
 



 

In Praise of Programming Massively Parallel Processors:
A Hands-on Approach

Parallel programming is about performance, for otherwise you’d write a
sequential program. For those interested in learning or teaching the topic,
a problem is where to find truly parallel hardware that can be dedicated to
the task, for it is difficult to see interesting speedups if its shared or only
modestly parallel. One answer is graphical processing units (GPUs), which
can have hundreds of cores and are found in millions of desktop and laptop
computers. For those interested in the GPU path to parallel enlightenment,
this new book from David Kirk and Wen-mei Hwu is a godsend, as it intro-
duces CUDA, a C-like data parallel language, and Tesla, the architecture
of the current generation of NVIDIA GPUs. In addition to explaining the
language and the architecture, they define the nature of data parallel pro-
blems that run well on heterogeneous CPU-GPU hardware. More con-
cretely, two detailed case studies demonstrate speedups over CPU-only C
programs of 10X to 15X for naı̈ve CUDA code and 45X to 105X for expertly
tuned versions. They conclude with a glimpse of the future by describing the
next generation of data parallel languages and architectures: OpenCL and
the NVIDIA Fermi GPU. This book is a valuable addition to the recently
reinvigorated parallel computing literature.

David Patterson
Director, The Parallel Computing Research Laboratory

Pardee Professor of Computer Science, U.C. Berkeley

Co-author of Computer Architecture: A Quantitative Approach

Written by two teaching pioneers, this book is the definitive practical refer-
ence on programming massively parallel processors—a true technological
gold mine. The hands-on learning included is cutting-edge, yet very read-
able. This is a most rewarding read for students, engineers and scientists
interested in supercharging computational resources to solve today’s and
tomorrow’s hardest problems.

Nicolas Pinto
MIT, NVIDIA Fellow 2009

I have always admired Wen-mei Hwu’s and David Kirk’s ability to turn
complex problems into easy-to-comprehend concepts. They have done it
again in this book. This joint venture of a passionate teacher and a GPU



 

evangelizer tackles the trade-off between the simple explanation of the con-
cepts and the depth analysis of the programming techniques. This is a great
book to learn both massive parallel programming and CUDA.

Mateo Valero
Director, Barcelona Supercomputing Center

The use of GPUs is having a big impact in scientific computing. David Kirk
and Wen-mei Hwu’s new book is an important contribution towards educat-
ing our students on the ideas and techniques of programming for massively-
parallel processors.

Mike Giles
Professor of Scientific Computing

University of Oxford

This book is the most comprehensive and authoritative introduction to GPU
computing yet. David Kirk and Wen-mei Hwu are the pioneers in this
increasingly important field, and their insights are invaluable and
fascinating. This book will be the standard reference for years to come.

Hanspeter Pfister
Harvard University

This is a vital and much needed text. GPU programming is growing by
leaps and bounds. This new book will be very welcomed and highly useful
across inter-disciplinary fields.

Shannon Steinfadt
Kent State University
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Preface

WHY WE WROTE THIS BOOK
Mass-market computing systems that combine multicore CPUs and many-

core GPUs have brought terascale computing to the laptop and petascale

computing to clusters. Armed with such computing power, we are at the

dawn of pervasive use of computational experiments for science, engineer-

ing, health, and business disciplines. Many will be able to achieve break-

throughs in their disciplines using computational experiments that are of

unprecedented level of scale, controllability, and observability. This book

provides a critical ingredient for the vision: teaching parallel programming

to millions of graduate and undergraduate students so that computational

thinking and parallel programming skills will be as pervasive as calculus.

We started with a course now known as ECE498AL. During the Christ-

mas holiday of 2006, we were frantically working on the lecture slides and

lab assignments. David was working the system trying to pull the early

GeForce 8800 GTX GPU cards from customer shipments to Illinois, which

would not succeed until a few weeks after the semester began. It also

became clear that CUDA would not become public until a few weeks after

the start of the semester. We had to work out the legal agreements so that

we can offer the course to students under NDA for the first few weeks.

We also needed to get the words out so that students would sign up since

the course was not announced until after the preenrollment period.

We gave our first lecture on January 16, 2007. Everything fell into

place. David commuted weekly to Urbana for the class. We had 52

students, a couple more than our capacity. We had draft slides for most

of the first 10 lectures. Wen-mei’s graduate student, John Stratton,

graciously volunteered as the teaching assistant and set up the lab. All students

signed NDA so that we can proceed with the first several lectures until

CUDA became public. We recorded the lectures but did not release them

on the Web until February. We had graduate students from physics, astron-

omy, chemistry, electrical engineering, mechanical engineering as well as

computer science and computer engineering. The enthusiasm in the room

made it all worthwhile.

Since then, we have taught the course three times in one-semester

format and two times in one-week intensive format. The ECE498AL course

has become a permanent course known as ECE408 of the University of

Illinois, Urbana-Champaign. We started to write up some early chapters

of this book when we offered ECE498AL the second time. We tested these
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chapters in our spring 2009 class and our 2009 Summer School. The first

four chapters were also tested in an MIT class taught by Nicolas Pinto in

spring 2009. We also shared these early chapters on the web and received

valuable feedback from numerous individuals. We were encouraged by

the feedback we received and decided to go for a full book. Here, we hum-

bly present our first edition to you.

TARGET AUDIENCE
The target audience of this book is graduate and undergraduate students

from all science and engineering disciplines where computational thinking

and parallel programming skills are needed to use pervasive terascale com-

puting hardware to achieve breakthroughs. We assume that the reader has at

least some basic C programming experience and thus are more advanced

programmers, both within and outside of the field of Computer Science.

We especially target computational scientists in fields such as mechanical

engineering, civil engineering, electrical engineering, bioengineering, phys-

ics, and chemistry, who use computation to further their field of research.

As such, these scientists are both experts in their domain as well as

advanced programmers. The book takes the approach of building on basic

C programming skills, to teach parallel programming in C. We use C for

CUDA�, a parallel programming environment that is supported on NVI-

DIA GPUs, and emulated on less parallel CPUs. There are approximately

200 million of these processors in the hands of consumers and profes-

sionals, and more than 40,000 programmers actively using CUDA. The

applications that you develop as part of the learning experience will be able

to be run by a very large user community.

HOW TO USE THE BOOK
We would like to offer some of our experience in teaching ECE498AL

using the material detailed in this book.

A Three-Phased Approach

In ECE498AL the lectures and programming assignments are balanced with

each other and organized into three phases:

Phase 1: One lecture based on Chapter 3 is dedicated to teaching the

basic CUDA memory/threading model, the CUDA extensions to the C
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language, and the basic programming/debugging tools. After the lecture,

students can write a naı̈ve parallel matrix multiplication code in a couple

of hours.

Phase 2: The next phase is a series of 10 lectures that give students the

conceptual understanding of the CUDA memory model, the CUDA thread-

ing model, GPU hardware performance features, modern computer system

architecture, and the common data-parallel programming patterns needed

to develop a high-performance parallel application. These lectures are

based on Chapters 4 through 7. The performance of their matrix multiplica-

tion codes increases by about 10 times through this period. The students

also complete assignments on convolution, vector reduction, and prefix

scan through this period.

Phase 3: Once the students have established solid CUDA programming

skills, the remaining lectures cover computational thinking, a broader

range of parallel execution models, and parallel programming principles.

These lectures are based on Chapters 8 through 11. (The voice and video

recordings of these lectures are available on-line (http://courses.ece.

illinois.edu/ece498/al).)

Tying It All Together: The Final Project

While the lectures, labs, and chapters of this book help lay the intellectual

foundation for the students, what brings the learning experience together

is the final project. The final project is so important to the course that it

is prominently positioned in the course and commands nearly 2 months’

focus. It incorporates five innovative aspects: mentoring, workshop, clinic,

final report, and symposium. (While much of the information about final

project is available at the ECE498AL web site (http://courses.ece.illinois.

edu/ece498/al), we would like to offer the thinking that was behind the

design of these aspects.)

Students are encouraged to base their final projects on problems that

represent current challenges in the research community. To seed the

process, the instructors recruit several major computational science research

groups to propose problems and serve as mentors. The mentors are asked to

contribute a one-to-two-page project specification sheet that briefly

describes the significance of the application, what the mentor would like

to accomplish with the student teams on the application, the technical skills

(particular type of Math, Physics, Chemistry courses) required to under-

stand and work on the application, and a list of web and traditional

resources that students can draw upon for technical background, general
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information, and building blocks, along with specific URLs or ftp paths to

particular implementations and coding examples. These project specifica-

tion sheets also provide students with learning experiences in defining their

own research projects later in their careers. (Several examples are available

at the ECE498AL course web site.)

Students are also encouraged to contact their potential mentors during

their project selection process. Once the students and the mentors agree

on a project, they enter into a close relationship, featuring frequent consul-

tation and project reporting. We the instructors attempt to facilitate the

collaborative relationship between students and their mentors, making it a

very valuable experience for both mentors and students.

The Project Workshop
The main vehicle for the whole class to contribute to each other’s final proj-

ect ideas is the project workshop. We usually dedicate six of the lecture

slots to project workshops. The workshops are designed for students’

benefit. For example, if a student has identified a project, the workshop

serves as a venue to present preliminary thinking, get feedback, and recruit

teammates. If a student has not identified a project, he/she can simply

attend the presentations, participate in the discussions, and join one of the

project teams. Students are not graded during the workshops, in order to

keep the atmosphere nonthreatening and enable them to focus on a

meaningful dialog with the instructor(s), teaching assistants, and the rest

of the class.

The workshop schedule is designed so the instructor(s) and teaching

assistants can take some time to provide feedback to the project teams

and so that students can ask questions. Presentations are limited to 10 min

so there is time for feedback and questions during the class period. This

limits the class size to about 36 presenters, assuming 90-min lecture slots.

All presentations are preloaded into a PC in order to control the schedule

strictly and maximize feedback time. Since not all students present at the

workshop, we have been able to accommodate up to 50 students in each

class, with extra workshop time available as needed.

The instructor(s) and TAs must make a commitment to attend all the

presentations and to give useful feedback. Students typically need most

help in answering the following questions. First, are the projects too big

or too small for the amount of time available? Second, is there existing

work in the field that the project can benefit from? Third, are the computa-

tions being targeted for parallel execution appropriate for the CUDA

programming model?
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The Design Document
Once the students decide on a project and form a team, they are required to

submit a design document for the project. This helps them think through the

project steps before they jump into it. The ability to do such planning will

be important to their later career success. The design document should

discuss the background and motivation for the project, application-level

objectives and potential impact, main features of the end application, an

overview of their design, an implementation plan, their performance goals,

a verification plan and acceptance test, and a project schedule.

The teaching assistants hold a project clinic for final project teams

during the week before the class symposium. This clinic helps ensure that

students are on-track and that they have identified the potential roadblocks

early in the process. Student teams are asked to come to the clinic with an

initial draft of the following three versions of their application: (1) The best

CPU sequential code in terms of performance, with SSE2 and other optimi-

zations that establish a strong serial base of the code for their speedup

comparisons; (2) The best CUDA parallel code in terms of performance.

This version is the main output of the project; (3) A version of CPU sequen-

tial code that is based on the same algorithm as version 3, using single

precision. This version is used by the students to characterize the parallel

algorithm overhead in terms of extra computations involved.

Student teams are asked to be prepared to discuss the key ideas used in

each version of the code, any floating-point precision issues, any compari-

son against previous results on the application, and the potential impact

on the field if they achieve tremendous speedup. From our experience,

the optimal schedule for the clinic is 1 week before the class symposium.

An earlier time typically results in less mature projects and less meaningful

sessions. A later time will not give students sufficient time to revise their

projects according to the feedback.

The Project Report
Students are required to submit a project report on their team’s key find-

ings. Six lecture slots are combined into a whole-day class symposium.

During the symposium, students use presentation slots proportional to the

size of the teams. During the presentation, the students highlight the best

parts of their project report for the benefit of the whole class. The presenta-

tion accounts for a significant part of students’ grades. Each student must

answer questions directed to him/her as individuals, so that different grades

can be assigned to individuals in the same team. The symposium is a major

opportunity for students to learn to produce a concise presentation that
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motivates their peers to read a full paper. After their presentation, the stu-

dents also submit a full report on their final project.

ONLINE SUPPLEMENTS
The lab assignments, final project guidelines, and sample project specifica-

tions are available to instructors who use this book for their classes. While

this book provides the intellectual contents for these classes, the additional

material will be crucial in achieving the overall education goals. We would

like to invite you to take advantage of the online material that accompanies

this book, which is available at the Publisher’s Web site www.elsevierdir-

ect.com/9780123814722.

Finally, we encourage you to submit your feedback. We would like to

hear from you if you have any ideas for improving this book and the

supplementary online material. Of course, we also like to know what you

liked about the book.

David B. Kirk and Wen-mei W. Hwu
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INTRODUCTION
Microprocessors based on a single central processing unit (CPU), such as

those in the Intel� Pentium� family and the AMD� Opteron� family,

drove rapid performance increases and cost reductions in computer applica-

tions for more than two decades. These microprocessors brought giga (bil-

lion) floating-point operations per second (GFLOPS) to the desktop and

hundreds of GFLOPS to cluster servers. This relentless drive of perfor-

mance improvement has allowed application software to provide more

functionality, have better user interfaces, and generate more useful results.

The users, in turn, demand even more improvements once they become

accustomed to these improvements, creating a positive cycle for the

computer industry.

During the drive, most software developers have relied on the advances

in hardware to increase the speed of their applications under the hood; the

same software simply runs faster as each new generation of processors

is introduced. This drive, however, has slowed since 2003 due to energy-

consumption and heat-dissipation issues that have limited the increase of

the clock frequency and the level of productive activities that can be

performed in each clock period within a single CPU. Virtually all micro-

processor vendors have switched to models where multiple processing

units, referred to as processor cores, are used in each chip to increase the

1



 

processing power. This switch has exerted a tremendous impact on the

software developer community [Sutter 2005].

Traditionally, the vast majority of software applications are written as

sequential programs, as described by von Neumann [1945] in his seminal

report. The execution of these programs can be understood by a human

sequentially stepping through the code. Historically, computer users have

become accustomed to the expectation that these programs run faster with

each new generation of microprocessors. Such expectation is no longer

strictly valid from this day onward. A sequential program will only run on

one of the processor cores, which will not become significantly faster than

those in use today. Without performance improvement, application develo-

pers will no longer be able to introduce new features and capabilities into

their software as new microprocessors are introduced, thus reducing the

growth opportunities of the entire computer industry.

Rather, the applications software that will continue to enjoy perfor-

mance improvement with each new generation of microprocessors will be

parallel programs, in which multiple threads of execution cooperate to com-

plete the work faster. This new, dramatically escalated incentive for parallel

program development has been referred to as the concurrency revolution
[Sutter 2005]. The practice of parallel programming is by no means new.

The high-performance computing community has been developing parallel

programs for decades. These programs run on large-scale, expensive com-

puters. Only a few elite applications can justify the use of these expensive

computers, thus limiting the practice of parallel programming to a small

number of application developers. Now that all new microprocessors are

parallel computers, the number of applications that must be developed

as parallel programs has increased dramatically. There is now a great need

for software developers to learn about parallel programming, which is the

focus of this book.

1.1 GPUs AS PARALLEL COMPUTERS
Since 2003, the semiconductor industry has settled on two main trajectories

for designing microprocessor [Hwu 2008]. The multicore trajectory seeks to

maintain the execution speed of sequential programs while moving into

multiple cores. The multicores began as two-core processors, with the

number of cores approximately doubling with each semiconductor process

generation. A current exemplar is the recent Intel�Core� i7 microprocessor,
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which has four processor cores, each of which is an out-of-order, multiple-

instruction issue processor implementing the full x86 instruction set; the

microprocessor supports hyperthreading with two hardware threads and is

designed to maximize the execution speed of sequential programs.

In contrast, the many-core trajectory focuses more on the execution

throughput of parallel applications. The many-cores began as a large num-

ber of much smaller cores, and, once again, the number of cores doubles

with each generation. A current exemplar is the NVIDIA� GeForce�

GTX 280 graphics processing unit (GPU) with 240 cores, each of which

is a heavily multithreaded, in-order, single-instruction issue processor that

shares its control and instruction cache with seven other cores. Many-core

processors, especially the GPUs, have led the race of floating-point perfor-

mance since 2003. This phenomenon is illustrated in Figure 1.1. While the

performance improvement of general-purpose microprocessors has slowed

significantly, the GPUs have continued to improve relentlessly. As of

2009, the ratio between many-core GPUs and multicore CPUs for peak

floating-point calculation throughput is about 10 to 1. These are not neces-

sarily achievable application speeds but are merely the raw speed that the

execution resources can potentially support in these chips: 1 teraflops

(1000 gigaflops) versus 100 gigaflops in 2009.
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Enlarging performance gap between GPUs and CPUs.
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Such a large performance gap between parallel and sequential execution

has amounted to a significant “electrical potential” buildup, and at some

point something will have to give. We have reached that point now. To

date, this large performance gap has already motivated many applications

developers to move the computationally intensive parts of their software

to GPUs for execution. Not surprisingly, these computationally intensive

parts are also the prime target of parallel programming—when there is

more work to do, there is more opportunity to divide the work among coop-

erating parallel workers.

One might ask why there is such a large performance gap between

many-core GPUs and general-purpose multicore CPUs. The answer lies in

the differences in the fundamental design philosophies between the two

types of processors, as illustrated in Figure 1.2. The design of a CPU is

optimized for sequential code performance. It makes use of sophisticated

control logic to allow instructions from a single thread of execution to exe-

cute in parallel or even out of their sequential order while maintaining the

appearance of sequential execution. More importantly, large cache mem-

ories are provided to reduce the instruction and data access latencies of

large complex applications. Neither control logic nor cache memories con-

tribute to the peak calculation speed. As of 2009, the new general-purpose,

multicore microprocessors typically have four large processor cores

designed to deliver strong sequential code performance.

Memory bandwidth is another important issue. Graphics chips have been

operating at approximately 10 times the bandwidth of contemporaneously

available CPU chips. In late 2006, the GeForce� 8800 GTX, or simply
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CPUs and GPUs have fundamentally different design philosophies.
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G80, was capable of moving data at about 85 gigabytes per second (GB/s)

in and out of its main dynamic random access memory (DRAM). Because

of frame buffer requirements and the relaxed memory model—the way

various system software, applications, and input/output (I/O) devices expect

their memory accesses to work—general-purpose processors have to satisfy

requirements from legacy operating systems, applications, and I/O devices

that make memory bandwidth more difficult to increase. In contrast, with

simpler memory models and fewer legacy constraints, the GPU designers

can more easily achieve higher memory bandwidth. The more recent

NVIDIA� GT200 chip supports about 150 GB/s. Microprocessor system

memory bandwidth will probably not grow beyond 50 GB/s for about

3 years, so CPUs will continue to be at a disadvantage in terms of memory

bandwidth for some time.

