions. (a) Processor
A reads data from address a, and stores the data in its cache in the exclusive state. (b) When
processor B attempts to read from the same address, A detects the address conflict, and
responds with the associated data. Now a is cached at both A and B in the shared state.
(c) If B writes to the shared address a, it changes its state to modified, and broadcasts a
message warning A (and any other processor that might have that data cached) to set its
cache line state to invalid. (d) If A then reads from a, it broadcasts a request, and B responds
by sending the modified data both to A and to the main memory, leaving both copies in the
shared state.

476 Appendix B Hardware Basics

cached at both A and B in the shared state. If B writes to the shared address a, it
changes its state to modified, and broadcasts a message warning A (and any other
processor that might have that data cached) to set its cache line state to invalid.
If A then reads from a, it broadcasts a request, and B responds by sending the
modified data both to A and to the main memory, leaving both copies in the
shared state.

False sharing occurs when processors that are accessing logically distinct data
nevertheless conflict because the locations they are accessing lie on the same cache
line. This observation illustrates a difficult tradeoff: large cache lines are good for
locality, but they increase the likelihood of false sharing. The likelihood of false
sharing can be reduced by ensuring that data objects that might be accessed con-
currently by independent threads lie far enough apart in memory. For example,
having multiple threads share a byte array invites false sharing, but having them
share an array of double-precision integers is less dangerous.

B.5.2 Spinning

A processor is spinning if it is repeatedly testing some word in memory, waiting
for another processor to change it. Depending on the architecture, spinning can
have a dramatic effect on overall system performance.

On an SMP architecture without caches, spinning is a very bad idea. Each time
the processor reads the memory, it consumes bus bandwidth without accom-
plishing any useful work. Because the bus is a broadcast medium, these requests
directed to memory may prevent other processors from making progress.

On a NUMA architecture without caches, spinning may be acceptable if the
address in question resides in the processor’s local memory. Even though multi-
processor architectures without caches are rare, we will still ask when we consider
a synchronization protocol that involves spinning, whether it permits each pro-
cessor to spin on its own local memory.

On an SMP or NUMA architecture with caches, spinning consumes signifi-
cantly fewer resources. The first time the processor reads the address, it takes a
cache miss, and loads the contents of that address into a cache line. Thereafter, as
long as that data remains unchanged, the processor simply rereads from its own
cache, consuming no interconnect bandwidth, a process known as local spinning.
When the cache state changes, the processor takes a single cache miss, observes
that the data has changed, and stops spinning.

B.6 Cache-Conscious Programming, or the Puzzle

Solved

We now know enough to explain why the TTASLock examined in Section B.1
outperforms the TASLock. Each time the TASLock applies getAndSet(true) to
the lock, it sends a message on the interconnect causing a substantial amount of
traffic. In an SMP architecture, the resulting traffic may be enough to saturate the

B.7 Multi-Core and Multi-Threaded Architectures 477

interconnect, delaying all threads, including a thread trying to release the lock,
or even threads not contending for the lock. By contrast, while the lock is busy,
the TTASLock spins, reading a locally cached copy of the lock, and producing no
interconnect traffic, explaining its improved performance.

The TTASLock is itself however far from ideal. When the lock is released, all
its cached copies are invalidated, and all waiting threads call getAndSet(true),
resulting in a burst of traffic, smaller than that of the TASLock, but nevertheless
significant.

We will further discuss the interactions of caches with locking in Chapter 7. In
the meantime, here are some simple ways to structure data to avoid false sharing.
Some of these techniques are easier to carry out in languages like C or C++ that
provide finer-grained control over memory use than Java.

� Objects or fields that are accessed independently should be aligned and padded
so that they end up on different cache lines.

� Keep read-only data separate from data that is modified frequently. For
example, consider a list whose structure is constant, but whose elements’ value
fields change frequently. To ensure that modifications do not slow down list
traversals, one could align and pad the value fields so that each one fills up a
cache line.

� When possible, split an object into thread-local pieces. For example, a counter
used for statistics could be split into an array of counters, one per thread, each
one residing on a different cache line. While a shared counter would cause
invalidation traffic, the split counter allows each thread to update its own
replica without causing coherence traffic.

� If a lock protects data that is frequently modified, then keep the lock and the
data on distinct cache lines, so that threads trying to acquire the lock do not
interfere with the lock-holder’s access to the data.

� If a lock protects data that is frequently uncontended, then try to keep the lock
and the data on the same cache lines, so that acquiring the lock will also load
some of the data into the cache.

B.7 Multi-Core and Multi-Threaded Architectures

In a multi-core architecture, as in Fig. B.6, multiple processors are placed on the
same chip. Each processor on that chip typically has its own L1 cache, but they
share a common L2 cache. Processors can communicate efficiently through the
shared L2 cache, avoiding the need to go through memory, and to invoke the
cumbersome cache coherence protocol.

In a multi-threaded architecture, a single processor may execute two or more
threads at once. Many modern processors have substantial internal parallelism.
They can execute instructions out of order, or in parallel (e.g., keeping both
fixed and floating-point units busy), or even execute instructions speculatively

478 Appendix B Hardware Basics

processing cores

L1 caches

L2 cache

off-chip memory

multicore Chip

Figure B.6 A multi-core SMP architecture. The L2 cache is on chip and shared by all proces-
sors while the memory is off-chip.

before branches or data have been computed. To keep hardware units busy, multi-
threaded processors can mix instructions from multiple streams.

Modern processor architectures combine multi-core with multi-threading,
where multiple individually multi-threaded cores may reside on the same chip.
The context switches on some multi-core chips are inexpensive and are performed
at a very fine granularity, essentially context switching on every instruction. Thus,
multi-threading serves to hide the high latency of accessing memory: whenever a
thread accesses memory, the processor allows another thread to execute.

B.7.1 Relaxed Memory Consistency

When a processor writes a value to memory, that value is kept in the cache and
marked as dirty, meaning that it must eventually be written back to main memory.
On most modern processors, write requests are not applied to memory when they
are issued. Rather, they are collected in a hardware queue, called a write buffer
(or store buffer), and applied to memory together at a later time. A write buffer
provides two benefits. First, it is often more efficient to issue a number of requests
all at once, a phenomenon called batching. Second, if a thread writes to an address
more than once, the earlier request can be discarded, saving a trip to memory, a
phenomenon called write absorption.

The use of write buffers has a very important consequence: the order in which
reads–writes are issued to memory is not necessarily the order in which they occur
in the memory. For example, recall the flag principle of Chapter 1 which was
crucial to the correctness of mutual exclusion: if two processors each first write
their own flag and then read the other’s flag location, then one of them will see the
other’s newly written flag value. Using write buffers this is no longer true, both
may write, each in its respective write buffer, but the buffers may both be written
only after both processors each read the other’s flag location in memory. Thus,
neither reads the other’s flag.

Compilers make matters even worse. They are very good at optimizing
performance on single-processor architectures. Often, this optimization requires

B.8 Hardware Synchronization Instructions 479

reordering an individual thread’s reads–writes to memory. Such reordering is
invisible for single-threaded programs, but it can have unexpected consequences
for multi-threaded programs in which threads may observe the order in which
writes occur. For example, if one thread fills a buffer with data and then sets an
indicator to mark the buffer as full, then concurrent threads may see the indicator
set before they see the new data, causing them to read stale values. The erroneous
double-checked locking pattern described in Chapter 3 is an example of a pitfall
produced by unintuitive aspects of the Java memory model.

Different architectures provide different guarantees about the extent to which
memory reads–writes can be reordered. As a rule, it is better not to rely on such
guarantees, and to use more expensive techniques, described in the following
paragraph, to prevent such reordering.

All architectures allow you to force your writes to take place in the order they
are issued, but at a price. A memory barrier instruction (sometimes called a fence)
flushes write buffers, ensuring that all writes issued before the barrier become
visible to the processor that issued the barrier. Memory barriers are often inserted
transparently by atomic read-modify-write operations such as getAndSet(),
or by standard concurrency libraries. Thus, explicit use of memory barriers is
needed only when processors perform read–write instructions on shared variables
outside of critical sections.

On the one hand, memory barriers are expensive (100s of cycles, maybe more),
and should be used only when necessary. On the other, synchronization bugs can
be very difficult to track down, so memory barriers should be used liberally, rather
than relying on complex platform-specific guarantees about limits to memory
instruction reordering.

The Java language itself allows reads–writes to object fields to be reordered if
they occur outside synchronized methods or blocks. Java provides a volatile
keyword that ensures that reads–writes to a volatile object field that occur out-
side synchronized blocks or methods are not reordered. Using this keyword can
be expensive, so it should be used only when necessary. We notice that in princi-
ple, one could use volatile fields to make double-checked locking work correctly,
but there would not be much point, since accessing volatile variables requires syn-
chronization anyway.

Here ends our primer on multiprocessor hardware. We will continue to dis-
cuss these architectural concepts in the context of specific data structures and
algorithms. A pattern will emerge: the performance of multiprocessor programs
is highly dependent on synergy with the underlying hardware.

B.8 Hardware Synchronization Instructions

As discussed in Chapter 5, any modern multiprocessor architecture must support
powerful synchronization primitives to be universal, that is, provide concur-
rent computation’s equivalent of a Universal Turing machine. It is therefore not

480 Appendix B Hardware Basics

surprising that the implementation of the Java language relies on such special-
ized hardware instructions (also called hardware primitives) in implementing
synchronization, from spin-locks and monitors to the most complex lock-free
structures.

Modern architectures typically provide one of two kinds of universal synchro-
nization primitives. The compare-and-swap (CAS) instruction is supported in
architectures by AMD, Intel, and Sun. It takes three arguments: an address a in
memory, an expected value e, and an update value v. It returns a Boolean. It atom-
ically executes the following steps:

� If the memory at address a contains the expected value e,

� write the update value v to that address and return true,

� otherwise leave the memory unchanged and return false.

On Intel and AMD architectures, CAS is called CMPXCHG, while on SPARCTM

it is called CAS.1 Java’s java.util.concurrent.atomic library provides atomic
Boolean, integer, and reference classes that implement CAS by acompareAndSet()
method. (Because our examples are mostly in Java, we refer to compareAndSet()
instead of CAS everywhere else.) C# provides the same functionality with the
Interlocked.CompareExchange method.

The CAS instruction has one pitfall. Perhaps the most common use of CAS
is the following. An application reads value a from a given memory address, and
computes a new value c for that location. It intends to store c, but only if the value
a in the address has not changed since it was read. One might think that applying
a CAS with expected value a and update value c would accomplish this goal. There
is a problem: a thread could have overwritten the value a with another value b,
and later written a again to the address. The compare-and-swap will replace awith
c, but the application may not have done what it was intended to do (for example,
if the address stores a pointer, the new value a may be the address of a recycled
object). The CAS call will replace e with v, but the application may not have done
what it was intended to do. This problem is known as the ABA problem, discussed
in detail in Chapter 16.

