SR CEBOORK
OF PARALLEL COMPUTING

e a ML DONGARRA AV FOSTER LAiIRly FOX

FLLAN GROPP AN KENNEDY VoA TORCZION MDY WHITE

SOURCEBOOK
OF PARALLEL
COMPUTING

JACK DONGARRA

University of Tennessee

IAN FOSTER

Argonne National Laboratory

GEOFFREY FOX

Indiana University

WILLIAM GROPP

Argonne National Laboratory

KEN KENNEDY

Rice University

LINDA TORCZON

Rice University

ANDY WHITE

Los Alamos National Laboratory

®
M ¢

MORGAN KAUFMANN PUBLISHERS

INT OF ELSEVIER SCIENCE

oooooooooooooooooooooooooo
ooooooooooooooooooooooooooooooo
oooooooooooooooooo

Senior Editor Denise Penrose

Publishing Services Manager Edward Wade
Production Editor Howard Severson

Editorial Coordinator Emilia Thiuri

Cover Design Frances Baca

Text Design Detta Penna

Illustration Dartmouth Publishing, Inc.
Composition Windfall Software, using ZZIgX
Copyeditor Barbara Kohl

Proofreader Carol Leyba

Indexer Steve Rath

Printer 'The Maple-Vail Book Manufacturing Group

Cover credit: Paul Klee, Green church steeple at center, 1917. © Nimatallah/Art Resource, NY.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a
claim, the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mKkp.com

© 2003 by by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 21

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopying, or otherwise—without the
prior written permission of the publisher.

Library of Congress Control Number: 2002107244
ISBN: 1-55860-871-0

This book is printed on acid-free paper.

PREFACE

During its 11-year lifetime, the Center for Research on Parallel Computation (CRPC),
a National Science Foundation (NSF) Science and Technology Center, was focused on
research and technology development that would be needed to make parallel com-
puting “truly usable.” Over that period, a remarkable number of applications were
converted to work on scalable parallel computers, and an equally remarkable num-
ber of software tools were developed to assist in that process. These developments
emerged both from within CRPC and from the community at large. Although the
tools and strategies developed and refined during this period are widely known in the
community of professional parallel application developers, to our knowledge there
exists no compendium of material describing these advances in a form suitable for
use by a newcomer to the field. This volume attempts to fill that gap by bringing
together a collection of works covering both applications and the technologies used
to convert them to run on scalable parallel systems.

The principal goal of this book is to make it easy for newcomers to the field
of parallel computing to understand the technologies available and how to apply
them. The book is intended for students and practitioners of technical computing
who need to understand both the promise and practice of high-performance parallel
computation. It assumes that the reader has a good background in either applications
or computational science, but not in parallel computation. Thus, the book includes
a significant amount of tutorial material.

We also intend that the book serve as a useful reference for the practicing parallel
application developer. Thus, it contains in-depth treatments of specific technologies
and methods that are useful in parallel computing. These methods are easily accessi-
ble by starting from the application overview sections or by reading the technology
overview chapters provided at the beginning of each major part.

xiii

Xiv

Preface

We hope that you find this book useful and that it helps you exploit the knowledge
gained over the past fifteen years, while avoiding some of the pitfalls that we
ourselves encountered in gaining that knowledge.

Overview of Content

The book is organized into five major parts. Part I, entitled Parallelism, is a tutorial
introduction to the field of parallel computers and computing, with separate chapters
providing a broad overview of the field, an in-depth treatment of the architecture of
modern parallel computer systems, and a survey of the issues that should be taken
into consideration when programming them.

Part II, Applications, is designed to help new developers understand how high-
performance computation can be applied in a variety of specific application areas. It
consists of an overview of the process by which one identifies appropriate software
and algorithms and the issues involved in implementation. This treatment is com-
plemented by chapters containing in-depth studies in the areas of computational
fluid dynamics, environmental engineering and energy, and computational chem-
istry, and by a separate chapter with 11 vignettes that briefly describe successful uses
of parallel systems in other areas. These have been chosen to cover a broad range of
both scientific areas and numerical approaches. The applications are cross-referenced
to the material in later chapters that cover the needed software technologies and
algorithms in depth.

Part II1, Software Technologies, discusses the progress made on a variety of techno-
logical strategies for application development, including message-passing libraries;
run-time libraries for parallel computing, such as class libraries for HPC++, languages
like HPF, Co-Array Fortran, and HPC++; performance analysis and tuning tools such
as Pablo; and high-level programming systems. The goal of this part is to provide a
survey of progress with hints to the user that will help in selecting the right tech-
nology for use in a given application.

Part IV, Enabling Technologies and Algorithms, treats numerical algorithms and cov-
ers parallel numerical algorithms for a variety of problems in science and engineer-
ing, including linear algebra, continuous and discrete optimization, and simulation.
Each chapter covers a different algorithmic area. The goal here is to serve as a resource
for the application developer seeking good algorithms for difficult problems.

The final part of the book is devoted to a summary of the issues and a discussion
of important future problems for the high-performance science and engineering
community, including distributed computing in a grid environment.

Using This Book

This book can be used in several different ways. The newcomer to parallel compu-
tation seeking a tutorial introduction should read all of Part I, along with Chapters
4,9, 16, 17, and 25. Chapters 4, 9, and 17 provide overviews of Parts II, III, and IV,

Preface

XV

respectively, so these may provide hints on other chapters that may be of interest to
the reader.

On the other hand, the developer wishing to understand technologies that can
help with a specific application area should start with Part II, which covers a number
of applications along with the strategies used to parallelize them. Once the developer
has identified a similar application, he or she can follow the cross-references to find
in-depth treatments of the useful technologies in Parts III and IV.

Finally, the parallel computing professional can use the book as a reference. The
introductory chapters at the beginning of each major part provide excellent guides
to the material in the rest of the part.

The book should serve as a resource for users of systems that span the range from
small desktop SMPs and PC clusters to high-end supercomputers costing $100 mil-
lion or more. It focuses on software technologies, along with the large-scale appli-
cations enabled by them. In each area, the text contains a general discussion of the
state of the field followed by detailed descriptions of key technologies or methods.
In some cases, such as MPI for message passing, this is the dominant approach. In
others, such as the discussion of problem-solving environments, the authors choose
systems representing key concepts in an emerging area.

Supplementary Online Material

Look for links to the Sourcebook of Parallel Computing website at www.mkp.com,
where you can find numerous supplementary materials. In addition to updates and
corrections discovered after publication, the reader will find links to servers (such as
Netlib) from which software tools and libraries can be downloaded.

Acknowledgments

This book was inspired by the research carried out in the high-performance paral-
lel computing commmunity during the lifetime of the CRPC, an NSF Science and
Technology Center that included Rice University, California Institute of Technology,
Argonne National Laboratory, Los Alamos National Laboratory, Syracuse University,
the University of Tennessee-Knoxville, and the University of Texas—-Austin. With-
out the original grant from the NSF that established CRPC, the book would not
have been possible. In addition, the support for research provided through other
grants and contracts from NSF, the Department of Energy, the Department of De-
fense (especially the Defense Advanced Research Projects Agency), and the National
Aeronautics and Space Administration has been critical to the advances described
in this volume. Substantive additional support for research and technology devel-
opment was provided by the CRPC home institutions, and the home institutions
of many of the chapter authors. In particular, matching funds for CRPC from Rice
University were used to provide technical support for the completion of this volume
after the NSF funding for CRPC ended.

XVi

Preface

The editors would also like to thank the people who helped us finish this volume.
Teresa Parks improved the entire manuscript with her editorial and technical writing
skills. Sarah Gonzales provided technical support and prepared the graphics for pub-
lication. Gail Pieper carefully and knowledgeably edited some of the chapters. Keith
Cooper consulted with us on the deeper mysteries of I?TgX. Ellen Butler and Shiliang
Chang collected, collated, merged, and corrected the bibliographic entries for this
volume. Penny Anderson managed a number of production tasks on the Rice side,
including assembling author biographies and collecting copyright transfer forms and
permissions for use of copyrighted materials. Ellen Butler, Kathryn O’Brien, Penny
Anderson, and Theresa Chatman arranged the meetings and teleconferences, han-
dled the correspondence, managed the many contact lists, and lent hands wherever
they were needed. All these people deserve our thanks; without their efforts, this
volume would not have been finished.

Denise Penrose, our editor at Morgan Kaufmann, provided valuable advice on
the preparation of the manuscript and arranged for independent reviews of the
manuscript that were very helpful. Emilia Thiuri provided editorial support and
extensive guidance as the final manuscript neared completion. Howard Severson,
the production editor, did a superb job of bringing the book to completion on a
tight schedule and managed to keep his sense of humor throughout the process.
The production staff, including the copyeditor Barbara Kohl, the proofreader Carol
Leyba, and the indexer Steve Rath, were tireless in their efforts to bring out a high-
quality book on time. We are also grateful to those who contributed to the overall
appearance of the book: Detta Penna for text design, Frances Baca for cover design,
Dartmouth Publishing for illustration, and Windfall Software for composition. We
especially appreciate the compositor’s efforts to incorporate the substantive number
of changes we made late in the production cycle. Finally, the reviewers provided
many intelligent and helpful comments on the book that significantly affected its
structure, content, and quality.

To all of these people, and to the authors of individual chapters in this text, we
extend our heartfelt thanks.

Part | ParalleliSm ..o,

INtrodUCTIONceveci e
Parallel Computing Hardwarecccccceeveeeveennnnnnn.
What Have We Learned from Applications?
Software and Algorithms ...,
Toward a Science of Parallel Computation...............

Parallel Computer Architectures
Uniprocessor Architecture............ocovvvviiiieevveiineneene,
The CPU .o
MEMOIY ...
I/O and Networking.........ccccveeeieiieiiiiieeeeeiee e,
Design Tradeoffsccooveviiiiiiiii e
Parallel ArchiteCturescccccceeiv e,
Memory Parallelism........cccccoooovvviiiiiiiiiiee e,
INEEICONNECTES ...vvvvviiiie e
CPU Parallelismcccooovviiiiiiiiiieeeen,
I/O and Networking for Parallel Processors.........
Support for Programming Models...........c............
Parallel Architecture Design Tradeoffs................
Future Directions for Parallel Architectures..............
CONCIUSION ...

Parallel Programming Considerations
Architectural Considerationscoooevvvvvineeeieennnns
Shared MemOrycouiiiiiiiiii e
Distributed Memorycccccevveiviiiiiieeeeecee e,
Hybrid Systemscooiiiiiiiiii e
Memory Hierarchycccceviiiiiiiieiiiine e
Decomposing Programs for Parallelism....................
Identi.cation of Parallelism..........ccccccoooiiiiiiiinnn.
Decomposition Strategycccevveevveviiineeeeeeeinnnnn.
Programming Modelsccccccieiiiiiiiiiiin e,
Implementation Stylescccooooiiiiiiii e,

A Simple Exampleccoooviiiiiiiiien
Enhancing Parallel Performance..............ccccccce....
Scalability and Load Balancecccccocevennn...
Pipeline Parallelismcccccoooiiiiiiiiiiie,

Regular versus Irregular Problems......................
Memory-Hierarchy Management...............cccccceee..
Uniprocessor Memory-Hierarchy Management...
Multiprocessor Memory Hierarchies
Parallel Debugging.......ccccoooviiiiiiiiie e
Performance Analysis and Tuningc.ccceveeeeen.
Parallel INput/OUtpULcooviiiiiieie e
CONCIUSION ...
Further Readingccoooevviiiiiiii e

Part Il Applications.......cccoooeieeiiiiiiiie e,

General Application ISSUEScccoeevvvvieerennnnnn.
Application Characteristics in a Simple Example
Communication Structure in Jacobi s Method for
P0iSSON S EQUALIONcvviviiiiiiiiie e
Communication Overhead for More General
Update StEeNCIISooviviiiiiii e
Applications as Basic Complex Systems
Time-Stepped and Event-Driven Simulations
Temporal Structure of Applications...............cccceee.
Summary of Parallelization of Basic Complex
SYSTEIMS et
Meta-Problems ...,
CONCIUSION ...

Parallel Computing in Computational Fluid

DYNAMICS ...
Introduction to Computational Fluid Dynamics.........
Basic Equations of Fluid Dynamicsc........
Physical Regimes and Dimensionless
Variables........cooo i
The Role of High-Performance Computing
Incompressible FIOWS.........ccoooiiiiiiieeiie e,
Semi-discrete Formulation............ccccccveiviiiiiiinnnnn.
Spectral Element Methodscccceviiiiiviiiinnnnnn.
Basic Operationsccoovevvveiiiiii e
Global Matrix Operations..........ccccceeevevvieeeeiineennnns
Data StrUCIUIES.....cceviiieiieeeei e

Solution Techniquesccevvviiiiiiiieiii e,
Adaptive Mesh Re.nementcccccceeevvviiiennenee,
Implementation for Parallel Architectures............
An Example The Cylinder Wake...........ccccccce....
Compressible FIOWScccoiiiiiiiiiii i,
Governing Equations of Motionccceeec.
Numerical Methods for Hyperbolic
CoNservation LawsScoevvieeeeeiiieeeeiiiiiceeee e
An Application: The Richtmyer Meshkov
INStADIlILY ...ccvveie e
Adaptive Mesh Re.nementcccccooeevvviinennnnee,
CONCIUSION ...

Parallel Computing in Environment and

ENEIgY .o
Subsurface-Flow Modeling.........ccccceevvieviiiiiiiieeeeens
IPARS MOtIivationccooviiviiiiiiieiiceiiie e
IPARS DeSCriptioncuviieiiiiiinieeeeeeiie e
IPARS and Grid Computing by NetSolve.................
Integrating IPARS into NetSolvec.....co.ee....
Client-Side Web-Browser Interface
Tracking and Interactive Simulation in IPARS
An Interactive Computational Collaboration:
DISCOVER ...,
Integrating IPARS with DISCOVER.....................
Surface-Water Simulationccccceeeviiiiiiiiiiineeieenns
A Water Quality Model: CE-QUAL-ICM................
A Parallel Water-Quality Model:
PCE-QUAL-ICM ..o
Parallel Algorithm ...,
A Coupled Simulation of Flow and Transport with
ADR ...
The Active Data Repositoryccooeevveevviieennennns
Implementationccccceeei i,
CONCIUSION ...

Parallel Computational Chemistry: An

Overview of NWChemcooooiiiiiinnnn,
Molecular Quantum Chemistry..........ccccceeeeveeeeeennnnnn.

The NWChem Architectureooovvvviiniivveiiineenn.
NWChem Parallel Computing Support........cc...........
The Global Array ToolKit.............ccoeeeviiiiiiiiinee,
Parallel Linear Algebra: PelGS...........ccoooevvennnnnin.
NWChem Chemistry Modules............ccccceeveevvvennnnnnn.
Hartree Fock Self-Consistent Field......................
Resolution of the Identity Second-Order,
Many-Body Perturbation Theory..........cccccceeeeens
NWChem s Place in the Computational
Chemistry CommuNityoooovveiiiiiieieeeiee e
A Larger Perspective: Common Features of
Computational Chemistry Algorithms.......................
CONCIUSION ...

Application OVEIVIEWS...........covvevveeiiiiiieereeiiinn
Numerical (General) Relativitycccccceeevieveennnnnnn.
Current SItUALIONoooeeiiiiiiiiiiii e,
Numerical Simulations in Lattice Quantum
ChromodynamicCscoiviiiiiiiiiie e
Lattice QCD Simulation Setup.......cccccovveevevvnnnnnnn.
Computational Requirementsccceeveeeennnnn..
Implementation Considerations..............cccccee......
Recent Developments and Future Prospects......
Ocean Modelingcooevvviiiiiiiie e
Surface-Pressure Formulation of the
Barotropic Modec.ceeiiiiiiiiii e,
Free-Surface Formulation...........c.cccoooovvviiiiinneee,
Pressure Averagingc.ueeveeeeeeriinieeeeeninnneeeeen
Latitudinal Scaling of Horizontal Diffusion
Code Designed for Parallel Computers...............
General Orthogonal Coordinates and the
Displaced-Pole Grid........cccccooovviiiiiiiiicieiee e,
High-Resolution Simulations Enabled by POP
Simulations of Earthquakescovviiiiiiiiennnnnnn.
Typical Computational Problems...........ccc...........
Computational Resource Requirements..............
Cosmological Structure Formation...........................
The Problem to be Solved.........cccooooiiiiiiiiiiiiinnnn,

Computational ISSUEScccvviiviiiiiiiiiineeeeeeiiinnnnn
Parallel Unigrid Code: Kronoscccoeeevevvvnnnnnn.
Parallel AMR Code: ENzOo........c.ccovvviiviiiiiceiinn,
Parallelization of ENZOccooevviiiiiiiiiceeeee
Performancecccccveiii i
Future Work ...
Computational Electromagneticscccccceveevvennnnn.
Asymptotic Methodsccccoovveiiiiiiiiee
Frequency-Domain Methodscccceeeeeeiines
Time-Domain Methodscccoeveiiiiien,
Hybrid Methods ..o
State of the Art.......oiiii
Parallel Algorithms in Data Miningcccoeeeveeeee,
Parallel Algorithms for Discovering
ASSOCIAtIONScvvviicieiie e
Parallel Algorithms for Induction of
Decision-Tree Classi.erscccccveevieevveiiiineeenn,
State of the Art.......oiiiii
High-Performance Computing in Signal and
IMage ProCeSSINGvveeiiiiiiiiieeeeeiiie e e e e e
Examples of HPC Use in Signal and Image
PrOCESSING ...ciiieieiie e
State of the Ao
Deterministic Monte Carlo Methods and
Parallelism.........cccooooii
Motivation for Using Quasi-Random Numbers
Methods of Quasi-Random Number
GeneratioNc.ceeeviii e
A Fundamental Problem with Quasi-Random
NUMDEIS .o
State-of-the-Art Quasi-Random Number
GENEIATONSt
A Parallel Quasi Monte Carlo Application............
State of the At
Quasi Real Time Microtomography Experiments
at Photon SOUrces........ccoooviiiiiiii e

The Computational Processing Pipeline

Framework..........ooovviiiiiii e 259
Scienti.c Challenges..........cccoooeviiiiiiiiiii e 260
Bene.ts of Real-Time X-Ray Microtomography
EXPeriments......ccoooovvviiii e 263
Future WOrkcooooeiiiiii e 265
WebHLA-Based Meta-Computing Environment
for Forces Modeling and Simulation......................... 265
DoD Modeling and Simulation 266
Forces Modeling and Simulation 266
High-Level Architectureccoooovvvviiiiieevvennnnnnn. 267
WEDBHLA ... 268
Example WebHLA Application:
Parallel/Meta-Computing CMSccoeeevivinnnnnn. 272
NEXE STEPS . vveiiiiieee e 278
Computational Structure of Applications.................. 280
Applications from This BoOKccccceeeeeeeeennn, 280
Applications fromcccoooviiiiiiiin 284
X451 284
Applications fromccceiiiiiiiiii e 287
CONCIUSION ... 290
Part lll Software Technologies........ccccccceeeeennnn.e. 291
Software Technologiesccccocovvviiiiiiiiiinecennnnnn. 293
Selecting a Parallel Program Technology 294
Parallel Programming Modelscceeeee, 295
Parallel Programming Technologies.................... 297
DecCiSion RUIES.........oooiiiiiiiiiieeeei e 308
Achieving Correct and Ef.cient Execution 308
Dealing with Nondeterminism-.........cccccoeeevvvvvnnnnnn. 309
Performance Modelingcccccoooeeviiiiiie e, 309
CONCIUSION ... 310
Clusters and DSMcoooiiiiiiiiiiiiiiceee e 310
GrIOS e 310
Ultra-Scale COMpUtersccccooevviieeeiiiieeeiiieeees 311
Programming Productivitycccoeevveiiiinienennnns 311

Further Reading........cccouviiiiiiiiiiiiii e 312

Message Passing and Threads 313

Message-Passing Programming Model 314
The Message Passing Interface Standard 315
Parallel Virtual Machine.........ccccccoovviiiiiiie, 322
Extensions to the Message Passing Interface..... 322
State of the Art........ooiiii e 323

Multithreaded Programming.........ccccceevvevvvviiinieeeennnns 323
POSIX Threadscooeuviiiiiiiieiiii e 325
OPENMP ..o 327

CONCIUSION ... 329

Parallel /O ..., 331

Parallel I/O Infrastructurecccoevvvvviviivniinnnneenn. 333
Basic Disk Architecture.........ccccoovvviiiiiiiniieieeinnnnn. 333
Parallel I/O Architecture...........cccooeeevviiiieeeiiineeeen, 334
File SYStemMSoiiiiieie e 335
The APl Problem ... 336
[/O LIDrariescoooiieeiiii e 338
Language-Based Parallel 1/Occcccoeeevvinnnnnnnn. 339

Overview Of MPI-1O ..., 339
Simple MPI-IO Examplecccccoeiiiiiiiiiiiiieeeees 340
Main Features of MPI-IOcccooiiiiiiiiiiiiiiiiiis 342
Noncontiguous Accesses in MPI-10 343
MPI-10 Implementationsccooevvveviviieeeeeeeinnnnn. 343

Parallel I/O Optimizations...........cccooeevvvviiiiieeeeeeiin, 344
Data SIEVINGcevvviieiieiic e 344
Collective /O ... 346
Hints and Adaptive File-System Policies.............. 347

How Can Users Achieve High I/O Performance? 348
General Guidelines.........cocooviiieiiiiiceiee e 348
Achieving High Performance with MPI-IO 349

CONCIUSION ... 355

Languages and Compilerscccccceevevinieeennnnee, 357

Automatic Parallelizationcccoooevviiiiiiieiiiinnnnnn. 359

Data-Parallel Programming in High Performance

FOMtran ... 361

Shared-Memory Parallel Programming in
OPENMP ... 366

Single-Program, Multiple-Data Programming in

Co- Array FOItrancoovveiiiiieeeein e 371
Supporting Technologiesccoeovvviiieviiiiieiiiieeeens 377
Programming Support TOOIS..........ccevevvvviieeereennnn 377
LiDrares 378
Future Trends.......coooiiiii e 378
CONCIUSION ... 379
Further Readingccoooovvviiiiiiiiiice e, 380
Parallel Object-Oriented Libraries...................... 383
Object-Oriented Parallel Librariesccccccoeeeeeenn. 384
ADSEraction...........oovviiiiiiii 384
Parallelismccoooiiii e, 386
Encapsulation.............cccccviiiii i 387
Generic Programmingcc.oceevveeeveiiieeeevieeeennnnn. 388
A POOMA Example........coovvviiiiiiiieiiiieeeeeei 389
Object-Oriented Parallel Programming in Java........ 391
Multithreaded Computation in C++ceeeeeen. 396
The Execution Model ..., 397
Thread and Synchronization..............cccccceeeeeeeenn 398
Remote Function Calls, Global Pointers, and
JaVa RMI ... 401
Component-Based Software Design...........ccccc....... 403
The DOE Common Component Architecture 404
CONCIUSION ... 406
Problem-Solving Environments...............ccccevee.. 409
NetSolve: Network-Enabled Solversccco...... 411
The NetSolve Philosophyccoooovviiiiiiieiiiiin. 412
NetSolve Infrastructure.........cccceeveeiieiiiinneeeeceiinnnn. 412
Some Applications of NetSolvec...ccceuuneeeenn. 416
Current Developments and Future Research...... 417
WebFlow-Object Web Computing..........ccoeiiiennnnn.n. 418
WebFlow Architecturecccoooeviiieiiiineeeennnnn, 421
WebFlow Applicationscccccceeeieevviiiiee e, 424
WEDPDELADccoooiiiiiiieeeeie e 429
The WebPDELab Server........cccoooeeviiiiiiinennnnnn. 429
WebPDELab Security ISSUEScccvevvviieieeeennns 437

WebPDELab Features and Issues 438

Other Grid-Computing Environments...........ccc......... 440

Meta-Computing Systemscceeveevveviiiiieeneenns 440
Seamless Access and Application Integration..... 441
CONCIUSION ... 442

Tools for Performance Tuning and Debugging .. 443
Correctness and Performance Monitoring Basics.... 444

Pro.ling and Program-Counter Sampling............. 445
Event Countingcccoovvviiiiiiii e 446
Interval TIMINGovoviiiiii e 448
Event Tracingcooveeiviiiiiiie e 448
Control BreakpointS..........cccooevevviiieiiiieeeciie e, 450
Measurement and Debugging Implementation
Challengesooiiiiiiii 451
Clocks and TimiNgcccoevviiieiiiiic e, 451
Event Orders and TiMeccccevvevieiiiiineeeeceiiinnn, 451
Deep Compiler Integrationcccccceeeeeeveeiinneeenn, 453
A Motivating Example..........cccoooiiiiiin 453
Performance Modeling and Prediction 455
Software Tool Interfaces and Usability..................... 456
Tool Scalabilityccoooeviiiiiii e, 457
User Expectations and Recommendations 457
Software Tool Examplescccooeevvviiiiiiieicciiiceeee, 459
Jumpshot Event Visualization..................ccceee 459
SvPablo Source Code Correlation....................... 460
Thinking Machines Prismccccccveiivevvviiinnnnnn. 462
Etnus TotalVIEW.ooovieiiiiciei e 465
Challenges and Open Problemscccccceeviiieenns 466
CONCIUSION ... 466
Further Readingccoooevviiiiiiiii e 467
The 2-D Poisson Problem..............cccoeiieienn, 469
The Mathematical Model.............cccoeeiiiiiiiiiiineneens 469
A Simple AIgorithm ..o 470
Parallel Solution of Poisson s Equation 470
Message Passing and the Distributed-Memory
MOdEl ... 470

The Single Name-Space, Distributed-Memory
MOAEI ... 472

The Shared-Memory Model.............coovvviiiiiiinnenns 475

COMMENTS ..o 476
Adding Global Operationsccccocevviiieviiineeeeinnnn. 477
Collective Operations in MPIcccccovevvviiiinnnnn. 477
Reductions in HPF ... 478
Reductions in OpenMPccccoiiviiiiieieiiie e 478
CONCIUSIONeceii e 480

Part IV Enabling Technologies and

Algorithms ..., 481
Reusable Software and Algorithms.................... 483
Templates: Design Patterns for Parallel Software ... 483
Communicators and Data Structure Neutrality......... 484
Standard Libraries and Componentscccccc........ 485
Load Balancing and Grid Generation 485
Mesh Generationcovvevveeiiiinieeeeeiiene e 486
Software for Scalable Solution of PDEs 486
Parallel Continuous Optimization 486
Automatic Differentiationccceevviviiiiiiinniieeiinnnnn. 486
Templates and Numerical Linear Algebra................ 487
CONCIUSION ... 489
Graph Partitioning for High-Performance
Scienti . ¢ SIMUIAtioNScoovvviiiiiiiceeee, 491
Modeling Mesh-Based Computations as Graphs..... 493
(0] 1] 010] (] o = NS 495
Way Partitioning via Recursive Bisection 495
Static Graph-Partitioning Techniques 495
Geometric Techniquesccoooovvviiiiiieeeeeiienee, 496
Combinatorial Techniques.........ccccoecvvviieeveiieeenn, 501
Spectral Methods..........coovvviiiiiiiiic 506
Multilevel Schemes..........cccoviiiiiis 509
Combined Schemesccviiiiiiiiiiiiinn e, 513
Qualitative Comparison of Graph Partitioning
SChEMES.....coii 513
Load Balancing of Adaptive Computations 516
Scratch-Remap Repartitionersccccceeeeeeeeeens 518

Diffusion-Based Repartitioners...........ccccceevvvvnnnnn. 522

Parallel Graph Partitioningcccccveiiviiiiiiiiinneene, 525
Multiconstraint, Multiobjective Graph Partitioning 526
A Generalized Formulation for Graph

Partitioninguovviiiiiiiiie e 531
CONCIUSION ... 538
Limitations of the Graph-Partitioning Problem
Formulation...........coooeeiiii e 538
Other Application Modeling Limitations 539
Architecture Modeling Limitations........................ 539
Functionality of Available Graph Partitioning
PaCKagES ... o e eeeiiiie e 540
Mesh Generationcooevvviiiiiiieeeeeeee 543
Mesh-Generation Strategies and Techniques.......... 544
Cartesian MeShes.........cooevviiiiiiiiiiii i, 544
Structured MeShescoeviiiiiiiiii e 544
Unstructured Meshesccoeiiiiiiiiiiiiicinnn, 547
Hybrid/Generalized Meshesccccoeveevieien, 549
Meshless Methods............ccoeeeviiiiiiiii e, 550
Mesh-Generation Process and Geometry
Preparation.........cooooviii i 550
Adaptive Mesh Generation..........cccoeevveeviiieeeeeeennnnnn. 552
Structured Mesh Adaptationccccceeeeevevvnnnnnnn. 552
Generalized Mesh Adaptationcccccceevenee.. 555
Parallel Mesh Generation............cccooeevviiiiiiiieeeennnn. 560
Mesh SOftwareeeeiiiiiiiii e, 561
Mesh Con.gurationsSccceieeviiiiiiviiie e, 564
Mesh Web SiteS ... 567
The Pacing Obstacle: Geometry/Mesh
GENETALION ... 569
Desiderata........ccoeveviiiii i 571
CONCIUSION ... 572
Templates and Numerical Linear Algebra.......... 575
Dense Linear Algebra Algorithmsccccce 576
Loop Rearrangingccccooevvviieiiiiiiieciiice e 577
Uses of LU Factorization in Science and
ENGINEEIING .oovviiieeieee e 577

Block Algorithms and Their Derivation 578

The In.uence of Computer Architecture on

Performance..........coooiii 580
Discussion of Architectural Features.................... 580
Target ArchiteCturesccoeeveevveiiiiii e, 582

Dense Linear Algebra Libraries.........cccccccovievvvinnnnn.n. 583
The BLAS as the Key to Portability 583
Overview of Dense Linear Algebra Libraries....... 587
Available Softwarecccciiiiiiiiiiiiiiii 589

Sparse Linear Algebra Methods............ccccceeeens 590
Origin of Sparse Linear Systems.............cccevvenn... 590
Basic Elements in Sparse Linear Algebra
MEthOdSeiiieiee e 591

Direct Solution MethodsScccveiiiiiiiiiiiieeeeeeei, 591
Matrix Orderingsccuuviieeereeiiineeeeeeeicie e eeeennans 592
Use of Level-3 BLAS Kernelsccccceeveeveviinnnnnn. 594
Available Softwarecccciiiiiiiii 594

Iterative Solution Methods.............ccoovveiiiiiiiiiiinnn. 596
Stationary Iterative Methods...........ccccocevveiennnnnnn. 596
Krylov Space Methods..........cccccceeviiiiiiiiiiiieeeeeeens 596
Preconditioners...........uuvceiiiiiiee e 598
Libraries and Standards in Sparse Methods 600
Available Softwareccccocviiiiiiii 602

Sparse Eigenvalue Problems.........ccccccooviiiiiiiienne, 603
Algorithms and Software for Large Eigenvalue
Problems ... 603

.. 603
Addltlonal Available Software and Future
DT =Tox 1o o 618

CONCIUSION ... 619
Future Research Directions in Dense
Algorithms ..o 619

Software for the Scalable Solution of Partial
Differential EQUaAtiONSccoeeviiiieiiiieecieeeeenee, 621

PDE Background...........cccooeveiiiiiiiiiiiie e, 622

Challenges in Parallel PDE Computations............... 623
Software Complexity.........ccccvvveiieereeiiiineeeeeeeiinnnn 624

Data Distribution and ACCESSvevevveiieieiiinannn, 624

Portability, Algorithms, and Data Redistribution .. 626

Parallel Solution Strategiesccccccveeeeeeeeevinneenn, 627
PETSc Approach to Parallel Software for PDEs....... 628
Sample ApplicationsScccceeiiiiiieiiiine e, 629
Mathematical Formulationcccevviiiiiiinnnnn. 632
Composability and Interoperability 639
Performance ISSUES.........ccocevviiieiiiii e, 640
Software for PDES.......ccoooviiiiiiiiiiiiii e, 645
CONCIUSION ... 647
Parallel Continuous Optimization...........c........... 649
Local Optimization..........cccooeeviiiiiiin e, 651
Global Optimizationcoevvviiieeiieeicie e 653
Protein FOoldiNgcoovvviiiiiiiic e, 655
Cluster SImulationcccoovviiiiiiiniiic e 656
Distance GEOMEetrY.......ccceevviiiiiiieiiiiiieeeeeeiie e 656
Stochastic Global Optimization..............cccccceeeee. 657
Effective-Energy Simulated Annealing 657
Global Continuationccccoeeeeiieeeiiieeeeee e, 658
Direct Search Methods............cccccoeiiiiiiiiiiiiiiiiiii, 659
The Surrogate Management Framework............. 661
Asynchronous Parallel Search 662
Optimization of Linked Subsystems............cc........... 663
Variable and Constraint Distribution......................... 666
Variable Distributioncccoooiiiiiiiiiinee, 667
Constraint Distributionciiiiiiiieeeeeeee, 668
CONCIUSION ... 669
Path Following in Scientific Computing and Its
Implementation in AUTO........ccccooivviiiiiviiieneeees 671
Local Continuationeeeeiiiiniiiiiiiieeiiiiiiciee e 673
Global Continuation and Degree Theory.................. 675
Folds and Bifurcations............ccccoeeeeeviiieiiiiie e 677
Practical Path Following..........ccccceoveeviiiiiiicieeii, 679
Branch Switching at Bifurcations.............cccccccoeeuen... 683
Computational Examples: AUTOcccoovviiiiiinnnnnn, 686
Bursting Oscillationscccocovviiiiiiiiiieicie e, 688
Some Navier Stokes FIOWSceiiviiiiiiinnnnnn. 690

Kolmogorov FIOWScooooviviiiiiiiiiece e 691

Parallel AUTO ... 694

Parallel Implementationcvvviiiiieevieinnnnnn. 695
CONCIUSION ... 699
Automatic Differentiation..............cccceeeveveiineeenns 701
Overview of Automatic Differentiation 703
How Automatic Differentiation Works................... 704
When Automatic Differentiation Works................ 706
Automatic-Differentiation Implementation
TeChNIQUES.......i e 707
AD via Operator Overloadingccccceeeeeeeeennnn 708
AD via Source-to-Source Transformation............ 708
Automatic-Differentiation Software.............cccccee.... 709
ADOL-C ..ot 709
AIfOr 3.0 oo 710
Automatic Differentiation of Message-Passing
Parallel Codes..........uuuviiiiiiiiieiiee e, 711
ACtiVity ANalYSIS.......coviviiiiieiiii e 711
Differentiation of Communication Operations...... 711
Differentiation of Reduction Operations............... 714
Advanced Use of Automatic Differentiation.............. 714
Computing Sparse Jacobian Matrices with
KNOWN SPArSity.....cccccovviviiiiieeiiiiiie e ee e 714
Computing Sparse Jacobian Matrices with
UNKNOWN SParsity........covveeveeeviinieeieeiiiin e 716
Strip-Mining of Derivative Computations 716
Exploiting Coarse-Grained Chain Rule
ASSOCIALIVILY ..o 717
Checkpointing for the Reverse Mode................... 717
CONCIUSION ... 719
V CoNCIUSION ..o Vv
Wrap-Up and Signposts to the Future 723
Computational RESOUICESccevvvvviiieerieiiiiieeeeeeans 723
APPlICAtIONSccviici 724
SOMWAIE ... 725
Templates, Algorithms, and Technologies............... 727

SIGNPOSIES ..oviiciei e 727

REFERENCES ...,

INDEX

ABOUT THE AUTHORS. ...,

- = > ©

Chapter 1

Parallelism

INTRODUCTION

Chapter 2

Jack Dongarra, University of Tenneesee Ken Kennedy,
Rice University © Andy White, Los Alamos National Laboratory

PARALLEL COMPUTER ARCHITECTURES

Chapter 3

William Gropp, Argonne National Laboratory « Rick Stevens,
Argonne National Laboratory © Charlie Catlett,
Argonne National Laboratory

PARALLEL PROGRAMMING CONSIDERATIONS

Ken Kennedy, Rice University * Jack Dongarra,
University of Tennessee « Geoffrey Fox, Indiana University
William Gropp, Argonne National Laboratory

Dan Reed, University of Illinois at Urbana-Champaign

X m -4 W »>» I N

Introduction

Jack Dongarra * Ken Kennedy -
Andy White

“Nothing you can't spell will ever work.”
—Will Rogers

Parallel computing is more than just a strategy for achieving high performance—
it is a compelling vision for how computation can seamlessly scale from a single
processor to virtually limitless computing power. This vision is decades old, but it
was not until the late 1980s that it seemed within our grasp. However, the road to
scalable parallelism has been a rocky one and, as of the writing of this book, parallel
computing cannot be viewed as an unqualified success.

True, parallel computing has made it possible for the peak speeds of high-end
supercomputers to grow at a rate that exceeded Moore’s Law, which says that pro-
cessor performance doubles roughly every 18 months. Unfortunately, the scaling of
application performance has not matched the scaling of peak speed, and the pro-
gramming burden for these machines continues to be heavy. This is particularly
problematic because the vision of seamless scalability cannot be achieved without
having the applications scale automatically as the number of processors increases.
However, for this to happen, the applications have to be programmed to be able to
exploit parallelism in the most efficient possible way. Thus, the responsibility for
achieving the vision of scalable parallelism falls on the application developer.

The Center for Research on Parallel Computation (CRPC) was founded in 1989
with the goal of making parallel programming easy enough so that it would be
accessible to ordinary scientists. To do this, the Center conducted research on
software and algorithms that could form the underpinnings of an infrastructure for
parallel programming. The result of much of this research was captured in software
systems and published algorithms, so that it could be widely used in the scientific
community. However, the published work has never been collected into a single
resource and, even if it had been, it would not incorporate the broader work of the
parallel-computing research community.

1.1

Chapter 1 Introduction

This book is an attempt to fill that gap. It represents the collected knowledge of
and experience with parallel computing from a broad collection of leading parallel
computing researchers, both within and outside of the CRPC. It attempts to provide
both tutorial material and more detailed documentation of advanced strategies
produced by research over the last 2 decades.

In the remainder of this chapter we delve more deeply into three key aspects of
parallel computation—hardware, applications, and software—to provide a founda-
tion and motivation for the material that will be elaborated later in the book. We
begin with a discussion of the progress in parallel computing hardware. This is fol-
lowed by a discussion of what we have learned from the many application efforts
that were focused on exploitation of parallelism. Finally, we briefly discuss the state
of parallel computing software and the prospects for such software in the future. We
conclude with some thoughts about how close we are to a true science of parallel
computation.

Parallel Computing Hardware

In the last 50 years, the field of scientific computing has undergone rapid change—
we have experienced a remarkable turnover of vendors, architectures, technologies,
and systems usage. Despite all these changes, the long-term evolution of perfor-
mance seems to be steady and continuous, following the famous Moore’s Law rather
closely. In Figure 1.1, we plot the peak performance over the last 5 decades of comput-
ers that could have been called “supercomputers.” This chart shows clearly how well
Moore’s Law has held over almost the complete life span of modern computing—we
see an increase in performance averaging two orders of magnitude every decade.

In the second half of the 1970s, the introduction of vector computer systems
marked the beginning of modern supercomputing. These systems offered a perfor-
mance advantage of at least one order of magnitude over conventional systems of
that time. Raw performance was the main, if not the only, selling point for supercom-
puters of this variety. However, in the first half of the 1980s the integration of vector
systems into conventional computing environments became more important. Only
those manufacturers who provided standard programming environments, operating
systems, and key applications were successful in getting the industrial customers
who became essential for survival in the marketplace. Performance was increased
primarily by improved chip technologies and by producing shared-memory multi-
processor systems.

Fostered by several government programs, scalable parallel computing using
distributed memory became the focus of interest in the late 1980s. Overcoming the
hardware scalability limitations of shared memory was the main goal of these new
systems. The increase of performance of standard microprocessors after the RISC
revolution, together with the cost advantage of large-scale parallelism, formed the
basis for the “attack of the killer micros” [143]. The transition from ECL to CMOS
chip technology and the usage of “off-the-shelf” microprocessors instead of custom
processors for massively parallel systems was the consequence.

1.1

Earth simulator_#
ASCI Red
1 TFlop/s |-
TMC CM-5
TMC CM-2
1 GFlop/s | ® Cray 2
Cray X-MP
Cray 1
CDC 7600
1 MFlop/s |- CDC 6600 IBM 360/195
IBM 7090 &
1 KFlop/s Le"UNIVAC 1
€EDSAC 1

Parallel Computing Hardware 5

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002

Figure 1.1 Moore’s Law and peak performance of various computers over time.

In the early 1990s, while the multiprocessor vector systems reached their widest
distribution, a new generation of massively parallel processor (MPP) systems came on
the market, claiming to equal or even surpass the performance of vector multiproces-
sors. To provide a more reliable basis for statistics on high-performance computers,
the Top500 [287] list was begun. This report lists the sites that have the 500 most
powerful installed computer systems. The best LINPACK benchmark performance
[282] achieved is used as a performance measure to rank the computers. The Top500
list has been updated twice a year since June 1993. In the first Top500 list in June
1993, there were already 156 MPP and single-instruction multiple-data (SIMD) sys-
tems present (31% of the total 500 systems).

The year 1995 saw remarkable changes in the distribution of the systems in
the Top500 according to customer type (academic sites, research labs, industrial/
commercial users, vendor installations, and confidential sites). Until June 1995, the
trend in the Top500 data was a steady decrease of industrial customers, matched by
an increase in the number of government-funded research sites. This trend reflects
the influence of governmental high-performance computing (HPC) programs that
made it possible for research sites to buy parallel systems, especially systems with
distributed memory. Industry was understandably reluctant to follow this path,
since systems with distributed memory have often been far from mature or stable.
Hence, industrial customers stayed with their older vector systems, which gradually
dropped off the TopS00 list because of low performance.

Beginning in 1994, however, companies such as SGI, Digital, and Sun began
selling symmetric multiprocessor (SMP) models in their workstation families. From

500

400

300

200

100

Chapter 1 Introduction

- Scalar

SIMD

Vector

Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun
'93 '93 '94 '94 '95 '95 '96 '96 '97 '97 '98 '98 '99 '99 '00 '00 '01 '01 '02

Figure 1.2 Processor design used as seen in the Top500.

the very beginning, these systems were popular with industrial customers because
of their architectural maturity and superior price-performance ratio. At the same
time, IBM SP2 systems began to appear at a reasonable number of industrial sites.
While the SP was initially intended for numerically intensive applications, in the
last half of 1995 the system began selling successfully to a larger commercial market,
with dedicated database systems representing a particularly important component
of sales.

It is instructive to compare the performance growth rates of machines at fixed
positions in the Top500 list with those predicted by Moore’s Law. To make this
comparison, we separate the influence of increasing processor performance and the
increasing number of processors per system on the total accumulated performance.
(To get meaningful numbers, we exclude the SIMD systems for this analysis, as
they tend to have extremely high processor numbers and extremely low processor
performance.) In Figure 1.3, we plot the relative growth of the total number of
processors and of the average processor performance, defined as the ratio of total
accumulated performance to the number of processors. We find that these two
factors contribute almost equally to the annual total performance growth—a factor
of 1.82. On average, the number of processors grows by a factor of 1.3 each year and
the processor performance by a factor 1.4 per year, compared to the factor of 1.58
predicted by Moore’s Law.

Based on the current Top500 data (which cover the last 9 years) and the assump-
tion that the current rate of performance improvement will continue for some time
to come, we can extrapolate the observed performance and compare these values

1.1

100 Tflop/s

100 Gflop/s

1 Pflop/s

10 Tflop/s

1 Tflop/s

10 Gflop/s
1 Gflop/s

1 Mflop/s

Parallel Computing Hardware 7

220 TF/s

35.8 TF/s
Sum

1.167 TF/s

59.7 GF/s

134 GF/s

Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun
'93 '93 '94 '94 '95 '95 '96 '96 '97 '97 '98 '98 '99 '99 '00 '00 '01 '0O1 '02

Figure 1.3 Performance growth at fixed TopS00 rankings.

with the goals of government programs such as the High Performance Computing
and Communications initiative. In Figure 1.4, we extrapolate observed performance
using linear regression on a logarithmic scale. This means that we fit exponential
growth to all levels of performance in the Top500. This simple curve fit of the data
shows surprisingly consistent results. Based on the extrapolation from these fits, we
can expect to see the first 100 teraflop/s system by 2005, which is about 1 to 2 years
later than the original ASCI projections. By 2005, no system smaller than 1 teraflop/s
should be able to make the Top500.

Looking even further in the future, we speculate that based on the current
doubling of performance every year, the first petaflop/s system should be avail-
able around 2009. Due to the rapid changes in the technologies used in HPC sys-
tems, there is currently no reasonable projection possible for the architecture of the
petaflop/s systems at the end of the decade. Even as the HPC market has changed
substantially since the introduction 3 decades ago of the Cray 1, there is no end in
sight for these rapid cycles of architectural redefinition.

There are two general conclusions we can draw from these figures. First, parallel
computing is here to stay. It is the primary mechanism by which computer perfor-
mance can keep up with the predictions of Moore’s Law in the face of the increasing
influence of performance bottlenecks in conventional processors. Second, the archi-
tecture of high-performance computers will continue to evolve at a rapid rate. Thus,
it will be increasingly important to find ways to support scalable parallel program-
ming without sacrificing portability. This challenge must be met by the development

100 Tflop/s -

10 Tflop/s

100 Gflop/s

10 Gflop/s

1.2

1 Pflop/s

1 Tflop/s

1 Gflop/s

1 Mflop/s

Chapter 1 Introduction

1 Pflop/s

ASCI

Iy
simulator

1 Tflop/s

N =500

Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov
93 94 96 '97 99 00 '02 '03 '05 '06 '08 '09

Figure 1.4 Extrapolation of Top500 results.

of software systems and algorithms that promote portability while easing the burden
of program design and implementation.

What Have We Learned from Applications?

Remarkable strides have been taken over the last decade in utilization of high-end,
that is, parallel, computers. Federal agencies, most notably the National Science
Foundation, Department of Energy, National Aeronautics and Space Administration,
and Department of Defense, have provided increasingly powerful, scalable resources
to scientists and engineers across the country. We discuss a handful of lessons learned
that punctuate the lifetime of the CRPC and provide important context for the next
millennium.

Parallel computing can transform science and engineering. Scalable, parallel com-
puting has transformed a number of science and engineering disciplines, including
cosmology, environmental modeling, condensed matter physics, protein folding,
quantum chromodynamics, device and semiconductor simulation, seismology, and
turbulence [447]. As an example, consider cosmology [729]—the study of the uni-
verse, its evolution and structure—where one of the most striking paradigm shifts
has occurred. A number of new, tremendously detailed observations deep into the
universe are available from such instruments as the Hubble Space Telescope and the
Digital Sky Survey. However, until recently, it has been difficult, except in relatively

1.2 What Have We Learned from Applications? 9

simple circumstances, to tease from mathematical theories of the early universe
enough information to allow comparison with observations.

However, scalable parallel computers with large memories have changed all of
that. Now, cosmologists can simulate the principal physical processes at work in
the early universe over space-time volumes sufficiently large to determine the large-
scale structures predicted by the models. With such tools, some theories can be dis-
carded as being incompatible with the observations. High-performance computing
has allowed comparison of theory with observation and thus has transformed the
practice of cosmology.

To port or not to port. That is not the question. “Porting” a code to parallel archi-
tectures is more than simply bringing up an existing code on a new machine. Because
parallel machines are fundamentally different from their vector predecessors, port-
ing presents an opportunity to reformulate the basic code and data structures and,
more importantly, to reassess the basic representation of the processes or dynamics
involved. As an example, consider ocean modeling, where the standard Bryan-Cox—
Semtner (BCS) code was retargeted from Cray vector architecture to the CM-2 and
CM-5 [874]. The BCS model was inefficient in parallel for two reasons: the primary
loop structure needed to be reorganized, and global communications were required
by the stream-function formulation of the BCS representation. The latter feature of
the BCS model required that independent line integrals be performed around each is-
land in the calculation. The model was reformulated in surface-pressure form, where
the solution of the resulting equations does not require line integrals around is-
lands and is better conditioned than the mathematically equivalent stream-function
representation. An additional change to the original model relaxed the “rigid-lid”
approximation that suppressed surface-gravity waves (and allowed longer time steps)
in the BCS model.

In addition to a more efficient code on either a vector or parallel architecture, this
reformulation brought several remarkable benefits:

1. Islands were treated with simple, pointwise boundary conditions, thereby
allowing all island features to be included at a particular resolution.

2. Unsmoothed bottom topography could be used without adverse effects on
convergence.

3. A free-surface boundary at the ocean-air interface made the sea-surface height
a prognostic variable and allowed direct comparison with Topex-Poseidon
satellite altimeter data.

Satellite data have become a key feature in the verification and validation of global
ocean models [104].

Parallel supercomputing can answer challenges to society. Computational science
has just begun to make an impact on problems with direct human interest and on

10

Chapter 1 Introduction

systems whose principal actors are not particles and aggregations of particles, but
rather are humans and collections of humans.

Perhaps the most oft-asked and rarely answered question about scientific com-
puting concerns predicting the weather. However, there are some things that can
be said. Hurricane tracks are being more accurately predicted [561], which directly
reduces the cost of evacuations and indirectly reduces loss of life. This increased fi-
delity is equal parts computation and observation—more accurate and detailed data
on hurricane wind-fields is available using dropwindsondes that report not only
the meteorological variables of interest, but also an accurate position by using the
Global Positioning System. Another significant development over the last decade has
been the Advanced Regional Prediction System [826] developed by the NSF Science
and Technology Center for the Analysis and Prediction of Storms (www.caps.ou.edu).

However, basically this work still concerns modeling of physical systems, in this
case severe weather, which have significant impacts on society. A more difficult
job is effectively modeling society itself, or a piece thereof. For example, detailed
environmental impact statements are required prior to any significant change in
metropolitan transportation systems. In order to meet this regulatory requirement,
the Department of Transportation commissioned development of a transportation
model. The result, TRANSIMS [940], models traffic flow by representing all of the
traffic infrastructure (e.g., streets, freeways, lights, and stop signs), developing a
statistically consistent route plan for the area’s population, and then simulating
the movement of each car, second by second. The principal distinction here is
that we believe that precise mathematical laws exist that accurately characterize
the dynamics and interplay of physical systems. No such systems of laws, with the
possible exception of Murphy’s, is contemplated for human-dominated systems.

It's not the hardware, stupid. The focus has often been on computing hardware.
The reasons are straightforward: Big systems cost a lot of money and take a lot of
time to acquire; they have measurable, often mysterious except to the fully initiated,
properties; and we wonder how close they are getting to the most famous computer
of all, HAL. However, if we contrast the decade of the Crays to the tumultuous days
of the MPPs, we realize that it was the consistency of the programming model, not
the intricacies of the hardware, that made the former “good old” and the latter
“interesting.”

A case in point is seismic processing [247]. Schlumberger acquired two, 128-
node CM-3s to provide seismic processing services to their customers. They were
successful simply because it was possible, in this instance, to write an efficient
post-stack migration code for the CM-5 and provide commercial-quality services to
their customers, all within the 2 to 4 year operational window of any given high-
end hardware platform. Those programs or businesses that could not profitably,
or possibly, write new applications for each new hardware system were forced to
continue in the old ways. However, the Schlumberger experience teaches us an
important lesson: a successful high-end computing technology must have a stable,

1.3 Software and Algorithms 1

1.3

effective programming model that persists over the lifetime of the application. In
the case of the Stockpile Stewardship Program, this is on the order of a decade.
In conclusion, applications have taught us much over the last 10 years.

1. Entire disciplines can move to a firm scientific foundation by using scalable,
parallel computing to expand and elucidate mathematical theories, thus al-
lowing comparison with observation and experiment.

2. High-end computing is beginning to make an impact on everyday life by
providing more accurate, detailed, and trusted forecasts and predictions, even
on human-dominated systems.

3. New approaches to familiar problems, taken in order to access high capacity,
large memory parallel computers, can have tremendous ancillary benefits
beyond mere restructuring of the computations.

4. A persistent programming model for scalable, parallel computers is absolutely
essential if computational science and engineering is to realize even a fraction
of its remarkable promise.

5. The increase in the accuracy, detail, and volume of observational data goes
hand in hand with these same improvements in the computational arena.

Software and Algorithms

As we indicated at the beginning of this chapter, the widespread acceptance of
parallel computation has been impeded by the difficulty of the parallel programming
task. First, the expression of an explicitly parallel program is difficult—in addition
to specifying the computation and how it is to be partitioned among processors, the
developer must specify the synchronization and data movement needed to ensure
that the program computes the correct answers and achieves high performance.

Second, because the nature of high-end computing systems changes rapidly, it
must be possible to express programs in a reasonably machine-independent way,
so that moving to new platforms from old ones is possible with a relatively small
amount of effort. In other words, parallel programs should be portable between
different architectures. However, this is a difficult ideal to achieve because the price
of portability is often performance.

The goal of parallel computing software systems should be to make parallel
programming easier and the resulting applications more portable while achieving
the highest possible performance. This is clearly a tall order.

A final complicating factor for parallel computing is the complexity of the prob-
lems being attacked. This complexity requires extraordinary skill on the part of the
application developer along with extraordinary flexibility in the developed appli-
cations. Often this means that parallel programs will be developed using multiple
programming paradigms and often multiple languages. Interoperability is thus an
important consideration in choosing the development language for a particular ap-
plication component.

12

Chapter 1 Introduction

The principal goal of the CRPC has been the development of software and al-
gorithms that address programmability, portability, and flexibility of parallel appli-
cations. Much of the material in this book is devoted to the explication of tech-
nologies developed in the CRPC and the broader community to ameliorate these
problems. These technologies include new language standards and language proces-
sors, libraries that encapsulate major algorithmic advances, and tools to assist in the
formulation and debugging of parallel applications.

In the process of carrying out this research we have learned a number of hard but
valuable lessons. These lessons are detailed in the next few paragraphs.

Portability is elusive. When the CRPC began, every vendor of parallel systems of-
fered a different application programming interface. This made it extremely difficult
for developers of parallel applications because the work of converting an application
to a parallel computer would need to be repeated for each new parallel architecture.
One of the most important contributions of the CRPC was an effort to establish
cross-platform standards for parallel programming. The Message Passing Interface
(MPI) and High Performance Fortran (HPF) standards are just two results of this
effort.

However, portability is not just a matter of implementing a standard interface. In
scientific computing, most users are interested in portable performance, which means
the ability to achieve a high fraction of the performance possible on each machine
from the same program image. Because the implementations of standard interfaces
are not the same on each platform, portability, even for programs written in MPI or
HPF, has not been automatically achieved. Typically, the implementor must spend
significant amounts of time tuning an application for each new platform.

This tuning burden even extends to programming via portable libraries, such as
ScaLAPACK. Here the CRPC approach has been to isolate the key performance issues
in a few kernels that could be rewritten by hand for each new platform. Still the
process remains tedious.

Algorithms are not always portable. An issue impacting portability is that an al-
gorithm does not always work well on every machine architecture. The differences
arise because of the number and granularity of processors, connectivity and band-
width, and the performance of the memory hierarchy on each individual processor.
In many cases, portable algorithm libraries must be parameterized to do algorithm
selection based on the architecture on which the individual routines are to run. This
makes portable programming even more difficult.

Parallelism isn't everything. One of the big surprises on parallel computers was the
extent to which poor performance arises because of factors other than insufficient
parallelism. The principal problem on scalable machines, other than parallelism,
is data movement. Thus, the optimization of data movement between processors
is a critical factor in performance of these machines. If this is not done well, a
parallel application is likely to run poorly no matter how powerful the individual

1.4 Toward a Science of Parallel Computation 13

1.4

processors are. A second and increasingly important issue affecting performance is
the bandwidth from main memory on a single processor. Many parallel machines
use processors that have so little bandwidth relative to the processor power that
the processor cycle time could be dialed down by a factor of two without affecting
the running time of most applications. Thus, as parallelism levels have increased,
algorithms and software have had to increasingly deal with memory hierarchy issues,
which are now fundamental to parallel programming.

Community acceptance is essential to the success of software. Technical excellence
alone cannot guarantee that a new software approach will be successful. The scientific
community is generally conservative, in the sense that they will not risk their effort
on software strategies that are likely to fail. To achieve widespread use, there has to
be the expectation that a software system will survive the test of time. Standards
are an important part of this, but cannot alone guarantee success. A case in point is
HPF. In spite of the generally acknowledged value of the idea of distribution-based
languages and a CRPC-led standardization effort, HPF failed to achieve the level of
acceptance of MPI because the commercial compilers did not mature in time to gain
the confidence of the community.

Good commercial software is rare at the high end. Because of the small size of
the high-end supercomputing market, commercial software production is difficult to
sustain unless it also supports a much broader market for medium-level systems, such
as symmetric (shared-memory) multiprocessors. OpenMP has succeeded because it
targets that market, while HPF was focused on the high end. The most obvious
victim of market pressures at the high end are tools—tuners and debuggers—that
are usually left until last by the vendors and often abandoned. This has seriously
impeded the widespread acceptance of scalable parallelism and has led to a number
of community-based efforts to fill the gap based on open software. Some of these
efforts are described in later chapters.

Toward a Science of Parallel Computation

When the CRPC began activities in 1989, parallel computing was still in its infancy.
Most commercial offerings consisted of a few processors that shared a single memory.
Scalable parallel systems, although long a subject of research, had just graduated
from laboratories to become prototype commercial products. Almost every parallel
computer had a different proprietary programming interface. Since that time, many
machines (and companies) have come and gone.

To deal with the rapid pace of change in parallel systems, application developers
needed principles and tools that would survive in the long term and isolate them
from the changing nature of the underlying hardware. On the other hand, they also
needed new parallel algorithms and an understanding of how to match them to
different architectures with differing numbers of processors. In short, they needed a
science of parallel computation.

14

Chapter 1 Introduction

Fostering such a science was a major goal of the High-Performance Computing
and Communications (HPCC) initiative, launched by the federal government in
1991. With the help of this initiative, the CRPC and the entire parallel-computing
research community have made major strides toward the desired goal. Message-
passing interfaces have been standardized; a variety of higher-level programming
interfaces have been developed and incorporated into commercial products; debug-
ging systems and I/O interfaces have matured into useful standards; and many new
parallel algorithms have been developed and incorporated into widely distributed
libraries and templates.

Why, in the face of these advances, is the science of parallel computation still
interesting to study? In 1989, many of us felt that we could develop a higher-level
parallel programming interface that would supplant the message-passing paradigms
then being used. However, our expectation that explicit message passing would rou-
tinely be hidden from the developer has not been realized. Today, most developers
must use explicit message passing, albeit via a more sophisticated portable interface,
to generate efficient scalable parallel programs. This is but one example demonstrat-
ing that the science of parallel computation is incomplete.

Itis possible that our original goal was unrealistic and that the desired science can-
not be achieved. We doubt this, as we now understand much better the demands
of applications and the intricacies of high-performance architectures. We under-
stand better where parallel performance is essential and where the developer needs
programming paradigms optimized more for functionality than performance; this
corresponds to the emerging picture of hybrid systems as a Grid of loosely coupled
high performance parallel “kernels.” Furthermore, we now have better technologies
than those available a decade ago. These technologies come not only from deeper
understanding of the problem of parallel computing, but also from new ideas. These
include the broader acceptance of object-based languages, powerful scripting envi-
ronments, and the growing understanding of the role of meta-data in defining how
computation should be applied dynamically. Java, Python, and the Semantic Web
are illustrative of technologies reflecting these new ideas.

Our intent is that this book document the current science of parallel computation,
including the best methods, algorithms, and tools that were developed during the 11
years of CRPC activities, and thus serve as a useful resource for practicing application
developers. In addition, we hope it will motivate new approaches to the support of
parallel programming that could lead finally to the realization of our original dream.

X m -4 W »>» I N

Parallel Computer Architectures

William Gropp ° Rick Stevens -
Charlie Catlett

Parallel computers provide great amounts of computing power, but they do so at the
cost of increased difficulty in programming and using them. Certainly, a uniproces-
sor that was fast enough would be simpler to use. To explain why parallel computers
are inevitable and to identify the challenges facing developers of parallel algorithms,
programming models, and systems, in this chapter we provide an overview of the
architecture of both uniprocessor and parallel computers. We show that while com-
puting power can be increased by adding processing units, memory latency (the
irreducible time to access data) is the source of many challenges in both uniproces-
sor and parallel processor design. In Chapter 3, some of these issues are revisited
from the perspective of the programming challenges they present.

Parallel architectures and programming models are not independent. While most
architectures can support all major programming models, they may not be able to
do so with enough efficiency to be effective. An important part of any parallel archi-
tecture is any feature that simplifies the process of building (including compiling),
testing, and tuning an application. Some parallel architectures put a great deal of ef-
fort into supporting a parallel programming model; others provide little or no extra
support. All architectures represent a compromise among cost, complexity, timeli-
ness, and performance. Chapter 12 discusses some of the issues of parallel languages
and compilers; for parallel computers that directly support parallel languages, the
ability to compile efficient code is just as important as it is for the single-processor
case.

In Section 2.1, we briefly describe the important features of single-processor (or
uniprocessor) architecture. From this background, the basics of parallel architecture
are presented in Section 2.2; in particular, we describe the opportunities for perfor-
mance improvement through parallelism at each level in a parallel computer, with
references to machines of each type. In Section 2.3, we examine potential future

15

16

2.1

Chapter 2 Parallel Computer Architectures

parallel computer architectures. We conclude the chapter with a brief summary of
the key issues motivating the development of parallel algorithms and programming
models.

This chapter discusses only parallel architectures used in high-performance com-
puting. Parallelism is widely used in commercial computing for applications such as
databases and Web servers. Special architectures and hardware have been developed
to support these applications, including special hardware support for synchroniza-
tion and fault tolerance.

Uniprocessor Architecture

In this section we briefly describe the major components of a conventional, single-
processor computer, emphasizing the design tradeoffs faced by the hardware archi-
tect. This description lays the groundwork for a discussion of parallel architectures,
since parallelism is entirely a response to the difficulty of obtaining ever greater per-
formance (or reliability) in a system that inherently performs only one task at a time.
Readers familiar with uniprocessor architecture may skip to the next section. Those
interested in a more detailed discussion of these issues should consult Patterson and
Hennessy [759].