The design philosophy of the GPUs is shaped by the fast growing video

game industry, which exerts tremendous economic pressure for the ability

to perform a massive number of floating-point calculations per video frame

in advanced games. This demand motivates the GPU vendors to look for

ways to maximize the chip area and power budget dedicated to floating-

point calculations. The prevailing solution to date is to optimize for the exe-

cution throughput of massive numbers of threads. The hardware takes

advantage of a large number of execution threads to find work to do when

some of them are waiting for long-latency memory accesses, thus minimiz-

ing the control logic required for each execution thread. Small cache mem-

ories are provided to help control the bandwidth requirements of these

applications so multiple threads that access the same memory data do not

need to all go to the DRAM. As a result, much more chip area is dedicated

to the floating-point calculations.

It should be clear now that GPUs are designed as numeric computing

engines, and they will not perform well on some tasks on which CPUs

are designed to perform well; therefore, one should expect that most appli-

cations will use both CPUs and GPUs, executing the sequential parts on the

CPU and numerically intensive parts on the GPUs. This is why the

CUDA� (Compute Unified Device Architecture) programming model,

introduced by NVIDIA in 2007, is designed to support joint CPU/GPU exe-

cution of an application.1

1See Chapter 2 for more background on the evolution of GPU computing and the creation

of CUDA.
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It is also important to note that performance is not the only decision

factor when application developers choose the processors for running their

applications. Several other factors can be even more important. First and

foremost, the processors of choice must have a very large presence in the

marketplace, referred to as the installation base of the processor. The reason

is very simple. The cost of software development is best justified by a very

large customer population. Applications that run on a processor with a

small market presence will not have a large customer base. This has been

a major problem with traditional parallel computing systems that have neg-

ligible market presence compared to general-purpose microprocessors.

Only a few elite applications funded by government and large corporations

have been successfully developed on these traditional parallel computing

systems. This has changed with the advent of many-core GPUs. Due to

their popularity in the PC market, hundreds of millions of GPUs have been

sold. Virtually all PCs have GPUs in them. The G80 processors and their

successors have shipped more than 200 million units to date. This is the

first time that massively parallel computing has been feasible with a

mass-market product. Such a large market presence has made these GPUs

economically attractive for application developers.

Other important decision factors are practical form factors and easy

accessibility. Until 2006, parallel software applications usually ran on

data-center servers or departmental clusters, but such execution environ-

ments tend to limit the use of these applications. For example, in an appli-

cation such as medical imaging, it is fine to publish a paper based on a

64-node cluster machine, but actual clinical applications on magnetic reso-

nance imaging (MRI) machines are all based on some combination of a PC

and special hardware accelerators. The simple reason is that manufacturers

such as GE and Siemens cannot sell MRIs with racks of clusters to clinical

settings, but this is common in academic departmental settings. In fact, the

National Institutes of Health (NIH) refused to fund parallel programming

projects for some time; they felt that the impact of parallel software would

be limited because huge cluster-based machines would not work in the

clinical setting. Today, GE ships MRI products with GPUs, and NIH funds

research using GPU computing.

Yet another important consideration in selecting a processor for exe-

cuting numeric computing applications is the support for the Institute of

Electrical and Electronics Engineers (IEEE) floating-point standard. The

standard makes it possible to have predictable results across processors

from different vendors. While support for the IEEE floating-point standard
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was not strong in early GPUs, this has also changed for new generations of

GPUs since the introduction of the G80. As we will discuss in Chapter 7,

GPU support for the IEEE floating-point standard has become comparable

to that of the CPUs. As a result, one can expect that more numerical appli-

cations will be ported to GPUs and yield comparable values as the CPUs.

Today, a major remaining issue is that the floating-point arithmetic units

of the GPUs are primarily single precision. Applications that truly require

double-precision floating point were not suitable for GPU execution;

however, this has changed with the recent GPUs, whose double-precision

execution speed approaches about half that of single precision, a level that

high-end CPU cores achieve. This makes the GPUs suitable for even more

numerical applications.

Until 2006, graphics chips were very difficult to use because programmers

had to use the equivalent of graphic application programming interface

(API) functions to access the processor cores, meaning that OpenGL� or

Direct3D� techniques were needed to program these chips. This technique

was called GPGPU, short for general-purpose programming using a graphics

processing unit. Even with a higher level programming environment, the

underlying code is still limited by the APIs. These APIs limit the kinds

of applications that one can actually write for these chips. That’s why only

a few people could master the skills necessary to use these chips to achieve

performance for a limited number of applications; consequently, it did not

become a widespread programming phenomenon. Nonetheless, this technol-

ogy was sufficiently exciting to inspire some heroic efforts and excellent

results.

Everything changed in 2007 with the release of CUDA [NVIDIA 2007].

NVIDIA actually devoted silicon area to facilitate the ease of parallel pro-

gramming, so this did not represent a change in software alone; additional

hardware was added to the chip. In the G80 and its successor chips for par-

allel computing, CUDA programs no longer go through the graphics inter-

face at all. Instead, a new general-purpose parallel programming interface

on the silicon chip serves the requests of CUDA programs. Moreover, all

of the other software layers were redone, as well, so the programmers can

use the familiar C/Cþþ programming tools. Some of our students tried to

do their lab assignments using the old OpenGL-based programming inter-

face, and their experience helped them to greatly appreciate the improve-

ments that eliminated the need for using the graphics APIs for computing

applications.

71.1 GPUs as Parallel Computers



 

1.2 ARCHITECTURE OF A MODERN GPU
Figure 1.3 shows the architecture of a typical CUDA-capable GPU. It is

organized into an array of highly threaded streaming multiprocessors

(SMs). In Figure 1.3, two SMs form a building block; however, the number

of SMs in a building block can vary from one generation of CUDA GPUs

to another generation. Also, each SM in Figure 1.3 has a number of stream-

ing processors (SPs) that share control logic and instruction cache. Each

GPU currently comes with up to 4 gigabytes of graphics double data rate

(GDDR) DRAM, referred to as global memory in Figure 1.3. These GDDR

DRAMs differ from the system DRAMs on the CPU motherboard in that

they are essentially the frame buffer memory that is used for graphics.

For graphics applications, they hold video images, and texture information

for three-dimensional (3D) rendering, but for computing they function

as very-high-bandwidth, off-chip memory, though with somewhat more

latency than typical system memory. For massively parallel applications,

the higher bandwidth makes up for the longer latency.

The G80 that introduced the CUDA architecture had 86.4 GB/s of mem-

ory bandwidth, plus an 8-GB/s communication bandwidth with the CPU.

A CUDA application can transfer data from the system memory at 4 GB/s

and at the same time upload data back to the system memory at 4 GB/s.

Altogether, there is a combined total of 8 GB/s. The communication band-

width is much lower than the memory bandwidth and may seem like

a limitation; however, the PCI Express� bandwidth is comparable to the

CPU front-side bus bandwidth to the system memory, so it’s really not the

limitation it would seem at first. The communication bandwidth is also

expected to grow as the CPU bus bandwidth of the system memory grows

in the future.

The massively parallel G80 chip has 128 SPs (16 SMs, each with 8 SPs).

Each SP has a multiply–add (MAD) unit and an additional multiply unit.

With 128 SPs, that’s a total of over 500 gigaflops. In addition, special-

function units perform floating-point functions such as square root (SQRT),

as well as transcendental functions. With 240 SPs, the GT200 exceeds 1 ter-

flops. Because each SP is massively threaded, it can run thousands of

threads per application. A good application typically runs 5000–12,000

threads simultaneously on this chip. For those who are used to simultaneous

multithreading, note that Intel CPUs support 2 or 4 threads, depending on

the machine model, per core. The G80 chip supports up to 768 threads

per SM, which sums up to about 12,000 threads for this chip. The more

recent GT200 supports 1024 threads per SM and up to about 30,000 threads
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for the chip. Thus, the level of parallelism supported by GPU hardware is

increasing quickly. It is very important to strive for such levels of parallelism

when developing GPU parallel computing applications.

1.3 WHY MORE SPEED OR PARALLELISM?
As we stated in Section 1.1, the main motivation for massively parallel pro-

gramming is for applications to enjoy a continued increase in speed in

future hardware generations. One might ask why applications will continue

to demand increased speed. Many applications that we have today seem to

be running quite fast enough. As we will discuss in the case study chapters,

when an application is suitable for parallel execution, a good implementa-

tion on a GPU can achieve more than 100 times (100�) speedup over

sequential execution. If the application includes what we call data parallel-
ism, it is often a simple task to achieve a 10� speedup with just a few hours

of work. For anything beyond that, we invite you to keep reading!

Despite the myriad computing applications in today’s world, many

exciting mass-market applications of the future will be what we currently

consider to be supercomputing applications, or superapplications. For

example, the biology research community is moving more and more into

the molecular level. Microscopes, arguably the most important instrument

in molecular biology, used to rely on optics or electronic instrumentation,

but there are limitations to the molecular-level observations that we can

make with these instruments. These limitations can be effectively addressed

by incorporating a computational model to simulate the underlying molec-

ular activities with boundary conditions set by traditional instrumentation.

From the simulation we can measure even more details and test more

hypotheses than can ever be imagined with traditional instrumentation

alone. These simulations will continue to benefit from the increasing com-

puting speed in the foreseeable future in terms of the size of the biological

system that can be modeled and the length of reaction time that can be

simulated within a tolerable response time. These enhancements will have

tremendous implications with regard to science and medicine.

For applications such as video and audio coding and manipulation, con-

sider our satisfaction with digital high-definition television (HDTV) versus

older National Television System Committee (NTSC) television. Once we

experience the level of details offered by HDTV, it is very hard to go back

to older technology. But, consider all the processing that is necessary

for that HDTV. It is a very parallel process, as are 3D imaging and
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visualization. In the future, new functionalities such as view synthesis and

high-resolution display of low-resolution videos will demand that televisions

have more computing power.

Among the benefits offered by greater computing speed are much better

user interfaces. Consider the Apple� iPhone� interfaces; the user enjoys

a much more natural interface with the touch screen compared to other

cell phone devices, even though the iPhone has a limited-size window.

Undoubtedly, future versions of these devices will incorporate higher defi-

nition, three-dimensional perspectives, voice and computer vision based

interfaces, requiring even more computing speed.

Similar developments are underway in consumer electronic gaming.

Imagine driving a car in a game today; the game is, in fact, simply a prear-

ranged set of scenes. If your car bumps into an obstacle, the course of your

vehicle does not change; only the game score changes. Your wheels are not

bent or damaged, and it is no more difficult to drive, regardless of whether

you bumped your wheels or even lost a wheel. With increased computing

speed, the games can be based on dynamic simulation rather than prear-

ranged scenes. We can expect to see more of these realistic effects in the

future—accidents will damage your wheels, and your online driving expe-

rience will be much more realistic. Realistic modeling and simulation of

physics effects are known to demand large amounts of computing power.

All of the new applications that we mentioned involve simulating a con-

current world in different ways and at different levels, with tremendous

amounts of data being processed. And, with this huge quantity of data,

much of the computation can be done on different parts of the data in par-

allel, although they will have to be reconciled at some point. Techniques for

doing so are well known to those who work with such applications on a

regular basis. Thus, various granularities of parallelism do exist, but the

programming model must not hinder parallel implementation, and the data

delivery must be properly managed. CUDA includes such a programming

model along with hardware support that facilitates parallel implementation.

We aim to teach application developers the fundamental techniques for

managing parallel execution and delivering data.

How many times speedup can be expected from parallelizing these super-

application? It depends on the portion of the application that can be paral-

lelized. If the percentage of time spent in the part that can be parallelized is

30%, a 100� speedup of the parallel portion will reduce the execution time

by 29.7%. The speedup for the entire application will be only 1.4�. In fact,

even an infinite amount of speedup in the parallel portion can only slash

less 30% off execution time, achieving no more than 1.43� speedup.
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On the other hand, if 99% of the execution time is in the parallel portion,

a 100� speedup will reduce the application execution to 1.99% of the

original time. This gives the entire application a 50� speedup; therefore,

it is very important that an application has the vast majority of its execution

in the parallel portion for a massively parallel processor to effectively

speedup its execution.

Researchers have achieved speedups of more than 100� for some appli-

cations; however, this is typically achieved only after extensive optimiza-

tion and tuning after the algorithms have been enhanced so more than

99.9% of the application execution time is in parallel execution. In general,

straightforward parallelization of applications often saturates the memory

(DRAM) bandwidth, resulting in only about a 10� speedup. The trick is

to figure out how to get around memory bandwidth limitations, which

involves doing one of many transformations to utilize specialized GPU

on-chip memories to drastically reduce the number of accesses to the

DRAM. One must, however, further optimize the code to get around limita-

tions such as limited on-chip memory capacity. An important goal of this

book is to help you to fully understand these optimizations and become

skilled in them.

Keep in mind that the level of speedup achieved over CPU execution

can also reflect the suitability of the CPU to the application. In some appli-

cations, CPUs perform very well, making it more difficult to speed up per-

formance using a GPU. Most applications have portions that can be much

better executed by the CPU. Thus, one must give the CPU a fair chance

to perform and make sure that code is written in such a way that GPUs

complement CPU execution, thus properly exploiting the heterogeneous

parallel computing capabilities of the combined CPU/GPU system. This is

precisely what the CUDA programming model promotes, as we will further

explain in the book.

Figure 1.4 illustrates the key parts of a typical application. Much of the

code of a real application tends to be sequential. These portions are consid-

ered to be the pit area of the peach; trying to apply parallel computing tech-

niques to these portions is like biting into the peach pit—not a good feeling!

These portions are very difficult to parallelize. CPUs tend to do a very good

job on these portions. The good news is that these portions, although they

can take up a large portion of the code, tend to account for only a small por-

tion of the execution time of superapplications.

Then come the meat portions of the peach. These portions are easy to

parallelize, as are some early graphics applications. For example, most of

today’s medical imaging applications are still running on combinations of
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microprocessor clusters and special-purpose hardware. The cost and size

benefit of the GPUs can drastically improve the quality of these applica-

tions. As illustrated in Figure 1.4, early GPGPUs cover only a small portion

of the meat section, which is analogous to a small portion of the most excit-

ing applications coming in the next 10 years. As we will see, the CUDA

programming model is designed to cover a much larger section of the peach

meat portions of exciting applications.

1.4 PARALLEL PROGRAMMING LANGUAGES AND MODELS
Many parallel programming languages and models have been proposed in

the past several decades [Mattson 2004]. The ones that are the most widely

used are the Message Passing Interface (MPI) for scalable cluster com-

puting and OpenMP� for shared-memory multiprocessor systems. MPI is

a model where computing nodes in a cluster do not share memory

[MPI 2009]; all data sharing and interaction must be done through explicit

message passing. MPI has been successful in the high-performance scien-

tific computing domain. Applications written in MPI have been known to

run successfully on cluster computing systems with more than 100,000

nodes. The amount of effort required to port an application into MPI,

Sequential portions

Data parallel portions

Traditional CPU coverage

GPGPU coverage
Obstacles

FIGURE 1.4

Coverage of sequential and parallel application portions.
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however, can be extremely high due to lack of shared memory across com-

puting nodes. CUDA, on the other hand, provides shared memory for par-

allel execution in the GPU to address this difficulty. As for CPU and

GPU communication, CUDA currently provides very limited shared mem-

ory capability between the CPU and the GPU. Programmers need to man-

age the data transfer between the CPU and GPU in a manner similar to

“one-sided” message passing, a capability whose absence in MPI has been

historically considered as a major weakness of MPI.

OpenMP supports shared memory, so it offers the same advantage as

CUDA in programming efforts; however, it has not been able to scale

beyond a couple hundred computing nodes due to thread management over-

heads and cache coherence hardware requirements. CUDA achieves much

higher scalability with simple, low-overhead thread management and no

cache coherence hardware requirements. As we will see, however, CUDA

does not support as wide a range of applications as OpenMP due to these

scalability tradeoffs. On the other hand, many superapplications fit well

into the simple thread management model of CUDA and thus enjoy the

scalability and performance.

Aspects of CUDA are similar to both MPI and OpenMP in that the pro-

grammer manages the parallel code constructs, although OpenMP compi-

lers do more of the automation in managing parallel execution. Several

ongoing research efforts aim at adding more automation of parallelism

management and performance optimization to the CUDA tool chain. Devel-

opers who are experienced with MPI and OpenMP will find CUDA easy to

learn. Especially, many of the performance optimization techniques are

common among these models.

More recently, several major industry players, including Apple, Intel,

AMD/ATI, and NVIDIA, have jointly developed a standardized program-

ming model called OpenCL� [Khronos 2009]. Similar to CUDA, the

OpenCL programming model defines language extensions and runtime

APIs to allow programmers to manage parallelism and data delivery in

massively parallel processors. OpenCL is a standardized programming

model in that applications developed in OpenCL can run without modi-

fication on all processors that support the OpenCL language extensions

and API.

The reader might ask why the book is not based on OpenCL. The main

reason is that OpenCL was still in its infancy when this book was written.

The level of programming constructs in OpenCL is still at a lower level

than CUDA and much more tedious to use. Also, the speed achieved in

an application expressed in OpenCL is still much lower than in CUDA on
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the platforms that support both. Because programming massively parallel

processors is motivated by speed, we expect that most who program mas-

sively parallel processors will continue to use CUDA for the foreseeable

future. Finally, those who are familiar with both OpenCL and CUDA

know that there is a remarkable similarity between the key features of

OpenCL and CUDA; that is, a CUDA programmer should be able to

learn OpenCL programming with minimal effort. We will give a more

detailed analysis of these similarities later in the book.

1.5 OVERARCHING GOALS
Our primary goal is to teach you, the reader, how to program massively par-

allel processors to achieve high performance, and our approach will not

require a great deal of hardware expertise. Someone once said that if you

don’t care about performance parallel programming is very easy. You can

literally write a parallel program in an hour. But, we’re going to dedicate

many pages to materials on how to do high-performance parallel program-

ming, and we believe that it will become easy once you develop the right

insight and go about it the right way. In particular, we will focus on compu-
tational thinking techniques that will enable you to think about problems in

ways that are amenable to high-performance parallel computing.

Note that hardware architecture features have constraints. High-

performance parallel programming on most of the chips will require some

knowledge of how the hardware actually works. It will probably take

10 more years before we can build tools and machines so most program-

mers can work without this knowledge. We will not be teaching computer

architecture as a separate topic; instead, we will teach the essential

computer architecture knowledge as part of our discussions on high-

performance parallel programming techniques.

Our second goal is to teach parallel programming for correct functionality

and reliability, which constitute a subtle issue in parallel computing.

Thosewho haveworked on parallel systems in the past know that achieving ini-

tial performance is not enough. The challenge is to achieve it in such a way that

you can debug the code and support the users. We will show that with the

CUDA programming model that focuses on data parallelism, one can achieve

both high performance and high reliability in their applications.

Our third goal is achieving scalability across future hardware generations

by exploring approaches to parallel programming such that future machines,

which will be more and more parallel, can run your code faster than today’s
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machines. We want to help you to master parallel programming so your

programs can scale up to the level of performance of new generations of

machines.