Another hardware synchronization primitive is a pair of instructions:
load-linked and store-conditional (LL/SC). The LL instruction reads from an
address a. A later SC instruction to a attempts to store a new value at that address.
The instruction succeeds if the contents of address a are unchanged since that
thread issued the earlier LL instruction to a. It fails if the contents of that address
has changed in the interval.

The LL and SC instructions are supported by a number of architectures: Alpha
AXP (ldl_l/stl_c), IBM PowerPC (lwarx/stwcx) MIPS ll/sc, and ARM
(ldrex/strex). LL/SC does not suffer from the ABA problem, but in practice
there are often severe restrictions on what a thread can do between a LL and the

1 Instead of a Boolean, CAS on Sparc returns the location’s prior value, which can be used to
retry an unsuccessful CAS. CMPXCHG on Intel’s Pentium effectively returns both a Boolean
and the prior value.

B.10 Exercises 481

matching SC. A context switch, another LL, or another load or store instruction
may cause the SC to fail.

It is good idea to use atomic fields and their associated methods sparingly
because they are often based on CAS or LL/SC. A CAS or LL/SC instruction takes
significantly more cycles to complete than a load or store: it includes a memory
barrier and prevents out-of-order execution and various compiler optimizations.
The precise cost depends on many factors, and varies not only from one archi-
tecture to the next, but also from one application of the instruction to the next
within the same architecture. It suffices to say that CAS or LL/SC can be an order
of magnitude slower than a simple load or store.

B.9 Chapter Notes

John Hennessey and Michael Patterson [58] give a comprehensive treatment of
computer architecture. The MESI protocol is used by Intel’s Pentium proces-
sor [75]. The tips on cache-conscious programming are adapted from Benjamin
Gamsa, Orran Krieger, Eric Parsons, and Michael Stumm [43]. Sarita Adve and
Karosh Gharachorloo [1] give an excellent survey of memory consistency models.

B.10 Exercises

Exercise 219. Thread A must wait for a thread on another processor to change a
flag bit in memory. The scheduler can either allow A to spin, repeatedly retesting
the flag, or it can deschedule A, allowing some other thread to run. Suppose it
takes a total of 10 milliseconds for the operationg system to switch a processor
from one thread to another. If the operating system deschedules thread A and
immediately reschedules it, then it wastes 20 milliseconds. If, instead, A starts
spinning at time t0, and the flag changes at t1, then the operating system will have
wasted t1 − t0 time doing unproductive work.

A prescient scheduler is one that can predict the future. If it foresees that the flag
will change in less than 20 milliseconds, it makes sense to have A spin, wasting
less than 20 milliseconds, because descheduling and rescheduling A wastes 20
milliseconds. If, on the other hand, it takes more than 20 milliseconds for the flag
to change, it makes sense to replace A with another thread, wasting no more than
20 milliseconds.

Your assignment is to implement a scheduler that never wastes more than twice
the time a prescient scheduler would have wasted under the same circumstances.

Exercise 220. Imagine you are a lawyer, paid to make the best case you can for
a particular point of view. How would you argue the following claim: if context
switches took negligible time, then processors would not need caches, at least for
applications that encompass large numbers of threads.

Extra credit: critique your argument.

482 Appendix B Hardware Basics

Exercise 221. Consider a direct-mapped cache with 16 cache lines, indexed 0 to
15, where each cache line encompasses 32 words.

� Explain how to map an address a to a cache line in terms of bit shifting and
masking operations. Assume for this question that addresses refer to words,
not bytes: address 7 refers to the 7th word in memory.

� Compute the best and worst possible hit ratios for a program that loops 4 times
through an array of 64 words.

� Compute the best and worst possible hit ratios for a program that loops 4 times
through an array of 512 words.

Exercise 222. Consider a direct-mapped cache with 16 cache lines, indexed 0 to
15, where each cache line encompasses 32 words.

Consider a two-dimensional, 32× 32 array of words a. This array is laid out in
memory so that a[0, 0] is next to a[0, 1], and so on. Assume the cache is initially
empty, but that a[0, 0] maps to the first word of cache line 0.

Consider the following column-first traversal:

int sum = 0;
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum += a[i,j]; // 2nd dim changes fastest

}
}

and the following row-first traversal:

int sum = 0;
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum += a[j,i]; // 1st dim changes fastest

}
}

Compare the number of cache misses produced by the two traversals, assuming
the oldest cache line is evicted first.

Exercise 223. In the MESI cache-coherence protocol, what is the advantage of
distinguishing between exclusive and modified modes?

What is the advantage of distinguishing between exclusive and shared modes?

Exercise 224. Implement the test-and-set and test-and-test-and-set locks shown in
Figs. B.1 and B.2, test their relative performance on a multiprocessor, and analyze
the results.

Bibliography

[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. Computer, 29(12):66–76, 1996.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal of the ACM (JACM), 40(4):873–890,
1993.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-free made fast. In STOC ’95: Proc.
of the Twenty-seventh Annual ACM Symposium on Theory of Computing,
pp. 538–547, NY, USA, 1995, ACM Press.

[4] Y. Afek, G. Stupp, and D. Touitou. Long-lived and adaptive atomic snap-
shot and immediate snapshot (extended abstract). In PODC ’00: Proc.
of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing, Portland, Oregon, USA, pp. 71–80, NY, USA, 2000, ACM Press.

[5] Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a class
of synchronization objects. In PODC ’93: Proc. of the Twelfth Annual ACM
Symposium on Principles of Distributed Computing, pp. 159–170, NY, USA,
1993, ACM Press.

[6] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques.
In Proc. of the Sixteenth International Symposium on Computer Architecture,
pp. 396–406, May 1989.

[7] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ramakrishna, and
D. White. An efficient meta-lock for implementing ubiquitous synchro-
nization. ACM SIGPLAN Notices, 34(10):207–222, 1999.

[8] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn) sorting network.
Combinatorica, 3(1):1–19, 1983.

[9] G. M. Amdahl. Validity of the single-processor approach to achieving large
scale computing capabilities. In AFIPS Conference Proceedings, pp. 483–
485, Atlantic City, NJ, April 1967, Reston, VA, USA, AFIPS Press.

483

484 Bibliography

[10] J. H. Anderson. Composite registers. Distributed Computing, 6(3):141–154,
1993.

[11] J. H. Anderson and M. Moir. Universal constructions for multi-object
operations. In PODC ’95: Proc. of the Fourteenth Annual ACM Symposium
on Principles of Distributed Computing, pp. 184–193, NY, USA, 1995, ACM
Press.

[12] J. H. Anderson, M. G. Gouda, and A. K. Singh. The elusive atomic register.
Technical Report TR 86.29, University of Texas at Austin, 1986.

[13] J. H. Anderson, M. G. Gouda, and A. K. Singh. The elusive atomic register.
Journal of the ACM, 41(2):311–339, 1994.

[14] T. E. Anderson. The performance of spin lock alternatives for shared-
money multiprocessors. IEEE Transactions on Parallel and Distributed
Systems, 1(1):6–16, 1990.

[15] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In Proc. of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 119–129, NY, USA,
1998, ACM Press.

[16] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks. Journal of the
ACM, 41(5):1020–1048, 1994.

[17] D. F. Bacon, R. B. Konuru, C. Murthy, and M. J. Serrano. Thin locks:
Featherweight synchronization for Java. In PLDI ’98: Proc. of the ACM
SIGPLAN 1998 conference on Programming Language Design and Imple-
mentation, Montreal, Quebec, Canada, pp. 258–268, NY, USA, 1998, ACM
Press.

[18] K. Batcher. Sorting Networks and Their Applications. In Proc. of the AFIPS
Spring Joint Computer Conference, 32:307–314, Reston, VA, USA, 1968.

[19] R. Bayer and M. Schkolnick. Concurrency of operations on B-trees. Acta
Informatica, 9:1–21, 1977.

[20] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[21] H. J. Boehm. Threads cannot be implemented as a library. In PLDI ’05:
Proc. of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 261–268, NY, USA, 2005, ACM Press.

[22] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming.
In PODC ’93: Proc. of the Twelfth Annual ACM Symposium on Principles of
Distributed Computing, pp. 41–51, NY, USA, 1993, ACM Press.

[23] J. E. Burns and N. A. Lynch. Bounds on shared memory for mutual exclu-
sion. Information and Computation, 107(2):171–184, December 1993.

[24] J. E. Burns and G. L. Peterson. Constructing multi-reader atomic values
from non-atomic values. In PODC ’87: Proc. of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, pp. 222–231, NY, USA,
1987, ACM Press.

[25] C. Busch and M. Mavronicolas. A combinatorial treatment of balancing
networks. Journal of the ACM, 43(5):794–839, 1996.

Bibliography 485

[26] T. D. Chandra, P. Jayanti, and K. Tan. A polylog time wait-free construc-
tion for closed objects. In PODC ’98: Proc. of the Seventeenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 287–296, NY, USA,
1998, ACM Press.

[27] G. Chapman, J. Cleese, T. Gilliam, E. Idle, T. Jones, and M. Palin. Monty
phyton and the holy grail, Motion Picture, Michael White Productions,
Released 10 May 1975, USA.

[28] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In SPAA ’05:
Proc. of the Seventeenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 21–28, NY, USA, 2005, ACM Press.

[29] A. Church. A note on the entscheidungs problem. Journal of Symbolic Logic,
1936.

[30] T. Craig. Building FIFO and priority-queueing spin locks from atomic
swap. Technical Report TR 93-02-02, University of Washington, Depart-
ment of Computer Science, February 1993.

[31] D. Dice. Implementing fast Java monitors with relaxed-locks. Proc. of
the JavaTM Virtual Machine Research and Technology Symposium on
JavaTM Virtual Machine Research and Technology Symposium, Monterey,
California, p. 13, April 23–24, 2001.

[32] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. Proc. of
the Twentieth International Symposium on Distributed Computing (DISC
2006), Stockholm, Sweden, pp. 194–208, 2006.

[33] E. W. Dijkstra. The structure of the THE multiprogramming system.
Communications of the ACM, 11(5):341–346, NY, USA, 1968, ACM Press.

[34] D. Dolev and N. Shavit. Bounded concurrent time-stamping. SIAM Journal
of Computing, 26(2):418–455, 1997.

[35] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic balanced sorting
network. Journal of the ACM, 36(4):738–757, 1989.

[36] A. C. Doyle. A Study in Scarlet and the Sign of Four. Berkley Publishing
Group, NY, 1994. ISBN: 0425102408.