The major components of a computer are the central processing unit (CPU) that
executes programs, the memory system that stores executing programs and the data
that the programs are operating on, and input/output systems that allow the com-
puter to communicate with the outside world (e.g., through keyboards, networks,
and displays) and with permanent storage devices such as disks. The design of a
computer reflects the available technology; constraints such as power consumption,
physical size, cost, and maintainability; the imagination of the architect; and the
software (programs) that will run on the computer (including compatibility issues).
All of these have changed tremendously over the past 50 years.

Perhaps the best-known change is captured by Moore’s Law [679], which says
that microprocessor CPU performance doubles roughly every 18 months. This is
equivalent to a thousandfold increase in performance over 15 years. Moore’s Law
has been remarkably accurate over the past 36 years (see Figure 2.1), even though
it represents an observation about (and a driver of) the rate of engineering progress
and is not a law of nature (such as the speed of light). In fact, it is interesting to look
at the clock speed of the fastest machines in addition to (and compared with) that of
microprocessors. In 1981, the Cray 1 was one of the fastest computers, with a 12.5
ns clock. In 2001, microprocessors with 0.8 ns clocks are becoming available. This is
a factor of 16 in 20 years, or equivalently a doubling every S years.

Remarkable advances have occurred in other areas of computer technology as
well. The cost per byte of storage, both in computer memory and in disk storage, has
fallen along a similar exponential curve, as has the physical size per byte of storage
(in fact, cost and size are closely related). Dramatic advancements in algorithms have
reduced the amount of work needed to solve many classes of important problems;
for example, the work needed to solve n simultaneous linear equations has fallen,

2.1 Uniprocessor Architecture 17

1000

100

10

0.1

Vector +
RISC x
Intel x

01/75 01/80 01/85 01/90 01/95 01/00 01/05

2.1.1

Figure 2.1 Improvement in CPU performance measured by clock rate in nanoseconds.

in many cases, from n3 to n. For 1 million equations, this is an improvement of 12
orders of magnitude!

Unfortunately, these changes have not been uniform. For example, while the den-
sity of storage (memory and disk) and the bandwidths have increased dramatically,
the decrease in the time to access storage (latency) has not kept up. As a result, over
the years, the balance in performance between the different parts of a computer has
changed. In the case of storage, increases in clock rates relative to storage latency
have translated Moore’s Law into a description of inflation in terms of the relative
cost of memory access from the point of view of potentially wasted CPU cycles. This
has forced computer architectures to evolve over the years, for example, moving to
deeper and more complex memory hierarchies.

The CPU

The CPU is the heart of the computer; it is responsible for all calculations and for
controlling or supervising the other parts of the computer. A typical CPU contains
the following (see Figure 2.2):

e Arithmetic logic unit (ALU). Performs computations such as addition and com-
parison.

e Floating-point unit (FPU). Performs operations on floating-point numbers.

e Load/store unit. Performs loads and stores for data.

18 Chapter 2 Parallel Computer Architectures

* Registers. Fast memory locations used to store intermediate results. These are
often subdivided into floating-point registers (FPRs) and general purpose reg-
isters (GPRs).

e Program counter (PC). Contains the address of the instruction that is executing.

e Memory interface. Provides access to the memory system. In addition, the CPU
chip often contains the fastest part of the memory hierarchy (the top-level
cache); this part is described in Section 2.1.2.

Other components of a CPU are needed for a complete system, but the ones listed
are the most important for our purpose.

The CPU operates in steps controlled by a clock: In each step, or clock cycle, the
CPU performs an operation.! The speed of the CPU clock has increased dramatically;
desktop computers now come with clocks that run at over 2 GHz (2 x 10° Hz).

One of the first decisions that a computer architect must make is what basic
operations can be performed by the CPU. There are two major camps: the complex
instruction set computer (CISC) and the reduced instruction set computer (RISC).
A RISC CPU can do just as much as a CISC CPU; however, it may require more
instructions to perform the same operation. The tradeoff is that a RISC CPU, because
the instructions are fewer and simpler, may be able to execute each instruction faster
(i.e., the CPU can have a higher clock speed), allowing it to complete the operation
more quickly.

The specific set of instructions that a CPU can perform is called the instruction
set. The design of that instruction set relative to the CPU represents the instruction
set architecture (ISA). The instructions are usually produced by compilers from
programs written in higher-level languages such as Fortran or C. The success of
the personal computer has made the Intel x86 ISA the most common ISA, but
many others exist, particularly for enterprise and technical computing. Because
most programs are compiled, ISA features that either aid or impede compilation
can have a major impact on the effectiveness of a processor. In fact, the ability of
compilers to exploit the relative simplicity of RISC systems was a major reason for
their development.

We note that while the ISA may be directly executed by the CPU, another possi-
bility is to design the CPU to convert each instruction into a sequence of one or more
“micro” instructions. This allows a computer architect to take advantage of simple
operations to raise the “core” speed of a CPU, even for an ISA with complex instruc-
tions (i.e., a CISC architecture). Thus, even though a CPU may have a clock speed of
over 1 GHz, it may need multiple clock cycles to execute a single instruction in the
ISA. Hence, simple clock speed comparisons among different architectures are de-
ceptive. Even though one CPU may have a higher clock speed than another, it may

1 Note that we did not say an instruction or a statement. As we will see, modern CPUs may perform both less
than an instruction and more than one instruction in a clock cycle.

2.1 Uniprocessor Architecture 19

Data Functional . Program and
units : control

FPR .
> " Control
|
>
>

GPR :
| I

. A
> —
> | .
— — ALU /=
B o\
| —
e] Comparison
i result: 1 PC
»|
: Branch :
Load/store ‘] : I - Instruction Decode
L1 data cache : : L1 instruction cache
L2 cache TLB

l

Memory system

Figure 2.2 Generic CPU diagram. This example has a separate L1 cache for data and for
program instructions and a unified (both data and instructions) L2 cache. Not all data paths
are shown.

also require more clock cycles than the “slower” CPU in order to execute a single
instruction.

Programs executed by the CPU are stored in memory. The program counter specifies
the address in memory of the executing instruction. This instruction is fetched from
memory and decoded in the CPU. As each instruction is executed, the PC changes
to the address of the next instruction. Control flow in a program (e.g., if, while, or
function call) is implemented by setting the PC to a new address.

One important part of the ISA concerns how memory is accessed. When mem-
ory speeds were relatively fast compared with CPU speeds (particularly for complex

20

Chapter 2 Parallel Computer Architectures

operations such as floating-point division), the ISA might have included instructions
that read several items from memory, performed the operation, and stored the re-
sult into memory. These were called memory-to-memory operations. However, as
CPU speeds increased dramatically relative to memory access speeds, ISAs changed
to emphasize a “load-store” architecture. In this approach, all operations are per-
formed by using data in special, very fast locations called registers that are part of
the CPU. Before a value from memory can be used, it must first be loaded into a
register, using an address that has been computed and placed into another register.
Operations take operands from registers and put the result back into a register; these
are sometimes called register-to-register operations. A separate store operation puts a
value back into the memory (generally indirectly by way of a cache hierarchy analo-
gous to the register scheme just described). Load operations and store operations are
often handled by a load/store functional unit, much as floating-point arithmetic is
handled by a floating-point unit (FPU).

Over the years, CPUs have provided special features to support various program-
ming models. For example, CISC-style ISAs often include string search instructions
and even polynomial evaluation. Some current ISAs support instructions that make
it easy to access consecutive elements in memory by updating the register holding
the load address; this corresponds closely to the a=*x++; statement in the C program-
ming language and to typical Fortran coding practice for loops.

One source of complexity in a CPU is the difference in the complexity of the in-
structions. Some instructions, such as bitwise logical or, are easy to implement in
hardware. Others, such as floating-point division, are extremely complicated. Mem-
ory references provide a different kind of complexity; as we will see, the CPU often
cannot predict when a memory reference will complete. Many different approaches
have been taken to address these issues. For example, in the case of floating-point
operations, pipelining has been used. Like the RISC approach, pipelining breaks a
complex operation into separate parts. Unlike the RISC approach, however, each
stage in the pipeline can be executed at the same time by the CPU, but on different
data. In other words, once a floating-point operation has been started in a clock cy-
cle, even though that operation has not completed, a new floating-point operation
can be started in the next clock cycle. It is not unusual for operations to take 2 to
20 cycles to complete. Figure 2.3 illustrates a pipeline for floating-point addition.
Pipelines have been getting deeper (i.e., have more stages) as clock speeds increase.
Note also that this hardware approach is very similar to the use of pipelining in
algorithms described in Section 3.3.2. As CPUs have become faster, pipelining has
been used more extensively. In modern CPUs, many other instructions (not just
floating-point operations) may be pipelined.

From this discussion, we can already see some of the barriers to achieving higher
performance. A clock rate of 1 GHz corresponds to a period of only 1 ns. In 1 ns,
light travels only about 1 foot in a vacuum, and less in an electrical circuit. Even in
the best case, a single processor running at 10 GHz (three more doublings in CPU
performance or, if Moore’s Law continues to hold, appearing in less than 5 years) and
its memory could be only about 1 inch across; any larger and a signal could not cross
the chip during a single clock cycle. At that size, heat dissipation, already a concern

2.1 Uniprocessor Architecture 21

Align > Add > Normalize — Round
(a
A1+B1
A2+B2 A1+B1
A3+B3 A2+B2 A1+B1
£
[A4+B4 A3+B3 A2+B2 A1+B1
A4+B4 A3+B3 A2+B2
A4+B4 A3+B3
v A4+B4
(b)

Figure 2.3 Example of a floating-point pipeline. (a) The separate stages in the pipeline.
(b) Four pairs of numbers are added in 7 clock cycles. Note that after a 3-cycle delay, one result
is returned every cycle. Without pipelining, 16 clock cycles would be required to add four pairs
of numbers.

for many CPUs, becomes a major problem. Approaches such as pipelining (already a
kind of parallelism) require that enough operations and operands be available to keep
the pipeline full. Other approaches begin to introduce a very fine scale of parallelism.
For example, multiple functional units such as multiple floating-point adders and
multipliers may be provided. In such cases, however, the program must be rewritten
and/or recompiled to make use of the additional resources. (These enhancements
are discussed in Section 2.2.3.)

Once on-chip clock latency is addressed, the designer must face an even more
challenging problem: latency to storage, beginning with memory.

Memory

While a computer is running, active data and programs are stored in memory.
Memory systems are quite complex, introducing a number of design issues. Among
these are the following:

22

Chapter 2 Parallel Computer Architectures

e Memory size. Users never have enough computer memory, so the concept of
virtual memory was introduced to fool programs into thinking that they have
large amounts of memory just for their own use.

* Memory latency and hierarchy. The time to access memory has not kept pace with
CPU clock speeds. Levels or hierarchies of memory try to achieve a compromise
between performance and cost.

* Memory bandwidth. The rate at which memory can be transferred to and from
the CPU (or other devices, such as disks) also has not kept up with CPU speeds.

e Memory protection. Many architectures include hardware support for memory
protection, aimed primarily at preventing application software from modify-
ing (intentionally or inadvertently) either system memory or memory in use
by other programs.

Of these, memory latency is the most difficult problem. Memory size, in many
ways, is simply a matter of money. Bandwidth can be increased by increasing the
number of paths to memory (another use of parallelism) and using techniques such
as interleaving. Latencies are related to physical constraints and are harder to reduce.
Further, high latencies reduce the effective bandwidth of a given load or store. To
see this, consider a memory interconnect that transfers blocks of 32 bytes with a
bandwidth of 1 GB/s. In other words, the time to transfer 32 bytes is 32 ns. If the
latency of the memory system is also 32 ns (an optimistic figure), the total time
to transfer the data is 64 ns, reducing the effective bandwidth from 1 GB/s to 500
MB/s. The most common approach to improving bandwidth in the presence of high
latency is to increase the amount of data moved each time, thus amortizing the
latency over more data. However, this helps only when all data moved are needed
by the running program. Chapter 3 discusses this issue in detail from the viewpoint
of software.

An executing program, or process, involves an address space and one or more
program counters. Operating systems manage the time sharing of a CPU to allow
many processes to appear to be running at the same time (for parallel computers,
the processes may in fact be running simultaneously). The operating system, working
with the memory system hardware, provides each process with the appearance of a
private address space. Most systems further allow the private memory space to appear
larger than the available amount of physical memory. This is called a virtual address
space. Of course, the actual physical memory hardware defines an address space, or
physical address space. Any memory reference made by a process, for example, with
a load or store instruction, must first be translated from the virtual address (the
address known to the process) to the physical address. This step is performed by the
translation lookaside buffer (TLB), which is part of the memory system hardware. In
most systems, the TLB can map only a subset of the virtual addresses (it is a kind of
address cache); if a virtual address can’t be handled by the TLB, the operating system
is asked to help out, and in such case, the cost of accessing memory greatly increases.

2.1

160 T T T T T T

140 |

120

100

Uniprocessor Architecture

DRAM Row access ———

80

60

40 | -

20 .

0 L L L L L L L L L
01/80 01/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98 01/00

23

Figure 2.4 DRAM latency in nanoseconds versus time. Note that, unlike the CPU times in
Figure 2.1, the vertical axis is linear, and the improvement in performance is little more than

a factor of two in 10 years.

For this reason, some high-performance systems have chosen not to provide virtual

addressing.

Finding ways to decrease memory latency is a difficult problem. To understand
why, we must first look at how computer memory works. Semiconductor memory
comes in two main types: static random access memory (SRAM), in which each
bit of memory is stored in a latch made up of transistors, and dynamic random
access memory (DRAM), in which each bit of memory is stored as a charge on a
capacitor. SRAM is faster than DRAM but is much less dense (has fewer bits per chip)
and requires much greater power (resulting in heat). The difference is so great that

virtually all computers use DRAM for the majority of their memory. However,

as

Figure 2.4 shows, the performance of DRAM memory has not followed the Moore’s
Law curve that CPU clock speeds have. Instead, the density and price/performance
of DRAMs have risen exponentially. The scale of this problem can be seen by
comparing the speeds of DRAMs and CPUs. For example, a 1-GHz CPU will execute
60 instructions before a typical (60 ns) DRAM can return a single byte. Hence, in a
program that issues a load for a data item that must come from DRAM, at least 60
cycles will pass before the data will be available. In practice, the delay can be longer
because there is more involved in providing the data item than just accessing the

DRAM.

24

Chapter 2 Parallel Computer Architectures

To work around this performance gap, computer architects have introduced a
hierarchy of smaller but faster memories. These are called cache memories because they
work by caching copies of data from the DRAM memory in faster SRAM memory,
closer to the CPU. Because SRAM memory is more expensive and less dense and
consumes much more power than does DRAM memory, cache memory sizes are
small relative to main memory. In fact, there is usually a hierarchy of cache memory,
starting from level 1 (L1), which is the smallest (and fastest) and is on-chip on all
modern CPUs. Many systems have two or three levels of cache. A typical size is 16
KB to 128 KB for L1 cache memory to as much as 4 MB to 8 MB for L2 or L3 cache
memory. Typical DRAM memory sizes, on the other hand, are 256 MB to 4 GB—a
factor of about a thousand larger.

Memory hierarchy brings up another problem. Because the cache memory is so
much smaller than the main memory, it often isn’t possible for all of the memory
used by a process to reside in the L1 or even L2 cache memory. Thus, as a process
runs, the memory system hardware must decide which memory locations to copy
into cache. If the cache is full and a new memory location is needed, some other
item must be removed from the cache (and written back? to the main memory if
necessary). If the CPU makes a request for data, and the requested data are not in
cache, a cache miss occurs. The rate at which this happens is called the cache miss
rate, and one of the primary goals of a memory system architect is to make the
miss rate as small as possible. Of course, the rate depends on the behavior of the
program, and this in turn depends on the algorithms used by the program. Many
different strategies are used to try to achieve low miss rates in a cache while keeping
the cache fast and relatively inexpensive. To reduce the miss rate, programs exploit
temporal locality: reusing the same data within a short span of time, that is, reusing
the data before they are removed from the cache to make room for some other data.
This process, in turn, requires the algorithm developer and programmer to pay close
attention to how data are used in a program.

As just one example, consider the choice of the cache-line size. Data between cache
and main memory usually are transferred in groups of 64, 128, or 256 bytes. This
group is called a cache line. Moving an entire cache line at one time allows the main
memory to provide relatively efficient bursts of data (it will be at least 60 ns before we
can get the first byte; subsequent consecutive bytes can be delivered without much
delay). Thus, programs that access “nearby” memory after the first access will find
that the data they need are already in cache. For these programs, a larger line size will
improve performance. However, programs that access memory in a less structured
way may find that they spend most of their time reading data into cache that are
never used. For these programs, a large line size reduces performance compared with

2 Write-back caches wait until an item is displaced from the cache before writing the data back into memory.
Write-through caches store data to memory and into the cache at the same time. Other approaches can be used

as well.

2.1 Uniprocessor Architecture 25

a system that uses a shorter cache line. Chapter 3 discusses these issues in more detail,
along with strategies for reducing the impact of memory hierarchies on performance.

Many other issues also remain, with similarly difficult tradeoffs, such as associa-
tivity (how main memory addresses are mapped into the cache), replacement policy
(what data are ejected to make room for new data), and cache size. Exploiting the fact
that memory is loaded in larger units than the natural scalar objects (such as inte-
gers, characters, or floating-point numbers) is called exploiting spatial locality. Spatial
locality also requires temporal locality.

The effective use of cache memory is so important for high-performance applica-
tions that algorithms have been developed that are tailored to the requirements of
these memory hierarchies. On the other hand, the most widely used programming
models ignore cache memory requirements. Hence, problems remain with the practi-
cal programming of these systems for high performance. We also see in Section 2.2.1
that the use of copies of data in a cache causes problems for parallel systems.

In recent years, there has been rapid progress in memory system design, particu-
larly for personal computers and workstations. Many of these designs have focused
on delivering greater bandwidth and have names like RAMBUS, DDR (for double
data rate), and EDO. See Cuppu et al. [240] and other articles in the same issue for a
discussion of high-performance DRAM technologies.

I/0 and Networking

Discussions of computers often slight the issues of I/O and networking. I/O, partic-
ularly to the disks that store files and swap space for supporting virtual memory, has
followed a path similar to that of main memory. That is, densities and sizes have
increased enormously (25 years ago, a 40-MB disk was large and expensive; today, a
40-GB disk is a commodity consumer item), but latencies have remained relatively
unchanged. Because disks are electromechanical devices, latencies are in the range
of milliseconds or a million times greater than CPU speeds. To address this issue,
some of the same techniques used for memory have been adopted, particularly the
use of caches (typically using DRAM memory) to improve performance.
Networking has changed less. Although Ethernet was introduced 22 years ago,
only relatively modest improvements in performance were seen for many years, and
most of the improvement has been in reduced monetary cost. Fortunately, in the past
few years, this situation has started to change. In particular, the 100-MB Ethernet
has nearly displaced the original 10-MB Ethernet, and several gigabit networking
technologies are gaining ground, as are industry efforts, such as Infiniband [503], to
accelerate the rate of improvement in network bandwidth. Optical technologies have
been in use for some time but are now poised to significantly increase the available
bandwidths. Networks, are, however, fundamentally constrained by the speed of
light. Latencies can never be less than 3 ns per meter. Another constraint is the way
in which the network is used by the software. The approaches that are currently used
by most software involve the operating system (OS) in most networking operations,
including most data transfers between the main memory and the network. Involving

26

2.2

2.2.1

Chapter 2 Parallel Computer Architectures

the OS significantly impacts performance; in many cases, data must be moved several
times. Recent developments in networking [962, 964] have emphasized transfers
that are executed without the involvement of the operating system, variously called
user-mode, OS bypass, or scheduled transfer. These combine hardware support with a
programming model that allows higher network performance.

Design Tradeoffs

The design of a single-processor computer is a constant struggle against competing
constraints. How should resources be allocated? Is it better to use transistors on
a CPU chip to provide a larger fast L1 cache, or should they be used to improve
the performance of some of the floating-point instructions? Should transistors be
used to add more functional units? Should there be more registers, even if the ISA
then has to change? Should the L1 cache be made larger at the expense of the L2
cache? Should the memory system be optimized for applications that make regular
or irregular memory accesses? There are no easy answers here. The complexity has
in fact led to increasingly complex CPU designs that use tens or even hundreds of
millions of transistors and that are enormously costly to design and manufacture.
Particularly difficult is the mismatch in performance between memory and CPU. This
mismatch also causes problems for programmers; see, for example, Karp [534] for a
discussion of what should be a simple operation (bit reversal) but whose performance
varies widely as a result of the use of caches and TLBs. These difficulties have
encouraged computer architects to consider a wide variety of alternative approaches
for improving computer system performance. Parallelism is one of the most powerful
and most widely used.

Parallel Architectures

This section presents an overview of parallel architectures, considered as responses to
limitations and problems in uniprocessor architectures and to technology opportu-
nities. We start by considering parallelism in the memory systems, since the choices
here have the most effect on programming models and algorithms. Parallelism in
the CPU is discussed next; after increases in clock rates, this is a source of much of
the improvement in sustained performance in microprocessors. For a much more
detailed discussion of parallel computer architectures, see Culler et al. [236].

Memory Parallelism

One of the easiest ways to improve performance of a computer system is simply to
replicate entire computers and add a way for the separate computers to communicate
data. This approach, shown schematically in Figure 2.5, provides an easy way to
increase memory bandwidth and aggregate processing power without changing the
CPU, allowing parallel computers to take advantage of the huge investment in
commodity microprocessor CPUs. The costis in increased complexity of the software

2.2 Parallel Architectures 27

Memory | | Memory | | Memory Memory

Interconnect (bus)

CPU CPU CPU
(a)
CPU CPU CPU CPU
) v O O
Mem z Mem z Mem z Mem z
Two-stage
interconnect
(b)

Figure 2.5 Schematic parallel computer organization. (a) Typical shared-memory system,
where the interconnect may be either a simple bus or a sophisticated switch. (b) Distributed-
memory system, which may be either a distributed shared-memory system or a simpler
shared-nothing system, depending on the capabilities of the network interface (NIC).

and in the impact that this has on the performance of applications. The major choice
here is between distributed memory and shared memory.

Distributed Memory

The simplest approach from the hardware perspective is the distributed-memory, or
shared-nothing, model. The approach here is to use separate computers connected by
a network. The typical programming model consists of separate processes on each
computer communicating by sending messages (message passing), usually by calling
library routines. This is the most classic form of parallel computing, dating back to
when the computers were people with calculators and the messages were written on
slips of paper [800].The modern distributed-memory parallel computer started with
the work of Seitz [845].

Distributed-memory systems are the most common parallel computers because
they are the easiest to assemble. Systems from Intel, particularly the Paragon and
the 512-processor Delta, were important in demonstrating that applications could

28

Chapter 2 Parallel Computer Architectures

make effective use of large numbers of processors. Perhaps the most successful
commercial distributed-memory system is the IBM SP family. SP systems combine
various versions of the successful RS6000 workstation and server nodes with different
interconnects to provide a wide variety of parallel systems, from 8 processors to the
8192-processor ASCI White system. Some distributed-memory systems have been
built with special-purpose hardware that provides remote memory operations such
as put and get. The most successful of these are the Cray T3D and T3E systems.

Many groups have exploited the low cost and relatively high performance of
commodity microprocessors to build clusters of personal computers or workstations.
Early versions of these were built from desktop workstations and were sometimes
referred to as NOWSs, for networks of workstations. The continued improvement in
performance of personal computers, combined with the emergence of open source
(and free) versions of the UNIX operating system, gave rise to clusters of machines.
These systems are now widely known as Beowulfs or Beowulf clusters, from a project
begun by Thomas Sterling and Donald Becker at the National Aeronautics and Space
Administration [897, 898]. They are real parallel machines; as of 2000, 2 of the top
100 supercomputer systems were built from commodity parts.

We note that the term cluster can be applied both broadly (any system built with
a significant number of commodity components) or narrowly (only commodity
components and open-source software). In fact, there is no precise definition of a
cluster. Some of the issues that are used to argue that a system is a massively parallel
processor (MPP) instead of a cluster include proprietary interconnects (various in-
terconnects are described in Section 2.2.2), particularly ones designed for a specific
parallel computer, and special software that treats the entire system as a single ma-
chine, particularly for the system administrators. Clusters may be built from personal
computers or workstations (either single processors or symmetric multiprocessors
(SMPs)) and may run either open-source or proprietary operating systems.

While the message-passing programming model has been successful, it empha-
sizes that the parallel computer is a collection of separate computers.

Shared Memory

A more complex approach ties the computers more closely together by placing all
of the memory into a single (physical) address space and supporting virtual address
spaces across all of the memory. That is, data are available to all of the CPUs through
the load and store instructions of the ISA. Because access to the memory is through
load and store operations rather than the network operations used in distributed-
memory systems, access to remote memory has lower latency and higher bandwidth.
These advantages come with a cost, however. The two major issues are consistency
and coherency. The most serious problem (from the viewpoint of the programmer)
is consistency. To understand this problem, consider the following simple Fortran
program:

a=a+1l
b=1

2.2 Parallel Architectures 29

In a generic ISA, the part that increments the variable a might be translated into

LOAD R12, %A10 ; Load a into register
ADD R12, #1 ;s Add one to the value in R12
STORE R12, %A10 ; Store the result back into A

The important point here is that the single program statement a=a+1 turns into three
separate instructions. Now, recall our discussion of cache memory. In a uniprocessor,
the first time the LOAD operation occurs, the value is brought into the memory cache.
The STORE operation writes the value from register back into the cache. Now, assume
that another CPU, executing a program that is using the same address space, executes

10 if (b .eq. 0) goto 10
print *, a

What value of a does that CPU see? We would like it to see the value of a after the
increment. But that requires that the value has both been written back to the memory
from the cache of the first CPU and read into cache (even if the corresponding
cache line had previously been read into memory) on the second CPU. In other
words, we want the program to execute as if the cache were not present, that is, as
if every load and store operation worked directly on the memory and in the order
in which it was written. The copies of the memory in the cache are used only to
improve performance of memory operations; they do not change the behavior of
programs that are accessing the same memory locations. Cache memory systems that
accomplish this objective are called cache coherent. Most (but not all) shared-memory
systems are cache coherent. Ensuring that a memory system is cache coherent
requires additional hardware and adds to the complexity of the system. On the other
hand, it simplifies the job of the programmer, since the correctness of a program
doesn’t depend on details of the behavior of the cache. We will see, however, that
while cache coherence is necessary, it is not sufficient to provide the programmer
with a friendly programming environment.

The complexity of providing cache coherency has led to different designs. One
important class is called uniform memory access (UMA). In this design, each memory
and cache is connected to all of the others; each part observes any memory opera-
tion (such as a load from a memory location) and ensures that cache coherence is
maintained. The name UMA derives from the fact that the time to access a location
from memory (not from cache and on an unloaded or nearly idle machine) is inde-
pendent of the address (and hence particular memory unit). Early implementations
used a bus, which is a common signaling layer that connects each processor and
memory. Because buses are not scalable (all devices on the bus must share a limited
amount of communication), higher-performance UMA systems based on completely

30

Chapter 2 Parallel Computer Architectures

connected networks have been constructed. Such networks themselves are not scal-
able (the number of connections for p components grows as p2), leading to another
class of shared-memory designs.

The nonuniform memory access NUMA) approach does not require that all memory
be equally “distant” (in terms of access time). Instead, the memory may be connected
by a scalable network. Such systems can be more sensitive to the details of data lay-
out but can also scale to much larger numbers of processors. To emphasize that
a NUMA system is cache coherent, the term CC-NUMA is often used. The term
distributed shared memory (DSM) is also often used to emphasize the NUMA char-
acteristics of this approach to building shared-memory hardware. The term virtual
shared memory, or virtual distributed shared memory, is used to describe a system that
provides the programmer with a shared-memory programming model built on top
of distributed-memory (not DSM) hardware.

Shared-memory systems are becoming common, even for desktop systems. Most
vendors include shared-memory systems among their offerings, including Compagq,
HP, IBM, SGI, and Sun and many personal computer vendors. Most of these systems
have between 2 and 16 processors; most of these are UMA systems. Typical CC-
NUMA systems include the SGI Origin 3000 (typically up to 128 processors, and
1024 in special configurations) and the HP SuperDome (up to 64 processors). The
SGI Origin uses an approach called directory-based cache coherency (directory caches,
for short) [604] to distribute the information needed to maintain cache coherency
across the network that connects the memory to the CPUs.

Shared-memory systems often have quite modest memory bandwidths. At the
low end, in fact, the same aggregate memory bandwidth may be provided to systems
with 1 to 4 or even 16 processors. As a result, some of these systems are often starved
for memory bandwidth. This can be a problem for applications that do not fit in
cache. Applications that are memory-access bound can even slow as processors are
added in such systems. Of course, not all systems are underpowered, and the memory
performance of even the low-end systems has been improving rapidly.

Memory Consistency and Programming Models

How does the programming model change when several threads or processes share
memory? What are the new issues and concerns? Consider a uniprocessor CPU ex-
ecuting a single-user program (a single-threaded, single-process program). Programs
execute simply, one statement after the other. Implicit in this is that all statements be-
fore the current statement have completed before the current statement is executed.
In particular, all stores to and loads from memory issued by previous statements
have completed before the current statement begins to execute. In a multiprocessor
executing a single program on multiple processors, the notion of “current” state-
ment and “completed before” is unclear—or rather, it can be defined to be clear, but
only at a high cost in performance.

Section 3.2 discusses the question of when a program can be run in parallel and
give correct results. The discussion focuses on the issues for software. Lamport [590]

2.2 Parallel Architectures 31

asked a similar question about the parallel computer hardware in an article titled,
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs.” From a programmer’s perspective, a parallel program should execute as
if it were some arbitrary interleaving (but preserving order) of the statements in the
program. This requirement is called sequential consistency and is essentially a “what
you see (or write) is what you get” requirement for executing parallel programs.
Unfortunately, while this matches the way most programmers look at their code, it
imposes severe constraints on the hardware, in large part because of the high latency
of memory accesses relative to the CPU speed.

Because providing sequential consistency limits performance, weaker models
have been proposed. One model proposed in the late 1980s, called processor con-
sistency [390], matched many of the then-current multiprocessor implementations
but (usually) required some explicit action by the programmer to ensure correct pro-
gram behavior. Programmers who use the thread programming model with thread
locks to synchronize accesses to shared data structures satisfy this requirement be-
cause the implementation of the lock and unlock calls in the thread library ensures
that the correct instructions are issued.

Some programmers prefer to avoid the use of locks, however, because of their
relatively high overhead, and instead use flag variables to control access to shared
data (as we used a as the flag variable in the preceding section). Weak consistency
[295] is appropriate for such programs; like processor consistency, the programmer
is required to take special steps to ensure correct operation.

Even weak consistency interferes with some performance optimizations, however.
For this reason, release consistency [375] was introduced. This form of consistency
separates synchronization between two processes or threads into an acquire and a
release step.

The important point for programmers and algorithm developers is that the pro-
gramming model that is most natural for programmers and which reflects the way we
read programs is sequential consistency, and this model is not implemented by par-
allel computer hardware. Consequently, the programmer cannot rely on programs
executing as some interleaved ordering of the statements. The specific consistency
model that is implemented by the hardware may require different degrees of addi-
tional specification by the programmer. Language design for parallel programming
may take the consistency model into account, providing ways for the compiler, not
the programmer, to enforce consistency. Unfortunately, most languages (including
C, C++, and Fortran) were designed for single threads of control and do not provide
any mechanism to enforce consistency.

Note that if memory latency was small, providing sequential consistency would
not greatly impact performance. Weaker forms of consistency would not be needed,
and Lamport’s title [S90] would reflect real machines. In addition, these concepts
address only correctness of parallel programs. Chapter 3 discusses some of the
performance issues that arise in parallel computers, such as the problem of false
sharing. Section 2.2.5 describes some of the instruction set features that are used by
programming models to ensure correct operation of correct programs.

32

Chapter 2 Parallel Computer Architectures

Other Approaches

Two other approaches to parallelism in memory are important. In both of these,
the CPU is customized to work with the memory system. In single-instruction,
multiple-data (SIMD) parallelism, simplified CPUs are connected to memory. Unlike
the previous cases, in the SIMD approach, each CPU executes the same instruction
in each clock cycle. Such systems are well suited for the data-parallel programming
model, where data are divided up among memory systems and the same operation
is performed on each data element. For example, the Fortran code

do i=1, 10000
a(i) = a(i) + alpha * b(i)
enddo

can be converted into a small number of instructions, with each CPU taking a part
of the arrays a and b. While these systems have fallen out of favor as general purpose
computers, they are still important in fields such as signal processing. The most
famous general purpose SIMD system was the Connection Machine (CM-1 and CM-
2) [472].

The other major approach is vector computing. This is often not considered par-
allelism because the CPU has little explicit parallelism, but parallelism is used in the
memory system. In vector computing, operations are performed on vectors, often
groups of 64 floating-point numbers. A single instruction in a vector computer may
cause 64 results to be computed (often with a pipelined floating-point unit), using
vectors stored in vector registers. Data transfers from memory to vector registers
make use of multiple memory banks; the parallelism in the memory supports very
high bandwidths between the CPU and the memory. Vector computers often have
memory bandwidths that are an order of magnitude or more greater than nonvector
computers. We return to vector computing in Section 2.2.3 after discussing paral-
lelism in the CPU.

Parallel vector processors represent one of the most powerful classes of parallel
computer, combining impressive per processor performance with parallelism. As late
as 1996, the top machines on the Top500 list of supercomputers were parallel vector
processors [936], and since then only massively parallel systems with thousands of
processors are faster.

The fastest of these machines may not provide full cache coherency in hardware;
instead, they may require some support from the software to maintain a consistent
view of memory. Machines in this category include the NEC SX-5 and Cray SV1. This
is an example of the sort of tradeoff of performance versus cost and complexity that
continues to face architects of parallel systems.

A distinguishing feature of vector processors and parallel vector processors is the
high memory bandwidth, often 4 to 16 bytes per floating-point operation. This is
reflected in the high sustained performance achieved on these machines for many
scientific applications.

2.2 Parallel Architectures 33

2.2.2

Parallel Random Access Memory

A great deal of theoretical work on the complexity of parallel computation has used
the parallel random access memory (PRAM) model. This is a theoretical model of
a shared-memory computer; different varieties of PRAM vary in the details of how
memory accesses by different threads or processes to the same address are handled.
In order to make the theoretical model tractable, memory access times are usually
considered constant independent of the CPU performing the (nonconflicting) access;
in particular, there are no caches and no factors of 100 or more difference in access
times for different memory locations. While this model is valuable in understanding
the limits of parallel algorithms, the PRAM model represents an abstraction that
cannot be efficiently implemented in practice.

Limits to Memory System Performance

Latency can be hidden by issuing memory operations far enough ahead so that the
data are available when needed. While hiding a few cycles of latency is possible,
the large latencies to DRAM memory are difficult to hide. We can see this situation
by applying Little’s Law to memory requests. Little’s Law is a result from queuing
theory; applied to memory requests, it says that if the memory latency that needs
to be hidden is L and the rate of requests is r, then the number of simultaneously
active requests needed is rL. If this is cast in terms of clock cycles, and if the memory
latency is 100 cycles and a memory request is issued every cycle, then 100 requests
must be active at the same time. The consequences include the following:

1. The bandwidth of the memory system must support more requests (the number
uses the same formula but uses the latency of the interconnect, which may still
be around 10 cycles).

2. There must be enough independent work. Some algorithms, particularly those
that use recurrence relations, do not have much independent work. This
situation places a burden on the algorithm developer and the programmer.

3. The compiler must convert the program into enough independent requests,
and there must be enough resources (such as registers) to hold results as they
arrive (load) or until they depart (store).

Many current microprocessors allow a small number of outstanding memory opera-
tions; only the Cray MTA satisfies the requirements of Little’s Law for main-memory
accesses.

Interconnects

In the preceding section, we described the interaction of memories and CPUs. In this
section, we say a little more about the interconnection networks used to connect
components in a computer (parallel or otherwise).

Many types of networks have been used in the past 30 years for constructing
parallel systems, ranging from relatively simple buses, to 2-D and 3-D meshes, to Clos

34

Chapter 2 Parallel Computer Architectures

networks, and to complex hypercube network topologies [602]. Each type of network
can be described by its topology, its means of dealing with congestion (e.g., blocking
or nonblocking), its approach to message routing, and its bandwidth characteristics.

For along time, understanding details of the topology was important for program-
mers and algorithm developers seeking to achieve high performance. This situation is
reflected both in the literature and in parallel programming models (e.g., the topol-
ogy routines in message-passing interfaces). Recently, networks have improved to
the point that for many users, network topology is no longer a major factor in per-
formance. However, some of this apparent “flatness” (uniformity) in the topology
comes from greatly increased bandwidth within the network. As network endpoints
become faster, network topology may again become an important consideration in
algorithms and programming models. Congestion in the network can still be a prob-
lem if the network performance doesn’t scale with the number of processing nodes.
The term bisection bandwidth describes the bandwidth of the network across any cut
that divides the network into two parts.

Note that there is no best approach. Simple mesh networks, such as those used in
the Intel TFLOPS (ASCI Red) system, provide effective scalability for many applica-
tions through low latency and high bandwidth, even though a mesh network does
not have scalable performance in the sense that the bisection bandwidth of a mesh
does not grow proportionally with the number of nodes. It is scalable in terms of
the hardware required: there is a constant cost per node for each node added.

When interconnects are viewed as networks between computers, the performance
goals have been quite modest. Fast networks of this type typically have latencies of
10 microseconds or more (including essential software overheads) and bandwidths
on the order of 100 MB/s. Interconnects used to implement shared memory, on the
other hand, are designed to operate at memory system speeds and with no extra
software overhead. Latencies for these systems are measured in nanoseconds, and
bandwidths of 1 to 10 gigabytes per second are becoming common.

Early shared-memory systems used a bus to connect memory and processors.
A bus provides a single, shared connection that all devices use and is relatively
inexpensive to build. The major drawback is that if k devices are using the bus at the
same time, under the best of conditions, each gets 1/k of the available performance
(e.g., bandwidth). Contention between devices on the bus can lower the available
bandwidth considerably.

To address this problem, some shared-memory systems have chosen to use net-
works that connect each processor with each memory system. For small numbers
of processors and memories, a direct connection between each processor and mem-
ory is possible (requiring p? connections for p devices); this is called a full crossbar.
For larger numbers of processors, a less complete network may be used. A common
approach is to build an interconnect out of several stages, each stage containing
some number of full crossbars. This provides a complete interconnect at the cost of
additional latency.

An interesting development is the convergence of the technology used for net-
working and for shared memory. The scalable coherent interconnect (SCI) [498] was

2.2 Parallel Architectures 35

2.2.3

an early attempt to provide a memory-oriented view of interconnects and has been
used to build CC-NUMA systems from Hewlett-Packard. Building on work both in
research and in industry, the VIA [962] and Infiniband [503] industry-standard inter-
connects allow data to be moved directly from one processor’s memory to another
along an established circuit. These provide a communication model that is much
closer to that used in memory interconnects and should offer much lower latencies
and higher bandwidths than older, message-oriented interconnects.

Systems without hardware-provided cache coherency often provide a way to
indicate that all copies of data in a cache should be discarded; this is called cache
invalidation. Sometimes this is a separate instruction; sometimes it is a side effect of
a synchronization instruction such as test-and-set (e.g., Cray SV-1). Software can use
this strategy to ensure that programs operate correctly. The cost is that all copies of
data in the cache are discarded; hence, subsequent operations that reference memory
locations stall while the cache is refilled. To avoid this situation, some systems allow
individual cache lines to be invalidated rather than the entire cache. However, such
an approach requires great care by the software, since the failure to invalidate a line
containing data that has been updated by another processor can lead to incorrect
and nondeterministic behavior by the program.

For an engaging discussion of the challenges of implementing and programming
shared-memory systems, see Pfister [763].

CPU Parallelism

Parallelism at the level of the CPU is more difficult to implement than simple
replication of CPUs and memory, even when the memory presents a single shared
address space. However, modest parallelism in the CPU provides the easiest route
to improved performance for the majority of applications because little needs to be
done by the programmer to exploit this kind of parallelism.

Superscalar Processing

Look at Figure 2.2 again, and consider the following program fragment:

real a, b, ¢
integer i, j, k

a=b*c
i=3+k

Assume that the values a, b, ¢, i, j, and k are already in register. These two statements
use different functional units (FPU and ALU, respectively) and different register
sets (FPR and GPR). A superscalar processor can execute both of these statements
(each requiring a single register-to-register instruction) in the same clock cycle
(more precisely, such a processor will “begin execution” of the two statements, since

36

Chapter 2 Parallel Computer Architectures

both may be pipelined). The term superscalar comes from the fact that more than one
operation can be performed in a single clock cycle and that performance is achieved
on nonvector code. A superscalar processor allows as much parallelism as there are
functional units. Because separate instructions are executed in parallel, this is also
called instruction-level parallelism (ILP). For ILP to be effective, it must be easy for
the hardware to find instructions that do not depend on one another and that use
different functional units. Consider the following example, where the CPU has one
adder and one multiplier. If the CPU executes instructions in the order that they
appear, then the code sequence on the left will take three cycles and the one on the
right only two cycles.

a=b*c a=b*c
d=e*f i=3+k
i=3+k d=e*f
1=m+n 1 =m+n

Some CPUs will attempt to reorder instructions in the CPU’s hardware, an action
that is most beneficial to legacy applications that cannot be recompiled. It is often
better, however, if the compiler schedules the instructions for effective use of ILP; for
example, a good code-scheduling compiler would transform the code on the left to
the code on the right (but breaking sequential consistency because the load/store
order is not preserved!).

One major drawback of ILP, then, is that the hardware must rediscover what a
scheduling compiler already knows about the instructions that can be executed in
the same clock cycle.

Explicitly Parallel Instructions

Another approach is for the instruction set to encode the use of each part of the CPU.
That is, each instruction contains explicit subinstructions for each of the different
functional units in the CPU. Since each instruction must explicitly specify more
details about what happens in each clock cycle, the resulting instructions are longer
than in other ISAs. In fact, they are usually referred to as very long instruction word
(VLIW) ISAs. VLIW systems usually rely on the compiler to schedule each functional
unit. One of the earliest commercial VLIW machines was the Multiflow Trace. The
Intel IA64 ISA is a descendant of this approach; the term EPIC (explicitly parallel
instruction computing) is used for the Intel variety. EPIC does relax some of the
restrictions of VLIW but still relies on the compiler to express most of the parallelism.

SIMD and Vectors

One approach to parallelism is to apply the same operation to several different data
values, using multiple functional units. For example, a single instruction might
cause four values to be added to four others, using four separate adders. We have
seen this SIMD style of parallelism before, when applied to separate memory units.
The SIMD approach is used in some current processors for special operations. For

2.2 Parallel Architectures 37

example, the Pentium III includes a small set of SIMD-style instructions for single-
precision floating-point and related data move operations. These are designed for
use in graphics transformations that involve matrix-vector multiplication by 4 x 4
matrices.

Vector computers use similar techniques in the CPU to achieve greater perfor-
mance. A vector computer can apply the same operation to a collection of data called
a vector; this is usually either successive words in memory or words separated by a
constant offset or stride. Early systems such as the CDC Star 100 and Cyber 205 were
vector memory-to-memory architectures where vectors could be nearly any length.
Since the Cray 1, most vector computers have used vector registers, typically lim-
iting vectors to 64 elements. The big advantage of vector computing comes from
the regular memory access that a vector represents. Through the use of pipelining
and other techniques such as chaining, a vector computer can completely hide the
memory latency by overlapping the access to the next vector with operations on a
current vector.

Vector computing is related to VLIW or explicitly parallel computing in the sense
that each instruction can specify a large amount of work and that advanced compilers
are needed to take advantage of the hardware. Vectors are less flexible than the
VLIW or EPIC approach but, because of the greater regularity, can sustain higher
performance on applications that can be expressed in terms of vectors.

Multithreading

Parallelism in the CPU involves executing multiple sets of instructions. Any one
of these sets, along with the related virtual address space and any state, is called
a thread. Threads are most familiar as a software model (see Chapter 10), but they
are also a hardware model. In the usual hardware model, a thread has no explicit
dependencies with instructions in any other thread, although there may be implicit
dependencies through operations on the same memory address. The critical issues
are (1) How many threads issue operations in each clock cycle? and (2) How many
clock cycles does it take to switch between different threads?

Simultaneous multithreading (SMT) [943] allows many threads to issue instructions
in each clock cycle. For example, if there are four threads and four functional units,
then as long as each functional unit is needed by some thread in each clock cycle, all
functional units can be kept busy every cycle, providing maximum use of the CPU
hardware. The compiler or programmer must divide the program into separately
executing threads. The SMT approach is starting to show up in CPU designs including
versions of the IBM Power processors.

Fine-grained multithreading uses a single thread at a time but allows the CPU to
change threads in a single clock cycle. Thus, a thread that must wait for a slow
operation (anything from a floating-point addition to a load from main memory)
can be “set aside,” allowing other threads to run. Since a load from main memory
may take 100 cycles or more, the benefit of this approach for hiding memory latency
is apparent. The drawback when used to hide memory latency can be seen by

38

2.2.4

Chapter 2 Parallel Computer Architectures

applying Little’s Law. Large numbers of threads must be provided for this approach
to succeed in completely hiding the latency of main (rather than cache) memory.
The Cray MTA is the only commercial architecture to offer enough threads for this
purpose.

All of these techniques can be combined. For example, fine-grained multithread-
ing can be combined with superscalar ILP or explicit parallelism. SMT can restrict
groups of threads to particular functional units in order to simplify the processor
design, particularly in processors with multiple FPUs and ALUs.

I/0 and Networking for Parallel Processors

Just as in the uniprocessor case, I[/O and networking for parallel processors have
not received the same degree of attention as have CPU and memory performance.
Fortunately, the lower performance levels of I/O and networking devices relative
to CPU and memory allow a simpler and less expensive architecture. On the other
hand, lower performance puts tremendous strain on the architect trying to maintain
balance in the system. A common I/O solution for parallel computers, particularly
clusters, is not a parallel file system but rather a conventional file system, accessed
by multiple processors.

Recall that data caches are often used to improve the performance of I/O systems
in uniprocessors. As we have seen, it is important to maintain consistency between
the different caches and between caches and memory if correct data are to be
provided to programs. Unfortunately, particularly for networked file systems such
as NFS, maintaining cache consistency seriously degrades performance. As a result,
such file systems allow the system administrator to trade performance against cache
coherence. For environments where most applications are not parallel and do not
have multiple processes accessing the same file at the nearly the same time, cache
coherence is usually sacrificed in the name of speed.

The redundant arrays of inexpensive disks (RAID) approach is an example of
the benefits of parallelism in I/O. RAID was first proposed in 1988 [757], with five
different levels representing different uses of multiple disks to provide fault tolerance
(disks, being mechanical, fail more often than entirely electronic components) and
performance, while maintaining a balance between read rates, write rates, and
efficient use of storage. The RAID approach has since been generalized to additional
levels. Both hardware (RAID managed by hardware, presenting the appearance of a
single but faster and/or more reliable disk) and software (separate disks managed by
software) versions exist.

Parallel I/O can also be achieved by using arrays of disks arranged in patterns
different from those described by the various RAID levels. Chapter 11 describes
parallel I/O from the programmer’s standpoint. A more detailed discussion of parallel
I/O can be found in May [657].

The simplest form of parallelism in networks is the use of multiple paths, each
carrying part of the traffic. Networks within a computer system often achieve paral-
lelism by simply using separate wires for each bit. Less tightly coupled systems, such
as Beowulf clusters, sometimes use a technique called channel bonding, which uses

2.2 Parallel Architectures 39

2.2.5

2.2.6

multiple network paths, each carrying part of the message. GridFTP [22] is an exam-
ple of software that exploits the ability of the Internet to route data over separate
paths to avoid congestion in the network.

A more complex form of parallelism is the use of different electrical or optical
frequencies to concurrently place several messages on the same wire or fiber. This
approach is rarely used within a computer system because of the added cost and
complexity, but it is used extensively in long-distance networks. New techniques for
optical fibers, such as dense wavelength-division multiplexing (DWDM), will allow
100 or more signals to share the same optical fiber, greatly increasing bandwidth.

Support for Programming Models

Special operations are needed to allow processes and threads that share the same
address space to coordinate their actions. For example, one thread may need to
keep others from reading a location in memory until it has finished modifying that
location. Such protection is often provided by locks: any thread that wants to access
the particular data must first acquire the lock, releasing the lock when it is done. A
lock, however, is not easy to implement with just load and store operations (although
it can be done). Instead, many systems provide compound instructions that can be
used to implement locks, such as test-and-set or fetch-and-increment. RISC systems
often provide a “split” compound instruction that can be used to build up operations
such as fetch-and-increment based on storing a result after reading from the same
address only if no other thread or process has accessed the same location since the
load.

Because rapid synchronization is necessary to support fine-grained parallelism,
some systems (particularly parallel vector processors) use special registers that all
CPUs can access. Other systems have provided extremely fast barriers: no process
can leave a barrier until all have entered the barrier. In a system with a fast barrier,
a parallel system can be viewed as sequentially consistent, where an “operation” is
defined as the group of instructions between two barriers. This provides an effective
programming model for some applications.

In distributed-memory machines, processes share no data and typically com-
municate through messages. In shared-memory machines, processes directly access
data. There is a middle ground: remote memory access (RMA). This is similar to
the network-connected, distributed-memory system except that additional hardware
provides put and get operations to store to or load from memory in another node.
The result is still a distributed-memory machine, but one with very fast data trans-
fers. Examples are the Compaq AlphaServer SC, Cray T3D and T3E, NEC Cenju 4,
and Hitachi SR8000.

Parallel Architecture Design Tradeoffs

Parallelism is a powerful approach to improving the performance of a computer sys-
tem. All systems employ some degree of parallelism, even if it is only parallel data

40

2.3

Chapter 2 Parallel Computer Architectures

paths between the memory and the CPU. Parallelism is particularly good at solving
problems related to bandwidth or throughput; it is less effective at dealing with la-
tency or start-up costs (although the ability to switch between tasks provides one way
to hide latency as long as enough independent tasks can be found). Parallelism does
not come free, however. The effects of memory latency are particularly painful, forc-
ing complex consistency models on the programmer and difficult design constraints
on the hardware designer.

In the continuing quest for ever greater performance, today’s parallel computers
often combine many of the approaches discussed here. One of the most popular is
distributed-memory clusters of nodes, where each node is a shared-memory proces-
sor, typically with 2 to 16 processors, though some clusters have SMP nodes with as
many as 128 processors. Another important class of machine is the parallel vector
processor, which uses vector-style CPU parallelism combined with shared memory.

We emphasize that hardware models and software (or programming) models are
essentially disjoint; shared-memory hardware provides excellent message-passing
support, and distributed-memory hardware can (at sometimes substantial cost) sup-
port a shared-memory programming model.

We close this section with a brief mention of taxonomies of parallel computers.
A taxonomy of parallel computers provides a way to identify the important features
of a system. Flynn [340] introduced the best-known taxonomy that defines four dif-
ferent types of computer based on whether there are multiple data streams and/or
multiple instruction streams. A conventional uniprocessor has a single instruction
stream and a single data stream and is denoted SISD. Most of the parallel computers
described in this section have both multiple data and multiple instruction streams
(because they have many memories and CPUs); these are called MIMD. The single
instruction but multiple data parallel computer, or SIMD, has already been men-
tioned. The fourth possibility is the multiple-instruction, single-data category, or
MISD, which is not used. A standard taxonomy for MIMD architectures has not yet
emerged, but it is likely to be based on whether the memory is shared or distributed
and, if it is shared, whether it is cache coherent and how access time varies. Many of
the terms used to describe these alternatives have been discussed above, including
UMA, CC-NUMA, and DSM.

The term single program, multiple data (SPMD) is inspired by Flynn’s taxonomy.
Because the single program has branches and other control-flow constructs, SPMD
is a subset of MIMD, not a subset of SIMD programs. Using a single program, however,
does provide an important simplification for software, and most parallel programs
in technical and scientific computing are SPMD.

Future Directions for Parallel Architectures

In some ways, the future of parallel architectures, at least for the next 5 years, is
clear. Most parallel machines will be hybrids, combining nodes containing a modest
number of commodity CPUs sharing memory in a distributed-memory system.
Many users will have only one shared-memory node; for them, shared-memory

2.4 Conclusion 41

2.4

programming models will be adequate. In the longer term, the picture is much
hazier. Many challenges will be difficult to overcome. Principal among these are
memory latency and the limits imposed by the speed of light. Heat dissipation is
also becoming a major problem for commodity CPUs. One major contributor to the
increase in clock speeds for CPUs has been a corresponding decrease in the size of
the features on the CPU chip. These feature sizes are approaching the size of a single
atom, beyond which no further decrease is possible.

While these challenges may seem daunting, they offer an important opportunity
to computer architects and software scientists—an opportunity to take a step that is
more than just evolutionary.

Aswe have discussed above, one of the major problems in designing any computer
is providing a high-bandwidth, low-latency path between the CPU and memory.
Some of this cost comes from the way DRAMSs operate: data are stored in rows; when
an item is needed, the entire row is read and the particular bit is extracted, and the
other bits in the row are discarded. This simplifies the construction of the DRAM
(separate wires are not needed to get to each bit), but it throws away significant
bandwidth. Observing that DRAM densities are increasing at a rate even faster than
the rate at which commodity software demands memory, several researchers have
explored combining the CPU and memory on the same chip and using the entire
DRAM row rather than a single bit at a time. In fact, an early commercial version
of this approach, the Mitsubishi M32000D3 processor, used a conventional, cache-
oriented RISC processor combined with memory and organized so that a row of
the memory was a cache line, allowing for enormous (for the time) bandwidth in
memory-cache transfers. Several different architectures that exploit processors and
memory in the same chip are currently being explored [275, 756], including ap-
proaches that consider vector-like architectures and approaches that place multiple
processors on the same chip. Other architects are looking at parallel systems built
from such chips; the IBM Blue Gene [121] project expects to have a million-processor
system (with around 32 processors per node).

Superconducting elements promise clock speeds of 100 GHz or more. Of course,
such advances will only exacerbate the problem of the mismatch between CPU and
memory speeds. Designs for CPUs of this kind often rely on hardware multithreading
techniques to reduce the impact of high memory latencies.

Computing based on biological elements often seeks to exploit parallelism by
using molecules as processing elements. Quantum computing, particularly quantum
computing based on exploiting the superposition principle, is a fundamentally
different kind of parallelism.

Conclusion

Parallel architecture continues to be an active and exciting area of research. Most
systems now have some parallelism, and the trends point to increasing amounts of
parallelism at all levels, from 2 to 16 processors on the desktop to tens to hundreds of
thousands for the highest-performance systems. Systems continue to be developed;

42

Chapter 2 Parallel Computer Architectures

see van der Steen and Dongarra [951] for a review of current supercomputers,
including large-scale parallel systems.

Access to memory continues to be a major issue; hiding memory latency is one
area where parallelism doesn’t provide a (relatively) simple solution. The architec-
tural solutions to this problem have included deep memory hierarchies (allowing
the use of low-latency memory close to the processor), vector operations (providing
a simple and efficient “prefetch” approach), and fine-grained multithreading (en-
abling other work to continue while waiting for memory). In practice, none of these
approaches completely eliminates the problem of memory latency. The use of low-
latency memories, such as caches, suffers when the data do not fit in the cache.
Vector operations require a significant amount of regularity in the operations that
may not fit the best (often adaptive) algorithms, and multithreading relies on iden-
tifying enough independent threads. Because of this, parallel programming models
and algorithms have been developed that allow the computational scientist to make
good use of parallel systems. That is the subject of the rest of this book.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy, under Contract W-31-109-ENG-38.

X m -4 W »>» I N

Parallel Programming
Considerations

Ken Kennedy ° Jack Dongarra °
Geoffrey Fox * William Gropp °
Dan Reed

The principal goal of this chapter is to introduce the common issues that a program-
mer faces when implementing a parallel application. The treatment assumes that the
reader is familiar with programming a uniprocessor using a conventional language,
such as Fortran. The principal challenge of parallel programming is to decompose
the program into subcomponents that can be run in parallel. However, to under-
stand some of the low-level issues of decomposition, the programmer must have
a simplified view of parallel machine architecture. Thus, we begin our treatment
with a review of this topic, with the goal of identifying the characteristics that are
most important for the parallel programmer to understand. This discussion, found
in Section 3.1, focuses on two main parallel machine organizations—shared mem-
ory and distributed memory—that characterize most current machines. The section
also treats hybrids of the two main memory designs.

The standard parallel architectures support a variety of decomposition strategies,
such as decomposition by task (task parallelism) and decomposition by data (data
parallelism). Our introductory treatment will concentrate on data parallelism be-
cause it represents the most common strategy for scientific programs on parallel
machines. In data parallelism, the application is decomposed by subdividing the
data space over which it operates and assigning different processors to the work as-
sociated with different data subspaces. Typically this strategy involves some data
sharing at the boundaries, and the programmer is responsible for ensuring that this
data sharing is handled correctly—that is, data computed by one processor and used
by another are correctly synchronized.

Once a specific decomposition strategy is chosen, it must be implemented. Here,
the programmer must choose the programming model to use. The two most common
models are the following:

43

44

Chapter 3 Parallel Programming Considerations

e The shared-memory model, in which it is assumed that all data structures are
allocated in a common space that is accessible from every processor.

e The message-passing model, in which each processor (or process) is assumed to
have its own private data space, and data must be explicitly moved between
spaces as needed.

In the message-passing model, data structures are distributed across the processor
memories; if a processor needs to use a data item that is not stored locally, the pro-
cessor that owns that data item must explicitly “send” it to the requesting processor.
The latter must execute an explicit “receive” operation, which is synchronized with
the send, before it can use the communicated data item. These issues are discussed
in Section 3.2.

To achieve high performance on parallel machines, the programmer must be con-
cerned with scalability and load balance. Generally, an application is thought to
be scalable if larger parallel configurations can solve proportionally larger prob-
lems in the same running time as smaller problems on smaller configurations. To
understand this issue, we introduce in Section 3.3.1 a formula that defines parallel
speedup and explore its implications. Load balance typically means that the proces-
sors have roughly the same amount of work, so that no one processor holds up the
entire solution. To balance the computational load on a machine with processors
of equal power, the programmer must divide the work and communications evenly.
This can be challenging in applications applied to problems that are unknown in
size until run time.

A particular bottleneck on most parallel machines is the performance of the mem-
ory hierarchy, both on a single node and across the entire machine. In Section 3.4,
we discuss various strategies for enhancing the reuse of data by a single processor.
These strategies typically involve some sort of loop “blocking” or “strip mining,” so
that whole subcomputations fit into cache.

Irregular or adaptive problems present special challenges for parallel machines
because it is difficult to maintain load balance when the size of subproblems is
unknown until run time or if the problem size may change after execution begins.
Special methods involving run-time reconfiguration of a computation are required
to deal with these problems. These methods are discussed in Section 3.3.3.

Several aspects of programming parallel machines are much more complicated
than their counterparts for sequential systems. Parallel debugging, for example,
must deal with the possibilities of race conditions or out-of-order execution (see
Section 3.5). Performance analysis and tuning must deal with the especially chal-
lenging problems of detecting load imbalances and communication bottlenecks (see
Section 3.6). In addition, it must present diagnostic information to the user in a
format that is related to the program structure and programming model. Finally,
input/output on parallel machines, particularly those with distributed memory,
presents problems of how to read files that are distributed across disks in a system
into memories that are distributed with the processors (see Section 3.7).

3.1 Architectural Considerations 45

3.1

3.1.1

Cache Cache Cache Cache

Bus

System memory

Figure 3.1 A uniform-access shared-memory architecture.

These topics do not represent all the issues of parallel programming. We hope,
however, that a discussion of them will convey some of the terminology and intu-
ition of parallel programming. In so doing, it will set the stage for the remainder of
this book.

Architectural Considerations

Chapter 2 provided a detailed review of parallel computer architectures. In this
chapter, we provide a simple introduction to these topics that covers most of the
important issues needed to understand parallel programming.

First, as discussed in Chapter 2, we observe that most of the modern parallel
machines fall into two basic categories:

1. Shared-memory machines, which have a single shared address space that can be
accessed by any processor.

2. Distributed-memory machines, in which the system memory is packaged with
individual nodes of one or more processors and communication is required to
provide data from the memory of one processor to a different processor.

Shared Memory

The organization of a shared-memory machine is depicted in Figure 2.5. Figure 3.1
shows a slightly more detailed diagram of a shared-memory system with four pro-
cessors, each with a private cache, interconnected to a global shared memory via
a single system bus. This organization is typically called a symmetric multiprocessor
(SMP).

In a symmetric multiprocessor, each processor can access all locations in global
memory using standard load operations. The hardware ensures that the caches

46

Chapter 3 Parallel Programming Considerations

Memory Memory Memory Memory

Interconnection network

Figure 3.2 A distributed-memory architecture.

are “coherent” by watching the system bus and invalidating cached copies of any
block that is written into. This mechanism is generally invisible to the user, except
when different processors are simultaneously attempting to write into the same
cache line, which can cause the cache line to ping-pong between two different
caches, a situation known as thrashing. To avoid this problem, the programmer and
programming system must be careful with shared data structures and nonshared
data structures that can be located on the same cache block, a situation known as
false sharing. Synchronization of accesses to shared data structures is a major issue on
shared-memory systems—it is up to the programmer to ensure that operations by
different processors on a shared data structure leave that data structure in a consistent
state. Various memory consistency models are discussed in Section 2.2.1.

The main problem with the shared-memory system as described above is that it
is not scalable to large numbers of processors. Most bus-based systems are limited
to 32 or fewer processors because of contention on the bus. If the bus is replaced
by a crossbar switch, systems can scale to as many as 128 processors, although the
cost of the switch increases as the square of the number of processors, making this
organization impractical for truly large numbers of processors. Multistage switches
can be made to scale better at the cost of longer latencies to memory.

Distributed Memory

The scalability limitations of shared memory have led designers to use distributed-
memory organizations such as the one depicted in Figure 3.2. Here the global shared
memory has been replaced by a smaller local memory attached to each processor.
Communication among the processor-memory configurations is over an intercon-
nection network. These systems can be made scalable if a scalable interconnection
network is used. For example, a hypercube has cost proportional to n1g(n) where n
is the number of processors.