Much technical knowledge will be required to achieve these goals, so we

will cover quite a few principles and patterns of parallel programming in

this book. We cannot guarantee that we will cover all of them, however,

so we have selected several of the most useful and well-proven techniques

to cover in detail. To complement your knowledge and expertise, we

include a list of recommended literature. We are now ready to give you a

quick overview of the rest of the book.

1.6 ORGANIZATION OF THE BOOK
Chapter 2 reviews the history of GPU computing. It begins with a brief

summary of the evolution of graphics hardware toward greater programma-

bility and then discusses the historical GPGPU movement. Many of the cur-

rent features and limitations of CUDA GPUs have their roots in these

historic developments. A good understanding of these historic develop-

ments will help the reader to better understand the current state and the

future trends of hardware evolution that will continue to impact the types

of applications that will benefit from CUDA.

Chapter 3 introduces CUDA programming. This chapter relies on the

fact that students have had previous experience with C programming. It

first introduces CUDA as a simple, small extension to C that supports het-

erogeneous CPU/GPU joint computing and the widely used single-program,

multiple-data (SPMD) parallel programming model. It then covers the

thought processes involved in: (1) identifying the part of application pro-

grams to be parallelized, (2) isolating the data to be used by the parallelized

code by using an API function to allocate memory on the parallel comput-

ing device, (3) using an API function to transfer data to the parallel com-

puting device, (4) developing a kernel function that will be executed by

individual threads in the parallelized part, (5) launching a kernel function

for execution by parallel threads, and (6) eventually transferring the data

back to the host processor with an API function call. Although the objective

of Chapter 3 is to teach enough concepts of the CUDA programming model

so the readers can write a simple parallel CUDA program, it actually covers

several basic skills needed to develop a parallel application based on any

parallel programming model. We use a running example of matrix–matrix

multiplication to make this chapter concrete.
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Chapters 4 through 7 are designed to give the readers more in-depth

understanding of the CUDA programming model. Chapter 4 covers the

thread organization and execution model required to fully understand the

execution behavior of threads and basic performance concepts. Chapter 5

is dedicated to the special memories that can be used to hold CUDA vari-

ables for improved program execution speed. Chapter 6 introduces the

major factors that contribute to the performance of a CUDA kernel func-

tion. Chapter 7 introduces the floating-point representation and concepts

such as precision and accuracy. Although these chapters are based on

CUDA, they help the readers build a foundation for parallel programming

in general. We believe that humans understand best when we learn from

the bottom up; that is, we must first learn the concepts in the context of a

particular programming model, which provides us with a solid footing to

generalize our knowledge to other programming models. As we do so, we

can draw on our concrete experience from the CUDA model. An in-depth

experience with the CUDA model also enables us to gain maturity, which

will help us learn concepts that may not even be pertinent to the CUDA

model.

Chapters 8 and 9 are case studies of two real applications, which take the

readers through the thought processes of parallelizing and optimizing their

applications for significant speedups. For each application, we begin by

identifying alternative ways of formulating the basic structure of the paral-

lel execution and follow up with reasoning about the advantages and disad-

vantages of each alternative. We then go through the steps of code

transformation necessary to achieve high performance. These two chapters

help the readers put all the materials from the previous chapters together

and prepare for their own application development projects.

Chapter 10 generalizes the parallel programming techniques into prob-

lem decomposition principles, algorithm strategies, and computational

thinking. It does so by covering the concept of organizing the computation

tasks of a program so they can be done in parallel. We begin by discussing

the translational process of organizing abstract scientific concepts into

computational tasks, an important first step in producing quality application

software, serial or parallel. The chapter then addresses parallel algorithm

structures and their effects on application performance, which is grounded

in the performance tuning experience with CUDA. The chapter concludes

with a treatment of parallel programming styles and models, allowing the

readers to place their knowledge in a wider context. With this chapter,

the readers can begin to generalize from the SPMD programming style to

other styles of parallel programming, such as loop parallelism in OpenMP
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and fork–join in p-thread programming. Although we do not go into

these alternative parallel programming styles, we expect that the readers

will be able to learn to program in any of them with the foundation gained

in this book.

Chapter 11 introduces the OpenCL programming model from a CUDA

programmer’s perspective. The reader will find OpenCL to be extremely

similar to CUDA. The most important difference arises from OpenCL’s

use of API functions to implement functionalities such as kernel launching

and thread identification. The use of API functions makes OpenCL more

tedious to use; nevertheless, a CUDA programmer has all the knowledge

and skills necessary to understand and write OpenCL programs. In fact, we

believe that the best way to teach OpenCL programming is to teach CUDA

first. We demonstrate this with a chapter that relates all major OpenCL

features to their corresponding CUDA features. We also illustrate the use of

these features by adapting our simple CUDA examples into OpenCL.

Chapter 12 offers some concluding remarks and an outlook for the

future of massively parallel programming. We revisit our goals and summa-

rize how the chapters fit together to help achieve the goals. We then present

a brief survey of the major trends in the architecture of massively parallel

processors and how these trends will likely impact parallel programming

in the future. We conclude with a prediction that these fast advances in

massively parallel computing will make it one of the most exciting areas

in the coming decade.
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INTRODUCTION
To CUDA� and OpenCL� programmers, graphics processing units (GPUs)

are massively parallel numeric computing processors programmed in C with

extensions. One needs not understand graphics algorithms or terminology in

order to be able to program these processors. However, understanding the

graphics heritage of these processors illuminates the strengths and weak-

nesses of these processors with respect to major computational patterns. In

particular, the history helps to clarify the rationale behind major architectural

design decisions of modern programmable GPUs: massive multithreading,

relatively small cache memories compared to central processing units

(CPUs), and bandwidth-centric memory interface design. Insights into the

historical developments will also likely give the reader the context needed

to project the future evolution of GPUs as computing devices.

2.1 EVOLUTION OF GRAPHICS PIPELINES
Three-dimensional (3D) graphics pipeline hardware evolved from the large

expensive systems of the early 1980s to small workstations and then PC

accelerators in the mid- to late 1990s. During this period, the performance-
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leading graphics subsystems decreased in price from $50,000 to $200.

During the same period, the performance increased from 50 million pixels

per second to 1 billion pixels per second and from 100,000 vertices per

second to 10 million vertices per second. Although these advancements have

much to do with the relentlessly shrinking feature sizes of semiconductor

devices, they also have resulted from innovations in graphics algorithms

and hardware design that have shaped the native hardware capabilities of

modern GPUs.

The remarkable advancement of graphics hardware performance has

been driven by the market demand for high-quality, real-time graphics in

computer applications. In an electronic gaming application, for example,

one needs to render ever more complex scenes at an ever-increasing resolu-

tion at a rate of 60 frames per second. The net result is that over the last

30 years graphics architecture has evolved from being a simple pipeline

for drawing wire-frame diagrams to a highly parallel design consisting of

several deep parallel pipelines capable of rendering the complex interactive

imagery of 3D scenes. Concurrently, many of the hardware functionalities

involved became far more sophisticated and user programmable.

2.1.1 The Era of Fixed-Function Graphics Pipelines

From the early 1980s to the late 1990s, the leading performance graphics

hardware was fixed-function pipelines that were configurable but not pro-

grammable. In that same era, major graphics application programming

interface (API) libraries became popular. An API is a standardized layer

of software (i.e., a collection of library functions) that allows applications

(such as games) to use software or hardware services and functionality.

An API, for example, can allow a game to send commands to a graphics

processing unit to draw objects on a display. One such API is DirectX�,

Microsoft’s proprietary API for media functionality. The Direct3D� com-

ponent of DirectX� provides interface functions to graphics processors.

The other major API is OpenGL�, an open standard API supported by

multiple vendors and popular in professional workstation applications. This

era of fixed-function graphics pipeline roughly corresponds to the first

seven generations of DirectX�.

Figure 2.1 shows an example of fixed-function graphics pipeline in early

NVIDIA� GeForce� GPUs. The host interface receives graphics commands

and data from the CPU. The commands are typically given by application

programs by calling an API function. The host interface typically contains

a specialized direct memory access (DMA) hardware to efficiently transfer
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bulk data to and from the host system memory to the graphics pipeline.

The host interface also communicates back the status and result data of

executing the commands.

Before we describe the other stages of the pipeline, we should clarify

that the term vertex usually refers to the corner of a polygon. The GeForce

graphics pipeline is designed to render triangles, so the term vertex is typi-

cally used in this case to refer to the corners of a triangle. The surface of

an object is drawn as a collection of triangles. The finer the sizes of the

triangles are, the better the quality of the picture typically becomes. The

vertex control stage in Figure 2.1 receives parameterized triangle data from

the CPU. The vertex control stage then converts the triangle data into a

form that the hardware understands and places the prepared data into the

vertex cache.

The vertex shading, transform, and lighting (VS/T&L) stage in Figure 2.1

transforms vertices and assigns per-vertex values (e.g., colors, normals,

texture coordinates, tangents). The shading is done by the pixel shader hard-

ware. The vertex shader can assign a color to each vertex, but color is not

applied to triangle pixels until later. The triangle setup stage further creates

Host CPU

GPU
Host interface

Vertex
cache

VS/T & L

Triangle setup

Raster

Shader
Frame

ROP

Frame
buffer

memory

FBI

Vertex control

Texture
cache

FIGURE 2.1

A fixed-function NVIDIA GeForce graphics pipeline.
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edge equations that are used to interpolate colors and other per-vertex data

(such as texture coordinates) across the pixels touched by the triangle. The

raster stage determines which pixels are contained in each triangle. For each

of these pixels, the raster stage interpolates per-vertex values necessary for

shading the pixel, including the color, position, and texture position that will

be shaded (painted) on the pixel.

The shader stage in Figure 2.1 determines the final color of each pixel.

This can be generated as a combined effect of many techniques: interpola-

tion of vertex colors, texture mapping, per-pixel lighting mathematics,

reflections, and more. Many effects that make the rendered images more

realistic are incorporated in the shader stage. Figure 2.2 illustrates texture

mapping, one of the shader stage functionalities. It shows an example in

which a world map texture is mapped onto a sphere object. Note that the

sphere object is described as a large collection of triangles. Although

the shader stage must perform only a small number of coordinate transform

Sphere with no texture

Sphere with texture

Texture image
Texture image

Vn

Vp

Ve

u

v

FIGURE 2.2

Texture mapping example: painting a world map texture image onto a globe

object.
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calculations to identify the exact coordinates of the texture point that will

be painted on a point in one of the triangles that describes the sphere object,

the sheer number of pixels covered by the image requires the shader stage

to perform a very large number of coordinate transforms for each frame.

The raster operation (ROP) stage in Figure 2.2 performs the final raster

operations on the pixels. It performs color raster operations that blend the

color of overlapping/adjacent objects for transparency and antialiasing

effects. It also determines the visible objects for a given viewpoint and

discards the occluded pixels. A pixel becomes occluded when it is blocked

by pixels from other objects according to the given view point.

Figure 2.3 illustrates antialiasing, one of the ROP stage operations.

Notice the three adjacent triangles with a black background. In the aliased

output, each pixel assumes the color of one of the objects or the back-

ground. The limited resolution makes the edges look crooked and the

shapes of the objects distorted. The problem is that many pixels are partly

in one object and partly in another object or the background. Forcing these

pixels to assume the color of one of the objects introduces distortion into

the edges of the objects. The antialiasing operation gives each pixel a color

that is blended, or linearly combined, from the colors of all the objects and

background that partially overlap the pixel. The contribution of each object

to the color of the pixel is the amount of the pixel that the object overlaps.

Finally, the frame buffer interface (FBI) stage in Figure 2.1 manages

memory reads from and writes to the display frame buffer memory. For

high-resolution displays, there is a very high bandwidth requirement in

Triangle geometry Aliased Antialiased

FIGURE 2.3

Example of antialiasing operations.
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accessing the frame buffer. Such bandwidth is achieved by two strategies.

One is that graphics pipelines typically use special memory designs that

provide higher bandwidth than the system memories. Second, the FBI

simultaneously manages multiple memory channels that connect to multiple

memory banks. The combined bandwidth improvement of multiple chan-

nels and special memory structures gives the frame buffers much higher

bandwidth than their contemporaneous system memories. Such high mem-

ory bandwidth has continued to this day and has become a distinguishing

feature of modern GPU design.

For two decades, each generation of hardware and its corresponding

generation of API brought incremental improvements to the various stages

of the graphics pipeline. Although each generation introduced additional

hardware resources and configurability to the pipeline stages, developers

were growing more sophisticated and asking for more new features than

could be reasonably offered as built-in fixed functions. The obvious next

step was to make some of these graphics pipeline stages into programmable

processors.

2.1.2 Evolution of Programmable Real-Time Graphics

In 2001, the NVIDIA GeForce 3 took the first step toward achieving true

general shader programmability. It exposed the application developer to

what had been the private internal instruction set of the floating-point vertex

engine (VS/T&L stage). This coincided with the release of Microsoft’s

DirectX 8 and OpenGL vertex shader extensions. Later GPUs, at the time

of DirectX 9, extended general programmability and floating-point capa-

bility to the pixel shader stage and made texture accessible from the vertex

shader stage. The ATI Radeon� 9700, introduced in 2002, featured a pro-

grammable 24-bit floating-point pixel shader processor programmed with

DirectX 9 and OpenGL. The GeForce FX added 32-bit floating-point pixel

processors. These programmable pixel shader processors were part of a

general trend toward unifying the functionality of the different stages as seen

by the application programmer. The GeForce 6800 and 7800 series were

built with separate processor designs dedicated to vertex and pixel proces-

sing. The XBox� 360 introduced an early unified processor GPU in 2005,

allowing vertex and pixel shaders to execute on the same processor.

In graphics pipelines, certain stages do a great deal of floating-point arith-

metic on completely independent data, such as transforming the positions of

triangle vertices or generating pixel colors. This data independence as the

dominating application characteristic is a key difference between the design
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assumption for GPUs and CPUs. A single frame, rendered in 1/60th of a

second, might have a million triangles and 6 million pixels. The opportunity

to use hardware parallelism to exploit this data independence is tremendous.

The specific functions executed at a few graphics pipeline stages vary

with rendering algorithms. Such variation has motivated the hardware

designers to make those pipeline stages programmable. Two particular

programmable stages stand out: the vertex shader and the pixel shader.

Vertex shader programs map the positions of triangle vertices onto the

screen, altering their position, color, or orientation. Typically, a vertex

shader thread reads a floating-point (x, y, z, w) vertex position and computes

a floating-point (x, y, z) screen position. Geometry shader programs operate

on primitives defined by multiple vertices, changing them or generating

additional primitives. Vertex shader programs and geometry shader pro-

grams execute on the vertex shader (VS/T&L) stage of the graphics pipeline.

A shader program calculates the floating-point red, green, blue, alpha

(RGBA) color contribution to the rendered image at its pixel sample (x, y)
image position. These programs execute on the shader stage of the graphics

pipeline. For all three types of graphics shader programs, program instances

can be run in parallel, because each works on independent data, produces inde-

pendent results, and has no side effects. This property has motivated the design

of the programmable pipeline stages into massively parallel processors.

Figure 2.4 shows an example of a programmable pipeline that employs a

vertex processor and a fragment (pixel) processor. The programmable vertex

processor executes the programs designated to the vertex shader stage, and

the programmable fragment processor executes the programs designated to

the (pixel) shader stage. Between these programmable graphics pipeline

stages are dozens of fixed-function stages that perform well-defined tasks

far more efficiently than a programmable processor could and which would

benefit far less from programmability. For example, between the vertex pro-

cessing stage and the pixel (fragment) processing stage is a rasterizer (raster-
ization and interpolation), a complex state machine that determines exactly

which pixels (and portions thereof) lie within each geometric primitive’s

boundaries. Together, the mix of programmable and fixed-function stages

is engineered to balance extreme performance with user control over the ren-

dering algorithms.

Common rendering algorithms perform a single pass over input primi-

tives and access other memory resources in a highly coherent manner. That

is, these algorithms tend to simultaneously access contiguous memory loca-

tions, such as all triangles or all pixels in a neighborhood. As a result, these

algorithms exhibit excellent efficiency in memory bandwidth utilization
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Example of a separate vertex processor and fragment processor in a programmable graphics pipeline.
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and are largely insensitive to memory latency. Combined with a pixel

shader workload that is usually compute limited, these characteristics have

guided GPUs along a different evolutionary path than CPUs. In particular,

whereas the CPU die area is dominated by cache memories, GPUs are

dominated by floating-point datapath and fixed-function logic. GPU mem-

ory interfaces emphasize bandwidth over latency (as latency can be readily

hidden by massively parallel execution); indeed, bandwidth is typically

many times higher than that for a CPU, exceeding 100 GB/s in more recent

designs.

2.1.3 Unified Graphics and Computing Processors

Introduced in 2006, the GeForce 8800 GPU mapped the separate program-

mable graphics stages to an array of unified processors; the logical graphics

pipeline is physically a recirculating path that visits these processors three

times, with much fixed-function graphics logic between visits. This is illu-

strated in Figure 2.5. The unified processor array allows dynamic partition-

ing of the array to vertex shading, geometry processing, and pixel

processing. Because different rendering algorithms present wildly different

loads among the three programmable stages, this unification allows the

same pool of execution resources to be dynamically allocated to different

pipeline stages and achieve better load balance.

The GeForce 8800 hardware corresponds to the DirectX 10 API genera-

tion. By the DirectX 10 generation, the functionality of vertex and pixel

shaders had been made identical to the programmer, and a new logical stage

was introduced, the geometry shader, to process all the vertices of a primi-

tive rather than vertices in isolation. The GeForce 8800 was designed with

DirectX 10 in mind. Developers were coming up with more sophisticated

shading algorithms, and this motivated a sharp increase in the available

shader operation rate, particularly floating-point operations. NVIDIA pur-

sued a processor design with higher operating clock frequency than what

was allowed by standard-cell methodologies in order to deliver the desired

operation throughput as area efficiently as possible. High-clock-speed

design requires substantially greater engineering effort, thus favoring the

design of one processor array rather than two (or three, given the new

geometry stage). It became worthwhile to take on the engineering chal-

lenges of a unified processor—load balancing and recirculation of a logical

pipeline onto threads of the processor array—while seeking the benefits of

one processor design. Such design paved the way for using the programma-

ble GPU processor array for general numeric computing.
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Unified programmable processor array of the GeForce 8800 GTX graphics pipeline.
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2.1.4 GPGPU: An Intermediate Step

While the GPU hardware designs evolved toward more unified processors,

they increasingly resembled high-performance parallel computers. As

DirectX 9-capable GPUs became available, some researchers took notice

of the raw performance growth path of GPUs and began to explore the

use of GPUs to solve compute-intensive science and engineering problems;

however, DirectX 9 GPUs had been designed only to match the features

required by the graphics APIs. To access the computational resources, a

programmer had to cast his or her problem into native graphics operations

so the computation could be launched through OpenGL or DirectX API

calls. To run many simultaneous instances of a compute function, for exam-

ple, the computation had to be written as a pixel shader. The collection of

input data had to be stored in texture images and issued to the GPU by sub-

mitting triangles (with clipping to a rectangle shape if that was what was

desired). The output had to be cast as a set of pixels generated from the ras-

ter operations.