[37] C. Dwork and O. Waarts. Simple and efficient bounded concurrent times-
tamping and the traceable use abstraction. Journal of the ACM (JACM),
46(5):633–666, 1999.

[38] C. Ellis. Concurrency in linear hashing. ACM Transactions on Database
Systems (TODS), 12(2):195–217, 1987.

[39] F. E. Fich, D. Hendler, and N. Shavit. On the inherent weakness of condi-
tional primitives. Distributed Computing, 18(4):267–277, 2006.

[40] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distri-
buted consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

[41] C. H. Flood, D. Detlefs, N. Shavit, and X. Zhang. Parallel garbage collec-
tion for shared memory multiprocessors. In JVM ’01 Proc. of the JavaTM
Virtual Machine Research and Technology Symposium on JavaTM Virtual
Machine Research and Technology Symposium, Monterey, California, 2001.
Berkelay, CA, USA, USENIX Association.

486 Bibliography

[42] K. Fraser. Practical Lock-Freedom. Ph.D. dissertation, Kings College,
University of Cambridge, Cambridge, England, September 2003.

[43] B. Gamsa, O. Kreiger, E. W. Parsons, and M. Stumm. Performance issues
for multiprocessor operating systems. Technical report, Computer Systems
Research Institute, University of Toronto, 1995.

[44] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dynamic hash tables
with open addressing. Distributed Computing, 18(1):21–42, 2005.

[45] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchronization
primitives for large-scale cache-coherent multiprocessors. In Proc. of the
Third International Conference on Architectural support for Programming
Languages and Operating Systems, pp. 64–75, 1989, ACM Press.

[46] J. Gosling, B. Joy, G. L. Steele Jr., and G. Bracha. The Java Language Speci-
fication, Prentice Hall PTR, third edition, Upper Saddle River, New Jersey,
USA, 2005. ISBN: 0321246780.

[47] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and
M. Snir. The NYU ultracomputer-designing an MIMD parallel computer.
IEEE Transactions on Computers, C-32(2):175–189, February 1984.

[48] M. Greenwald. Two-handed emulation: How to build non-blocking imple-
mentations of complex data-structures using DCAS. In PODC ’02: Proc. of
the Twenty-first Annual Symposium on Principles of Distributed Computing,
Monterey, California, pp. 260–269, NY, USA, July 2002, ACM Press.

[49] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a theory of transactional
contention managers. In PODC ’05: Proc. of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, pp. 258–264, Las Vegas,
NY, USA, 2005, ACM Press.

[50] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables. Journal of the ACM,
42(1):186–203, 1995.

[51] S. Haldar and P. Vitányi. Bounded concurrent timestamp systems using
vector clocks. Journal of the ACM (JACM), 49(1):101–126, 2002.

[52] P. B. Hansen. Structured multi-programming. Communications of the
ACM, 15(7):574–578, 1972.

[53] T. Harris. A pragmatic implementation of non-blocking linked-lists. In
Proc. of Fifteenth International Symposium on Distributed Computing (DISC
2001), Lisbon, Portugal, volume 2180 of Lecture Notes in Computer Science,
pp. 300–314, October 2001, Springer-Verlag.

[54] T. Harris, S. Marlowe, S. Peyton-Jones, and M. Herlihy. Composable mem-
ory transactions. In PPoPP ’05: Proc. of the Tenth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, Chicago, IL, USA,
pp. 48–60, NY, USA, 2005, ACM Press.

[55] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and
N. Shavit. A Lazy Concurrent List-Based Set Algorithm. Proc. of the Ninth
International Conference on Principles of Distributed Systems (OPODIS
2005), Pisa, Italy, pp. 3–16, 2005.

Bibliography 487

[56] D. Hendler and N. Shavit. Non-blocking Steal-half Work Queues. In Proc.
of the Twenty-first Annual ACM Symposium on Principles of Distributed
Computing (PODC), Monterey, California, pp. 280–289, 2002, ACM Press.

[57] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack
algorithm. In SPAA ’04: Proc. of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 206–215, NY, USA, 2004,
ACM Press.

[58] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 1995.

[59] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier
synchronization. International Journal of Parallel Programming, 17(1):
1–17, 0885-7458 1988.

[60] M. Herlihy. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems,
15(5):745–770, November 1993.

[61] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchroniza-
tion: Double-Ended Queues as an Example. In ICDCS ’03: Proc. of the
Twenty-third International Conference on Distributed Computing Systems,
p. 522, Washington, DC, USA, 2003. IEEE Computer Society.

[62] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[63] M. Herlihy and N. Shavit. On the nature of progress, unpublished
manuscript, sun microsystems laboratories, 2008.

[64] M. Herlihy, Y. Lev, and N. Shavit. A lock-free concurrent skiplist with
wait-free search. Unpublished Manuscript, Sun Microsystems Laborato-
ries, Burlington, Massachusetts, 2007.

[65] M. Herlihy, B.-H. Lim, and N. Shavit. Scalable concurrent counting. ACM
Transactions on Computer Systems, 13(4):343–364, 1995.

[66] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software trans-
actional memory for dynamic-sized data structures. In PODC ’03, Proc. of
the Twenty-second Annual Symposium on Principles of Distributed Comput-
ing, Boston, Massachusetts, pp. 92–101, NY, USA, 2003, ACM Press.

[67] M. Herlihy and J. E. B. Moss. Transactional memory: architectural sup-
port for lock-free data structures. In Proc. of the Twentieth Annual Inter-
national Symposium on Computer Architecture, pp. 289–300, San Diego,
California, 1993, ACM Press.

[68] M. Herlihy, N. Shavit, and M. Tzafrir. Concurrent cuckoo hashing. Tech-
nical report, Providence RI, Brown University, 2007.

[69] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[70] C. A. R. Hoare. “partition: Algorithm 63,” “quicksort: Algorithm 64,” and
“find: Algorithm 65.”. Communications of the ACM, 4(7):321–322, 1961.

[71] C. A. R. Hoare. Monitors: an operating system structuring concept.
Communications of the ACM, 17(10):549–557, 1974.

488 Bibliography

[72] M. Hsu and W. P. Yang. Concurrent operations in extendible hashing. In
Symposium on Very Large Data Bases, pp. 241–247, San Francisco, CA,
USA, 1986. Morgan Kaufmann Publishers Inc.

[73] J. S. Huang and Y. C. Chow. Parallel sorting and data partitioning by sam-
pling. In Proc. of the IEEE Computer Society’s Seventh International Com-
puter Software and Applications Conference, pp. 627–631, 1983.

[74] G. C. Hunt, M. M. Michael, S. Parthasarathy, and M. L. Scott. An effi-
cient algorithm for concurrent priority queue heaps. Inf. Process. Lett.,
60(3):151–157, 1996.

[75] Intel Corporation. Pentium Processor User’s Manual. Intel Books, 1993.
ISBN: 1555121934.

[76] A. Israeli and L. Rappaport. Disjoint-access-parallel implementations of
strong shared memory primitives. In PODC ’94: Proc. of the Thirteenth
Annual ACM Symposium on Principles of Distributed Computing, Los
Angeles, California, United States, pp. 151–160, NY, USA, August 14–17
1994, ACM Press.

[77] A. Israeli and M. Li. Bounded time stamps. Distributed Computing, 6(5):
205–209, 1993.

[78] A. Israeli and A. Shaham. Optimal multi-writer multi-reader atomic
register. In PODC ’92: Proc. of the Eleventh Annual ACM Symposium on
Principles of Distributed Computing, Vancouver, British Columbia, Canada,
pp. 71–82, NY, USA, 1992, ACM Press.

[79] P. Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–614,
1997.

[80] P. Jayanti. A lower bound on the local time complexity of universal
constructions. In PODC ’98: Proc. of the Seventeenth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 183–192, NY, USA, 1998,
ACM Press.

[81] P. Jayanti and S. Toueg. Some results on the impossibility, universality, and
decidability of consensus. In WDAG ’92: Proc. of the Sixth International
Workshop on Distributed Algorithms, pp. 69–84, London, UK, 1992.
Springer-Verlag.

[82] D. Jiménez-González, J. Larriba-Pey, and J. Navarro. CC-Radix: A cache
conscious sorting based on Radix sort. In Proc. Eleventh Euromicro Confer-
ence on Parallel, Distributed, and Network-Based Processing, pp. 101–108,
2003. ISBN: 0769518753.

[83] L. M. Kirousis, P. G. Spirakis, and P. Tsigas. Reading many variables
in one atomic operation: Solutions with linear or sublinear complexity.
In IEEE Trans. Parallel Distributed System, 5(7): 688–696, Piscataway, NJ,
USA, 1994, IEEE Press.

[84] M. R. Klugerman. Small-depth counting networks and related top-
ics. Technical Report MIT/LCS/TR-643, MIT Laboratory for Computer
Science, 1994.

Bibliography 489

[85] M. Klugerman and C. Greg Plaxton. Small-depth counting networks. In
STOC ’92: Proc. of the Twenty-fourth Annual ACM Symposium on Theory
of Computing, pp. 417–428, NY, USA, 1992, ACM Press.

[86] D. E. Knuth. The Art of Computer Programming: Second Ed. (Addison-
Wesley Series in Computer Science and Information). Boston, MA, USA,
1978 Addison-Wesley Longman Publishing Co., Inc.

[87] C. P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization of
multiprocessors with shared memory. ACM Transactions on Programming
Languages and Systems (TOPLAS), 10(4):579–601, 1988.

[88] V. Kumar. Concurrent operations on extendible hashing and its perfor-
mance. Communications of the ACM, 33(6):681–694, 1990.

[89] L. Lamport. A new solution of Dijkstra’s concurrent programming
problem. Communications of the ACM, 17(5):543–545, 1974.

[90] L. Lamport. Time, clocks, and the ordering of events. Communications of
the ACM, 21(7):558–565, July 1978.

[91] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on Computers,
C-28(9):690, September 1979.

[92] L. Lamport. Specifying concurrent program modules. ACM Transactions
on Programming Languages and Systems, 5(2):190–222, 1983.

[93] L. Lamport. Invited address: Solved problems, unsolved problems and
non-problems in concurrency. In Proc. of the Third Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 1–11, 1984, ACM Press.

[94] L. Lamport. The mutual exclusion problem—Part I: A theory of interpro-
cess communication. Journal of the ACM (JACM), 33(2):313–326, 1986,
ACM Press.

[95] L. Lamport. The mutual exclusion problem—Part II: Statement and solu-
tions. Journal of the ACM (JACM), 33(2):327–348, 1986.

[96] L. Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.,
5(1):1–11, 1987.