The advantage of a distributed-memory design is that access to local data can
be quite fast. On the other hand, access to remote memories requires much more

3.1 Architectural Considerations 47

effort. Most distributed-memory systems support a message-passing programming
model, in which the processor owning a datum must send it to any processor that
needs it. These “send-receive” communication steps typically incur long start-up
times, although the bandwidth after start-up can be high. Hence, on message-passing
systems, it typically pays to send fewer, longer messages.

The principal programming problem for distributed-memory systems is manage-
ment of communication between processors. Usually this means consolidation of
messages between the same pair of processors and overlapping communication and
computation so that long latencies are hidden. In addition, data placement is im-
portant so that as few data references as possible require communication.

Hybrid Systems

As seen in Chapter 2, there are various ways in which the two memory paradigms
are combined. Some distributed-memory machines allow a processor to directly
access a datum in a remote memory. On these distributed shared-memory (DSM)
systems, the latency associated with a load varies with the distance to the remote
memory. Cache coherency on DSM systems is a complex problem that is usually
handled by a sophisticated network interface unit. Given that DSM systems have
longer access times to remote memory, data placement is an important programming
consideration.

For very large parallel systems, a hybrid architecture called an SMP cluster is
common. An SMP cluster looks like a distributed-memory system in which each
of the individual components is a symmetric multiprocessor rather than a single
processor node. This design permits high parallel efficiency within a multiprocessor
node, while permitting systems to scale to hundreds or even thousands of proces-
sors. Programming for SMP clusters provides all the challenges of both shared- and
distributed-memory systems. In addition, it requires careful thought about how to
partition the parallelism within and between computational nodes.

Memory Hierarchy

As discussed in Chapter 2, the design of memory hierarchies is an integral part of the
design of parallel computer systems because the memory hierarchy is a determining
factor in the performance of the individual nodes in the processor array. A typical
memory hierarchy is depicted in Figure 3.3. Here the processor and a level-1 (L1)
cache memory are found on-chip, and a larger level-2 (L2) cache lies between the
chip and the memory.

When a processor executes a load instruction, the L1 cache is first interrogated
to determine if the desired datum is available. If it is, the datum can be delivered
to the processor in two to five processor cycles. If the datum is not found in the L1
cache, the processor stalls while the L2 cache is interrogated. If the desired datum
is found in L2, then the stall may last for only 10 to 20 cycles. If the datum is not
found in either cache, a full cache miss is taken with a delay of possibly 100 cycles or

48

Chapter 3 Parallel Programming Considerations

Processor

On chip

Level-1 cache

Level-2 cache

Bus
I

System memory

Figure 3.3 A standard uniprocessor memory hierarchy.

more. Whenever a miss occurs, the datum is saved in every cache in the hierarchy,
if it is not already there. Note that on modern machines, caches transfer data in a
minimum-size cache block, so that whenever a datum is loaded to that cache, the
entire block containing that datum comes with it.

The performance of the memory hierarchy is determined by two hardware param-
eters: latency, which is the time required to fetch a desired datum from memory, and
bandwidth, which is the number of bytes per unit time that can be delivered from the
memory at full speed. Long latencies increase the cost of cache misses, thus slowing
performance, while limited bandwidth can cause applications to become “memory
bound,” that is, continuously stalled waiting for data. These two factors are compli-
cated by the multilevel nature of memory hierarchies, because each level will have a
different bandwidth and latency to the next level. For example, the SGI Origin 2000
can deliver about 4 bytes per machine cycle from the L1 cache to the processor and
4 bytes per cycle from the L2 cache to the L1 cache, but it can deliver only about 0.8
bytes per cycle from memory to L1 cache [272].

Another important parameter that affects memory performance on a uniprocessor
is the length of the standard cache block (or cache line). Most cache systems will
only transfer blocks of data between levels of the memory hierarchy. If all the data
transferred in a block are used, then no bandwidth is wasted. In that case, the cost
of the cache miss can be amortized over all the data in the block. If only one or
two data items are used, then the average latency is much higher and the effective
bandwidth much lower.

There are two kinds of strategies for overcoming latency problems. Latency hiding
attempts to overlap the latency of a miss with computation. Prefetching of cache

3.2 Decomposing Programs for Parallelism 49

3.2

3.2.1

lines is a latency-hiding strategy. Latency tolerance, on the other hand, attempts
to restructure a computation to make it less subject to performance problems due
to long latencies. The single most important latency tolerance technique is cache
blocking, which brings accesses to the same locations closer together in time so that
accesses after the first are likely to find the desired data in cache.

Strategies that improve reuse in cache also improve effective bandwidth utiliza-
tion. Perhaps the most important way to ensure good bandwidth utilization is to
organize data and computations to use all the items in a cache line whenever it is
fetched from memory. Ensuring that computations access data arrays in strides of
one is an example of how this might be done.

The memory hierarchies on parallel machines are more complicated because of
the existence of multiple caches on shared-memory systems and the long latencies
to remote memories on distributed-memory configurations. There may also be in-
terference between data transfers between memories and from local memory to a
processor.

Decomposing Programs for Parallelism

Given that you have decided to implement a program for a parallel machine, there
are four main issues that you must deal with. First, you must have a way of identify-
ing components of the computation that can safely be run in parallel. Second, you
need to adopt a strategy for decomposing the program into parallel components.
Third, you must actually write the parallel program, which requires that you choose a
programming model and interface for the implementation. Finally, you must choose
an implementation style that is effective for the given application and that works well
with the chosen programming model. In this section, we discuss each of these issues
and illustrate them with an extended example at the end.

Identification of Parallelism

The first task in a parallel implementation is to identify the portions of the code
where there is parallelism to exploit. To do this we must address a fundamental
question: When can we run two different computations in parallel? We cannot answer
this question without thinking about what it means for two computations to run in
parallel. Most programmers think of the meaning of a program to be defined by the
sequential implementation. That is, for a parallel implementation to be correct, it
must produce the same answers as the sequential version every time it is run. So the
question becomes: When can we run two computations from a given sequential program
in parallel and expect that the answers will be the same as those produced by the sequential
program? By “running in parallel,” we mean asynchronously, with synchronization
at the end. Thus, the parallel version of the program will spawn a number of parallel
processes to handle different computations, with each of the computations running
until the end, when they synchronize.

50

3.2.2

Chapter 3 Parallel Programming Considerations

The naive answer to the question is that we can run computations in parallel if
they do not share data. However, we can refine this substantially. Certainly it does
not cause a problem if two computations both read the same data from a shared-
memory location. Therefore, for data sharing to cause a problem, one of the compu-
tations must write into a memory that the other accesses by either reading or writing.
If this is the case, then the order of those memory operations is important. If the
sequential program writes into a location in the first computation and then reads
from the same location in the second computation, parallelizing the computation
might cause the read to be executed first, leading to wrong answers. Such a situation
is called a data race.

In the 1960s, Bernstein [101] formalized a set of three conditions capturing this
notion. For the purposes of parallelization, these three conditions can be stated as
follows: Two computations C; and C, can be run in parallel without synchronization
if and only if none of the following holds:

1. C;q writes into a location that is later read by C,—a read-after-write (RAW) race.

2. Cyreads from alocation that is later written into by C,—a write-after-read (WAR)
race.

3. C;y writes into a location that is later overwritten by C,—a write-after-write
(WAW) race.

We will see how these conditions can be applied in practice to common program-
ming structures.

Decomposition Strategy

Another important task in preparing a program for parallel execution is to choose
a strategy for decomposing the program into pieces that can be run in parallel.
Generally speaking, there are two ways to do this. First, you could identify the tasks
(major phases) in the program and the dependences among them and then schedule
those tasks that are not interdependent to run in parallel. In other words, different
processors carry out different functions. This approach is known as task parallelism.
For example, one processor might handle data input from secondary storage, while
a second generates a grid based on input previously received.

A second strategy, called data parallelism, subdivides the data domain of a problem
into multiple regions and assigns different processors to compute the results for each
region. Thus, in a 2-D simulation on a 1000 x 1000 grid, 100 processors could be
effectively used by assigning each to a 100 x 100 subgrid. The processors would then
be arranged as a 10 x 10 processor array. Data parallelism is more commonly used
in scientific problems because it can keep more processors busy—task parallelism is
typically limited to small degrees of parallelism. In addition, data parallelism exhibits
a natural form of scalability. If you have 10,000 processors to apply to the problem
above, you could solve a problem on a 10,000 x 10,000 cell grid, with each processor
still assigned a 100 x 100 subdomain. Since the computation per processor remains

3.2 Decomposing Programs for Parallelism 51

3.2.3

3.2.4

the same, the larger problem should take only modestly longer running time than
the smaller problem takes on the smaller machine configuration.

Aswe shall see, task and data parallelism can be combined. The most common way
to do this is to use pipelining, a software strategy analogous to the hardware method
described in Section 2.1.1, in which each processor is assigned to a different stage
of a multistep sequential computation. If many independent data sets are passed
through the pipeline, each stage can be performing its computation on a different
data set at the same time. For example, suppose that the pipeline has four stages.
The fourth stage would be working on the first data set, while the third stage would
be working on the second data set, and so on. If the steps are roughly equal in time,
the pipelining into four stages provides an extra speedup by a factor of four over the
time required to process a single data set, after the pipeline has been filled.

Programming Models

Another consideration in forming a parallel program is which programming model
to use. This decision will affect the choice of programming language system and
library for implementation of the application. The two main choices were originally
intended for use with the corresponding parallel architectures.

¢ In the shared-memory programming model, all data accessed by the application
occupy a global memory accessible from all parallel processors. This means
that each processor can fetch and store data to any location in memory
independently. Shared-memory parallel programming is characterized by the
need for synchronization to preserve the integrity of shared data structures.

e In the message-passing model, data are viewed as being associated with particu-
lar processors, so communication is required to access a remote data location.
Generally, to get a datum from a remote memory, the owning processor must
send the datum and the requesting processor must receive it. In this model, send
and receive primitives take the place of synchronization.

Although these two programming models are inspired by the corresponding par-
allel computer architectures, their use is not restricted. It is possible to implement the
shared-memory model on a distributed-memory computer, either through hardware
(distributed shared memory) or software systems that simulate DSMs (e.g., Tread-
Marks [31]). Symmetrically, message passing can be made to work with reasonable
efficiency on a shared-memory system. In each case there may be some loss of per-
formance. Nevertheless, for the remainder of this section we will assume that the
shared-memory model is associated with SMPs and the message-passing model is
used on distributed-memory systems.

Implementation Styles

We now turn to the issues related to the implementation of parallel programs. We
begin with data parallelism, the most common form of parallelism in scientific

52

Chapter 3 Parallel Programming Considerations

codes. There are typically two sources of data parallelism: iterative loops and re-
cursive traversal of tree-like data structures. Below we discuss each of these in turn.
Data parallel loops are typically implemented using two styles: on shared-memory
systems, they correspond to explicitly parallel loops in which the iterations are
unsynchronized, while on distributed-memory systems, the single-program, multiple-
data (SPMD) style is most often used.

Parallel Loop Programming

Loops represent the most important source of parallelism in scientific programs. The
typical way to parallelize loops is to assign different iterations, or different blocks of
iterations, to different processors. On shared-memory systems, this decomposition
is usually coded as some kind of PARALLEL DO loop. According to Bernstein, we can do
this without synchronization only if there are no data races between iterations of the
loop. Thus we must examine the loop carefully to see if there are places where data
sharing of this sort occurs. In the literature on compiler construction, these kinds of
races are identified as dependences [27]. These concepts can be illustrated by a simple
example. Consider the loop:

DOI=1,N
A(I) = A(I) + C
ENDDO

Here each iteration of the loop accesses a different element of the array A so that
there is no data sharing. On the other hand, in the loop

DoIr=1,N
A(I) = A(I+1) + C
ENDDO

there would be a write-after-read race because the element of A being read on any
given iteration is the same as the element of A that is written on the next iteration. If
the iterations are run in parallel, the write might take place before the read, causing
incorrect results.

Thus, the main focus of loop parallelization is the discovery of loops that have no
races. In some cases, it is possible to achieve significant parallelism in the presence
of races. For example, consider:

SUM = 0.0

DOI =1, N
R = F(B(I),C(I)) ! an expensive computation
SUM = SUM + R

ENDDO

There is a race in this loop involving the variable SUM, which is written and read on
every iteration. However if we assume that floating-point addition is commutative
and associative (which it isn’t on most machines), then the order in which results are

3.2 Decomposing Programs for Parallelism 53

added to SUM does not matter. Since we assume that the computation of function F is
expensive, some gain can still be achieved if we compute the values of F in parallel
and then update SUM in the order in which those computations finish. To make this
work, we must ensure that only one processor updates SUM at a time and each finishes
before the next is allowed to begin. On shared-memory systems, critical regions—code
segments that can be executed by only one processor at a time—are designed to do
exactly this. Here is one possible realization of the parallel version:

SUM = 0.0
PARALLEL DO I =1, N
R = F(B(I),C(I)) ! an expensive computation
BEGIN CRITICAL REGION
SUM = SUM + R
END CRITICAL REGION
ENDDO

The critical region ensures that SUM is updated by one processor at a time on a first-
come, first-served basis. Because sum reductions of this sort are really important
in parallel computation, most systems offer a primitive function that computes
such reductions using a scheme that takes time proportional to the logarithm of
the number of processors.

SPMD Programming

A programmer who wishes to perform the sum reduction above on a distributed-
memory message-passing system will need to rewrite the program to use explicit
message passing. As a matter of convenience, the programmer will often employ the
SPMD style [246, 525]. In an SPMD program, all of the processors execute the same
code, but apply the code to different portions of the data. Scalar variables are typically
replicated on all of the processors and redundantly computed (to identical values)
on each processor. In addition, the programmer must insert explicit communication
primitives in order to pass the shared data between processors. For the sum-reduction
calculation above, the SPMD program might look something like this:

I This code is executed by all processors
I MYSUM, MYFIRST, MYLAST, R, and I are private Tocal variables
I MYFIRST and MYLAST are computed separately on each processor
! to point to nonintersecting sections of B and C
! GLOBALSUM is a global collective communication primitive
MYSUM = 0.0
DO I = MYFIRST, MYLAST

R = F(B(I),C(I)) ! an expensive computation

MYSUM = MYSUM + R
ENDDO
SUM = GLOBALSUM(MYSUM)

54

3.25

Chapter 3 Parallel Programming Considerations

Here the communication is built into the function GLOBALSUM, which takes one
value of its input parameter from each processor and computes the sum of all
those inputs, storing the result into a variable that is replicated on each processor.
The implementation of GLOBALSUM typically uses a logarithmic algorithm. Explicit
communication primitives and SPMD programming will be further illustrated in
the pipeline parallelism example in Section 3.2.5.

Recursive Task Programming

To handle recursive parallelism in a tree-like data structure, the programmer would
typically create a new process or thread whenever it is necessary to traverse two
different paths down the tree in parallel. For example, a search for a particular value
in an unordered tree would examine the root first. If the value were not found, it
would fork a separate process to search the right subtree and then search the left
subtree itself.

A Simple Example

We conclude this section with a discussion of a simple problem that is intended
to resemble a finite-difference calculation. We show how this example might be
implemented using both a shared-memory, parallel-loop model and a distributed-
memory SPMD model.

Assume that we begin with a simple Fortran code that computes a new average
value for each data point in array A using a two-point stencil and stores the average
into array ANEW. The code might look like the following:

REAL A(100), ANEW(100)

DOI =2, 99
ANEW(I) = (A(I-1) + A(I+1)) * 0.5
ENDDO

Suppose that we wish to implement a parallel version of this code on a shared-
memory machine with four processors. Using a parallel-loop dialect of Fortran, the
code might look like:

REAL A(100), ANEW(100)

PARALLEL DO I =2, 99
ANEW(I) = (A(I-1) + A(I+1)) * 0.5
ENDDO

While this code will achieve the desired result, it may not have sufficient granu-
larity to compensate for the overhead of dispatching parallel threads. In most cases,
it is better to have each processor execute a block of iterations to achieve higher

3.2 Decomposing Programs for Parallelism 55

granularity. In our example, we can ensure that each processor gets a block of either
24 or 25 iterations by substituting a strip-mined version with only the outer loop
parallel:

REAL A(100), ANEW(100)

PARALLEL DO IB = 1, 100, 25
PRIVATE I, myFirst, mylast
myFirst = MAX(IB, 2)
mylLast = MIN(IB + 24, 99)
DO I = myFirst, mylLast
ANEW(I) = (A(I-1) + A(I+1)) * 0.5
ENDDO
ENDDO

Here we have introduced a new language feature. The PRIVATE statement specifies
that each iteration of the IB-loop has its own private value of each variable in
the list. This permits each instance of the inner loop to execute independently
without simultaneous updates of the variables that control the inner loop iteration.
The example above ensures that iterations 2 through 25 are executed as a block
on a single processor. Similarly, iterations 26 through 50, 51 through 75, and 76
through 99 are executed as blocks. This code has several advantages over the simpler
version. The most important is that it should have reasonably good performance on
a machine with distributed shared memory in which the arrays are stored 25 to a
processor.

Finally, we turn to the message-passing version of the code. This code is written in
SPMD style so that the scalar variables myP, myFirst, and myLast are all automatically
replicated on each processor—the equivalent of PRIVATE variables in shared memory.
In the SPMD style, each global array is replaced by a collection of local arrays in
each memory. Thus the 100-element global arrays A and ANEW become 25-element
arrays on each processor named Alocal and ANEWTocal, respectively. In addition, we
will allocate two extra storage locations on each processor—A(0) and A(26)—to hold
values communicated from neighboring processors. These cells are often referred to
as ghost cells, halo cells, or overlap areas.

Now we are ready to present the message-passing version:

I This code is executed by all processors

I myP is a private local variable containing the processor number
! myP runs from 0 to 3

I Alocal and ANEWlocal are local versions of arrays A and ANEW

IF (myP .NE. 0) send Alocal(1l) to myP-1
IF (myP .NE. 3) send Alocal(25) to myP+1
IF (myP .NE. 0) receive Alocal(0) from myP-1

56

3.3

Chapter 3 Parallel Programming Considerations

IF (myP .NE. 3) receive Alocal(26) from myP+1
myFirst = 1
myLast = 25
IF (myP == 0) myFirst = 2
IF (myP == 3) mylLast = 24
DO I = myFirst, mylast
ANEWlocal(I) = (Alocal(I-1) + Alocal(I+1)) * 0.5
ENDDO

Note that the computation loop is preceded by four communication steps in
which values are sent to and received from neighboring processors. These values are
stored into the overlap areas in each local array. Once this is done, the computation
can proceed on each of the processors using the local versions of A and ANEW.

As we shall see later in the book, performance can be improved by inserting a
purely local computation between the sends and receives in the above example.
This is an improvement because the communication is overlapped with the local
computation to achieve better overall parallelism. The following code fragment
inserts the computation on the interior of the region before the receive operations,
which are only needed for computing the boundary values.

! This code is executed by all processors

! myP is a private Tocal variable containing the processor number
! myP runs from 0 to 3

! Alocal and ANEWlocal are Tocal versions of arrays A and ANEW

IF (myP .NE. 0) send Alocal(1l) to myP-1
IF (myP .NE. 3) send Alocal(25) to myP+1
DO I =2, 24

ANEWlocal(I) = (Alocal(I-1) + Alocal(I+1)) * 0.5
ENDDO
IF (myP .NE. 0) THEN

receive Alocal(0) from myP-1

ANEWlocal(1) = (Alocal(0) + Alocal(2)) * 0.5
ENDIF
IF (myP .NE. 3) THEN

receive Alocal(26) from myP+1

ANEWTocal(25) = (Alocal(24) + Alocal(26)) * 0.5
ENDIF

Enhancing Parallel Performance

Parallel programming is difficult in part because high performance does not auto-
matically follow from parallel implementation. To achieve the highest possible
performance, the implementer must take a number of other considerations into
account. First, he or she must balance the loads on the components of the computing

3.3 Enhancing Parallel Performance 57

3.3.1

configuration so that no single component dominates the running time. Second,
solving very large problems requires that the computation scale to large numbers of
parallel processors; the implementation must be crafted to achieve this goal. Third,
some components of the problem, though serial, may be made faster by a partial
parallelization strategy known as pipelining. Finally, the implementer may need
special strategies to deal with computations that are irregular. Irregular computations
include sparse matrix calculations and calculations defined on irregular grids, such
as those that employ adaptive meshing. This section provides a brief introduction
to each of these issues.

Scalability and Load Balance

The idealized goal of parallel computation is to have the running time of an appli-
cation reduced by a factor that is inversely proportional to the number of processors
used. That is, if a second processor is used, the running time should be half of what
is required on one processor. If four processors are used, the running time should be
a fourth. Any application that achieves this goal is said to be scalable. Another way
of stating the goal is in terms of speedup, which is defined to be the ratio of the run-
ning time on a single processor to the running time on the parallel configuration.
That is,

Speedup(n) = T(1)/T (n)

An application is said to be scalable if the speedup on n processors is close to
n. Scalability of this sort has its limits—at some point the amount of available
parallelism in the application will be exhausted, and adding further processors may
even detract from performance.

This leads us to consider a second definition of scalability, called scaled speedup—
an application will be said to be scalable if, when the number of processors and the
problem size are increased by a factor of i, the running time remains the same [418].
This captures the notion that larger machine configurations make it possible to solve
correspondingly larger scientific problems.

There are three principal reasons why scalability is not achieved in some applica-
tions. First, the application may have a large region that must be run sequentially.
If we assume that Ty is the time required by this region and Tp is the time required
by the parallel region, the speedup for this code is given by:

Speedup(n) = LZP < L)
Ts+ L Ts

This means that the total speedup is limited by the ratio of the sequential running
time to the running time of the sequential region. Thus if 20 percent of the running
time is sequential, the speedup cannot exceed 5. This observation is known as
Amdahl’s Law [30].

A second impediment to scalability is the requirement for a high degree of
communication or coordination. In the global summation example above, if the

58

Chapter 3 Parallel Programming Considerations

computation of the function F is fast, then the cost of the computation is dominated
by the time required to take the sum, which is logarithmic at best. This can be
modeled to produce a revised speedup equation [338]:

T(1) 1
Speedup(n) = =0 < >
peet = s oy cigm 1g(n)

Even if c is tiny, the logarithmic factor in the denominator will grow with the number
of processors to a significant size. When the number of processors becomes large
enough, the speedup will stop increasing and begin to decline.

The third major impediment to scalability is poor load balance. If one of the
processors takes half of the parallel work, speedup will be limited to a factor of
two, no matter how many processors are involved. Thus, a major goal of parallel
programming is to ensure good load balance.

If all the iterations of a given loop execute for exactly the same amount of time,
load balance can be achieved by giving each processor exactly the same amount of
work to do. Thus, the iterations could be divided into blocks of equal number, so that
each processor gets roughly the same amount of work, as in the following example:

K = CEIL(N/P)
PARALLEL DO I = 1, N, K
DO ii = I, MIN(I+K-1,N)
A(ii) = B(ii+1) + C
ENDDO
ENDDO

However, this strategy fails if the work on each iteration takes a variable amount of
time. On shared-memory machines, this can be ameliorated by taking advantage of
the way parallel loops are scheduled. On such machines, each processor goes back to
the queue that hands out iterations when it has no work to do. Thus, by reducing the
amount of work on each iteration (while keeping it above threshold) and increasing
the total number of iterations, we can ensure that other processors take up the slack
for a processor that has a long iteration. If the same example were coded as

K = CEIL(N/(P*4))
PARALLEL DO I =1, N, K
DO ii = I, MIN(I+K-1,N)
A(ii) = B(ii+1) + C
ENDDO
ENDDO

then on average, each processor should execute four iterations of the parallel loop.
However, if one processor gets stuck, the others will take on more iterations to
naturally balance the load.

In cases where neither of these strategies is appropriate, such as when the com-
puter is a distributed-memory, message-passing system or when load is not known
until run time, a dynamic load-balancing scheme may be required, in which the as-

3.3 Enhancing Parallel Performance 59

3.3.2

signment of work to processors is done at run time. Hopefully, such a load-balancing
step will be required infrequently so that the cost is amortized over a number of
computation steps.

Pipeline Parallelism

To this point, we have been dealing primarily with parallelism that is asynchronous
in the sense that no synchronization is needed during parallel execution. (The
exception was the summation example, which required a critical section.) Ideally,
we should always be able to find asynchronous parallelism, because this gives us the
best chance for scalability. However, even when this is not possible, some parallelism
may be achievable by staggering initiation of tasks and synchronizing them so
that subsections with no interdependencies are run at the same time. This strategy
is known as pipelining because it is the software analogue of pipelining in CPU
hardware, described in Section 2.1.1. To see how this works, consider the following
variant of successive overrelaxation:

DO J = 2, N-1
DO I =2, N-1
A(I,J) = (A(I-1,J) + A(I+1,J) + A(I,Jd-1) + A(I,J+1)) * 0.25
ENDDO
ENDDO

Although neither of the loops can be run in parallel, there is some parallelism in
this example, as is illustrated in Figure 3.4. All of the values on the shaded diagonal
can be computed in parallel because there are no dependences between any of these
elements.

Suppose, however, that we wish to compute all the elements in any column on
the same processor, so that A(*,J) would be computed on the same processor for
all values of J. If we compute the elements in any column in sequence, all of the
dependences along that column are satisfied. However, we must still be concerned
about the rows. To get the correct result, we must delay the computation on each
row by enough to ensure that the corresponding array element on the previous row
is completed before the element on the current row is computed. This strategy can
be implemented via the use of events—synchronization mechanisms that make it
possible for one process to “wait” for something to happen (an event that is “posted”)
in another process. (See Chapter 12 for more on events.) The following pseudocode
demonstrates this approach:

EVENT READY(N,N) ! Initialized to false
PARALLEL DO I =1, N
POST(READY(I,1))
ENDDO
PARALLEL DO J = 2, N-1
DO I =2, N-1

60

3.3.3

Chapter 3 Parallel Programming Considerations

A(1,T) A(1,2) A1,3) A(1,4) A(1,5)
AN
—— 4 — + —,

|)
A2,1) A2,2) A2,3) A(2,4) A,5)| ,

| 7

4 /
AG3,1) 1 AQ3,2) AQ3,3) AG3,4) AQ3,5)
/7

| 4 /
A4,1) | A(4,2) A(4,3) A(4,4) A(4,5)

| ’
A(5,1) A(5,2) A(5,3) A(5,4) A(5,5)

\

/ . .
N _ “Region of parallelism

Figure 3.4 Wavefront parallelism.

WAIT(READY(I,J-1))
A(I,J) = (A(I-1,J) + A(I+1,d) + A(I,J-1) + A(I,J+1)) * 0.25
POST (READY(I,J))
ENDDO
ENDDO

Initially all the events are false—a wait on a false event will suspend the executing
thread until a post for the event is executed. All of the READY events for the first
column are then posted, so the computation can begin. The computation for the first
computed column, A(*,2), begins immediately. As each of the elements is computed,
its READY event is posted so that the next column can begin computation of the
corresponding element. The timing of the computation is illustrated in Figure 3.5.
Note that the event posting has aligned the region of parallelism so that all processors
are simultaneously working on independent calculations.

Regular versus Irregular Problems

Most of the examples we have used in this chapter are regular problems—defined
on a regular, fixed grid in some number of dimensions. Although a large fraction of
scientific applications focus on regular problems, a growing number of applications
address problems that are irregular in structure or use adaptive meshes to improve
efficiency. This means that the structure of the underlying grid is usually not known
until run time. Therefore, these applications present special difficulties for parallel

3.3 Enhancing Parallel Performance 61

I
A2,1) | A2,2)
AG3,1) | AG3,2) AQ2,3)
A(4,1) A(4,2) AG3,3) AQ2,4)
-y NV T TN ¥ — —
: N |
= A1) 1 AG,2) A(4,3) AG,4) ARS ||
I______ L el
Region of
parallelism
AG5,3) A(4,4) AG3,5)
A(5,4) A@4,5)
A(5,5)
\

Figure 3.5 Wavefront parallelism with synchronization.

implementation because static, compile-time methods cannot be used to perform
load balancing and communication planning.

To illustrate these issues we present a code fragment from a simple force calcula-
tion that might be part of a molecular dynamics code.

DO I = 1, NPAIRS
F(LI(I)) = F(LI(I)) + FORCE(X(L1(I)), X(L2(I)))
F(L2(I)) = F(L2(I)) + FORCE(X(L2(I)), X(L1(I)))
ENDDO
DO I = 1, NPART
X(I) = MOVE(X(I), F(I))
ENNDO

The first loop is intended to traverse a list of particle pairs where the two particles
in the pair are located at index L1(I) and index L2(I), respectively. In molecular
dynamics codes, these pair lists are often constructed by taking every pair of particles

62

Chapter 3 Parallel Programming Considerations

that are within some cutoff distance of one another. For each pair, the force arising
from the particle interaction (due to electromagnetic interaction) is calculated by
function FORCE and added to an aggregate force for the particle. Finally, the aggregate
forces are used to calculate the new location for each particle, represented by X(I).

This code illustrates a fundamental characteristic of irregular problems, namely
the use of subscripted index variables in the index positions of the fundamental
data quantities of the problem. These index arrays are computed at run time, so the
actual data locations of the quantities involved in calculations in the first loop are
not known until the pair list is constructed at run time. Therefore, load balancing
cannot take place until the pair list is constructed. Furthermore, if communication
is required, the optimization of communication must be postponed until run time
as well.

To address this issue, a standard approach is to perform three steps as execution
begins.

1. Read in all the data.

2. Perform load balancing by distributing data to different processors and possibly
reorganizing data within a processor.

3. Step through the computation loop (without performing a computation) to
determine a communication schedule, if one is needed. Schedule, if required.

The last step is known as the inspector because its goal is to inspect the calculation
to plan communication.

In the force calculation above, the goal of load balancing would be to organize
the layout of particles and force pairs so that the maximum number of particle
interactions are between particles on the same processor. There are many ways to
approach this problem. As an example, we will describe a simple but fairly effective
strategy that uses Hilbert curves, often called space-filling curves, to lay out the data.
A Hilbert curve traces through 1-D, 2-D, or 3-D space in an order that ensures that
particles that are close together on the curve are usually close together in space.
The particles can then be ordered in memory by increasing position on the Hilbert
curve, with an equal number of particles allocated to each processor. Pairs can be
allocated to processors so that it is likely that one element of the pair will reside
on the processor where the pair resides. In many cases this can be accomplished
by some form of lexicographic sort applied to the pairs [664]. Finally, the pairs
requiring communication can be determined by an inspector that steps through
the pair list to see if one of the elements of the pair is on another processor. All
of the communication from the same processor can then be grouped and the data
delivered in a block from each processor at the beginning of every execution step.

Although this discussion is much oversimplified, it should give the flavor of the
strategies used to parallelize irregular problems. There is one further complication
worth mentioning, however. In the example above, the pair list may need to be
reconstructed from time to time, as the particles move around and some drift out
of the cutoff area while others drift in. When this happens, it may be necessary

3.4 Memory-Hierarchy Management 63

3.4

3.4.1

to reorganize the data, rebalance the load, and invoke the inspector once again.
However, this should be done as seldom as possible to ensure that the potentially
high cost of these steps is amortized over as many execution steps as possible.

Memory-Hierarchy Management

In this section we discuss programming strategies that can help make optimal use
of the memory hierarchy of a modern parallel computer system. We begin with the
strategies that improve the performance of a uniprocessor node within the memory
and then proceed to the issues that are complicated by parallelism.

Uniprocessor Memory-Hierarchy Management

As discussed in Section 2.1.2, a critical issue in getting good memory-hierarchy
performance on a uniprocessor is achieving high degrees of reuse of data in both
registers and cache memory. Many programmers are surprised to find that proper
organization of their programs can dramatically affect the performance that they
achieve.

Three principal strategies available to programmers for improving the perfor-
mance of memory hierarchy are described below.

Stride-One Access

Most cache memories are organized into blocks that contain multiple data items.
For example, the level-2 cache block on the SGI Origin can hold 16 double-precision
floating-point numbers. On every machine, these numbers are at contiguous ad-
dresses in memory. If a program is arranged to iterate over successive items in
memory, it can suffer at most one cache miss for every cache block. All successive
data items in the cache block will be hits. Thus, programs in which the loops access
contiguous data items are typically much more efficient than those that do not.

Blocking

Program performance can also be improved by ensuring that data remains in cache
between subsequent accesses to the same memory location. As an example, consider
the following code, which is a simple analogue of matrix multiplication:

DoIr=1,N
D0J =1
A(I)
ENDDO
ENDDO

N
A(I) + B(J)

Although this loop achieves a high degree of reuse for array A, missing only N/L
times where L is the size of the cache block, it has a dismal performance on array
B, on which it incurs N2/L misses. The problem is that, even though access to B is

64

Chapter 3 Parallel Programming Considerations

stride-one, B(J) cannot remain in cache until its next use on the next iteration of the
outer loop. Therefore, all N/L misses will be incurred on each iteration of the outer
loop. If the loop on J is “blocked” or “strip mined” to a size where all the elements
of B that it touches can remain in cache, then the following loop results:

DO J = 1,N,S
D0I=1,N
DO jj = J, MIN(J+S,N)
A(T) = A(T) + B(3J)
ENDDO
ENDDO
ENDDO

where S is the maximum number of elements of B that can remain in cache between
two iterations of the outer loop.

In this version, we have blocked the inner loop to the size of the cache and moved
the iterate-by-strip loop to the outermost loop position. In this new organization,
we suffer at most N/L misses for B, because each element of B is reused N times. On
the other hand, we increase the number of misses on A to N2 /(LS) because we must
now miss for all the elements of A on each of the N/S iterations of the outer loop.
Overall, the number of misses has been reduced by a factor of S.

Data Reorganization

A third strategy for improving the behavior of a uniprocessor memory hierarchy is
to reorganize the data structures so that data items that are used together are stored
together in memory. For example, many older Fortran programs use multidimen-
sional arrays to store complex data structures. In these programs, one often sees an
array declaration such as:

DOUBLE PRECISION PART(10000,5)

Here the second dimension is being used to store the fields of a data structure about
one of the 10,000 particles in a simulation. If the fields describing a single particle are
updated together, this is the wrong data organization because Fortran uses column-
major order and the five fields are likely to appear on different cache lines. This
organization can reduce the effective bandwidth in the program by up to a factor of
five. A much better organization for Fortran is to swap the data dimensions:

DOUBLE PRECISION PART(5,10000)

However, this requires rewriting every access to the array PART in order to ensure cor-
rectness. Thus, this task is often best left to a tool, although the programmer should
be aware of this problem while writing the program initially. Data reorganization
is also very effective on irregular problems, even though the reorganization must
take place at run time. In irregular particle codes, the cost of misses due to bad data
organization far outweighs the cost of rearranging the data at run time. Judicious

3.4 Memory-Hierarchy Management 65

3.4.2

use of these strategies can improve performance by integer factors. However, they
are tedious to apply by hand, so they are better carried out by automatic means.
In particular, cache blocking and interchange to achieve stride-one access have been
built into most modern Fortran compilers, while tools for global data reorganization
exist as research prototypes [273].

Multiprocessor Memory Hierarchies

Multiprocessors add a number of complexities to the problem of managing accesses
to memory and improving reuse. In this section, we focus on three of the most
significant problems.

Synchronization

In many parallel programs it is useful to have several different processors updating
the same shared data structure. An example is a particle-in-cell code where the forces
on a single particle are computed by a number of different processors, each of which
must update the aggregate force acting on that particle. If two processors attempt two
different updates simultaneously, incorrect results may occur. Thus, it is essential to
use some sort of locking mechanism, such as a critical region, to ensure that when
one processor is performing such an update on a given particle, all other updates for
the same particle are locked out. Typically, processors that are locked out execute
some sort of busy-waiting loop until the lock is reset. Most machines are designed
to ensure that these loops do not cause ping-ponging of the cache block containing
the lock.

Elimination of False Sharing

False sharing is a problem that arises when two different processors are accessing
distinct data items that reside on the same cache block. On a shared-memory
machine, if both processors attempt to write into the same block, the block can
ping-pong back and forth between those processor caches. This phenomenon is
known as false sharing because it has the effect of repeated access to a shared datum
even though there is no real sharing. False sharing is typically avoided by ensuring
that data used by different processors reside on different cache blocks. This can
be achieved by the programmer or a compiler through the use of padding in data
structures. Padding is the process of inserting empty bytes in a data structure to
ensure that different elements are in different cache blocks.

Communication Minimization and Placement

Communication with a remote processor can have a number of negative effects on
the performance of a computation node in a parallel machine. First, the commu-
nication itself can cause computation to wait. The typical strategy for addressing
this problem is to move send and receive commands far enough apart so that the

66

3.5

Chapter 3 Parallel Programming Considerations

time spent on communication can be overlapped with computation. Alternatively,
a program reorganization may reduce the frequency of communication, which not
only reduces the number of start-up delays that must be incurred but also reduces
the interference with local memory-hierarchy management. A form of blocking can
be useful in this context—if large data structures are being cycled through all the
processors of a distributed-memory computer, it pays to block the data so that all
computations involving that data structure by one processor can be carried out at
the same time. This ensures each block has to be communicated to a given processor
only once.
Once again, many of the useful strategies can be automated in a compiler.

Parallel Debugging

Parallel debugging is the process of ensuring that a parallel program produces correct
answers. We will say that it produces correct answers if it satisfies two criteria:

1. Absence of nondeterminism. It always produces the same answers on the same
inputs.

2. Equivalence to the sequential version. It produces the same answers as the sequen-
tial program on which it is based.

These criteria are based on two underlying assumptions. First, we assume that a par-
allel program will typically be developed by producing and debugging the sequential
version and then converting it to use parallelism. In this model the sequential pro-
gram becomes a specification for the desired answers. Note that some differences
from the sequential answers are considered “tolerable.” For example, regrouping
of sequential summations into parallel global-sum operations may produce slightly
different answers due to the nonassociativity of floating-point arithmetic.

Second, we assume that nondeterminism is not a desirable property. Although
there is much discussion in the literature of using nondeterminism in program-
ming, our experience is that most scientific users want repeatability in their codes
(except of course for Monte Carlo codes and the like). Because the sequential pro-
gram is almost always equivalent to the parallel program run on one processor, we
concentrate on the goal of eliminating nondeterminism.

In shared-memory programming models, the principal sources of nondetermin-
ism are data races. A data race occurs when different iterations of a parallel loop share
data, with one iteration writing to the shared location. As an example, consider the
following loop.

PARALLEL DO I =1, N
A(I) = A(I+5) + B(I)
ENDDO

Even though this loop can be vectorized, it has a data race because if iteration 6 gets
far enough ahead of iteration 1, it might store into A(6) before the value is loaded on

3.6 Performance Analysis and Tuning 67

3.6

iteration 1. This produces wrong answers because the sequential version reads the
value of A(6) as it is on loop entry.

Data races are often difficult to detect because they do not show up on every
execution. Thus, tools are typically required to detect them. One strategy that can
be used to uncover races is to run all the parallel loops in a program backward and
forward sequentially and compare the answers. Although this is not guaranteed to
find all the races, it can uncover the most common ones.

A number of sophisticated tools have been developed or proposed to detect data
races. These generally fall into two classes:

1. Static analysis tools, which use the analysis of dependence from compiler
parallelization to display potential data races in parallel loops. An example
from the CRPC is the ParaScope Editor [70].

2. Dynamic analysis tools, which use some sort of program replay with shadow
variables to determine if a race might occur at run time.

In message-passing programs, the most common parallel bugs arise from messages
that arrive out of order. When most message-passing programs execute receive
operations from a given processor, the programmer expects that the message would
be one that came from a particular send. However, if more than one message is being
sent between the same pair of processors, they might arrive out of order, leading to
nondeterministic results. For this reason, many message-passing libraries use “tags”
to ensure that send and receive pairs match. A tag can be thought of as specifying a
specific channel on which messages are to be watched for. Since there can be more
than one channel between the same pair of processors, this can be used to ensure
that message-out-of-order bugs do not occur.

Another problem in message-passing programs arises because it is possible to
execute a receive of a message that never arrives. This can happen, for example, if the
receive is always executed but the send is executed only under certain conditions.
A somewhat symmetric bug occurs when more messages are sent than are received,
due to mismatching conditions. This can cause messages to never be received, with
resulting wrong (or at least surprising) answers. Problems of this sort can usually be
detected by analyzing traces of communication operations.

Performance Analysis and Tuning

Because the primary goal of parallel computing is to obtain higher performance than
is possible via sequential computation, optimizing parallel application behavior is
an integral part of the program development process. This optimization requires
knowledge of the underlying architecture, the application code parallelization strat-
egy, and the mapping of the application code and its programming model to the
architecture.

Chapter 3 Parallel Programming Considerations

The basic performance tuning cycle consists of four steps:

e Automatic or manual instrumentation. This instrumentation typically inserts
measurement probes in application code and system software, perhaps with
additional software measurement of hardware performance counters.

e Execution of the instrumented application and performance data. Such executions
record hardware and software metrics for offline analysis. The recorded data
may include profiles, event traces, hardware counter values, and elapsed times.

e Analysis of the captured performance data. Using recorded data, analysis, either
manual or automatic, attempts to relate measurement data to hardware re-
sources and application source code, identifying possible optimization points.

* Modification of the application source code, recompilation with different optimization
criteria, or modification of run-time system parameters. The goal of these modifi-
cations is to better match application behavior to the hardware architecture
and the programming idioms for higher performance.

As a concrete example, consider an explicitly parallel message-passing code, writ-
ten in C or Fortran 77 and intended for execution on a distributed-memory parallel
architecture (e.g., a Linux PC cluster with a 100 MB/s Ethernet interconnect). A de-
tailed performance instrumentation might include (a) use of a profiler to estimate
procedure execution times, (b) recording of hardware instruction counters to identify
operation mixes and memory-access costs, and (c) use of an instrumented version
of the Message Passing Interface (MPI) standard to measure message-passing over-
head.

A profile, based on program-counter sampling to estimate execution times, typ-
ically identifies the procedures where the majority of time is spent. Examining the
program’s static call graph often suggests the invocation pattern responsible for the
overhead (e.g., showing that inlining the body of a small procedure at the end of a
call chain in a loop nest would reduce overhead).

If a procedure profile is insufficient, hardware counter measurements, when asso-
ciated with loop nests, can identify the types and numbers of machine instructions
associated with each loop nest. For example, seeing memory reference instruction
stall counts may suggest that a loop transformation or reblocking would increase
cache locality.

Finally, analysis and visualization of an MPI trace (e.g., via Jumpshot) may suggest
that the computation is dominated by the latency associated with transmission of
many small messages. Aggregating data and sending fewer, larger messages may lead
to substantially higher performance.

The problems for data-parallel or implicitly parallel programs are similar, yet
different. The range of possible performance remedies differs, based on the program-
ming model (e.g., modifying array distributions for better memory locality), but the
instrumentation, execution, and analysis, and code optimization steps remain the
same.

3.7 Parallel Input/Output 69

3.7

Perhaps most critically, the common theme is the need to intimately understand
the relations among programming model, compiler optimizations, run-time system
features and behavior, and architectural features. Because performance problems
can arise at any point in the multilevel transformations of user-specified appli-
cation code that precede execution, one cannot expect to obtain high performance
without investing time to understand more than just application semantics.

Parallel Input/Output

Most parallel programs do more than just compute (and communicate): they must
also access data on secondary storage systems, whether for input or output. And
precisely because parallel computations can execute at high speeds, it is often the
case that parallel programs need to access large amounts of data. High-performance
I/O hence becomes a critical concern. On a parallel computer, that inevitably means
parallel 1/0; without parallelism we are reduced to reading and writing files from
a single processor, which is almost always guaranteed to provide only low perfor-
mance. That is, we require techniques that can allow many processors to perform
I/O at the same time, with the goal of exploiting parallelism in the parallel com-
puter’s communication network and I/O system.

The parallel programmer can take two different approaches to achieving concur-
rency in I/O operations. One approach is for each process to perform read and write
operations to a distinct file. While simple, this approach has significant disadvan-
tages: programs cannot easily be restarted on different numbers of processors, the
underlying file system has little information on which to base optimization deci-
sions, and files are not easily shared with other programs. In general, it is preferable
to perform true parallel I/O operations, which allow all processes to access a single
shared file.

The parallel I/O problem is multifaceted and often quite complex. This is due
to the need to deal with issues at multiple levels, including the I/O architecture
of the parallel computer (e.g., each compute processor can have a local disk, or
disks can be managed by distinct I/O processors), the file system that manages
access to this I/O architecture, the high-level libraries that may be provided to
map application-level I/O requests into file system operations, and the user-level
application programming interface(s) (API) used to access lower-level functions.
Fortunately, after much research, the community has succeeded in developing a
standard parallel I/O interface, namely the parallel I/O functions included in the
MPI-2 standard. (These are sometimes also referred to as MPI-IO.) These functions
are supported on most major parallel computer platforms in the form of a vendor-
supported library and the freely available ROMIO package developed at Argonne
National Laboratory.

MPI-10 functions enable a set of processes to open, read, write, and eventually
close a single shared file. Many of the read and write functions are collective, mean-
ing that all processes call them together; in these operations, each process contri-
butes part of the data that are to be read (or written). This use of collective operations

70

3.8

Chapter 3 Parallel Programming Considerations

allows the underlying I/O library and file system to perform important optimizations:
for example, they can reorganize data prior to writing them to disk.

The following example gives the flavor of the MPI-1O interface. This code fragment
first opens a file for read-only access and then calls the collective I/O function MPI_
File_read all. Each calling process will obtain a piece of the file in its Tocal_array.

MPI_File open(MPI_COMM_WORLD, ''/pfs/datafile'', MPI_MODE_RDONLY, MPI_INFO NULL, &fh);

MPI_File_read all(fh, local _array, local array_size, MPI_FLOAT, &status);

A detailed discussion of parallel I/O techniques and MPI-IO is provided in Chap-
ter 11.

Conclusion

This chapter has presented an introductory treatment of a number of the strategies
and issues that a new parallel programmer must deal with, including programming
models and strategies, application partitioning, scalability, pipelining, memory-
hierarchy management, irregular versus regular parallelism, parallel debugging, per-
formance tuning, and parallel I/O. These topics will be discussed in more detail in
the remainder of this book. In addition, they will be tied to specific application
programming interfaces, such as languages and run-time systems.

Further Reading

Later chapters in this book include in-depth coverage of many of the programming
topics introduced here. Chapter 9 is an overview of the programming support tech-
nologies covered in this book. Chapter 10 surveys message-passing programming in
MPT and introduces thread programming. Chapter 12 includes material on parallel
loop programming with events in OpenMP. In addition, the same chapter covers
SMTP programming in Co-Array Fortran, along with programming in High Perfor-
mance Fortran, a distributed array language. Finally, Chapter 16 provides examples
of different programming styles applied to the simple Poisson problem.

For further background on parallel programming topics, we recommend the
following books:

* Parallel Computing Works! [358] by Fox, Williams, and Messina is a substantive
repository of information about parallel computation, particularly in the early
days of distributed-memory machines.

* Designing and Building Parallel Programs [341] by Foster provides a good tutorial

introduction to parallel computing and to programming using message passing
in MPIL.

Further Reading

71

Parallel Programming in OpenMP [183] by Chandra et al. provides an introduc-
tion to shared-memory parallel programming in the most popular program-
ming interface for loop parallelism and its extensions.

Using MPI: Portable Parallel Programming with the Message Passing Interface [406]
by Gropp et al. is an excellent introduction to the most widely used message-
passing programming interface. Its successor, Using MPI-2: Advanced Features
of the Message-Passing Interface [407] by Gropp et al., covers advanced features,
including the MPI-IO interface described in Section 3.7.

- = > ©

Applications

Chapter 4 GENERAL APPLICATION ISSUES
Geoffrey Fox, Indiana University

Chapter 5 PARALLEL COMPUTING IN COMPUTATIONAL FLUID DYNAMICS
Ron Henderson, California Institute of Technology - Dan Meiron,
California Institute of Technology - Manish Parashar,
Rutgers University « Ravi Samtaney,
California Institute of Technology

Chapter 6 PARALLEL COMPUTING IN ENVIRONMENT AND ENERGY
Mary F. Wheeler, University of Texas-Austin < Wonsuck Lee,
Bell Laboratories < Clint N. Dawson, University of Texas-Austin
Dorian C. Arnold, University of Tennessee © Tahsin Kurc,
Ohio State University < Manish Parashar, Rutgers University
Joel Saltz, University of Maryland < Alan Sussman
University of Maryland

Chapter 7 PARALLEL COMPUTATIONAL CHEMISTRY:
AN OVERVIEW OF NWChem
David E. Bernholdt, Syracuse University

Chapter 8 APPLICATION OVERVIEWS

Geoffrey Fox, Indiana University

X m -4 W »>» I N

4.1

General Application Issues

Geoffrey Fox

This chapter is the first of five devoted to application strategies and their realization
in specific applications. As such it is intended to set the stage for the entire section
by laying out general principles for application development.

We begin this overview by presenting the questions that an application developer
should ask when considering a specific application for parallelization:

e I have an application: can, and should, it be parallelized?
e If so, how should this be done?

e What are appropriate target hardware architectures?

e What is known about clever algorithms?

e What software technologies are recommended?

By following this thought process on specific applications, we can identify general
characteristics that are useful for classifying the issues in parallelization. To illustrate,
I review the Poisson equation, which is the subject of Chapter 16. The goal of the
analysis here is to revisit the discussions of Chapter 3 from an application, rather
than a parallel programming perspective. By contrast, Chapter 16 presents sample
implementations in several different programming interfaces. Although the Poisson

equation is not a “real” application like the others treated in this section of the book,
it can serve as a simple example to frame the discussion of general application issues.

Application Characteristics in a Simple Example

Simple 2-D electrostatic problems can be reduced to solving Laplace’s or Poisson'’s
equation. Poisson’s equation (see Chapter 16) is often solved numerically by finite
difference methods. These could involve adaptive meshes and hierarchical multigrid

75

76

Chapter 4 General Application Issues

Figure 4.1 A 16 x 16 2-D mesh with an illustration of the basic nearest-neighbor update used
in Jacobi’s method of Chapter 16.

methods but, in the simplest formulation, they are set up as a regular grid of field
values where the basic iterative update links 2-D nearest neighbors, as in Figure 4.1.

If we label points by an index pair (i, j), then Jacobi’s method (see equation 16.3)
can be written

Onewlin) = (SLoe + Drignt + Bup + @Down) /4 @1

corresponding to the stencil in Figure 4.2, where the subscript Left corresponds to
index pair (i — 1,j), and so on.

We note that the problem can be viewed as an algorithm (4.1) applied to a set
of data points. Parallelism is naturally found by dividing the domain into parts and
assigning each part to a different processor, as seen in Figure 4.3. This technique is
often called “domain decomposition” or “data parallelism,” but these terms already
have a particular meaning in the algorithm and parallel programming fields, respec-
tively. We will use the term “block data decomposition” instead. This is essentially
the nomenclature used in High Performance Fortran (HPF).

This geometric view is appropriate for many problems from nature. In a weather
simulation, for example, the atmosphere over California evolves independently
from that over Indiana. So, for short time extrapolations, they can be simulated
on separate processors. Eventually, information flows between these sites and their
dynamics are mixed. Of course, it is the communication of data between the proces-
sors (either directly in a distributed memory or implicitly in a shared memory) that
implements this eventual mixing.

4.1 Application Characteristics in a Simple Example 77

j+1 [. (DUp
q)New
| ')
i@ ®
D eft u Dright

j—1 — . q)Down
|

i-1 i i+1

Figure 4.2 Stencil for Jacobi iteration of Figure 4.1.

Block data decompositions typically lead to a single-program, multiple-data
(SPMD) structure, with each processor executing the same code on different data
points and using different boundary conditions. In Figure 4.3, the processor associ-
ated with a center block (Case C) will be “in charge” of 16 points. Boundary data will
be obtained by communication with the processors controlling data adjacent to the
four edges of the region. Processors associated with edge blocks (Case E) must handle
a mix of conventional and communication boundaries. A set of halo, or ghost, grid
points (Figure 4.4) is often used to represent the communicated values. (See also
Section 16.3.)

This type of data decomposition leads to the so-called owners-compute rule. We
imagine that each data point is owned by the processor to which the decomposi-
tion assigns it. The owner of a given data point is responsible for performing the
computation that updates its corresponding data values. Thus, the parallel program
consists of a loop over iterations divided into two phases:

e Communicate. At the start of each iteration, communicate any outside data
values needed to update the data values at points owned by this processor.

e Compute. Update the data values. Each processor operates without the need to
synchronize with other machines.

This type of structure can be used with many complex physical simulations. The
decompositions can be irregular, as long as they are fixed. Dynamic decompositions
require an additional step. Data locations must be migrated between processors to

78

Chapter 4 General Application Issues

Case E: Some boundaries involve
communication and some
involve edge conditions.

Case C: All boundaries
\ involve communication.
/
\]]]

[) [] .I. L] L] .I. L] L] .I. L] L]
() [] OIO [] [] .I. [] .I. [) []
.._.J.._._._.L. _._.l_. _. _. B
L] [] .I. [] L] .I.] L] .I. L] []
L] L] .I. L] L] .I. [] ° .I. L] L]
() [] .I. L] [] .I. [] () .I. [) []
° ° L] L] L] L] L] L[] [] ()) ° ° []
T
L] L] .I. L] L] .I. L] L] .I. L] L]
| | |
() [] [] [] [] [] [] [] [] [] () () [) []
° ° .I L] I.] .I. ° []
.._.+ e _.1-._._ _.|_. _. _. Ny
L] L] .I L] L] I. L] L] .I. L] L]
| | |
[) [] [] [] [] [] () () [] []
| | |

Figure 4.3 A 16 x 16 mesh divided among 16 processors with a 2-D grid chopped into
rectangular subdomains.

! ! !
® 0 o e 0 s 0 0 0 0 00 s 0
®° o v s 0 00 s s 00 0
P °_c_1® ©® O o ¢ oy]
. o@lo o o o|©o . olo o o
. o@lo o o ol@o . olo e o
. o@lo e o o ® o o olo o o
_o_o_@-'.._o_o_ol_@_u o_o'_o_o_o_
o o ol@@@@lo e o olo o o
© o o o o o 0 0 0 0 0 0 o o
e o olo olo ° o olo e o
o o olo . olo ° o olo o o
- - -4+ - — - - — = = = A
e o o o e o o e o o o o
o o olo olo ° o olo o o
e o olc olo o o olo e o
| | |

Figure 4.4 Communication structure for the Poisson equation example. The circled points
are the halo or ghost grid points. Their values must be communicated across the boundary.

4.2 Communication Structure in Jacobi’s Method for Poisson’s Equation 79

4.2

ensure load balance. But data migration is usually followed by similar communicate—
compute phases. The communication phase synchronizes the operation of the par-
allel processors and provides an efficient barrier point that scales naturally.

In the previous discussion, we used terminology natural for distributed-memory
hardware or message-passing programming models. When using a shared-memory
model such as OpenMP, communication is implicit, and the communication phase
is implemented as a barrier synchronization.

Communication Structure in Jacobi's Method for
Poisson’s Equation

On a distributed-memory machine, the geometrically local structure of the linked
entities of Figure 4.1 leads to a classic communication structure: the communication
required is proportional to the surface area of each subdomain, while computation
is proportional to volume. (Note that in the 2-D example of Figure 4.3, the “surface”
of the subdomain consists of the edges of the square.) One can usually “block” the
communication to transmit all the needed points in a few messages. Chapters 3,
7, and 10 explain why blocking is important to reduce the effects of the latency of
the messaging system. We can use our current Poisson equation example to produce
some rules of thumb that allow us to estimate the performance of many parallel
programs.

As shown in Figure 4.5, we characterize each node of a parallel machine by
a parameter fg,,, which is the time required to perform a single floating-point
operation. Of course, tgy, is not very well defined. It depends on the effectiveness
of cache, the possible use of fused multiply-add, and other issues. This means that
the measure will have some application dependence, reflecting the goodness of the
match of the problem to the node architecture. We let n be the grain size—the
number of data locations owned by a typical processor. In the example of Figure 4.3,
nis 16; in a realistic example, n would be larger, but limited by the memory of each
processor. For a hypothetical 103 x 103 x 103 3-D grid solved on a 1000-processor
machine, n would be 10°.

Communication performance—whether through a shared- or distributed-
memory architecture—can be parameterized as

Time to communicate Neopy WOrds = titency + Neomm * teomm

Memory n Memory n
Node A ‘ ‘ Node B
tcomm
CPU tioat CPU tfioat

Figure 4.5 Parameters determining performance of loosely synchronous problems.

80

Chapter 4 General Application Issues

This equation ignores some issues (e.g., bus or switch contention), but it is a reason-
able model in most cases. Itis dangerous to quote explicit values for these parameters,
as hardware is always improving. Very roughly, the value of tj;s, is around 1us
on shared-memory machines and at least an order of magnitude higher, say 40us,
between remote nodes on distributed-memory machines. This latency becomes 10—
100us between nodes of a geographically distributed metacomputer; this drastic
increase in latency explains why one cannot easily use such systems for parallel
computing. The parameter ¢y, is the time required to communicate a single word
and is in the range of 0.1 to 0.01us per word. For large enough messages (N g, in
the range of 100 to 1000 or larger), the latency term can be ignored. So we will set
tiatency = 0 in the following discussion.

Now let’s generalize the problem above to Ny processors arranged in an , /Npo, x

/Nproc grid with a total of N grid points and grain size n= N/Npy,.. We will first

consider measures of load balance. Let t.;. denote the time required to execute the
basic update described in equation (4.1). Then

teaie=4- tﬂoat

Since the boundary points are fixed, we only need to update the (WN=2)x (vVN=2)
array of interior points. So the sequential execution time is given by

T(1) = («/ﬁ - 2)2 rale

The parallel execution time is governed by the “interior” processors, which need to
update n points. So

T(Nproc) =n-tyge=4-n- tﬂoat

and the speedup is given by

2

T()) 2

< =Nproc | 1 - ———
T (Nproc) b /1 Npoc

The speedup S(Np) is less than Ny, because the processors do not all update
the same number of points. However, as either n or N, becomes large, this load
imbalance effect becomes less noticeable.

So far, we have not considered the communication overhead. Figure 4.6 illustrates
the cases n =16 and n = 64. The processor needs to obtain values for the circled points
in order to update its own data values. This means that our expression for parallel
execution time now becomes

S(Nproc) =

T(Nproc) =4-n- tﬂoat +4- ‘/ﬁ * Teomm

Since the communication term is proportional to /n, while the computation term
is proportional to n, the communication overhead decreases in importance as n

4.2 Communication Structure in Jacobi’s Method for Poisson’s Equation 81

e Updated °Oee OO OO

® Communicated | |
O Ignored @|e © o ¢ ¢ o o o |@®

_:_o_:_o_o_:(_@ @le o © o 0o 0o o ol@®
‘* @le o o o|(® @:oooooooo:@
«%» @:....:@ @le o e o o o o ol(®
Yo Ot 0@ @c s s e s 2@
0l®@® ® ®'o 0®@E®®O®E® ®® @®o

Stencil 4 x 4 grid 8 x 8 grid

Figure 4.6 Communication structure for a five-point stencil and two different grain sizes.

increases. Adding communication overhead to the speedup formula, we get

2
1_— 2
N V" Nproc

proc p
1 comm
< + N 'tﬂuut

Realistic values fO1 Z.oym/tfoqr are in the range of 10 to 100; so the communication
overhead dominates in equation (4.2). Suppose that f.ym/taea = S0 and that we
want to reduce the communication overhead below 0.1. Then the grain size n
needs to be greater than 250,000 grid points. On some computers, it is possible to
overlap communication and computation. The analysis above can be extended in a
straightforward manner to handle such strategies.

To generalize the formalism above, we introduce an efficiency ¢ and an overhead
f. Then we can write

S(Nproc) = 4.2)

N
S(N,) =& - N, = 2% 4.3)
(proc) proc 1+ f
The communication part of the overhead, f_,,.», appears in equation (4.2) as
tcomm
(4.4)

fcomm = m

In many instances, f.,;;» can be thought of as simply the ratio of parallel commu-
nication to parallel computation. Equation (4.4) can be generalized to handle almost

82

4.3

Chapter 4 General Application Issues

all the problems we will later term “loosely synchronous.” For those problems, the
overhead in a coupled communicate phase and compute phase takes the form

feomm = constant - M ws)

Here, d is an appropriate (complexity or information) dimension. For equations
based on partial differential equations, d is just the geometric dimension. The same
holds for other geometrically local algorithms. For 3-D problems, d = 3 and n'/? is
the surface-to-volume ratio. For full matrix problems, one finds the value d =2 for
the best decompositions, such as those used in ScaLAPACK (see Chapter 20).

Applying equation (4.3), we find that S(Nj,) increases linearly with Ny, if
feomm is held fixed. Since tpy, and gy, are naturally fixed, holding f.yy, fixed
implies keeping the grain size n fixed. This is scaled speedup, since the problem
size N = n - Ny also increases linearly with Ny,

The continuing success of parallel computing even on very large machines can
be considered a consequence of equations (4.3) and (4.5). Note that the formula
for feomm (Whose numerical value we could aim to keep around 10% or lower) only
depends on local node parameters and not on the number of processors. Here we
consider the grain size n as reflecting the amount of local memory. Thus, as we scale
up the number of processors, keeping the node hardware and application size n fixed,
we will get scaling performance—speedup proportional to Ny

This simple problem is perhaps the one where the parallel issues are most obvi-
ous. However, it is not the one where the parallel performance is easiest to obtain,
as the small computation load of the update (equation 4.1) makes the communica-
tion overhead relatively more important. There is a fortunate general rule: As one
increases the complexity of a problem, the computation required grows faster than
the communication overhead. I illustrate this below.

Jacobi iteration requires perhaps the least communication for problems of this
class. However, it has one of largest ratios of communication to computation and
correspondingly high parallel overhead. Note that one sees the same effect on a
hierarchical (cache) memory machine, where problems such as Jacobi iteration for
simple equations can perform poorly as the number of operations performed on
each word fetched into cache is proportional to the number of links per entity, and
this is small (four in the 2-D mesh considered above) for this problem class.

Communication Overhead for More General Update Stencils

It is instructive to consider in detail how the analysis above changes when a dif-
ferent update formula is used. First, consider using fourth-order differencing to
approximate V2 in Poisson’s equation. Then, as illustrated in Figure 4.7, we need to
communicate twice as many points into halo cells. Since the computation required
to update each point is also doubled, the ratio of communication to computation
is roughly the same as it was before. Hence, the overhead f,,,,,, does not differ sig-
nificantly from its value in equation (4.4).