The fact that the GPU processor array and frame buffer memory inter-

face were designed to process graphics data proved too restrictive for gen-

eral numeric applications. In particular, the output data of the shader

programs are single pixels whose memory locations have been predeter-

mined; thus, the graphics processor array is designed with very restricted

memory reading and writing capability. Figure 2.6 illustrates the limited

Input registers
per Thread
per Shader

Fragment Program
Texture

per Context

Constants

Temp registers

Output registers

FB     Memory

FIGURE 2.6

The restricted input and output capabilities of a shader programming model.

312.1 Evolution of Graphics Pipelines



 

memory access capability of early programmable shader processor arrays;

shader programmers needed to use texture to access arbitrary memory loca-

tions for their input data. More importantly, shaders did not have the means

to perform writes with calculated memory addresses, referred to as scatter
operations, to memory. The only way to write a result to memory was to

emit it as a pixel color value, and configure the frame buffer operation stage

to write (or blend, if desired) the result to a two-dimensional frame buffer.

Furthermore, the only way to get a result from one pass of computation to

the next was to write all parallel results to a pixel frame buffer, then use that

frame buffer as a texture map input to the pixel fragment shader of the next

stage of the computation. There was also no user-defined data types; most

data had to be stored in one-, two-, or four-component vector arrays. Mapping

general computations to a GPU in this era was quite awkward. Nevertheless,

intrepid researchers demonstrated a handful of useful applications with

painstaking efforts. This field was called “GPGPU,” for general-purpose

computing on GPUs.

2.2 GPU COMPUTING
While developing the Tesla� GPU architecture, NVIDIA realized its

potential usefulness would be much greater if programmers could think of

the GPU like a processor. NVIDIA selected a programming approach in

which programmers would explicitly declare the data-parallel aspects of

their workload.

For the DirectX� 10 generation of graphics, NVIDIA had already begun

work on a high-efficiency floating-point and integer processor that could

run a variety of simultaneous workloads to support the logical graphics pipe-

line. The designers of the Tesla GPU architecture took another step. The

shader processors became fully programmable processors with large instruc-

tion memory, instruction cache, and instruction sequencing control logic.

The cost of these additional hardware resources was reduced by having mul-

tiple shader processors to share their instruction cache and instruction

sequencing control logic. This design style works well with graphics applica-

tions because the same shader program needs to be applied to a massive num-

ber of vertices or pixels. NVIDIA added memory load and store instructions

with random byte addressing capability to support the requirements of

compiled C programs. To nongraphics application programmers, the Tesla

GPU architecture introduced a more generic parallel programming model

with a hierarchy of parallel threads, barrier synchronization, and atomic
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operations to dispatch and manage highly parallel computing work. NVIDIA

also developed the CUDA C/Cþþ compiler, libraries, and runtime software

to enable programmers to readily access the new data-parallel computation

model and develop applications. Programmers no longer need to use the

graphics API to access the GPU parallel computing capabilities. The G80

chip was based on the Tesla architecture and was used in the GeForce

8800 GTX, which was followed later by G92 and GT200.

2.2.1 Scalable GPUs

Scalability has been an attractive feature of graphics systems from the

beginning. In the early days, workstation graphics systems gave customers

a choice in pixel horsepower by varying the number of pixel processor cir-

cuit boards installed. Prior to the mid-1990s, PC graphics scaling was

almost nonexistent. There was one option: the VGA controller. As

3D-capable accelerators began to appear, there was room in the market

for a range of offerings. In 1998, 3dfx introduced multiboard scaling with

their original Scan Line Interleave (SLI) on their Voodoo2, which held

the performance crown for its time. Also in 1998, NVIDIA introduced dis-

tinct products as variants on a single architecture with Riva TNT Ultra

(high-performance) and Vanta (low-cost), first by speed binning and pack-

aging, then with separate chip designs (GeForce 2 GTS and GeForce

2 MX). At present, for a given architecture generation, four or five separate

chip designs are needed to cover the range of desktop PC performance and

price points. In addition, there are separate segments in notebook and work-

station systems. After acquiring 3dfx in 2001, NVIDIA continued the multi-

GPU SLI concept; for example, the GeForce 6800 provides multi-GPU

scalability transparently to both the programmer and the user. Functional

behavior is identical across the scaling range; one application will run

unchanged on any implementation of an architectural family.

By switching to the multicore trajectory, CPUs are scaling to higher

transistor counts by increasing the number of nearly-constant-performance

cores on a die rather than simply increasing the performance of a single

core. At this writing, the industry is transitioning from quad-core to hex-

and oct-core CPUs. Programmers are forced to find four- to eight-fold

parallelism to fully utilize these processors. Many of them resort to coarse-

grained parallelism strategies where different tasks of an application are

performed in parallel. Such applications must be rewritten often to have

more parallel tasks for each successive doubling of core count. In contrast,

the highly multithreaded GPUs encourage the use of massive, fine-grained
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data parallelism in CUDA. Efficient threading support in GPUs allows appli-

cations to expose a much larger amount of parallelism than available hard-

ware execution resources with little or no penalty. Each doubling of GPU

core count provides more hardware execution resources that exploit more

of the exposed parallelism for higher performance; that is, the GPU parallel

programming model for graphics and parallel computing is designed for

transparent and portable scalability. A graphics program or CUDA program

is written once and runs on a GPU with any number of processor cores.

2.2.2 Recent Developments

Academic and industrial work on applications using CUDA has produced

hundreds of examples of successful CUDA programs. Many of these pro-

grams run the application tens or hundreds of times faster than multicore

CPUs are capable of running them. With the introduction of tools such as

MCUDA [Stratton 2008], the parallel threads of a CUDA program can also

run efficiently on a multicore CPU, although at a lower speed than on GPUs

due to lower levels of floating-point execution resources. Examples of these

applications include n-body simulation, molecular modeling, computational

finance, and oil/gas reservoir simulation. Although many of these use sin-

gle-precision floating-point arithmetic, some problems require double pre-

cision. The arrival of double-precision floating point in GPUs enabled an

even broader range of applications to benefit from GPU acceleration.

For an exhaustive list and examples of current developments in applica-

tions that are accelerated by GPUs, visit CUDA Zone at http://www.nvidia.

com/CUDA. For resources in developing research applications, see CUDA

Research at http://www.cuda-research.org.

2.3 FUTURE TRENDS
Naturally, the number of processor cores will continue to increase in propor-

tion to increases in available transistors as silicon processes improve. In addi-

tion, GPUs will continue to enjoy vigorous architectural evolution. Despite

their demonstrated high performance on data parallel applications, GPU core

processors are still of relatively simple design. More aggressive techniques

will be introduced with each successive architecture to increase the actual

utilization of the calculating units. Because scalable parallel computing on

GPUs is still a young field, novel applications are rapidly being created.

By studying them, GPU designers will discover and implement new machine

optimizations. Chapter 12 provides more details of such future trends.

34 CHAPTER 2 History of GPU Computing



 

References and Further Reading
Akeley, K. (1993). Reality engine graphics. Computer Graphics (SIGGRAPH 93),

27, 109–116.
Akeley, K., & Jermoluk, T. (1988). High-performance polygon rendering.

Computer Graphics (SIGGRAPH 88), 22(4), 239–246.
Blelloch, G. B. (1990). Prefix sums and their applications. In J. H. Reif (Ed.), Syn-

thesis of parallel algorithms. San Francisco, CA: Morgan Kaufmann.

Blythe, D. (2006). The Direct3D 10 System. ACM Transactions on Graphics, 25
(3), 724–734.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahlian, K., Houston, M., et al.

(2004). Brooks for GPUs: Stream computing on graphics hardware.

ACM Transactions on Graphics, 23(3), 777–786 (http://doi.acm.org/10.1145/

1186562.1015800).

Elder, G. (2002). Radeon 9700. In Proceedings of the ACM eurographics/SIG-
GRAPH workshop on graphics hardware 2002 (http://www.graphicshardware.

org/previous/www_2002/presentations/Hot3D-RADEON9700.ppt).

Fernando, R. (Ed.), GPU gems: Programming techniques, tips, and tricks for real-
time graphics. Reading, MA: Addison-Wesley (http://developer.nvidia.com/

object/gpu_gems_home.html).

Fernando, R., & Kilgard, M. J. (2003). The Cg tutorial: The definitive guide to pro-
grammable real-time graphics. Reading, MA: Addison-Wesley.

Foley, J., van Dam, A., Feiner, S., & Hughes, J. Interactive computer graphics:
Principles and practice, C edition (2nd ed.). Reading, MA: Addison-Wesley.

Hillis, W. D., & Steele, G. L. (1986). Data parallel algorithms. Communications of
the ACM, 29(12), 1170–1183 (http://doi.acm.org/10.1145/7902.7903).

IEEE 754R Working Group. (2006). Standard for floating-point arithmetic P754
(Draft). Piscataway, NJ: Institute of Electrical and Electronics Engineers

(http://www.validlab.com/754R/drafts/archive/2006-10-04.pdf).

Industrial Light and Magic. (2003). OpenEXR. San Mateo, CA: Industrial Light

and Magic (www.openexr.com).

Intel. (2007). Intel 64 and IA-32 Architectures optimization reference manual.
Order No. 248966-016. Santa Clara, CA: Intel Corp. (http://www3.intel.com/

design/processor/manuals/248966.pdf).

Kessenich, J., Baldwin, D., & Rost, R. (2006). The OpenGL� shading language,
Language Version 1.20. Madison, AL: 3Dlabs, Inc. (http://www.opengl.org/

documentation/specs/).

Kirk, D., & Voorhies, D. (1990). The rendering architecture of the DN10000VS.

Computer Graphics (SIGGRAPH 1990), 24(4), 299–307.
Lindholm, E., Kilgard, M. J., & Moreton, H. (2001). A user-programmable vertex

engine. In Proceedings of the 28th annual ACM conference on computer gra-
phics and interactive techniques (pp. 149–158). Reading, MA: ACM Press/

Addison-Wesley.

35References and Further Reading



 

Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J. (2008). NVIDIA Tesla:

A unified graphics and computing architecture. IEEE Micro, 28(2), 39–55.
Microsoft. (2003). Microsoft DirectX 9 programmable graphics pipeline.

Redmond, WA: Microsoft Press.

Microsoft. (2009). Microsoft DirectX specification. Redmond, WA: Microsoft

Press (http://msdn.microsoft.com/directx/).

Montrym, J., Baum, D., Dignam, D., & Migdal, C. (1997). InfiniteReality: A real-

time graphics system. In G. O. Owen, T. Whitted, & B. Mones-Hattal (Eds.),

Proceedings of the 24th annual ACM conference on computer graphics and
interactive techniques (pp. 293–301). Reading, MA: ACM Press/Addison-

Wesley.

Montrym, J., & Moreton, H. (2005). The GeForce 6800. IEEE Micro, 25(2),
41–51.

Moore, G. E. (1965). Cramming more components onto integrated circuits. Elec-
tronics, 38(8), 114–117.

Nguyen, H. (Ed.), (2008). GPU Gems 3. Reading, MA: Addison-Wesley.

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel

programming with CUDA. ACM Queue, 6(2), 40–53.
NVIDIA. (2007a). NVIDIA CUDA—Compute unified device architecture, pro-

gramming guide, Version 1.1 (http://developer.download.nvidia.com/compute/

cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf).

NVIDIA. (2007b). NVIDIA compute—PTX: Parallel thread execution, ISA Version
1.1 (http://www.nvidia.com/object/io_1195170102263.html).

NVIDIA. (2009). CUDA Zone (http://www.nvidia.com/CUDA).

Nyland, L., Harris, M., & Prins, J. (2007). Fast N-body simulation with CUDA. In

H. Nguyen (Ed.), GPU Gems 3. Reading, MA: Addison-Wesley.

Oberman, S. F., & Siu, M. Y. (2005). A high-performance area-efficient multifunc-

tion interpolator. In Proceedings of the 17th IEEE symposium on computer
arithmetic (pp. 272–279). Cape Cod, MA.

Patterson, D. A., & Hennessy, J. L. (2004). Computer organization and design:
The hardware/software interface (3rd ed.). San Francisco, CA: Morgan

Kaufmann.

Pharr, M. (Ed.) (2005). GPU Gems 2: Programming techniques for high-performance
graphics and general-purpose computation. Reading, MA: Addison Wesley.

Satish, N., Harris, M., & Garland, M. Designing efficient sorting algorithms for
manycore GPUs. Proc. 23rd IEEE int’l parallel & distributed processing
symposium, May 2009.

Segal, M., & Akeley, K. (2006). The OpenGL� graphics system: A specification,
Version 2.1. Mountain View, CA: Silicon Graphics (http://www.opengl.org/

documentation/specs/).

Sengupta, S., Harris, M., Zhang, Y., & Owens, J. D. (2007). Scan primitives

for GPU computing. In T. Aila & M. Segal (Eds.), Graphics hardware
(pp. 97–106). San Diego, CA: ACM Press.

36 CHAPTER 2 History of GPU Computing



 

Stratton, J. A., Stone, S. S., & Hwu, W. W. (2008). MCUDA: An efficient imple-

mentation of CUDA kernels for multi-core CPUs. In Proceedings of the 21st
International Workshop on Languages and Compilers for Parallel Computing
(LCPC). Canada: Edmonton.

Volkov, V., & Demmel, J. (2008). LU, QR and Cholesky factorizations using vector
capabilities of GPUs. Technical report no. UCB/EECS-2008-49. Berkeley:

EECS Department, University of California (http://www.eecs.berkeley.edu/

Pubs/TechRpts/2008/EECS-2008-49.html).

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., & Demmel, J. (2008).

Optimization of sparse matrix-vector multiplication on emerging multicore

platforms. In Parallel computing—Special issue on revolutionary technologies
for acceleration of emerging petascale applications.

37References and Further Reading



 

This page intentionally left blank



 

CHAPTER

Introduction to CUDA 3
CHAPTER CONTENTS

3.1 Data Parallelism ................................................................................................ 39

3.2 CUDA Program Structure..................................................................................... 41

3.3 A Matrix–Matrix Multiplication Example .............................................................. 42

3.4 Device Memories and Data Transfer .................................................................... 46

3.5 Kernel Functions and Threading.......................................................................... 51

3.6 Summary ........................................................................................................... 56

3.6.1 Function declarations........................................................................56

3.6.2 Kernel launch...................................................................................56

3.6.3 Predefined variables .........................................................................56

3.6.4 Runtime API ....................................................................................57

References and Further Reading ............................................................................. 57

INTRODUCTION
To a CUDA� programmer, the computing system consists of a host, which is
a traditional central processing unit (CPU), such as an Intel� architecture

microprocessor in personal computers today, and one or more devices, which
are massively parallel processors equipped with a large number of arithmetic

execution units. In modern software applications, program sections often

exhibit a rich amount of data parallelism, a property allowingmany arithmetic

operations to be safely performed on program data structures in a simulta-

neous manner. The CUDA devices accelerate the execution of these applica-

tions by harvesting a large amount of data parallelism. Because data

parallelism plays such an important role in CUDA, we will first discuss the

concept of data parallelism before introducing the basic features of CUDA.

3.1 DATA PARALLELISM
Many software applications that process a large amount of data and thus

incur long execution times on today’s computers are designed to model

real-world, physical phenomena. Images and video frames are snapshots
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of a physical world where different parts of a picture capture simultaneous,

independent physical events. Rigid body physics and fluid dynamics model

natural forces and movements that can be independently evaluated within

small time steps. Such independent evaluation is the basis of data parallel-

ism in these applications.

As we mentioned earlier, data parallelism refers to the program property

whereby many arithmetic operations can be safely performed on the data

structures in a simultaneous manner. We illustrate the concept of data par-

allelism with a matrix–matrix multiplication (matrix multiplication, for

brevity) example in Figure 3.1. In this example, each element of the product

matrix P is generated by performing a dot product between a row of input

matrix M and a column of input matrix N. In Figure 3.1, the highlighted

element of matrix P is generated by taking the dot product of the high-

lighted row of matrix M and the highlighted column of matrix N. Note that
the dot product operations for computing different matrix P elements can be

simultaneously performed. That is, none of these dot products will affect

N
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T
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FIGURE 3.1

Data parallelism in matrix multiplication.
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the results of each other. For large matrices, the number of dot products can

be very large; for example, a 1000 � 1000 matrix multiplication has

1,000,000 independent dot products, each involving 1000 multiply and

1000 accumulate arithmetic operations. Therefore, matrix multiplication

of large dimensions can have very large amount of data parallelism. By

executing many dot products in parallel, a CUDA device can significantly

accelerate the execution of the matrix multiplication over a traditional host

CPU. The data parallelism in real applications is not always as simple as

that in our matrix multiplication example. In a later chapter, we will discuss

these more sophisticated forms of data parallelism.

3.2 CUDA PROGRAM STRUCTURE
A CUDA program consists of one or more phases that are executed on

either the host (CPU) or a device such as a GPU. The phases that exhibit

little or no data parallelism are implemented in host code. The phases that

exhibit rich amount of data parallelism are implemented in the device code.

A CUDA program is a unified source code encompassing both host and

device code. The NVIDIA� C compiler (nvcc) separates the two during

the compilation process. The host code is straight ANSI C code; it is further

compiled with the host’s standard C compilers and runs as an ordinary CPU

process. The device code is written using ANSI C extended with keywords

for labeling data-parallel functions, called kernels, and their associated data

structures. The device code is typically further compiled by the nvcc and

executed on a GPU device. In situations where no device is available or

the kernel is more appropriately executed on a CPU, one can also choose

to execute kernels on a CPU using the emulation features in CUDA soft-

ware development kit (SDK) or the MCUDA tool [Stratton 2008].

The kernel functions (or, simply, kernels) typically generate a large

number of threads to exploit data parallelism. In the matrix multiplication

example, the entire matrix multiplication computation can be implemented

as a kernel where each thread is used to compute one element of output

matrix P. In this example, the number of threads used by the kernel is a

function of the matrix dimension. For a 1000 � 1000 matrix multiplication,

the kernel that uses one thread to compute one P element would generate

1,000,000 threads when it is invoked. It is worth noting that CUDA threads

are of much lighter weight than the CPU threads. CUDA programmers can

assume that these threads take very few cycles to generate and schedule due

to efficient hardware support. This is in contrast with the CPU threads that

typically require thousands of clock cycles to generate and schedule.
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The execution of a typical CUDA program is illustrated in Figure 3.2.

The execution starts with host (CPU) execution. When a kernel function is

invoked, or launched, the execution is moved to a device (GPU), where a

large number of threads are generated to take advantage of abundant data par-

allelism. All the threads that are generated by a kernel during an invocation

are collectively called a grid. Figure 3.2 shows the execution of two grids

of threads. We will discuss how these grids are organized soon. When all

threads of a kernel complete their execution, the corresponding grid termi-

nates, and the execution continues on the host until another kernel is invoked.

3.3 A MATRIX–MATRIX MULTIPLICATION EXAMPLE
At this point, it is worthwhile to introduce a code example that concretely

illustrates the CUDA program structure. Figure 3.3 shows a simple main

function skeleton for the matrix multiplication example. For simplicity,

we assume that the matrices are square in shape, and the dimension of each

matrix is specified by the parameter Width.