[97] B. Lampson and D. Redell. Experience with processes and monitors in
mesa. Communications of the ACM, 2(23):105–117, 1980.

[98] J. R. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool,
San Francisco, 2006.

[99] D. Lea. Java community process, JSR 166, concurrency utilities. http://
gee.cs.oswego.edu/dl/concurrency-interest/index.html, 2003.

[100] D. Lea. Concurrent hash map in JSR 166 concurrency utilities. http://
gee.cs.oswego.edu/dl/concurrency-interest/index.html. Dec 2007.

[101] D. Lea, Personal Communication, 2007.
[102] S.-J. Lee, M. Jeon, D. Kim, and A. Sohn. Partitioned parallel radix sort.

J. Parallel Distributed Computing, 62(4):656–668, 2002.
[103] C. Leiserson and H. Prokop. A minicourse on multithreaded program-

ming, Charles E. Leiserson and Herald Prokop. A minicourse on multi-
threaded programming, Massachusetts Institute of Technology, Available

490 Bibliography

on the Internet from http://theory.lcs.mit.edu/∼click, 1998.
citeseer.ist.psu.edu/leiserson98minicourse.html.

[104] Y. Lev, M. Herlihy, V. Luchangco, and N. Shavit. A Simple Optimistic
Skiplist Algorithm. Fourteenth Colloquium on structural information and
communication complexity (SIROCCO) 2007 pp. 124–138, June 5–8,
2007, Castiglioncello (LI), Italy.

[105] M. Li, J. Tromp, and P. M. B. Vitányi. How to share concurrent wait-free
variables. Journal of the ACM, 43(4):723–746, 1996.

[106] B.-H. Lim. Personal Communication, Cambridge, Massachusetts. 1995.

[107] W.-K. Lo and V. Hadzilacos. All of us are smarter than any of us: wait-free
hierarchies are not robust. In STOC ’97: Proc. of the Twenty-ninth Annual
ACM Symposium on Theory of Computing, pp. 579–588, NY, USA, 1997,
ACM Press.

[108] I. Lotan and N. Shavit. Skiplist-based concurrent priority queues. In Proc.
of the Fourteenth International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 263–268, Cancun, Mexico, 2000.

[109] M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. In F. P. Preparata, editor, Advances in
Computing Research, volume 4, pages 163–183. JAI Press, Greenwich, CT,
1987.

[110] V. Luchangco, D. Nussbaum, and N. Shavit. A Hierarchical CLH Queue
Lock. In Proc. of the European Conference on Parallel Computing (EuroPar
2006), pp. 801–810, Dresdan, Germany, 2006.

[111] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache coherent
multiprocessors. In Proc. of the Eighth International Symposium on Parallel
Processing (IPPS), pp. 165–171, April 1994. IEEE Computer Society, April
1994. Vancouver, British Columbia, Canada, NY, USA, 1987, ACM Press.

[112] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL ’05:
Proc. of the Thirty-second ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pp. 378–391, NY, USA, 2005, ACM Press.

[113] P. E. McKenney. Selecting locking primitives for parallel programming.
Communications of the ACM, 39(10):75–82, 1996.

[114] J. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Transactions on Computer
Systems, 9(1):21–65, 1991.

[115] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA ’02: Proc. of the Fourteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, pp. 73–82. Winnipeg, Manitoba,
Canada, NY, USA, 2002, ACM Press.

[116] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proc. of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing, pp. 267–275,
1996, ACM Press.

Bibliography 491

[117] J. Misra. Axioms for memory access in asynchronous hardware systems.
ACM Transactions on Programming Languages and Systems (TOPLAS),
8(1):142–153, 1986.

[118] M. Moir. Practical implementations of non-blocking synchronization
primitives. In PODC ’97: Proc. of the Sixteenth Annual ACM Symposium
on Principles of Distributed Computing, pp. 219–228, NY, USA, 1997, ACM
Press.

[119] M. Moir. Laziness pays! Using lazy synchronization mechanisms to
improve non-blocking constructions. In PODC ’00: Proc. of the Nine-
teenth Annual ACM Symposium on Principles of Distributed Computing,
pp. 61–70, NY, USA, 2000, ACM Press.

[120] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination to
implement scalable and lock-free fifo queues. In SPAA ’05: Proc. of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 253–262, NY, USA, 2005, ACM Press.

[121] M. Moir V. Marathe and N. Shavit. Composite abortable locks. In Proc.
of the 20th IEEE International Parallel & Distributed Processing Symposium
(IPDPS), pages 1–10, 2006.

[122] I. Newton, I. B. Cohen (Translator), and A. Whitman (Translator). The
Principia: Mathematical Principles of Natural Philosophy. University of
California Press, CA, USA, 1999.

[123] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144,
2004.

[124] C. H. Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM (JACM), 26(4):631–653, 1979.

[125] G. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115–116, June 1981.

[126] G. L. Peterson. Concurrent reading while writing. ACM Trans. Program.
Lang. Syst., 5(1):46–55, 1983.

[127] S. A. Plotkin. Sticky bits and universality of consensus. In PODC ’89: Proc.
of the Eighth Annual ACM Symposium on Principles of Distributed Comput-
ing, pp. 159–175, NY, USA, 1989, ACM Press.

[128] W. Pugh. Concurrent maintenance of skip lists. Technical Report CS-
TR-2222.1, Institute for Advanced Computer Studies, Department of
Computer Science, University of Maryland, 1989.

[129] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. ACM
Transactions on Database Systems, 33(6):668–676, 1990.

[130] C. Purcell and T. Harris. Non-blocking hashtables with open addressing.
Lecture Notes in Computer Science. Distributed Computing. In DISC,
Springer Berlin/Heidelberg, pp. 108–121, 2005.

[131] Z. Radović and E. Hagersten. Hierarchical Backoff Locks for Nonuni-
form Communication Architectures. In Ninth International Symposium
on High Performance Computer Architecture, pp. 241–252, Anaheim,
California, USA, February 2003.

492 Bibliography

[132] M. Raynal. Algorithms for Mutual Exclusion. The MIT Press, Cambridge,
MA, 1986.

[133] J. H. Reif and L. G. Valiant. A logarithmic time sort for linear size networks.
Journal of the ACM, 34(1):60–76, 1987.

[134] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing
scheme for task allocation in parallel machines. In Proc. of the Third Annual
ACM Symposium on Parallel Algorithms and Architectures, pp. 237–245, July
1991, ACM Press.

[135] M. Saks, N. Shavit, and H. Woll. Optimal time randomized consensus—
making resilient algorithms fast in practice. In SODA ’91: Proc. of the
Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 351–
362, Philadelphia, PA, USA, 1991. Society for Industrial and Applied
Mathematics.

[136] W. N. Scherer III, D. Lea, and M. L. Scott. Scalable synchronous queues. In
PPoPP ’06: Proc. of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 147–156, NY, USA, 2006, ACM
Press.

[137] W. N. Scherer III and M. L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC ’05: Proc. of the Twenty-
fourth Annual ACM Symposium on Principles of Distributed Computing,
pp. 240–248, NY, USA, 2005, ACM Press.

[138] M. L. Scott. Non-blocking timeout in scalable queue-based spin locks. In
PODC ’02: Proc. of the Twenty-first Annual Symposium on Principles of Dis-
tributed Computing, pp. 31–40, NY, USA, 2002, ACM Press.

[139] M. L. Scott and W. N. Scherer III. Scalable queue-based spin locks with
timeout. ACM SIGPLAN Notices, 36(7):44–52, 2001.

[140] M. Sendak. Where the Wild Things Are. Publisher: HarperCollins, NY, USA,
1988. ISBN: 0060254920.

[141] O. Shalev and N. Shavit. Split-ordered lists: lock-free extensible hash tables.
In Journal of the ACM, 53(3):379–405, NY, USA, 2006, ACM Press.

[142] N. Shavit and D. Touitou. Software transactional memory. In Distributed
Computing, Special Issue (10):99–116, 1997.

[143] N. Shavit and A. Zemach. Diffracting trees. ACM Trans. Comput. Syst.,
14(4):385–428, 1996.

[144] E. Shenk. The consensus hierarchy is not robust. In PODC ’97: Proc. of the
Sixteenth Annual ACM Symposium on Principles of Distributed Computing,
p. 279, NY, USA, 1997, ACM Press.

[145] R. K. Treiber. Systems programming: Coping with parallelism. Technical
Report RJ 5118, IBM Almaden Research Center, April 1986. San Jose, CA.

[146] A. Turing. On computable numbers, with an application to the
entscheidungs problem. Proc. Lond. Math. Soc, Historical document, 1937.

[147] J. D. Valois. Lock-free linked lists using compare-and-swap. In PODC ’95:
Proc. of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, pp. 214–222. Ottowa, Ontario, Canada, NY, USA, 1995, ACM
Press.

Bibliography 493

[148] P. Vitányi and B. Awerbuch. Atomic shared register access by asynchronous
hardware. In Twenty-seventh Annual Symposium on Foundations of Com-
puter Science, pp. 233–243, Los Angeles, CA, USA, October 1986, IEEE
Computer Society Press.

[149] W. E. Weihl. Local atomicity properties: modular concurrency control for
abstract data types. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 11(2):249–282, 1989.

[150] R. N. Wolfe. A protocol for wait-free, atomic, multi-reader shared
variables. In PODC ’87: Proc. of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, pp. 232–248, NY, USA, 1987,
ACM Press.

[151] P. Yew, N. Tzeng, and D. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. IEEE Transactions on Computers, C-36(4):388–395,
April 1987.