4.3 Communication Overhead for More General Update Stencils 83

® Updated
@® Communicated 0 0l® ® ® @l o o
O Ignored oo_:@@@@:_oo
* ©@ @0 o ¢ ¢ ®®
* @@:0 o o 0:@@
%’%+%%’ ©©Iooool@©
© @le o o ¢1®®
* ©0l®@®®®o o
Yo © 0,® ®® ® o0 o
Stencil 4 x 4 grid with adjacent processors

Figure 4.7 Communication structure for a nine-point stencil.

B IS SO RS Sa

f a1Nn | 1/@Vn) 1/(3Vn) 1/(4Vn) t

comm comm/tﬂoat

Figure 4.8 Communication structure as a function of stencil size. The stencils shown have
(from left to right) range I=1,1, 2, and 3.

We can now systematically increase the size of the stencil and find how .,
changes. In the case below, the grid points are replaced by particles. Increasing the
stencil size corresponds to ratcheting up the range of force between the particles.

We find that the communication overhead decreases systematically as the range
of the force increases. (See Figure 4.8.) For a range of ! (measured in units of grid
spacings), one finds in this 2-D case that

tcomm

S BN

84

4.4

Chapter 4 General Application Issues

This equation is valid when [is large compared to 1, but smaller than the length
scale corresponding to the region stored in each processor. In the interesting limit
of an infinite range (Il — oo) force, redoing the analysis leads to the result

feomm o Lcomm (4.6)
n- tﬂoat
independent of the geometric dimension. This result has the same form as equa-
tion (4.5) for complexity dimension d = 1. This is the best-understood case in which
the geometric and complexity dimensions are different.

The overhead formula of equation (4.6) corresponds to the computationally in-
tense O(N?) algorithms for evolving N-body problems. The amount of computation
is so large that the ratio of communication to computation is extremely small.
This observation is at the heart of the success of special-purpose machines such as
GRAPE from the University of Tokyo (http://grape.astron.s.u-tokyo.ac.jp/grape/). The
1-teraflop GRAPE 4 won the Gordon Bell prize twice, and the GRAPE 5 took the cost-
effectiveness award in 1999 (at $7 per megaflop). The 100-teraflop GRAPE 6 competed
in 2000 and won another Gordon Bell award! The modest memory and communica-
tion needs of the N-body problem are some of the reasons enabling these powerful
machines to outperform any of the more general-purpose parallel computers on this
problem. Of course, the specialized GRAPE architecture limits the problems to which
it is applicable.

Applications as Basic Complex Systems

We saw above that the discussion of parallel issues is the same for two different cases:
particle dynamics and local discretization for partial differential equations. This is
generally true, as the parallel issues depend not on the detailed science or numeric
algorithm, but on overall characteristics of the application. So, it makes sense to
generalize the discussion in terms of both general principles applicable to many
parallel computing problems and special features of the particular 2-D structure
seen in Poisson’s equation. It is useful to think of an application as a “complex
system,” or a linked set of entities. This way of thinking can relate the parallelization
strategies of seemingly very different problems.

In particular, many other applications have computational structures similar to
the Laplace or Poisson equation discussed in previous sections. Consider first the 2-D
Ising model, where the mesh of Figure 4.9 is now a fixed grid of spins with a nearest-
neighbor connection for the interaction (forces) between them. The Ising model
has a geometric structure similar to equation (4.1), but the physics and numerical
procedure have many differences from Poisson’s equation. The grid points in the
Ising model are physically real spins; in the Poisson case, the grid points are artifacts
of the numerical procedure. The nearest-neighbor local connection in the Ising case
corresponds to a physical force law; it follows from the differencing approximation
to a partial derivative in Poisson’s case. Further, the usual numerical approach to
the Ising model uses a Monte Carlo method rather than a differential equation to

4.4 Applications as Basic Complex Systems 85

Figure 4.9 A basic complex system with a set of entities with nearest-neighbor linkage to at
most four others.

express the dynamics of the system. In Poisson’s equation, the iterative process is
a perturbed solution to an exact matrix problem. For the Ising model, the iterator
counts Monte Carlo sweeps as integration points are accumulated. This approach
decreases the statistical error, which is inversely proportional to the square root of
the number of sweeps. These differences, which are very important to the underlying
science, have little effect on decisions involving appropriate parallelization strategies
or the needed hardware and software systems.

Even closer to our Poisson equation would be an application that solved a simple
wave equation (or Maxwell’s equations) in a 2-D domain. Here we see an identical
computational structure, with the perturbed iteration in the sparse matrix solution
replaced by stepping through a discretized time variable. Yet another rather similar
structure can be found in cellular automata problems.

We can extend this very simple problem in several ways; some of these are ex-
plored in Chapter 16. For instance, finite element problems have a similar mesh, but
it can be quite irregular compared to the uniform geometry of most finite difference
problems. This makes load balancing an important issue. Particle dynamics prob-
lems with a short-range force can exhibit structure similar to that of Figure 4.8, but
with a dynamic irregular structure and a variable number of links per entity.

An obvious and important generalization of the Poisson structure is to higher
dimensions, with 3- and even 4-D structures. Equation (4.5) provided a general form
for the communication overhead. Applying this equation when d = 3, we see that
overhead decreases as n1/3. This is slower than in the 2-D case previously discussed.
So a grain size n ~ 10 is needed for a 3-D problem in order to match the performance
of a grain size n~ 10* in two dimensions.

86

Chapter 4 General Application Issues

In Chapter 8, we describe two physics examples—numerical relativity and com-
putational quantum chromodynamics (QCD)—where the basic mesh is four dimen-
sional. The many partial differential equation applications in Chapters 5, 6, 7, and
8 have a richer structure at each grid or finite element mesh point than the single
value of Poisson’s equation. For instance, QCD has 3 x 3 complex matrices repre-
senting gluons and vectors representing quarks. Computational fluid dynamics is
usually formulated in terms of five degrees of freedom at each point. Compared to
the simple formula of equation (4.1), the basic updates for these examples involve
much more computation. But, as we have explained, that actually tends to reduce
the parallel overhead. Communication tends to scale like the number of degrees of
freedom at each point. The computational update time complexity per point usually
increases faster than this.

We have seen that it is helpful to consider many problems as linked entities
arranged in 1-, 2-, 3-, or higher-dimensional geometries. This linkage was “short
range” (a few links per entity) in the examples we discussed, but this is not always
the case. Particles interacting through a long-range gravitational force require many
links per entity. This example, using the simple O(N;am. .) algorithm discussed at
the end of Section 4.3, has very different properties from the short-range case. In
particular, the performance of this problem is excellent on both distributed- and
hierarchical-memory machines. There are many (of order Nygiqe) computations for
any point stored in cache. Even though the communication appears heavy in a
distributed-memory machine, the above analysis shows a low ratio of communi-
cation to computation.

This type of long-range problem is found in a variety of fields; they may be
far from particle dynamics, but they still have the same computational structure.
We provide one interesting example of an O(N[%a rticle) algorithm in Chapter 8—the
Green'’s function approach to the simulation of earthquakes. Such partial differential
equation solvers become integral equations over the domain boundaries with full
linkage between the element mesh on the boundary. Some applications involving
determination of correlation functions also have this fully connected structure
between the points in the computation.

The N-body example can be used to illustrate another important point. A given
physical problem can look quite different in different numerical formulations. The
natural O(Nﬁam.) algorithm is often not the best approach to the simulation of
gravitating particles. For large problems, one usually adopts the so-called fast multi-
pole method with O(Nyaricie) 0T O (Nparticle - L08(Nparticie)) behavior. This again shows
that one needs to choose parallel algorithms carefully; the lowest communication,
or even the lowest communication-to-calculation ratio, may not be the best choice.
A simpler application illustrating the same issue is Poisson’s equation, which can
often be solved by either iterative local methods, such as Jacobi or conjugate gra-
dient, or by the Fast Fourier Transform. In both cases, the obvious approach has a
simpler complex-system structure, while the fast algorithm has a more complicated
tree structure. Computational scientists use their skill to convert a given application

4.5 Time-Stepped and Event-Driven Simulations 87

4.5

into a numerical system, and it is the structure of the latter that determines the key
parallel computing issues.

Time-Stepped and Event-Driven Simulations

We noted above the rich spatial or geometric structure of applications. Two rather
distinct simulation methods, time stepped and event driven, correspond to different
temporal structures. Most of the examples in this book correspond to the time-
stepped case; the entities in a complex system evolve together and are synchronized
globally by the concept of time or something equivalent, such as an iteration or
Monte Carlo sweep. This is reasonable since it is “how nature works.” In the early
days of parallel computing, there were concerns that the global synchronization im-
plied by the time-stepped approach would lead to uncontrollable overhead. This
is not true, for it can be seen (see the description at the end of Section 4.1 for
the simplest nearest-neighbor Laplace equation) that global time synchronization
is implied by the local synchronization of neighboring nodes, either by exchang-
ing messages or the equivalent shared-memory mechanism. This synchronization
mechanism is itself fully parallel (with no “hot spots” in proper implementations)
and so introduces no serious parallel-computing overhead. Such efficient synchro-
nization is present in all problems having a time or iteration count to provide
algorithmic synchronization. Correct implementation of an algorithm with natural
synchronization points implies that the parallel program needs no special additional
synchronization. Message-passing systems such as the MPI (Message Passing Inter-
face) standard have synchronization barriers built in naturally; other programming
models (such as active messages and OpenMP) require explicit user attention to this
issue.

The military makes substantial use of event-driven simulations in the field of
forces modeling, and we provide an example of this in Section 8.11. Here, one
tends not to simulate systems in terms of their fundamental constructs (atoms,
grid points, etc.), but rather in terms of macroscopic constructs such as vehicles,
mines, or battalions. The system components are naturally formulated in terms of
objects interacting with events. These are queued (often in a distributed fashion) and
executed either in real time (the natural case when there is “hardware in the loop”)
or according to a global virtual time. Here we do find potentially serious problems
with the overhead of global synchronization, and very ingenious techniques have
been developed. One important strategy—incorporated in the Time Warp Operating
System [513]—involves simulating the system in terms of interacting timestamped
events. Block data decomposition is typically used for parallelism, just as in the
synchronous and loosely synchronous cases. But now there is no straightforward
way to ensure that all events have been received and thus be able to decide to let the
simulation proceed on a given processor. The Time Warp approach optimistically
marches the simulation forward in time in each processor, using whatever events
are available. Correctness is guaranteed by recording the system state from time to

88

4.6

Chapter 4 General Application Issues

time. If necessary, the system state can be rolled back to an old (correct) state if an
event arrives bearing a time stamp earlier than the current processor simulation time.
The particular minefield simulation cable managment system (CMS) application
described in Section 8.11 was successfully parallelized because the different entities
in the simulation are largely independent; hence, there was essentially no difficulty
with synchronization.

One of the most powerful parallel event-driven approaches is the SPEEDES system
from Metron Corporation discussed in Section 8.11, and there are overall frameworks
such as high-level architecture (HLA) and run-time infrastructure (RTI) defined for
this field. HLA and RTI are object models similar to those described in Chapter 13.
However, no software system for event-driven simulation enjoys the universal accep-
tance and relatively clear methodology for getting good performance shown by MPI
in the time-stepped case. Some recent work at the Los Alamos National Laboratory
is potentially of great importance. These researchers have shown that some appli-
cations traditionally approached by event-driven simulation (e.g., large-scale traffic
models) can be tackled as loosely synchronous problems with excellent scaling of
parallel performance.

Circuit simulation is an interesting application area that can be tackled by either
simulation technique. Obviously, a circuit has a natural time that can be iterated
over, with every device component being updated at each step. This approach can
be inefficient; on most iterations, only a tiny fraction of the components are active.
The event-driven approach can be more effective, as one automatically updates
only those devices affected by queued events. This analysis is clear for sequential
machines, but the difficult parallelism of event-based systems makes the parallel
situation less clear.

Temporal Structure of Applications

It is useful to divide the temporal structure of numerical systems into four broad
areas:

1. Synchronous. Each point can be evolved in synchronous mode, as is natural
on a single-instruction multiple-data (SIMD) machine. The temporal synchro-
nization is on a point-by-point basis. Most of the simple examples discussed
above are of this type.

2. Loosely synchronous. The temporal synchronization is on a subdomain basis;
this is the natural form of SPMD implementations, including all HPF and most
MPI programs. Most of today’s major applications are of this type. Nearly any
serious irregularity (geometrical or otherwise) added to the model of a syn-
chronous problem changes it into a loosely synchronous problem. In particu-
lar, finite element problems and finite difference codes with adaptive meshes
are loosely synchronous. Domain decomposition (Chapter 6) has this struc-
ture, as does the fast multipole approach to particle dynamics discussed earlier.

However, the simple O(N 5 rticle) Particle-dynamics algorithm is synchronous.

4.7 Summary of Parallelization of Basic Complex Systems 89

4.7

3. Asynchronous. Event-driven simulations fall into a class that includes problems
not formulated in terms of a stepped time or iterator that is associated with each
system entity. As discussed above, asynchronous problems can be very hard to
parallelize, whereas in principle loosely synchronous applications always run
efficiently if they are large enough.

4. Pleasingly parallel. The time or iteration evolution structure of a problem can
greatly impact the appropriate software and hardware architecture. However,
there is one important special case where this is not true—namely, cases where
the entities in the system are essentially disconnected. Then each entity can
be evolved more or less separately, and there is no significant synchronization
overhead whatever the differences between the entities. One typically uses a
“farm” architecture with worker nodes that somehow receive chunks of the
simulation (entities) to do as they finish their previous assignments. There are
nontrivial application-dependent implementation issues, but such problems
will always parallelize well if the problem is large enough. Good examples of
this problem class come from the Internet, where both large Web servers and
the back-end of database search engines such as Inktomi and Google are of
this type. This problem class was often termed “embarrassingly parallel” in
the past.

Summary of Parallelization of Basic Complex Systems

Let us take stock of where we are. Problems are set up as computational or numerical
systems. We have discussed one set of such systems, those that consist of a space of
linked entities. We called these systems “basic complex systems” and characterized
them by their possibly dynamic, spatial (geometric) and temporal structure. We
noted the difference between the structure of the original problem and that of the
computational system derived from it. We can summarize much past experience in
parallelizing applications by the conclusion:

Synchronous and loosely synchronous problems perform well on large
parallel machines if the problem is large enough. For a given machine,
there is a typical subdomain size (i.e., the grain size or the size of the
part of the problem stored on each node) above which one can expect to
get good performance. There will be a roughly constant ratio of parallel
speedup to Ny, if one scales the problem with fixed subdomain size and
total size proportional to Npy,,.

Although this assertion is probably true in most important cases, it has proven to
be very difficult to design and implement productive programming environments
that allow the user to realize this goal. That is why we need to write this book even
though, in principle, success is guaranteed.

920

4.8

Chapter 4 General Application Issues

Meta-Problems

Several applications can be discussed solely in terms of computational systems that
fall into the basic complex-system type discussed above. This description is often
incomplete, although it does properly describe key computational modules that are
part of the complete application. More generally, one finds meta-problems built
up from multiple modules, each of which can be classified as a basic complex
system. Such meta-problems are particularly interesting today, as many of them are
natural applications for distributed systems such as computational grids. One tends
to run basic complex systems on classic shared- or distributed-memory machines, as
these have the required low latency and high bandwidth communication. Separate
modules in a meta-problem can often be run on geographically separated machines,
as they tend to have much less stringent communication requirements than do
simulations of basic complex systems. Important examples of meta-problems are:

e The three-way linkage of data store, simulation, and visualization subsystems
forms one of the most generic meta-problems. It is seen in many different dis-
ciplines. Section 8.10 describes an application of this type with a synchrotron
light source.

* As discussed in Chapter 22, there is a growing trend in modern engineer-
ing toward sophisticated systemwide optimization. For aircraft design, one
might simultaneously optimize over fluid flow, structural, acoustic, and elec-
tromagnetic properties. Each of these corresponds to a separate module in the
discussion above. The new DoD initiative in simulation-based acquisition (see
Section 8.11) would need such meta-problems, and this type of application is
illustrated in Figure 4.10.

e An early success of the CASA gigabit network was the simulation of a coupled
ocean-atmosphere meta-problem. There is a general understanding that such
approaches are essential for reliable long-range climate forecasts.

e The forces modeling community often builds such meta-problems; each com-
ponent is a separate focused simulation. In the example of Section 8.11, one
simulation engine is used to describe minefields and another describes squads
of vehicles. These simulations have interesting interactions. In this field, meta-
problems are called federations, and the basic simulations are termed federates.
As mentioned above, this community has recently adopted sophisticated soft-
ware standards (RTI and HLA) to support the federation of multiple event-
driven simulations.

Note that basic complex systems often have huge potential for parallelism. A
complex 3-D simulation may exhibit a billion independent degrees of freedom.
These are candidates for data-parallel systems. Meta-problems are different in that

4.9 Conclusion 91

4.9

Fluid flow Structures

Control

module

Acoustics

Figure 4.10 The linked modules in a typical meta-problem. We show three large-scale parallel
modules that can be expected to execute individually on massively parallel systems. The
control module is logically separate and may not require high-performance computing.

they typically contain only a few independent modules. In addition, the linkage
of these modules is often timed asynchronously. These are naturally supported by
different software concepts than the data-parallel subcomponents. One may find
a meta-problem with each module using MPI, OpenMP, or HPF internally and
with the modules linked together through channels using, perhaps, GridFTP (high-
performance grid standard), Web services, and SOAP (W3C distributed object and
message model), IIOP (CORBA), or RMI (Java). We discuss these different software
models more completely in terms of object-based approaches and problem-solving
environments in Chapters 13 and 14.

Conclusion

At the start of this chapter, we presented the problem of understanding the principles
governing the types of applications that can be parallelized. We addressed this by
first identifying basic (or “atomic”) complex systems. We discussed their parallelism
in terms of their spatial and temporal structure, which we summarized in Section
4.7, and in terms of the application characteristics that govern the parallelism.

The majority of large-scale scientific and engineering codes can be parallelized. We
illustrated these conclusions with examples and a simple performance model given
in earlier sections of the chapter. In Section 4.8, we introduced meta-problems as

92

Chapter 4 General Application Issues

the general application class defined by loosely coupled aggregates of basic complex
systems. We noted that this type of application was naturally suitable for distributed
Grid architectures. This rather simplified discussion is complemented by the analysis
of Section 8.12, which looks at some 50 particular applications and summarizes
their computational structure. Chapters 5, 6, and 7 and Sections 8.1 through 8.11
describe 14 application areas in detail.

X m -4 W »>» I N

Parallel Computing in
Computational Fluid Dynamics

Ron Henderson ¢ Dan Meiron
Manish Parashar * Ravi Samtaney

In this chapter we provide a very brief introduction to computational fluid dynamics
(CFD), with the objective of providing a rationale for the use of high-performance
parallel computation in the solution of a variety of flow problems.

The basic equations of fluid mechanics are presented, after which a brief overview
is provided of some of the common physical regimes described by these equations
(compressible vs. incompressible flow) and the dimensionless parameters associated
with these physical regimes (Reynolds number and Mach number). The need to use
high-performance computation to solve these equations in many cases of interest is
then explored via some example applications.

We then focus on the particular computational difficulties associated with incom-
pressible viscous CFD. For complex geometries that are of practical interest, special
attention is paid to the application of high-order finite element methods (also called
spectral element methods) and their parallel implementation. The reason for present-
ing the material in this way is that the finite element framework provides a unified
approach to describing the equations of fluid dynamics in both simple and com-
plex geometries. It is also easy to express low-order approximations, such as those
that arise in the application of classical finite difference or finite volume methods,
as well as higher-order approximations in this framework. As seen below, it turns
out that in most applications, the use of the finite element method along with some
simplifying assumptions makes it clear that the relevant issue in solving most time-
dependent CFD problems is the need to solve efficiently several (possibly coupled)
elliptic equations. Thus, for incompressible flows, efficient parallel implementations
for CFD are intimately connected to efficient parallel solution procedures for elliptic
partial differential equations. Therefore, many of the methods described in this vol-
ume for parallel solution of such equations are directly applicable. Unfortunately,
to achieve the enormous economy of description of the finite element method, it

93

94

5.1

5.1.1

Chapter 5 Parallel Computing in Computational Fluid Dynamics

becomes necessary to use the mathematical formalism of finite elements, which can
at times be somewhat daunting.

A brief overview is then presented of approaches to the numerical simulation
of compressible CFD. It is argued that the need to capture fine-scale features such
as shock waves makes the use of adaptive mesh refinement essential, especially in
three dimensions. The difficulty of establishing load balancing and scalability for
such calculations is discussed. The chapter concludes with a brief discussion of some
future computational challenges for CFD and an assessment of the computational
resources required to overcome these challenges.

Introduction to Computational Fluid Dynamics

CFD is an enormous field with a vast literature, and it is basically impossible in this
short chapter to provide comprehensive implementations of parallel solution strate-
gies. At best, this chapter provides a glimpse of some of the essential issues associated
with high-performance computation of both incompressible and compressible flows
and attempts to provide some brief examples of the flow simulations achievable.

Basic Equations of Fluid Dynamics

The motion of a fluid is governed by the principles of classical mechanics and
thermodynamics, namely, conservation of mass, momentum, and energy. The most
general statement of these principles is carried out in integral form in a stationary
frame of reference leading to the following conservation equations [593]:

i/pdV—i—/ (pu-n)dx =0 (5.1)
dt Jv)
i/ pudV+/ [(n~u)pufna]d2=/fedv (5.2)
dt Jy) %
i/ pEdV—i—/ n-[pEu—au—i—q]dE:/ (£, -u)dv (5.3)
dt Jv 5 v

Here, t is time, p is density, u is the velocity of a material fluid particle in this frame
of reference, E is the total specific energy, given by

1
E=e+-u-u
2

where e is the specific internal energy, o is the stress tensor, q is the heat flux, f, is
the external force per unit volume, and # is the unit outward normal to the surface
% enclosing the fluid volume V. We ignore other sinks and sources of energy, such
as those arising from chemical reactions or other phenomena.

The solutions of equations (5.1), (5.2), and (5.3) need not be continuous functions
of space, and it is for this reason that the equations are written in integral form.
However, if the flow density, velocity, and energy are sufficiently smooth, then these
equations can be transformed into an equivalent set of partial differential equations

5.1 Introduction to Computational Fluid Dynamics 95

through the use of the divergence theorem:
() +V-(pu)y=0
(o) +V-(puu—o)=f~,
0t (pE)+ V- -(wEu—ocu+q =£f,-u

The basic dependent variables are the density, velocity, and energy of the flow.
Constitutive relations for the stress tensor ¢ and for the heat flux vector q must
be added to these equations in order to form a closed system. A Navier-Stokes fluid
is defined by the following constitutive relations:

a:—pI—l—A(V-u)I—i—M[(Vu)—i—(Vu)T]

Here p is the pressure, and A, u are coefficients of viscosity. The fluid is assumed to
obey the Fourier law of heat conduction,

q=—-kVT

where T is the absolute temperature and k is the thermal conductivity. Finally, since
we assume that the fluid is in thermodynamic equilibrium locally, we require an
equation of state for the fluid that relates, for example, the entropy of the fluid to
the density and internal energy:

S= S(P; e)

where S is the entropy. From this and the thermodynamic identities,

p=—p2T (§—S> Tl (3ﬁ>
P/ e ae/,

the Navier-Stokes equations become a closed system for the dynamic variables p, u,
and E.

An important special case of these equations is the flow of a perfect gas with
constant specific heats C, and C,. For such a gas, the equation of state is the well-
known ideal gas law:

_G

e=C, T
C, v

p=—Dpe 2

For further details the reader is referred to Thompson [930].

Physical Regimes and Dimensionless Variables

The Navier-Stokes equations have been shown to be valid over a wide class of flow
regimes. A useful approach to distinguishing the key regimes is to scale the physical
variables and to rewrite the equations in dimensionless form. To do this, we scale
all quantities relative to a reference length L, a reference velocity V*, a reference
density p*, and reference values of the coefficients of the viscosity u and thermal

96

Chapter 5 Parallel Computing in Computational Fluid Dynamics

conductivity k. All other characteristic quantities can be derived from these basic
ones, although some understanding of the various balances of terms in the equations
is required to achieve meaningful results. We choose L/V* to scale time ¢, p*V*2 to
scale the stress o, and so forth. In this dimensionless form, the equations remain
essentially unchanged, but the constitutive laws reappear in a scaled form:

o=—pl+ o [(V- 4 p [V + (v}

where Re is the Reynolds number and is given by Re = V*Lp*/u*.

The Reynolds number is a measure of the ratio of inertial to viscous forces acting
within the fluid. A low Reynolds number signifies flow dominated by viscous effects,
while a high Reynolds number indicates flows dominated by inertial effects. This
would seem to imply that one could ignore the viscous terms for flows at high
Reynolds numbers (e.g., for flow around an aircraft or car, which is typically in the
range of Re = 105 to 108). However, this is not quite correct since the viscous terms
become important near solid boundaries (such as the wing or body of the airplane)
and must be included if one wishes to compute the fluid drag on the car or plane.
In addition, in a turbulent flow the viscous terms are active at small length scales
and cannot be ignored if one wants to compute how much energy is required, for
example, to keep the flow moving at the characteristic velocity implied by a high
Reynolds number.

If we assume the fluid is a perfect gas, then it can be shown that the heat flux is
given by

Y
=——Y kve
d RePr
where Pr = p*C,/k* is the Prandtl number, which measures the relative importance
of viscous to thermal diffusion. For a perfect gas with constant specific heats, the
equation of state becomes

T
3272
yiyr—-1HM

where M = V*/,/y R T* is the Mach number, which measures the ratio of the charac-
teristic velocity to the speed of sound of the gas at temperature T*. It can be shown
that, provided the velocity of the fluid remains substantially lower than the speed
of sound, the flow is essentially incompressible. This means that the density of a
fluid element is simply carried along by the flow as the flow evolves. In this case the
equations simplify, and the equation of state of the fluid becomes irrelevant.

For flows with velocities comparable or exceeding the local speed of sound, it is
possible to generate shock waves in the fluid. These are essentially thin layers of fluid
separating regions in which the flow is locally supersonic from those in which the
flow is subsonic. The viscous terms again become very important in these thin shock
regions.

5.1 Introduction to Computational Fluid Dynamics 97

5.1.3

The Role of High-Performance Computing

Numerical computation of fluid flows and, in particular, the use of high-performance
computation plays a critical role in fluid mechanics research for several reasons.
First, the equations of motion as described above are nonlinear. Exact solutions of
these equations exist only for highly simplified geometries and initial conditions.
Numerical computation is essential for solving general initial value problems in
realistic geometries, such as the flow over an automobile or an airplane wing. In
addition, the number of degrees of freedom required for accurate simulation of flows
in realistic geometries rises rapidly with Reynolds number and Mach number.

To get a feel for the computational requirements, consider the simulation of
turbulent flow without boundaries. It can be shown that the number of degrees
of freedom required to simulate all relevant length scales in the flow properly
(including the dissipation-producing length scales due to viscosity) varies as Re%/4.
For a moderate Reynolds number of 10°, this implies a total of 3 x 10!3 degrees of
freedom per velocity component. Typically, this needs to be multiplied by a factor
of 10 to 15 to accommodate the storage required to carry out a computation. Thus,
roughly 300 terawords of memory are required simply to describe the flow. In order
to integrate the flow forward in time over a typical number of time steps (with a
time step on the order of 1/Re and thus on the order Re steps), one would need to
sweep through the mesh several times per time step. The exact number of sweeps
depends on the solver being used, but in any case, these simple considerations lead
to an estimate of the flop count on the order 10! or more for a Reynolds number
of 10°. From this simple estimate, it is clear that one requires a machine with
the capability of hundreds of teraflops or even petaflops in order to perform such
simulations in a reasonable time. Such architectures are only now on the horizon.

Turbulent flow is not the only application requiring high-resolution numerical
simulations. Even if the flow is kept smooth and laminar, the computation of fluid
flow about a solid body such as an airplane or car still requires substantial resources.
At the surface of a body, the flow satisfies the “no-slip” condition and is constrained
to move at the velocity of the body. The flow accommodates to this condition via
a thin boundary layer in which the viscous terms are sizable. The thickness of a
laminar boundary layer scales as Re~ /2. For example, the boundary layer on a 20-
foot automobile traveling at 55 miles per hour is about 1/10 of an inch. Again, a
wide range of scales is required in order to capture the flow correctly.

An even more severe ratio of length scales occurs for compressible flow with shock
waves. The thickness of strong shock waves is only on the order of a few molecular
mean free paths for a gas. The mean free path is typically several orders of magnitude
smaller than any characteristic length scale of the mean flow. In fact, it is currently
impractical to perform computations of compressible flows with shock waves in
which viscous effects are resolved across the shock wave except at Mach numbers
near 1.

The need to resolve the enormous range of scales in the examples above makes the
use of CFD essential. Even so, it is currently not possible to perform direct numerical

98

5.2

Chapter 5 Parallel Computing in Computational Fluid Dynamics

simulations of engineering flows in which all relevant scales are resolved. In all
such flows, some model of the small scales must be introduced. For turbulent flows,
we introduce a turbulence model to perform the dissipation of missing scales. For
strongly compressible flows, we employ modern artificial viscosities that allow us to
capture correctly the large-scale effects of the shock wave.

Incompressible Flows

We begin our discussion by considering Newtonian incompressible fluids with con-
stant density p and kinematic viscosity v = u/p, the motion of which is governed by
the incompressible Navier—Stokes equations:

V.-u=0 inQ

du=N(u) — 1 Vp + 1 v ing (5.4)
P Re

where u = (uq, up, u3) is the velocity field, p is the static pressure, Re = UL/v is the
Reynolds number, and 2 is the computational domain. Without loss of generality,
we take the numerical value of p =1, since this simply sets the scale for p. N(u)
represents the nonlinear advection term:

Nwy=—wu-Vyu

=—%[(u~V)u+V~(uu>]
:—%V(u-u)—uxqu

We refer to these as the convective form, skew-symmetric form, and rotational form,
respectively. These three forms for N(u) are mathematically equivalent but behave
differently when implemented for a discrete system. As shown by Zang [1015],
the skew-symmetric form is the most robust; this form is used in all calculations
described here.

The Navier-Stokes equations are coupled through the incompressibility con-
straint V-u =0 and the nonlinear term N(u). Dealing with this coupling in an
efficient and accurate manner is one of the challenges inherent in simulating incom-
pressible flow. However, the biggest challenge for time integration actually comes
from the linear term:

_ 12
L) = e Vu
This term is responsible for the fastest time scales in the system and thus poses
the most severe constraint on the maximum allowable time step for numerical
integration of the fluid equations. Problems associated with the stiffness of the linear
operator are handled by treating this term implicitly, while the nonlinear term
is usually integrated with a more direct and easily implemented explicit method.
Completely implicit treatments of the nonlinear term have been developed and lead
to more robust simulations, especially at high flow speeds [882]. The application of

5.2 Incompressible Flows 929

5.2.1

an appropriate time-stepping scheme is a key part of any formulation and involves
essential issues of numerical stability. For an example of some of the subtleties, see
Petersson [762].

Semi-discrete Formulation

To solve the Navier-Stokes equations, equation (5.4) is integrated over a single time
step to obtain:

t+At 1
u(t + At) =u(t) + / {N(u) —=Vp+ L(u)i| dt
t 0

Next we introduce a discrete set of times t,, =n At, where the solution is to be
evaluated, and define u" = u(x, t,)) as the semi-discrete approximation to the velocity
(discrete in time, continuous in space). For reasons that will be explained in a
moment, the pressure integral is replaced with:
-1 [tm11
VP=— = vpdt (5.5)
At Jy, P
Next we introduce appropriate integration schemes for the linear and nonlinear
terms. The simplest implicit/explicit scheme would be first-order Euler time inte-
gration:

t11+1
/ L) dt ~ At L@t (5.6)
ty

tnt1
/ N(u) df ~ At N@™ (5.7)
t,

n

Combining (5.5)-(5.7) we get a semi-discrete approximation to the momentum
equation:

i S [N(u”) — VP + L(u”“)] At (5.8)

This system of equations can be solved by further splitting (5.8) into three substeps
as follows:

ud — Yy &= AIN®W
u?® — yO &= —AtvP
un+1 _ u(Z) & = AtL(ul‘H—l)

Here uV and u® are intermediate velocity fields that progressively incorporate
the nonlinear terms and the incompressibility constraint. The motivation for the
splitting is to decouple the pressure term from the advection and diffusion terms.
It should be noted that the splitting procedure constitutes only an approximate
solution to the problem of solving equation (5.8) coupled to the incompressibility
constraint. For many purposes, this solution is sufficiently accurate, but in certain
cases errors occur at flow boundaries; these can sometimes be significant. The errors
arise because the incompressibility constraint is not enforced at all points up to and

100

522

Chapter 5 Parallel Computing in Computational Fluid Dynamics

including the flow boundaries. Again the reader is referred to Petersson [762] for a
more complete discussion.

The classical splitting scheme proceeds by introducing two assumptions: that
u@ satisfies the divergence-free condition (V - u® = 0), and that u® satisfies the
correct Dirichlet boundary conditions in the direction normal to the boundary
(n-u? =n.u"h. Incorporating these assumptions, we can derive a separately
solvable elliptic problem for the pressure in the form:

v2h = Ait (v-u®) (5.9)

The field P is no longer associated with thermodynamic pressure and becomes a
dynamic variable that couples the divergence-free condition and the momentum
equation. Neumann boundary conditions for P come from equation (5.8), which
can be simplified to the form:

E=n~|:N(u")fiV><V><u”i| (5.10)

on Re
This boundary condition prevents the propagation and accumulation of time dif-
ferencing errors and ensures that P satisfies the important pressure compatibility
condition [531]. Note that the linear term in equation (5.10) is derived from L")
rather than L("t1). This type of first-order extrapolation is necessary to keep the
pressure equation decoupled from the other substeps. The order of the extrapolation
should be consistent with the overall time accuracy.

A single time step using the skew-symmetric form of the nonlinear terms requires
the computation of various spatial derivatives to assemble the nonlinear term, plus
the solution of one Poisson equation for the pressure, and up to three Helmholtz
equations for the diffusion in each direction. Most of the computational work is
associated with solving these linear systems; integration of the nonlinear terms
makes only a minor contribution. The techniques outlined below can be applied
directly to the solution of the various elliptic subproblems as well as computation
of the nonlinear terms.

Spectral Element Methods

As stated above, the key steps in solving the Navier-Stokes equations are the ap-
proximation of the various operators (both linear and nonlinear) and the solution
of the Poisson equation for the pressure. In this section we lay out a solution to both
of these problems that uses high-order finite element or spectral element methods.
The advantage of this approach is that we can address issues of accuracy as well as
complex geometry. As was shown above, the solution of elliptic problems (equa-
tion (5.9), for example) is a key aspect of solving incompressible flow problems. In
this domain, finite element methods also confer some advantage, as there is a well-
developed theory to assess the numerical error resulting from such approximations.
Finally, classical formulations of discrete solutions of the Navier-Stokes equations

5.2 Incompressible Flows 101

that are obtained via the use of lower-order finite difference methods or finite vol-
ume methods can be recovered using the finite element formulation through the
use of low-order basis functions and appropriate projection operators. For details,
the reader should consult the very thorough presentation of Gresho and Sani [396].
A good introduction to spectral element methods can be found in Karniadakis and
Sherwin [532].

A One-Dimensional Example

It turns out that all the key aspects of the spatial approximation schemes can
be described by considering the solution in one space dimension of the Poisson
equation.

Suppose that we want to find u such that

uW'+f=0 ong

where @ is the unit interval 0 <x <1 and f is a given smooth function. At the
endpoints, we will specify the boundary conditions

u0)=g

U =h
This defines the strong form, the usual starting point for finite difference and other
schemes.

Consider the following alternative formulation of the same problem. We begin
with the equation for the residual,

R(u):/ﬂw(u”-ﬁ—f) dx (5.11)

from which we want to find the unique function u that drives the residual to zero.
The search will include all functions satisfying the boundary condition u(0) = g; each
candidate is called a trial solution, and we denote the set of all trial solutions by §. The
residual is orthogonalized with respect to a second set of functions w € V called test
functions or variations. Each test function should satisfy w(0) = 0. To incorporate the
Neumann boundary condition, we integrate equation (5.11) once by parts, finding
that R(u) =0 if

/w’u’dx:/wfdx—l—w(l)h
Q Q

If we identify the symmetric, bilinear forms a(w, u) = fQ w'u' dxand (w,f) = fQ wi dx,
then we can state the weak form as follows: find u € § such that, for every we V,

aw,y=w,H+wh (5.12)

Galerkin approximation solves equation (5.12) using a finite collection of func-
tions: find u" € 8" such that, for every w' e V",

aw, uy = wh,)+ wh(1) h (5.13)

102

Chapter 5 Parallel Computing in Computational Fluid Dynamics

This method reduces an infinite-dimensional problem to an n-dimensional problem
by choosing a set of n basis functions (¢1, ¢, ... , ¢,,) to represent each member of gh
and V". It admits all linear combinations w" € V" as

wh =C1p1+ 2 + ... + Py

where each ®p (0) = 0. To generate the trial solutions, we need one additional function
satisfying ¢,,,1(0) = 1, so that if u" € 8" then

n
uh :g¢n+1 + Z dp d’p
p=1

Note that, with the exception of ¢,,, 1, 8 and V" are composed of the same functions.
Substituting u” for u and w" for w, the weak form becomes

n
> 6 G,=0
p=1

where
n
Gp=3" [a@p) dy = @) — Bp() 1+ (B, b0 8 |
q:l
Since this must be true for any choice of the ¢,’s, we require G, = 0. If we put the
coefficients d,, into a vector d, we obtain the matrix problem

Ad=F

where the matrix entries are given by Apg=a(gy, by, and the components of the vec-
tor F are Fy= (¢, + ¢p(1)h — a(p, Pny1$- The solution is d = A~ 1F. Quite literally,
this is a best fit of the approximate solution u" to the true solution u based on the
measure of error given in equation (5.11).

Basis Functions

Galerkin approximation is “optimal” in the sense that it gives the best approximation
in the restricted space $". If the true solution u lies in the intersection of 8" and 8,
then u"" = u. But the success of the method lies in the selection of the basis functions.
If they are too complicated, it will be impossible to generate the matrix problem;
too simple, and they cannot adequately describe the true solution u. The key is
to combine computability and accuracy. Spectral elements accomplish this in the
following manner.

First, the domain is partitioned into K nonoverlapping subintervals, where each
subinterval, or element, is given by Qk = [ak, bX]. On element k we want to introduce a
set of local functions that provide accuracy of order N for the solution over that piece
of the computational domain. For spectral element methods, the basis functions are
invariably polynomials.

5.2 Incompressible Flows 103

Often, the most convenient approach is to form a set of polynomials from the
Lagrangian interpolants through a particular set of nodes. Recall that the Lagrangian
interpolant takes the value one at some node x; and is zero at all other nodes. The
simplest set of nodes would be the equally spaced points x; = ak + (b* — a¥) i/N. This
turns out to be a terrible choice for a high-order method because the basis is almost
linearly dependent, resulting in ill-conditioned algebraic systems. It is not the choice
of Lagrangian interpolants that causes the difficulty, but the choice of nodes over
which they are defined. To fix the problem, we just need to choose a “good” set
of nodes. The choice of points is crucial to the success and accuracy of the spectral
method. In contrast, this close connection between the sampling points and the
order of the method is not present in finite difference methods.

To standardize the basis, we introduce a parent domain with the coordinates
—1 <& <1and a coordinate transformation to the elemental nodes as

bk— k
Xi:ak+Ta(1+§i)

Now we choose the nodes §; to be the solutions of (1 — £2) L;V(S) =0, where Ly(§)
is the Legendre polynomial of degree N. With this special choice, the Lagrangian
interpolants can be written down explicitly as

A= Le)
N(N+1) Ly(&) € — &)

These polynomials are called the Gauss-Lobatto Legendre (GLL) interpolants. Fig-
ure 5.1 illustrates the mesh and basis functions for a typical element. We will refer
to any basis defined this way as a nodal basis.

There are several important reasons for choosing this set of polynomials. First, the
expansion of any smooth function using the GLL interpolants, u ~ u" = 3" d;¢;(x),
converges exponentially fast, as can be demonstrated by singular Sturm-Liouville
theory [393]. Because these are Lagrangian interpolants, the coefficients d; are simply
the nodal values of the approximate solution: d; = uh(xi). Also, there is a set of
integration weights p; associated with the nodes §; so that the integrals appearing in
the weak form can be computed via the GLL quadrature

$i(5) = (5.14)

1 N
flfds=2p,-f<si)+eN
- i=0

where the error ey ~ O(£2N(¢)) for some point in —1 < ¢ < 1. As long as the integrand
isa polynomial of degree less than 2N, this quadrature rule is exact [249]. Finally, and
perhaps most importantly, the interpolants, quadrature points, and weights can be
generated within a computer program by recursive algorithms that are numerically
stable through values of N ~ 100, eliminating the need to store static tables of
quadrature data.

Legendre polynomials are one example of a broad polynomial class called the
generalized Jacobi polynomials, which we denote as Pﬁ'ﬁ (&). Legendre polynomials

104

Chapter 5 Parallel Computing in Computational Fluid Dynamics

1L
ol
;4L
@
1
0 -
_ g
— : Lo
ak X bk
b)

Figure 5.1 One-dimensional, spectral-element basis functions for an expansion order of N = 4,
along with a sketch of the local and global coordinate systems: (a) modal basis constructed
from P,%’l(g) ; (b) Gauss-Lobatto Legendre basis and the set of nodal points that define them as
Lagrangian interpolants.

correspond to the parameter values @« =0, 8 =0. Sometimes, especially in higher
dimensions and on more complex domains, it is more convenient to work directly
with the polynomials rather than an intermediate Lagrangian basis. Jacobi polyno-
mials have the orthogonality property

1
[a-eraverple e a =

We can use Jacobi polynomials directly to represent a function through the expan-
sion u" =Y d; Pi"”s (x). The values d; are the coefficients of the basis functions, but
they do not correspond to any set of nodal values. In practice, there is a signifi-
cant advantage if most of the basis functions are orthogonal, so in the 1-D case we
would use:

5.2

Incompressible Flows 105

1
fo®) =5 (1+8)
$16) = % (1-8 (5.15)
1 1,1 .
o= A+6 A= PILE), 122

Figure 5.1 shows the first five basis functions constructed this way. In the nodal basis,
every function is a polynomial of degree N. In the modal basis, there is a hierarchy
of modes starting with the linear modes, proceeding with the quadratic, the cubic,
and so on.

We will refer to spectral elements constructed from a nodal basis as Lagrange
spectral elements and to those based on a modal basis as h-p elements. The latter
were first introduced in the early 1970s by Szabo [907], who used the integrals of
Legendre polynomials as a modal basis, taking ¢;(&) = ffl PI.O_'OI(S) ds. However, using
the properties of Jacobi polynomials [3] we obtain

&
on / 1pgf>1(s) ds=(1-5 A+ PM,®

which is the same as the basis in equation (5.15), except for the normalization.

The choice of which approach to take is somewhat arbitrary, since a nodal basis
can always be transformed to an equivalent modal basis and vice versa. The Fast
Fourier Transform (FFT) is one familiar example of such a transformation onto the
basis ¢x(§) = exp(ik§). Unfortunately, there are no “fast transform” methods for
Jacobi polynomials, and the transforms require matrix multiplication. However, for
the values of N used in practice (N < 16), this is not a serious drawback.

Discrete Equations

Returning to the problem of solving equation (5.13), we begin by noting that the
integral can be broken into a sum of integrals of each element:

K
aldp, b)a =Y _ a(dp, bgak
k=1

Since each basis function is nonzero over a single element, the inner product a(dp, ¢g)
is nonzero only if ¢, and ¢, “belong” to the same element. This makes the global
system sparse and allows us to compute only local matrices. Because of the origin of
finite element methods in computational mechanics, these matrices are traditionally
called:

" ” k —
mass Mpq_/s;k #p dq dx

ogs mak Y
stiffness qu_/gk qbp ¢>q dx

106

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Coupling at boundary nodes

al | Interior nodes

- u5<—

a . Interior nodes
. Boundary nodes
-+ U9 <
3 .
a Interior nodes
Un
H X [|

Q1 02 Q3

Figure 5.2 Schematic of the direct stiffness summation of local matrices A¥ to form the global
matrix A.

To construct the right-hand side of the matrix system, f(x) is approximated by
collocation at the nodal points to produce f"(x); the mass matrix provides the
coefficients necessary to perform the integration. Now the elemental matrix system
may be written as

AK7* =F* (+ boundary terms)

Just as the integral over the entire domain can be written as a sum of the integral
over each element, the global matrices can be computed by summing contributions
from the elemental matrices:

K
A=Y AN M=Y M
k=1 k=1
The symbol 3’ represents “direct stiffness summation.” The procedure is exemplified
in the diagram for the nodal basis in Figure 5.2 that maps contributions from the
boundary node shared by adjacent elements to the same row of the global matrix A.
The global matrix system is

Av=F (+ boundary terms)

A is banded as a result of using local basis functions, with all of its nonzero entries
located in the N diagonals above and below the main diagonal. It is also symmetric,
due to the symmetry of a(;, -), and positive definite. Thus, A can be computed, stored,
and factored economically and efficiently.

5.2 Incompressible Flows 107

Spectral element discretizations encompass both spectral methods and finite
elements. With the proper choice of basis functions and projection methods, finite
difference methods can also be included. Standard approximation error estimates
for Galerkin methods applied to elliptic problems on quasi-uniform meshes predict
that

lu — u"||; < constant x B*~IN~P=D |y p

where ¢ = min(D, N + 1), N is the polynomial degree appearing in the basis func-
tions, and h is a parameter related to the element size [64]. The constant depends
on the degree of mesh quasi-uniformity. D basically represents the D" derivative of
the solution and can be taken to be some fixed value. We assume that D can actually
be taken to be large since we assume the flow variables are smooth and possess all
derivatives. The main point of this result is that there are two ways to improve the
approximation: make h smaller (K — oo), or make N and p larger (N — c0). The latter
results in exponential convergence for smooth solutions. If a solution varies rapidly
over a small region, any polynomial fit will oscillate rapidly, and the best approach
is to reduce the element size until the solution is resolved locally. A more effective
approach is to combine the two convergence procedures, increasing both K and N
simultaneously; this dual path of convergence is known as an h-p refinement proce-
dure [907]. The flexibility to adapt the mesh to the solution makes spectral element
methods quite robust.

Basis Functions in d Dimensions

A key to the efficiency of high-order methods in 2- and 3-D problems is the formation
of a basis from the tensor product of 1-D functions. Among other things, this allows
the computation of integrals and derivatives of the basis functions to be simplified
through a procedure called sum factorization [728]. It also contributes to the sparse
structure of matrix systems for multidimensional problems.

In this section, we describe the procedure for constructing an efficient, high-order
basis on 2- and 3-D domains. To keep the discussion simple, we only consider the
standard domains R?, where d is the problem dimension. Figure 5.3 defines the
standard rectangle, R2. “Standard” here means that the coordinates are normalized
to fall in the range —1 to 1. For d = 3, the standard domain is a hexahedral element.
Isoparametric mappings can always be used to transform more general elements to
these standard domains, as illustrated in Figure 5.3. On the standard element, we
wish to define a polynomial basis, denoted by $ij(§1,£2), SO that we can represent a
function u" (&, &) by the expansion

N N

W' E) =)) w1, £2)

i=0 j=0

where uy; is the coefficient of the basis function ¢; and & = (§1, &) is the local
coordinate within the element.

108

523

Chapter 5 Parallel Computing in Computational Fluid Dynamics

&,
£ I
/’_\
g, > é]
V_—/

Figure 5.3 Definition of the standard quadrilateral domain R2. General curvilinear elements
can always be mapped back to the standard element as shown.

For quadrilateral (2-D) and hexahedral (3-D) elements, the procedure is straight-
forward. For example, on the domain QK = R?, the basis would be

$ij(§1,62) = ¢i(51) ¢j(62)

where ¢;(§) is the one-dimensional GLL polynomial defined in equation (5.14). In
this case, u;; represents the function value at the node &;. The 3-D basis on R3 is
exactly analogous to this one.

In the remainder of this chapter, we use the following simplified notation: every
index (ijjk) in the tensor product basis will be mapped to a single number as p =
i+jN+kN 2, so that there is a one-to-one correspondence between Bp(&) and Gijk (&).
This hides the tensor product nature of the basis but makes the discrete equations
much easier to write down. When necessary, we can “unroll” the p index to take
advantage of the tensor product form. This expression for p is valid for quadrilateral
elements only.

Basic Operations

Solution of the Navier-Stokes equations using spectral element methods requires
the ability to perform several basic operations. In particular, we need a suitable
quadrature rule for performing the integration, and we need to be able to evaluate
functions or derivatives at specified points.

5.2 Incompressible Flows 109

Integration

The general form for the evaluation of an integral by Gaussian quadrature with
weights (1 — £)% (1+ &)? can be written as

1 N
/1 A-6* A+ u@ de =Y i uE

i=0

where sia’ﬂ and p?’ﬁ are the quadrature points and weights associated with the Jacobi
polynomial Plo\‘]’ﬂ (¢). The quadrature rule is exact if u(¢) is a polynomial of degree
2N + 1 for the Gauss points, 2N for the Gauss—-Radau points, and 2N — 1 for the
Gauss-Lobatto points.

To integrate a function defined over the standard domain R?, we simply use the
tensor product form to reduce the integral to two 1-D quadratures. The integral of a
general function is written as

N N
./]RZ u(§) dédér =Y Y pipj u()

i=0 j=0

The extension to integrals over R3 is straightforward.

Projection

To apply the integration rules described above, we need to evaluate a function at a
given set of quadrature points. For the nodal basis this is trivial because the basis
coefficients are the function values at the quadrature points. For a modal basis we
need an efficient way to evaluate the full solution at the quadrature points. This
problem and the related problem of determining the modal expansion coefficients
from a set of nodal values are both called projections.

A projection is the procedure for determining the coefficients u;; so that u~u
for some given function u. First, recall the general form of the expansion:

u@) ~ u'€) =Y u, &)
P

The expansion coefficients are determined by taking the inner product with the basis
functions on both sides of this equation:

W, $p) ok = ", p)ox Yoy € (i} (5.16)
Solving this system of equations to determine the approximation u” is straightfor-

ward if the basis {¢;;} is orthogonal. Otherwise, we have to compute u" by inverting
a matrix.

110 Chapter 5 Parallel Computing in Computational Fluid Dynamics

To describe this for the modal basis, we introduce the following notation:

i, = Vector of P~ N 3 expansion coefficients, thy < Ujjk
ﬁq = Vector of Q function values at the quadrature points

3

Ug < u(éy)
W, = Diagonal matrix of Q x Q quadrature weights required
to integrate a function over ok
B,, = Rectangular matrix containing the value of the basis

functions at the quadrature points. There are Q
quadrature x P basis functions.

Now we can write down the algebraic form of the inner products given in equation
(5.16). First, the inner product of u with the basis functions:

W, ¢p)ox — BTW i
Second, the inner product of u” with the basis functions:
", pp)ok — BTWBIi

The approximation u" ~ u is determined by matching these two inner products for
every basis function:

B"Wii=B"WBi

This is the fully discrete form of equation (5.16). Note that the expression on the
right-hand side defines the mass matrix:

($i, ¢k — BTWB

or simply M = BTWB.
Now we can define the discrete projection operator as

i =P = [BTWBT1 B Wii

This is also called the forward transform of a function from physical space (nodal
values) to transform space (modal coefficients). The discrete inverse transform is
simply the evaluation of the modal basis at a given set of points:

=9~ 1(@) =Bii

=n

Finally, we note that in the GLL nodal basis, M is a diagonal matrix. This follows
directly from the discrete orthogonality of the basis functions and the fact that
$p(&y) = 8pq, where &, are the GLL quadrature points. A diagonal mass matrix is a
tremendous simplification since multiplication by M~ is trivial.

5.2 Incompressible Flows 111

524

Differentiation

Since the basis is formed from continuous functions, derivatives can, in principle,
be evaluated by simply differentiating the basis functions:

aul 0
9 Uzk Ujji 8?1(51) #j(62) Pk (83)

In practice, we only need the derivatives at certain points, namely the quadrature
points. Therefore, the solution is first transformed onto an equivalent Lagrangian in-
terpolant basis defined over the quadrature points. We introduce the 1-D Lagrangian
derivative matrix

de,

D,‘pE 7&

&i
Rather than O(N3) terms, the Lagrangian interpolant basis reduces the summation
to an equivalent 1-D operation. The coefficient of the derivative, u;.].k, is then given

by

N

/
iy = Dip tyjk
p=0

Since only O(N) operations are required per point, it takes O(N3) operations to
compute all derivatives in R? and O(N*) operations to compute all derivatives in R3.
In the modal basis, calculation of derivatives is preceded by an inverse transform (to
nodal values) and followed by a forward transform (to modal coefficients), therefore
increasing the computational cost.

Global Matrix Operations

One of the basic principles for maintaining the sparse structure in the global matrix
systems is to enforce only the minimum continuity between elements. For all of the
problems we consider here, the global basis is required to be C° continuous, that is,
only function values and not derivatives are required to be globally continuous. For
discretizations with both Lagrangian and h-p basis functions, this is accomplished by
choosing a unique set of global “degrees of freedom” that define the approximation
space.

Global continuity in the Lagrangian basis is straightforward. Since the basis
functions are defined as the Lagrangian interpolant through the elemental nodes,
we only have to use the same set of nodes along the edge of adjacent elements. As
long as the elements are conforming (each edge matches up exactly to one other
edge) and of equal order (same number of nodes along each edge), C° continuity
is guaranteed. Figure 5.4 shows a possible global numbering scheme for a simple
quadrilateral mesh.

112

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Boundary unknowns

Boundary knowns

Figure 5.4 Local and global numbering for a simple domain composed of two quadrilateral
elements of order N = 2. Points along the boundary do not constitute global “degrees of
freedom” and are not assigned indices in the global index set.

An important extension to the original spectral element method was the intro-
duction of nonconforming elements by Bernardi et al. [95]. Here we give only a sketch
of the way the method is used to patch together a nonconforming mesh. For a full
description of the method, including efficient solution techniques and numerous
examples, see the references Anagnostou [32], Bernardi et al. [95], Henderson [452,
453], and Mavriplis [655].

The main idea is to use a constrained approximation. For a geometrically and func-
tionally nonconforming set of elements, we cannot guarantee global C® continuity
of the basis. Therefore, we make the basis as continuous as possible by minimizing
the difference in function values across each nonconforming interface. We do this
by enforcing the following weighted residual equation:

/(u—v)d/ds:o Vi € Py_p (D) (5.17)
r
The residual is the difference between two functions u and v that we would like to

be continuous, and v is the weight used to perform the minimization. The algebraic
form of this equation is

=
Il

N
<!

5.2 Incompressible Flows 113

525

where # and v are the coefficients of whatever basis we choose to represent u and
v, and the entries of Z are determined by evaluating the residual equation using
numerical quadrature. We say the values of v are free and the values of i are
constrained to match them such that equation (5.17) is satisfied.

To use this as a computational tool, we choose v to be the solution along the
edge of some element and u to be the solution along the edge of an adjacent
nonconforming element. Equation (5.17) is used to construct u from v, thereby
eliminating u as an “unknown” in the mesh. Since v contributes to the global
degrees of freedom in the problem, this is one type of “combining” described
next in Section 5.2.5. There is an additional consistency error associated with the
nonconforming discretization because the approximation space is no longer a proper
subset of the solution space—it admits discontinuous solutions. As bad as this
sounds, the consistency error is of the same order as other components of the
approximation error, and if implemented properly the method always converges
to a continuous solution if one exists.

Nonconforming elements allow quadrilateral meshes to be refined locally, with-
out the conforming restriction propagating refinement across the mesh. It is not as
important for triangular and tetrahedral elements where algorithms such as Rivara
refinement [804] can be used to perform local refinement and maintain consistency
in the mesh. We provide several examples that make use of nonconforming quadri-
lateral elements in the following sections.

Data Structures

Here we describe the data structures and basic operations required to implement the
most common procedures in spectral element methods. We cover representation
of the global system, how to transfer global data to local (element) data, direct
stiffness summation, and finally the procedures for integration and differentiation
of solutions defined on geometrically complex 2- and 3-D elements.

Implementation

First we start with the representation of the solution within a computer program.
In this section, we give several examples as pseudocode fragments that follow basic
C and C++ syntax. This is not meant to be an in-depth presentation, but simply an
illustration of the most important ideas and the basic approach.

In spectral element methods, as in finite element methods, global data are stored
as a flat, unstructured array. The basic data structure used to relate the mesh to entries
in this array is a table that identifies the global node number of a local node within
each element. Since we are interested in both nodal and modal descriptions, we
replace “node” with the more general concept of a “degree of freedom” in the global
solution. The table of indices can be stored as a two-dimensional array of integers:

map[k][i] = global index of local datum i in element k

114

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Local data can be stored in any convenient, regular format. In our first version,
we will assume the number of degrees of freedom in the mesh (ndof) and the number
of degrees of freedom associated with each element (edof) are constant. To perform
some global operation, for example to evaluate a function v = F(u), we insert a layer
of indirection between the unstructured global data and the structured local data.
The following is a template for any such computation:

for (i=0; i < ndof; i++) // Initialize v
v[i] = 0.;
for (k=0; k < nel; k++) { // Loop over elements
for (i=0; i < edof; i++) // Copy global data
uk[i] = u[map[kI[i] 15 // --- gather
compute (uk, vk); // Compute v=F(u) Tocally
for (i=0; i < edof; i++) // Accumulate the result
v[map[k][i] 1 += vk[il; // --- scatter

Depending on the specific operation, the final result may need to be corrected
in some way: rescaled with the global mass matrix, averaged based on the data
multiplicity, or some similar global operation. The last loop corresponds to di-
rect stiffness summation, and in our matrix notation we would write this same
operation as:

K K
p=3" =" Fa" =Fa (5.18)
k=1 k=1

To make this data structure suitable for both hierarchical bases and nonconform-
ing elements (to be developed in Section 5.2.7), we introduce two generalizations.
First, we allow the number of degrees of freedom in each element to be different
by replacing the constant edof with the array edof[k]. Second, we allow each local
degree of freedom to depend on an arbitrary combination of the global degrees of
freedom. To implement this we need to introduce two new arrays:

idof[k][i] = number of global dependencies for local datum i in element k

combine[k][i] = array of coefficients for combining global data to get local data

And finally, we need to add a new dimension to our index table:
map[k][][j] = global index of the jth dependency of local datum i

In effect, we are introducing a set of coefficient matrices Z¥ that define a general
transformation between global and local degrees of freedom. Using this approach,
the global initialization, loop over the elements, and function call for the local
computation shown above stay the same, but the procedure for constructing the
local data is rewritten as follows:

5.2 Incompressible Flows 115

for (i=0; i < edof[k]; i++) // Initialize
uk[i] = 0.;
for (i=0; i < edof[k]; i++) { // Combine
real *Z = combine[k][i];
for (§=0; j < idof[k][i]; j++)
uk[i1 += Z[3] * ul map[KI[i1[3] 13

}

Likewise, the accumulation of results uses a similar method for combining local
contributions to the global degrees of freedom:

for (i=0; i < edof[k]; i++) { // Combine
real *Z = combine[k][i];
for (§=0; j < idof[k][i]; j++)
v[map[k][i1031 1 += Z[31 * vk[il;

We also introduce a new matrix notation for this more general approach. Since
the local data is Z¥ii, and the local contribution to the global system is [Z¥]TVK, the
equivalent procedure for assembling the global system is written as:

K
7= 12N =3 (2 P2k = F@) (5.19)
k=1 k=1
Compare this to equation (5.18) above, and note that the only change is how we
transform between the local and global systems. The actual computations at both the
local and global levels are the same.

In the remaining sections, we describe computations in terms of either the lo-
cal or global system, omitting the actual “assembly” required to go between them.
Equation (5.19) is always implied as the method for recovering local solutions and
assembling global ones. This simplifies what would otherwise become a confusing
barrage of notation. Along the way, we will give more specific information about
how the coefficients for the mapping matrix ZX are chosen. This is a very flexible
scheme for storing the global solution and reconstructing the local one. The ad-
ditional storage and computational overhead is simply the price we pay for new
capabilities: variable order of the local basis functions and arbitrary connectivity
in the mesh. However, these are the key ingredients for adaptive h-p refinement
techniques.

Improvements

Although the scheme outlined above is complete, it is not an efficient way to
implement h-p methods: too much of the addressing is done by indirection. One
of the computational advantages of high-order elements is the natural partitioning
of data into sets that can be operated on as a group. For example, local degrees

116

526

Chapter 5 Parallel Computing in Computational Fluid Dynamics

of freedom are normally partitioned into several groups: vertices, edges, faces, and
interior data. Data associated with any of these groups can be operated on as a single
entity. For example, all the points on the interior of an element can be identified
with the element number and moved around or computed on as a single unit.
High-order elements provide better data locality than low-order elements because
computations always involve large amounts of data that can be grouped together in
memory.

The type of full indirection outlined above is only necessary for the degrees of free-
dom associated with the surface of an element. These data make up the loosely cou-
pled components of the global system. This sparse global system forms the “skeleton”
of the discretization and shares many characteristics with low-order finite elements.
For example, the numbering system stored in the index table can be optimized to
reduce its algebraic bandwidth using the same techniques applied in finite element
methods (see Section 5.2.6). Unfortunately, more sophisticated data structures than
can be described here are required to incorporate these simplifications.

Solution Techniques

In this section, we describe efficient iterative and direct methods for inverting
the large algebraic systems that result from nonconforming spectral element dis-
cretizations. Iterative methods are more appropriate for steady-state calculations
or calculations involving variable properties, such as a changing time step or a
Helmholtz equation with a variable coefficient. For direct methods, the issue is one
of memory management—storing A as efficiently as possible without sacrificing the
performance needed for fast back-substitution. The development of fast direct and
well-preconditioned iterative solvers represents a major advance toward the appli-
cation of nonconforming spectral element methods to the simulation of turbulent
flows on unstructured meshes.

Conjugate Gradient Iteration

Conjugate gradient methods [81] have been particularly successful with spectral
elements because the tensor-product form and local structure allows the global
Helmholtz inner product to be evaluated using only elemental matrices. To solve
the system Aii = F by the method of conjugate gradients, we use the algorithm
in Figure 5.5, where k is the iteration number, r¢ is the residual, and py is the current
search direction. The matrix M is a preconditioner used to improve the convergence
rate of the method and is discussed in detail next.