The main program first allocates the M, N, and P matrices in the host

memory and then performs I/O to read in M and N in Part 1. These are

ANSI C operations, so we are not showing the actual code for the sake of

brevity. The detailed code of the main function and some user-defined

ANSI C functions is shown in Appendix A. Similarly, after completing

the matrix multiplication, Part 3 of the main function performs I/O to write

the product matrix P and to free all the allocated matrices. The details of

Part 3 are also shown in Appendix A. Part 2 is the main focus of our

CPU serial code
Grid 0

. . .

CPU serial code

. . .

Grid 1

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

GPU parallel kernel
KernelA<<< nBlK, nTid >>>(args);

FIGURE 3.2

Execution of a CUDA program.
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example. It calls a function, MatrixMultiplication(), to perform matrix

multiplication on a device.

Before we explain how to use a CUDA device to execute the matrix

multiplication function, it is helpful to first review how a conventional CPU-only

matrix multiplication function works. A simple version of a CPU-only matrix

multiplication function is shown in Figure 3.4. The MatrixMultiplication()

function implements a straightforward algorithm that consists of three loop

levels. The innermost loop iterates over variable k and steps through one

row of matrix M and one column of matrix N. The loop calculates a dot

product of the row of M and the column of N and generates one element

of P. Immediately after the innermost loop, the P element generated is

written into the output P matrix.

The index used for accessing the M matrix in the innermost loop

is i*Widthþk. This is because the M matrix elements are placed into the

system memory that is ultimately accessed with a linear address. That is,

every location in the system memory has an address that ranges from 0 to

the largest memory location. For C programs, the placement of a 2-dimen-

sional matrix into this linear addressed memory is done according to the

row-major convention, as illustrated in Figure 3.5.1 All elements of a row

are placed into consecutive memory locations. The rows are then placed

one after another. Figure 3.5 shows an example where a 4�4 matrix is

1Note that FORTRAN adopts the column–major placement approach: All elements of a

column are first placed into consecutive locations, and all columns are then placed in their

numerical order.

FIGURE 3.3

A simple main function for the matrix multiplication example.

433.3 A Matrix–Matrix Multiplication Example



 

float b = N[k * width + j];

}}

{   

float sum = 0;

float a = M[i * width + k];

}

P[i * Width + j] = sum;

}

}

void MatrixMultiplication(float* M, float* N, float* P, int Width)

for (int i = 0; i < Width; ++i)

for (int j = 0; j < Width; ++j) {

for (int k  = 0; k < Width; ++k) {

sum += a * b;

N
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FIGURE 3.4

A simple matrix multiplication function with only host code.
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FIGURE 3.5

Placement of two-dimensional array elements into the linear address system

memory.
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placed into 16 consecutive locations, with all elements of row 0 first

followed by the four elements of row 1, etc. Therefore, the index for an

M element in row i and column k is i*Widthþk. The i*Width term skips

over all elements of the rows before row i. The k term then selects the

proper element within the section for row i.
The outer two (i and j) loops in Figure 3.4 jointly iterate over all rows of

M and all columns of N; each joint iteration performs a row–column dot

product to generate one P element. Each i value identifies a row. By sys-

tematically iterating all M rows and all N columns, the function generates

all P elements. We now have a complete matrix multiplication function that

executes solely on the CPU. Note that all of the code that we have shown so

far is in standard C.

Assume that a programmer now wants to port the matrix multiplication

function into CUDA. A straightforward way to do so is to modify

the MatrixMultiplication() function to move the bulk of the calculation

to a CUDA device. The structure of the revised function is shown in

Figure 3.6. Part 1 of the function allocates device (GPU) memory to hold

copies of the M, N, and P matrices and copies these matrices over to the

device memory. Part 2 invokes a kernel that launches parallel execution

of the actual matrix multiplication on the device. Part 3 copies the product

matrix P from the device memory back to the host memory.

Note that the revised MatrixMultiplication() function is essentially an

outsourcing agent that ships input data to a device, activates the calculation on

the device, and collects the results from the device. The agent does so in such

FIGURE 3.6

Outline of a revised host code MatrixMultiplication() that moves the matrix

multiplication to a device.
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a way that the main program does not have to even be aware that the matrix

multiplication is now actually done on a device. The details of the revised

function, as well as the way to compose the kernel function, will serve as illus-

trations as we introduce the basic features of the CUDA programming model.

3.4 DEVICE MEMORIES AND DATA TRANSFER
In CUDA, the host and devices have separate memory spaces. This reflects

the reality that devices are typically hardware cards that come with their

own dynamic random access memory (DRAM). For example, the NVIDIA

T10 processor comes with up to 4 GB (billion bytes, or gigabytes) of

DRAM. In order to execute a kernel on a device, the programmer needs

to allocate memory on the device and transfer pertinent data from the

host memory to the allocated device memory. This corresponds to Part 1

of Figure 3.6. Similarly, after device execution, the programmer needs to

transfer result data from the device memory back to the host memory and

free up the device memory that is no longer needed. This corresponds to

Part 3 of Figure 3.6. The CUDA runtime system provides application

programming interface (API) functions to perform these activities on behalf

of the programmer. From this point on, we will simply say that a piece of

data is transferred from host to device as shorthand for saying that the piece

of data is transferred from the host memory to the device memory.

The same holds for the opposite data transfer direction.

Figure 3.7 shows an overview of the CUDA device memory model for

programmers to reason about the allocation, movement, and usage of the var-

ious memory types of a device. At the bottom of the figure, we see global

memory and constant memory. These are the memories that the host code

can transfer data to and from the device, as illustrated by the bidirectional

arrows between these memories and the host. Constant memory allows

read-only access by the device code and is described in Chapter 5. For now,

we will focus on the use of global memory. Note that the host memory is

not explicitly shown in Figure 3.7 but is assumed to be contained in the host.2

The CUDA memory model is supported by API functions that help

CUDA programmers to manage data in these memories. Figure 3.8 shows

the API functions for allocating and deallocating device global memory.

The function cudaMalloc() can be called from the host code to allocate

2Note that we have omitted the texture memory from Figure 3.7 for simplicity. We will

introduce texture memory later.
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a piece of global memory for an object. The reader should be able to notice

the striking similarity between cudaMalloc() and the standard C runtime

library malloc(). This is intentional; CUDA is C with minimal extensions.

CUDA uses the standard C runtime library malloc() function to manage
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Registers Registers
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•

FIGURE 3.7

Overview of the CUDA device memory model.
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CUDA API functions for device global memory management.
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the host memory and adds cudaMalloc() as an extension to the C runtime

library. By keeping the interface as close to the original C runtime libraries

as possible, CUDA minimizes the time that a C programmer needs to

relearn the use of these extensions.

The first parameter of the cudaMalloc() function is the address of a

pointer variable that must point to the allocated object after allocation.

The address of the pointer variable should be cast to (void **) because

the function expects a generic pointer value; the memory allocation func-

tion is a generic function that is not restricted to any particular type of

objects. This address allows the cudaMalloc() function to write the address

of the allocated object into the pointer variable.3 The second parameter of

the cudaMalloc() function gives the size of the object to be allocated, in

terms of bytes. The usage of this second parameter is consistent with the

size parameter of the C malloc() function.

We now use a simple code example illustrating the use of cudaMalloc().

This is a continuation of the example in Figure 3.6. For clarity, we will end

a pointer variable with the letter “d” to indicate that the variable is used to

point to an object in the device memory space. The programmer passes the

address of Md (i.e., &Md) as the first parameter after casting it to a void

pointer; that is, Md is the pointer that points to the device global memory

region allocated for the M matrix. The size of the allocated array will

be Width*Width*4 (the size of a single-precision floating number). After

the computation, cudaFree() is called with pointer Md as input to free the

storage space for the M matrix from the device global memory:

float *Md

int size ¼ Width * Width * sizeof(float);

cudaMalloc((void**)&Md, size);

. . .

cudaFree(Md);

The reader should complete Part 1 of the MatrixMultiplication() exam-

ple in Figure 3.6 with similar declarations of anNd and aPd pointer variable as

3Note that cudaMalloc() has a different format from the C malloc() function. The

C Malloc() function returns a pointer to the allocated object. It takes only one

parameter that specifies the size of the allocated object. The cudaMalloc() function

writes to the pointer variable whose address is given as the first parameter. As a result,

the cudaMalloc() function takes two parameters. The two-parameter format of cuda-
Malloc() allows it to use the return value to report any errors in the same way as other

CUDA API functions.
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well as their corresponding cudaMalloc() calls. Furthermore, Part 3 in

Figure 3.6 can be completed with the cudaFree() calls for Nd and Pd.
Once a program has allocated device global memory for the data

objects, it can request that data be transferred from host to device. This is

accomplished by calling one of the CUDA API functions, cudaMemcpy(),

for data transfer between memories. Figure 3.9 shows the API function

for such a data transfer. The cudaMemcpy() function takes four parameters.

The first parameter is a pointer to the destination location for the copy oper-

ation. The second parameter points to the source data object to be copied.

The third parameter specifies the number of bytes to be copied. The fourth

parameter indicates the types of memory involved in the copy: from host

memory to host memory, from host memory to device memory, from

device memory to host memory, and from device memory to device mem-

ory. For example, the memory copy function can be used to copy data from

one location of the device memory to another location of the device mem-

ory. Please note that cudaMemcpy() cannot be used to copy between differ-

ent GPUs in multi-GPU systems.

For thematrixmultiplication example, the host code calls the cudaMemcpy()

function to copy the M and N matrices from the host memory to the device

memory before the multiplication and then to copy the P matrix from

the device memory to the host memory after the multiplication is done.

• cudaMemcpy()

Memory data transfer
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Block (0, 0) Block (1, 0)–
– Requires four parameters

• Pointer to destination 
• Pointer to source

Shared Memory

Registers

Shared Memory
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– Host to Host
– Host to Device
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Global
Memory

–
– Device to Device

– Transfer is asynchronous Memory

Registers Registers Registers

FIGURE 3.9

CUDA API functions for data transfer between memories.
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Assume that M, P, Md, Pd, and size have already been set as we discussed

before; the two function calls are shown below. Note that the two symbolic

constants, cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost, are

recognized, predefined constants of the CUDA programming environment.

The same function can be used to transfer data in both directions by properly

ordering the source and destination pointers and using the appropriate

constant for the transfer type:

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

To summarize, the main program in Figure 3.3 calls MatrixMultiplication

(), which is also executed on the host. MatrixMultiplication(), as out-

lined in Figure 3.6, is responsible for allocating devicememory, performing data

transfers, and activating the kernel that performs the actualmatrixmultiplication.

We often refer to this type of host code as the stub function for invoking a

kernel. After the matrix multiplication, MatrixMultiplication() also copies

result data from device to the host. We show a more fleshed out version of

the MatrixMultiplication() function in Figure 3.10.

Compared to Figure 3.6, the revised MatrixMultiplication() function

is complete in Part 1 and Part 3. Part 1 allocates device memory for Md,

FIGURE 3.10

The revised MatrixMultiplication() function.
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Nd, and Pd, the device counterparts of M, N, and P, and transfers M to Md
and N to Nd. This is accomplished with calls to the cudaMalloc()

and cudaMemcpy() functions. The readers are encouraged to write their

own function calls with the appropriate parameter values and compare their

code with that shown in Figure 3.10. Part 2 invokes the kernel and will be

described in the following text. Part 3 reads the product data from device

memory to host memory so the value will be available to main(). This is

accomplished with a call to the cudaMemcpy() function. It then frees Md,
Nd, and Pd from the device memory, which is accomplished with calls to

the cudaFree() functions.

3.5 KERNEL FUNCTIONS AND THREADING
We are now ready to discuss more about the CUDA kernel functions and

the effect of invoking these kernel functions. In CUDA, a kernel function

specifies the code to be executed by all threads during a parallel phase.

Because all of these threads execute the same code, CUDA programming

is an instance of the well-known single-program, multiple-data (SPMD)

parallel programming style [Atallah 1998], a popular programming style

for massively parallel computing systems.4

Figure 3.11 shows the kernel function for matrix multiplication. The syn-

tax is ANSI C with some notable extensions. First, there is a CUDA-specific

keyword “__global__” in front of the declaration of MatrixMulKernel().

This keyword indicates that the function is a kernel and that it can be called

from a host functions to generate a grid of threads on a device.

In general, CUDA extends C function declarations with three qualifier

keywords. The meanings of these keywords are summarized in Figure 3.12.

The __global__ keyword indicates that the function being declared is a

CUDA kernel function. The function will be executed on the device and

can only be called from the host to generate a grid of threads on a device.

We will show the host code syntax for calling a kernel function later in

Figure 3.14. Besides __global__, there are two other keywords that can

be used in front of a function declaration. Figure 3.12 summarizes the

4Note that SPMD is not the same as single instruction, multiple data (SIMD). In an

SPMD system, the parallel processing units execute the same program on multiple parts

of the data; however, these processing units do not have to be executing the same instruc-

tion at the same time. In an SIMD system, all processing units are executing the same

instruction at any instant.
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meaning of these keywords. The __device__ keyword indicates that the

function being declared is a CUDA device function. A device function exe-

cutes on a CUDA device and can only be called from a kernel function or

another device function. Device functions can have neither recursive function

calls nor indirect function calls through pointers in them. The __host__

keyword indicates that the function being declared is a CUDA host

function. A host function is simply a traditional C function that executes on

the host and can only be called from another host function. By default, all

functions in a CUDA program are host functions if they do not have any

of the CUDA keywords in their declaration. This makes sense, as many

CUDA applications are ported from CPU-only execution environments.

The programmer would add kernel functions and device functions

FIGURE 3.11

The matrix multiplication kernel function.

FIGURE 3.12

CUDA extensions to C functional declaration.
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during the porting process. The original functions remain as host functions.

Having all functions default into host functions spares the programmer the

tedious work of changing all original function declarations.

Note that one can use both __host__ and __device__ in a function

declaration. This combination triggers the compilation system to generate

two versions of the same function. One is executed on the host and can only

be called from a host function. The other is executed on the device and can

only be called from a device or kernel function. This supports a common

use when the same function source code can be simply recompiled to gen-

erate a device version. Many user library functions will likely fall into this

category.

Other notable extensions of ANSI C, in Figure 3.11, are the

keywords threadIdx.x and threadIdx.y, which refer to the thread indices

of a thread. Note that all threads execute the same kernel code. There needs

to be a mechanism to allow them to distinguish themselves and direct them-

selves toward the particular parts of the data structure that they are desig-

nated to work on. These keywords identify predefined variables that

allow a thread to access the hardware registers at runtime that provide the

identifying coordinates to the thread. Different threads will see different

values in their threadIdx.x and threadIdx.y variables. For simplicity,

we will refer to a thread as ThreadthreadIdx.x, threadIdx.y. Note that the coordi-
nates reflect a multidimensional organization for the threads. We will come

back to this point soon.

A quick comparison of Figure 3.4 and Figure 3.11 reveals an important

insight for CUDA kernel functions and CUDA kernel invocation. The ker-

nel function in Figure 3.11 has only one loop, which corresponds to the

innermost loop in Figure 3.4. The readers should ask where the other two

levels of outer loops go. The answer is that the outer two loop levels are

now replaced with the grid of threads. The entire grid forms the equivalent

of the two-level loop. Each thread in the grid corresponds to one of the

iterations of the original two-level loop. The original loop variables i and
j are now replaced with threadIdx.x and threadIdx.y. Instead of having

the loop increment the values of i and j for use in each loop iteration, the

CUDA threading hardware generates all of the threadIdx.x and threadIdx.y
values for each thread.

In Figure 3.11, each thread uses its threadIdx.x and threadIdx.y to iden-

tify the row of Md and the column of Nd to perform the dot product opera-

tion. It should be clear that these indices simply take over the role of

variables i and j in Figure 3.8. Note that we assigned threadIdx.x to the

automatic C variable tx and threadIdx.y to variable ty for brevity in
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Figure 3.8. Each thread also uses its threadIdx.x and threadIdx.y values to

select the Pd element that it is responsible for; for example, Thread2,3 will
perform a dot product between column 2 of Nd and row 3 of Md and write

the result into element (2,3) of Pd. This way, the threads collectively gen-

erate all the elements of the Pd matrix.

When a kernel is invoked, or launched, it is executed as grid of parallel

threads. In Figure 3.13, the launch of Kernel 1 creates Grid 1. Each CUDA

thread grid typically is comprised of thousands to millions of lightweight

GPU threads per kernel invocation. Creating enough threads to fully utilize

the hardware often requires a large amount of data parallelism; for example,

each element of a large array might be computed in a separate thread.

Threads in a grid are organized into a two-level hierarchy, as illustrated

in Figure 3.13. For simplicity, a small number of threads are shown in

Figure 3.13. In reality, a grid will typically consist of many more threads.

At the top level, each grid consists of one or more thread blocks. All blocks

in a grid have the same number of threads. In Figure 3.13, Grid 1 is

organized as a 2�2 array of 4 blocks. Each block has a unique two-

dimensional coordinate given by the CUDA specific keywords blockIdx.x

and blockIdx.y. All thread blocks must have the same number of threads

organized in the same manner.

• A  thread block is a batch
     of threads that can
     cooperate with each
     other by:

Host Device

Synchronizing their
execution 

Kernel 
1

Block
(0, 0)

Block
(1, 0)

Block Block

• For hazard-free shared
     memory accesses 

—

—

Efficiently sharing data
through a low-latency
shared memory 

Kernel 

(0, 1) (1, 1)

Grid 2

• Two threads from two
     different blocks cannot
     cooperate  

Block (1, 1)

Thread Thread

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Grid1

(2,0,0) (3,0,0)

2

Thread Thread
(0,0,0) (1,0,0)

Thread
(0,1,0)

FIGURE 3.13

CUDA thread organization.
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Each thread block is, in turn, organized as a three-dimensional array of

threads with a total size of up to 512 threads. The coordinates of threads

in a block are uniquely defined by three thread indices: threadIdx.x,

threadIdx.y, and threadIdx.z. Not all applications will use all three

dimensions of a thread block. In Figure 3.13, each thread block is organized

into a 4�2�2 three-dimensional array of threads. This gives Grid 1 a total

of 4�16 ¼ 64 threads. This is obviously a simplified example.

In the matrix multiplication example, a grid is invoked to compute the

product matrix. The code in Figure 3.11 does not use any block index in

accessing input and output data. Threads with the same threadIdx values

from different blocks would end up accessing the same input and output

data elements. As a result, the kernel can use only one thread block. The

threadIdx.x and threadIdx.y values are used to organize the block

into a two-dimensional array of threads. Because a thread block can have

only up to 512 threads, and each thread calculates one element of the prod-

uct matrix in Figure 3.11, the code can only calculate a product matrix of

up to 512 elements. This is obviously not acceptable. As we explained

before, the product matrix must have millions of elements in order to have

a sufficient amount of data parallelism to benefit from execution on a

device. We will address this issue in Chapter 4 using multiple blocks.