This page intentionally left blank

Index

A
ABA problem

basic scenario, 235

load-linked–store-conditional, 237

and memory reclamation, 233–237

Abort, memory transactions, 422

Abstract

BaseHashSet class, 301

concurrent Cuckoo hashing, 318

contention manager, 432

Abstraction map

concurrent reasoning, 199

LockFreeList class, 216

Abstract value, concurrent reasoning,

198

Acquires

CLHLock class, 154

CompositeLock class, 161

definition, 23

FineList class, 203

HCLHLock lock, 173

Java concepts, 456

locks, 178

MCSLock class, 156

Active thread

in software combining, 260

termination detection barrier, 405

Addressing

closed-address hash sets, 300–302

concurrent closed-addressing, 325

definitions, 300

hardware concepts, 473

open-addressed hash set, 316–318

Algorithms

Bakery lock, 31–33

bitonic sorting, 288–289

concurrent, 2, 15

Dynamic Software Transactional

Memory, 448

fast path, 43

Lock algorithm, 24, 37–40, 38

lock-based concurrent skiplist,

333–339

lock-free concurrent skiplist, 341–348

lock-free universal, 127

lock-free universal construction, 128

quicksort, 290

SkipList class, 349

Transactional Locking 2, 448

TTASLock, 147–149

wait-free universal construction, 131

Amdahl’s Law

definition, 13

in parallelization, 13–14

Announce event, wait-free universal

construction, 130–132

Anonymous inner class

Java thread concepts, 454

software transactional memory, 426

Anonymous method, C# concepts, 460

Antisymmetric, timestamps, 34

Array-based bounded priority queues,

implementation, 352–353

Array-based locks

implementation, 150–151

without false sharing, 152

Asynchronous

definition, 1

threads, 71

Atomic hardware step

compare-and-swap, 480

shared counter implementation, 5–6

Atomicity and transactions, 421–423

AtomicMarkableReference class

function, 234

function and methods, 213–215

AtomicMRSWRegister class,

implementation, 83

Atomic objects

implementation, 433–434

lock-based, 438–445

obstruction-free, 434–438

software transactional memory,

429–431

Atomic primitives, problems, 418–420

AtomicReference class

function, 236

unbounded lock-free queue, 231

Atomic register

for consensus problem, 103–105

definition, 73

first definition, 93

495

496 Index

Atomic register (continued)

history, 65

implementation considerations,

75–76

MRMW, 85–87

MRSW, 82–85

SRSW, 77–78, 81–82, 83

Atomic snapshots

construction, 93

correctness arguments, 90–93

definition, 87

and multiple assignment, 110

obstruction-free, 87–88

wait-free snapshot, 88–90

AtomicSRSWRegister class,

implementation, 83

AtomicStampedReference class

bounded work-stealing dequeue, 384

function, 234

Atomic step, 456

Auxiliary variables, wait-free universal

construction, 133–134

B
Backoff lock

contention manager, 432

hierarchical, 167–168

BackoffLock class

implementation, 148

problems, 149

Bakery lock

bounds, 39

in mutual exclusion, 31–33

as spin locks, 141

Balancer

counting networks, 270

operation, 271

sorting networks, 286–287

Balancer class, software bitonic

counting network, 275

Balancing, work, 389–392

Balancing network, construction,

271–272

Barriers

combining tree, 401–402

definition, 398

implementation, 398–399

sense-serving, 399–400

static tree, 402–404

supporting concepts, 397–398

survey, 408

BaseHashSet class

implementation, 300–301

methods, 302

thresholds, 301

Batching, definition, 478

Benevolent side effect, lock-free lists, 217

Bitonic class, implementation, 276

Bitonic counting network

basic concepts, 273–274

proof of correctness, 276–278

recursive structure, 274

sequential execution, 272

software implementation, 274–276

Bitonic sorting algorithm, design and

function, 288–289

Bivalence, protocol state, 102

Blocking

concurrent objects, 59

definition, 45, 141

in Java memory model, 62–63

locks, 178

Block network, implementation, 281

Boolean register

atomic SRSW, 81–82

definition, 72

MRSW, 77–78

safe MRSW, 78–79

safe SRSW, 86

Bottom wires

counting networks, 270

sorting networks, 286

Bouncer class

array layout, 44

implementation, 43

Bounded, pool, 223

BoundedDEQueue class, implementation,

383–385

Bounded partial queue

considerations and drawbacks,

228–229

implementation, 225–227

BoundedQueue class

C# constructs, 462–463

fields and constructor, 225

list node, 227

methods, 226–227

Bounded-range priority queue

array-based, 352–353

definition, 351

tree-based, 353–355

Bounded transactional queue,

implementation, 423

Bounded wait-free method, concurrent

objects, 59

Bounded work-stealing double-ended

queues

creator, 392

implementation, 383–386

Bucket

BaseHashSet class, 301

definition, 300

split-ordered hash set, 311

BucketList class, implementation,

312–313

Bucket threshold, BaseHashSet class,

301

Buffer, between producers and

consumers, 223

Bursty, producers, 223

Bus

cache coherence, 446

definition, 145

Bus controller, 472

Busy–waiting, definition, 141

C
Cache

definition, 146, 446

hardware concepts, 471, 473–474

Cache blocks, definition, 474

Cache coherence

as BackoffLock problem, 149

hardware concepts, 474–476

hardware transactional memory,

446–447

Cache-coherent NUMA, 474

Cache-conscious programming,

476–477, 481

Cache hit, definition, 146

Cache lines, definition, 474

Index 497

Cache miss, definition, 146

Callable object, definition, 371

Calls

atomic methods, 423

successful or unsuccessful, 196

Capacity

BaseHashSet class, 301

pool, 223

semaphore, 189

CAS, see Compare-and-swap (CAS)

instruction

Church-Turing Thesis, 71

Circular array, modulo,

unboundedDEQueue class, 46,

150, 387

Clean double collect, obstruction-free

snapshot, 88

CLHLock lock, creators, 174

CLH queue lock

fields and constructor, 151, 153

hierarchical, 168–172

lock acquisition and release, 154

methods, 153

Closed-address hash sets, basic concepts,

300–302

Closed addressing, definition, 300

Cluster id, hierarchical locks, 167

Coarse-grained hash set,

implementation, 302–303

Coarse-grained synchronization

definition, 195

implementations, 200–201

CoarseHashSet class, implementation,

302–303

CoarseList class, methods, 200–201

Collects

obstruction-free snapshot, 87–88

single-writer atomic snapshot class,

91

Collisions, hash sets, 300

Combining, software, 260–261

Combining phase, CombiningTree, 265

Combining status, definition, 261

Combining tree barrier

creators, 408

implementation, 401–402

CombiningTree class

combining status, 261–262

constructor, 262

disadvantages, 261

distribution phase, 267

execution phases, 263, 267

methods, 264

Node class, 265–267

performance, 269

precombining phase, 262

robustness, 269

status, 268

Combining trees, original idea, 292

Common2 register

definition, 117

RMW, 114–116

Communication, and mutual exclusion,

9–10

Comparator, comparison network, 286

compareAndSet() operation

hardware synchronization, 480

synchronization primitives, 116–117

Compare-and-swap (CAS) instruction,

hardware considerations, 480

Comparison network, definition, 286

CompositeFastPathLock class,

methods, 166

Composite lock

advantages, 159–160

fast-path, 165–167

CompositeLock class

execution, 164

fields, constructor, and methods, 160

methods, 161–163

properties, 165

QNode class, 161

Compositional, correctness property, 51

Compositionality, problems, 420–421

Compositional linearizability,

concurrent objects, 57–58

Concrete representation, concurrent

reasoning, 198

Concurrency

concurrent objects, 45–48

reasoning, 198–200

Concurrent algorithm

challenges, 15

definition, 2

Concurrent closed-addressing schemes,

creators, 325

Concurrent Cuckoo hashing, definition

and implementation, 318–322

Concurrent heap

overview, 357–358

structure and implementation,

358–363

Concurrent objects

compositional linearizability, 57–58

concurrency, 45–48

correctness, 45–48

dependent progress conditions,

60–61

formal definitions, 55–57

linearizability, 54–55, 57

nonblocking property, 58–59

progress conditions, 59–60

quiescent consistency, 49–51

sequential consistency, 51–54

sequential objects, 48–49

Concurrent priority queues,

implementation, 351–352

Concurrent program

definition, 2

synchronization universality

hierarchy, 126

Concurrent shared memory computing,

definition, 71

Concurrent skiplists, overview, 348

Concurrent timestamping, Lock class,

34

Condition field, bounded partial queues,

225

Conditions objects

interface, 180

interrupts, 179

LockedQueue class, 182

lost wakeups, 181–183

usage example, 179–180

Consensus numbers

definition, 100

interface and definitions, 100–101

states and valence, 101–103

498 Index

Consensus object

interface, 100

lock-free universal construction,

126–130

universality definition, 126

wait-free universal construction,

130–136

Consensus synchronization problem

atomic register solution, 103–105

Common2 registers, 114–116

consensus protocols, 106

definition, 100

FIFO queues, 106–109

Consenus protocols, generic, 106

Consistency, software transactional

memory, 428–429

Consumers

naive synchronous queue, 237

pools, 223

Contention

definition, 147

high and low, 147

LockFreeStack, 248

Contention manager

greedy and karma, 448

implementation, 433

software transactional memory,

431–433

Context switch, definition, 472

Convoying, in locking, 417

Coordination protocol (OR Protocol),

definition, 6

Copyable class, interface, 430

Correctness

bitonic counting network, 276–278

compositional, 51

concurrent objects, 45–48

Merger class, 277

Correctness arguments, atomic

snapshots, 90–93

Counters

definition, 22

quiescient consistency, 269–270

as shared counter implementation,

4–5

Counting, shared, 259–260

Counting networks

basic concepts, 270

bitonic, 272–278

components, 270–273

invention, 292

performance, 280–281

periodic, 278–280

pipelining, 280–281

Covering state, Lock algorithm, 38, 40

Critical-path length, parallelism,

376–377

Critical sections

as BackoffLock problem, 149

Java concepts, 456

in mutual exclusion, 22–24

C# construct concepts

creators, 466

monitors, 461–462

thread-local objects, 462–463

threads, 460–461

Cuckoo hashing

creators, 325

definition and implementation,

316–318

D
DAG, see Directed acyclic graph (DAG)

Data, and memory, 473

Data structure design

dual data structures, 239–241

SkipList class, 330

Deadlock

avoidance, 417–418

FineList class, 204

freedom from deadlock, 24

software transactional memory, 431

unbounded total queue, 230

Deadlock-freedom property

definition, 8

as dependent progress condition, 60

Filter lock, 31

Decision value, consensus numbers, 101

Delegate, C# concepts, 460

DEQueue, see Double-ended queue

(DEQueue)