Selection of a good preconditioner is critical for rapid convergence; the precondi-
tioner must be spectrally close to the full stiffness matrix yet easy to invert. Popular
preconditioners for spectral methods include incomplete Cholesky factorization and
low-order (finite element, finite difference) approximations [261, 728]. Unfortu-
nately, these preconditioners can be as complicated to construct for an unstructured
mesh as the full stiffness matrix A. Next, we present three preconditioners that are
simple to build and apply, even when the mesh is unstructured.

5.2

Incompressible Flows 117

k=0; uy=0; ro=F;
while ry £ 0
SolveMgy=r; k=k+1
if k=1 then
P1=40
else
Be=r{_ak-1/1} yq k-2
Pk = k-1 + PrPk-1
end
ax =1 dk-1/P} APk
T =Tx—1 — o Apy
Ug = Ug_1 + P
end
U=ug

Figure 5.5 Algorithm for conjugate gradient iteration.

In conjugate gradient methods, the number of iterations required to reach a given
error level scales as ,/ky. This is only an estimate, since the actual convergence
rate is determined by the distribution of eigenvalues—if all of A’s eigenvalues are
clustered together, convergence is much faster. To assess the effectiveness of a given
preconditioner, we begin by looking at the condition number of M~1A.

Each of the following methods is based on selecting a subset of entries from the
full stiffness matrix. The first two preconditioners are diagonal matrices given by

M;;=A; “diagonal,” and (5.20)
Ndof

Mii = Z |A1[| “I‘OW-SU.m,”
j=0

where ny.s = rank(A); the diagonal (5.20) is sometimes called a point Jacobi precon-
ditioner. Both are direct estimates of the spectrum of A and have the advantage of
minimal storage and work. The third preconditioner is a block-diagonal matrix:

|Ajl i i <mpop, j=1i

Miiz 0 ififnbofr]7&1

Aj otherwise
where 17y,¢ is the number of mortar nodes in the mesh. The structure of this matrix as-
sumes that A is arranged in the static condensation format described in Section 5.2.6.
Applying this preconditioner amounts to storing and inverting the isolated blocks
of A associated with the degrees of freedom on the interior of each element, while
applying a simple diagonal matrix to the mortar nodes.

118

Chapter 5 Parallel Computing in Computational Fluid Dynamics

We conclude this section by giving the memory requirements and computational
complexity for a preconditioned conjugate gradient (PCG) solver. Since the elemen-
tal Helmholtz operator can be evaluated using only the 1-D Lagrangian derivative
matrix, the required memory is simply storage for the nodal values and geometric
factors:

S; = 5;KN?

As mentioned above, the dominant numerical operations are vector—vector and
matrix-vector products, although derivative calculations are folded into a more
efficient matrix-matrix multiplication. The operation count for the entire solver is

C =) [clKN3 + c,KN? + C3KN]

where J¢ oc vKN3 is the number of iterations required to reach a given error level e.
Our numerical results show that with these preconditioners J€ is still proportional to
KN3, but the constant is reduced. The block matrix operations required to compute
the elemental inner products provide good data locality and can be coded efficiently
on both vector processors and RISC microprocessors.

Static Condensation

The static condensation algorithm is a method for reducing the complexity of the
stiffness matrices arising in finite element and spectral element methods. Static
condensation is particularly attractive for unstructured spectral element methods
because of the natural division of equations into those for boundaries (mortar
elements) and element interiors. To apply this method to the discrete 1-D Helmholtz
equation, we begin by partitioning the stiffness matrix into boundary and interior

points:
k= ok 7ok
[An AIZ] [Ub] _ |:P;b:|
Az Ap u; F;
where A, is the boundary matrix, A;, = [Ay] is the coupling matrix, and Ay, is
the interior matrix. This system can be factored into one for the boundary (mortar)
nodes and one for the interior nodes, so that on QF:
[A11 — AgiA5 Avoliiy = Fy — [Ap A F;
Agp tlj =F; — Apyllyy

During a preprocessing phase, the global boundary matrix is assembled by summing
the elemental matrices,

K

A=Y [A11 — AnAzAn] (5.21)
k=1

5.2

Incompressible Flows 119

A, J

Figure 5.6 Static condensation form of the spectral element stiffness matrix. The vector ¢ = i,
represents the boundary (mortar) solution, while #; represents the interior solution.

and prepared for the solution phase by computing its LU factorization. Equa-
tion (5.21) may also be recognized as the Schur complement of A,, in A. As part
of this phase, we also compute and store for each element the inverse of the interior
matrix [Agzl] and its product with the coupling matrix [AZlAgzl]. The system is solved
by setting up the modified right-hand side of the global boundary equations, solving
the boundary equations using back-substitution, and then computing the solution
on the interior of each element using direct matrix multiplication. Because the cou-
pling between elements is only C?, the element interiors are independent of each
other, and on a multiprocessor system this final stage can be solved concurrently.

Figure 5.6 illustrates the structure of a typical spectral element stiffness matrix
factored using this approach. To reduce computational time and memory require-
ments for the boundary phase of the direct solver, we wish to find an optimal form
of the discrete system corresponding to a minimum bandwidth for the matrix Aq;.
This is complicated by the irregular connectivity generated by using nonconforming
elements. One approach to bandwidth optimization is to think of the problem in
terms of finding an optimal path through the mesh that visits “nearest neighbors.”
During each of the K stages of the optimization, an estimate is made of the new
bandwidth that results from adding one of the unnumbered elements to the current
path. The element corresponding to the largest increase is chosen for numbering,
resulting in what is essentially a greedy algorithm. This basic concept is illustrated in
Figure 5.7. The reduction in bandwidth translates to direct savings in memory and
quadratic savings in computational cost. Note that standard methods of bandwidth
reduction used for finite elements, such as the reverse Cuthill-McKee algorithm, can
also be used, although they only need be applied to the boundary system.

120 Chapter 5 Parallel Computing in Computational Fluid Dynamics

Figure 5.7 Bandwidth optimization for a spectral element mesh: (a) computational domain,
(b) connectivity graph, and (c) an optimal path for numbering the boundary nodes in the
mesh.

The search for an optimal numbering system can be accomplished during prepro-
cessing, so the extra work has no impact on the simulation cost and can result in
significant savings. For computers where memory is a limitation, this procedure can
determine whether an in-core solution is even possible. Other simple memory opti-
mizations include storage of only a single copy of the interior and coupling matrices
for each element with the same geometry, and evaluation of the force vector F us-
ing tensor product summation instead of matrix operations. By carefully organizing
matrix usage, the overall memory requirement scales as

Sp= % $1 K®2N? + 5, KN3 + 53 KN*

5.2 Incompressible Flows 121

527

As mentioned in the introduction to this section, the direct solver is advantageous
only when the cost of factoring this stiffness matrix can be spread over a large num-
ber of solutions. Therefore, we consider only the cost of a back-substitution using
the factored stiffness matrix, for which the operation count scales as

Cp=c¢1 K¥?N? + ¢ KN* + c3 KN

For a well-conditioned, diagonally dominant system, this method usually results in
at least a factor of two savings versus an iterative solver. For a system that is not
diagonally dominant, such as the Navier-Stokes pressure equation, it can be faster
by a full order of magnitude.

Adaptive Mesh Refinement

In this section, we look at the implementation of a high-order adaptive code based
on the nonconforming spectral element method. In practice, this method is used
with high-order polynomials (p ~ 4 to 16) and a mesh of elements that is generated
adaptively by h-refinement. We will not attempt to refine both the elements and
the basis functions simultaneously, as experience indicates that uniformly high p
and adaptive mesh refinement leads to an efficient solution for a wide variety of
problems.

The formulation based on mortar elements [95] allows completely arbitrary as-
sembly of nonconforming elements. However, our goal is to develop automatic
procedures for generating an appropriate mesh, and this calls for some compromises.
To simplify the encoding of the mesh, we will require the refinement to propagate
down a quadtree (2-D geometries) or oct-tree (3-D geometries). A basic description
of the mesh generation procedure is provided below. This is found to be a suitable
restriction for problems with smooth solutions and leads to a significant reduction
in the complexity of the data structure needed to represent the many levels in the
refined grid. For complex geometries, the mesh may incorporate multiple trees at
the coarse level.

To give a more specific introduction to the goals of developing an adaptive spectral
element method, Figure 5.8 shows a sample calculation for the impulsively started
flow past a bluff plate. In this simulation, the solution field is generated by integrating
the incompressible Navier-Stokes equations from an initial state of zero motion. The
characteristic scales in the problem are the free-stream speed u,,, the plate diameter
d, and the kinematic viscosity of the fluid v. The Reynolds number, defined as
Re=u,,d/v, is set to the value Re = 1000. Figure 5.8(b) shows the global domain used
to represent the flow around the plate. A symmetry condition is imposed along the
centerline so that only one-half of the flow field needs to be computed. Figure 5.8(a) is
an enlargement of the near wake region. It shows both the vorticity of the developing
flow at an early time and the adaptively generated mesh. The vorticity of the flow is
defined by w = V x u and is a measure of the rotational components of the velocity
field. Each element is an 8 x 8 point subdomain (p = 7) of the global solution. A
large number of separate “trees” are needed at the coarse level to correctly model the

122

Chapter 5 Parallel Computing in Computational Fluid Dynamics

(b)

Figure 5.8 Simulation of the impulsively started flow past a bluff plate at Re = 1000 using an
adaptive spectral element method: (a) close-up of the mesh and vorticity of the flow a short
time after the impulsive start; (b) global computational domain.

beveled geometry of the finite-thickness plate. The initial stage of mesh generation is
done by hand to provide the correct starting geometry. Once the problem is handed
to the flow solver, the additional adaptivity in the mesh is based on a maximum
allowable approximation error in the vorticity field.

Because the algorithms for time integration in problems like the one illustrated in
Figure 5.8 are generally semi-implicit, the computational issues that arise are some-
what different when compared to other methods that incorporate adaptive meshes.
We are interested primarily in studying incompressible flows governed by the Navier—
Stokes and Euler equations. Because of the elliptic nature of the governing equations
(due in part to the incompressibility constraint), local time stepping is not usu-
ally an option. Therefore, solving the elliptic boundary-value problems that arise
in these systems is a particular challenge. Even for 2-D flows, the resolution needed
to maintain sufficiently high accuracy can lead to very large systems of equations,
and computational efficiency is an important issue. In the past, this meant algo-

5.2 Incompressible Flows 123

rithms that could be vectorized, while today it means algorithms that can be paral-
lelized. There is a close relationship between spectral elements and finite elements. So
when it comes to parallel computing, many of the same problems (e.g., load balanc-
ing) arise, and similar solutions apply. Section 5.2.8 addresses the implementation
of this method for parallel computers with a programming model based on a weakly
coherent shared memory that is synchronized via message passing.

Just as important as overall computational performance are the algorithms used
for driving adaptive refinement. Ideally, such an algorithm would take as input an
error estimate and produce as output a new discrete model or mesh that reduces the
error. The basic problems are the lack of an error estimate for nonlinear systems and
the unlimited ways in which such an algorithm could improve the discrete model.
The latter problem is addressed by restricting “improvements” to propagating re-
finement down the tree. The former problem is addressed with a pseudo-heuristic
error estimate based on the local polynomial spectrum as described below. Depend-
ing on the nonlinearity in the partial differential equations being solved, parts of
the spectrum will give an accurate approximation to the true solution and parts will
be polluted. We estimate the order of magnitude of the local error by examining the
decay along the tail of the local polynomial spectrum. In a general sense, this heuris-
tic flags locations in the mesh where the polynomial basis fails to provide a good
description of the solution. For simple problems (linear, 1-D), this can be formally
related to the true difference between the exact solution and the approximate solu-
tion, that is, the approximation error. For more interesting problems, it is shown to
be a robust guide for driving adaptivity. The heuristic is easy to compute but is only
accurate as an error estimate in computations with sufficiently high p, meaning that
the local polynomial coefficients should decay like |a,| ~ exp(—on) for p=n>> 1.
This is generally not true near singular points (e.g., corners), and these locations are
automatically flagged for refinement. The method based on local spectra is compared
to simpler heuristics such as refining in regions with strong gradients, and the two
are shown to lead to quite different results. In general, the local spectrum works well
and is a good match to the overall computational strategy.

Framework

In this section, we restrict our attention to 2-D problems. Most of the difficulties arise
in two dimensions, and there are no fundamental barriers (other than computing
power) in extending the method to three dimensions. To begin, let D be some region
of space that has been partitioned into K subdomains, which we denote D). We
consider two related problems:

1. Given a discretization tolerance ¢, generate a spatial discretization D = {D®)}
that allows the tolerance to be met.

2. Given a spatial discretization D = {D®)}, generate a finite-dimensional approx-
imation u" ~ u. The function u may be given explicitly or implicitly, that is, as
the solution of a boundary-value problem.

124

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Our approach to problem 1 is to create a hierarchy of grids by forming a quadtree
partition of D. This provides the computational domain for problem 2, where we
apply a nonconforming spectral element method to approximate u".

Mesh Generation

The mesh generation problem is somewhat simpler, so we describe that first. A
quadtree is a partition of 2-D space into squares. Each square is a node of the
tree. It has up to four daughters, obtained by bisecting the square along each
dimension. Each node in a quadtree has geometrical properties (spatial coordinates,
size) and topological properties (parents, daughters, siblings). Geometrical properties
of daughter nodes are inherited from parents, and thus the geometrical properties
of the entire tree are determined by the root node.

To represent the topological aspects of the tree, we use an idea originally developed
for gravitational N-body problems [824]. Every possible square S is assigned a
unique integer key. The root of the tree is S, with key 1. The daughters of any node
are obtained by a left shift of two bits of the parent’s key, followed by a binary or in
the range 00 to 11 (binary) to distinguish each sibling. A node’s parent is obtained
by a two-bit right shift of its own key. Since the set of keys installed in the tree at
any time is obviously much smaller than the set of all possible keys, a hash table is
used for storage and lookup.

From the complete set of nodes in the tree we choose a certain subset D) ¢ S® to
form the active elements of the computational domain. Figure 5.9 shows a four-level
quadtree with 13 nodes and K = 10 active elements. Active elements in the figure
are shown with a solid outline, while inactive elements are shown with a dashed
outline. Inactive elements are retained so that they are available for coarsening the
mesh, if necessary. The only requirement enforced on the topology of the mesh is
that active elements that share a boundary segment live at most one refinement level
apart, limiting adjacent elements to a two-to-one refinement ratio. This imposes a
certain smoothness on the change in resolution in the mesh that is appropriate for
the class of smooth functions we wish to represent.

Refinement Criteria

The adaptive mesh generation and high-order domain decomposition methods
described here are coupled through refinement criteria used to drive adaptivity. Here
we consider three types of refinement criteria.

The first is by far the simplest: refine everywhere that solution gradients are large.
We can enforce this idea by requiring

3 //
IVu®| < e [lu";

everywhere in the mesh, where | - || is the L, norm, || - ||; is the H! norm, and ¢ is
the discretization tolerance. This is a common refinement criterion in cases where
there is simply no alternative measure of solution errors.

5.2 Incompressible Flows 125

DK = S

1010111
1010100

1010110
1010101

Figure 5.9 A four-level quadtree mesh, expanded to show the elements that make up each

level. Each leaf node S has a unique integer key shown in binary. Daughter keys are generated
from a parent’s key by a two-bit left shift, followed by a binary or in the range 00 to 11. The
active elements D® that make up the current discretization are shown with a solid outline.

The second type takes direct advantage of the high-order polynomial basis. Con-
sider the expansion of a given smooth function u over the domain D = [-1, 1] in
terms of Legendre polynomials:

oo o0

ux,y) = Z Z Ay Pr(X) Py (y)

n=0 m=0

The expansion coefficients are given by

1 1 1
/ / uP, P, |J|dxdy
hCm J-1J-1

where the normalization constant is ¢; = (2i + 1)/2. We have included the Jacobian,
I/1, to include the effects of element size and other geometric transformations, such

Apm =

126

5238

Chapter 5 Parallel Computing in Computational Fluid Dynamics

as curvilinear boundaries. There is nothing magical about Legendre polynomials—
they are simply a convenient orthogonal basis for projecting the approximation
onto. Since our approximate solution u” ~ u is formed essentially by truncating this
expansion at some finite order p, we can form an estimate of the approximation
error ||u — u”| by examining the tail of the spectrum.

To do so, we first average over polynomials in x and y to produce an equivalent
1-D spectrum:

p—-1
dy=lappl+ Y (1aipl + layil)
i=0
Next we replace the discrete spectrum a, with an approximation to a decaying
exponential:

a(n) = constant x exp(—an)

The function a(n) is a least squares best fit to the last four points in the spectrum a,,.
Our refinement criterion becomes

00 1/2
(é<p>2+ / é(n)zdn) < el (5.22)
p+1

The only practical complication here is making sure that the decay rate « > 0 so that
the integral converges. Otherwise, the estimate is ignored and the element is flagged
for immediate refinement. This method is analyzed in Mavriplis [656], where it is
shown to be an effective refinement criterion for driving h-p refinement.

The third refinement criterion is similar. Since the main contribution to equation
(5.22) comes from the coefficients of order p, we can simply sum along the tail of
the spectrum. For an accurate representation of u, we require the spectrum to satisty
the discretization tolerance:

p—1
ppl + 3 (laipl +lapl) < € ") (5.23)
i=0

This method is somewhat simpler to apply and, as we will see, produces almost
identical results.

To use these polynomial spectrum criteria with our spectral element method
(based on GLL polynomials), we first perform a Legendre transform of the local solu-
tion u® — a,,, and then use equation (5.22) or (5.23) to decide if the element should
be refined. Although we keep p fixed, the error is reduced because we approximate
u over a smaller region D®.

Implementation for Parallel Architectures

We end this section with a few additional notes on implementation. The algorithms
described above have been implemented using a combination of C for the computa-
tional modules and C++ for high-level data types, such as Element = D® and Field

5.2

Incompressible Flows 127

I

///////)

7
l///// 7

//// //f//////// l///
]L/7 4///// /
/////i\/// /ﬁ
L

\\

\\\;\\
\
/\\\

\
N
N

7 2L 2R,
Figure 5.10 The logical structure of a spectral element mesh can be divided into three
geometric parts: (o) vertices, (—) edges, and (shaded) interiors. Edges and vertices define
the connectivity in the mesh.

= u"", that make up the discretization. The logic and control structures needed for
most of the code are the same as in any algorithm for finite element methods. The
most complex problem is maintaining the connectivity of the mesh dynamically,
and the approach taken here is worth mentioning.

The geometry and topology of the mesh are closely connected. Figure 5.10 shows
the three geometric elements of the discretization: vertices, edges, and interiors.
Obviously, interior points are completely local to an element and play no role in the
global system. All connectivity in the mesh is through the edges and vertices. Because
of the method used to construct the grid, these geometric elements are interlocking.
The midpoint of each nonconforming edge aligns with the shared vertex of its two
adjacent elements. As discussed below, this feature is used to simplify the procedure
for setting up the mesh topology.

Figure 5.10 shows another side effect of the mesh generation. Internal curvilinear
boundaries are automatically propagated down the various levels of the refinement
tree because of the isoparametric representation of the geometry. In the same way
that a solution field is projected onto a new set of elements, the polynomial repre-
sentation of the geometry can also be projected to a finer grid. On the other hand,
external boundaries like the B-spline segment shown as the lower boundary in the
figure are explicitly reevaluated to keep the representation as accurate as possible.

How does one represent the topology of this kind of mesh? One solution is to use
pointers. This immediately runs into the problem of interpreting pointers to objects
on remote processors if the computation is running in parallel. Instead, we use the
concept of a voxel database (VDB) of geometric positions in the mesh [996]. A VDB
may be thought of as a register of position—subscript pairs. To each position stored

128

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Shared positions

Local number

Global number

Processor O

Figure 5.11 Connectivity and communications are established by building a voxel database

(VDB) of positions. A VDB maps each position to a unique index or subscript. It also tracks

points shared by multiple processors to provide a loosely synchronous shared memory. Points
that share memory are those at the same geometric position.

in the VDB we assign a unique integer subscript, so that data may be associated with
points in space by using the subscript as an index into an array.

The basic idea is illustrated in Figure 5.11. The number of times a position is
registered is its multiplicity. Data objects that share positions also share memory by
virtue of a common subscript. In essence, the VDB provides a natural map of the
mesh geometry onto the computer’s memory. This basic paradigm can be used to
implement many types of finite element or finite volume methods [996].

To establish the connectivity of a mesh like the one depicted in Figure 5.10,
we build two separate VDBs: one for the vertices and one for the midpoints of
the edges. Every vertex with multiplicity one that does not lie along an external
boundary is virtual and not part of the true mesh degrees of freedom. Every edge with
multiplicity one that does not lie along an external boundary is nonconforming. For
each nonconforming edge, we make a second query to the VDB using the endpoints.
If there is a match, then the edge is also virtual, and we store the subscript of
the adjacent edge. Otherwise, it is simply flagged as an internal nonconforming
boundary segment.

The shared memory represented by a VDB is extended across processor boundaries
by passing around a list of local positions and comparing against those registered re-
motely. A communications link is established for each common position. The shared
memory at each point is weakly coherent and must be synchronized by explicit mes-
sage passing. For example, elements on separate processors with a common boundary

5.2 Incompressible Flows 129

529

segment share data along an edge. Each processor may update its edge values inde-
pendently and then call a synchronization routine that combines local and remote
values to produce a globally consistent data set. For further details see Williams [996].

There is very little overhead for the adaptive versus nonadaptive data structure:
just one integer (the node key) per element. Likewise, an iterative solver for sparse
systems incurs no performance penalty just because the underlying mesh is adaptive.
When approached in the right way, the conversion to a solution adaptive code is
almost trivial. To a large degree, this is because of the unstructured nature of the
spectral element method we built upon.

An Example—The Cylinder Wake

Understanding the fluid flow around a straight circular cylinder is one of the most
fundamental problems in fluid mechanics. It is a model for flow around bridges,
buildings, and many other nonaerodynamic objects. Recent work, both experimen-
tal and computational, has revealed some exciting new information about the nature
of this flow, including intricate 3-D structures that emerge just prior to the onset of
turbulence in the wake.

The system considered is an infinitely long cylinder placed perpendicular to an
otherwise uniform open flow. The sole parameter for this system is then the Reynolds
number: Re = U, d/v, where U, is the free-stream velocity and d is the cylinder
diameter. We describe some of the physically important behavior in this flow and
then come back to details of how it can be simulated. It helps to begin with a “road
map” for the sequence of bifurcations that take the flow from simple to more complex
states. There are two useful quantities to form such a guide to understanding:
the nondimensional shedding frequency and the mean drag coefficient Cp. Both
shedding frequency and drag show distinct changes at the various bifurcation points
of the wake and can be used as a guide to interpreting changes in the wake structure
and dynamics as a function of Reynolds number.

In nondimensional form, the shedding frequency is referred to as the Strouhal
number. It is defined as St = f d/u,,, where f is the peak oscillation frequency of the
wake. At low Reynolds number, the flow is steady (St = 0) and symmetric about the
centerline of the wake. At Req >~ 47, the steady flow becomes unstable and bifurcates
to a 2-D, time-periodic flow. Note that each point along the 2-D curve represents a
perfectly time-periodic flow, and there is no evidence of further 2-D instabilities for
Reynolds numbers up to Re ~ 1000. At Re, >~ 190, the 2-D wake becomes absolutely
unstable to long-wavelength spanwise perturbations and bifurcates to a 3-D flow
(mode A). Experiments and computations indicate a further instability at Re;, ~ 260,
marked by the appearance of fine-scale streamwise vortices.

Figure 5.12 shows the drag curve for flow past a circular cylinder for Reynolds
number up to 1000. In the computations, the spanwise-averaged fluid force F(t)
is computed by integrating the shear stress and pressure over the surface of the
cylinder. The x-component of F is the drag; the y-component is the lift. Because
Cp is determined from an average over the surface of the cylinder, it is much less

130

Chapter 5 Parallel Computing in Computational Fluid Dynamics

2
C
b []
L | ~.. 00 Z + 4
L | Re - 7+ S ® . _
L I ?Rezl 4
L | 2 ! Re',
| 7 |]
I | 7]
L I 5 | 4
O L L L L MR | Z P L L MR |
10 100 1000

Re

Figure 5.12 Drag coefficient as a function of Reynolds numbers for the flow past a circular
cylinder. Experiments: (o,e), Wieselsberger [993]; 3-D simulations: 4+, Henderson [454]. The
solid line is a curve fit to 2-D simulation data for Re up to 1000 [453].

sensitive to changes in the character of the wake at low Reynolds number than
single-point measurements like the shedding frequency. The “textbook” version of
the drag curve is generally plotted on a log-log scale, where the only discernible
feature is the drag crisis at Re =~ (10°). The flat response of Cp, to changes in the
Reynolds number is compounded by the fact that experimental drag measurements
are extremely difficult to make at low Reynolds numbers, and subtle details of the
drag curve are lost in the experimental scatter. The decrease in magnitude of Cp in
the steady regime can be fitted to a power-law curve and also makes a sharp but
continuous transition at Re;. Henderson [453] gives the form and coefficients for
the steady and unsteady drag curves.

This problem is extremely challenging because it combines several features that
are difficult to handle numerically: unsteady separation, thin boundary layers, out-
flow boundary conditions, and the need for a large computational domain to simu-
late an open flow. If the computational domain is too small, the simulation suffers
from blockage. This can have a significant impact on quantities such as the shedding
frequency, generally producing higher frequencies in the simulations than are ob-
served in experiments [533]. If resolution near the cylinder is sacrificed for the sake of
a larger computational domain, then the physically important flow dynamics may
not be computed accurately.

5.2

Incompressible Flows 131

T

- L :I: L :I

Figure 5.13 Computational domains used for simulating the flow past a circular cylinder.
Each domain is a subset of the largest. The parameters L, and L; determine the cross-sectional
size, and L determines the spanwise dimension.

Figure 5.13 shows a sequence of computational domains used to simulate both
2-D and 3-D wakes using nonconforming quadrilateral elements [454]. Boundary
conditions are imposed as follows. Along the left, upper, and lower boundaries we
use free-stream conditions: (uq, uy, uz) = (1,0, 0). At the surface of the cylinder, the
velocity is equal to zero (no-slip). Along the right boundary, we use a standard
outflow boundary condition for velocity and pressure:

p=0, ou;=0

Along all other boundaries the pressure satisfies equation (5.10).

These domains use large elements away from the cylinder and outside the wake
where the flow is smooth. Local mesh refinement is used to resolve the boundary
layer, near wake, and wake regions downstream of the cylinder. In this case, the

132

5.3

Chapter 5 Parallel Computing in Computational Fluid Dynamics

refinement is done beforehand, and the mesh is static. Clearly, from Figure 5.12 the
simulations predict values of the drag that agree extremely well with experimental
studies up to the point of 3-D transition. Just as important as good agreement with
experiments, the simulation results are independent of the grid, as shown by a
detailed h- and p-refinement study [77].

Finally, Plate 1 in the color insert shows some of the rich nonlinear behavior that
can be observed as the flow over the cylinder undergoes transition to turbulence.
Shown in this figure is the vorticity for the cylinder flow at various Reynolds num-
bers. The figure clearly shows the transition from an orderly array of vortices to the
more disordered form characteristic of turbulent flows. These arrangements of the
vortices actually correspond to complex “modes” of the system that have also been
observed experimentally. The value of such high-resolution simulations in allowing
us to see details of flow structure not easily accessible from experiment is evident
from these figures.

Compressible Flows

As mentioned in Section 5.1.2, the Navier-Stokes equations for compressible flow
admit solutions that, while thought to be smooth, can possess thin internal layers in
which dissipative effects such as viscosity become important. These layers, however,
are typically on the order of several mean-free-path lengths in thickness and thus
cannot be resolved practically if one is interested in capturing features of the flow
on macroscopic scales. Because of this, numerical methods for compressible flow are
typically developed for the Euler equations, which can be derived from the Navier—
Stokes equations by ignoring the viscous terms. In this case, shock waves are treated
as true discontinuities, and the solutions to the Euler equations are not smooth.
In addition, because of their character, such discontinuous solutions can appear
spontaneously in the flow and typically do not disappear under the subsequent
evolution of the flow.

In this section, we provide a very brief overview of numerical approaches that can
be used to simulate compressible flow. The distinguishing aspects of such simulations
are the need to resolve flow on time scales at or faster than the local sound speed
of the fluid and the existence of nearly discontinuous flow features such as shock
waves, contact discontinuities, and vortex sheets. It is impossible to be comprehen-
sive in our coverage of numerical techniques, partly because the numerical simula-
tion of compressible flow remains an area of active research. The chief difficulty in
the simulation of compressible flow is the representation of the discontinuities. Be-
cause most numerical techniques (such as spectral element methods) are predicated
on some notion of smoothness of the underlying solution, it is necessary to apply
rather different strategies to correctly capture the flow features than those used in
our discussion of incompressible flow.

Broadly, the numerical methodology breaks into two major approaches. The
first is known as shock tracking, in which flow discontinuities are precisely tracked,

5.3 Compressible Flows 133

5.3.1

while a more conventional numerical approach is used for those portions of the
flow corresponding to smooth solutions. This approach has been shown to be
viable, notably through the work of J. Glimm [193] and his collaborators in their
development of front-tracking methods. However, such approaches are not widely
used due to the complex machinery required to track the discontinuities and the
more challenging difficulty that such discontinuities arise spontaneously in the flow
due to wave focusing phenomena. Developing intelligent schemes that track the
birth (and death) of such features remains a research challenge.

The second major approach is known as shock capturing. In this approach, vari-
ous intelligent numerical viscosities are designed so as to provide the appropriate
dissipation in regions of discontinuity, with the result that shocks and other discon-
tinuities are smoothed out and captured over a few grid cells. These techniques are
far more amenable to both vector and parallel computing (as well as more elaborate
approaches such as adaptive mesh refinement, discussed below) and have there-
fore been the preferred approach for numerical simulation since the 1960s. A good
overview is available in the monograph of Le Veque [606]. As a result, we will only
briefly discuss shock-capturing methods in this section, with an emphasis on parallel
simulation using both regular and adaptive grid methods.

Governing Equations of Motion

In this section we present the Euler equations of motion. These can be easily derived
from our presentation in Section 5.1.1, but we repeat them here to bring out the
special features of the relevant numerical schemes.

Define the solution vector u by

N
Il
mMs < =

where p(x,y,z,t) is the fluid density, u, v, w are the x-, y-, and z-components of
velocity, respectively, and E(x,y, z, t) is the total energy of the flow as defined in
equations (5.1) to (5.3). The governing equations of motion can be written in the
following conservation form:

du +F W)y + Gw), +Hw), =0

where
ou ov ow
puZ +p ouv pUW
F= ouUv S=| pv®+p H= oVV
pUW pPYW ow? +p

(E+pu (E+p)yv (E+pw

134

532

Chapter 5 Parallel Computing in Computational Fluid Dynamics

The pressure p is related to the total energy by the equation of state. In this case, we
are assuming that we are dealing with a perfect gas:

1
p=w-D (E—Epu'u)

Note that in this case the pressure is a thermodynamic variable, in contrast with
the situation of incompressible flow where it acts essentially as a constraint variable.
Note also, in contrast to the incompressible case, that an evolution equation can be
written for the pressure (although, as we shall see below, the pressure is not typically
used directly to march the evolution of the fluid forward in time).

Numerical Methods for Hyperbolic Conservation Laws

In order to simplify the discussion, we will focus on flow in one space and one
time dimension. Incompressible flows in 1-D are trivial (corresponding to constant
velocity), but because of the compressibility of the medium, compressible flows in
one space dimension possess many of the features of flow in high dimensions. In
addition, with some slight modification, numerical methods developed in 1-D can
be applied to higher-dimensional flows. In 1-D the equations can be written as

ot + Fw*), =0,

where
o ou
u'=|u F=| pu?+p
j4 E+pu

Again, the equations are written in conservation form. It is easy to convert them
from this form back to the more physically relevant integral form described in Sec-
tion 5.1.1. As shall be shown, modern numerical methods respect this conservation
form and effectively substitute a discrete approximation for the conservation law,
which then automatically produces a discrete version of the original conservation
law and at the same time applies a flow-dependent viscosity to ensure that shock
waves are properly captured.

Note that away from discontinuities, such as shock waves, it is possible to apply
standard numerical schemes that are appropriate for smooth solutions. However, it
is impossible to know in advance where the discontinuities lie, and so modern nu-
merical schemes typically employ special “switching” logic to sense the smoothness
of the flow. Away from shocks, these schemes can provide solutions of higher-order
accuracy. However, as the switching logic senses the presence of a possible shock
wave, the scheme switches to a lower-order approach that provides an appropriate
viscosity to capture the shock wave over as few grid cells as possible.

We illustrate these considerations by describing a scheme that provides second-
order accuracy in space and time for smooth flows but reverts to a first-order accurate
scheme in space near shock waves. This is typical behavior for all such schemes. To

5.3 Compressible Flows 135

begin we express the 1-D equations in a nonconservative form:
U + Ay du* =0 (5.24)

where A; is the Jacobian matrix and is given by

u p 0
0O yp u

The system (5.24) now takes the form of a hyperbolic system of equations. Such
systems typically can be decoupled by reexpressing the equations in terms of special
characteristic variables determined by computing the eigenvalues and eigenvectors
of the matrix A;. The eigenvalues of A; are u — ¢, u, u + c. The left eigenfunctions of
the matrix are given as the rows of the following matrix

0 p/2 -1/20)
Lz{c 0 —1/ci|
0 p/2 -1/Q20)

where c =,/yP/p is the local sound speed. The inverse of L is also required in what

follows and is given by
—1/c 1/c 1/c
L= { p 0 1/,)}

—c 0 c

The equations in (5.24) are then decoupled by defining the vector of characteristic
fields V = Lu* and recasting equation (5.24) as a system of equations for V.

The details of the method to be presented below derive from the MUSCL and PPM
schemes developed by van Leer [954, 955], Colella and Woodward [206], and Colella
[205]. Such schemes use the characteristic information to provide second-order (and
higher) accuracy while providing adequate dissipation to prevent short wavelength
spurious oscillations from arising near discontinuities. As indicated above, this is
accomplished by use of a low-order scheme that deals robustly with shocks. In
this case, we will use the classic Godunov method. In this approach, each pair of
adjoining cells is viewed as a miniature tube with constant left and right flow states
(which may be discontinuous). The discontinuity is supported by an imaginary
diaphragm at the cell boundary. To complete a time step, we imagine that the
diaphragm is removed and flow between the two states ensues. In this case, the
resulting flow states can be expressed for a short time analytically as the solution
to a set of nonlinear equations, which again are solved only for each adjoining pair
of cells. This provides the needed dissipation to deal with discontinuities, while the
preparation of the states using the characteristic information allows us to maintain
higher-order accuracy away from shock waves. All robust numerical methods require
some solution to this problem, be it approximate or exact, as in the case above.

We divide the 1-D computational domain into uniform cells of width Ax and label
thecellsi=1,2,...,N. The ith cell has its left interface at x = x;_1 /o = x; — Ax/2 and

136

Chapter 5 Parallel Computing in Computational Fluid Dynamics

its right boundary at x = x; /5 = x; + Ax/2. We call the left interface the ith interface.
We assume that the solution u*(x;, t") = (u*);“ is known, and we wish to advance the
solution one step forward to t =t + At = t"+1. We do this by calculating the vector
u* from u. We denote this as u* and we think of these values as representing constant
average states in each cell. Our next step is to improve this approximation by creat-
ing a piecewise linear distribution in each cell to improve the spatial accuracy in
regions we believe to be smooth. However, to mitigate short wavelength oscillations
that will result if we adopt this procedure near shocks, we use a limiting function
due to van Leer to produce a monotonicity-preserving value of the slope. Let M;
represent the slope (actually a vector of slopes) in cell i. Then define

M; = min [Li(”fﬂ _ﬁ:ﬁq) Li(ﬁ? _ﬁ?—l)l Li(ﬁ;;l _”?)}

ZAXi ! AX,' AXI'
with the proviso that if L;(#}, ; — 4}) Ly(u; — u;_;) <0, then we set M; = 0. This lim-
iting formula selects a gradient that is sensitive to the local solution and makes sure
that we don’t add new extrema to the solution, which would encourage oscillations
in the neighborhoods of shocks. The prescription above is not unique, and many
variants of these limiter functions are in use. Using the calculated gradient, we can
then use the slopes in conjunction with the cell values. Define

V=V, +Mx—x), V=L

We then solve the decoupled equations at the cell interfaces at time ¢ =t,,,1,5. This
gives us new intermediate interfacial values and allows us to apply time centering
to increase the order of the time accuracy:

—n

n+1/2 { Vk . — Mk,i(AXi +)Lkl,-At)/Z if)"k,i < 0,

v = /!
k,i, RIGHT Vi, otherwise;

- .
ni1/2 { Viio1 + My io1(AX; — A 1A8/2 if 3y ;> 0,

V.. =1 —=n
kji,LEFT Vit otherwise;

where k ranges from 1 to 3 and signifies the kth element of the vector V. We then
recover the values of u* on either side of the ith interface by transforming back from
characteristic variables. We now have left and right states at the intermediate time
ty41/2- From this we solve a Riemann problem at each cell interface. In principle, this
requires the solution of some nonlinear equations; in practice, there exist effective
approximations to the solutions of the nonlinear Riemann problem that can be
evaluated easily. Note that in order for this procedure to work, the time step over
which we form this solution to the Riemann problem must be taken small enough
so that the evolution of the solutions in other cells does not affect the solution of
the cell under consideration. This is the essence of what is called the CFL criterion,
which requires that the time step be limited by the local speed of the waves in each
cell. This constrains At such that
At < L
(u+1Ich

5.3 Compressible Flows 137

533

Once the Riemann problem is solved, we can calculate the fluxes required from
each cell to move the solution forward to the next time step, so that the overall
effect is that the Riemann problem solution is used to generate the next time step.
This is the heart of Godunov’s method. The 2-D or 3-D version of this scheme is
accomplished by treating each space dimension in turn as a 1-D problem and using
the formulation above. However, when all this is put together, it looks formally like
the following difference scheme:

m = O[T () 7 ()]
where F is a flux constructed to achieve the results of the Riemann problem approach
with the slope limiting discussed above. Written this way, the scheme is manifestly
in conservative form, which ensures that shock waves and other discontinuities are
treated correctly.

While the scheme outlined above is manifestly nonlinear, with complex logic to
ensure that shock waves can be handled, from a computational point of view it is
very simple. A review of the steps outlined above will reveal that the update of any
given cell requires only knowledge of the values at most two cells away in either
direction. Making such an algorithm parallel is, in fact, very simple. Regardless of
the solver used, one important aspect of the calculation described above is that it
proceeds by sweeping through the (uniform) mesh and is therefore very amenable
to parallelization. In order to calculate a time step At that is appropriate for all cells,
one takes the minimum time step resulting from an application of the CFL criterion.

On a parallel architecture it is easy to see that, if the computational mesh is
partitioned into a lattice of processors, the communication pattern required is
one of nearest neighbor exchange of information at each time step. Since the
communication will scale according to some factor times the bounding surface of
a given submesh associated with a processor, it is easy to see that, provided the
problem size is kept suitably large, it is possible to achieve scalability, since the
total computational labor will scale with the mesh volume. The computation of
the correct time step is accomplished via a global reduction over the mesh.

An Application: The Richtmyer-Meshkov Instability

In this section we present an application of the ideas described above. The
Richtmyer-Meshkov (RM) instability arises at an interface separating two gases when
it is subject to an impulsive acceleration [802]. In the original paper, Richtmyer used
a shock wave to provide the impulsive acceleration to an interface (contact dis-
continuity) with long wavelength perturbations and performed a linear stability
analysis. Subsequently, analysis, numerical simulation, and experimental studies
of the interactions of shock waves with contact discontinuities have been gener-
ically associated with the RM instability. The principal interaction parameters are
the Mach number of the shock, My; the Atwood number across the contact, defined
as At = (p2 — p1)/(p2 + p1), Where p,, p1 represent, respectively, the density ahead of

138

534

Chapter 5 Parallel Computing in Computational Fluid Dynamics

and behind the interface; and the geometry of the interface. Typically, the interface
is perturbed with single or multiple harmonic perturbations or with random white
noise perturbations. The physical domain is a 3-D rectangular shock tube. A shock
wave (called the incident shock) is initialized on the left of an interface and moves
from left to right. The incident shock refracts at the interface and bifurcates into a
reflected wave (which may be a shock or an expansion fan) and a transmitted shock.
We focus here on interactions of strong shock waves (M, > 10) with interfaces per-
turbed with a single harmonic in 3-D. The main object of study in RM flows is the
behavior of the so-called mixing width and its growth rate. Of particular interest is
the effect of reshock on the growth of the mixing width. Reshock refers to the fact
that the transmitted shock reflects off the right boundary of the shock tube, and
this reflected wave then interacts again with the interface. This typically leads to
compressible turbulence and mixing and is a generic phenomenon seen in a variety
of applications.

The 3-D shock tube was discretized by a uniform mesh of 1024 x 128 x 128 cells.
The shock Mach number was fixed at M; = 10. The interface geometry was a single
mode perturbation given by A = 0.35(cos ky)(cos kz), where k =2z /A and A = 3.2.
Two different Atwood numbers are considered here: At = 0.5 and At = —0.33. Note
that a positive (resp. negative) Atwood number corresponds to the fast-slow (resp.
slow—fast) case, which means that the transmitted shock speed is slower (resp. faster)
than the incident shock speed. Time is scaled such that it takes a unit time for an
acoustic wave in the unshocked incident gas to travel one wavelength A.

Images of volume-rendered density fields at different times are shown in Plates 2
and 3 of the color insert, for At = 0.5 and At = —0.33, respectively. In both cases, the
incident shock initially compresses the interface, which reduces the mixing width
rapidly. After the passage of the incident shock, the mixing width increases due to the
instability for the positive Atwood ratio interface. For the positive Atwood number
interface, reshock causes a phase reversal of the interface. On the other hand, for the
negative Atwood number interface, the interface undergoes a phase reversal early in
the interaction, after which the mixing width grows. After reshock there is no phase
reversal, and the interface mixing width continues to grow.

The calculations described above are easily parallelized (the results shown here
were produced on a 512-node Cray T3E). Even larger runs of this type have been
performed recently on the ASCI teraflop platforms with over 3000 processors. The
examination of such compressible turbulent flows on massively parallel platforms
holds the promise that detailed examination of the complex processes inherent in
these flows will lead to improved understanding of turbulence in compressible fluids,
which is as yet a relatively unexplored area.

Adaptive Mesh Refinement

The techniques outlined above are most conveniently used on regular discrete
meshes, as opposed to the irregular finite element meshes outlined in the discussion
on spectral element methods. The structure and resolution of the grid used to
discretize a given compressible flow problem must be adjusted to properly resolve

5.3 Compressible Flows 139

the phenomena of interest. In many cases, however, the features requiring resolution
are quite localized (e.g., shock waves). One is then faced with the problem that high
resolution is required to correctly capture such features, whereas lower resolution
would suffice in other regions of the flow. If one uses a single uniform mesh for this
purpose, then the computational workload is greatly increased, since high resolution
is being applied uniformly over the whole mesh. An obvious solution to this problem
is to refine the mesh only in those regions requiring refinement. For problems in
which shock waves and other small-scale features are static (as occurs, for example,
in the computation of steady transonic flows over a wing), this approach is viable,
although it is still necessary to use a time step compatible with the smallest mesh
spacing. However, for problems in which such features are dynamic, the use of a
uniformly fine mesh results in a waste of resources.

An alternative is to use dynamic adaptive mesh refinement (AMR) methods, which
are more efficient in their use of computational resources but also preserve the
accuracy attainable with a fine mesh. The idea is to concentrate the computational
effort by using locally refined meshes with higher resolution only in those areas of
interest. Typically, one starts with a coarse mesh with some minimally acceptable
resolution that covers the entire domain. As small-scale features evolve, regions
requiring additional resolution are identified, and finer grids are overlaid on these
regions. This can actually be carried out recursively, in that the finer grids can be
examined and even finer grids introduced until adequate resolution is achieved. The
resulting structure is an adaptive hierarchy of meshes. One common implementation
of this idea was pioneered by Berger and Oliger [94] and Berger and Colella [93]. We
will use this algorithm as an example of AMR methods and discuss in this section
efficient parallel implementations of this approach.

An adaptive grid hierarchy is a set of dynamically overlaid grids generated by
recursively refining a base grid in response to some feature in the transient solution. It
can be represented as a family of grids { Gllq}, where the subscript ! (0 <1 < L) represents
the level of refinement (with O being the coarsest level and L the finest), and the
subscript n is an index for component grids at a given level. Viewed this way, the
hierarchy is actually a directed acyclic graph, and each node of the graph represents
a component grid. Levels of the graph correspond to the levels of refinement, and
nodes at a given level correspond to the component grids. As the solution evolves,
the graph also evolves dynamically, both in the number of levels and in the number
of grids at each level. The discretized equations are applied to each grid at each
level independently, although communication between grids is required to provide
appropriate boundary data compatible with the global solution. Thus, the algorithm
used to solve the equations of motion (e.g., a conservative Godunov scheme as
outlined above or any other finite difference method) can be completely reused
without any fundamental changes in approach or programming.

The Berger-Oliger algorithm requires that the grid spacing of component grids
at any level I of the hierarchy must be an integral multiple of the grid spacing of
component grids at the next level, (I + 1). That is, h; = kh;, 1, where k is some integer.
An important aspect of the Berger-Oliger scheme is that the component grids must
be properly nested, so that each component grid at level / + 1 is contained within

140

Chapter 5 Parallel Computing in Computational Fluid Dynamics

4—61—>
2

(9)
N
<-----
4-9 @
-+----

Yy
9]
<)
\/

Figure 5.14 Adaptive grid hierarchy of the Berger-Oliger algorithm.

a component grid at level I. In fact, for this algorithm, the directed acyclic graph
corresponding to the refinement hierarchy is a tree. These two views (i.e., grid based
and graph based) of the algorithm are illustrated in Figure 5.14.

The AMR integration algorithm defines the order in which different levels of the
grid hierarchy are integrated, the interactions between overlaying component grids
at different levels, and the criterion and method for grid refinement. There are three
key components of the algorithm:

1. Time integration. Time integration is performed on each component grid using
a specified finite difference operator. Each component grid can be integrated
independently (once boundary values are in place). The order of integration is
defined recursively. Before advancing component grids at a particular level of
refinement in time, all component grids at higher levels of refinement must be
integrated to the current time of grids at that level. That is, before performing
a time step at level I (i.e., Gl@ from some time t to t + At;), all component grids
at levels > | must be integrated to t.

2. Error estimation and regridding. The error estimation and regridding component
of the integration algorithm performs the following three steps:
e Flag regions that need refinement based on error estimation.
* Cluster the flagged points.
¢ Generate the refined grid.

5.3 Compressible Flows 141

Algorithm Integrate(level)
Repeat (refine_ratio)" (level)
if (Regrid_time) then
do Regridding

end
Step dt|level] on all grids at level
if (level+1 exists) then
Integrate(level+1)
Update(level, level+1)
end
end

Figure 5.15 Berger-Oliger AMR algorithm.

The result may be creation or deletion of grids and must be performed in a way
that maintains the proper nesting property of the meshes.

3. Inter-grid operations. Such operations are used to communicate solution val-
ues along the adaptive grid hierarchy. The following types of operations are
required:

e [nitialization of refined grids. This may require transferring interior values of
overlying grids or possibly using interpolated values from a coarser grid.

* Coarse grid update. Where possible, fine grid values are injected onto the
coarse grid so that the values used are the most accurate.

 Coordination of common values. This is required whenever two grids overlap,
so that their values are consistent.

Figure 5.15 contains pseudocode representation of the Berger-Oliger AMR algo-
rithm that illustrates the recursive approach. Although such methods are clearly
advantageous in terms of computational resources, their implementation, especially
on parallel architectures, requires considerable effort. The main complexity actually
has nothing to do with the physics of the flow field. It arises simply because one must
maintain a hierarchical data structure and provide operations on this structure. For
parallel implementation, the problem is compounded since the data structure is now
distributed. This is similar to the difficulty encountered in implementing adaptive
spectral methods discussed in Section 5.2.7.

The complexity of this approach can be substantially alleviated through the
use of appropriate high-level programming abstractions that maintain the required
data structure and free the implementor to concentrate only on the nature of the
algorithm to be used on each component grid. These abstractions are conveniently
expressed as object-oriented frameworks. Several of these are currently in existence.

142 Chapter 5 Parallel Computing in Computational Fluid Dynamics

H+—

GH———+— G H——t+—+—+ G|
|
|

- P2 >

<«—PO —>i<— P1 >

Figure 5.16 Composite distribution of the grid hierarchy in one dimension.

A notable example is the GrACE framework of Parashar [743], based on earlier work
of Parashar and Browne [745]. The GrACE framework provides a distributed data
structure that encapsulates the various operations such as interpolation as well as
communication.

An additional critical issue is that of load balancing. As refinement takes place,
the workload of a given processor increases due to the rising volume of computation.
Clearly, some strategy must be employed to distribute the finer meshes to remote pro-
cessors in order to even out the load. However, unless this is done carefully, meshes
that are in physical proximity to one another (due to the refinement operation) will
find that they are separated by large distances in terms of the processor network.
This in turn leads to overhead due to communications. An example of a desirable
processor/data distribution for a 1-D case is shown in Figure 5.16. Such a distribution
maintains reasonable load balance while preserving physical locality. Note that this
must be done repeatedly as various flow features form.

A key idea in ensuring that computational load is balanced is the use of space-
filling curves to allocate grids to processors. Space-filling curves are a class of locality-
preserving mappings from d-dimensional space to 1-D space. The mapping can be
thought of as threading a string through the mesh hierarchy so that it fills the
space. Load is then balanced by examining the length of this string and splitting the
string into relatively equal pieces assigned to neighboring processors. This approach
achieves load balancing, while ensuring that points that are physically close remain
close in processor space. Early examples of its use can be found in the work of Salmon
and Warren [824], as mentioned in Section 5.2.7. An example of the use of such a
curve in 2-D is shown in Figure 5.17. The need to dynamically distribute parts of
grids to remote processors in coordination with the use of space-filling curves, so as
to achieve load balancing, requires the ability to distribute the data for a given grid
across several processors. Thus the GrACE framework implements the graph of grids
via a scalable, distributed dynamic array (SDDA), which uses extendable hashing
techniques to provide dynamically extensible and globally indexed storage.

5.3 Compressible Flows 143

-
3

.
.
g
.
N
-~
-~
.

.
.
'
'
1
[
[
[y
.

Level 1 Level 2 Level 3

eqda-Fa |,

'
v
-~

Level 1 Level 2

Figure 5.17 Self-similar, space-filling curves.

As an application of these ideas, we illustrate the use of AMR for the Richtmyer—
Meshkov problem discussed above. In Plate 4 of the color insert, we show the
solution, at various times, for the interaction of a shock wave with an inclined
interface. In this case, we want not only to refine in the region of the shock wave
but also to sharpen the contact discontinuity, which is where the mixing ultimately
originates. It turns out that most shock-capturing schemes perform well in the
presence of shocks but often smear out contact discontinuities to an unacceptable
degree. The use of the AMR algorithm allows one to focus on these features and, at
the same time, to reduce the deleterious effects of the dissipation inherent in modern
shock-capturing schemes. In Plate 5 of the color insert, the solutions are shown at
identical times, except that we have overlaid the corresponding AMR meshes. The
dynamic nature of the algorithm is apparent. As further levels of refinement are used,
the solution process becomes very efficient relative to a simulation using a single fine
mesh.

The ability to abstract the complex data manipulations and parallel communica-
tions makes it necessary for the applications scientist to provide only the appropriate
method for integration of the particular compressible flow. In the future, it is antic-
ipated that implementation of AMR frameworks on massively parallel architectures
will lead to important advances in our understanding of compressible flows.

144

5.4

Chapter 5 Parallel Computing in Computational Fluid Dynamics

Conclusion

In this necessarily brief overview of numerical methods for CFD, we have attempted
to discuss some of the central issues associated with simulation of both incompress-
ible and compressible flows. At best, this overview can only serve as an introduction
to some of the challenges encountered in solving the Navier-Stokes and Euler equa-
tions on high-performance parallel machines. We have ignored completely a large
number of crucial topics. Nevertheless, it is hoped that the reader can get some
appreciation for the role parallel computing plays in facilitating high-resolution sim-
ulations of fluid phenomena.

As the available architectures become larger and more powerful, and as the
required algorithmic and programming tools mature, it will soon be possible to
contemplate the simulation of flows in realistic geometries at resolutions that capture
most of the physically crucial scales. This will allow us, for the first time, to explore
the detailed physics of complex phenomena such as turbulence and to produce
models of these effects that can then be used in engineering simulations. It will then
be possible to consider the use of optimization methods to tailor flows for optimal
effect in a wide variety of critical applications.

X m -4 W »>» I N

Parallel Computing in
Environment and Energy

Mary F. Wheeler + Wonsuck Lee
Clint N. Dawson ¢ Dorian C. Arnold -
Tahsin Kurc * Manish Parashar -

Joel Saltz ¢ Alan Sussman

During the past 20 years, the impact of environmental problems on the health
and well-being of humankind has become one of the top international issues. The
modeling of surface water is important in predicting tidal ranges and surges, such as
tsunamis and hurricanes caused by severe earthquake and storm events. In addition,
groundwater and surface-water contamination affects a most vital condition of life,
namely fresh water.

Cost-effective contaminant remediation is driving a new generation of environ-
mental applications. The central challenge is to minimize costs for cleanup of a site
whose properties are only poorly known and in which a variety of complex chem-
ical and physical phenomena take place. The heart of this effort must be robust
subsurface and surface-water simulators. In the case of groundwater, this must com-
prise coupled programs that together account for multicomponent, multiphase flow
and transport through heterogeneous geological structures (porous media) and in
surface-water flow models, either depth-averaged or deep ocean. For both applica-
tions, strategies optimal with respect to different objectives and subject to existing
constraints are sought. During containment and remediation, real-time data need to
be assimilated into the simulations and optimizations. For evaluation of longer-term
effects, it is critical to couple the surface-water fluxes to models of the subsurface that
account for flow, transport, and reaction of soluble contaminants.

Similarly, oil and gas production are of critical importance to the nation, since
about two-thirds of U.S. energy currently comes from oil and gas, and this situation
will not change much over the next few decades. Although oil can be imported, there
are profound advantages to domestic production: ensuring a stable supply and price
to the consumer and promoting a healthy national economy. Future production

145

146

6.1

Chapter 6 Parallel Computing in Environment and Energy

in the United States is dependent on enhanced oil recovery (EOR) and reservoir-
characterization technologies. Intense computer simulation is essential for effective
field management. Parallel reservoir simulators have the potential to solve larger,
more realistic and practical problems faster and more economically. In this chapter,
we describe some of the research on subsurface- and surface-flow models and related
scientific computing problems that were facilitated collaborations by the CRPC.

One outcome is the development of a parallel problem-solving environment
IPARS (Integrated Parallel Accurate Reservoir Simulator), suitable for modeling multi-
phase, multiphysics flow in porous media on massively parallel computers or clusters
of workstations. In addition, we discuss the coupling of IPARS with NetSolve and
demonstrate reservoir simulation in a grid-computing environment. We also incor-
porate additional functionality to IPARS by adding interactive steering and tracking
capability using the software library DISCOVER (Distributed Interactive Steering and
Collaborative Visualization Environment). We devote Sections 6.1 to 6.3 to this
subject.

Another outcome is the coupling of Active Data Repository (ADR) and the model-
ing code CE-QUAL-ICM and its parallel version PCE-QUAL-ICM, which we describe
in Section 6.4. CE-QUAL-ICM is a 3-D eutrophication model developed at the De-
partment of Defense Engineer Research and Development Center (DoD-ERDC). The
water quality model is semi-explicit in time and is based on an unstructured cell-
centered finite volume numerical method. This sequential Fortran code was paral-
lelized using a data/domain decomposition strategy and a single-program, multiple-
data (SPMD) paradigm. PCE-QUAL-ICM, the parallel water-quality model, enhances
CE-QUAL-ICM with message passing. Interprocessor communication is done using
Message Passing Interface (MPI) communication libraries, and the parallel code has
been ported to the CRAY-T3E, IBM-SP, and SGI O2000.

In addition, present research involves the coupling of IPARS with ADR for explo-
ration of history-matching scenarios with uncertainty in the geological data. ADR
enables integration of storage, retrieval, and processing of multidimensional mul-
tiple data sets on parallel machines and provides support for spatial queries and
complex data aggregations [990].

Subsurface-Flow Modeling

Flow-in-porous-media problems are modeled by degenerate parabolic and nearly
hyperbolic (i.e., advection-dominated), partial differential equations with equality
and inequality constraints and are subject to hysteresis. The simulation processes
occur on widely disparate time and space scales, such as the scales of reaction rates,
precipitation, dissolution, and other phase changes, medium heterogeneity and
fractures, and wells.

Degeneracies and hyperbolicity tend to produce flow and transport solutions with
relatively steep fronts. Typically diffusion/dispersion is small. In the limit of no
diffusion/dispersion, actual shocks develop, and the mathematical equations possess

6.1 Subsurface-Flow Modeling 147

6.1.1

multiple solutions. However, only the entropy solution is physically relevant. It
is difficult to approximate shocks without introducing spurious oscillations or an
artificially large amount of numerical dispersion. These can smear the steep front,
change its speed, and render any further computations, such as those for reactions
and phase changes, suspect.

Extremely large systems of nonlinear equations result. This is due in part to
the sheer size of the groundwater domain or petroleum reservoir, the number
of phases and chemical species present, and the need to resolve time and space
scales adequately. But it is also due to the highly coupled nonlinear nature of the
equations.

Physical and mathematical considerations lead us to emphasize conservative
schemes that preserve maximum and/or minimum principles, produce little or no
numerical dispersion, can support adaptive local grid refinement, and give asymp-
totically accurate solutions of the governing equations. Mixed finite element (finite
volume) methods coupled with Godunov characteristics or discontinuous Galerkin
methods [805, 806] have been formulated that satisfy these criteria.

IPARS Motivation

The modeling of subsurface problems requires (1) a high-performance computing
(HPC)-based interdisciplinary attack on the geochemical, biochemical, multiphase,
compositional, and mathematical complexities that dominate subsurface flow and
transport in heterogeneous porous media and (2) a problem-solving environment
(PSE) for predictive simulation that uses advanced, scalable parallel algorithms and
multiscale nonlinear and stochastic science to resolve these complexities and to
quantify and diminish uncertainties in prediction. Key requirements include the
support of high-resolution reservoir studies with millions of grid elements, ability
to handle multiple physical models (e.g., CO2, surfactant, and thermal), multiple
fault blocks, dynamic locally adaptive mesh refinements, and interactive tracking,
visualization, and computational steering.

The main objective of the PSE is to simplify the building of flexible and efficient
parallel reservoir simulators through the use of a high-level programming interface
for problem specification and model composition, object-oriented programming
abstractions that implement application objects, and distributed dynamic data man-
agement that efficiently supports adaptation and parallelism. Secondary objectives
include developing a general framework for integrating input/output, visualization,
and interactive experimentations. These objectives motivated the development of a
computing framework called IPARS, suitable for massively parallel computers or clus-
ters of PCs. This framework provides all the required memory management, message
passing, table lookup, solvers, and input/output. The developer only needs to code
the relevant physics. In addition, this software permits physically representative cou-
pling of different physics or different numerical algorithms in different parts of the
domain.

148

Chapter 6 Parallel Computing in Environment and Energy

IPARS Description

The development of the subsurface-flow simulator framework IPARS, suitable for
research and with possible commercial applications, has been an ongoing project
for the past four years at the Center for Subsurface Modeling (CSM). The IPARS
framework supports 3-D transient flow of multiple phases containing multiple com-
ponents through immobile phases (rock/soil). The bulk phase of the medium (i.e.,
the rock plus fluid) can be regarded as compressible in order to include the elastic
property of the bulk rock. Thermodynamic quantities include phase densities, com-
pressibility factors, and viscosities. These may be represented as arbitrary functions of
pressure and composition, or they may be approximated by simpler functions (e.g.,
constant compressibility). The initial system is isothermal, but an effort is being
made to incorporate nonisothermal calculations.

The most general mathematical representation of such a system without mutual
solubility between hydrocarbon and water phases is

3 (0iSidi) v. % Kk;j &

at ; ,u,]'

Xjj (Pi -)’AD> =4q;

for N, hydrocarbon phases and N, consisting phases. & and x; denote the molar
density of phase j and the mole fraction of the i-component in liquid phase j,
respectively. The first term represents the change of mass of the ith phase with time.
The second term represents the change due to phase transport. The right-hand side
is a source/sink term.

Discretization employs mixed finite elements based on the lowest-order Raviart—
Thomas spaces or cell-centered finite differences and backward differences in time
[46, 818]. The simulator is designed to handle dynamic grid refinement, but this is
not currently implemented.

The number of physical models used in petroleum engineering applications and
environmental subsurface-flow problems is increasing. There are currently eight
physical models available:

e Implicit hydrology model. Simulate oil-water flow system with an implicit nu-
merical scheme.

¢ IMPES hydrology model. Simulate oil-water flow system with an explicit numer-
ical scheme.

e Twoimplicit black-oil models (different primary unknowns). Simulate oil-gas—-water
petroleum reservoir flow with an implicit numerical scheme but two different
choices of primary unknowns.

e Implicit air-water model. Air-and-water-flow simulation model for subsaturated
and saturated groundwater-flow zones using an implicit method.

6.1 Subsurface-Flow Modeling 149

PWAT
1300
1290
1280
1270
1260
1250
1240
1230
1220
1210
1200
1190
1180

1170

Figure 6.1 Air-water flow simulation with four injection wells and one production well.
PWAT is water pressure.

o Implicit and explicit single-phase models. Fully saturated groundwater-flow sim-
ulation model. One uses an implicit method; the other one is designed with
an explicit scheme.

e Compositional model. Most general hydrocarbon reservoir simulation model.