When the host code invokes a kernel, it sets the grid and thread block

dimensions via execution configuration parameters. This is illustrated in

Figure 3.14. Two struct variables of type dim3 are declared. The first

is for describing the configuration of blocks, which are defined as

16�16 groups of threads. The second variable, dimGrid, describes the con-

figuration of the grid. In this example, we only have one (1�1) block in

each grid. The final line of code invokes the kernel. The special syntax

between the name of the kernel function and the traditional C parameters

of the function is a CUDA extension to ANSI C. It provides the dimensions

of the grid in terms of number of blocks and the dimensions of the blocks in

terms of number of threads.

FIGURE 3.14

Example of host code that launches a kernel.
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3.6 SUMMARY
This chapter serves as a quick overview of the CUDA programming model.

CUDA extends the C language to support parallel computing. The exten-

sions discussed in this chapter are summarized below.

3.6.1 Function declarations

CUDA extends the C function declaration syntax to support heterogeneous

parallel computing. The extensions are summarized in Figure 3.12. Using

one of __global__, __device__, or __host__, a CUDA programmer can

instruct the compiler to generate a kernel function, a device function, or a

host function. If both __host__ and __device__ are used in a function dec-

laration, the compiler generates two versions of the function, one for the

device and one for the host. If a function declaration does not have any

CUDA extension keyword, the function defaults into a host function.

3.6.2 Kernel launch

CUDA extends C function call syntax with kernel execution configuration

parameters surrounded by <<< and >>>. These execution configuration

parameters are only used during a call to a kernel function, or a kernel

launch. We discussed the execution configuration parameters that define

the dimensions of the grid and the dimensions of each block. The reader

should refer to the CUDA Programming Guide [NVIDIA 2007] for more

details regarding the kernel launch extensions as well as other types of

execution configuration parameters.

3.6.3 Predefined variables

CUDA kernels can access a set of predefined variables that allow each

thread to distinguish among themselves and to determine the area of data

each thread is to work on. We discussed the threadIdx variable in this

chapter. In Chapter 4, we will further discuss blockIdx, gridDim, and

blockDim variables.5

5Note that the gridDim and blockDim variables are built-in, predefined variables that are

accessible in kernel functions. They should not be confused with the user defined dimGrid

and dimBlock variables that are used in the host code for the purpose of setting up the

configuration parameters. The value of these configuration parameters will ultimately

become the values of gridDim and blockDim once the kernel has been launched.
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3.6.4 Runtime API

CUDA supports a set of API functions to provide services to CUDA pro-

grams. The services that we discussed in this chapter are cudaMalloc()

and cudaMemcpy() functions. These functions allocate device memory

and transfer data between the host and device on behalf of the calling pro-

gram. The reader is referred to the CUDA Programming Guide [NVIDIA

2007] for other CUDA API functions.

Our goal for this chapter is to introduce the fundamental concepts

of the CUDA programming model and the essential CUDA extensions to

C for writing a simple CUDA program. The chapter is by no means a com-

prehensive account of all CUDA features. Some of these features will be

covered in the rest of the book; however, our emphasis will be on key

concepts rather than details. In general, we would like to encourage the

reader to always consult the CUDA Programming Guide for more details

on the concepts that we cover.
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INTRODUCTION
Fine-grained, data-parallel threads are the fundamental means of parallel

execution in CUDA�. As we explained in Chapter 3, launching a CUDA

kernel function creates a grid of threads that all execute the kernel function.

That is, the kernel function specifies the C statements that are executed by

each individual thread created when the kernel is launched at runtime. This

chapter presents more details on the organization, resource assignment, and

scheduling of threads in a grid. A CUDA programmer who understands

these details is well equipped to write and to understand high-performance

CUDA applications.

4.1 CUDA THREAD ORGANIZATION
Because all threads in a grid execute the same kernel function, they rely on

unique coordinates to distinguish themselves from each other and to iden-

tify the appropriate portion of the data to process. These threads are

organized into a two-level hierarchy using unique coordinates—blockIdx

(for block index) and threadIdx (for thread index)—assigned to them by

the CUDA runtime system. The blockIdx and threadIdx appear as built-

in, preinitialized variables that can be accessed within kernel functions.
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When a thread executes the kernel function, references to the blockIdx and

threadIdx variables return the coordinates of the thread. Additional built-in

variables, gridDim and blockDim, provide the dimension of the grid and the

dimension of each block respectively.

Figure 4.1 shows a simple example of CUDA thread organization. The

grid in this example consists of N thread blocks, each with a blockIdx.x

value that ranges from 0 to N – 1. Each block, in turn, consists ofM threads,

each with a threadIdx.x value that ranges from 0 to M – 1. All blocks at

the grid level are organized as a one-dimensional (1D) array; all threads

within each block are also organized as a 1D array. Each grid has a total

of N*M threads.

The black box of each thread block in Figure 4.1 shows a fragment

of the kernel code. The code fragment uses the threadID ¼ blockIdx.x *

blockDim.x þ threadIdx to identify the part of the input data to read from

and the part of the output data structure to write to. Thread 3 of Block 0 has

a threadID value of 0*M þ 3 ¼ 3. Thread 3 of Block 5 has a threadID

value of 5*M þ 3.

Assume a grid has 128 blocks (N ¼ 128) and each block has 32 threads

(M ¼ 32). In this example, access to blockDim in the kernel returns 32.

There are a total of 128*32 ¼ 4096 threads in the grid. Thread 3 of Block

0 has a threaded value of 0*32 þ 3 ¼ 3. Thread 3 of Block 5 has a

threaded value of 5*32 þ 3 ¼ 163. Thread 15 of Block 102 has a threaded

value of 3279. The reader should verify that every one of the 4096 threads

has its own unique threaded value. In Figure 4.1, the kernel code uses

threadID variable to index into the input[]and the output[]arrays. If

we assume that both arrays are declared with 4096 elements, then each

thread will take one of the input elements and produce one of the output

elements.

In general, a grid is organized as a 2D array of blocks. Each block is

organized into a 3D array of threads. The exact organization of a grid is

determined by the execution configuration provided at kernel launch. The

first parameter of the execution configuration specifies the dimensions of

the grid in terms of number of blocks. The second specifies the dimensions

of each block in terms of number of threads. Each such parameter is a dim3

type, which is essentially a C struct with three unsigned integer fields: x,
y, and z. Because grids are 2D arrays of block dimensions, the third field of

the grid dimension parameter is ignored; it should be set to 1 for clarity.

The following host code can be used to launch the kernel whose organiza-

tion is shown in Figure 4.1:
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int threadID = blockIdx.x *

blockDim.x + threadIdx.x;

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadIdx.x

Thread block 0

…

Thread block 1 Thread block N - 1

int threadID = blockIdx.x *

blockDim.x + threadIdx.x;

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

int threadID = blockIdx.x * 

blockDim.x + threadIdx.x;

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

… M-1 M-1 M-143210 5 …43210 5 …43210 5

FIGURE 4.1

Overview of CUDA thread organization.
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dim3 dimGrid(128, 1, 1);

dim3 dimBlock(32, 1, 1);

KernelFunction<<<dimGrid, dimBlock>>>(. . .);

The first two statements initialize the execution configuration para-

meters. Because the grid and the blocks are 1D arrays, only the first dimen-

sion of dimBlock and dimGrid are used. The other dimensions are set to 1.

The third statement is the actual kernel launch. The execution configuration

parameters are between <<< and >>>. Note that scalar values can also

be used for the execution configuration parameters if a grid or block has

only one dimension; for example, the same grid can be launched with one

statement:

KernelFunction<<<128, 32>>>(. . .);

The values of gridDim.x and gridDim.y can range from 1 to 65,535.

The values of gridDim.x and gridDim.y can be calculated based on other

variables at kernel launch time. Once a kernel is launched, its dimensions

cannot change. All threads in a block share the same blockIdx value.

The blockIdx.x value ranges between 0 and gridDim.x � 1, and the

blockIdx.y value between 0 and gridDim.y� 1.

Figure 4.2 shows a small 2D grid that is launched with the following

host code:

dim3 dimGrid(2, 2, 1);

dim3 dimBlock(4, 2, 2);

KernelFunction<<<dimGrid, dimBlock>>>(. . .);

The grid consists of four blocks organized into a 2�2 array. Each block

in Figure 4.2 is labeled with (blockIdx.x, blockIdx.y); for example,

Block(1,0) has blockIdx.x ¼ 1 and blockIdx.y ¼ 0.

In general, blocks are organized into 3D arrays of threads. All blocks in

a grid have the same dimensions. Each threadIdx consists of three compo-

nents: the x coordinate threadIdx.x, the y coordinate threadIdx.y, and

the z coordinate threadIdx.z. The number of threads in each dimension

of a block is specified by the second execution configuration parameter

given at the kernel launch. With the kernel, this configuration parameter

can be accessed as a predefined struct variable, blockDim. The total size

of a block is limited to 512 threads, with flexibility in distributing these ele-

ments into the three dimensions as long as the total number of threads does

not exceed 512. For example, (512, 1, 1), (8, 16, 2), and (16, 16, 2) are all

allowable blockDim values, but (32, 32, 1) is not allowable because the total

number of threads would be 1024.
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Figure 4.2 also illustrates the organization of threads within a block.

In this example, each block is organized into 4�2�2 arrays of threads.

Because all blocks within a grid have the same dimensions, we only

need to show one of them. Figure 4.2 expands block (1, 1) to show its 16

threads; for example, thread (2, 1, 0) has threadIdx.x ¼ 2, threadIdx.y

¼ 1, and threadIdx.z ¼ 0. Note that, in this example, we have 4 blocks

of 16 threads each, with a grand total of 64 threads in the grid. We have

used these small numbers to keep the illustration simple. Typical CUDA

grids contain thousands to millions of threads.

Host Device

Grid 1

Kernel
1

Block
(0, 0)

Block
(1, 0)
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Block (1, 1)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)
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FIGURE 4.2

A multidimensional example of CUDA grid organization.
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4.2 USING blockIdx AND threadIdx

From the programmer’s point of view, the main functionality of blockIdx

and threadIdx variables is to provide threads with a means to distinguish

among themselves when executing the same kernel. One common usage

for threadIdx and blockIdx is to determine the area of data that a thread

is to work on. This was illustrated by the simple matrix multiplication

code in Figure 3.11, where the dot product loop uses threadIdx.x

and threadIdx.y to identify the row of Md and column of Nd to work

on. We will now cover more sophisticated usage of these variables.

One limitation of the simple code in Figure 3.11 is that it can only han-

dle matrices of up to 16 elements in each dimension. This limitation comes

from the fact that the kernel function does not use blockIdx. As a result,

we are limited to using only one block of threads. Even if we used more

blocks, threads from different blocks would end up calculating the same

Pd element if they have the same threadIdx value. Recall that each block

can have up to 512 threads. With each thread calculating one element of

Pd, we can calculate up to 512 Pd elements with the code. For square

matrices, we are limited to 16�16 because 32�32 requires more than 512

threads per block.

In order to accommodate larger matrices, we need to use multiple thread

blocks. Figure 4.3 shows the basic idea of such an approach. Conceptually,

we break Pd into square tiles. All the Pd elements of a tile are computed by

a block of threads. By keeping the dimensions of these Pd tiles small, we

keep the total number of threads in each block under 512, the maximal allow-

able block size. In Figure 4.3, for simplicity, we abbreviate threadIdx.x and

threadIdx.y as tx and ty. Similarly, we abbreviate blockIdx.x

and blockIdx.y as bx and by.

Each thread still calculates one Pd element. The difference is that it

must use its blockIdx values to identify the tile that contains its element

before it uses its threadIdx values to identify its element inside the tile.

That is, each thread now uses both threadIdx and blockIdx to identify

the Pd element to work on. This is portrayed in Figure 4.3, where the bx,

by, tx, and ty values of threads calculating the Pd elements are marked

in both x and y dimensions. All threads calculating the Pd elements within

a tile have the same blockIdx values.

Assume that the dimensions of a block are square and are specified by

the variable TILE_WIDTH. Each dimension of Pd is now divided into sec-

tions of TILE_WIDTH elements each, as shown on the left and top edges of

Figure 4.3. Each block handles such a section. Thus, a thread can find the
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x index of its Pd element as (bx*TILE_WIDTH þ tx) and the y index as

(by*TILE_WIDTH þ ty). That is, thread (tx, ty) in block (bx, by) is to use

row (by*TILE_WIDTH þ ty) of Md and column (bx*TILE_WIDTH þ tx) of

Nd to calculate the Pd element at column (bx*TILE_WIDTH þ tx) and row

(by*TILE_WIDTH þ ty).

Figure 4.4 shows a small example of using multiple blocks to calculate

Pd. For simplicity, we use a very small TILE_WIDTH value (2) so we can fit

the entire example in one picture. The Pd matrix is now divided into 4 tiles.

Each dimension of Pd is now divided into sections of 2 elements. Each

block needs to calculate 4 Pd elements. We can do so by creating blocks

that are organized into 2�2 arrays of threads, with each thread calculating
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FIGURE 4.3

Matrix multiplication using multiple blocks by tiling Pd.
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one Pd element. In the example, thread (0, 0) of block (0, 0) calculates

Pd0,0, whereas thread (0, 0) of block (1, 0) calculates Pd2,0. It is easy to

verify that one can identify the Pd element calculated by thread (0, 0)

of block (1, 0) with the formula given above: Pd[bx* TILE_WIDTH þ tx]

[by* TILE_WIDTH þ ty] ¼ Pd[1*2 þ 0][0*2 þ 0] ¼ Pd[2][0]. The reader

should work through the index derivation for as many threads as it takes to

become comfortable with the concept.

Once we have identified the indices for the Pd element to be calculated by

a thread, we also have identified the row (y) index ofMd and the column (x)
index of Nd for input values. As shown in Figure 4.3, the row index of Md
used by thread (tx, ty) of block (bx, by) is (by*TILE_WIDTH þ ty). The col-

umn index of Nd used by the same thread is (bx*TILE_WIDTH þ tx). We are

now ready to revise the kernel of Figure 3.11 into a version that uses multiple

blocks to calculate Pd.
Figure 4.5 illustrates the multiplication actions in each thread block. For

the small matrix multiplication, threads in block (0, 0) produce four dot

products: Thread (0, 0) generates Pd0,0 by calculating the dot product of

row 0 of Md and column 0 of Nd. Thread (1, 0) generates Pd1,0 by calcu-

lating the dot product of row 0 of Md and column 1 of Nd. The arrows of

Pd0,0, Pd1,0, Pd0,1, and Pd1,1 shows the row and column used for generat-

ing their result value.

Figure 4.6 shows a revised matrix multiplication kernel function that

uses multiple blocks. In Figure 4.6, each thread uses its blockIdx and

threadIdx values to identify the row index (Row) and the column index
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TILE_WIDTH = 2

FIGURE 4.4

A simplified example of using multiple blocks to calculate Pd.
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(Col) of the Pd element that it is responsible for. It then performs a dot

product on the row of Md and column of Nd to generate the value of the

Pd element. It eventually writes the Pd value to the appropriate global

memory location. Note that this kernel can handle matrices of up to 16 �
65,535 elements in each dimension. In the situation where matrices larger

than this new limit are to be multiplied, one can divide the Pd matrix into

submatrices of a size permitted by the kernel. Each submatrix would still be

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,3Nd1,3

Nd1,2Nd0,2

Pd1,0
Md0,0Md1,0Md2,0 Pd0,0 Pd2,0 Pd3,0
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Md3,0

Md3,1

FIGURE 4.5

Matrix multiplication actions of one thread block.

FIGURE 4.6

Revised matrix multiplication kernel using multiple blocks.
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processed by an ample number of blocks (65,535 � 65,535). All of these

blocks can run in parallel with each other and will fully utilize parallel

execution resources of any processors in the foreseeable future.

Figure 4.7 shows the revised host code to be used in the MatrixMultipli-

cation() stub function to launch the revised kernel. Note that the dimGrid

now receives the value of Width/TILE_WIDTH for both the x dimension and

the y dimension. The revised code now launches the MatrixMulKernel()

with multiple blocks. Note that the code treats the Md, Nd, and Pd arrays as

1D array with row major layout. The calculation of the indices used to access

Md, Nd, and Pd is the same as that in Section 3.3.

4.3 SYNCHRONIZATION AND TRANSPARENT SCALABILITY
CUDA allows threads in the same block to coordinate their activities using

a barrier synchronization function, __syncthreads(). When a kernel

function calls __syncthreads(), the thread that executes the function call

will be held at the calling location until every thread in the block reaches

the location. This ensures that all threads in a block have completed a phase

of their execution of the kernel before any moves on to the next phase. We

will discuss an important use of __syncthreads() in Chapter 5.

Barrier synchronization is a simple and popularmethod of coordinating par-

allel activities. In real life, we often use barrier synchronization to coordinate

parallel activities of multiple persons; for example, assume that four friends

go to a shopping mall in a car. They can all go to different stores to buy their

own clothes. This is a parallel activity and is much more efficient than if they

all remain as a group and sequentially visit the stores to shop for their clothes.

However, barrier synchronization is needed before they leave the mall. They

have to wait until all four friends have returned to the car before they can leave.

Without barrier synchronization, one or more persons could be left at the mall

when the car leaves, which could seriously damage their friendship!

FIGURE 4.7

Revised host code for launching the revised kernel.
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In CUDA, a __syncthreads() statement must be executed by all

threads in a block. When a __syncthreads() statement is placed in an if
statement, either all threads in a block execute the path that includes

the __syncthreads() or none of them does. For an if–then–else statement,

if each path has a __syncthreads() statement, then either all threads in a

block execute the __syncthreads() on the then path or all of them execute

the else path. The two __syncthreads() are different barrier synchroniza-

tion points. If a thread in a block executes the then path and another exe-

cutes the else path, then they would be waiting at different barrier

synchronization points. They would end up waiting for each other forever.

The ability to synchronize also imposes execution constraints on threads

within a block. These threads should execute in close time proximity with

each other to avoid excessively long waiting times. CUDA runtime systems

satisfy this constraint by assigning execution resources to all threads in a

block as a unit; that is, when a thread of a block is assigned to an execution

resource, all other threads in the same block are also assigned to the same

resource. This ensures the time proximity of all threads in a block and

prevents excessive waiting time during barrier synchronization.

This leads us to a major tradeoff in the design of CUDA barrier syn-

chronization. By not allowing threads in different blocks to perform barrier

synchronization with each other, the CUDA runtime system can execute

blocks in any order relative to each other because none of them must wait

for each other. This flexibility enables scalable implementations as shown

in Figure 4.8. In a low-cost implementation with only a few execution

resources, one can execute a small number of blocks at the same time

Device Kernel grid
Device

Block 0 Block 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3

time

Block 4 Block 5

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to
other blocks.

Block 7Block 6

Block 2 Block 3

FIGURE 4.8

Transparent scalability for CUDA programs allowed by the lack of synchronization

constraints between blocks.
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(shown as executing two blocks a time on the left-hand side of Figure 4.8).