Deschedule, threads, 472

DiffractingBalancer class,

implementation, 284

Diffracting trees

basic concept, 282

DiffractingBalancer, 284

implementation, 285

performance, 285

Prism, 283–284

Directed acyclic graph (DAG)

creators, 392

definition, 375

Fibonacci sequence, 375–376

steps, 380

Direct mapped cache, definition, 474

Direct-mapped caches, definition, 448

Dirty, definition, 478

Disjoint-access-parallelism

coining of term, 325

definition, 299

Dissemination barrier, creators, 408

Distributed coordination, overview,

291–292

Distribution phase, CombiningTree,

267

Doorway section, in Lock class, 31

Double-checked locking

in Java memory model, 61–62

and memory consistency, 479

Double-ended queue (DEQueue)

bounded work-stealing, 383–386, 392

unbounded work-stealing, 386–389,

392

work stealing, 381–389

Down state, balancers, 271

Dual data structures

definition, 239

implementation, 239–241

reservation, 238–239

Dynamic Software Transactional Memory

algorithm, creators, 448

E
Elimination, LockFreeStack, 248–249

Elimination array, implementation,

251–252, 255

EliminationBackoffStack class

basic concept, 249

efficiency, 255

elimination array, 251–254

Index 499

lock-free exchanger, 249–251

methods, 253

structure, 248

EventListener class, incorrect

example, 64

Events, in state machine, 21

Exclusive state, cache coherence, 446,

475–476

Executor service, definition, 371

Expected value, compareAndSet()
operation, 116, 480

Exponential backoff

implementation, 149

TTASLock algorithm, 147–149

Extensible hashing, definition, 300

F
Factory, Lock interface, 178

Fairness

in mutual exclusion, 31

pools, 224

Fair readers–writers lock

fields, 185

fields and public methods, 186

inner read lock, 186

inner write lock, 187

False sharing

abscence in ALock, 152

array-based locks, 151

occurrence, 476

Fault-tolerance, in mutual exclusioin, 9

Fence, definition, 479

Fibonacci sequence

definition, 375

directed acyclic graph, 375–376

FibTask class

implementation, 375

sub-DAG, 380

FIFO queue, lock-based, 45–48

Filter lock

in mutual exclusion, 28–31

as spin locks, 141

Final fields, in Java memory model,

63–64

Final state, consensus numbers, 101

FineGrainedHeap class

creators, 366

implementation, 358–361

overview, 357–358

structure, 362

Fine-grained synchronization

basic concepts, 201–202

definition, 195

FineList class

deadlock, 204

hand-over-hand locking, 204

lock acquisitions, 203

methods, 202–203

FIRST, CombiningTree, 264–265

First-come-first-served

Bakery lock algorithm, 31, 33

definition, 31

First-in-first-out (FIFO)

for consensus problem, 106–108

pool fairness, 224

via Pthreads, 466

quiescent consistency, 51

sequential objects, 48–49

FIRST status

CombiningTree, 268

definition, 261

Frames, definition, 397

Freedom from deadlock property, in

Lock algorithm, 24

Freedom from starvation, in Lock

algorithm, 24

Free list, for node recycling, 233–234

FreeObject class, structure, 436–438

Fully-associative caches, definition, 448,

474

Future interface, definition, 371

G
Ghost variables, see Auxiliary variables

Global queue, in HCLHLock queue, 168

Global state, definition, 37

Global threshold, BaseHashSet class,

301

Granularity, and cache, 474

Greedy

contention manager, 432

schedule, 379

Greedy contention manager, creators,

448

H
Hand-and-over-hand locking,

FineList class, 204

Handlers, software transactional

memory, 428

Hardware concepts

architectures, 477–479

basic considerations, 469–472

cache-conscious programming,

476–477

caches, 473–474

coherence, 474–476

interconnect, 472–473

memory, 473

processors and threads, 472

spinning, 476

synchronization instructions,

480–481

Hardware transactional memory (HTM)

cache coherence, 446–447

enhancements, 447–448

first proposal, 448

overview, 445–446

transactional cache coherence, 447

Hash function, definition, 300

Hashing, definition, 299

Hash sets

closed-address, 300–302

definition, 299–300

resizing, 305

HBOLock class, implementation, 168

HCLHLock queue

acquisition and release, 173

components, 168

fields and constructor, 169

global queue, 171

inner QNode class, 169

methods, 170, 172

Head, definition, 224

Hierarchical backoff lock,

implementation, 167–168

Hierarchical CLH queue lock, design,

168–172

Hierarchical locks, definition, 167

500 Index

High contention, definition, 147

Hit rate, and cache, 474

Hit ratio, and cache, 474

Hits, in cache, 474

Hold, locks, 178

Hot spot, definition, 259–260

HTM, see Hardware transactional

memory (HTM)

I
IDLE, CombiningTree, 264

Idle step, scheduler, 379

Inactive thread, termination detection

barrier, 405

Initial state, consensus numbers, 101

Inner classes

anonymous, 426

definition, 183

tree nodes, 402

Inner read lock

fair readers–writers lock, 187

simple readers–writers lock, 184

Inner write lock

fair readers–writers lock, 187

simple readers–writers lock, 185

In-place array sorting, function, 288

Instantaneous events, in mutual

exclusion, 22

Interconnect, hardware concepts, 471,

472–473

Interference

concurrent reasoning, 198

optimistic synchronization, 207

Interrupts

Conditions objects, 179

definition, 9

Invalid state, cache coherence, 446,

475–476

Invariants, concurrent reasoning, 198

Invocation events

concurrent objects, 56

lock-free universal algorithm, 127

and register space, 76

Irreflexive, timestamps, 34

Items

hash sets, 300

priority queue, 351

PrioritySkipList class, 363

set definition, 196

software transactional memory, 426

J
Java construct concepts

creator, 466

monitors, 454–458

thread-local objects, 458–459

threads, 453–454

yielding and sleeping, 458

Java memory model

basic principles, 61–62

final fields, 63–64

locks and synchronized blocks, 62–63

volatile fields, 63

Join

C# constructs, 460

Join, Java threads, 454

K
Karma contention manager

characteristics, 432

creators, 448

Kernel maps, function, 378

k-way set associative, caches, 474

L
Labels

Bakery lock algorithm, 32

timestamps as, 34

Last-in-first-out (LIFO), StackT class,

245

Latency, definition, 259

Layer network, implementation,

279–280

Layout, distributed coordination, 292

Lazy

PrioritySkipList class, 363

unbounded lock-free queue, 231–232

LazyList class

fields, 214

linearizability, 212

methods, 209–210

validation, 209, 211

LazySkipList class

creators, 348

implementation, 333–337, 339

overview, 331–333

Lazy synchronization

advantages, 213

basic concepts, 208–209

creators, 219

definition, 196

linearization, 211–212

methods, 209–210

Levels, in Filter lock, 28

Line, cache coherence, 446

Linearizability

applications, 45

concurrent objects, 54–55, 57

concurrent priority queues, 351

concurrent reasoning, 199

first definition, 93

LazyList class, 212

wait-free universal construction, 133

Linearization points

concurrent objects, 55

fine-grained synchronization, 204

LazyList class, 211

Linear speedup, parallelism, 377

Linked lists

coarse-grained synchronization,

200–201

concurrent reasoning, 198–200

early work, 219

fine-grained synchronization,

201–205

lazy synchronization, 208–213

list-based sets, 196–198

lock-free list, 213–218

optimistic synchronization, 205–208

overview, 195–196

List-based sets, basic concepts,

196–198

List nodes

bounded partial queue, 227

lock-free stack, 247

unbounded lock-free queue, 230

Liveness property, definition, 2

Load-linked–store-conditional (LL/SC)

and ABA problem, 237

hardware synchronization, 480

origins, 136

Index 501

Loads

definition, 37

Lock algorithm bounds, 37

in registers, 72

Locality, and cache, 474

Local spinning, definition, 147

Local state, definition, 37

Lock-based atomic object

consistency, 440–441

overview, 439–440

structure details, 441–445

Lock-based concurrent skiplist

algorithm, 333–339

overview, 331–333

Lock-based hash table, resizing, 305

Lock class

interface, 178–179

lower bounds, 37–40

for mutual exclusion, 141–144

timeout, 157

timestamping, 34

Lock coupling

definition, 202

invention, 219

LockedQueue class, with locks and

conditions, 182

Lock-free concurrent skiplist

algorithm, 341–348

overview, 339–341

Lock-free exchanger

basic function, 249

implementation, 250

Lock-free hash set

basic concept, 309

BucketList class, 312–313

implementation, 313–315

recursive initialization, 316

recursive split-ordering, 309–312

LockFreeHashSet class,

implementation, 313–315

LockFreeList class, methods, 217–219

Lock-free lists

abstraction maps, 216

AtomicMarkableReference,

213–215

basic concepts, 213–214

methods, 217–219

Window class, 216

Lock-free method

concurrent objects, 60

concurrent reasoning, 199

definition, 99

LockFreeQueue class

creators, 241

list node, 230

methods, 230–231, 419–420

LockFreeQueueRecycle class,

implementation, 236

LockFreeSkipList class

call structure, 340

creators, 348–349

implementation, 342–344, 346–347,

349

overview, 339

LockFreeStack class

creators, 255

elimination, 248–249

implementation, 246–247

structure, 246

Lock-free universal construction

algorithm, 128

execution, 129

generic sequential object, 126–127

Locking

double-checked, in Java memory

model, 61–62

execution, 47

hand-and-over-hand locking,

FineList class, 204

problems, 417–418

LockObject class, implementation, 23,

440–445

LockOne class, for mutual exclusion,

25–26

Lockout-freedom property

definition, 8–9

as dependent progress condition, 60

in Lock algorithm, 24

in producer–consumer problem,

10–11

Locks

acquires, 178

array-based locks, 150–152

backoff lock, 167–168

Bakery lock, 31–33, 39, 141

block, 178

C# constructs, 461

CLH queue lock, 151, 153–154,

168–172

composite lock, 159–160, 165–167

definition, 22

fair readers–writers lock, 186–187

Filter lock, 28–31, 141

hardware concepts, 469

hierarchical backoff lock, 167–168

hierarchical CLH queue lock,

168–172

hierarchical locks, 167

hold, 178

inner read lock, 184, 186

inner write lock, 185, 187

interface, 23

Java concepts, 456

in Java memory model, 62–63

lock-based atomic object, 439

MCS queue lock, 154–156

monitor locks, 178–179, 181, 189

Peterson lock, 27–28, 39, 142–143

queue locks, 149–159

readers–writers lock, 183–187

read lock, 183

reentrant lock, 187–189

releases, 178

simple readers–writers lock, 183–185

spin, 178

test-and-set locks, 144–146

write lock, 184

Lock striping, hash sets, 304

LockTwo class, for mutual exclusion,

26–27

Logical buckets, lock-free hash set, 309

Logical fields, obstruction-free atomic

object, 435

Logical removal

lazy synchronization, 196, 208

PrioritySkipList class, 363

Loser thread, Common2 register, 114

Lost-wakeup problem

Conditions objects, 182–185

example, 183

502 Index

Lost-wakeup problem (continued)