Here we present examples of IPARS simulation. Figure 6.1 shows the results of an
air-water subsurface-flow model [596]. Water pressure distribution is plotted for a
five-well model. Wells #1 through #4 are water injection wells, and well #5 is produc-
ing air and/or water. With this air-water model, one can study flow in subsaturated
zones without mathematical simplification, as in Richards’ equation. Unlike many
groundwater-flow simulators, the air-water model is capable of handling wells in
addition to general boundary conditions. All of the framework-supported functional-
ities, including parallel computation, are available without additional programming.
Also, multiblock formation is readily embedded in the air-water model. We now de-
scribe it with a more complicated three-phase flow model known as the black-oil
model.

150

Chapter 6 Parallel Computing in Environment and Energy

PWAT

526.345
523.034
519.724
516.414
513.103
509.793
506.483
503.172
499.862
496.552
493.241
489.931
486.621
483.31
480

i
i

[“““\\\“““

2D mortar space

Injection well Production well

Figure 6.2 Multiblock simulation of a three-phase (two liquid phases and one gas phase)
black-oil model.

The simulation domain may consist of one or more fault blocks. Each fault
block can have an independent coordinate system and be exposed to different body
forces. The multiblock implementation in IPARS allows one to split the domain into
several fault blocks. Then each fault block can have different physical parameters and
field data. Furthermore, the grids of two fault blocks are not necessarily matching.
The formulation is based on the mortar formulation of the domain decomposition
algorithm [1009].

Figure 6.2 demonstrates the cell-averaged water pressure at 30-days’ operation
over the two blocks that constitute the whole simulation domain. Two blocks with
different field data are attached by a mortar space (depicted in the figure by a black
solid line).

Under the IPARS framework, two or more different physical models can be run
on different parts of the domain (fault blocks). This is the multiphysics capability
of IPARS [990]. Thus, one can use, for instance, a black-oil model on one fault block
while the other fault block is being simulated by a hydrology model.

From the beginning, IPARS was intended to solve problems involving a mil-
lion or more grid elements economically, thereby greatly improving grid resolution.

6.1

Subsurface-Flow Modeling 151

Speedup

Number of processors

Figure 6.3 Speedups by parallelization for problems of 0.5 million and 1 million grid blocks.
Black-oil model simulation.

This task can be handled efficiently by multiple-processor machines. Here we cite
the work by Wheeler et al. [989]. This study considered the black-oil model. Fig-
ure 6.3 shows the scalability of the black-oil model simulation. Speedup of two
cases of 500,000 grid blocks and 1,000,000 grid blocks was compared and showed
close to ideal performance. Figure 6.4 indicates that the workload for each pro-
cessor is almost equal, since the maximum and minimum load are very close. In
other words, the dynamic load-balancing support by the IPARS framework is nearly
perfect.

The grid-element-keyout capability of IPARS allows flow simulation on a do-
main with complicated geometry. A keyed-out cell is a grid block that does not
contain fluids. The cell is removed from the flow simulation domain. Figure 6.5
shows an example of the air-water-model simulation [596] on an irregularly shaped
domain where one injection well is placed in the middle of the head of a Texas
longhorn.

152

6.2

Chapter 6 Parallel Computing in Environment and Energy

1 1 1 1
60000
50000
40000

1 1
I Maximum time -
Minimum time
0 ‘ . .
8 16

30000
20000
10000
24 32 40 48

Number of processors

Total time (seconds)

Figure 6.4 Histogram for load balancing of a parallel IPARS job.

IPARS and Grid Computing by NetSolve

In order to obtain accurate solutions in many field-scale applications, the engineer
may require access to multiple-processor machines at some distant location. Most
likely, this engineer will not be intimately familiar with the details of physically
complex simulators. Thus, a simple and user-friendly interface for accessing available
computational resources is desirable. The Grid Computing environment, NetSolve,
provides such an interface: an Internet-based global route to software. NetSolve
has been developed at the Innovative Computing Laboratory (ICL), University of
Tennessee at Knoxville. Under CRPC guidance, CSM and ICL have coupled IPARS
and NetSolve and demonstrated how a reservoir simulator may be accessed remotely
with an easy-to-use interface [48].

In the NetSolve environment, a user can access a scientific application as a
client, virtually anywhere in the world, without having to worry about obtaining,
installing, or maintaining computing resources. The IPARS-NetSolve integration was
designed so that users can initiate the simulation and examine output, including
visualization, through a Web browser’s window. These tasks can be carried out with
laptop computers or with smaller devices such as a handheld PC or a cellular phone
with an Internet connection and a Web browser installed. CSM is setting up a

6.2 IPARS and Grid Computing by NetSolve 153

6.2.1

Nonkeyout grids

473.195 475.257 477.319 479.381 481.443 483.505 485.567 487.628 489.69

Figure 6.5 Demonstration of keyout capability of IPARS. Air-water model simulation on Texas
longhorn shape domain.

collaborative system for several of its industrial partners based on the computing
environment described below.

Integrating IPARS into NetSolve

In this section we describe how IPARS was integrated into the NetSolve environment.
Key to the coupling of NetSolve and IPARS is a clear understanding of their respective
interfaces. IPARS is designed to receive a single file input containing all the param-
eters and field data describing the simulation. It produces several output files. One
output file describes the results and contains numerical values of the variables of
the simulation in an ASCII format. The other output files contain data that are used
to support visualization. Hence the answer to integration is somewhat straightfor-
ward: create interface routines for IPARS and NetSolve and embed IPARS in NetSolve
servers.

First, a functional wrapper was created to initiate an IPARS job with an input and
several output file names. This wrapper runs the simulation and also calls scripts
external to the simulator, which uses a commercial visualization software package

154

6.2.2

Chapter 6 Parallel Computing in Environment and Energy

TECPLOT™ to post-process the output into a series of graphical frames. These frames
represent snapshots of different parameters being observed in the field of study. The
UNIX utility, “convert,” is then used to change the format and to attach each set of
frames (corresponding to different parameters) into a single movie file for each set.
These movie files, along with the ASCII output file, are stored on a server and can be
accessed by users.

The NetSolve system provides a code generator that parses a NetSolve problem-
description file (PDF) in order to extend the server’s functional capabilities. This was
the tool used to create a server with IPARS capability; a portion of the PDF file used
for integration follows.

@PROBLEM ipars

Q@INCLUDE '‘'ipars.h'!'

@LIB /home/user/1ib/1ibipars.a
@DESCRIPTION

Parallel Sub-surface Flow Simulator
@INPUT 2

@OBJECT STRING CHAR model

IPARS physical model to use

@OBJECT FILE CHAR infile

Input data file

Eventually, this PDF will describe the code that determines how to call the
abovementioned wrapper with the inputs given from a client program. After this
configuration and a compilation, the NetSolve server is ready to be attached to a
NetSolve agent/system and service requests. Note that although we only mention
one server cluster, it is also possible to have several IPARS-enabled server clusters or
parallel machines attached to the system; the NetSolve agent would dynamically
marshal requests to the best candidate, yielding better performance (Figure 6.6).

Client-Side Web-Browser Interface

At this point, one can now use any of the NetSolve client interfaces to access
IPARS. This has two major impacts: (1) with a single installation of IPARS, many
users can benefit from the simulator without having to go through the hassles of
installation and maintenance; and (2) IPARS can be used from any host machine
(even architectures to which IPARS has not been ported). A further result is that one
can get significant speedup by accessing server clusters that are orders of magnitude
faster than the available local computers. The fact that we are using the NetSolve
client means that the user has access to all the functionalities of any and every
NetSolve server in the system.

In order to make things even easier for the user, we take our interface a step further.
We make the IPARS simulator accessible to the ever-present Web browsers.

First, a flexible and user-friendly menu for data input was developed. The menu
allows the following selections: choice of one of eight physical models, including

6.3 Tracking and Interactive Simulation in IPARS 155

6.3

Client Interfaces to IPARS simulator

Fortran

Web Mathematica MATLAB

NetSolve
agent

I Single processor
=

T MPPs and SMPs

Figure 6.6 Overview of the NetSolve/IPARS integration.

physical and geological parameters; grid selection and numerical algorithmic pa-
rameters; and visualization variables.

We used HyperText Markup Language (HTML) forms and the Common Gateway
Interface (CGI) to provide a complete interface to IPARS that basically sits on top
of the NetSolve middleware system. The total package has all the components that
every application should have: complete portability, an easy and intuitive interface,
and run-time load balancing to ensure maximum performance. All of this capability
is available without ever downloading or installing any components (other than
the Web browser, which can be assumed to be standard). Figure 6.7 is a schematic
description of the resulting Web-based computing environment of IPARS.

In the next section we show, using a library developed by computer scientists,
how we have pulled IPARS to a new level: interactive tracking and simulation.

Tracking and Interactive Simulation in IPARS

Most scientific computing software does not allow users to interact during the
simulation process. Thus, a scientist who finds something undesirable usually waits
for termination of the simulation or stops the execution. The restart capability
of a simulation program is often used to incorporate certain changes in physical
situations. Scientists analyze the output files and apply new conditions by changing
appropriate parameters in the input files that will be used for the restart. However,
the time required to perform this tedious cyclic work is not acceptable.

There are many engineering applications that will benefit by real-time interactive
simulation. Petroleum production engineers often want to change the number of

156

Chapter 6 Parallel Computing in Environment and Energy

Local machine

Interactively steer jobs

~1
/[~

My Web browser

|
NetSolve & IPARS

Solver Parameters

Newton Tolerance 1K-02 Max Newton teration 50
Linear Solver Tolerance |E-4 Max linear Iterations 300
Preconditioning Steps 6

IPARS-enabled
servers

Figure 6.7 Schematic description of using IPARS in a remote setting.

active wells, their type, and conditions in field activity. Hence, an interactive com-
puter simulation capability can be a very profitable tool. Environmental hydrologists
who want to simulate the transport of groundwater over a period of dry and rainy
seasons may effectively study a real-world situation by changing conditions at soil
boundaries interactively.

We include tracking and steering capabilities with IPARS so that the user can
monitor the simulation domain in the middle of the computation. Tracking is not
an additional feature, but a necessary procedure to steer the simulation. It should
give useful and essential information concerning the physical problems to scientists.
During the simulation, tracked data can be reported in numerical form or repre-
sented visually so that users can decide when to steer and what parameters to change.

For safe steering, users are allowed to change only preselected variables at cer-
tain points of the simulation program. This avoids nonphysical situations and the
introduction of discontinuities, which may cause the simulation to break down.
Changing certain parameters in the middle of time steps may lead to an abrupt
change in a variable and may make the linear system ill-conditioned.

This means that the designer of the algorithm must select the steering points and
variables carefully, while allowing the user as much flexibility as possible. For IPARS,
wells and boundary conditions are the candidates for steering. The variables that
will be steered are chosen so that nonphysical parameters are not introduced.

6.3 Tracking and Interactive Simulation in IPARS 157

We have used DISCOVER (Distributed Interactive Steering and Collaborative
Visualization Environment) to provide tracking and steering in IPARS. Interaction
points are inserted in the IPARS program. At an interaction point, the DISCOVER
interface allows the user to pause and restart IPARS. In the following section, we
describe DISCOVER and the integration of IPARS with DISCOVER to provide an
interactive steering environment.

6.3.1 An Interactive Computational Collaboration: DISCOVER

DISCOVER is a Web-based collaborative interaction and steering environment that
addresses each of these issues. Figure 6.8 shows an architectural overview of the
system. The system supports a three-tier architecture composed of detachable thin
clients at the front-end, a network of Java interaction servers in the middle, and
a control network of sensors, actuators, and interaction agents superimposed on
the application data network at the back-end. The interaction Web server enables
clients to connect to and collaboratively interact with registered applications us-
ing a conventional browser. Furthermore, it provides access to computational and
visualization servers and to simulation archives.

The application control network enables sensors and actuators to be encapsulated
within and directly deployed with the computational objects, thus forming inter-
action objects. Interaction agents resident at each computational node register the

Application 2
Thin
clients A A
= g
! Acceptor/Ctrl (FfMI/sockets/HTI'P)! > g
Appl 1 - 5
ot ——
.é c .g, E . % Application 1
SIIEl|E]|2]]8 5
< = d [2 &
SlIEILE]]<]]8 2
Appl 2 =] S B S 8 £
IS L IS a [L)
e IR
N B Interaction
v ?\/Irets v agent
AVARAYA
I:\I;LEI Obj| [Obj
1 2
Remote Local
database database

Figure 6.8 An architectural overview of the system.

158

6.3.2

Chapter 6 Parallel Computing in Environment and Energy

interaction objects and export their interaction interfaces to the application interac-
tion proxy, which manages the overall interaction through the control network of
interaction agents and objects. The interaction proxy uses JNI to create Java proxy
objects that mirror the computational objects and allow them to be accessed di-
rectly by the interaction Web server. DISCOVER is an ongoing research initiative at
the Advanced Software Systems Laboratory (TASSL) at Rutgers University.

Integrating IPARS with DISCOVER

IPARS has been integrated with the DISCOVER framework, enabling collaborative
remote interaction and steering of IPARS oil reservoir and hydrology applications.
Current capabilities include application control (start, stop, and pause), check-
point/rollback, query and control of parameters such as well diameter, pressure,
oil/water injection rate, and so on. Development of the IPARS-DISCOVER iteration
involved transforming IPARS data structures into interaction objects using a C++
wrapper, as described above. Each interaction object created in this way exported
View/Command interfaces for interaction. Figure 6.9 shows a screen dump of plots
tracking changes in well parameters of interest for an IPARS implicit hydrology model

simulation.

Pa sl Wonrwrim, Ulisred 501 s e L Fd
e L%Pwr?mmmm.ﬁmnmn [stbiday] |
e
Aot ess TP | =) FIRET3=L_ ¥
£ 1 "33 Rezerol Sirwle: 5357 e P
T MYees WAT=R M IFSTION, FSFF SURF £9FC TR~ - /
" apalese !
- '
D apatatus JECOHEWELL i 7
& Flcenmards - i ¥
eop 2F - il
Draue SOIL ARGLC N BAL = sy x !
D uw 1400
¢ OJ PETEn 220008 -
T OOV IWATZRFTI2. ITION TATC (e 3eY 3
D walDese al, e
2 the s, o -;ﬁ;"rfmn e
ora ams i
RS EM 3
£ 1 3000ND oL PROMLICTIGN, F3=RE.RF £2FCIFIET 0l
Y e o=
. - L L = ik .4 =i
DATA FLOT FOR WATER FRODUCTICH RATI IPARS WELLDATA PLOT FOR WATER'QIL RATIO {LLDATA PLOT FOR DIL PROOUCTION RATE [stivday]
g T ——
fl N , |F=aet L at 1 T —T3 SCEnAC AL =
! w |)] Ve T -
n / : e ; ! 1
h §
Ben
; k ! -
! | I nLar r? ']
¥ ! 1 i
! o . 1%
i
I cis
i i
6 o 5] b
L ** L0
A - wew| . . I
s & { 15
! T
2 ||' | €35 n
0 e
nll 0| W
1 \ ' ' : L L
0 1 H 3 4 - F 4 I E 1

Figure 6.9

Interactive visualization and steering of IPARS oil reservoir simulations.

6.4 Surface-Water Simulation 159

6.4

6.4.1

Surface-Water Simulation

The ability to accurately and efficiently model near-coastal waters is of extreme im-
portance to a number of government agencies and private industries. These flows are
described by the 3-D Navier-Stokes equations with a free surface. However, present
limitations on computational algorithms and architecture make solving these equa-
tions numerically extremely difficult. Hence, several approximate mathematical
models have been developed, including the shallow water equations (SWE). The
SWE are obtained by vertically integrating the 3-D incompressible Navier-Stokes
equations along with the hydrostatic pressure approximation. They can successfully
model water bodies with horizontal characteristic lengths much larger than the fluid
depth.

Tidal fluctuations are frequently modeled using the SWE. Such models are useful,
for example, for tidal power-generation projects and for determining the periodic
forces acting on offshore structures. The SWE, coupled with a pollutant and/or
salinity transport algorithm, are useful for designing effective remediation strategies
for polluted bays and estuaries.

However, numerical solution of the SWE is not straightforward, due to the ex-
tremely complicated geometries and the strong coupling between the fluid depth
and velocities. This coupling can lead to problems with stability and spurious os-
cillation. Various numerical techniques have been and are being developed for this
purpose.

Numerical algorithms and mathematical analysis go hand in hand. An under-
standing of the convergence and stability properties of a numerical model for the
SWE is essential for developing robust numerical procedures. We have analyzed
the generalized wave continuity equation (GWCE), developed by W. G. Gray et al.,
for the SWE. Both continuous-time and discrete-time a priori error estimates have
been derived. We have also parallelized shallow water flow and transport simula-
tion: the ADCIRC software, which is used on the GWCE, and CE-QUAL-ICM, a water
quality model.

A Water Quality Model: CE-QUAL-ICM

CE-QUAL-ICM is a water quality model developed at the DoD-ERDC by Carl E
Cerco, Thomas Cole, and others [177, 178]. This numerical code can model the
transport and reaction of multiple variables simultaneously. It also contains a sedi-
ment transport model and can be run in 1-, 2-, or 3-D configurations. CE-QUAL-ICM
allows for inflow, no flow, and outflow boundary conditions. CE-QUAL-ICM has
been used extensively in the eutrophication studies of Chesapeake Bay. The nu-
merical method is based on an unstructured finite volume method. It is explicit
in time in the horizontal direction and implicit in the vertical columns. The reader
is referred to Cerco and Cole [177, 178] for a detailed description of the numerical
model.

160

6.4.2

Chapter 6 Parallel Computing in Environment and Energy

The main component of CE-QUAL-ICM is the solution of a 3-D mass conservation
equation of the following form for each state variable:

S V:C; n n
M =2chk+ZAkaE +305;
St =1 (SXk

k=1

The above equation represents conservation of mass in the jth control volume,
and n is the number of faces attached to control volume j. Qx, Cy, Di, and Ay are,
respectively, the volumetric flow rate, concentration, diffusion coefficient, and cross-
sectional area at face k of control volume j. V; is the volume of control volume j, and
S; are the external sources and sinks present in control volume j. §C/8xy is the spatial
gradient of concentration in the direction normal to face k, and (5 ViCj) /8t is the rate
of change of the total concentration in control volume j.

A Parallel Water-Quality Model: PCE-QUAL-ICM

In a water quality model, special interests are long-term studies, typically comprising
decades. For these long-term simulations, the serial code requires hundreds of vector
computer (CRAY-YMP) hours. We achieved an order of magnitude reduction in sim-
ulation times by porting the serial code to distributed-memory parallel computing
platforms.

PCE-QUAL-ICM, a parallel water-quality model, is a product of this effort and has
been developed at CSM in conjunction with ERDC. A data/domain decomposition
strategy is employed, along with a single-program, multiple-data (SPMD) paradigm.
Interprocessor communication is done through standard MPI message-passing li-
braries. The parallel code has been ported to the IBM-SP and CRAY-T3E, which are
distributed-memory parallel computers, and to the SGI 02000, which has some
shared and some distributed memory.

As stated above, CE-QUAL-ICM uses an explicit/implicit time-marching solution
strategy. Within each time step itself, the solution update is broken into two sep-
arate steps. In the first step, an intermediate concentration is computed that takes
into account horizontal diffusion and advection, along with all the external sources
and sinks. This step is completely explicit, and there is no need to solve any sys-
tem of linear equations. In the next step, the vertical diffusion and advection are
incorporated in an implicit manner. This requires solution of a tridiagonal system
of equations for each vertical water column.

Solution methodology plays an important role in parallelization. Not all nu-
merical techniques are readily parallelizable. Since CE-QUAL-ICM has an explicit
treatment of horizontal diffusion and advection, it easy to parallelize, and it can
potentially benefit greatly from parallelization. Implicit treatment of vertical trans-
port and explicit treatment of horizontal transport implies that we can benefit by
doing domain decomposition only in the horizontal plane. For each surface block,
the underlying vertical column is assigned to the same subdomain.

6.4 Surface-Water Simulation 161

6.4.3

For computing the horizontal advective flux, the concentration Cy at face k is
needed, and CE-QUAL-ICM has two ways to compute this. One is a simple first-
order-accurate upwind differencing that sets Cy equal to the upstream value, with
the upstream direction determined by the sign of Qx. The other is a higher-order-
accurate QUICKEST scheme that uses quadratic interpolation for computing Cy by
taking two upstream cells and one downstream cell. Thus, in a traditional domain
decomposition sense, we will need at least two layers of “overlap” or ghost blocks.
Note that upwinding or the QUICKEST scheme is used only in the horizontal direc-
tion; in the vertical direction, a simple linear interpolation between the adjoining
cells is used to compute Cy.

Either a fixed time step can be specified or an automatic time-step selection based
on stability criteria can be used. If the automatic time stepping option is chosen, then
the subdomains need to communicate with each other to select a global minimum
time step if the computations are to remain synchronous.

Parallel Algorithm

From the solution algorithm of CE-QUAL-ICM already outlined above, it is clear
that it is readily parallelizable. It is an explicit code and is implicit only in the
vertical direction. A small tridiagonal system of equations is solved locally within
each water column. Therefore, a data-parallel approach would be a natural way to
parallelize this code. The original global domain is split into smaller subdomains,
and each processor element (PE) works only on its local subdomain. Since the solu-
tion within a subdomain will depend on the solution in its neighboring subdomains,
the PEs exchange information through message-passing communication libraries.
The explicit nature of the solution algorithm in CE-QUAL-ICM implies that it is
enough to do message passing once every time step. Note that this type of parallel
computation does not change the global solution algorithm. Conceptually, all we
are doing is splitting the work among processors. Thus, the solution we would get
through parallel computation will be identical to that we would obtain if we were
to solve it sequentially, up to machine precision.

The domain is decomposed in the horizontal plane alone, and all the underlying
blocks in a vertical column are assigned to the same processor. This minimizes
interprocessor communication, since now the implicit step involving solving a
system of tridiagonal linear equations is done locally within each PE.

Domain decomposition or mesh partitioning on unstructured grids is a nontrivial
task and needs to take into consideration several issues, such as load balancing
and locality. C. Edwards [306, 823] developed an effective decomposition strategy
based on a Hilbert space-filling curve, and this has been used with great success in
parallelizing ADCIRC, an advanced coastal circulation model based on the shallow
water equations [196]. A space-filling curve based domain decomposition is used in
PCE-QUAL-ICM.

The basic idea behind this decomposition algorithm is to construct a map from
d-dimensional space to the interval [0,1] on the real line. In our case d = 2, since we

162

6.5

Chapter 6 Parallel Computing in Environment and Energy

Figure 6.10 Hilbert space-filling curve on a rectangular mesh.

decompose only the surface blocks. Given a list of points in the original domain, a
space-filling curve is built that passes through each point once. Since the curve is
one dimensional, the position of a point along the curve determines its order in the
interval [0,1]. The map is constructed so that points that are close in d-dimensional
space remain close when mapped. Thus, the curve preserves locality.

A space-filling curve on a simple rectangular mesh is shown in Figure 6.10. One
can also weight the points on the curve by a measure of the amount of “work”
associated with that point. This weighting is useful in our application, since each sur-
face block can have a different number of vertical blocks underneath it. In this way,
better load balancing can be achieved. Once the curve is constructed, the decompo-
sition of the domain is performed by dividing the interval [0,1] into N subintervals,
where N is the desired number of processors, and mapping each subinterval to a
processor. That is, the points in d-space associated with the subinterval are assigned
to the processor.

A Coupled Simulation of Flow and Transport with ADR

A coupled simulation system for bays and estuaries includes a hydrodynamics
simulator, which simulates the flow of water in the domain of interest, and a chem-
ical transport simulator, which simulates both the reactions among chemicals in
the bay and the transport of these chemicals. For a complete simulation system, the
chemical transport simulator needs to be coupled to the hydrodynamics simulator,
since the former uses the output of the latter to simulate the transport of chemicals
within the domain. Note that chemical reactions and transport of chemicals do not
affect the computed hydrodynamics values. Thus, the same flow values can be used
by a chemical transport simulator for different simulations.

6.5 A Coupled Simulation of Flow and Transport with ADR 163

6.5.1

However, coupling the two simulators to form a complete system is not a straight-
forward process. First, the chemical transport simulator can be used to simulate
changes over a long period of time (from days to hundreds of years). This requires
a large amount of hydrodynamics simulation output to be stored on and retrieved
from disks and/or tertiary storage. Second, the chemical transport simulator may use
coarser time steps than the hydrodynamics simulator. Moreover, the grids (in two or
three dimensions) used by the chemical transport simulator may be different from
the grids employed by the hydrodynamics simulator.

Thus, post-processing of the output data set from the hydrodynamics simulator is
required to generate the proper input to the chemical transport simulator. One post-
processing operation required is averaging velocity and elevation values over several
time steps of the hydrodynamics simulation to generate initial values for each time
step in the chemical transport simulation. The other operation is a projection of the
averaged velocity values at the grid points in the hydrodynamics simulation to flow
values on the edges of the chemical transport simulator grid.

Therefore, the two crucial components of the coupled simulation system are (1)
a projection code to perform the projection operation, and (2) a data management
infrastructure that will provide optimized storage, retrieval, and post-processing (time
averaging) of the outputs of the hydrodynamics simulator as and when needed by
the chemical transport simulator.

The Active Data Repository

In this section we briefly describe an infrastructure, called the Active Data Repository
(ADR) [186, 187, 327, 586], developed at the University of Maryland, for storing and
processing multidimensional data sets, such as those generated by hydrodynamics
simulators.

The ADR is an infrastructure that enables integration of storage, retrieval, and
processing of multidimensional data sets on a distributed-memory parallel machine,
with one or more disks attached to each processor. ADR targets scientific applications
that make use of multidimensional scientific data sets.

These applications have several important common characteristics. Applications
may use only a subset of all the data available in data sets. Access to data items is de-
scribed by a range query, namely a multidimensional bounding box in the underlying
multidimensional attribute space of the data set. Only the data items whose associ-
ated coordinates fall within the multidimensional box are retrieved. The processing
structures of these applications also share common characteristics. The processing
steps consist of retrieving input and output data items that intersect the range query,
projecting the coordinates of the retrieved input items to the corresponding output
items, and aggregating, in some way, all the retrieved input items mapped to the same
output data items. Correctness of the output usually does not depend on the order
input data items are aggregated. An intermediate data structure, referred to as an
accumulator, can be used to hold intermediate results during processing. For exam-
ple, an accumulator can be used to keep a running sum for an averaging operation.

164

6.5.2

Chapter 6 Parallel Computing in Environment and Energy

At the end of processing, the final output is produced from the intermediate results
stored in the accumulator.

Using ADR for building the data management/manipulation system of the cou-
pled simulation system has several advantages. First, ADR is targeted toward multidi-
mensional data sets and can simultaneously manage and process multiple data sets.
The hydrodynamics simulator simulates flow patterns on an unstructured grid, and
velocity and elevation values are computed at all vertices of the grid at each time
step. Thus, the output of the hydrodynamics simulator is a multidimensional data
set over space (the 2-D or 3-D grid) and simulation time. In addition, the capacity
to handle multiple data sets enables management of data sets generated by differ-
ent hydrodynamics simulators or from different runs of the same simulator. Second,
ADR leverages commonality in processing requirements to seamlessly integrate data
retrieval and processing. Integration of data retrieval and computations makes it pos-
sible to mask I/O latencies. Moreover, integrating the processing and data retrieval
allows significant reductions in data volumes before sending the data over the net-
work (local or wide area) to the projection code or the chemical transport simulator.
Third, ADR can be customized for a wide variety of applications without compro-
mising efficiency. This capability allows different chemical transport simulators to
use the data sets stored in the database system.

Implementation

We have built a prototype of the coupled simulation system using ADR [587]. In
our implementation of the coupled simulation system, we use a hydrodynamics
simulator [628] developed to model circulation patterns in coastal seas, bays, and
estuaries, and a chemical transport simulator, called UTTRANS, developed to model
and simulate reactions and transport of various chemicals in bays and estuaries.
The hydrodynamics simulator is ADCIRC—a circulation model [629], which was
parallelized by Chippada et al. [196]. The chemical transport simulator is a sequential
program and was developed at CSM. The projection operation is carried out by a code
called UT-PROJ [197], also developed at CSM.

We have customized ADR to store, retrieve, and process the output of the hydro-
dynamics simulator on an IBM SP at the University of Maryland. The output from
the hydrodynamics simulator is partitioned into chunks, each of which contains ve-
locity and elevation values over a set of time steps at a subset of the grid points. The
chunks are distributed across the disks on the SP, using default declustering meth-
ods implemented in ADR for loading data sets, so that each disk has about the same
number of chunks covering approximately the same set of time steps.

A spatial index, containing a bounding box for each chunk and the locations of
the chunks on the disks, is created for the entire data set. A function that performs
averaging of velocity and elevation values over several time steps of the hydrodynam-
ics simulation was registered as an aggregation function. A query from the chemical
transport simulator specifies the time period of interest, the hydrodynamics data set
of interest, and how to send the output back (using UNIX sockets or Meta-Chaos).

6.6 Conclusion 165

6.6

ADR performs retrieval and averaging of velocity and elevation values over the time
steps of the hydrodynamics simulator that fall into the time period of interest. The
results are then sent to the chemical transport code, which is a sequential program
and runs on one of the processors of the SP. The chemical transport code uses the
projection code UT-PROJ to perform projection of the averaged grid values for the
data set specified in the query. It then uses the results to compute the transport of
chemicals (e.g., an oil spill) in the bay or estuary.

Our experimental results show that a query, over a simulation time period of
225 seconds (15 time steps of the hydrodynamics simulator) on a grid modeling
Galveston Bay with 2113 points, is resolved by ADR in 0.8 seconds (including 0.4
seconds to send the results back to the chemical transport simulator over the LAN) on
eight SP nodes with two local disks per node. Using ADR, UT-PRO]J, and UTTRANS,
a 2-hour oil spill simulation with the Galveston Bay data stored in ADR takes about
300 seconds.

Conclusion

We have described and demonstrated IPARS as a PSE for applications arising in envi-
ronmental and petroleum engineering. These problems are prototypical of multiscale
simulations such as reactive computational fluid mechanics. Particular applications
targeted include the remediation of polluted soils and aquifers and the environmen-
tally prudent production of oil and gas energy resources. We have discussed IPARS
enhancements through integration with NetSolve and DISCOVER.

Similarly, we have described parallel modeling of coupled hydrodynamic and en-
vironmental simulators for surface-water flow. The models discussed in this chapter
are presently being employed in treating real-life scenarios such as dredging in Chesa-
peake Bay, remediating several Florida bays and the Everglades, as well as studying
flood prevention in Louisiana. ADR software has proved to be useful for coupling
multidimensional data between the different flow and reactive transport simulators.
Instead of taking more than a year, parallel computation now allows many of these
investigations to be completed in less than a month.

The infrastructure of CRPC was instrumental in the development of the science
as well as the collaborations that we have described in this chapter. It is clear that
CRPC can claim that the sum of the parts in these efforts has been greater than the
whole.

Acknowledgments. The authors of this chapter wish to acknowledge Steven Bryant,
Jack Dongarra, Victor Parr, Malgorzata Peszynska, Joel Saltz, and John Wheeler for
their contributions and fruitful discussions.

X m -4 W »>» I N

Parallel Computational Chemistry:
An Overview of NWChem

David E. Bernholdt

Computational chemistry has a long and venerable history. With the help of im-
provements in computational methodology, and in computers themselves, it has
been transformed into a virtually indispensable tool, used by a large cross section
of the discipline. The ability to model “real-world” chemical systems with the so-
phistication necessary to obtain chemically meaningful results has helped produce
a remarkable level of synergy between computational and experimental treatments
of chemical problems. This, in turn, has fueled further interest in expanding the role
of computational chemistry to even larger, more sophisticated, and more demanding
simulations.

Vector supercomputers played a prominent role in the rise of computational
chemistry, as chemists went beyond simple ports of existing codes, restructuring
them and making important advances in algorithms. Today, few vector-based com-
puters are still produced, but modern commodity CPUs make good use of the opti-
mizations and algorithms originally designed for vector machines. The cutting edge
of high-performance computing has shifted to parallel computers, based on those
same commodity CPUs, and computational chemistry is of course following. Numer-
ous packages can make effective use of modestly sized shared-memory parallel sys-
tems, but fewer are available for the high-end systems that use distributed-memory
architectures (including those in which each node is a shared-memory multiproces-
sor). The two interrelated issues primarily responsible for this situation are ease of
programming and scalability of algorithms.

Computational chemistry methods tend to be computationally complex and
resource intensive (memory and disk as well as CPU), so parallelizing chemistry
methods can be challenging, especially if scalability to large numbers of processors
is required. In a shared-memory environment, programming is relatively straight-
forward, and reasonable parallel algorithms can provide adequate performance and

167

168

7.1

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

scalability for many applications—sufficient for the modestly sized shared resources
typically available within a research group, department, or university. However, the
largest and most complex problems require the largest massively parallel proces-
sors (MPPs), which are presently distributed-memory systems. Chemistry algorithms
scalable to hundreds or thousands of processors are far more challenging and often
too complex to be implemented within the message-passing programming models
widely used in distributed-memory environments.

Computational chemistry is a rather broad field, and a comprehensive review of
the state of the art in parallel computing across the entire field would require a book
ofits own. In this chapter, I focus on a portion of the field in which high-performance
computing has had a particularly significant impact on the day-to-day conduct of
the science of chemistry: molecular quantum chemistry. I use the NWChem software
package [98, 313, 411-414, 440, 557] as a representative of the current state of the
art in highly scalable, fully distributed, parallel computational chemistry software,
focusing on molecular structure methods. At its inception, the goal for the NWChem
project was to deliver molecular modeling software that provides 10 to 100 times the
effective capability of what was currently available on conventional supercomputers.
This necessitated the use of algorithms that exhibit parallel scalability, both in the
size of the computational resource and in the molecular system being modeled.
Scalable applications must not only effectively parallelize the requisite computations
but must also utilize the aggregate subsystems of the MPP. Algorithms must distribute
data across the total system memory, not limiting the functional problem size by
the effective memory of any single computational node. Furthermore, other MPP
subsystems that algorithms exploit (i.e., communication and secondary storage)
must be utilized in a scalable fashion.

The scalable modules in NWChem span a broad range of computational chem-
istry methods: Hartree-Fock (HF) or self-consistent field (SCF), density functional
theory, ab initio molecular dynamics, perturbation theory, coupled cluster, multicon-
figuration self-consistent field (MCSCF), configuration interaction (CI), molecular
mechanics, molecular dynamics, free energy simulations, Car-Parrinello, and so
on. These modules have been implemented in the environment by a collection of
supporting modules providing basic computational capabilities and fundamental
services required for chemical computations. After a general outline of the equa-
tions and their solution, I describe the overall architecture of the NWChem package
and several critical supporting modules. I then focus on two of the NWChem chem-
istry methods, emphasizing their implementation in the NWChem environment
and their performance. I conclude by placing the methods and tools used within
NWChem in the broader context of computational chemistry and computational
science in general.

Molecular Quantum Chemistry

The various methods of molecular quantum chemistry ultimately derive from the
time-independent Schrodinger equation,

7.1 Molecular Quantum Chemistry 169

(Te+Tn+Ven+Vee+Vnn)\I":E"II (7.1)

The five terms in parenthesis at the left are components of the Hamiltonian oper-
ator, representing, respectively, the electronic and nuclear kinetic energies and the
potentials due to interactions of electrons and nuclei, electrons with other electrons
and nuclei with other nuclei; E is the energy of the system, and W is the wavefunction.
The Hamiltonian terms are

1
T,(r) = 5 ZVIZ
i

TR =—Y —Lv2
A

Vo, R =~ 3 —ZA_

1 1
Vee(r) = P Z
iz |ri — 7l

1 Z\Z
V=5 2 Rk
azp Ra— Rgl

In these expressions, i and j refer to electrons, A and B to nuclei; R4 and r; refer to
the spatial coordinates of nucleus A and electron i, respectively; and Z, and M, are
the charge and mass of nucleus A. The unsubscripted symbols r and R refer to the
complete set of position vectors of the electrons and nuclei, respectively. Since the
nuclei are about 1836 times more massive than the electrons, and therefore move
much more slowly, it is common to invoke the Born-Oppenheimer approximation
to separate the nuclear and electronic portions of the problem. Since the nuclei
are essentially fixed in space relative to the electrons, the T, term drops out and
the V,,,, term becomes a simple constant. The result is referred to as the electrostatic
Hamiltonian, and, per equation (7.1), when this operator is applied to the electronic
wavefunction, it gives the (scalar) electronic energy of the molecular system. Other
areas of computational chemistry deal with other forms of the Schrédinger equa-
tion or with other equations entirely. Quantum dynamics methods generally start
from the time-dependent Schrodinger equations, and the nuclear portion of the
Hamiltonian and wavefunction are considered together with the electronic part.
Molecular dynamics, on the other hand, uses a simplified “ball-and-spring” model
of the molecule in which the interactions among the atoms are treated classically,
and the positions of the atoms are evolved in time according to the computed forces
and Newton'’s Laws.

The Schrodinger equation cannot be solved exactly for more than two electrons;
however, it (or more commonly certain approximations) can be evaluated numer-
ically. Numerical solution of the Schrodinger equation begins with the choice of a
basis. The common choice in molecular quantum chemistry is to use 3-D Gaussian
functions. These functions are usually (but not necessarily) chosen to mimic the

170

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

atomic orbital (AO) description of atomic structure used in chemistry and physics.
That is, basis functions are centered on atoms and have shapes and shell structure
like the atomic s, p, d, etc. orbitals. A complete (infinite) basis would span all of space
and thus allow an exact description of the wavefunction. In practice, however, com-
putational resources place limits on the size of the basis that may be employed, and
it is necessary to compromise between the cost of the calculation and the accuracy
required. Evaluation of the Hamiltonian operator over the basis functions results
in matrix elements or integrals, the most numerous of which (O(N*) for N basis
functions) are the two-electron integrals arising from the V,, term,

X.(r2) %o (12) dry dry (7.2)

Guvli) = [o) 0,10
Iry =12

where r; and r, are the positions of the two electrons, and the {x,(r)} are the basis

functions.

Thus far, we have said nothing about the mathematical form of the electronic
wavefunction. In molecular quantum chemistry, the usual approach is to make a
“one-electron approximation,” which says that we can represent the total wave-
function of the molecule as a simple product of functions representing individual
electrons within the molecule. These molecular orbitals are represented by linear com-
binations of the original atomic orbital basis functions. The molecular orbitals are
calculated by the Hartree-Fock self-consistent field method, and this model corre-
sponds to the qualitative ideas about molecular orbitals often used by chemists and
taught beginning at the general chemistry level. The SCF approach is at the heart
of molecular quantum chemistry. It is also the basis of semi-empirical methods, in
which instead of being computed outright, integrals are approximated by much
simpler phenomenological expressions that are parameterized based on experimen-
tal data.

The SCF procedure provides a very useful qualitative description of molecules,
but it is generally inadequate for quantitative applications requiring high accuracy.
The method considers each electron in the average field of all others, which ignores
the fact that the motion of each electron is instantaneously correlated with all
others (due to the Pauli exclusion principle). When higher accuracy is required,
it is necessary to go beyond the one-electron approximation and treat correlation
effects in the system. This is usually formulated in terms of the interaction between
different “configurations” of a set of one-electron functions. The SCF one-electron
orbitals are used as a starting point, but electrons are placed in them in different
ways. Each distinct way of placing electrons in the orbitals is a configuration, and the
interaction energies between configurations can be evaluated numerically, leading
to an expression for the energy and wavefunction corresponding to the particular
correlated method. There are numerous correlated methods with different levels of
sophistication and complexity. The interested reader may wish to refer to the classic
text by Szabo and Ostlund [906] for a more in-depth presentation of the material
sketched in this section and for further pointers to the classic quantum chemistry
literature.

7.2 The NWChem Architecture 171

7.2

NWChem is one of many codes in this area of computational chemistry. It
implements the SCF method and a number of correlated methods, as well as molec-
ular dynamics and a variety of related methods targeted to periodic systems (i.e.,
solids) as opposed to isolated molecules. Because it focused from the start on paral-
lelism and its relatively recent development, it serves as an excellent example of the
current state of the art in high-performance computational chemistry software.

The NWChem Architecture

In order to meet the original goals of the project, the initial NWChem development
team recognized that NWChem would be a fast-growing code, in which ease of
development (a short learning curve) and the ability to rapidly prototype algorithms
would be critical to its success. Consequently, we chose a highly structured approach
to the design of the package, using object-oriented (OO) design throughout [96].
In deference to the fact that relatively few chemists have experience with truly
object-oriented languages, we chose to implement the OO design of NWChem in
a combination of Fortran77 and C. Since these languages do not provide the kind
of enforcement mechanisms that are built into OO languages, such an approach
relies on the developers themselves to enforce the OO design, but overall we have
found it to be quite effective. Newcomers to the code who are unfamiliar with OO
design concepts can easily pick up the basics required to work successfully in the
NWChem environment, and they are quickly productive since they can work in
familiar languages.

Figure 7.1 provides a schematic representation of the overall architecture of
NWChem. The bottom two layers depict some of the fundamental tasks that
NWChem can do (compute an energy or a gradient, perform Newtonian dynam-
ics, etc.) and some of the chemistry methods with which these tasks can be carried
out (i.e., MP2, SCF, and DFT). These are the two layers most directly visible to the
NWChem user; the remaining modules constitute the environment or “umbrella”
that allows for (relatively) easy parallel implementation of the various chemistry
methods and tasks. On the left are modules that “know something about” chemistry,
in other words, those providing basic objects needed for chemical calculations. On
the right are modules that provide the computational infrastructure for NWChem:
the parallel programming environment, parallel I/O support, and so on. While most
of these modules were developed in conjunction with NWChem, they are not spe-
cific to chemistry applications. Most are freely available separately from NWChem
and have been adopted by other software developers both inside and outside of
chemistry.

At the heart of the NWChem programming environment is the Global Array par-
allel programming model, which provides the developer with the appearance of
a global shared-memory environment in a portable fashion. This important com-
ponent of the NWChem umbrella is described in greater detail below, along with
the PelGS parallel eigensolver. Many other components of the NWChem program-
ming environment are relatively straightforward conveniences with the important

172

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

RunTime data base System and Standards
Property/NBO

MOINTS Vib CPHF . -
- @m0 -

)

INT API

NWChem

Figure 7.1 The NWChem architecture representing general functionality within NWChem,
which is built upon layers of other modules, tools, chemistry APIs, and computational and

computer science standards. The link between NWChem and Ecce is a loosely coupled interface.
The umbrella symbol identifies some of the software described in this section.

function of facilitating general, portable, and rapid development of computational
chemistry software. For example, MA is a portable memory allocator, implementing
both stack and heap memory management models, which provides equal access to
objects from both Fortran and C code. It also provides support for debugging and
verification (especially detecting array overwriting and memory leaks). The run-time
database (RTDB) provides a simple mechanism to allow the storage of name/value
pairs (values can be of the basic Fortran data types, including 1-D arrays; other mod-
ules may provide convenience routines to read/write more complex data structures
to the RTDB in an opaque fashion) that NWChem uses to communicate information
between high-level modules and also as persistent storage between related jobs. The
ParIO module is an abstraction layer that provides the user with three types of files:

e Disk-resident arrays (DRAs) are a simple means of providing secondary storage
for global arrays, the distributed arrays provided by the global array toolkit. All
operations are collective and are therefore open to additional optimizations
on some parallel file systems.

e Exclusive access files (EAFs) are sets of process-private files that can be accessed
independently. They are typically used for out-of-core computations that do
not lend themselves to collective I/O operations and the use of DRAs.

7.2 The NWChem Architecture 173

e Shared files (SFs) are shared by all processes and can be read or written in
noncollective fashion at any arbitrary location in the file.

The ParlO library is layered on top of a “device library,” ELIO (for elementary
1/0), which provides a portable interface to the file system and allows NWChem
to take advantage of special high-performance I/O libraries that might be available
on various platforms.

The chemistry-specific portion of the NWChem umbrella is similarly designed to
facilitate the rapid development of chemistry software. Consistent with the object-
oriented design philosophy used throughout NWChem, these modules typically
expose well-defined application program interfaces (APIs) to provide the developer
with access to all the information and functions of the object, while hiding the
specific data structures. This helps protect the underlying data structures against
manipulation (accidental or intentional) that does not conform to their API—an all-
too-common occurrence in older, less well-structured chemistry software. Another
distinction from older chemistry software is that, where appropriate, multiple in-
stances of objects are supported. This allows the developer to, for example, refer
explicitly to three different basis sets to be used in different aspects of a calculation
by simple “handles” rather than error-prone manipulations of a single, monolithic,
basis-set data structure. Two excellent examples in NWChem include the most fun-
damental chemical objects in quantum mechanical electronic-structure calculations
are the definition of the molecular system (the “geometry” object in NWChem) and
the basis set. The geometry object is a well-defined, extensible API that provides all
the geometrical and atomic data for the molecular system under study (e.g., masses,
atomic number, nuclear charges, coordinates, applied external fields, etc.). The basis
set object is also a well-defined, extensible API that provides all the basis set function-
ality for all NWChem modules that utilize basis sets. The basis set object is interfaced
to a library that contains a wide variety of published basis sets. The NWChem ba-
sis set library is periodically synchronized with the EMSL basis set library, which is
available to the public via a Web interface [677]. Currently the NWChem library has
3762 Gaussian basis sets and 462 effective core potentials conveniently specified for
the user community.

Other modules encapsulate various chemistry-specific computations used by the
main chemistry methods rather than being invoked directly at the user level. Perhaps
one of the most widely used within NWChem is the integral-evaluation module
(int api). This module computes integrals of the (usually Gaussian) basis functions,
possibly belonging to different basis sets, with various operators, an operation central
to all quantum mechanical electronic structure methods. The module provides a
uniform interface to five separate integral-evaluation codes with different capabilities
and strengths. The choice of which method of integral evaluation to use is normally
made within the module, based on details of the requested computation, but it can
also be explicitly controlled by the software developer, or even by the NWChem
user if the need arises. Because these codes are hidden behind a uniform interface, all

174

7.3

7.3.1

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

modules that use the integral package can benefit immediately from the introduction
of new methods and optimizations.

The NWChem umbrella modules are not set in stone. Although we tried to
design from the start with the necessary flexibility and generality, inevitably there
have been occasions that require existing objects to be modified or extended. In
general, the most substantial changes have been extensions of functionality; rarely
are significant changes required in existing application code. Implementation of
new chemistry methods within NWChem will sometimes occasion the extension
of the functionality of the existing umbrella or the development of new supporting
modules. New modules are also sometimes created by abstracting the repeated use
of the same or similar functionality in different places.

NWChem Parallel Computing Support

NWChem provides the user with a variety of tools for efficiency of calculation and
ease of parallel model management. This section discusses the Global Array Toolkit,
which is used to implement the Global Array programming model, and PelGS, which
is a parallel linear algebra library.

The Global Array Toolkit

The Global Array (GA) Toolkit [381, 710, 711] implements the primary parallel pro-
gramming model used within NWChem, though traditional message passing is also
available and is used as needed. GAs provide a portable shared-memory program-
ming environment, which is implemented using native one-sided communications
on distributed-memory systems and the common System V interface on true shared-
memory systems. The shared-memory programming environment is important for
two reasons. In the first place, it is much easier for the software developer to deal
with, thus shortening the learning curve and facilitating development. Second, and
more fundamentally, many sophisticated, highly scalable chemistry algorithms (and
those in other fields) are extremely complex when written in message-passing form;
others may be impossible to implement in the message-passing model because of
the coordination required among processors.

Another important feature of the Global Array model is the fact that it explicitly
exposes the memory hierarchy to the programmer. Specifically, global arrays distin-
guish between “local” and “remote” memory with difference latency and bandwidth
characteristics. This is different from most shared-memory programming environ-
ments, in which all memory is presumed to have the same access characteristics, but
we have found the distinction quite useful because it helps software developers cre-
ate algorithms that work well on both distributed- and shared-memory systems. It is
also easy to integrate this distinction into the nonuniform memory access (NUMA)
hierarchy with which the most programmers are already familiar: registers, cache,
local memory, remote memory, and so on. (Note that the disk-resident-array com-

7.3 NWChem Parallel Computing Support 175

ponent of the ParlO module described above can be thought of as extending the
hierarchy one more level, to disk storage.)

At the simplest level, the programming model using GA assumes that “remote”
memory access is the rate-limiting step and that local memory access is much faster.
Memory access using GA provides one-sided or asynchronous access to global data
elements. Using the GA programming model, algorithms can be designed with
knowledge of data locality that can be tuned for many different computational
resources to essentially cover the worst-case scenario. This may require multiple
algorithmic implementations to cover different ranges of bandwidth and latency. For
example, suppose that one has two algorithms for a specific kernel in an application.
The first algorithm has low latency requirements; the second algorithm can tolerate
latency, but with a factor of four in computation. The second algorithm would likely
be the mainstream choice to work on “all” machines. The first algorithm could be
turned “on” after testing the viability on each system as the application is ported.
This is obviously not limited to two algorithms.

Global arrays themselves are multidimensional arrays that are distributed among
processors in blockwise fashion. The distribution can be completely specified by the
programmer and may be regular or irregular, or a GA convenience routine can be
used to quickly create a regular blocked distribution. Data may be accessed locally
or remotely using block-oriented “put,” “get,” and “accumulate” functions. It is
also possible for the programmer to inquire as to boundaries of the local block
of a global array and to obtain direct access to the appropriate region of memory.
This makes it convenient to write data-parallel operations using GAs. By knowing
the locality of data, programmers can explicitly manage the nature of the memory
hierarchy for their parallel algorithm. The operations mentioned above can be
used in asynchronous or one-sided fashion by any processor. Other GA functions
are collective, including creation and destruction of GAs, synchronization, and
high-level linear algebra and convenience routines. The GA library also includes
interfaces to a variety of external linear algebra libraries, including the PelGS parallel
eigensolver described below.

The Global Array Toolkit is implemented on top of the Aggregate Remote Mem-
ory Copy Interface (ARMCI) library [12, 708], developed jointly by researchers at
the Pacific Northwest National Laboratory and the Northeast Parallel Architectures
Center at Syracuse University. As the name suggests, this library provides general
remote-memory-access capabilities through the use of one-sided messaging or true
shared memory, according to the hardware on which it is used. From a performance
viewpoint, one of the most important features of ARMCI is the ability to describe
in a succinct way transfers that involve multiple noncontiguous blocks of memory
and to aggregate such data automatically into a contiguous chunk before sending it
over the wire and disaggregating it on the other side.

Although the primary focus of the design and development of the Global Array
Toolkit has been to support NWChem, the model is suitable for a much broader range
of applications (especially if it is combined with the normal message-passing model)
and is freely distributed, separate from NWChem. It is not, however, suitable for

176

7.3.2

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

all applications. General guidelines with respect to algorithmic design and usability
imply that GA would be appropriate for applications

¢ with dynamic and irregular communication patterns

¢ with a need for one-sided access to shared data structures

e when data locality is important

¢ when a message-passing implementation is too complicated

¢ with a need for high-level operations on distributed arrays for out-of-core
array-based algorithms

e where simulations are driven by dynamic load balancing

e when portable performance is important
GA is not necessarily appropriate for algorithms that

¢ have systolic or nearest-neighbor communications

e require synchronization and point-to-point message passing (e.g., Cholesky
factorization)

e can be effectively parallelized using interprocedural analysis and compiler
parallelization

e can use existing parallel constructs of a programming language, and robust
compilers are available

GAs are being used in at least five other computational chemistry packages besides
NWChem, and others have implemented similar models. It is also being used in a
variety of other problem domains, including electron microscopy, geological sim-
ulations, astrophysics, parallel graphics rendering, computational fluid dynamics
(CFD), financial modeling, and atmospheric chemistry. So far, it is the CFD appli-
cation that is pushing GA the furthest beyond the functionality required to satisfy
the chemistry community. Among the most significant requested additions are sup-
port for higher-dimensional arrays (now implemented), ghost cells around GA data
blocks on individual processors, and sparse data structures [707].

Parallel Linear Algebra: PelGS

PelGS is a collection of commonly used linear algebra subroutines for computing
the eigensystem of the real, standard, symmetric eigensystem problem Ax = Ax and
the general, symmetric eigensystem problem Ax = ABx. A and B are dense and real
matrices, with B being positive definite. A is an eigenvalue corresponding to the
eigenvector x. PelGS can also handle associated computations such as the Cholesky
factorization of positive definite matrices in packed storage format and linear matrix
equations involving lower and upper triangular matrices in distributed packed row
or column storage.

The numerical algorithms implemented are “standard” (cf. [994] and [35]), with
the exception of the subspace inverse iteration and reorthogonalization scheme for

7.3 NWChem Parallel Computing Support 177

finding basis vectors for degenerate eigensubspaces [317, 318] and the Dhillon-
Fann-Parlett algorithm for computing eigenvectors of a real symmetric tridiagonal
matrix [262].

The current version of PelGS has some unique features not found in any other
eigensystem library:

e The Dhillon-Fann-Parlett inverse iteration algorithm

e Guaranteed orthonormal eigenvectors in the presence of large clusters of de-
generate eigenvalues

e Packed storage for matrices

e Small scratch space requirements

The second feature is particularly important in quantum chemistry applications,
where degenerate eigenvalues are common and orthogonality is critical.

The performance of PelGS in sequential mode is impressive. Table 7.1 compares
the current version of PelGS with other standard solvers. The parallel performance of
the three major components and the total time to solution are shown in Figure 7.2.
The solution of the tridiagonal problem is scalable and fast; however, at this point,
the Householder reduction and its back transform (i.e., producing the tridiagonal
representation) is the identified bottleneck, accounting for over 90% of the serial
performance of the solver and up to 65% at 128 nodes.

Internally, PelGS uses the traditional message-passing programming model and
a column-wrapped distribution of the matrices. PelGS rearranges the columns into
panel blocking in parts of the code for better performance. In NWChem the interface
to PelGS is hidden behind a GA-based API, where the necessary data reorganization
is conveniently hidden from the application programmer. The data transformation
from the GA-based global storage to that required for optimal PelGS performance is
very fast compared to the O(N3/P) time required for the eigensolution operations.

Like the GA Toolkit, PelGS is freely distributed, separately from NWChem, and
can be used in other packages.

Table 7.1 Time for the solution of the tridiagonal matrix of rank 966 on a single IBM

RS6000/590 processor.

Method Time (s)
PelGS 3.0 6
PelGS 2.0 126
EISPACK 32
LAPACK: bisection + inverse iteration 112
LAPACK: QR 46
LAPACK: divide and conquer 20

NOTE: The tridiagonal matrix was generated via Householder reduction of the fitting basis set,
overlap matrix from a resolution of the identity, second-order Mgller-Plesset (RI-MP2) simulation of
a fluorinated biphenyl [262].

178

7.4

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

—e— Total
-m— Householder -
—e — Backtransformation N

- - & - - Eigenvalues
- ¥ - - Eigenvectors

Time (seconds)

¥

B _——— —— __._— —— o — — — — — —

v . - _ _ _

MRS —— . __
. - -Ii-w - - " ¥ . . . l . . N !

Processors

Figure 7.2 The performance of PelGS using a tridiagonal matrix (rank 966) that was generated
via Householder reduction of the fitting basis set, overlap matrix from an RI-MP2 simulation
of a fluorinated biphenyl.

NWChem Chemistry Modules

NWChem implements a broad range of computational chemistry methods, empha-
sizing quantum-mechanics-based methods. There is insufficient space to describe
all of them in detail, but I will provide a list of NWChem'’s current capabilities here
and focus on a more detailed discussion of two methods: Hartree-Fock self-consistent
field (SCF), and the resolution of the identity approximation to second-order, many-
body perturbation theory (RI-MP2).

The following quantum mechanical methods are available to calculate energies
and analytic first derivatives with respect to atomic coordinates. Second derivatives
are computed by finite differences of the first derivatives.

e SCF or Hartree-Fock (RHF, UHE, high-spin ROHF). Code to compute analytic
second derivatives is being tested.

¢ Gaussian-orbital-based density functional theory (DFT), using many local and
nonlocal exchange-correlation potentials (RHF and UHF) with formal O(N3)
and O(N*%) scaling.

7.4 NWChem Chemistry Modules 179

e MP2, including semi-direct using frozen core and RHF or UHF reference.
e Complete active-space SCF (CASSCF).

The following methods are available to compute energies only. First and second
derivatives are computed by finite differences of the energies.

e CCSD(T), with RHF reference.
e Selected CI with second-order perturbation correction.
e MP2 fully direct with RHF reference.

¢ Resolution of the identity integral approximation MP2 (RI-MP2), with RHF and
UHF reference (analytic first derivatives are being implemented).

For all methods, the following operations may be performed:

¢ Single point energy.
e Geometry optimization (minimization and transition state).
e Molecular dynamics on the fully ab initio potential energy surface.

e Numerical first and second derivatives automatically computed if analytic
derivatives are not available.

e Normal mode vibrational analysis in Cartesian coordinates.
¢ Generation of an electron density file for graphical display.
e Evaluation of static, one-electron properties.

e Electrostatic potential fit of atomic partial charges (CHELPG method with
optional RESP restraints or charge constraints).

In addition, interfaces are provided to:

e The COLUMBUS multireference CI package.
e The natural bond orbital (NBO) package.
e Python scripting language.

The POLYRATE package for the computation of chemical reaction rates.

The following modules are available to compute the energy, minimize the geom-
etry, and perform ab initio molecular dynamics using pseudopotential plane-wave
DFT with local exchange-correlation potentials: fixed step-length steepest descent,
and Car-Parinello (extended Lagrangian dynamics), with

e LDA and LSDA exchange-correlation potentials.
e (G point) periodic orthorhombic simulation cells.
e Hamann and Troullier-Martins norm-conserving pseudopotentials.

* Modules to convert between small and large plane-wave expansions.

180

7.4.1

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

A module (Gaussian Approach to Polymers, Surfaces and Solids, GAPSS) is available
to compute energies by periodic Gaussian-based DFT with many local and nonlocal
exchange-correlation potentials.

The following classical, molecular-simulation functionality is available:

¢ Single configuration energy evaluation.
¢ Energy minimization.
* Molecular dynamics simulation.

e [Free energy simulation (multistep thermodynamic perturbation (MSTP) or
multiconfiguration thermodynamic integration (MCTI) methods with options
of single and/or dual topologies, double-wide sampling, and separation-shifted
scaling).

NWChem also has the capability to combine classical and quantum descriptions
in order to perform:

¢ Mixed quantum-mechanics and molecular-mechanics (QM/MM) energy min-
imization and molecular dynamics simulation.

¢ Quantum-molecular dynamics simulation by using any of the quantum me-
chanical methods capable of returning gradients.

The classical force field includes:

e Effective pair potentials (functional form used in AMBER, GROMOS,
CHARMM, etc.).

e First-order polarization.

¢ Self-consistent polarization.

e Smooth particle mesh Ewald (SPME).

¢ Twin range energy and force evaluation.

e Periodic boundary conditions.

¢ SHAKE constraints.

e Consistent temperature and/or pressure ensembles.

Hartree-Fock Self-Consistent Field

The Hartree-Fock self-consistent field module is an essential functionality for
NWChem or any quantum chemistry package. The NWChem SCF module and
associated gradient module compute energies, wavefunctions, and gradients for
closed-shell restricted Hartree-Fock (RHF), restricted high-spin, open-shell Hartree—
Fock (ROHF), and spin-unrestricted Hartree-Fock (UHF). The algorithms are designed
to use the aggregate memory available on the parallel supercomputer or cluster.
The construction of the Fock matrix is the most time-consuming part of any
SCF calculation [439, 1004] and is iterated until the wavefunction reaches self-
consistency. The “Fock build” provides an interesting illustration of the form that

7.4 NWChem Chemistry Modules 181

parallelism often takes in computational chemistry. The most computationally de-
manding part of the Fock matrix is defined by

Fy < Djs {2(uv]|ro) — (pilvo))

where D is the density matrix, and the (uv|io) are the two-electron integrals. See
equation (7.2).

The cost of the Fock build scales with the number of integrals, which is for-
mally O(N*%) for N basis functions. The NWChem SCF module was designed with
a goal of 10,000 basis functions, so that the Fock and density matrices would be
10,000 x 10,000 and the number of two-electron integrals is formally 101° (neglect-
ing permutational symmetries of the indices and other factors).

Evaluation of the integrals occurs in irregular blocks, according to details of the
basis set structure, so that a block may contain anything from a single integral to
10,000 integrals or more. The cost of each block is also highly variable and can only
be crudely estimated in advance; it averages 500 FLOPs per integral value. Their cost,
combined with permutational symmetries among indices, makes it most efficient to
drive the Fock build with a loop over the unique integrals, making the four different
contributions dictated by those symmetries at one time rather than duplicating
integral evaluation. In NWChem, integral evaluation is dynamically distributed
across the processors (controlled by an atomic read-and-increment counter) without
regard to the distribution of the global arrays containing the density and Fock
matrices. Each processor fetches into a local buffer the four patches of the density
matrix it needs to contract with the integral block it has been assigned; it puts the
results into another set of local buffers, which are accumulated into the proper
places in the Fock matrix global array when the integral block is completed. To
minimize communications, multiple integral blocks are aggregated into parallel tasks
(maintaining roughly 100 tasks per processor to ensure load balance), and intelligent
caching is used to avoid unnecessary communications for density and Fock matrix
patches. Because of the irregular distribution, dimensions, and timings of the parallel
tasks when programming the Fock build using message passing, this algorithm
would be extremely challenging to implement in a message-passing environment,
requiring synchronization between sender and receiver [363]. However, using the
one-sided communications of the GA model, it is straightforward; and the fact that
the NUMA nature of the parallel processor is exposed to the programmer leads to
the aggregation of integral blocks and the use of intelligent caching, both of which
provide significant performance gains.

The integrals do not change from one iteration of the SCF algorithm to the next
and may be stored or recomputed. Many SCF codes offer either “conventional” or
“direct” modes, in which the integrals are either stored on disk and reused or are
recomputed every iteration (the relative efficiency of these two approaches depends
on both hardware performance factors and the particular molecule and basis set).
NWChem provides a more flexible “semi-direct” algorithm, which includes memory
as well as disk storage, and can span the entire range from fully disk- (or memory-)

182

7.4.2

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

300 , , , 900
—&— Speedup (CPU) p
= Speedup (Wall)
—— GB
200 - 600 &
Q_ §
3 2
§ %
& 5
5
100 |- 4300 [°
r
0 | | | 0
0 60 120 180 240

of processors

Figure 7.3 The scaling of the semi-direct SCF module for a modified crown-ether system on an
IBM SP, 160 MHz nodes, 512 MB memory per node, and 3 GB of disk per node. 15 MB/sec/node
sustained-read bandwidth was achieved.

based to full recomputation according to available disk and memory space, or directly
under user control. In addition to the fully distributed Fock build, a replicated
data algorithm (Fock and density matrices replicated, integral evaluation distributed
across the machine) is also implemented to take advantage of those situations
where available memory and the molecule under study allow this approach. The
convergence algorithm is the quadratic SCF [1004] with both preconditioning and
line-search mechanisms built in.