In a high-end implementation with more execution resources, one can exe-

cute a large number of blocks at the same time (shown as executing four

blocks at a time on the right-hand side of Figure 4.8). The ability to execute

the same application code at a wide range of speeds allows the production

of a wide range of implementations according to the cost, power, and per-

formance requirements of particular market segments. A mobile processor,

for example, may execute an application slowly but at extremely low power

consumption, and a desktop processor may execute the same application

at a higher speed while consuming more power. Both execute exactly

the same application program with no change to the code. The ability to

execute the same application code on hardware with different numbers

of execution resources is referred to as transparent scalability, which

reduces the burden on application developers and improves the usability

of applications.

4.4 THREAD ASSIGNMENT
Once a kernel is launched, the CUDA runtime system generates the

corresponding grid of threads. These threads are assigned to execution

resources on a block-by-block basis. In the current generation of hardware,

the execution resources are organized into streaming multiprocessors

(SMs); for example, the NVIDIA� GT200 implementation has 30 stream-

ing multiprocessors, 2 of which are shown in Figure 4.9. Up to 8 blocks

can be assigned to each SM in the GT200 design as long as there are

enough resources to satisfy the needs of all of the blocks. In situations with

an insufficient amount of any one or more types of resources needed for the

simultaneous execution of 8 blocks, the CUDA runtime automatically

reduces the number of blocks assigned to each SM until the resource usage

is under the limit. With 30 SMs in the GT200 processor, up to 240 blocks

can be simultaneously assigned to them. Most grids contain many more

than 240 blocks. The runtime system maintains a list of blocks that need

to execute and assigns new blocks to SMs as they complete the execution

of blocks previously assigned to them.

Figure 4.9 shows an example in which three thread blocks are assigned to

each SM. One of the SM resource limitations is the number of threads that

can be simultaneously tracked and scheduled. Hardware resources are required

for SMs to maintain the thread, block IDs, and track their execution status. In

the GT200 design, up to 1024 threads can be assigned to each SM. This could
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be in the form of 4 blocks of 256 threads each, 8 blocks of 128 threads each,

etc. It should be obvious that 16 blocks of 64 threads each is not possible, as

each SM can only accommodate up to 8 blocks. Because the GT200 has 30

SMs, up to 30,720 threads can be simultaneously residing in the SMs for exe-

cution. The number of threads that can be assigned to each SM increased

from the G80 to the GT200. Each SM in G80 can accommodate 768 threads,

and, because the G80 has 16 SMs, up to 12,288 threads can be simultaneously

residing in the SMs for execution. The transparent scalability of CUDA

allows the same application code to run unchanged on G80 and GT200.

4.5 THREAD SCHEDULING AND LATENCY TOLERANCE
Thread scheduling is strictly an implementation concept and thus must be

discussed in the context of specific hardware implementations. In the

GT200 implementation, once a block is assigned to a streaming multipro-

cessor, it is further divided into 32-thread units called warps. The size of

warps is implementation specific. In fact, warps are not part of the CUDA

specification; however, knowledge of warps can be helpful in understanding

and optimizing the performance of CUDA applications on particular genera-

tions of CUDA devices. The warp is the unit of thread scheduling in SMs.

SP SP

MT IU IUMT

t0 t1 t2 … tm t0 t1 t2 … tm

Blocks

Shared
Memory

Shared
Memory

Blocks

SM 1SM 0

FIGURE 4.9

Thread block assignment to streaming multiprocessors (SMs).
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Figure 4.10 shows the division of blocks into warps in the GT200. Each

warp consists of 32 threads of consecutive threadIdx values: Threads

0 through 31 form the first warp, threads 32 through 63 the second warp,

and so on. In this example, three blocks (Block 1, Block 2, and Block 3)

are all assigned to an SM. Each of the three blocks is further divided into

warps for scheduling purposes.

We can calculate the number of warps that reside in an SM for a given

block size and a given number of blocks assigned to each SM. In Fig-

ure 4.10, for example, if each block has 256 threads, then we can determine

that each block has 256/32 or 8 warps. With 3 blocks in each SM, we have

8 � 3 ¼ 24 warps in each SM. This is, in fact, the maximal number of warps

that can reside in each SM in the G80, as there can be no more than 768

threads in each SM, which amounts to 768/32 ¼ 24 warps. This number

increases to 32 warps per SM for the GT200.
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•   •   • •   •   • •   •   •

Block 2 Warps Block 3 Warps

Instruction L1

Streaming multiprocessor

Instruction fetch/dispatch

Shared memory
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FIGURE 4.10

Blocks partitioned into warps for thread scheduling.
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A legitimate question is why do we need to have so many warps in an

SM if there are only 8 SPs in an SM? The answer is that this is how CUDA

processors efficiently execute long-latency operations such as global mem-

ory accesses. When an instruction executed by the threads in a warp must

wait for the result of a previously initiated long-latency operation, the warp

is not selected for execution. Another resident warp that is no longer wait-

ing for results is selected for execution. If more than one warp is ready for

execution, a priority mechanism is used to select one for execution. This

mechanism of filling the latency of expensive operations with work from

other threads is often referred to as latency hiding.
Note that warp scheduling is also used for tolerating other types of long-

latency operations such as pipelined floating-point arithmetic and branch

instructions. With enough warps around, the hardware will likely find a

warp to execute at any point in time, thus making full use of the execution

hardware in spite of these long-latency operations. The selection of ready

warps for execution does not introduce any idle time into the execution

timeline, which is referred to as zero-overhead thread scheduling. With

warp scheduling, the long waiting time of warp instructions is hidden by

executing instructions from other warps. This ability to tolerate long-

latency operations is the main reason why graphics processing units (GPUs)

do not dedicate nearly as much chip area to cache memories and branch

prediction mechanisms as central processing units (CPUs) do. As a result,

GPUs can dedicate more of their chip area to floating-point execution

resources.

We are now ready to do a simple exercise.1 For matrix multiplication,

should we use 8�8, 16�16, or 32�32 thread blocks for the GT200? To

answer the question, we can analyze the pros and cons of each choice. If

we use 8�8 blocks, each block would have only 64 threads, and we will

need 1024/64 ¼ 12 blocks to fully occupy an SM; however, because we

are limited to 8 blocks in each SM, we will end up with only 64 � 8 ¼
512 threads in each SM. This means that the SM execution resources will

likely be underutilized because there will be fewer warps to schedule

around long-latency operations.

1Note that this is an overly simplified exercise. As we will explain in Chapter 5, the usage

of other resources such as registers and shared memory must also be considered when

determining the most appropriate block dimensions. This exercise highlights the interac-

tions between the limit on the number of thread blocks and the limit on the number of

threads that can be assigned to each SM.

734.5 Thread Scheduling and Latency Tolerance



 

The 16�16 blocks give 256 threads per block. This means that each SM

can take 1024/256 ¼ 4 blocks. This is within the 8-block limitation. This is

a good configuration because we will have full thread capacity in each SM

and the maximal number of warps for scheduling around the long-latency

operations. The 32�32 blocks exceed the limitation of up to 512 threads

per block.

4.6 SUMMARY
The kernel execution configuration defines the dimensions of a grid and its

blocks. Unique coordinates in blockIdx and threadIdx variables allow

threads of a grid to identify themselves and their domains. It is the pro-

grammer’s responsibility to use these variables in kernel functions so the

threads can properly identify the portion of the data to process. This model

of programming compels the programmer to organize threads and their data

into hierarchical and multidimensional organizations.

Once a grid is launched, its blocks are assigned to streaming multipro-

cessors in arbitrary order, resulting in transparent scalability of CUDA

applications. The transparent scalability comes with the limitation that

threads in different blocks cannot synchronize with each other. The only

safe way for threads in different blocks to synchronize with each other

is to terminate the kernel and start a new kernel for the activities after the

synchronization point.

Threads are assigned to SMs for execution on a block-by-block basis.

For GT200 processors, each SM can accommodate up to 8 blocks or 1024

threads, whichever becomes a limitation first. Once a block is assigned to

an SM, it is further partitioned into warps. At any time, the SM executes only

a subset of its resident warps for execution. This allows the other warps towait

for long-latency operations without slowing down the overall execution

throughput of the massive number of execution units.

4.7 EXERCISES
4.1 A student mentioned that he was able to multiply two 1024�1024

matrices using a tiled matrix multiplication code with 1024 thread

blocks on the G80. He further mentioned that each thread in a thread

block calculates one element of the result matrix. What would be your

reaction and why?
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4.2 The following kernel is executed on a large matrix, which is tiled into

submatrices. To manipulate tiles, a new CUDA programmer has

written the following device kernel to transpose each tile in the

matrix. The tiles are of size BLOCK_SIZE by BLOCK_SIZE, and each of

the dimensions of matrix A is known to be a multiple of BLOCK_SIZE.

The kernel invocation and code are shown below. BLOCK_SIZE is

known at compile time but could be set anywhere from 1 to 20.

dim3 blockDim(BLOCK_SIZE,BLOCK_SIZE);

dim3 gridDim(A_width/blockDim.x,A_height/blockDim.y);

BlockTranspose<<<gridDim, blockDim>>>(A, A_width, A_height);

__global__ void

BlockTranspose(float* A_elements, int A_width, int A_height)

{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];

int baseIdx ¼ blockIdx.x * BLOCK_SIZE þ threadIdx.x;

baseIdx þ¼ (blockIdx.y * BLOCK_SIZE þ threadIdx.y) * A_width;

blockA[threadIdx.y][threadIdx.x] ¼ A_elements[baseIdx];

A_elements[baseIdx] ¼ blockA[threadIdx.x][threadIdx.y];

}

Out of the possible range of values for BLOCK_SIZE, for what values of

BLOCK_SIZE will this kernel function correctly when executing on the

device?

4.3 If the code does not execute correctly for all BLOCK_SIZE values,

suggest a fix to the code to make it work for all BLOCK_SIZE values.
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INTRODUCTION
So far, we have learned to write a CUDA� kernel function that is executed

by a massive number of threads. The data to be processed by these threads

are first transferred from the host memory to the device global memory.

The threads then access their portion of the data from the global memory

using their block IDs and thread IDs. We have also learned more details

of the assignment and scheduling of threads for execution. Although this

is a very good start, these simple CUDA kernels will likely achieve only

a small fraction of the potential speed of the underlying hardware. The poor

performance is due to the fact that global memory, which is typically

implemented with dynamic random access memory (DRAM), tends to have

long access latencies (hundreds of clock cycles) and finite access band-

width. Although having many threads available for execution can theo-

retically tolerate long memory access latencies, one can easily run into a

situation where traffic congestion in the global memory access paths pre-

vents all but a few threads from making progress, thus rendering some

of the streaming multiprocessors (SMs) idle. In order to circumvent such

congestion, CUDA provides a number of additional methods for accessing

memory that can remove the majority of data requests to the global

memory. In this chapter, you will learn to use these memories to boost

the execution efficiency of CUDA kernels.
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5.1 IMPORTANCE OF MEMORY ACCESS EFFICIENCY
We can illustrate the effect of memory access efficiency by calculating the

expected performance level of the matrix multiplication kernel code shown

in Figure 4.6, replicated here in Figure 5.1. The most important part of the

kernel in terms of execution time is the for loop that performs dot product

calculations. In every iteration of this loop, two global memory accesses are

performed for one floating-point multiplication and one floating-point addi-

tion. Thus, the ratio of floating-point calculation to the global memory

access operation is 1 to 1, or 1.0. We will refer to this ratio as the compute
to global memory access (CGMA) ratio, defined as the number of floating-

point calculations performed for each access to the global memory within a

region of a CUDA program.

The CGMA ratio has major implications on the performance of a CUDA

kernel. For example, the NVIDIA� G80 supports 86.4 gigabytes per second

(GB/s) of global memory access bandwidth. The highest achievable float-

ing-point calculation throughput is limited by the rate at which the input

data can be loaded from the global memory. With 4 bytes in each single-

precision floating-point datum, one can expect to load not more than

21.6 (86.4/4) giga single-precision data per second. With a CGMA ratio

of 1.0, the matrix multiplication kernel will execute at no more than 21.6

billion floating-point operations per second (gigaflops), as each floating

FIGURE 5.1

Matrix multiplication kernel using multiple blocks (see Figure 4.6).
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point operation requires one single-precision global memory datum. Although

21.6 gigaflops is a respectable number, it is only a tiny fraction of the peak per-

formance of 367 gigaflops for the G80. We will need to increase the CGMA

ratio to achieve a higher level of performance for the kernel.

5.2 CUDA DEVICE MEMORY TYPES
CUDA supports several types of memory that can be used by programmers

to achieve high CGMA ratios and thus high execution speeds in their

kernels. Figure 5.2 shows these CUDA device memories. At the bottom

of the figure, we see global memory and constant memory. These types

of memory can be written (W) and read (R) by the host by calling applica-

tion programming interface (API) functions. We have already introduced

global memory in Chapter 3. The constant memory supports short-latency,

high-bandwidth, read-only access by the device when all threads simul-

taneously access the same location.

Registers and shared memory in Figure 5.2 are on-chip memories.

Variables that reside in these types of memory can be accessed at very high

speed in a highly parallel manner. Registers are allocated to individual

threads; each thread can only access its own registers. A kernel function

(Device) Grid

Block (0, 0) Block (1, 0)

Shared Memory

Registers Registers

Shared Memory

Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

– R/W per-thread registers

R/W per-thread local memory–

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant
      memory

– Transfer data to/from per-grid
      global and constant memories

Global
MemoryHost

Constant
Memory

• Device code can:

Host code can•

FIGURE 5.2

Overview of the CUDA device memory model.

795.2 CUDA Device Memory Types



 

typically uses registers to hold frequently accessed variables that are private

to each thread. Shared memory is allocated to thread blocks; all threads in a

block can access variables in the shared memory locations allocated to the

block. Shared memory is an efficient means for threads to cooperate by

sharing their input data and the intermediate results of their work. By

declaring a CUDA variable in one of the CUDA memory types, a CUDA

programmer dictates the visibility and access speed of the variable.

Table 5.1 presents the CUDA syntax for declaring program variables

into the various types of device memory. Each such declaration also gives

its declared CUDA variable a scope and lifetime. Scope identifies the range

of threads that can access the variable: by a single thread only, by all

threads of a block, or by all threads of all grids. If the scope of a variable

is a single thread, a private version of the variable will be created for every

thread; each thread can only access its private version of the variable. For

example, if a kernel declares a variable whose scope is a thread and it is

launched with 1 million threads, then 1 million versions of the variable

will be created so each thread initializes and uses its own version of the

variable.

Lifetime specifies the portion of the program’s execution duration when

the variable is available for use: either within a kernel’s invocation or

throughout the entire application. If a variable’s lifetime is within a kernel

invocation, it must be declared within the kernel function body and will be

available for use only by the kernel’s code. If the kernel is invoked several

times, the contents of the variable are not maintained across these invoca-

tions. Each invocation must initialize the variable in order to use them.

On the other hand, if a variable’s lifetime is throughout the entire

Table 5.1 CUDA Variable Type Qualifiers

Variable Declaration Memory Scope Lifetime

Automatic variables other than
arrays

Register Thread Kernel

Automatic array variables Local Thread Kernel

__device__, __shared__, int
SharedVar;

Shared Block Kernel

__device__, int GlobalVar; Global Grid Application

__device__, __constant__,
int ConstVar;

Constant Grid Application
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application, it must be declared outside of any function body. The contents

of the variable are maintained throughout the execution of the application

and are available to all kernels.

As shown in Table 5.1, all automatic scalar variables declared in kernel

and device functions are placed into registers. We refer to variables that are

not arrays as scalar variables. The scopes of these automatic variables are

within individual threads. When a kernel function declares an automatic

variable, a private copy of that variable is generated for every thread that

executes the kernel function. When a thread terminates, all of its automatic

variables also cease to exist. In Figure 5.1, variables tx, ty, and Pvalue are

all automatic variables and fall into this category. Note that accessing these

variables is extremely fast and parallel, but one must be careful not to

exceed the limited capacity of the register storage in the hardware imple-

mentations. We will address this point in Chapter 6.

Automatic array variables are not stored in registers.1 Instead, they are

stored into the global memory and incur long access delays and potential

access congestions. The scope of these arrays is, like automatic scalar vari-

ables, limited to individual threads. That is, a private version of each auto-

matic array is created for and used by every thread. Once a thread

terminates its execution, the contents of its automatic array variables also

cease to exist. From our experience, one seldom needs to use automatic

array variables in kernel functions and device functions.

If a variable declaration is preceded by the keyword __shared__ (each

__ consists of two _ characters), it declares a shared variable in CUDA.

One can also add an optional __device__ in front of __shared__ in the

declaration to achieve the same effect. Such declarations typically reside

within a kernel function or a device function. The scope of a shared vari-

able2 is within a thread block; that is, all threads in a block see the same

version of a shared variable. A private version of the shared variable is cre-

ated for and used by each thread block during kernel execution. The life-

time of a shared variable is within the duration of the kernel. When a

kernel terminates its execution, the contents of its shared variables cease

to exist. Shared variables are an efficient means for threads within a block

to collaborate with each other. Accessing shared memory is extremely fast

1There are some exceptions to this rule. The compiler may decide to store an automatic

array into registers if all accesses are done with constant index values.
2The “extern_shared_SharedArray[]” notation allows the size of a shared

memory array to be determined at runtime. Interested readers are referred to the CUDA

Programming Guide for details.
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and highly parallel. CUDA programmers often use shared memory to hold

the portion of global memory data that are heavily used in an execution

phase of the kernel. One may need to adjust the algorithms used to create

execution phases that focus heavily on small portions of the global memory

data, as we will demonstrate with matrix multiplication in Section 5.3.

If a variable declaration is preceded by the keyword __constant__, it

declares a constant variable in CUDA. One can also add an optional

__device__ in front of __constant__ to achieve the same effect. Declara-

tion of constant variables must be outside any function body. The scope of a

constant variable is all grids, meaning that all threads in all grids see the

same version of a constant variable. The lifetime of a constant variable is

the entire application execution. Constant variables are often used for vari-

ables that provide input values to kernel functions. Constant variables are

stored in the global memory but are cached for efficient access. With appro-

priate access patterns, accessing constant memory is extremely fast and par-

allel. Currently, the total size of constant variables in an application is

limited at 65,536 bytes. One may need to break up the input data volume

to fit within this limitation, as we will illustrate in Chapter 8.

A variable whose declaration is preceded only by the keyword

__device__ is a global variable and will be placed in global memory.

Accesses to a global variable are slow; however, global variables are visible

to all threads of all kernels. Their contents also persist through the entire

execution. Thus, global variables can be used as a means for threads to col-

laborate across blocks. One must, however, be aware of the fact that there is

currently no way to synchronize between threads from different thread

blocks or to ensure data consistency across threads when accessing global

memory other than terminating the current kernel execution. Therefore,

global variables are often used to pass information from one kernel invoca-

tion to another kernel invocation.