Java concepts, 458

Low contention, definition, 147

M
Main cache, hardware transactional

memory, 448

Main memory, hardware concepts, 471,

473

Matrix class, implementation, 372

Matrix multiplication, parallel, see

Parallel matrix multiplication

MatrixTask class, implementation,

373–374

MCSLock class, creators, 174

MCS queue lock

fields and constructor, 154–155

lock acquisition and release, 156

methods, 155

QNode, 155–156

Memory, hardware concepts,

471, 473

Memory barriers, definition, 53, 144,

479

Memory consistency models

relaxed, 478–479

survey, 481

Memory contention

definition, 474

and shared counting, 260

Memory fence, see Memory barriers

Memory locations, lower bounds,

37–40

Memory reclamation, and ABA

problem, 233–237

Merger class

correctness, 277

software bitonic counting network,

275

MERGER network, logical structure,

273

MESI protocol

Intel processors, 481

state transition examples, 475

Metalock, 174

Method calls

concurrent objects, 56

definition, 48

quiescent consistency, 49–50

and register space, 76

RMW registers, 112–113

Misses, in cache, 474

MMThread class, implementation,

370

Modified state, cache coherence, 446,

475–476

Monitor locks

definitions, 178–179

execution, 180–181

invention, 190

Monitors

creators, 466

as C# constructs, 461–462

definition, 177, 182

as Java constructs, 454–458

MRMW, see Multi-reader

multiple-writer (MRMW)

MRSW, see Multi-reader single-writer

(MRSW)

multiCompareAndSet, pseudocode, 419

Multi-core architecture, definition,

477–479

Multicores, programming challenges, 1

Multiple assignment objects, basic

concept, 110

Multiprogrammed environment, work

distribution, 381–382

Multi-reader multiple-writer (MRMW)

atomic register, 85–87

construction, 93

Multi-reader single-writer (MRSW)

atomic register, 82–85

Boolean register, 77–78

construction, 93

and register space, 73

regular Boolean register, 78–79

regular M-valued register, 79–81

safe registers, 78

write order, 76

Multi-threaded architecture, definition,

477–479

Mutexes, in Pthreads, 464–465

Mutual exclusion

Bakery lock algorithm, 31–33

bounded timestamps, 33–36

and communication, 9–10

in concurrent programming, 15

critical sections, 22–24

definition, 6

fairness, 31

fast path algorithm, 43

Filter lock, 28–31

Java concepts, 456

LockOne class, 25–26

LockTwo class, 26–27

number of locations, 37–40

Peterson Lock, 27–28

in producer–consumer problem,

10–11

properties, 8–9

real-world approach, 141–144

and register space, 73

time, 21–22

M-valued register

definition, 72

regular MRSW, 79–81

N
Naive synchronous queue

basic concepts, 237

implementation, 238

New version field, obstruction-free

atomic object, 435

Node class

CombiningTree, 262, 265–267

implementation, 127

LazySkipList class, 333, 338

StaticTreeBarrier class, 405

tree barriers, 401–402

Nodes

and free lists, 233–234

list-based, 197–198, 227, 230, 247

NUMA architecture, 472

predecessor nodes, 171

regular nodes, 197

sentinel nodes, 197, 225, 311

Nonblocking methods, definition, 45

Nonblocking progress, concurrent

objects, 59

Index 503

Nonblocking property, concurrent

objects, 58–59

Nonblocking synchronization,

definition, 196

Non-transactional cache, hardware

transactional memory, 448

Nonuniform memory access (NUMA)

architecture

basic concepts, 472–473

spinning, 476

North wires

counting networks, 270

periodic network, 279

Notify, Java concepts, 457

NUMA, see Nonuniform memory access

(NUMA) architecture

O
Object, definition, 48

Obstruction-free atomic object

basis, 448

consistency, 436–437

operation details, 437

overview, 435

Obstruction-free property, as dependent

progress condition, 60

Obstruction-free snapshot, collects,

87–88

OddEven sorting network, design, 288

Old version field, obstruction-free

atomic object, 435

Open-addressed hash set, Cuckoo

hashing, 316–318

Open addressing, definition, 300

Operator, definition, 455

Operator thread, definition, 455

OptimisticList class

implementation, 205

methods, 206–207

validation, 208

Optimistic synchronization

basic concepts, 205

class implementations, 205–207

definition, 195

validation, 207

Owner field, obstruction-free atomic

object, 435

P
Parallelism

analysis, 375–378

definition, 1

and shared counting, 260

Parallelization, realities, 13–14

Parallel matrix multiplication

MatrixTask class, 373–374

overview, 369–370

Parallel programming, challenges, 15

Parallel sorting, basic concepts, 286

Partial method

creators, 241

pool, 224

Partial order, concurrent objects, 56

Passive thread, in software combining,

260

Pending

invocation, concurrent objects, 56

method calls, 50

Performance

CombiningTree, 269

counting networks, 280–281

diffracting trees, 285

hardware concepts, 471

Periodic counting networks

implementation, 281

software implementation, 279–280

structure, 278–279

Persistent communication, and mutual

exclusion, 9

Peterson lock

bounds, 39

implementation, 142–143

in mutual exclusion, 27–28

PhasedCuckooHashSet class,

implementation, 318–321

Phases

computation organization, 397

concurrent Cuckoo hashing, 318

Physical removal

lazy synchronization, 196, 208

PrioritySkipList class, 363

Pipelining, counting networks, 280–281

Pools

definition, 223

parallel matrix multiplication, 370

queues, 224

quiescently-consistent, 269–270

and shared counting, 259

termination detection barrier, 408

varieties, 223–224

work stealing, 406–407

Population-oblivious method,

concurrent objects, 59

Postcondition, sequential objects, 48

Precedence graph, timestamps, 34

Precedence relation, in mutual

exclusion, 22

Precombining phase, CombiningTree,

262

Precondition, sequential objects, 48

Predecessor nodes, HCLHLock queue, 172

Predecessor task, directed acyclic graph,

375

Priority

contention manager, 432

in priority queue, 351

Priority inversion, in locking, 417

Priority queues, definition, 351

PrioritySkipList class

implementation, 364

overview, 363

structure, 365

Prism
diffracting trees, 283

distributed coordination, 291

implementation, 284

Probabilistic data structure, SkipList
class, 330

Probe sets, concurrent Cuckoo hashing,

318

Processors, hardware concepts, 471, 472

Producer–consumer problem, example,

10–11

Producer–consumer property, in

producer–consumer problem,

10–11

Producers

naive synchronous queue, 237

pools, 223

Program correctness (or Correctness),

definition, 2

504 Index

Program order, definition, 52

Program performance, definition, 2

Progress conditions

concurrent objects, 59–60

dependent, concurrent objects, 60–61

Progress property, concurrent objects,

45

Protocol state

bivalence and univalence, 102

consensus numbers, 101

Pthreads

basic functionality, 464

implementation, 467

invention, 466

thread-local storage, 465–466

Q
QNode class

CLH queue locks, 153

CompositeLock class, 161

HCLHLock queue, 169

MCS queue lock, 155–156

SynchronousDualQueue class, 239

timeout lock, 157–158

Queue locks

array-based, 150–151

CLH, 151–154

MCS, 154–157

overview, 149–150

with timeouts, 157–159

Queues

array-based bounded priority

queues, 352–353

BoundedDEQueue class, 383–385

bounded partial queue, 225–229

BoundedQueue class, 225–227

bounded-range priority queue,

351–353

bounded transactional queue, 423

CLH queue lock, 151, 153–154,

168–172

concurrent priority queues, 351–352

FIFO queue, 45–48

global queue, 168

HCLHLock queue, 168–173

hierarchical CLH queue lock,

168–172

LockedQueue class, 182

lock-free queue, 241

LockFreeQueue class, 230–231,

419–420

LockFreeQueueRecycle class, 236

locking queue, 47

MCS queue lock, 154–156

naive synchronous queue, 237–238

pool fairness, 224

priority queues, 351

SimpleTree priority queues,

353–354

skiplist-based unbounded priority

queues, 363–366

SkipQueue class, 365–366

SynchronousDualQueue class,

239–240

synchronous queue, 237–238, 241

SynchronousQueue class, 238

tree-based bounded priority queues,

353–355

unboundedDEQueue class, 386–390

unbounded heap-based priority

queues, 357–363

unbounded lock-free queue, 230–233

UnboundedQueue class, 229

unbounded-range priority queue,

351

unbounded total queue, 229–230

unbounded transactional queue, 422

Quicksort algorithm, for sample sorting,

290

Quiescent consistency

applications, 45

concurrent objects, 49–51

concurrent priority queues, 351–352

pools and counters, 269–270

vs. sequential consistency, 52–53

shared counters, 270

R
Radix children, tree nodes, 402

Reachable, concurrent reasoning, 199

Readers–writers lock

basic concepts, 183

fair lock, 185–187

simple lock, 184–185

Readers–writers problem, example,

11–12

Read lock, definition, 183

Read–modify–write (RMW) registers

Common2 registers, 114–116

methods, 112–113

shared counter implementation, 5–6

source, 117

Read set, lock-based atomic object, 439

Realistic multiprocessor scheduling,

definitions and operation,

378–380

Real-time order, vs. sequential

consistency, 53

Rebalancing, definition, 329

Recursive initialization, lock-free hash

set, 316

Recursive split-ordering, lock-free hash

set, 309–312

Reentrant

BaseHashSet class, 301

Conditions objects, 180

Reentrant lock

definition, 187

methods, 188

Reference, BoundedDEQueue class, 384

Refinable concurrent Cuckoo hash set,

324–325

RefinableCuckooHashSet class,

324–325

RefinableHashSet class

implementation, 306–308

resizing, 305

RegBoolMRSWRegister class,

implementation, 79

Registers

construction overview, 77–78

definition, 50, 71, 72

and mutual exclusion, 73

safe, 74–75

3D implementation space, 76

write order, 76

RegMRSWRegister class,

implementation, 80

Regular nodes, list-based sets, 197

Regular registers

Boolean MRSW, 78–79

Index 505

conditions, 77

definition, 75

first definition, 93

implementation considerations,

75–76

M-valued MRSW register,

79–81

safe, 75

RelaxedLock, 174

Releases

CLHLock class, 154

definition, 23

HCLHLock lock, 173

Java concepts, 456

locks, 178

MCSLock class, 156

Reordering, and memory consistency,

479

Replacement policy, and cache, 474

Representation invariant, concurrent

reasoning, 198–199

Reservation object, dual data structures,

239

Response events

concurrent objects, 56

lock-free universal algorithm, 127

and register space, 76

RESULT status

CombiningTree, 267

definition, 262

Reverse tree barrier, implementation,

412–414

RMW, see Read–modify–write (RMW)