Figure 7.3 shows the speedup obtained for a modified crown-ether complex
running on an IBM SP system using the semi-direct algorithm and taking advantage
of the local secondary storage on the system. The 105-atom system, shown in
Figure 7.4, has 1342 basis functions, and the calculation was completed in 5.7 hours
on 240 nodes (160 MHz).

Resolution of the Identity Second-Order, Many-Body Perturbation Theory

This method (RI-MP2) is the result of applying the so-called resolution-of-the-
identity (RI) integral approximation [331, 558, 948] to the traditional second-order,
many-body perturbation theory method [437], often abbreviated MP2. MP2 is the
simplest method to include the effects of dynamic electron correlation, which are

7.4

NWChem Chemistry Modules 183

Figure 7.4 The modified crown-ether system, with 105 atoms, 1343 basis functions using the
Dunning augmented cc-pVDZ basis set, and 362 electrons.

important to the proper description of many chemical phenomena, and it is also
the most widely used correlated method. MP2 calculations can be systematically
improved by going to higher orders of perturbation theory or to coupled cluster
methods [437].

The MP2 energy can be simply expressed (in spin orbital form), as

Em=12ﬁ@@WW@4M@]

2 ij,ab

(7.3)
€+ 6]' —€;,—€p

with the {¢,} being the SCF orbital energies. The integrals are the same as in the
SCF method, but transformed from the original “atomic orbital” (AO) basis to the
“molecular orbital” (MO) basis that is one of the products of the SCF calculation.
Given the MO basis integrals, the energy expression above costs O(N 4) to evaluate,
but the transformation of the integrals from the AO to MO basis has a cost of O(N 5,
which dominates the calculation.

The RI approximation represents the two-electron integrals in the form [948]

Palrs) =Y (pqlA) Vg (@rs) (7.4)

AP

involving three-center two-electron integrals

wm#/%mwwo g (ry) dry dr, 7.5)

[Ty — 13

and two-center two-electron integrals

Vao = / INGY; ag(ry) dry dry

|ry — 12|

where uppercase Greek indices denote functions from a “fitting basis” introduced by
this approximation. Essentially, the fitting basis {« (r)} is used to approximate the
product space of the AO basis ({¢;(r) ¢,~(r)}). To obtain the RI-MP2 energy [99, 331],

184

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

equation (7.4) is simply substituted into the MP2 energy expression, equation (7.3).

(ial &) Vi (@) [ald) Viy, (@lb) — (ib18) Vig (@lja)]

E<2>=% > :

€; € —€; — €
ij,ab,A® it €= €—e

The RI approximation has several important strengths. Most obviously, it re-
places a fourth-rank tensor (two-electron integrals) with a combination of third-
and second-rank quantities, dramatically reducing the volume of data that must be
computed, stored, and manipulated. Second, as the AO basis set gets larger (for a
fixed molecule), the product space will be increasingly redundant, making it possi-
ble to (nearly) span the space with a fitting set that is smaller in relative terms. In
a sense, the RI approximation could be said to “take advantage of” the use of large
basis sets.

RI-MP2 calculations occur in two steps: the integral transformation, followed by
the energy evaluation [99, 97]. The general form of the integral transformation can
be written as

_1 _1
(@i|A) = (@i|A) Vg = Cu Ci (uv|A) V&

where the indices x and v represent the AO basis and C is the SCF eigenvector

matrix, which defines the transformation from AOs to MOs. The V’% term comes
from rewriting equation (7.4) in a symmetric form that further simplifies integral
handling, as first suggested by Rendell and Lee [796]. This step requires O(N%)
operations, as opposed to the O(N®) for the exact MP2 transformation. The first
two transformation steps (C,,, and C,;) are handled, in succession, locally to each
processor. The fitting basis index is distributed across processors, so that each node
generates AO integrals for all © and v and a subset of A. In order to make the matrix
multiplications more efficient, the integral blocks are aggregated in a local buffer
sized according to the available memory before the two transformations are applied.
The results are accumulated into a global array with ai as the combined row index and
A as the column index, distributed in the same fashion as the integral evaluation
loop (making the accumulate a local operation). The third transformation step is
carried out as a parallel matrix multiplication (ga_dgemm) of the GA just produced

with another GA holding V_% (computed using GA and PelGS routines). If there is
insufficient total memory available to complete the entire transformation in a single
pass, multiple passes are made based on the i index.

The primary data structure of the energy evaluation phase is a fourth-rank tensor
representing quantities like the (approximate) four-center, two-electron integral
(ialjab). It is organized as a supermatrix with row and column indices i and j,
each element of which is a complete matrix labeled by a and b. The calculation
is performed as a loop over i and j, blocked according to available memory. All of the
GAs of this type are distributed across the machine in regularly sized blocks. For given
i and j blocks, the first step of the energy evaluation is to produce the approximate
integrals (ialjb) according to equation (7.4). It is implemented straightforwardly
by reading in blocks of transformed three-center integrals corresponding to the i

7.4 NWChem Chemistry Modules

Parallel speedup

256 T T T

224

185

and j ranges required and multiplying them in parallel with ga_dgemm in a step
costing O(N 5). Given the approximate (ia|jb), the remaining operations (formation
of (ialjb) — (iblja), application of denominators, and the evaluation of the actual
energy contributions) are carried out almost entirely in data parallel fashion—each
process working with the portion of the data that it “owns.” As in the exact MP2,
these remaining operations cost O(N4).

The RI-MP2 method illustrates a different use of the GA Toolkit than the SCF
algorithm described above. The RI-MP2 integral transformation uses many of the
same concepts as the Fock build, but in this case constitutes a small portion of the
computational effort. The dominant cost in the RI-MP2 calculation is a simple call
to the GA matrix multiplication routine. The remainder of the calculation involves
mostly data parallel operations implemented variously with standard GA calls, as
adaptations of standard GA routines specific to this application, or built from the
lower-level utility routines provided by the GA Toolkit.

Figure 7.5 shows the parallel speedup of a large RI-MP2 calculation on an IBM
RS/6000 SP parallel computer (120 MHz Power2 Super CPU, 512 MB RAM, 5 GB
local scratch disk per node) [97]. The calculations were part of a study of the relative
energetics of the four conformations of tetramethoxycalix[4]arene (Figure 7.6) [703],

--------- Linear scaling

—&— Total

—_
Ne
N

—e — Integral transformation

+— Energy evaluation

—_
(o))
o

—_
N
o]

O
o)}

64

32

_|||1\|

64
Number of CPUs

128

Figure 7.5 Parallel speedup of RI-MP2 calculations on tetramethoxycalix[4]arene on the IBM
RS/6000 SP computer [97]. All speedups are referenced to the 16-node timings.

186

7.5

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

¢

13ALT 12ALT

Figure 7.6 The four conformations of tetramethoxycalix[4]arene [703]. The molecule is
composed of four anisoles linked at the meta position by methylene bridges, and conformations
differ in the relative orientation of the anisoles.

in which this 68-atom molecule was treated with a modified aug-cc-pVTZ AO basis
(just cc-pVTZ on the hydrogens) and the corresponding aug-cc-pVTZ-fit2-1 (cc-pVTZ-
fit2-1 on H) fitting basis (2460 AO basis functions, 8260 fitting functions) [100, 302].
The total wall-clock time for the RI-MP2 calculation ranged from 55.6 hours on
16 nodes to 4.7 hours on 128 nodes. The overall scaling is quite good—the line
is fairly straight and at 128 nodes shows no sign of saturation. The jumps in the
curve are clearly associated with jumps in the integral transformation speedup. The
overall speedup is uniformly at or above the “ideal” linear speedup line, primarily
due to the fact that as the graph is presented, the 16-node calculation is implicitly
assumed to be 100% efficient. If the actual efficiency (<100%) at 16 nodes were
known, it would shift the entire curve downward. The apparently extraordinary
speedup of the transformation arises from the fact that for 16 nodes (the reference
point) the algorithm is forced to make five passes through the integrals to complete
the transformation. As more nodes are added, the algorithm uses the additional
memory as well as the CPU, so that the number of passes required drops to one by
66 nodes.

NWChem'’s Place in the Computational Chemistry
Community

The primary goal of NWChem was to improve the performance and capability of
computational chemistry tools by focusing on the development of scalable paral-
lel algorithms and implementations. But of course this work did not take place in

7.5 NWChem's Place in the Computational Chemistry Community 187

a vacuum—there are numerous other software packages, both sequential and par-
allel, that have some overlap with the functionality provided by NWChem. The
development of NWChem began in 1993, in an environment in which the chem-
istry community had for some years been experimenting with parallelism, but vector
computing was the norm and there was little or no use of parallelism in “production”
computational chemistry. The prior experimentation had been based primarily on
message-passing programming models. It showed that using parallel computers in
chemistry was possible, but not easy, and had produced few enduring (i.e., scalable)
algorithms.

NWChem was then, and remains today, one of the very few codes in the chem-
istry community designed from scratch for parallelism—in most other packages,
parallelism has been included as a retrofit to existing code. This is understandable
given the tremendous investment that has been put into many widely used pack-
ages over many years. (It has been estimated that more than 100 person-years of
effort have gone into NWChem [301], which is still a fairly young code in this com-
munity.) On the other hand, our experience with NWChem suggests that highly
scalable algorithms can be significantly different from the traditional sequential al-
gorithms, so that “retrofit parallel” codes are generally rather limited in scalability
compared to “designed parallel” codes unless the developers are willing to make
more extensive changes. There is a significant gap between the size of leading-edge
MPPs, which NWChem is specifically intended to exploit, and the class of parallel
machines that are routinely available to researchers at a research group, department,
or campus level; indeed, even state or national supercomputer centers often operate
their systems to accommodate the greatest number of users or greatest throughput
at the expense of being able to run the most demanding jobs with a reasonable
turnaround. This, together with the extra effort typically required to obtain the best
possible performance, may explain why many developers of parallel chemistry codes
accept lower levels of scalability, which are nevertheless sufficient for the machines
to which they have access.

Although parallel computing in this community is still far from universal, one can
now find multiple parallel implementations of virtually every important method in
computational chemistry and see them being used routinely in a “production” con-
text by researchers who would not claim to be experts in parallel computing. Many
factors have contributed to this transition. I believe that the principal contributions
of the NWChem project in this respect have been twofold:

e It has served as a demonstration of what is possible in terms of scalability, and
the types of algorithms required to achieve it.

e Inthe Global Array Toolkit, it has offered an efficient, easy-to-use programming
model that is well suited to the expression of scalable chemistry algorithms.

It is worth noting that parallelism is not the only way to increase performance of
chemical computations. In recent years, there has been significant research activity
on techniques that take advantage of the size of the molecular systems that can

188

7.6

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

now be treated computationally to reduce the cost of the calculation, typically by
replacing some of the longer-range interactions with simpler approximations. The
previously described RI-MP2 method is one example of the numerous approaches.
Others often include phrases such as “linear scaling,” “O(N),” “pseudospectral,”
“local correlation” and “multipole expansion” in their names or descriptions. These
approaches can in principle yield much greater performance improvements than
can be obtained from parallelism because in some cases they can actually reduce the
computational complexity of the problem in an asymptotic sense—in other words,
for suitably large molecules, where “large” depends both on the computational
method and characteristics of the molecule. However, no single “fast” method
will provide the desired performance improvement across the entire computational
chemistry problem space, and all such methods depend in some fashion on the
molecule being large enough that the approximations introduced do not destroy the
overall accuracy and reliability of the calculation. Therefore, “fast” methods should
be viewed as complementing parallelism rather than competing with it; they are
being implemented in sequential and parallel codes alike.

A Larger Perspective: Common Features of
Computational Chemistry Algorithms

The two NWChem methods described earlier were chosen as examples of different
patterns of use of the parallel programming environment in NWChem. In the
Hartree-Fock case, task-based parallelism and dynamic distribution of those tasks
are the key features. This is characteristic of algorithms that compute and (directly)
process the two-electron integrals such as equation (7.2) or (7.5). Density functional
theory and the transformation step in higher-level methods such as MP2 (including
RI-MP2), coupled cluster theory, and configuration interaction methods are other
examples of where this pattern is used.

In the RI-MP2 example, task-based parallelism is used in the transformation step,
but the bulk of the work is done in parallel linear algebra calls and in essentially
data-parallel (or “owner computes”) code using GAs. This pattern is seen in some
of the higher-level methods, where, after the required integrals are evaluated and
processed (usually task-based), one is left with a number of large data structures,
typically tensors of rank 4 or higher, which must be contracted in various ways
and otherwise manipulated. Some other methods, such as electronic structure codes
using a regular grid of plane-wave basis functions instead of Gaussians, also lead to
algorithms that are predominantly data parallel plus linear algebra (in this case a 3-D
FFT).

The importance of task-based parallelism comes from the irregular nature of most
quantum mechanical calculations employing Gaussian basis sets. The basis functions
are usually associated with the individual atoms rather than being laid out on a
regular grid. Both the number and type of basis functions will vary with the atom,
reflecting some basic concepts of atomic structure. This gives rise to the tremendous

7.6 A Larger Perspective: Common Features of Computational Chemistry Algorithms 189

range of sizes and times involved in the evaluation of integrals over these basis
functions, as described in Section 7.4.1, and the need for dynamic load balancing.

The irregular and dynamic nature of these computations is also what makes the
shared-memory aspect of the programming model so important to the development
of fully distributed data-parallel algorithms in chemistry. Message-passing models
and others that implicitly synchronize communicating processes can be used in these
types of algorithms, but they make the task much more complex and error prone
and they can represent a significant hurdle to producing scalable algorithms [363]. Of
course in data-parallel algorithms, the choice between message passing and shared
memory becomes a lot less important. In NWChem, the majority of methods have
both task- and data-parallel portions, and the shared-memory model provided by the
Global Array Toolkit is convenient to use throughout. However, some methods, such
as the plane-wave density functional theory module referred to above, are almost
entirely data parallel and use message passing throughout. As mentioned before, the
Global Array model is meant to complement message passing, not to exclude it, so
this is quite natural.

Linear algebra has historically played a significant and interesting role in the
development of chemistry software. In the chemistry domain, a great deal of com-
putational effort goes into producing the matrix that is fed into a linear algebra
code—quite often it is the production of the matrix (or subsequent processing of
the linear algebra result) that is the computational bottleneck, not the linear algebra
itself. In some cases, the nature of the chemical problem imposes requirements that
“standard” linear algebra packages don’t meet or allows optimizations they don’t
support. Historically, concerns about efficiency and data structures suitable to chem-
ical applications were not always satisfied by standard linear algebra packages. As a
result of all of these facts, it used to be quite common in the chemistry community
for software developers to produce their own linear algebra routines as well, either
by adapting them from existing libraries or creating them from scratch.

With the rise of vector computing, chemists began to recognize the performance
advantages of replacing their own linear algebra routines with standard libraries,
which computer vendors had an incentive to optimize for their platforms, such
as BLAS, EISPACK, LINPACK, and later LAPACK. The general wisdom within the
community came to be that algorithms should be couched in terms of standard linear
algebra library routines wherever possible, at least for “simple” things such as BLAS,
direct linear equation solvers, and eigensolvers. (Iterative solvers, in methods that
require them, are still often “hand crafted.”) The BLAS library has been particularly
influential in the evolution of algorithms in chemistry. The “discovery” by chemists
of the BLAS, particularly the level-3 matrix multiplication (xGEMM) routines, led to
efforts to recast algorithms in terms of matrix multiplication operations wherever
possible, and this has become the accepted wisdom in the field. Such codes benefit
not only from the performance of the (often, optimized) BLAS routines themselves,
but also from the fact that structuring the equations and code to make maximum
use of the matrix-multiply kernel tends to result in better cache utilization outside
of the BLAS routines as well.

190

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

Nevertheless, standard numerical libraries cannot satisfy all needs of the chem-
istry community, particularly with the move toward parallel computing, where
linear algebra tools are not yet as mature as sequential libraries were when the chem-
istry community finally adopted them. Parallel eigensolvers are a particular example.
The traditional implementation of a number of fundamental quantum chemistry
methods (e.g., SCF and DFT) involves repeated diagonalization of a matrix until the
iterative process reaches self-consistency. Overall, the cost of these methods scale
with the fourth power of the problem size, while the diagonalization portion scales
with the third power. However, at the time development of NWChem was begun, the
state of the art in eigensolvers did not provide very good parallel scalability, and this
portion of the calculation rapidly became the performance bottleneck on large paral-
lel machines. The eigensolvers available at the time suffered from other problems as
well. For example, they did not always provide strongly orthogonal eigenvectors and
didn't easily handle situations with large clusters of degenerate eigenvalues, both of
which are important in chemical applications. This has led some to develop new
“diagonalization-free” methods, or to fall back on known but little-used alternative
algorithms that avoid the eigenproblem as much as possible.

In the case of NWChem, we were able to take a unique twofold approach. In
designing the first module implemented in NWChem, the Hartree-Fock method
described in Section 7.4.1, we adopted a “quadratically convergent” algorithm,
which requires only an initial and final diagonalization and elsewhere uses matrix
exponentiation, instead of the traditional approach, which involves diagonalization
for every iteration. At the same time, because the development team included not
only chemists, but also computer scientists and numerical analysts working in close
collaboration, we were able to launch a research effort to address the problems with
parallel eigensolvers, which led to the PelGS package described in Section 7.3.2.
As a result, when later we began development of the density functional theory
module, sufficient progress had been made on the eigensolver problem that we
felt performance would be acceptable using the traditional repeated diagonalization
algorithm, and we did not need to undertake the development of a DFT equivalent
to the quadratically convergent SCF method.

The SCF and DFT methods are two examples where eigenproblems are prominent
in the algorithms, at least in the traditional formulations of the problem, where they
appear in the main iterative step of the algorithm. These methods generally use dense
matrices and direct solvers, and they require all eigenvalues and eigenvectors. This
kind of eigenproblem also crops up frequently in minor roles in a great many other
quantum chemistry methods, and it is typically solved using libraries such as PelGS,
ScaLAPACK, LAPACK, and so on. A class of more sophisticated methods, known as
configuration interaction (CI) methods, also revolve around eigensolvers, in this case
iterative sparse solvers, where the interest is in a limited number of eigenpairs [869].
In these problems, the matrix-vector product required by the eigensolver is the
most complex and time-consuming aspect of the calculation, and specialized data
structures and storage formats supporting this aspect of the calculation usually mean
that “off the shelf” library solvers are not suitable solutions. Large linear or nonlinear

7.6 A Larger Perspective: Common Features of Computational Chemistry Algorithms 191

equations also play roles in a broad range of chemistry methods. Coupled cluster
methods, similar in purpose and sophistication to the CI methods mentioned above,
use a slightly different formulation of essentially the same problem and result in very
large systems of nonlinear equations instead of CI's eigenproblem. As with CI, the
evaluation of the matrix elements and the matrix-vector product, rather than the
solver itself, is where the computational complexity lies, and the solvers tend to
be relatively unsophisticated. As with eigenproblems, smaller linear and nonlinear
equations also play minor roles in a great many chemical methods. Once again,
for the smaller problems it is more common to use solvers from standard libraries.
In codes like NWChem, there has also been some effort over time to standardize
and generalize and reuse non-library solvers incorporated within the code rather
than having multiple implementations. As might be expected, this process tends to
start with the smaller or less important problems and work up to the larger, more
prominent ones.

Sparsity, as manifested in most quantum chemistry methods, is based primarily
on the distance between atoms but also depends on the details of the molecular
system and the basis set. This means that a simple distance-only, “cut-off radius”
does not provide a good guide as to sparsity. While the formal number of two-
electron integrals (see equation (7.2)), for example, is O(N*%) for N basis functions,
it has been shown that the actual number of nonzero values tends asymptotically to
O((N In N)?) [304]. However, even the largest calculations currently possible rarely
reach this limit—in other words, they have more than (N In N Y2 nonzero integrals.
Because basis sets are usually atom-centered and have a blocked structure on each
atom, quantities such as the two-electron integrals also tend to have a blocked
structure, although the size of blocks may vary over several orders of magnitude.
This blocked structure is helpful to chemistry software developers, in that they
can in most cases work with dense matrices and standard libraries (like the BLAS)
rather than less-developed sparse matrix tools, which also tend not to make as
efficient use of the memory hierarchy. A common technique is to use a local buffer
to aggregate neighboring blocks into a matrix large enough to allow the CPU to
obtain good performance, but small enough that it is possible to completely avoid
processing large chunks of zeros. This approach is used, for example, in the integral
transformation phase of the RI-MP2 computation. In some cases, particularly on
parallel systems with programming environments such as Global Arrays, it is far
simpler and more efficient to design the algorithm to process a large data object
by making multiple passes with fully dense matrices sized according to the available
memory. The RI-MP2 energy evaluation is an example of such an algorithm. Sparsity
is more commonly used in disk storage of large data objects, although as mentioned
in the discussion of the NWChem SCF, it is often possible to recompute certain values
as fast or faster than retrieving them from disk storage. These so-called integral-direct
techniques appear in many programs besides NWChem and many methods besides
SCE. However, deciding a priori whether storage or recomputation will be more
efficient in a particular case remains as much art and intuition as science because of
the number of factors involved.

192

7.7

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

In addition to sparsity, many molecules have symmetry, which reduces the num-
ber of unique integrals because the symmetry properties of the atoms and the basis set
are reflected in relationships among integrals and related values. Taking advantage of
redundancies caused by symmetry can give a useful performance improvement, but
it has a tendency to reduce the natural size of nonzero blocks and introduces relation-
ships among values that might be far apart in either a geometrical or lexigraphical
(based on their indices) sense. It is the latter factor in particular that represents the
biggest hurdle to utilizing symmetry in parallel algorithms. Together with the fact
that the larger a molecule is the less likely it is to possess any symmetry, many have
found it easy to decide not to incorporate symmetry into their parallel implementa-
tions of computational chemistry methods. This was the decision made, for example,
during the design of the RI-MP2 code described above.

Conclusion

I have presented an overview of NWChem as an example of the state of the art in
a fully distributed, parallel computational chemistry software package. The GA pro-
gramming model is at the heart of almost all of the parallel algorithms in NWChem,
and parallel linear algebra libraries such as PelGS have also proved extremely impor-
tant, both for ease of development and performance. I have sketched the parallel
algorithms behind two chemistry methods in NWChem, SCF and RI-MP2, which
illustrate the importance of the GA programming model as well as its flexibility.
Both methods have been demonstrated to be scalable to hundreds of processors and
work efficiently on distributed-memory parallel systems, as have the other meth-
ods implemented in NWChem. I have also tried to provide a sense of NWChem's
relationship with the larger computational chemistry community and describe in a
more generic sense some of the notable features of computational problems in this
domain.

The development of NWChem continues in conjunction with a variety of
projects. Most of the work currently centers on extending and enhancing chem-
istry methods already in NWChem, and implementing new methods based on the
needs of the user community. While the requirements of the chemistry have always
been the primary driver for the development of NWChem's computational infra-
structure, it is possible to suggest some of the ways that NWChem might change in
the near future, from a computational viewpoint.

e Firstisincreasing the use of scripting languages at the top levels of the package.
The object-oriented scripting language Python [633, 782] is already incor-
porated into NWChem, so that Python scripts can be used to drive some
calculations. An interface to the GAs has been created, and interfaces to other
NWChem modules are under development. The use of scripting languages as
(part of) the high-level control structure of a package like NWChem makes it

7.7 Conclusion

193

easier for users to perform more complex calculations that would otherwise
require unmaintainable “one-off” modifications to the source of NWChem
itself.

Second, with the recent release of version 3.0 of the GA Toolkit, general mul-
tidimensional arrays became available (previously, GA supported only 2-D
arrays). Because they are new, they have not yet been used extensively in
NWChem chemistry modules. However, they promise to be particularly use-
ful in high-level correlated methods (perturbation theory and coupled cluster
methods especially) where the primary data structures are tensors of rank
4 and 6. Expressing these data structures in their natural multidimensional
form offers opportunities for the introduction of block-structured sparsity
and automatic rearrangement of data to make tensor contractions more ef-
ficient.

Third, with development tending to focus on more complex and sophisticated
chemistry methods (especially CI and coupled cluster approaches) and adop-
tion of the GA Toolkit by users from other fields, there is an increasing interest
in extending the GA model to support sparsity. This could be in two basic forms:
providing new objects and interfaces that support some of the common sparse
data structures used in other fields, or retaining most of the current dense ma-
trix interface, but internally using sparsity in storage and manipulation of the
objects. The latter approach would obviously be a particularly convenient way
to support many existing GA codes with better performance and efficiency;
however, the first approach would probably allow codes from other domains
to be ported to GAs more easily. Ultimately, both approaches will probably be
used to varying extents.

Finally, the current trend in large MPPs is a distributed-memory system com-
posed of multiprocessor shared-memory nodes. While GAs can already take
advantage of this type of system, the parallel algorithms in NWChem are not
currently designed with explicit consideration of this new layer in the NUMA
hierarchy—they assume that all memory not “local” is essentially equally
“remote.” One can imagine several different ways in which algorithms in
NWChem might be adapted to incorporate this deeper memory hierarchy. It
will be interesting to see which are most effective in terms of both performance
and ease of development.

Acknowledgments. NWChem has been the work of more than 40 people since
1993 [440], under the leadership of the High Performance Computational Chemistry
Group at the Pacific Northwest National Laboratory. I gratefully acknowledge their
contributions to the experience described in this chapter. All opinions expressed in
this chapter are mine alone and do not necessarily represent those of other NWChem
developers.

194

Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

The Pacific Northwest National Laboratory is a multiprogram laboratory oper-
ated by the Battelle Memorial Institute for the U.S. Department of Energy (DoE)
under Contract DE-AC06-76RLO-1830, and the development of NWChem has been
supported by the DoE’s Office of Scientific Computing and Office of Health and Envi-
ronmental Research. Work at Syracuse has also been supported by the Alex G. Nason
Prize Fellowship.

Finally, I am grateful to George Fann, Rick Kendall, and Jarek Nieplocha, for their
assistance with parts of this presentation.

X m -4 W »>» I N

8.1

Application Overviews

Geoffrey Fox

This chapter begins with a summary of the different application discussions, high-
lighting computational issues. Note that every discussion—whether one of the appli-
cations presented in the preceding chapters or one of the shorter notes to follow—is
only a snapshot of a given field. Each article chooses a few interesting aspects of ma-
jor research areas. We hope this cursory discussion will allow readers to find useful
hints on ways to parallelize their applications or ways to test new computational sci-
ence technologies. We encourage the reader to explore the citations for each section
to get more detail.

Chapters 5, 6, and 7 contain case studies of applications in the areas of com-
putational fluid dynamics, environment and energy, and computational chemistry,
respectively. Additional applications can be found in Fox et al. [358] and Koniges
[573]. Section 8.12 analyzes the computational structure of the 14 application areas
in this book (Chapters 5-7 and Sections 8.1-8.11) from a common point of view. It
follows with a similar analysis of the applications in [358] and [573]. This integrated
analysis may help readers identify those applications of particular interest to them.

Numerical (General) Relativity
Geoffrey Fox

This field numerically solves the deceptively innocent equation proposed by Einstein
in 191S:

Gy =87GT,,

This equation expresses gravitation geometrically and relates the curvature of
space-time (Einstein tensor G,,,) to the mass distribution (stress-energy tensor T,,,);
the indices x and v run over four index values, corresponding to time and three

195

196

Chapter 8 Application Overviews

spatial directions. The value of the gravitational constant, G, is extremely small, and
this equation reduces to Newtonian dynamics, except in regions of extreme gravita-
tional fields. This general theory has been tested in a few well-known cases (such as
the bending of light in a stellar gravity field), but it has few direct verifiable conse-
quences. Numerical study [69, 219, 352, 566, 653] is motivated by both intellectual
curiosity (surely we must try to solve the fundamental macroscopic equations of sci-
ence) and phenomenological value to new tests of the theory. Recently, both Europe
and the United States have mounted major experiments to detect the gravity waves
predicted by Einstein’s equations. One expects binary black holes to be an impor-
tant source of such waves. Binary black holes are expected to be the last hurrah of
many double stars, as the insistently attractive force of gravity pulls their matter
into an oblivion from which no information can escape. Einstein’s equations can
be solved analytically for single black holes in equilibrium, but currently only nu-
merical methods can address two interacting black holes. This field represents the
case, common in fundamental science, in which the challenge is a single very hard
problem rather than complexity stemming from a coupling of many subproblems
into a large system.

The equations treat space and time symmetrically and have a rather different
structure from those coming from other fields simulating physical phenomena. One
does get coupled partial differential equations, as in most fields studying the phys-
ical world, but they have many special features. These features both distinguish
the field and put it outside most of the forefront research in the algorithm and
applied mathematics community. Note that as the existence of wave solutions sug-
gests, one can view Einstein’s equations as “just” a complicated nonlinear version
of Maxwell’s equations. Correspondingly, electromagnetic systems are a useful test
environment for some solution techniques. The following characteristics are partic-
ularly interesting:

1. There is total freedom in choosing the coordinate system, and the equations
can change their nature dramatically if one uses this so-called gauge freedom.
Some coordinate systems can lead to nondynamical singularities; “physical
intuition” and a deep understanding of this field are needed to distinguish
among “science,” “numerical problems,” and “coordinate system artifacts.”

2. There are many formulations of the Einstein equations. In one formulation,
the equations are set up as a constrained Hamiltonian system. This invokes
classic time evolutions, with 12 equations (for the six components of the
spatial metric, and its six momenta) with first-order time derivatives. These
equations are nonlinear, and their characterization into hyperbolic, parabolic,
or elliptic form depends on the coordinates chosen; some coordinate choices
depend functionally on the field variables. There is an additional set of four
equations (the constraints) describing the initial conditions. These represent a
feasible elliptic subset of the full problem and have been successfully addressed
numerically.

8.1 Numerical (General) Relativity 197

8.1.1

3. At large distances from the strong gravitational fields, one finds wavelike so-
lutions that can be solved by expansion around the linear limit with a natu-
ral light-cone-coordinate choice. These waves are the experimental measure-
ments, and this form represents the “boundary condition at infinity” needed
by a solution in the interior region, where the strong fields probably require
different coordinate choices.

4. Most distinctive is the interior boundary condition, which is optimally posed
in terms of the remarkable physics of a black hole from which no information
can escape. Translating this into numerically stable boundary conditions is
not trivial. Physics implies that no information specified inside the black
hole can propagate outside. The “event horizon” defines the true black hole
surface and represents this information barrier. Since its location is unknown,
one excises the singular region at the “apparent horizon,” which always lies
inside the black hole surface. Remarkably, physically interesting results have
been obtained in a regime where no condition at the inner boundary (simple
excision) is required.

The problem becomes a set of (12) field values defined on a 3-D spatial grid that has
two holes excised—one for each of the black holes, cut off at the apparent horizon. At
large distances, outgoing wave solutions are required. As the black holes move, this
geometric structure changes. One is required to solve the equations in this geometry
for given initial conditions and then to extract the gravitational wave structure as
the black holes rotate around each other and eventually spiral into cosmic union.
The unusual inner boundary conditions, nonlinear equations, and well-known diffi-
culties involving numerical propagation of waves without dissipation all contribute
to the numerical challenge.

Current Situation

As with computational electromagnetics, one can look at several solution
approaches—finite difference, finite element, and spectral methods. Currently the
finite difference method has gathered the most attention, although this is not the
most convenient at the inner boundary conditions. Remember that spectral meth-
ods (the method of moments) produced the first reliable results in the computational
electromagnetism domain. A large Grand Challenge Binary Black Hole (BBH) project
recently ended [220, 654]; although much important progress was made, it did not
produce a fully functional 3-D numerically stable code for the binary black hole
problem. This project did use several parallel computing technologies described in
other sections of the book. In fact, the distributed adaptive grid hierarchy (DAGH)
distributed-data-structure programming environment was developed as part of this
Black Hole Grand Challenge. We also looked at High Performance Fortran since
the equations are naturally expressed as tensors, making Fortran 90 an attractive
language. However, the compilers were not mature enough when choices had to

198

Chapter 8 Application Overviews

be made, and DAGH was successfully adopted by the collaboration [567]. Fortran
90 continued to be used, however; a Perl interface mapped this automatically into
DAGH. To a large extent, this was a programming-style question, as physicists pre-
fer the Fortran constructs. The Fortran-to-DAGH translation via Perl proved to be
too rigid to allow fast development on the Fortran side. Changes as simple as in-
troducing another field variable required Perl-script rewriting. Adaptive meshes are
needed in order to combine fine resolution near the holes with solutions that extrap-
olate with the wave solutions at long distances. This was recognized even when the
proposal was initially written, but adaptive meshes were not used in production dur-
ing the 5-year Grand Challenge project. It was difficult to take the existing applied
mathematics literature and correctly apply it to these complex equations running in
parallel. This illustrates the importance of producing more broadly usable software
infrastructure to support parallel programming.

We have stressed the freedom available to choose coordinate systems. The BBH
collaboration studied two very distinct choices—the more traditional ADM formula-
tion and a newer “hyperbolic” method developed by York from North Carolina. It is
not clear what mix of physics intuition and computer science infrastructure is most
needed. Maybe a brilliant new coordinate system and ingenious physics insight to
the inner boundary conditions are all that is needed. Alternatively, or more likely
in addition, this field needs a powerful problem-solving environment that supports
tensor notation, parallel adaptive meshes, reliable interpolation technology between
regular meshes, and irregular dynamic hole boundaries. In either circumstance, one
can estimate that at least teraflop-class performance will be necessary for the major
computations.

In Figures 8.1 to 8.4, I show results from the work of Richard Matzner at Texas [652,
653], with four pictures showing the grazing collision of two black holes. The relative
velocity is half the speed of light. For more recent results, see the Cactus Code website
[946].

Figure 8.1 Black holes near start of the evolution. Two separate apparent horizons can be
barely seen as transparent bubbles. They become clearer in following figures.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 199

Figure 8.2 Black holes showing clearly that the separate “apparent horizons” have merged.

Figure 8.3 As the simulation progresses, the apparent horizon oscillates with “undisturbed
space-time,” in which waves propagate at “infinity.”

Figure 8.4 Close-up of apparent horizon in Figure 8.3.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics
Urs M. Heller

The 20th century brought striking progress in our understanding of the fundamental
structure of matter, beginning with quantum mechanics and culminating with
the “Standard Model” of particle interactions. The dramatic successes of quantum
electrodynamics (QED), verified to an accuracy of better than 1 part in 108 in

200

Chapter 8 Application Overviews

some processes, and of the unification of electromagnetic and weak interactions
explain a vast array of physical phenomena. However, traditional theoretical tools
have proven very limited in the study of quantum chromodynamics (QCD), the
component of the Standard Model that describes strongly interacting particles, the
hadrons. The rich and complex structure of this highly nonlinear theory arises from
the interactions between quarks, the constituents of protons, neutrons, and all the
other hadrons, and gluons, the carriers of the strong force. QCD is quite similar to
quantum electrodynamics, in which photons are the carriers of the force between
electric charges. But unlike photons, gluons interact with each other, leading to the
nonlinearities that make QCD so difficult to deal with.

At short distances, which correspond to high energies, the interactions in QCD
are relatively weak, allowing for a perturbative treatment, an expansion in the small
coupling constant. Most confirmations that QCD correctly and accurately describes
the strong interactions come from high-energy experiments probing this regime.
At longer distances, corresponding to lower energies, the interactions, due to the
self-interactions among the gluons, become really strong. Then the nonlinearities
become important, and the perturbative methods fail. But it is exactly this regime
that is necessary to explain many of the properties of the hadrons: mass, decay
amplitude and lifetime, stability, size, charge radius, and so on. As the distance
increases, in fact, the interaction becomes so strong that the quarks are permanently
confined within hadrons.

Lattice quantum chromodynamics, by way of large-scale numerical simulations,
provides the only known comprehensive method for computing, with controlled
systematic errors, properties of hadrons starting from the simple equations of QCD.
Many of these properties, such as the hadron spectrum, are well known experi-
mentally. Lattice QCD then aims to confirm—or disprove—QCD as the theory that
explains these properties correctly.

Precise knowledge of the effects of QCD is needed to complete the determination
of the basic parameters of the Standard Model, which is the central focus of current
and planned high energy physics experiments, and in the search for new physics
beyond the Standard Model. Prime among the basic parameters are those that
describe how the weak interactions mix different species of quarks, the elements
of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. For heavy quark species, those
matrix elements remain poorly known. Their determination requires combining
experimental measurements with lattice QCD calculations.

While all experimentally known hadrons are made up of quarks and antiquarks,
QCD predicts the existence of “exotic matter” that contains gluons as an essential
ingredient. Finding particles such as the so-called glueballs or hybrid mesons would
make a dramatic confirmation of QCD as the theory of the strong interactions.
But searching for them in experiments is much like finding a needle in a haystack.
Lattice QCD computations of the mass and other properties of these particles would
help tremendously in experiments, such as those being performed and planned at
Jefferson National Lab, by indicating promising reactions in which to search for these
exotic particles.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 201

8.2.1

Under normal conditions, quarks and gluons are confined inside hadrons. At
sufficiently high temperature and/or pressure, a new state of matter should appear,
which is a phase best described as a plasma of unconfined quarks and gluons. This
quark-gluon plasma filled the entire universe until roughly 100 microseconds after
the Big Bang, and it may play a role today in the cores of neutron stars. Observation
of this plasma is the primary goal of heavy ion experiments at the Relativistic Heavy
Ion Collider (RHIC) at the Brookhaven National Lab. Lattice QCD simulations have
already provided the best estimate of the temperature at which the plasma appears,
roughly 2 trillion °C. Further large-scale simulations are needed to study the detailed
nature of the phase transition and to determine the equation of state for the plasma
phase.

Lattice QCD Simulation Setup

Lattice QCD simulations started in 1979 with the seminal work of Creutz [232], who
was the first to apply Monte Carlo simulation techniques to lattice QCD and to
produce the first numerical evidence of confinement in QCD.

The nonperturbative solution of QCD is in many ways similar to solving fluid
dynamics problems (especially when employing molecular dynamics techniques,
as described below). One has a simple set of equations that implicitly contain all
the information (up to the boundary conditions). Because they are very nonlinear,
these equations are extremely difficult to solve. Indeed, the numerical solution
of QCD appears to be one of the most challenging computational problems in
physics.

The starting point of calculations in QCD is the path-integral approach to quan-
tum field theories. To allow for a numerical attack, one first discretizes space-time
into aregular 4-D grid, called a lattice [997], with lattice spacing a. The quarks are then
described by fields ¢ (x)—complex 3-vectors—attached to the sites of this lattice, and
the gluons by special complex unitary 3 x 3 matrices U, (x), belonging to the color
group SU(3), attached to the links with endpoints x and x + aji. The relation to the
gluon fields A, (x) of the continuum field theory is given by U, (x) = exp{iagA,(x)},
with ¢ denoting the coupling constant at energy scale 1/a. The physical observables
are extracted from expectation values

(@) = % / [dy][d][dU] exp(—S(U) — F MU) v}R(U, v,) 8.1)

The function S(U) in the exponential is the gluon action, containing the gluons’
kinetic term and local interactions. It consists of the sum of products of the four
U-matrices on the links around elementary squares, called plaquettes, of the 4-D
lattice, labeled by their lower left-hand corner site x and the directions 1<u <v <4
specifying the plane in which the plaquette lies:

1
S =55 Yo [Uu(x) U, +) Ul e+ 0) U o + h.c.]

X<V

202

Chapter 8 Application Overviews

This is the simplest form that is invariant under local gauge transformations,
U0 — U0 =ViU, Vix+p

and reduces in the limit a — 0 to the continuum action,

S — /d4 ()Tr Fiv(x)]—i-(i)(a)

with
F() =0,A,x) —0,A,(0) +g[A,(0),A,®)]

M) in equation (8.1) contains the kinetic term of the quark fields and their
interactions with the gluons. One of the most commonly used forms, known as
Wilson'’s fermion action, is

PMU) Y=Y g0 {G+m X

4
DI =9) U yrx+)

u=1

+ (14 y) U= w - | |

N\»—A

N / d* x5) [, (3, + 84, (0) ¥ (0] + O(@) 8.2)

Z in equation (8.1) is a normalization factor, often referred to as a partition
function because of its similarity to partition functions in statistical mechanics. The
integration is over the fields at each site and link of the lattice. The fermion fields
are somewhat peculiar. They are anticommuting and therefore not representable on
a digital computer. Fortunately, their integration is Gaussian and can be carried out
analytically. This leads to

(@ =7 [14U] det M) exp(-SW2(U, 2 V)

= % /[dU] exp{—S(U) + Trlog M(U)}Q U, M~ L(U)) (8.3)

The price we have to pay for the peculiarity of the quark fields now consists in the very
time-consuming computation of det M(U), with M(U) a huge, but sparse, matrix, as
can be seen from equation (8.2).

We still need to do the integration over the U-field on each link of the lattice. This
is typically an integral over more than 10° dimensions—an impossible task using
any kind of standard integration method. Due to the exponential factor in equation
(8.3), the contribution from most field configurations to the integral is negligible,
and we can use stochastic methods. For pure gauge simulations, that is, without the
fermion determinant det M(U) in equation (8.3), standard Monte Carlo algorithms
are adequate and widely used. These include the Metropolis algorithm and the heat
bath algorithm and (slight) improvements, as used in statistical mechanics.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 203

In full QCD simulations, because of the nonlocality of det M(U), these standard
Monte Carlo methods are impractical: for every local change of the gauge fields,
the change in the fermion determinant would be needed. The best algorithms
for the computation of equation (8.3) known to date are based on the analogue
to microcanonical ensembles in statistical mechanics. One introduces momenta
conjugate to the U-fields, with Gaussian distribution exp(—p?/2) for each, and
rewrites equation (8.3) as

(Q) =
1 1
7 [dU] [dp] exp {2 Zpi(x) — S(U) + Tr log M(U)
X,
QU, M~ L)) (8.4)

The expression in the exponent is now viewed as (the negative of) a Hamiltonian,
with V(U) =SU) — Tr log M(U) as the potential term and }_ p2/2 as the Kkinetic
term. Introducing further a fictitious time, the U-fields and momenta are updated
by integrating the corresponding equations of motion, schematically:

d d

—U = —H = p
dt op
d d bl
ap = _EH = —@ {SU) —Tr log JV[(U)B}
- _ 2 -1 -
= aUS(U) +Tr [Jv[(%) 8UT!\/[(U)]

Therefore, only a single computation of M~(U) is needed to update all the gauge
fields simultaneously. This enormous savings in computing effort for QCD simula-
tions makes these kinds of simulation algorithms the most effective in lattice QCD
simulations.

The average in equation (8.4) is then replaced by an average over Q(U(t),
M~L(U@))) in fictitious time, with U(t) the solution of the equations of motion
resulting from the Hamiltonian. This procedure is referred to as the molecular dy-
namics algorithm. To ensure ergodicity, the momenta p are, from time to time, after
what is referred to as a trajectory, replaced by new random Gaussian variables, that
is, refreshed. This combination is known as the hybrid molecular dynamics algorithm
(HMD) [292, 294]. The expectation values, equation (8.4), are then computed as
simple averages

N

— 1

Q=2 QUM MUH))
i=1

with t;, i=1, ..., N labeling a set of ending points of trajectories. This amounts to a
stochastic estimation of (2) and becomes exact only in the limit N — co. For a finite
number of trajectories, the estimate has a statistical error that decreases for large N
as 1/+/N.

To solve the equations of motion numerically, we have to discretize the fictitious
time. This introduces finite-step-size errors that have to be kept under control (e.g.,

204

8.2.2

Chapter 8 Application Overviews

kept smaller than the statistical errors). Better still would be to use a few different
step sizes and then extrapolate to zero step size. Since each simulation is very time
consuming, such an extrapolation is rarely possible. Usually a “leapfrog” integration
scheme is used to solve the discretized equations of motion. It has the advantage of
being simple and easily implemented, but it is also (up to round-off errors) explicitly
time-reversal invariant. This property is important in the variant of the algorithm
that compensates for the errors coming from the discretization of the equations of
motion in fictitious time by performing an accept/reject Metropolis step after each
trajectory. This variant is an exact algorithm called the hybrid Monte Carlo algorithm
(HMC) [293]. While it does not suffer from finite-step-size errors, it cannot be used
for all systems of interest. In those cases, one resorts to the inexact HMD algorithm
and tries to control the finite-step-size errors.
The equations of motion to be solved contain a term of the form

Tr { aM(U)
U

M—1<U>}

from the derivative of Tr log M in equation (8.3). Each step in the integration requires
inversion of the large, but sparse, matrix M(U). This is still not practical. However,
one can avoid this by noting that, for two flavors of fermions, and using that for the
fermion action equation (8.2) one has that det MT = det M,

exp(2 Tr log M} = det[M M| = / [dpllde T exp(—¢T[MIMI g} (8.5)

with ¢, ¢' bosonic fields. During the molecular dynamics evolution of the HMD
or HMC algorithm, these fields are held constant. At the beginning of each tra-
jectory they are refreshed, like the momenta, by creating them with the distribu-
tion of equation (8.5). This can be achieved by creating Gaussian random fields
x and setting ¢ = MTx. The derivative in the molecular dynamics evolution now

-1 -1
becomes ¢t [MTM] a [MTM] JoU [MTM} ¢ and involves only the computation
[MIM]~1g, that is, only one row of the inverse. This is still the task that makes lat-

tice QCD simulations so expensive. The inversion is done with an iterative method,
usually the conjugate gradient (CG) algorithm.

Computational Requirements

Here is an example of the computational demands: one iteration of the CG algorithm
for a lattice size 243 x 64 requires between about 6 - 108 and 3 - 10? floating-point op-
erations, depending on the exact way the fermion—gluon interaction was discretized
on the lattice (i.e., depending on the exact form of the matrix M). Most of the
operations come from multiplying the complex 3 x 3 matrices on the links, rep-
resenting the gluons, with complex 3-vectors on the sites, representing the quarks
(see equation (8.2)). Convergence of the CG algorithm can take between 500 and, for
physically more interesting parameter values, more than 1000 iterations each time.
To keep the acceptance rate sufficiently high in the HMC algorithm (above 50%), or

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 205

8.2.3

the step-size errors reasonably small in the HMD case, step sizes as small as dt = 0.005
to 0.01 are needed. And finally, to collect reasonable statistics for the observables,
computed as fictitious time averages, the equations of motion have to be integrated
for a length of 2000 to 5000 time units. Combining all these numbers, we see that a
“state-of-the-art” computation requires between 3 - 101¢ and 3 - 1018 floating-point
operations, which translates to between about 1 and 100 gigaflop/s-years.

These are the resources needed for a simulation with just one set of parameters,
that is, one fixed lattice spacing a, one volume, and one quark mass value. Several
simulations are needed to make sure that finite-volume effects are negligible and
that an extrapolation to zero lattice spacing, to the continuum limit, can be made
with controlled errors. In a typical simulation, the lattice spacing is, say, 0.1 fm (1
fm = 1. 10~1° m). A proton has a charge radius of about 1 fm, and a proton therefore
should fit nicely into our 243 box without finite-size effects, while at the same time
the lattice spacing should be fine enough to give a good resolution of the proton.
Nevertheless, it is known that the results of such a computation can differ from the
final continuum limit by as much as 10% to 30%. This difference is referred to as
lattice or discretization effects.

In addition, the quark masses in a lattice QCD simulation are typically much larger
than those in nature, and therefore simulations at a few different quark masses are
needed to allow an extrapolation to the almost massless up and down quarks of
nature.

Implementation Considerations

From the requirements of a single computation described above, it is clear that the
computing power of even high-end workstations is dismally inadequate for lattice
QCD calculations. In a lattice QCD code, the same operations usually have to be
performed on all the lattice sites of a regular fixed grid. And the data needed either
reside on that site or on one of the nearest-neighbor sites in one of the directions of
the 4-D grid. This is a classic case of a data-parallel situation and lends itself to rather
straightforward vectorization or parallelization. Indeed, lattice-gauge theory codes
are among the most efficient, both on vector and, more importantly, on massively
parallel supercomputers.

I'am a member of a large project, partially sponsored by the Department of Energy,
known as the MIMD Lattice Calculation (MILC) Collaboration. This collaboration
is using any parallel computer that it can get time on. For this, MILC has developed
a family of portable MIMD codes that run on a wide variety of scalable parallel
computers, from single workstations for code development and testing, to the T3E,
SP systems, Origin 2000, and, more recently, PC clusters. The code is written in C and
is highly portable. The only parts of the C code that are machine dependent are the
communications routines. These are stored in a single file. A different version of this
file exists for each machine or communications library. Standard message-passing
libraries are especially interesting from the point of view of maintaining portable
code, and the MILC collaboration has implemented a version of the communications

206

8.2.4

Chapter 8 Application Overviews

routines for both PVM and MPI [676]. Older versions were running on Intel Paragons
and TMC CM-5s.

Recent Developments and Future Prospects

Like other computational fields, lattice QCD has profited from the fast development
of ever more powerful computers. The numerical algorithms used, hybrid Monte
Carlo and conjugate gradient-type routines for the very frequent inversions of the
large sparse quark matrices, are by now fairly standard. Tremendous progress already
has been made in the last few years and can be made in the future in reducing
lattice discretization errors. In the most commonly used lattice formulation of the
quarks, the so-called Wilson fermions, the finite-lattice-spacing errors are of the order
O(a). To reduce those errors by half, the lattice spacing needs to be decreased by a
factor of two. The number of lattice sites for a fixed physical 4-D lattice then grows
by a factor 2%; the actual costs, in CPU time, of a simulation grow by a factor of
28 to 219, depending on the details of the simulation algorithm used. Therefore,
reducing the discretization errors from O(a) to O(a?) can produce enormous savings.
Unfortunately, due to the intrinsic quantum nature of the problem, this is not as
easy as just using a better finite difference approximation to a derivative. However,
a method to achieve this goal has recently been developed [630, 631, 632, 510].

Thus far, lattice QCD computations have determined the value of the strong cou-
pling constant at the energy scale given by the Z-boson mass, where all different
determinations are usually compared (recall that the coupling decreases with increas-
ing energy) to an accuracy of 3%, which is about the same as the best experimental
determinations. The error estimates include the statistical error from the stochastic
Monte Carlo computation and the systematic errors from the extrapolation to the
continuum, a — 0, limit [753]. The masses of the light hadrons have been computed
to an accuracy of 5% to 10%, including those of the lightest exotic states, glueballs,
and hybrid mesons.! Computations of the QCD effects on weak matrix elements, on
the other hand, so far typically have errors of 20% to 40%. In many cases this is 5 to
10 times the errors of the experimental measurements with which the computations
need to be combined to extract the fundamental parameters of the Standard Model.

This discrepancy has led to a considerable effort to increase the computing re-
sources available for lattice QCD computations. If this effort is successful, the errors
on the weak-matrix-element computations, for example, are expected to be reduced
by a factor of two over the next 2 years. Teraflop/s scale computations, foreseen for
the years 2002 to 2005, are expected to bring the errors down to be comparable with
the experimental errors.

1 For recent reviews on the status of lattice QCD, see “Progress in Lattice Theory,” the September 1998 plenary
talk by Stephen R. Sharpe at ICHEP98 in Vancouver, Canada (heplat/9811006, available at http://arXiv.org/abs
/hep-lat/9811006); and “Lattice Gauge Theory,” the July 1999 plenary talk by H. Wittig at the Europhysics
Conference on High Energy Physics in Tampere, Finland (hep-ph/9911400, available at http://arXiv.org/abs/
hep-ph/9911400).

8.3 Ocean Modeling 207

8.3

Acknowledgments. This work has been supported in part by DoE contracts DE-
FGO05-85ER250000 and DE-FG05-96ER40979.

Ocean Modeling

John Dukowicz, Richard Smith, and Robert Malone

The Parallel Ocean Program (POP) was developed at Los Alamos National Laboratory
(LANL) under the sponsorship of the DoE's CHAMMP program, which brought
massively parallel computers to the realm of climate modeling. POP is a descendant
of the Bryan-Cox-Semtner (BCS) class of models [154, 226, 846]. A number of
improvements to the standard BCS model have been developed and incorporated
in POP. Although originally motivated by the adaptation of POP for massively
parallel computers, in particular the Connection Machine (CM-5), many of these
changes improved not only its computational performance but the model’s physical
representation of the ocean as well. The most significant of these improvements are
summarized below. For details, see Dukowicz and Smith [299], Dukowitz et al. [300],
and Smith et al. [874, 876].

The Bryan-Cox-Semtner ocean model is a 3-D model in Eulerian coordinates
(latitude, longitude, and depth). The incompressible Navier-Stokes equations and
the equations for the transport of temperature and salinity, along with a turbulent
eddy viscosity and diffusivity, are solved subject to the hydrostatic and Boussinesq
approximations. As originally formulated, the model includes a rigid-lid approxi-
mation (zero vertical velocity at the ocean surface) to eliminate fast surface waves.
The presence of such waves would require use of a very short time step in numeri-
cal simulations and hence greatly increase the computational cost. The equations of
motion are split into two parts: a set of 2-D barotropic equations describing the ver-
tically averaged flow, and a set of 3-D baroclinic equations describing temperature,
salinity, and deviation of the horizontal velocity components from the vertically
averaged flow. (The vertical velocity component is determined from the constraint
of mass conservation.) The barotropic equations contain the fast surface waves and
separate them from the rest of the model.

The baroclinic equations are solved explicitly; that is, their solution involves a
simple forward time-stepping scheme, which is well suited to parallel computing.
On the other hand, the barotropic equations (2-D sparse-matrix equations linking
nearest-neighbor grid points) are solved implicitly; that is, they are solved at each
time step by iteration.

For historical reasons, the barotropic equations in the Bryan-Cox-Semtner model
are formulated in terms of a stream function. Such a formulation requires solving
an additional equation for each island, an equation that links all points around the
island. This was not a problem when limited computing power would permit only
very coarse resolution (> 5° in latitude and longitude), because only continent-size
landmasses could be resolved. As the model was pushed to higher resolution, not
only were there many additional equations to solve, but each equation required
“gather-scatter” memory accesses on each solver iteration. This was costly, even on

208

8.3.1

Chapter 8 Application Overviews

machines with fast memory access, such as Cray parallel-vector-processor computers.
To reduce the number of equations to solve, it was common practice to submerge
islands, connect them to nearby continents with artificial land bridges, or merge an
island chain into a single mass without gaps. The first modification created artificial
gaps, permitting increased flow; the second and third modifications closed channels
that should exist. For example, in the pioneering work of Semtner and Chervin [847,
848], of the 80 islands resolvable at the horizontal resolution employed (0.5° latitude
and longitude), all but the three largest “islands” (Antarctica, Australia, and New
Zealand) were eliminated by artificial changes in the bottom topography. Even then,
the barotropic part of the code consumed about one-third of the total computing
time when the model was executed on a Cray. On distributed-memory parallel
computers, these added equations became even more costly because, on every
iteration, each required gathering data from a (possibly large) set of processors to do
a summation around each island. When the model was executed on a Connection
Machine, about two-thirds of the total computing time was spent on the barotropic
part.

Surface-Pressure Formulation of the Barotropic Mode

The above considerations led us to focus our efforts on speeding up the barotropic
part of the code. We developed and implemented two new numerical formulations of
the barotropic equations, both of which involve a surface-pressure field rather than
a stream function. The surface-pressure formulations have several advantages over
the stream function formulation and are more efficient on both distributed-memory
parallel and shared-memory vector computers.

The first new formulation recasts the barotropic equations in terms of a surface-
pressure field but retains the rigid-lid approximation. The surface pressure represents
the pressure that would have to be applied to the surface of the ocean to keep it flat (as
if capped by a rigid lid). The barotropic equations must still be solved implicitly, but
the boundary conditions are simpler and much easier to implement. Furthermore,
islands require no additional equations; any number of islands can be included in the
grid at no extra computational cost. Perhaps most importantly, the surface-pressure,
rigid-lid formulation, unlike the stream function, rigid-lid formulation, exhibits no
convergence problems due to steep gradients in the bottom topography. The matrix
operator in the surface-pressure formulation is proportional to the depth field H,
whereas the matrix operator in the stream function formulation is proportional to
1/H. Therefore, the latter matrix operator is much more sensitive than the former
to rapid variations in the depth of waters over the edges of continental shelves or
submerged mountain ranges. In such situations, the depth may change from several
thousand meters to a few tens of meters within a few grid points. Because such a
rapidly varying operator may prevent convergence to a solution, steep gradients
were removed from the stream function formulation by smoothing the depth field
(which also had the then-desirable effect of eliminating many islands). The surface-
pressure formulation, on the other hand, converges even in the presence of steep

8.3 Ocean Modeling 209

8.3.2

depth gradients. Artificial smoothing of the depth field can significantly affect the
accuracy of a numerical simulation of the interaction of a strong current with
bottom topography. For example, the detailed course and dynamics of the Antarctic
Circumpolar Current (the strongest ocean current in terms of total volume transport)
is greatly influenced by its interaction with bottom topography.

As we worked with the surface-pressure, rigid-lid model, we noticed a problem in
shallow isolated bays such as the Sea of Japan. In principle, we should have been able
to infer the elevation of the ocean surface (relative to the mean elevation) from the
predicted surface pressure. We found, however, that the surface heights so inferred
were quite different from those expected, due to inflow or outflow from the bays.
Removing the rigid lid solved that problem, but of course it also brought back the
unwanted and unneeded surface waves. We were able to overcome that new difficulty
by treating the terms responsible for the surface waves implicitly, which artificially
slows the waves, whereas the rigid-lid approximation artificially speeds up the waves
to infinite velocity. (Either departure from reality is acceptable. Climate modeling
does not require an accurate representation of the waves because they have little
effect on ocean circulation.)

Free-Surface Formulation

Those considerations led us next to abandon the rigid-lid approximation in fa-
vor of a free-surface formulation. The surface pressure is then proportional to the
mass of water above a reference level near the surface. The benefits of the surface-
pressure, free-surface model are greater physical realism and faster convergence of
the barotropic solver. In particular, the revised barotropic part of the code, including
80 islands, is many times faster than the original, which included only three islands
(when both are implemented on the 0.5 grid). In addition, the surface pressure is
now a prognostic variable that can be compared to global satellite observations of
sea-surface elevation to validate the model, and satellite data can now be assimilated
into the model to improve short-term prediction of near-surface ocean conditions.

None of our revisions, of course, changed the fact that the large matrix equation
in the barotropic solver must be solved implicitly. We chose to use conjugate gradi-
ent methods for that purpose because they are both effective and easily adapted to
parallel computing. Conjugate gradient methods are most effective when the ma-
trix is symmetric. Unfortunately, the presence of Coriolis terms (terms associated
with the rotation of the Earth) in the barotropic equations makes the matrix non-
symmetric. By using an approximate factorization method to split off the Coriolis
terms, we retained the accuracy of the time discretization of the Coriolis terms and
produced a symmetric matrix to which a standard conjugate gradient method may
be applied. We also developed a new preconditioning method for use on massively
parallel computers that is very effective at accelerating the convergence of the conju-
gate gradient solution. The method exploits the idea of a local approximate inverse
to find a symmetric preconditioning matrix. Calculating the preconditioner is rela-
tively expensive, but it only needs to be done once for a given computational grid.

210

8.3.3

8.3.4

Chapter 8 Application Overviews

Pressure Averaging

Elimination of the extra equations for islands and the associated gather-scatter
memory operations greatly reduced the cost of solving the barotropic equations.
Further savings can be obtained by implementing pressure averaging, a well-known
technique in atmospheric modeling for increasing the time step [145]. After the
temperature and salinity have been updated to time step n+ 1 in the baroclinic
routines, the density p"+! and pressure p"*! can be computed. By calculating the
pressure gradient with a linear combination of p at three time levels (n — 1, n, and
n+ 1), it is possible to increase the time step by as much as a factor of two. However,
at first this doubling was not obtained because something else was limiting the time
step. Analysis of factors constraining the time step revealed that it was being limited
by horizontal diffusion at high latitudes, as described next.

Latitudinal Scaling of Horizontal Diffusion

Horizontal mixing by unresolved turbulence is commonly parameterized by ei-
ther Laplacian, V2, or biharmonic, V4, diffusion terms. These operators scale as
Ax~™ with m =2 or 4. Here Ax =a *x A\ % cos ¢, where ¢ and A are latitude and
longitude, respectively, and a is the radius of the Earth. Because cos ¢ — O at the
poles, these diffusion terms become very large at high latitude. Although hori-
zontal diffusion parameterizations are intended to mimic the effects of unresolved
turbulence, their essential purpose is to dissipate energy at scales near the grid
resolution. Consequently, they can be arbitrarily rescaled, as long as they give suf-
ficient dissipation to prevent the buildup of computational noise at small spatial
scales. The diffusion term, VT, only needs to be big enough at all latitudes to
balance the advection term, U - VT, in the transport equation for tracer T. The ad-
vection term scales as Ax~1, so scaling of the horizontal diffusion coefficient by
(cos ¢)" was introduced, where n=m — 1 (n = 1 for Laplacian mixing; n = 3 for bi-
harmonic mixing). This scaling prevents horizontal diffusion from limiting the time
step severely at high latitudes, yet keeps diffusion large enough to maintain numer-
ical stability.

Once this scaling was introduced and the associated time-step constraint was
removed, the doubling of the time step with the pressure-averaging method was
attained. Taken together, the improved numerical stability of the surface-pressure
formulations, the (cos ¢)3 tapering of the biharmonic diffusion coefficient, and
pressure averaging permitted the time step to be increased by about a factor of four
compared to the best calculations at that time [847, 848]. They used a time step of
15 minutes when running a standard BCS model at 0.5° resolution. With POP, it was
possible to run with a 30-minute time step at 0.28° resolution, an improvement of
a factor of four over the 7.5-minute time step expected by extrapolating Semtner’s
experience.

8.3 Ocean Modeling 211

8.3.5

8.3.6

8.3.7

Code Designed for Parallel Computers

The code is written in Fortran 90 and can be run on a variety of parallel and serial
computer architectures. It uses domain decomposition in latitude and longitude,
combined with MPI for interprocessor communications on distributed memory
machines. SHMEM is also available on machines that support it (SGI Origin 2000
and Cray T3E).