registers

Robustness, CombiningTree, 269

ROOT status

CombiningTree, 265–266

definition, 262

Runnable object, Java thread concepts,

453–454

S
Safe

registers, 74–75

regular register, 75

SafeBoolMRSWRegister class,

implementation, 78

Safe registers

first definition, 93

MRSW, 78

SRSW Boolean, 86

Safety property, definition, 2

Sample sorting

original ideas, 293

phases, 290–291

Saturation, counting networks, 280

Scan-and-label operations, timestamps,

34

Scheduler

function, 378

greedy, 379

idle step, 379

SECOND status

CombiningTree, 268

definition, 261

Semaphores, definition and

implementation, 189

SenseBarrier class, constructor, 400

Sense-serving barrier, implementation,

399–400

Sentinel nodes

bounded partial queues, 225

list-based sets, 197

split-ordered hash set, 311

Sequential bottleneck

LockFreeStack, 248

and shared counting, 259

Sequential consistency

applications, 45

concurrent objects, 51–54

vs. quiescent consistency, 52–53

vs. real-time order, 53

SequentialHeap class, implementation,

356–357

Sequential objects

generic definition, 127

specifications, 48–49

SequentialRegister class,

implementation, 73

Sequential skiplists, definition and

design, 329–331

Sequential specification

concurrent objects, 56

definition, 49

Sequential timestamping, Lock class, 34

Serializable, transactional memory, 421

Sets

definition, 196

list-based, 196–198

Shared concurrent objects, and register

space, 72

Shared counter

approach, 259–260

implementation, 4–5

quiescently consistent, 270

Shared-memory multiprocessors,

programming challenges, 1

Shared objects, and synchronization,

3–6

Shared state, cache coherence, 446,

475–476

Sharing, definition, 474

SimpleBarrier class, implementation,

399

SimpleLinear class

creators, 366

implementation, 352

Simple readers–writers lock

basic concepts, 184–185

fields and public methods, 184

inner read lock, 184

inner write lock, 185

SimpleTree priority queues

implementation, 354

structure, 353

Single-reader, single-writer (SRSW)

atomic register, 77–78, 81–83

register space, 73

safe, 74

write order, 76

Single-writer atomic snapshot class

collect method, 91

update and scan methods, 91

SkipList class

algorithm, 349

levels, 330

Skiplists

invention, 348

LazySkipList class, 331–332

software transactional memory,

424–425

unbounded priority queues, 363–366

506 Index

SkipListSet class, implementation,

425

SkipNode class, interface, 425

SkipQueue class

characteristics, 365–366

creators, 366

Sleeping, as Java construct, 458

Slot, array-based locks, 150

SMP, see Symmetric multiprocessing

(SMP) architecture

Snapshots

construction, 93

correctness arguments, 90–93

definition, 87

and multiple assignment, 110

obstruction-free, 87–88

wait-free snapshot, 88–90

Snooping

cache coherence, 446

interconnects, 472

Soft real-time application, definition,

397

Software combining, basic concepts,

260–261

Software implementation

bitonic network classes, 274–276

bitonic network proof of correctness,

276–278

periodic counting network, 279–280

Software transactional memory (STM)

atomic object implementation,

433–434

atomic objects, 429–431

contention manager, 431–433

dependent or independent, 431

first proposal, 448

lock-based atomic objects, 438–445

obstruction-free atomic object,

434–438

overview, 424–427

skip lists, 424–425

transactions and transactional

threads, 427–428

TThread class, 426

zombies and consistency, 428–429

Sorting

bitonic algorithm, 288–289

parallel, 286

Sorting networks

designing, 287–288

OddEven design, 288

structure, 286–287

South wires

counting networks, 270

periodic network, 279

Spectulativeness, memory transactions,

422

Spin-locks

definition, 141, 178

TAS-based, 146–147

Spinning

definition, 141

hardware concepts, 476

Splitters, sample sorting, 290

SRSW, see Single-reader, single-writer

(SRSW)

SSkipNode class, implementation,

430

Stack class, definition, 245

Stamp

ABA problem, 234

BoundedDEQueue class, 384

lock-based atomic object, 439

Stamped snapshot class,

implementation, 90

Start

C# constructs, 460

Java constructs, 454

Starvation, in Lock object, 24

Starvation-freedom property

definition, 8–9

as dependent progress condition, 60

in Lock algorithm, 24

in producer–consumer problem,

10–11

State

consensus numbers, 101–103

objects, 48

State machine, definition, 21

Static tree barrier, implementation,

402–404

StaticTreeBarrier class, Node class,

405

Step property

balancing networks, 272

bitonic counting network, 276

scheduler, 379

Tree class, 282

Steps, directed acyclic graph, 380

STM, see Software transactional

memory (STM)

Store buffer, see Write buffer

definition, 478

Stores

definition, 37

Lock algorithm bounds, 37

in registers, 72

Striped concurrent Cuckoo hashing,

322–324

StripedCuckooHashSet class, 322–323

Striped hash set

basic concepts, 303–304

implementation, 304

lock striping, 304

StripedHashSet class

implementation, 304

lock-based hash table, 305

resizing, 306

Subhistory, concurrent objects, 56

Successful call, definition, 196

Successor state, consensus numbers, 101

Symmetric multiprocessing (SMP)

spinning, 476

Symmetric multiprocessing (SMP)

architecture

basic concepts, 472–473

Synchronization

coarse-grained, 195

coarse-grained hash sets, 302

fine-grained, 195

hardware instructions, 480–481

instructions, memory barriers, 144

in Java memory model, 62

lazy, 196

nonblocking, 196

optimisitc, 195

and shared objects, 3–6

Synchronization primitives

atomic registers, 103–105

Common2 RMW registers, 114–116

Index 507

compareAndSet() operation,

116–117

consensus numbers, 100–103

consensus protocols, 106

definition, 99–100

FIFO queues, 106–109

multiple assignment objects, 110–112

read–modify–write operations,

112–114

Synchronized blocks, in Java memory

model, 62–63

SynchronousDualQueue class

method and constructor, 240

queue node, 239

Synchronous method, pool, 224

Synchronous queue

basic concepts, 237

creators, 241

implementation, 238

SynchronousQueue class,

implementation, 238

T
Table

Cuckoo hashing, 316

definition, 299–300

Tail, definition, 224

Tasks, work distribution, 381–382

TASLock class

implementation, 144–145

performance, 146

Tentativeness, memory transactions, 422

Termination detection barrier

creators, 408

implementation, 404–408

Test-and-set locks

basic principles, 144

hardware concepts, 469

real-world processing, 145–146

Test-and-test-and-set

definition, 144–145

hardware concepts, 469

Thief, work stealing, 381–382

Thinlock, 174

Thread-local objects

as C# constructs, 462–463

as Java constructs, 458–459

Thread-local storage, Pthreads, 465–466

Thread-local variables, array-based

locks, 150

Threads

as C# constructs, 460–461

definition, 71

hardware concepts, 472

as Java constructs, 453–454

Throughput, definition, 259

Time, in mutual exclusion, 21–22

Timeouts, in queue lock, 157–159

Timestamps

Bakery lock labels, 34

definition, 72

overview, 33

TOLock class

fields and constructor, 158

methods, 158

and timed-out nodes, 159

Top wires

counting networks, 270

sorting networks, 286

Total method, pool, 223

Total order, concurrent objects, 56

TourBarrier class

implementation, 410

information flow, 411

Tournament tree barrier, creators, 408

Transactional cache, hardware

transactional memory, 448

Transactional cache coherence, hardware

transactional memory, 447

Transactional Locking 2 algorithm,

creators, 448

Transactional memory

atomic primitive problems,

418–420

compositionality problems,

420–421

definition, 3

locking problems, 417–418

overview, 417

transactions and atomicity, 421–423

Transactional threads, and transactions,

427–428

Transactions

and atomicity, 421–423

definition, 421

and transactional threads, 427–428

Transient communication, and mutual

exclusion, 9

TreeBarrier class

combining tree, 403

implementation, 401–402

Tree-based bounded priority queues,

structure and implementation,

353–355

Tree class, structure, 282

TSkipNode class, implementation, 434

TTASLock class

creators, 172

exponential backoff, 147–149

implementation, 145, 470

on shared-bus, 146–147

performance, 146

TThread class, software transactional

memory, 426

U
unboundedDEQueue class,

implementation, 386–390

Unbounded heap-based priority queues

concurrent heap, 357–363

definitions, 355

sequential heap, 356–357

Unbounded lock-free queue

implementation, 230–231

lazy, 231–232

step-wise operation, 232–233

Unbounded lock-free stack

definition, 245

implementation, 246–247

structure, 246

Unbounded pool, characteristics, 223

UnboundedQueue class, methods, 229

Unbounded-range priority queue,

definition, 351

Unbounded total queue

deadlock, 230

implementation, 229–230

Unbounded transactional queue,

implementation, 422

508 Index

Unbounded work-stealing

double-ended queues

creator, 392

implementation, 386–389

Univalence, protocol state, 102

Universality, definition, 126

Unlocks

CLHLock class, 154

definition, 22, 23

hardware concepts, 469

HCLHLock lock, 173

interface, 23

Java concepts, 456–457

locks, 178

MCSLock class, 156

Unsuccessful call, definition, 196

Update value, compareAndSet()
operation, 116, 480

Up state, balancers, 271

V
Valence, consensus numbers, 101–103

Validation

LazyList class, 209, 211

optimistic synchronization, 207

transaction handlers, 428

Version, lock-based atomic object, 439

Version clock, lock-based atomic object,

439, 441

Victim

unbounded work-stealing DEQueue,

391

work stealing, 381

Victim cache, hardware transactional

memory, 448

Volatile fields, in Java memory model, 63

W
Wait-free method

concurrent objects, 59

concurrent reasoning, 199

definition, 99

history, 65

LazySkipList class, 335

LockFreeList class, 219

MRMW atomic register, 86

and register space, 73

Wait-free snapshot, construction, 88–90

Wait-free universal construction

algorithm, 131

auxiliary variables, 133–134

execution, 132

helping pattern, 130–131

linearizability, 133

modification considerations, 133

node announcement, 130–132

proof, 135–136

Waiting

Java concepts, 456

in Lock class, 31

in mutual exclusion, 15

in readers–writers problem, 12

Well-formed thread, requirements, 23

Window class, lock-free lists, 216

Winner thread, Common2 register, 114

Work, parallelism, 376

Work distribution

balancing, 389–392

bounded work-stealing dequeue,

383–386

overview, 381

unbounded work-stealing DEQueue,

386–389

work stealing, 381

yielding and multiprogramming,

381–382

Work sharing, creators, 392

WorkSharingThread class,

implementation, 391

Work stealing

characteristics, 381

creators, 392

executor pool, 406–407

Work-stealing double-ended queues

bounded, 383–386

overview, 382–383

unbounded, 386–389

WorkStealingThread class,

implementation, 382

Write absorption, definition,

478

Write buffer

definition, 478

shared memory writes, 143

Write lock, definition, 183

Write order

and register space, 76

SRSW and MRSW, 76

Write set, lock-based atomic object, 439

Y
Yielding

as Java construct concepts, 458

work distribution, 381–382

Z
Zombies, software transactional

memory, 428–429