General Orthogonal Coordinates and the “Displaced-Pole” Grid

Because the code is written in Fortran 90, it was relatively easy to reformulate and
discretize the equations of motion to allow the use of any locally orthogonal hori-
zontal grid without a major rewrite of the code [876]. This generalization provides
alternatives to the standard latitude-longitude grid with its singularity at the North
Pole. In particular, a “displaced-pole” grid was developed, in which the singularity
arising from convergence of meridians at the North Pole is moved into an adja-
cent landmass such as North America, Greenland, or Russia. This leaves a smooth,
singularity-free grid in the Arctic Ocean, which is important for the modeling of sea
ice. That grid joins smoothly at the equator with a standard Mercator grid in the
Southern Hemisphere. If the singularity is moved to Greenland, distortion relative
to the standard grid is minimized, but the smallness of ocean cells just off the coast
of Greenland may restrict the time step excessively. Placing the singularity in either
Greenland or North America increases the resolution in the Gulf Stream and the
northern seas; the Gulf Stream transports warm salty water into the northern seas,
where deep water is formed by wintertime convection. Both transport and convec-
tion are important aspects of the global thermohaline circulation that need to be as
well resolved as possible.

The displaced-pole grid has proven to be one of the most popular features of
POP, especially in fully coupled atmosphere-ocean—sea ice models. The Los Alamos
sea ice model (CICE) also supports the displaced-pole grid, so no interpolation
is needed between POP and CICE. A package based on conservative remapping
techniques, the Spherical Coordinate Remapping and Interpolation Package (SCRIP),
has been developed [523] that transforms state variables and fluxes between any pair
of orthogonal grids on the sphere. SCRIP handles the transformations between the
atmospheric model grid and the displaced-pole grid used by POP and CICE.

Many of the improvements first introduced in POP have been adopted in other
models, even for use on parallel-vector machines.

High-Resolution Simulations Enabled by POP

Massively parallel computers are ideally suited to high-resolution modeling of the
oceans. “Mesoscale” eddies in the oceans are 50 to 100 km in size, roughly 10
times smaller than their atmospheric analogues: high and low pressure and frontal

212

8.4

Chapter 8 Application Overviews

systems. Thus, ocean models need to have finer grids than atmospheric models. Cost
rises rapidly as resolution is increased: doubling the horizontal resolution increases
the cost by an order of magnitude when the reduction in time step and a modest
increase in vertical resolution are taken into account. At the time POP was being
developed, the state of the art in high-resolution global modeling was the work of
Semtner and Chervin [847, 848] at 0.5°. They were using a model with the standard
rigid-lid, stream function formulation, smoothed bottom topography with only
three “islands,” biharmonic diffusion and no pressure averaging; the model time
step was 15 minutes at 0.5° resolution. With POP running on the CM-5, it was
possible to double the resolution to 0.28°, use unsmoothed bottom topography,
include all 112 resolvable islands, and run with a time step of 30 minutes [642].
Although many aspects of the 0.28° global simulations were improved compared
to the earlier simulations, quantitative comparisons of sea-surface height variability
predicted by POP with measurements from the TOPEX/Poseidon satellite altimeter
showed that the model variability was still low by a factor of two. This meant
that the mesoscale eddy spectrum was still not adequately resolved. Limitations
in computing power made it impractical to go to higher resolution at the global
scale; however, it was feasible to go to 0.1° in the Atlantic Ocean basin only. That
calculation had about the same number of horizontal grid points (992 x 1280) as the
global 0.28° calculation (1280 x 896), but 40 depth levels rather than 20. The time
step had to be reduced by the resolution ratio (2.8) to 10 minutes, so three times
as many time steps were needed to integrate the model for a decade of simulated
time. With twice as many depth levels, the 0.1° calculation was six times more
expensive than a similar length 0.28° run. Four months of almost dedicated time
on 512 processors of the Los Alamos National Laboratory/Advanced Computing
Laboratory CM-5 were needed to complete the calculation [875]. Many important
aspects of Atlantic circulation were accurately captured for the first time, including
good quantitative agreement between POP and TOPEX/Poseidon. The results are so
impressive that the international oceanographic community is eagerly awaiting a
global simulation at the same 0.1° scale. This was impossible until 1999, when the
ACL took delivery of a 2048 processor SGI Origin 2000 system with a peak rating
of 1 teraflop. Benchmark tests of POP indicate that roughly 6 months of nonstop
computing on 512 processors will be required to extend the 0.1° simulation to the
global scale. The grid will have 3600 points in longitude, 2400 in latitude, and 40
depth levels, for a total 3.5 x 108 grid cells. With a 10-minute time step, nearly 1
million time steps will be needed.

Simulations of Earthquakes
Geoffrey C. Fox

The importance of simulating earthquakes is intuitively obvious. For instance, the
Kobe, Japan, earthquake of January 16, 1995, was only a magnitude 6.9 event and
yet produced an estimated $200 billion loss. Despite an active earthquake prediction
program in Japan, this event was a complete surprise. Similar and more drastic

8.4 Simulations of Earthquakes 213

scenarios are possible, and indeed eventually likely, in Los Angeles, San Francisco,
Seattle, and other urban centers around the Pacific plate boundary.

There are currently no approaches to earthquake forecasting that are uniformly
reliable. The field uses phenomenological approaches, which attempt to forecast in-
dividual events, or more reliable statistical analyses giving probabilistic predictions.
The development of these methods has been complicated by the fact thatlarge events
responsible for the greatest damage repeat at irregular intervals of hundreds to thou-
sands of years, and so the limited historical record has frustrated phenomenological
studies. Up to now, direct numerical simulation has not been extensively pursued
due to the complexity of the problem and the (presumed) sensitivity of the occur-
rence of large events to detailed understanding of both Earth constituent makeup
and the relevant microscale physics that determines the underlying friction laws.
However, good progress has been made recently with a variety of numerical simu-
lations, and both Earth and satellite sensors are providing an increasing volume of
data that can be used to constrain and test the numerical simulations. This field is
different from most other applications in this book, as it thus far has made little
use of parallel computing and only now is starting its own “Grand Challenges.” It
is thus not known how important large-scale simulations will be in earthquake sci-
ence. Maybe they will never be able to predict the “big one” on the San Andreas
fault, but nevertheless it is essentially certain that they can provide a numerical lab-
oratory of “semi-realistic” earthquakes with which other more phenomenological
methods based on pattern recognition can be developed and tested. As one can use
data assimilation techniques to integrate real-time measurements into the simula-
tions, simulations provide a powerful way of integrating data into statistical and
other such forecasting methods.

Although this field has some individually very difficult simulations, it has only
just started to use high-performance computers. Thus, the most promising compu-
tations at this stage involve either scaling up existing simulations to large system
sizes with modern algorithms or integrating several component computations with
assimilated data to provide early, full-fault system simulations. The latter has im-
portant real-world applications in the area of responding to and planning for crises
as one can carry the computations through from initial sensing of stress buildup
through the structural simulation of building and civil infrastructure responses to
propagating waves.

Earthquake science embodies a richness present in many physical sciences as there
are effects that spread over 10 orders of magnitude in spatial and temporal scales
(Figure 8.5). Success requires linking numerical expertise with the physical insight
needed to coarse grain or average the science at a fine scale to be used phenomeno-
logically in simulations at a given resolution of relevance to the questions addressed.
Again, nonlinear fault systems exhibit a wealth of emergent, dynamic phenomena
over a large range of spatial and temporal scales, including space—time clustering of
events, self-organization, and scaling. An earthquake is itself a clustering of slipped
fault segments, as seen in studies of critical phenomena (23, 87, 157, 267, 337, 365,
511, 839]. As in the latter field, one finds (empirically) scaling laws that include

214

Chapter 8 Application Overviews

106 |-
- Faulting/ Plates \
- earthquakes
km 103 [Plate
- B Spaceborne boundary
= _ / ones
£ o observations
g m10° =
% |- Nucleation
% processes
k= _ Ly
% mm 10 i I
Laboratory experiments Grains/aggregates/
um 10-6 | microscale tectonic processes
| Crystals/atoms/molecules
10_9 |
1076 1073 1070 103 106 10° 1012 1013

sec hr day yr ka Ma

Time scales (sec.)

Figure 8.5 Spatial and temporal scales in earthquake science.

the well-known Gutenberg-Richter, magnitude-frequency relation, and the Omori
law for aftershocks (and foreshocks). Some of the spatial scales for physical fault
geometries include:

e The microscopic scale (~ 10~¢ m to 10~ 1 m) associated with static and dynamic
friction (the primary nonlinearities associated with the earthquake process).

e The fault-zone scale (~10~! m to 102> m) that features complex structures
containing multiple fractures and crushed rock.

e The fault-system scale (~10% m to 10* m), in which faults are seen to be
neither straight nor simply connected, but in which bends, offsetting jogs,
and subparallel strands are common and known to have important mechanical
consequences during a fault slip.

The regional fault-network scale (~ 10* m to 10% m), where seismicity on an in-
dividual fault cannot be understood in isolation from the seismicity on the
entire regional network of surrounding faults. Here concepts such as “correla-
tion length” and “critical state” borrowed from statistical physics have led to
new approaches to understanding regional seismicity.

8.4 Simulations of Earthquakes 215

8.4.1

o The tectonic plate-boundary scale (~ 10° m to 107 m), at which planetary scale
boundaries between plates can be approximated as thin shear zones and the
motion is uniform at long time scales.

Typical Computational Problems

Many different types of codes eventually could be linked together to support either
real-time response to a crisis or fundamental scientific studies [353, 357]. The process
of coordinating the field in this area is happening in Japan, where major compu-
tational resources are being deployed. There is also an international effort among
several Asia—Pacific nations, including the United States (the so-called Asian-Pacific
Economic Cooperation initiative [44]) and a U.S. activity, known as GEM for its
goal to produce a “general earthquake model” [373]. Three distinct computational
problems are presented below.

Data Assimilation

The initial simulations, aimed at helping a crisis response team, would be triggered by
the detection of an earthquake event by the many sensors now deployed, especially
in California. Since these sensors provide incomplete information, they must be
assimilated into model simulations to allow the following two model computations
to attempt forecasting of possible aftershock activity and the consequent damage
to civil infrastructure. The Jet Propulsion Laboratory has developed one such code
(disloc) to process data from the large NASA-NSF-USGS SINE Sensor array. It uses
finite elements and complex meshing techniques to represent the complexity of the
3-D Earth crust. It is shown in Figure 8.6 and described below as a “problem-solving
environment” designed to support the earthquake-response community after events
like those occurring in Turkey or Taiwan in 1999.

Earthquake Fault-System Simulations—Virtual California

With reasonable approximation, the long-term evolution of stresses and strains on
interacting fault segments can be modeled with a Green’s function approach [813,
814]. This method leads to a boundary-value formulation (the faults determine the
boundary) that numerically looks like the long-range force problem. The faults are
paneled with segments (with area of some 100 m? in definitive computations) that
interact as though they were dipoles. The original calculations of this model used
the basic O(N?) algorithm, but a new set of codes will use the fast-multipole method
briefly described in Chapter 4 for astrophysical problems. There are interesting dif-
ferences between the earthquake and gravitational applications. In gravity, there
are wide ranges in density and dynamical effects from the natural clustering of the
gravitating particles. Earthquake “particles” are essentially fixed on complex fault
geometries, and their interactions fall off faster than those in the astrophysical prob-
lem. Several variants of this model have been explored, including approximations
that keep only interactions between nearby fault segments. These cellular-automata

216

Chapter 8 Application Overviews

Caltech ALARM ,I:'|>| Page > Wake up!
A—
{} Quake location, size

L
JPL disp =" disloc Lu . Page >Wake up!

— f—

Sorted station potential

USGS | Dial stations | Modem >1§W

Station raw files

JPL [GIPSY/auto_p Page > Wake up!
v Station motions
JPL | Simplex |
@ {} Single fault model
BSug:Ielr Virtual_California Web simplex
(U. Colo.) IPL —
. < Collaboration >fﬁl/)
Graphics: Graphics:
hazard model refined fault model

Figure 8.6 Simulations used in response to an earthquake.

or slider-block models look very much like statistical physics, with an earthquake
corresponding to clusters of particles slipping together when the correlation length
gets long near a critical point. The full Green’s function approach should parallelize
straightforwardly [931] in either O(N?) or multipole formulation. Cellular automata
models [146, 365, 815] will be harder, as we know from experience with the cor-
responding statistical physics case, where clustering models have been extensively
studied. An interesting aspect of these simulations is that they provide a “numerical
laboratory” for the study of space-time patterns in seismicity information. This type
of analysis was used successfully in the climate field to aid in the prediction of El
Niflo phenomena. These pattern analyses may or may not need large computational
resources, although they can involve determination of eigensolutions of large matri-
ces, which is potentially time consuming. In Figure 8.6, we show Virtual California,
used to help predict aftershocks and manage the consequences of actual earthquakes.
This illustrates the concepts described in Chapter 25 of large simulations being used
in a real-time network to address problems of importance to society.

Earthquake Engineering

The most mature computations in the field are those used to calculate the response of
buildings to seismic waves. In fact, R. Clayton of the Caltech Geophysics department
performed one of the very first Caltech Cosmic Cube computations to simulate

8.4 Simulations of Earthquakes 217

the motion of earthquake waves in the Los Angeles Basin. This wave motion can,
in principle, be generated from the earthquake “events” calculated in the Virtual
California simulations described above. The wave motion can be used as a forcing
function for structural dynamics computations of buildings, roads, and other civil
infrastructure. These are large-scale, finite element problems with complex grids, and
arecent National Science Foundation “Grand Challenge” was very successful in this
area.

Response to an Earthquake in Southern California

In this typical scenario, which is the first part of Figure 8.6, the goal is to rapidly form
a consensus among researchers concerning the characterization of the deformation
field and the location, size, and direction of slip on a fault following an earthquake.
This consensus can be used to guide decisions on both civil and scientific responses
to the quake.

Following an earthquake in Southern California, the location and magnitude are
calculated based on seismic data within minutes by Caltech/U.S. Geological Survey
(USGS) and are broadcast to several users via email and pagers. The information
on location and magnitude could then be automatically used to define an area
wherein instruments might be expected to record a signal. Data from these stations
would be given priority in retrieval and analysis. In this example, we assume that
the data in question are global-positioning-system (GPS) data from the Southern
California Integrated Geodetic Network (SCIGN) array. Retrieval in this case occurs
via telephone modem. As soon as the list of possibly affected stations has been
generated, the database at the USGS is checked. If any of the stations on the list have
not had data downloaded since the quake, computers at the USGS begin dialing the
selected stations and retrieving the data.

Data from these stations are then processed for rapid analysis to determine the
measured displacements of the stations. If the measured displacements are large
enough, emergency and scientific personnel are notified via email and pager. These
displacements are then automatically fed into an inversion routine (simplex) that
solves for the best-fit, single-fault displacement. This single-fault displacement is in
turn fed back into a forward, elastic, half-space model that yields a preliminary map
of displacements over the whole area.

At this point, this map is shared among various scientists and emergency per-
sonnel, using systems such as Tango Interactive that allow the collaboration and
interaction of many people viewing and manipulating the same data set over the
Internet. The emergency personnel can use the preliminary map in combination
with geographical information system (GIS) data about utilities, lifelines, and so
on to help assign resources to various areas. The scientists use the preliminary map
to help design a strategy for collecting additional measurements. Before rerunning
the inversion, they can also collaborate on refining the single-fault model, possi-
bly breaking the single preliminary fault into several segments, introducing more
realistic material properties or including more data.

218

8.4.2

Chapter 8 Application Overviews

This environment permits the rapid determination and dissemination of pre-
liminary information about the earthquake and the collaborative refining of that
information following an event. The rapid dissemination of information can greatly
aid both the civil and scientific response to the quake. Resources can be more effi-
ciently allocated to the areas where they are needed, and scientific measurements
can be focused to provide information critical to refining our understanding of the
earthquake system. Once an acceptable model of the earthquake has been deter-
mined, various models can be used to estimate the updated earthquake hazard for
adjacent areas. Since there are currently several competing models for this, it will
undoubtedly involve multiple runs of multiple models and significant discussion
among scientific colleagues. Each of these models, as well as the various pieces of the
automated processes described above, has been developed by different people under
different assumptions, and each is developed, run, and maintained on computers
under the control of the developer. Technologies such as CORBA and Enterprise Java
Beans allow appropriate access and security mechanisms in this complex, evolving
distributed system.

The Izmit, Turkey, earthquake in 1999 provided an example of how a system
like this could have been useful. Following that earthquake, many geoscientists
participated in a series of conference telephone calls to try to piece together what
had happened and to determine an appropriate response. Initially, some participants
only knew what had been reported in the media. Others knew of specific pieces
of data concerning the earthquake or of actions being taken by various groups
and individuals. It is safe to say that no one had a complete picture. Much of the
conference call was devoted to informing everyone about all the pieces of data and
all the various initiatives that people were pursuing or might pursue. Similar calls and
emails occurred after the 1992 Landers and 1994 Northridge earthquakes. Having a
system such as the one described above, in which participants could share maps,
descriptions, programs, data sets, and graphs, and in which they could interactively
and collaboratively manipulate the data and programs both synchronously and
asynchronously, would immeasurably aid the rapid and accurate diagnosis of what
has happened and what should be done next.

Computational Resource Requirements

Current evidence suggests that forecasting earthquakes of magnitude ~ 6 and greater
will depend on understanding the space-time patterns displayed by smaller events,
that is, the magnitude 3’s, 4’s and 5’s. With at least 40,000 km? of fault area in
Southern California, as many as 108 grid sites will be needed to accommodate events
down to magnitude 3. Extrapolations based on existing calculations indicate that
using time steps of ~ 100 s implies that ~ 108 time steps will be required to simulate
several earthquake cycles. This leads to the need for teraflop-class computers. At this
stage, we cannot guess how far this class of computer will take us; the systems needed
to support research, crisis managers, or insurance companies assessing possible
earthquake risk may require much higher performance.

8.5 Cosmological Structure Formation 219

8.5

8.5.1

8.5.2

Cosmological Structure Formation
Michael Norman and Greg Bryan

The universe is homogeneous and isotropic on scales exceeding 1 billion light years.
But on smaller scales it is clumpy, exhibiting a hierarchy of structures, including
individual galaxies, groups and clusters of galaxies, and superclusters of galaxies.
Understanding the origin and cosmic evolution of these structures is the goal of
cosmological structure formation (CSF). CSF is inherently nonlinear and multidimen-
sional, and it involves a broad range of physical processes operating on a range of
length and time scales. Numerical simulation is the only means we have of studying
it in any detail.

The Problem to be Solved

Simulations of CSF have grown in size and complexity as computer power has grown.
The largest N-body CSF simulations of the day have increased from N = 323 particles
on VAXs in the mid 1980s to 10243 particles on today’s MPPs—an astounding
factor of over 32,000. Today, CSF simulations are among the largest consumers
of supercomputer cycles at the National Science Foundation centers, rivaling CFD,
condensed matter physics, and lattice gauge theory.

Two parallel applications described here simulate CSF in three spatial dimensions
and time within an expanding background space-time consistent with our under-
standing of the Big Bang origin of the universe. The first code, called Kronos [153],
uses a uniform Cartesian grid comoving with the expanding universe as the basis for
discretizing the equations of matter and gravitational dynamics. The second code,
called Enzo [150, 152, 716], adds structured, adaptive mesh refinement (SAMR) to
the Kronos algorithm for improved spatial and temporal resolution in high-density
regions (galaxies, clusters, etc.). Sequential and parallel versions of both codes have
been developed and optimized for vector multiprocessors, SMPs, MPPs, and clusters
of PCs and SMPs. The message-passing parallel version Enzo, which can be run with
and without mesh refinements, is our computational workhorse and is the main
focus of this report.

Computational Issues

Matter in the universe is of two basic types: ordinary baryonic matter composed of
nucleons and electrons, out of which stars and galaxies are made, and nonbary-
onic dark matter of unknown composition, which is nevertheless known to be the
dominant mass constituent in the universe on scales of galaxies and larger. Kronos
and Enzo self-consistently simulate both components, which evolve according to
different physical laws and therefore require different numerical algorithms.
Baryonic matter is evolved using a finite volume discretization of the Euler equa-
tions of gas dynamics cast in the comoving frame, including energy source and sink
terms due to radiative heating and cooling processes, as well as changes in the ioniza-
tion state of the gas [153]. In some calculations involving nonequilibrium chemistry,

220

8.5.3

Chapter 8 Application Overviews

separate chemical/ionic species are evolved by solving their kinetic rate equations
[42]. Radiation fields are modeled as evolving, but spatially homogeneous, back-
grounds; true radiative transfer is not yet included, but is on the horizon [2].

Dark matter is assumed to behave as a collisionless phase fluid, obeying the
Vlasov-Poisson equation. Its evolution is solved using particle-mesh algorithms
for collisionless N-body dynamics [479]. Dark matter and baryonic matter interact
only through their self-consistent gravitational field. The gravitational potential is
computed by solving the Poisson equation on the uniform or adaptive grid hierarchy
using Fourier transform techniques. In generic terms, our CSF codes are 3-D hybrid
codes consisting of a multispecies hydrodynamic solver for the baryons coupled to
a particle-mesh solver for the dark matter via a Poisson solver.

Matter evolution is computed in a cubic domain of length L =a(t)X, where
X is the domain size in comoving coordinates and a(f) is the homogeneous and
isotropic scale factor of the universe, which is an analytic or numerical solution of
the Friedmann equation, a first-order ordinary differential equation. For sufficiently
large L compared to the structures of interest, any chunk of the universe is statistically
equivalent to any other, justifying the use of periodic boundary conditions. The
speed of Fast Fourier Transform (FFT) algorithms and the fact that they are ideally
suited to periodic problems make them the Poisson solver of choice, given the large
grids employed—5123 or larger.

CSF simulations require very large grids and particle numbers due to two compet-
ing demands: large boxes are needed for a fair statistical sample of the universe; and
high mass and spatial resolution are needed to adequately resolve the scale lengths
of the structures that form. For example, in order to adequately simulate the inter-
nal structure of galaxies and simultaneously describe their large-scale distribution in
space (large-scale structure), a dynamic range of 10* per spatial dimension and 10°
in mass is needed at a minimum.

The largest uniform grid simulation ever done including gas and dark matter is
a Kronos simulation we carried out on 512 processors of the Connection Machine-
5 at the National Center for Supercomputing Applications in 1994 (see Plate 6 of
the color insert). The simulation used a grid of 5123 cells and 5 x 107 particles—
far short of the requirements mentioned above. With the use of the adaptive mesh
refinement code Enzo on the current generation of terascale computing systems, the
desired resolutions are now achievable. In the next two sections, we discuss parallel
computing aspects of these two codes.

Parallel Unigrid Code: Kronos

The Kronos code was developed in 1992-1994 by Greg Bryan for the Connection
Machine-5 at the NCSA. The CM-5 had 512 processor nodes, each consisting of a SUN
Sparc microprocessor, four vector processors, and 32 MB of memory. The theoretical
peak speed of the system was quoted as 0.128 Gflop/s/PN x 512 PN = 65 Gflop/s,
and the total memory was 16 GB.

8.5 Cosmological Structure Formation 221

Kronos was implemented in the data-parallel Connection Machine Fortran (CMF)
programming model. Conceptually, Kronos is the union of two codes: a 3-D Eulerian
gas dynamics code (suitably modified for cosmology [153]) and a 3-D particle-mesh
code (of which the FFI-based Poisson solver is a component) for the collisionless
dark matter. The parallel challenges and solutions for each code are quite different,
and so we discuss them individually.

The equations of gas dynamics are purely local: changes in cell quantities due to
pressure forces and fluid advection involve only nearest neighbors. By assigning one
virtual processor per cell in a 3-D Cartesian lattice, nearest-neighbor information
was passed using the CM-5 NEWS data communication network via simple CSHIFT
calls. This was the basis of our first implementation. Performance tests measured at
~ 8 Mflops/s/PN, or about 6% of peak. The reason for this poor performance was
that the communication network was invoked between every computational cell,
regardless of whether they resided on the same physical processor or not.

In order to circumvent this, our second implementation abandoned the one
virtual processor per cell model in favor of explicit domain decomposition. This
was accomplished within the CMF data-parallel programming model by declaring
6-D arrays for the fluid field variables—for example, d(:serial, :serial, :serial,
:news, :news, :news)—with the serial dimensions referring to the 3-D index of a
cell within a given block and the parallel dimensions referring to the indices of
the block in a 3-D block decomposition of the computational domain. This had the
advantage that serial operations on d within a block could proceed in parallel without
invoking the communication network. Internal boundary values were copied from
neighboring processors once per time step into 5-D arrays that corresponded to the
faces of the blocks. In this way, communication was isolated to one rather minor
phase of the calculation. Performance improved threefold to ~ 24 Mflop/sec or 18%
of peak, which largely reflected the sustained speed of the purely local computations.
Scaling tests with constant work per processor yielded ideal scaling up to NP = 512
nodes, confirming that communication costs were minimal.

The particle-mesh (PM) code, on the other hand, is communication intensive. The
PM algorithm consists of three phases, the first and third of which involve nonlocal
communication between and among the 1-D particle list and 3-D field arrays. In the
first, mass assignment, phase, the particles’ mass is assigned to a density field array via
a gather operation. In the second, field solve phase, the Poisson equation is solved for
the gravitational potential using 3-D FFTs—a nonlocal operation. The mesh force is
computed from spatial differences of the potential—a local operation. In the third,
force interpolation, phase, the mesh force is interpolated to the particle positions
via a scatter operation. Obviously, finding efficient parallel implementations that
minimize communication costs is essential. An additional complication is that the
particle distribution becomes highly inhomogeneous due to gravitational clustering,
creating load imbalances in phases one and three, even if the particle list and field
arrays are uniformly distributed across processors.

We implemented the algorithm of Ferrell and Bertschinger [328], which elegantly
solves all of these problems. Since the algorithm and its performance on the CM-5

222

854

Chapter 8 Application Overviews

are described in detail in Ferrell and Bertschinger [328], we merely summarize the key
points. The gather—scatter portion of phases one and three are done in a completely
load-balanced way through the use of parallel prefix operations on the particle list
[473]. Parallel prefix operations, also referred to as scans, are a method of turning
certain kinds of global communications into regular, mostly local, communications.
Briefly, the procedure is to sort the particle list so that all particles within a given
processor are contiguous. An index list is introduced that contains the processor
ID for each particle. Because the list has been sorted, the processor ID is constant
in a segment, changing to another value in the next segment. We then use a
segmented scan add operation, which computes a running sum of the masses of the
particles within a given segment. This operation requires O(log NP) communication
operations. The last element in each segment contains the total mass in the segment.
We then have only one word of data to send to each virtual processor assigned to
a grid cell. In step two, three components of the gravitational acceleration on the
grid are computed from the gridded mass densities using Fourier transforms. For this
purpose, we used the highly optimized 3-D FFT routines in the CMSSL library. The
third, force interpolation, phase is essentially the inverse of the mass assignment
phase. We use a segmented scan copy to copy the gridded forces to a segmented force
list. This operation also takes O(log NP) communication operations. The forces are
then applied to the particles in parallel in a purely local fashion.

For a scaled work problem, the combined code exhibited linear speedup on
the CM-5 to 512 processors, with a parallel efficiency of T'(1)/(NP x T(NP)) ~ 0.75.
Clearly, the communication overhead in the PM portion of the calculation is respon-
sible for the lack of ideal scaling. Still, the fact that parallel speedup was roughly
constant versus NP indicates that the combined algorithm was scalable.

Parallel AMR Code: Enzo

The demise of the CM-5, coupled with the need for higher resolution than afforded
by uniform grids, motivated the development of Enzo. Enzo uses structured adap-
tive mesh refinement (SAMR) [93, 152] to achieve high resolution in gravitational
condensations. The central idea behind SAMR is simple to describe but difficult to
implement efficiently on parallel computers. While solving the desired set of equa-
tions on a coarse uniform grid, monitor the quality of the solution; when necessary,
add an additional finer mesh over the region that requires enhanced resolution. This
finer (child) mesh obtains its boundary conditions from the coarser (parent) grid or
from other neighboring (sibling) grids with the same mesh spacing. The finer grid is
also used to improve the solution on its parent. As the evolution continues, it may
be necessary to move, resize, or even remove the finer mesh. Even finer meshes may
be required, producing a tree structure that can continue to any depth.

To advance our system of coupled equations in time on this grid hierarchy, we use
a recursive algorithm. For simplicity, we consider only the hydrodynamic portion
of the algorithm; the dark matter dynamics and Poisson equation have a similar
structure. The EvolveLevel routine is passed the level of the hierarchy that it is to

8.5 Cosmological Structure Formation 223

8.5.5

work on and the new time. Its job is to march the grids on that level from the old
time to the new time:

EvolveLevel(level, ParentTime)
begin
SetBoundaryValues(all grids);
while (Time < ParentTime)
begin
dt = ComputeTimeStep(all grids);
SolveHydroEquations(all grids, dt);
Time += dt;
SetBoundaryValues(all grids);
EvolveLevel(level+1, Time);
RebuildHierarchy (level+1);
end
end

Inside the loop that advances the grids on this level, there is a recursive call, so that
all the levels above (with finer subgrids) are advanced as well. The resulting order of
time steps is like the multigrid W cycle.

As with any hyperbolic equation, we must set the boundary conditions on the
grids. This is done by first interpolating from a grid’s parent and then copying from
sibling grids, where available. Once the boundary values have been set, we evolve the
hydrodynamic field equations using procedure SolveHydroEquations. The final task
of the Evolvelevel routine is to modify the grid hierarchy to the changing solution.
This is accomplished via the RebuildHierarchy procedure, which takes a level as an
argument and modifies the grids on that level and all higher levels. This involves
three steps: First, a refinement test is applied to the parent grids of the current level to
determine which cells need to be refined. Second, rectangular regions are chosen that
cover all of the refined regions, while an attempt is made to minimize the number
of unnecessarily refined points. Third, the new grids are created and their values are
copied from the old grids (which are deleted) or interpolated from parent grids. This
process is repeated on the next refined level until the grid hierarchy has been entirely
rebuilt.

Parallelization of Enzo

Other than the physical equations solved, Enzo bears no relation to Kronos. Virtu-
ally none of the CMF code was reusable because not only did we change algorithms,
we changed programming models and languages as well. The code is mostly im-
plemented in C++, with compute-intensive kernels in Fortran 77. Efficiently paral-
lelizing SAMR is difficult, particularly for distributed-memory systems. Grids have a
relatively short life, so information must be updated frequently. Moreover, load bal-
ancing becomes crucial since small regions of the original grid eventually dominate
the computational requirements.

224

8.5.6

Chapter 8 Application Overviews

Enzo development proceeded in two major steps. The first step, carried out by
Greg Bryan in 1994-1996, was the implementation of a shared-memory parallel code
for the SGI Origin 2000 employing SGI's PowerC compiler to concurrently execute
grids at a given refinement level. The powerful, mature C development environment
on the SGI was a major boon. However, since the workload is typically distributed
nonuniformly across levels (cf. Figure 8.8) and the algorithm dictates that levels
must be processed sequentially, we found that we could not efficiently use more than
about 16 processors. Therefore, a second SPMD message-passing code for distributed-
memory systems was implemented in 1997-2000, wherein the root grid is domain
decomposed into 3-D blocks. Each block and its complement of subgrids are assigned
to different processors, which work on them in parallel. Load balancing is achieved
by sending grids from overloaded processors to underloaded ones, and optionally
through the use of grid splitting [591].

We have used the MPI library to produce a code that is portable and efficient. In
particular, we have used the following optimization techniques:

e Distributed objects. We leveraged the object-oriented design by distributing the
objects over the processors, rather than attempting to distribute an individual
grid.

o Sterile objects. Although distributing the objects results in good load balancing,
it has the potential to greatly increase the amount of communication since
each processor has to probe other processors to find out about neighboring
grids. We solved this problem by creating a type of object that contained
information about the location and size of a grid, but did not contain the
actual solution arrays. These sterile objects are small; thus, each processor can
hold the entire hierarchy. Only those grids that are truly local to that processor
are nonsterile.

e Pipelined communications. One result of distribution is that all operations be-
tween two grids (e.g., obtaining boundary values) are potentially nonlocal. We
optimize this by dividing each communication stage into two steps. First, all
of the data are processed and sent. Since all processors have the location of all
grids locally (thanks to the sterile objects), we can order these sends such that
the data that are required first are sent first. Then, in the receive stage, the data
needed immediately have had a chance to propagate across the network while
the rest of the sends were initiated.

Performance

The performance of an adaptive mesh-refinement (AMR) application is difficult to
characterize because the workload and its distribution are dynamically changing
throughout the calculation. The simplest measure is time to solution of a run ver-
sus NP. This necessitates running a job to completion over and over again, varying
NP. This is computationally expensive for modest problem sizes and impractical for
medium-to-large problems of interest. Nevertheless, this has been done; results are

8.5 Cosmological Structure Formation 225

Figure 8.7 Enzo simulation of primordial star formation. Each image shows gas density in a
region 10 times smaller than the previous. From Bryan et al. [149].

reported in Lan et al. [592]. We find that not only is parallel efficiency problem-size
dependent, as expected, but also problem dependent as well. For example, a survey
calculation involving a large root grid and no subgrids distributed over many pro-
cessors will scale very differently from a calculation involving a large number of
small, deeply nested subgrids focusing on a single collapsing object.

To illustrate the operation and performance of Enzo on the latter sort of problem,
we show in Figure 8.7 an AMR simulation of primordial star formation that achieves
a local resolution in space and time of 10!2. For comparison, 10'2 is roughly the
ratio of the diameter of the Earth to the size of a human cell. Temporally, 1012 is
roughly the ratio of time since the extinction of the dinosaurs to when you woke up
this morning. Over 8000 subgrids are developed at 34 levels of refinement to achieve
this unprecedented dynamic range.

In Figure 8.8(a) and (b), we show how the grid hierarchy grows as time progresses.
Note the slow increase in the number of grids as the protostar condenses and the
final, very sudden jump in the depth of the grid tree at the end, when the core
of the cloud collapses to high density. This demonstrates how the data structures
themselves adapt to fit the physical solution. Note also the extremely large number
of memory allocations and frees, since the entire grid hierarchy is rebuilt thousands

226

30

20

Maximum level

2000

—_
%
o
o

1000

Grids per level

500

Chapter 8 Application Overviews

T T T 8000 T T :
4 6000 | .
i i)
o 4000 | .
[}
Q0
! s
Z 2000 | i
" 1 " 1 " 1 " 0 1 1 1
0 50 100 150 200 0 50 100 150 200
Time (Myr) Time (Myr)
(@) ()
A —— t=77 Myr ~
| — — =185 Myr z T ,|‘ i
B] S
/! g
[| E ,’l
| ~ 0.5} |]
g I
i _ 2 /|
\ o
4 = /|
\. e T ~ e 0 Lt h
0 10 20 30 40 0 10 20 30 40
Level
(© (d)

Figure 8.8 (a) Depth of the hierarchy tree and (b) number of grids as a function of time (in
millions of years). (c) Number of grids per level and (d) estimate of the computational work
required per level (in each case normalized so that the maximum value is unity).

of times. This kind of method represents a new class of scientific computing that
places great strain on the operating system infrastructure. Total memory usage is
also substantial, often reaching up to 20 GB. With outputs in the 2 to 4 GB range,
we require at least 50 to 100 GB of disk storage and much more mass storage space.

In Figure 8.8(c) and (d), we have chosen two representative times and plotted
the distribution of levels per grid. At early times, most of the grids are at moderate
levels, representing the fact that relatively low resolution is sufficient to model the

8.6 Computational Electromagnetics 227

8.5.7

8.6

protostar. However, at late times, a large investment is required at the very highest
levels of resolution.

Finally, we estimate the raw performance of the code in the following way. We
have used the hardware floating-point counter on the SGI Origin 2000 to determine
the speed of a similar SAMR calculation. This provides a benchmark from which we
can determine the speed of this calculation, which was run on the Blue Horizon IBM
SP2 system at the San Diego Supercomputer Center (SDSC). Running on 64 processors
produced a speed approximately 125 times faster than a single Origin 2000 processor
(105 Mflop/s), yielding a total speed of approximately 13 Gflop/s. As an exercise, we
can also ask how long this calculation would have taken with a traditional static
grid code and compute an effective or virtual flop rate. To do this, we assume a grid
with 102 cells on each side and assume that the entire calculation would have taken
(quite conservatively) 1010 time steps. This works out to approximately 10°° floating-
point operations. Since the entire calculation took in the order of 10° seconds, this
converts to a virtual flop rate of 1044 flop/s.

Future Work

In the near future we intend to carry out large-scale simulations of galaxy forma-
tion resolving the internal structure of thousands of galaxies simultaneously. These
will involve large global root grids (5123 or larger) and deep mesh refinements
around each forming galaxy. Computational requirements are in the sustained ter-
aflop range, owing to the large number of time steps required, with concomitantly
large RAM and disk requirements. Currently, we are porting Enzo to terascale cluster
architectures, including the Compagq system at the Pittsburgh Supercomputing Cen-
ter (PSC), as well as Linux clusters at NCSA. Principal needs remain mature C and
Fortran compilers, debugging tools, optimized mathematical subroutine libraries,
and efficient parallel I/O subsystems. We plan to explore mixed-mode parallel pro-
gramming (threads plus message passing) on the IBM SP2 with Power3 SMP nodes
at the SDSC. Our experience with the CM-5 has taught us, the hard way, that lan-
guage solutions to massive parallelism vanish as quickly as the hardware they rode
in on.

Acknowledgments. This work was carried out under the auspices of the Grand
Challenge Cosmology Consortium with partial support by NSF grants ASC-9318185
and AST-9803137, as well as support from the National Center for Supercomput-
ing Applications, University of Illinois at Urbana-Champaign, which is gratefully
acknowledged.

Computational Electromagnetics
J. S. Shang

Computational electromagnetics (CEM) has a tier-structured approach for radar
cross-section (RCS) prediction, antenna radiation, and coupling problems. The
predictive techniques fall naturally into three general groups, according to the

228

Chapter 8 Application Overviews

mathematics formulation of the physics and the frequency spectrum of interest.
In essence, numerical methods are derived for dominant physical phenomena
depending on whether they occur in the Rayleigh, resonance, or optical region.
The collective modeling and simulation tools span a range, including the asymp-
totic method, the frequency-domain method (or method of moments, MoM), the
time-domain method, and the more recent hybrid technique [471, 535, 647, 857].
Individually, they may be limited either by predictive accuracy or by practicality in
application. As a group, these methods have been extremely productive for antenna
and low-observable technology development.

In the optical region, the asymptotic methods for RCS prediction are based on
ray tracing and edge diffraction [647], which are developed from both simple geo-
metrical optics and geometrical theory of diffraction but not by solving the Maxwell
equations. The scattering phenomenon is described by a set of parallel rays issued
from radar and reflected from a geometric surface. The total scattering field is then
determined by summing the contributions from all rays at a far-field observation
point. Evaluations of these incident and reflected rays are essentially independent
from each other. Thus, numerical methods of this group are extremely easy to port
on massively parallel computers. In fact, scalable performance is a common feature
of all ray-tracing methods. However, these methods are accurate only if the physical
dimension of the scatterer is large in comparison with the incident wavelength and
if it does not have small features such as wires, cracks, and cavities. In order to in-
clude effects of detailed features such as these, it is necessary to apply more accurate
methods involving solution of the Maxwell equations. Unfortunately, frequency-
domain (MoM) and time-domain methods are both time consuming and memory
intensive.

Massively parallel computing capability has aided in the practical application
of frequency-domain and time-domain methods in two ways. First, concurrent
computing significantly reduces the wall-clock time required for data processing.
Recent research efforts in porting CEM programs to multicomputers have recorded
two orders of magnitude of speedup in the data processing rate [857].

More importantly, the distributed and the shared-distributed memory systems can
now accommodate a far larger number of unknowns than were unattainable just a
few years ago. This increased capacity expands the frequency range and complexity
of physics that can be practically simulated.

Meanwhile, numerical algorithm improvement also redefines the application do-
main for CEM. For the frequency-domain method, the fast multipole algorithm
has demonstrated a higher computational efficiency by reducing arithmetic oper-
ations [194]. In turn, the gain in computational efficiency enlarges the application
range of MoM methods from the resonance to the optical region. Compact-difference
schemes, on the other hand, also provide the means for the time-domain method
to approach a spectral-like performance [854, 855]. Although a continuing research
effort is still required to realize the full application potential, the progress in CEM
warrants a timely assessment.

In the development of interdisciplinary modeling and simulation technology,
electromagnetic phenomena are increasingly used as additional control mecha-

8.6 Computational Electromagnetics 229

8.6.1

8.6.2

nisms. In this regard, magneto-aerodynamics is truly an interdisciplinary endeavor.
The interactive physical phenomenon requires the interplay of aerodynamics, elec-
tromagnetics, chemical physics, and quantum physics to describe the ionized gas
flow in the presence of magnetic and electric fields. The science issues for this in-
terdisciplinary endeavor are extremely complex, and the required knowledge base is
the sparest; but the prospect for technical breakthrough is too great to be overlooked
[856]. The present effort attempts to assess the progress in CEM and to identify future
research needs. The major challenges for CEM simulation in the future are wide-band
antenna design, real-time range profiling, synthetic-aperture radar (SAR) imaging,
and ultra-wideband systems for radar remote sensing. In order to meet these chal-
lenges, additional physics must be incorporated into the predictive tools of CEM. The
more complex physical description can only be accommodated by increasing the ef-
ficiency of modeling and simulation technology through improvement of numerical
procedures and interdisciplinary analysis.

Asymptotic Methods

For high-frequency applications, the ray tracing or the shooting-and-bouncing-ray
(SBR) technique is used exclusively [615, 647]. The underlying principle of this tech-
nique is based on physical optics, physical theory of diffraction, or a combination of
both. For multibounce calculations, the effects of polarization, ray divergence factor,
and material reflection coefficients must be taken into consideration. The scattered
far field is derived from the induced surface current by physical optics integration.
Therefore, the predictive accuracy is controllable by the density of the tracing rays.
At present, the SBR technique for RCS and range profile calculation requires a min-
imum ray density of 10 rays per wavelength. Hence, the RCS of a typical fighter at
an incidence elevation and azimuth angle will need about a 30-million-ray window
when illuminated by radar at the X-band frequency (8 to 12 GHz). Fortunately, the
SBR algorithm is naturally suitable for concurrent computing. Exceptionally high
parallel-computing efficiency has been consistently demonstrated in the develop-
ment of automatic target recognition (ATR) technology [647].

For the asymptotic approach, the development of pre- and post-processors is
identified as the pacing item [647]. Predictive accuracy depends on the integrity of
the CAD geometry file of the scatterer. It is therefore critical to be able to inspect the
fidelity of the geometry data and the connectivity of the surface elements. For post-
processor development, the effort needs to go beyond acquisition of an excellent
graphical user interface; hybrid methods, coupling other numerical results, must be
developed.

Frequency-Domain Methods

The progress in the method of moments (MoM) for computing efficiency improve-
ment has been strongly impacted by incorporating advanced basis functions and the

230

8.6.3

Chapter 8 Application Overviews

fast multipole method (FMM) [194]. The Rao-Wilson-Glisson (RWG) basis function
used to discretize the surface integral kernel has substantially reduced the number
of unknowns for finite element approximations [790]. On the other hand, the FMM
technique relies on a hierarchical subdivision of space that encloses the source and
scattering point. For the matrix—vector multiply-dominated numerical procedure,
the operation count can be reduced from O(N 2y to O(N) or O(N log N), depending
on the spatial-distribution point density and implementation.

Research on the integral equation approach emphasizes two areas. The first is
computing efficiency and memory enhancement of the basic algorithms by using
either FMM or the adaptive integral method (AIM) [120]. The second is exclusively
related to parallel computing and requires an extensive investment in the scalable
and parallel matrix-vector multiplier library. An efficient, sparse-matrix-inversion
procedure for MoM is the pacing item for large-scale electromagnetic scattering or
radiating simulations.

Time-Domain Methods

Advances in time-domain methods have been made in porting numerical procedures
to parallel computers [857], unstructured grid implementation [430], and compact-
difference method developments [366, 603, 855, 1011]. Since integration with other
scientific disciplines is often based on the time-domain approach, we discuss these
methods in more detail.

Multicomputers, either distributed-memory or shared-distributed-memory RISC
(reduced instruction set computer) systems, have provided a viable means for sim-
ulating dynamic and wide-band electromagnetic phenomena. It is well known that
balancing the processor’s workload and minimizing interprocessor communication
are essential for effective use of multicomputers. A frequently overlooked require-
ment for efficient parallel computing has been identified from the programming
paradigm for 3-D Maxwell equations. Cache memory, together with memory hierar-
chy utilization, emerges as an equally critical element for high concurrent computing
performance [857]. A data processing rate exceeding 41.3% of the SGI R10000 pro-
cessor specification (rated peak performance of 390 Mflops) has been achieved by en-
hancing the data locality feature. This performance accomplishment demonstrated
that mapping numerical procedures to RISC-based multicomputers, balancing the
processor’s work load, minimizing interprocessor communication, and managing
cache memory are procedures essential for effective use of distributed-memory mul-
ticomputers.

The key to making a computer program flexible enough for a wide range of ap-
plications lies in mapping all grid topologies onto a common framework [430, 854,
857]. Since an unstructured-grid approach represents the most general grid connec-
tivity, grids are best converted to and stored via an unstructured-grid data composi-
tion. This conversion process requires explicit connectivity of adjacent grid points.
The same requirement exists when mapping a numerical procedure to multicomput-
ers by the domain-decomposition approach. Explicit connectivity of adjacent grid

8.6 Computational Electromagnetics 231

8.6.4

points or data blocks becomes a common feature of these two unrelated techniques.
It seems logical to adopt the unstructured-grid approach for both discretizing and
parallel computing. This point is unequivocally illustrated in solving a perfect, elec-
trically conducting (PEC) sphere problem by an explicit finite-volume, time-domain
(FVTD) procedure at high incident-wave frequency [430, 856]. The scattering simula-
tion is obtained from a patched surface mesh to alleviate the mesh point clustering of
the spherical polar coordinate in the polar region. The unstructured-grid approach
realizes a factor of four in computing resource savings over that of conventional
methods. An accurate prediction is obtained on 16 nodes of an SGI Origin 2000
system using a total 33.92 nodal hours, or a wall-clock time of 2.12 hours. The com-
puting resource requirement is comparable to the most efficient MoM computation
using the FMM procedure (20 hours on a single node) [194, 854]. The gain in numer-
ical efficiency of unstructured-grid formulations, however, is offset by the limitation
of second-order numerical algorithms.

For telecommunication and navigation, high-frequency wave packets are required
to propagate over a long distance without significant phase error and amplitude
modulation. A spectral-like, high numerical resolution for simulating long-distance
wave propagation can be derived from high-order or compact-difference algorithms
[603]. The compact-difference-based finite-volume and finite-difference methods
have produced remarkably accurate results for transient electromagnetic wave prop-
agation in waveguides [366, 603, 855, 1011]. These numerical procedures can be
further optimized to minimize dissipative, dispersive, and anisotropic errors. More
recently, a low-pass filter was developed to effectively control an undesirable time-
instability feature of compact-difference schemes. The numerical filter eliminates
the Fourier components that are unsupportable by the grid-point density used. This
high-resolution numerical algorithm research, together with the concept of perfectly
matched layers (PMLs) [91], will remain research foci for CEM in the time domain.

Hybrid Methods

A relatively new approach in the practical CEM arena for full-scale dynamic simula-
tion is the hybrid method [535, 647]. This method is designed to simulate physics
involving interactions of discontinuities on electrically large structures. Three levels
of hybridization are possible by consistently combining earlier computational tools
for solving time-domain, frequency-domain, and asymptotic formulation for scatter-
ing and radiation. The hybrid formulations in CEM meld the best of high-frequency
asymptotics with rigorous low-frequency approaches that are based on first princi-
ples [535, 647]. In general, three types of hybridization have been derived from the
concept of domain decomposition. Type 1 is developed from the Schelkunoff equiv-
alence principle [535] to allow the combination of high-frequency asymptotes with
the solution of surface integral equations. Type 2 hybridization iteratively couples
physical optics with the solution of the surface integral equation. This approach can
treat electrically large and intermediate size scatterers, as well as a radiator strongly

232

8.6.5

8.7

Chapter 8 Application Overviews

dominated by interaction with surface discontinuities. Type 3 hybridization ana-
lyzes problems dominated by strong bidirectional surface-wave interactions, which
are induced by widely separated, local geometrical complexities or different materi-
als. Although hybrid methods are still in the initial stage of development, computing
time savings by a factor of 20 have been realized in some numerical simulations [535].
The development of a consistent and systematic hybrid technique is a major area of
emphasis for future CEM research.

State of the Art

Computational magneto-aerodynamics is recognized as a new frontier for interdis-
ciplinary technology development. A key element of this technical requirement
is integrating CEM in the time domain with computational fluid dynamics and
computational chemical kinetics. The impact of this interdisciplinary endeavor to
high-speed flight may be revolutionary.

This assessment indicates that the hybrid technique is one of the most exciting de-
velopments in expanding the application envelope for CEM. For frequency-domain
methods, an efficient and scalable matrix-vector multiplier appears to be the pacing
item. In order to achieve greater computational efficiency on RISC-based multicom-
puters, cache utilization emerges as an important requirement for high-performance
computing.

Parallel Algorithms in Data Mining
Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar

Recent growth in the availability of various kinds of data has been explosive. It
has resulted in an unprecedented opportunity to develop automated data-driven
techniques of extracting useful knowledge. Data mining, an important step in this
process of knowledge discovery, consists of methods that discover interesting, non-
trivial, and useful patterns hidden in the data [191, 902]. The field of data mining
builds on ideas from diverse fields, such as machine learning, pattern recognition,
statistics, database systems, and data visualization. But techniques developed in
these traditional disciplines are often unsuitable due to some unique characteristics
of today’s data sets, such as their enormous sizes, high dimensionality, and hetero-
geneity.

To date, the primary driving force behind research in data mining has been the
development of algorithms for data sets arising in various business, information re-
trieval, and financial applications. Businesses can use data mining to gain significant
advantages in today’s competitive global marketplace. For example, the retail indus-
try is using data mining techniques to analyze buying patterns of customers, mail
order businesses are using them for targeted marketing, the telecommunication in-
dustry is using them for churn prediction and network alarm analysis, and the credit
card industry is using them for fraud detection. Also, the recent growth of electronic

8.7 Parallel Algorithms in Data Mining 233

8.7.1

commerce is generating a wealth of online Web data, which requires sophisticated
data mining techniques.

Due to the latest technological advances, very large data sets are becoming avail-
able in many scientific disciplines as well. The rate of production of such data sets
far outstrips the ability to analyze them manually. For example, a computational
simulation running on state-of-the-art, high-performance computers can generate
terabytes of data within a few hours, whereas a human analyst may take several
weeks or longer to analyze and discover useful information from these data sets.
Data mining techniques hold great promise for developing new sets of tools that
can be used to automatically analyze the massive data sets resulting from such simu-
lations and thus help engineers and scientists unravel the causal relationships in the
underlying mechanisms of dynamic physical processes. Some other recently emerg-
ing applications of data mining can be found in the analysis and understanding of
gene functions in the field of genomics and the categorization of stars and galaxies
in the field of astrophysics.

The huge size of the available data sets and their high dimensionality make
large-scale data mining applications computationally very demanding, and high-
performance parallel computing is becoming an essential component of the solu-
tion. Moreover, the quality of the data mining results often depends directly on
the amount of computing resources available. In fact, data mining applications are
poised to become the dominant consumers of supercomputing in the near future.
There is a necessity to develop effective parallel algorithms for various data mining
techniques. However, designing such algorithms is challenging. In the rest of this sec-
tion, we describe the parallel formulations of two important data mining algorithms:
discovery of association rules and induction of decision trees for classification.

Parallel Algorithms for Discovering Associations

An important problem in data mining [191] is the discovery of associations present
in the data. Such problems arise in the data collected from scientific experiments,
from monitoring of physical systems such as telecommunications networks, or from
transactions at a supermarket. The problem was formulated originally in the context
of transaction data at a supermarket. These market basket data consist of transactions
made by each customer. Each transaction contains items bought by the customer (see
Table 8.1). The goal is to see if the occurrence of certain items in a transaction can
be used to deduce occurrence of other items, or in other words, to find associative
relationships among items. If such interesting relationships can be found, then they
can be put to various profitable uses: shelf management, inventory management,
and so on. Thus, association rules were born [14]. Given a set of items, association rules
predict the occurrence of some other set of items with a certain degree of confidence.
The goal is to discover all such interesting rules. This problem is far from trivial because
of the exponential number of ways in which items can be grouped together and the
different ways in which one can define the “interestingness” of a rule. Hence, much
research effort has been put into formulating efficient solutions to the problem.

234

Chapter 8 Application Overviews

Table 8.1 Supermarket transactions.

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Let T be the set of transactions, where each transaction is a subset of the item set
I. Let C be a subset of I. We define the support count of C with respect to T to be:

o) ={tlteT, C<ct}

Thus o(C) is the number of transactions that contain C. An association rule is
an expression of the form X =%y, where X €I and Y CI. The support s of the
rule X 2% Y is defined as o (X UY)/|T|, and the confidence « is defined as o (X U
Y)/o(X). For example, for transactions in Table 8.1, the support of rule {Diaper,
Milk} = {Beer} is o (Diaper, Milk, Beer)/5 = 2/5 = 40%, whereas its confidence is
o (Diaper, Milk, Beer) /o (Diaper, Milk) = 2/3 = 66%.

The task of discovering an association rule is to find all rules X =% ¥ such that s
is greater than or equal to a given minimum support threshold and « is greater than
or equal to a given minimum confidence threshold. The association rule discovery
is usually done in two phases. The first phase finds all the frequent item sets, that is,
sets satisfying the support threshold. These are then post-processed in the second
phase to find the high-confidence rules. The former phase is computationally more
expensive, and much research has been done in developing efficient algorithms
for it. A comparative survey of all the existing techniques is given in Joshi et al.
[526]. A key feature of these algorithms lies in their method of controlling the
exponential complexity of the total number of item sets (2!!). Briefly, they all use
the antimonotone property of an item set support, which states that an item set
is frequent only if all of its sub-item sets are frequent. The Apriori algorithm [16]
pioneered the use of this property to systematically search the exponential space of
item sets. At iteration k, it generates all the candidate k-item sets (of length k) such
that all their (k — 1)-subsets are frequent. The occurrences of these candidates in the
transaction database are counted to determine frequent k-item sets. Efficient data
structures are used to perform fast counting.

Overall, serial algorithms such as Apriori have been successful on a wide vari-
ety of transaction databases. However, many practical applications of association
rules involve huge transaction databases that contain a large number of distinct
items. In such situations, these algorithms running on single-processor machines
may take unacceptably long times. For example, in the Apriori algorithm, if the
number of candidate item sets becomes too large, then they might not all fit in

8.7 Parallel Algorithms in Data Mining 235

the main memory, and multiple database passes would be required within each
iteration, incurring expensive I/O cost. This implies that, even with the highly
effective pruning method of Apriori, the task of finding all association rules can
require a lot of computational and memory resources. This is true of most of
the other serial algorithms as well, and it motivates the development of parallel
formulations.

Various parallel formulations have been developed; a comprehensive survey can
be found in Joshi et al. [526], and Zaki 1013]. These formulations are designed to
effectively parallelize either or both of the computation phases: candidate gener-
ation and candidate counting. The candidate-counting phase can be parallelized
relatively easily by distributing the transaction database and gathering local counts
for the entire set of candidates stored on all the processors. The CD algorithm [15]
is an example of this simple approach. It scales linearly with respect to the number
of transactions; however, generation and storage of a huge number of candidates on
all the processors becomes a bottleneck, especially when high-dimensional problems
are solved for low support thresholds using a large number of processors. Other par-
allel formulations, such as IDD [433], have been developed to solve these problems.
Their key feature is that they distribute the candidate item sets to processors so as to
extract the concurrency in the candidate-generation phase as well as the counting
phase. Various ways are employed in IDD to reduce the communication overhead,
to exploit the total available memory, and to achieve reasonable load balance. The
IDD algorithm exhibits better scalability with respect to the number of candidates.
Moreover, reduction of redundant work and the ability to overlap counting com-
putation with communication of transactions improves its scalability with respect
to the number of transactions. However, it still faces problems when one desires to
use a large number of processors to solve the problem. As more processors are used,
the number of candidates assigned to each processor decreases. This has two impli-
cations for IDD. First, with fewer candidates per processor, it is much more difficult
to achieve load balance. Second, it results in less computation work per transac-
tion at each processor, reducing the overall efficiency. Further, lack of asynchronous
communication ability may worsen the situation.

Formulations that combine the approaches of replicating and distributing candi-
dates so as to reduce the problems of each one have been developed. An example is
the HD algorithm of [433]. Briefly, it works as follows. Consider a P-processor sys-
tem in which the processors are split into G equal-size groups, each containing P/G
processors. In the HD algorithm, we execute the CD algorithm as if there were only
P/G processors. That is, we partition the transactions of the database into P/G parts,
each of size N/(P/G), and assign the task of computing the counts of the candidate
set Cy for each subset of the transactions to each one of these groups of processors.
Within each group, these counts are computed using the IDD algorithm. The HD
algorithm inherits all the good features of the IDD algorithm. It also provides good
load balance and enough computation work by maintaining a minimum number of
candidates per processor. At the same time, the amount of data movement in this
algorithm is cut down to 1/G of that of IDD. A detailed parallel run-time analysis of

236

8.7.2

Chapter 8 Application Overviews

HD is given in Han et al. [434]. It shows that HD is scalable with respect to both the
number of transactions and the number of candidates. The analysis also provides
the necessary conditions under which HD can outperform CD.

Sequential Associations

The concept of association rules can be generalized and made more useful by observ-
ing another fact about transactions. All transactions have a time stamp associated
with them, that is, the time at which the transaction occurred. If this information
can be put to use, one can find relationships such as: if a customer bought [The C Pro-
gramming Language] book today, then he/she is likely to buy a [Using Perl] book in a few
days’ time. The usefulness of this kind of rule gave birth to the problem of discover-
ing sequential patterns or sequential associations. In general, a sequential pattern is a
sequence of item sets with various timing constraints imposed on the occurrences
of items appearing in the pattern. For example, (A) (C,B) (D) encodes a relationship
that event D occurs after an event-set (C,B), which in turn occurs after event A. Prediction
of events and identification of sequential rules that characterize different parts of the
data are some example applications of sequential patterns. Such patterns are not only
important because they represent more powerful and predictive relationships, but
they are also important from the algorithmic point of view. Bringing in sequential
relationships increases the combinatorial complexity of the problem enormously.
The maximum number of sequences having k events is O@mk2k-1y where m is the
total number of distinct events in the input data. In contrast, there are only ('
size-k item sets possible when discovering nonsequential associations from m dis-
tinct items. Designing parallel algorithms for discovering sequential associations is
equally important and challenging. In many situations, the techniques used in par-
allel algorithms for discovering standard nonsequential associations can be extended
easily. However, different issues and challenges arise due to the sequential nature and
various ways in which interesting sequential associations can be defined. Details of
various serial and parallel formulations and algorithms for finding such associations
can be found in Joshi et al. [526, 528].

Parallel Algorithms for Induction of Decision-Tree Classifiers

Classification is an important data mining problem. The input to the problem is
a data set called the training set, which consists of a number of examples, each
having a number of attributes. The attributes are either continuous, when the attribute
values are ordered, or categorical, when the attribute values are unordered. One of the
categorical attributes is called the class label or the classifying attribute. The objective
is to use the training set to build a model of the class label, based on the other
attributes, such that the model can be used to classify new data not from the training
data set. Application domains include retail target marketing, fraud detection, and
design of telecommunication service plans. Several classification models such as
neural networks [617], genetic algorithms [386], and decision trees [785] have been

8.7 Parallel Algorithms in Data Mining 237

proposed. Decision trees are probably the most popular, since they obtain reasonable
accuracy [673] and are relatively inexpensive to compute.

Most of the existing induction-based algorithms such as C4.5 [785], CDP [13],
SLIQ [662], and SPRINT [851] use Hunt’s method [785] as the basic algorithm. Here
is its recursive description for constructing a decision tree from a set T of training
cases, with classes denoted {Cq, Cy, ..., Ci}.

Case 1. T contains cases all belonging to a single class C;. The decision tree for
T is a leaf identifying class C;.

Case 2. T contains cases that belong to a mixture of classes. A test is chosen,
based on a single attribute, that has one or more mutually exclusive outcomes
{01, 05, ..., 0,}. Note that in many implementations, n is chosen to be 2; this
leads to a binary decision tree. T is partitioned into subsets Ty, T», ..., T,;,, where
T; contains all the cases in T that have outcome O; of the chosen test. The
decision tree for T consists of a decision node identifying the test and one
branch for each possible outcome. The same tree-building machinery is applied
recursively to each subset of training cases.

Case 3. T contains no cases. The decision tree for T is a leaf, but the class to be
associated with the leaf must be determined from information other than T.
For example, C4.5 chooses this to be the most frequent class at the parent of
this node.

Figure 8.9 shows a training data set with four data attributes and two classes;
its classification decision tree was constructed using Hunt’s method. In Case 2 of
Hunt’s method, a test based on a single attribute is chosen for expanding the current
node. The choice of an attribute is normally based on the entropy gains [785]
of the attributes. The entropy of an attribute, calculated from class distribution
information, depicts the classification power of the attribute by itself. The best
attribute is selected as a test for node expansion.

Highly parallel algorithms for constructing classification decision trees are desir-
able for dealing with large data sets in a reasonable amount of time. Classification
decision-tree construction algorithms have natural concurrency; once a node is gen-
erated, all of its children in the classification tree can be generated concurrently.
Furthermore, the computation for generating successors of a classification-tree node
can also be decomposed by performing data decomposition on the training data.
Nevertheless, parallelization of the algorithms for constructing the classification tree
is challenging. First, the shape of the tree is highly irregular and is determined only
at run time. Furthermore, the amount of work associated with each node also varies
and is data dependent. Hence, any static allocation scheme is likely to suffer from
major load imbalance. Second, even though the successors of a node can be pro-
cessed concu