Note that there is a limitation on the use of pointers with CUDA vari-

ables declared in device memory. In general, pointers are used to point to

data objects in global memory. There are two typical ways in which pointer

usage arises in kernel and device functions. First, if an object is allocated by

a host function, the pointer to the object is initialized by cudaMalloc() and

can be passed to the kernel function as a parameter; for example, the para-

meters Md, Nd, and Pd in Figure 5.1 are such pointers. The second type of

usage is to assign the address of a variable declared in the global memory to

a pointer variable; for example, the statement {float*ptr ¼ &GlobalVar;}

in a kernel function assigns the address of GlobalVar into the automatic

pointer variable ptr.

82 CHAPTER 5 CUDA� Memories



 

5.3 A STRATEGY FOR REDUCING GLOBAL MEMORY TRAFFIC
We have an intrinsic tradeoff in the use of device memories in CUDA.

Global memory is large but slow, whereas the shared memory is small

but fast. A common strategy is to partition the data into subsets called tiles
such that each tile fits into the shared memory. The term tile draws on the

analogy that a large wall (i.e., the global memory data) can often be

covered by tiles (i.e., subsets that each can fit into the shared memory).

An important criterion is that the kernel computations on these tiles can

be done independently of each other. Note that not all data structures

can be partitioned into tiles given an arbitrary kernel function.

The concept of tiling can be illustrated with the matrix multiplication

example. Figure 5.3 shows a small example of matrix multiplication using

multiple blocks. It corresponds to the kernel function in Figure 5.1. This

example assumes that we use four 2�2 blocks to compute the Pd matrix.

Figure 5.3 highlights the computation done by the four threads of block

(0, 0). These four threads compute Pd0,0, Pd1,0, Pd0,1, and Pd1,1. The

accesses to the Md and Nd elements by thread (0, 0) and thread (1, 0) of

block (0, 0) are highlighted with black arrows.

Figure 5.4 shows the global memory accesses done by all threads in

block(0,0). The threads are listed in the horizontal direction, with the time

of access increasing downward in the vertical direction. Note that each

Nd1,1

Nd1,0Nd0,0

Nd0,3Nd1,3

Nd1,2

Nd0,1

Nd0,2

Pd1,0
Md2,0Md1,0Md0,0 Md3,0 Pd0,0 Pd2,0 Pd3,0

Md1,1Md0,1 Md2,1Md3,1 Pd0,1 Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

FIGURE 5.3

A small example of matrix multiplication using multiple blocks.
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thread accesses four elements of Md and four elements of Nd during its

execution. Among the four threads highlighted, there is a significant overlap

in terms of the Md and Nd elements they access; for example, thread(0,0)

and thread(1,0) both access Md1,0 as well as the rest of row 0 of Md. Simi-

larly, thread1,0 and thread1,1 both access Nd1,0 as well as the rest of column 1

of Nd.
The kernel in Figure 5.1 is written so both thread(0,0) and thread(1,0)

access these Md row 0 elements from the global memory. If we can some-

how manage to have thread(0,0) and thread(1,0) collaborate so these Md
elements are only loaded from global memory once, we can reduce the total

number of accesses to the global memory by half. In general, we can see

that every Md and Nd element is accessed exactly twice during the execu-

tion of block(0,0); therefore, if all four threads could collaborate in their

accesses to global memory, we could potentially reduce the traffic to the

global memory by half.

The reader should verify that the potential reduction in global memory

traffic in the matrix multiplication example is proportional to the dimension

of the blocks used. With N�N blocks, the potential reduction of global

memory traffic would be N. That is, if we use 16�16 blocks, we could

potentially reduce the global memory traffic to 1/16 through collaboration

between threads.

We now present an algorithm where threads collaborate to reduce the

traffic to the global memory. The basic idea is to have the threads collabo-

ratively load Md and Nd elements into the shared memory before they

Md1,0 * Nd1,1

Md0,0 * Nd1,0

Pd0,0
Thread(0,0)

Pd1,0
Thread(1,0)

Pd0,1
Thread(0,1)

Pd1,1
Thread(1,1)

Md0,0 * Nd0,0 Md0,1 * Nd0,0 Md0,1 * Nd1,0
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Md2,0 * Nd0,2 Md2,0 * Nd1,2 Md2,1 * Nd0,2 Md2,1 * Nd1,2

Md3,0 * Nd0,3 Md3,0 * Nd1,3 Md3,1 * Nd0,3 Md3,1 * Nd1,3

FIGURE 5.4

Global memory accesses performed by threads in block(0,0).
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individually use these elements in their dot product calculation. Keep in

mind that the size of the shared memory is quite small and one must be

careful not to exceed the capacity of the shared memory when loading these

Md and Nd elements into the shared memory. This can be accomplished by

dividing the Md and Nd matrices into smaller tiles. The size of these tiles is

chosen so they can fit into the shared memory. In the simplest form, the tile

dimensions equal those of the block, as illustrated in Figure 5.5.

In Figure 5.5, we divide Md and Nd into 2�2 tiles, as delineated by the

thick lines. The dot product calculations performed by each thread are now

divided into phases. In each phase, all threads in a block collaborate to load

a tile of Md and a tile of Nd into the shared memory. This is done by hav-

ing every thread in a block to load one Md element and one Nd element

into the shared memory, as illustrated in Figure 5.6. Each row of Figure 5.6

shows the execution activities of a thread. (Note that time now progresses

from left to right.) We only need to show the activities of threads in

block(0,0); the other blocks all have the same behavior. The shared memory

array for the Md elements is called Mds. The shared memory array for the

Nd elements is called Nds. At the beginning of Phase 1, the four threads of

block(0,0) collaboratively load a tile of Md into shared memory; thread(0,0)

loads Md0,0 into Mds0,0, thread(1,0) loads Md1,0 into Mds1,0, thread(0,1)
loadsMd0,1 intoMds0,1, and thread(1,1) loadsMd1,1 intoMds1,1. Look at the

Nd1,0Nd0,0

Nd0,3 Nd1,3

Nd1,2Nd0,2

Md2,0Md1,0Md0,0 Md3,0 Pd2,0 Pd3,0

Md1,1Md0,1 Md2,1Md3,1 Pd0,1 Pd1,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3 Pd3,3Pd1,3

Pd1,0Pd0,0

Nd0,1 Nd1,1

FIGURE 5.5

Tiling Md and Nd to utilize shared memory.
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 second column of Figure 5.6. A tile of Nd is also loaded in a similar manner,

as shown in the third column of Figure 5.6.

After the two tiles of Md and Nd are loaded into the shared memory,

these values are used in the calculation of the dot product. Note that each

value in the shared memory is used twice; for example, the Md1,1 value,

loaded by thread1,1 into Mds1,1, is used twice: once by thread0,1 and once

by thread1,1. By loading each global memory value into shared memory

so it can be used multiple times we reduce the number of accesses to the

global memory. In this case, we reduce the number of accesses to the global

memory by half. The reader should verify that the reduction is by a factor

of N if the tiles are N�N elements.

Note that the calculation of each dot product in Figure 5.6 is now per-

formed in two phases, shown as Phase 1 and Phase 2. In each phase, products

of two pairs of the input matrix elements are accumulated into the Pvalue

variable. The first phase calculation is shown in the fourth column of

Figure 5.6; the second phase is in the seventh column. In general, if an input

matrix is of dimension N and the tile size is TILE_WIDTH, the dot product

would be performed in N/TILE_WIDTH phases. The creation of these phases

is key to the reduction of accesses to the global memory. With each phase

focusing on a small subset of the input matrix values, the threads can collabo-

ratively load the subset into the shared memory and use the values in the

shared memory to satisfy their overlapping input needs in the phase.

T0 0 Md0,0 Nd0,0 PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Md2,0 Nd0,2 PValue0,0 +=
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FIGURE 5.6

Execution phases of a tiled matrix multiplication.
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Note also that Mds and Nds are reused to hold the input values. In each

phase, the same Mds and Nds are used to hold the subset of Md and Nd
elements used in the phase. This allows a much smaller shared memory

to serve most of the accesses to global memory. This is because each phase

focuses on a small subset of the input matrix elements. Such focused access

behavior is called locality. When an algorithm exhibits locality, there is an

opportunity to use small, high-speed memories to serve most of the

accesses and remove these accesses from the global memory. Locality is

as important for achieving high performance in multicore central processing

units (CPUs) as in many-core graphics processing units (GPUs). We will

return to the concept of locality in Chapter 6.

We are now ready to present the tiled kernel function that uses shared

memory to reduce the traffic to global memory. The kernel shown in

Figure 5.7 implements the phases illustrated in Figure 5.6. In Figure 5.7,

Line 1 and Line 2 declare Mds and Nds as shared memory variables.

FIGURE 5.7

Tiled matrix multiplication kernel using shared memories.

875.3 A Strategy for Reducing Global Memory Traffic



 

Recall that the scope of shared memory variables is a block. Thus, all

threads of a block have access to the same Mds and Nds arrays. This is

important, as all threads in a block must have access to the Md and Nd
values loaded into Mds and Nds by their peers so they can use these values

to satisfy their input needs.

Lines 3 and 4 save the threadIdx and blockIdx values into automatic

variables and thus into registers for fast access. Recall that automatic scalar

variables are placed into registers. Their scope is in each individual thread.

That is, one private version of tx, ty, bx, and by is created by the runtime

system for each thread. They will reside in registers that are accessible by

one thread. They are initialized with the threadIdx and blockIdx values

and used many times during the lifetime of thread. Once the thread ends,

the values of these variables also cease to exist.

Lines 5 and 6 determine the row index and column index of the Pd
element that the thread is to produce. As shown in Figure 5.8, the column (x)
index of thePd element to be produced by a thread can be calculated as bx*TI-

LE_WIDTHþ tx. This is because each block covers TILE_WIDTH elements in the

x dimension. A thread in block bx would have bx blocks of threads, or bx*TI-

LE_WIDTH threads, before it; they cover bx*TILE_WIDTH elements of Pd.
Another tx thread within the same block would cover another tx element

of Pd. Thus, the thread with bx and tx should be responsible for calculating

the Pd element whose x index is bx*TILE_WIDTH þ tx. For the example in

Figure 5.5, the x index of the Pd element to be calculated by thread(1,0)

of block(0,1) is 0*2 þ 1 ¼ 1. Similarly, the y index can be calculated as

by*TILE_WIDTHþ ty. In Figure 5.5, the y index of the Pd element to be calcu-

lated by thread(1,0) of block(0,1) is 1*2 þ 0 ¼ 2. Thus, the Pd element to be

calculated by this thread is Pd1,2.
Line 8 of Figure 5.7 marks the beginning of the loop that iterates

through all the phases of calculating the final Pd element. Each iteration

of the loop corresponds to one phase of the calculation shown in Figure 5.6.

The m variable indicates the number of phases that have already been done

for the dot product. Recall that each phase uses one tile of Md and one tile

of Nd elements; therefore, at the beginning of each phase, m*TILE_WIDTH

pairs of Md and Nd elements have been processed by previous phases.

Recall that all threads in a grid execute the same kernel function.

The threadIdx variable allows them to identify the part of the data they

are to process. Also recall that the thread with by ¼ blockIdx.y and ty ¼
threadIdx.y processes row (by*TILE_WIDTH þ ty) of Md, as shown

at the left side of Figure 5.8. Line 5 stores this number into the Row vari-

able of each thread. Likewise, the thread with bx ¼ blockIdx.x and
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tx ¼ threadIdx.x processes the column (bx*TILE_WIDTH þ tx) of Nd,
as shown at the top of Figure 5.8. Line 6 stores this number into the Col

variable of each thread. These variables will be used when the threads load

Md and Nd elements into the shared memory.

In each phase, Line 9 loads the appropriate Md element into the shared

memory. Because we already know the row index of Md and column index

of Nd elements to be processed by the thread, we will focus on the column

index of Md and row index of Nd. As shown in Figure 5.8, each block has

TILE_WIDTH
2 threads that will collaborate to load TILE_WIDTH

2 Md ele-

ments into the shared memory. Thus, all we need to do is to assign each

thread to load one Md element. This is conveniently done using the
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Calculation of the matrix indices in tiled multiplication.
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blockIdx and threadIdx. Note that the beginning index of the section of

Md elements to be loaded is m*TILE_WIDTH; therefore, an easy approach

is to have every thread load an element from that point identified by the

threadIdx value. This is precisely what we have in Line 9, where each

thread loads Md[Row*Width þ (m*TILE_WIDTH þ tx)]. Because the value

of Row is a linear function of ty, each of the TILE_WIDTH
2 threads will load

a unique Md element into the shared memory. Together, these threads will

load the orange square subset of Md shown in Figure 5.8. The reader

should use the small example in Figures 5.5 and 5.6 to verify that the

address calculation works correctly.

Line 11 calls the __syncthreads() barrier synchronization function to

make sure that all threads in the same block have completed loading the

Md and Nd tiles into Mds and Nds. Once the tiles of Md and Nd are

loaded in Mds and Nds, the loop in Line 12 performs the phases of the

dot product based on these elements. The progression of the loop for thread

(tx, ty) is shown in Figure 5.8, with the direction of the Md and Nd data

usage marked with k, the loop variable in Line 12. Note that the data will be

accessed from Mds and Nds, the shared memory arrays holding these Md
and Nd elements. Line 14 calls the __syncthreads() barrier synchroniza-

tion function to make sure that all threads of the block have completed

using the Mds and Nds contents before any of them loops back to the next

iteration and loads the next tile of Md and Nd.
The benefit of the tiled algorithm is substantial. For matrix multiplica-

tion, the global memory accesses are reduced by a factor of TILE_WIDTH.

If one uses 16�16 tiles, we can reduce the global memory accesses by a

factor of 16. This reduction allows the 86.4-GB/s global memory bandwidth

to serve a much larger floating-point computation rate than the original

algorithm. More specifically, the global memory bandwidth can now sup-

port [(86.4/4) � 16] ¼ 345.6 gigaflops, very close to the peak floating-point

performance of the G80. This effectively removes global memory band-

width as the major limiting factor of matrix multiplication performance.

5.4 MEMORY AS A LIMITING FACTOR TO PARALLELISM
Although CUDA registers, shared memory, and constant memory can be

extremely effective in reducing the number of accesses to global memory,

one must be careful not to exceed the capacity of these memories. Each

CUDA device offers a limited amount of CUDA memory, which limits
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the number of threads that can simultaneously reside in the streaming multi-

processors for a given application. In general, the more memory locations

each thread requires, the fewer the number of threads that can reside in each

SM and thus the fewer number of threads that can reside in the entire

processor.

In the G80, each SM has 8K (¼ 8192) registers, which amounts to 128K

(¼ 131,072) registers for the entire processor. This is a very large number,

but it only allows each thread to use a very limited number of registers.

Recall that each G80 SM can accommodate up to 768 threads. In order to

fill this capacity, each thread can use only 8K/768 ¼ 10 registers. If each

thread uses 11 registers, the number of threads that can be executed concur-

rently in each SM will be reduced. Such reduction is done at the block

granularity. For example, if each block contains 256 threads, the number

of threads will be reduced 256 at a time; thus, the next lower number of

threads from 768 would be 512, a 1/3 reduction of threads that can simul-

taneously reside in each SM. This can greatly reduce the number of warps

available for scheduling, thus reducing the processor’s ability to find useful

work in the presence of long-latency operations.

Shared memory usage can also limit the number of threads assigned to

each SM. In the G80, there are 16 kilobytes (kB) of shared memory in each

SM. Keep in mind that shared memory is used by blocks, and recall that

each SM can accommodate up to 8 blocks. In order to reach this maximum,

each block must not use more than 2 kB of shared memory. If each block

uses more than 2 kB of memory, the number of blocks that can reside in

each SM is such that the total amount of shared memory used by these

blocks does not exceed 16 kB; for example, if each block uses 5 kB of

shared memory, no more than 3 blocks can be assigned to each SM.

For the matrix multiplication example, shared memory can become a

limiting factor. For a tile size of 16�16, each block requires 16 � 16 �
4 ¼ 1 kB of storage for Mds. Another 1 kB is needed for Nds. Thus, each
block uses 2 kB of shared memory. The 16-kB shared memory allows

8 blocks to simultaneous reside in an SM. Because this is the same as the

maximum allowed by the threading hardware, shared memory is not a lim-

iting factor for this tile size. In this case, the real limitation is the threading

hardware limitation that only 768 threads are allowed in each SM. This lim-

its the number of blocks in each SM to 3. As a result, only 3 � 2 kB ¼ 6 kB

of the shared memory will be used. These limits do change from device

generation to the next but are properties that can be determined at runtime;
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for example, the GT200 series of processors can support up to 1024 threads

in each SM. See Appendix B for shared memory and other resource limita-

tions in other types of GPU devices.

5.5 SUMMARY
In summary, CUDA defines registers, shared memory, and constant mem-

ory that can be accessed at higher speed and in a more parallel manner than

the global memory. Using these memories effectively will likely require

redesign of the algorithm. We used matrix multiplication as an example

to illustrate tiled algorithms, a popular strategy to enhance the locality of

data access and enable effective use of shared memory. We demonstrated

that, with 16�16 tiling, global memory accesses are no longer the major

limiting factor for matrix multiplication performance.

It is, however, important for CUDA programmers to be aware of the

limited sizes of these types of memory. Their capacities are implementation

dependent. Once their capacities are exceeded, they become limiting factors

for the number of threads that can be simultaneously executing in each SM.

The ability to reason about hardware limitations when developing an appli-

cation is a key aspect of computational thinking. The reader is also referred

to Appendix B for a summary of resource limitations of several different

devices.

Although we introduced tiled algorithms in the context of CUDA pro-

gramming, it is an effective strategy for achieving high performance in vir-

tually all types of parallel computing systems. The reason is that an

application must exhibit locality in data access in order to make effective

use of high-speed memories in these systems. In a multicore CPU system,

for example, data locality allows an application to effectively use on-chip

data caches to reduce memory access latency and achieve high per-

formance. Readers will find the tiled algorithm useful when they develop

parallel applications for other types of parallel computing systems using

other programming models.

Our goal for this chapter was to introduce the different types of CUDA

memory. We introduced the tiled algorithm as an effective strategy for

using shared memory, but we have not discussed the use of constant mem-

ory. We will explain the use of constant memory in Chapter 8. Furthermore,

we will study a different form of tiling that enables more effective use of

registers in Chapter 9.
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5.6 EXERCISES
5.1 Consider the matrix addition where each element of the output matrix

is the sum of the corresponding elements of the two input matrices.

Can one use shared memory to reduce the global memory bandwidth

consumption? Hint: Analyze the elements accessed by each thread

and see if there is any commonality between threads.

5.2 Draw the equivalent of Figure 5.4 for an 8�8 matrix multiplication

with 2�2 tiling and 4�4 tiling. Verify that the reduction in global

memory bandwidth is indeed proportional to the dimension size of

the tiles.

5.3 What type of incorrect execution behavior can happen if one forgets

to use __syncthreads() function in the kernel of Figure 5.7? Note

that there are two calls to __syncthreads(), each for a different

purpose.

5.4 Assuming that capacity were not an issue for registers or shared

memory, give one case that it would be valuable to use shared

memory instead of registers to hold values fetched from global

memory. Explain your answer.
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INTRODUCTION
Although a CUDA� kernel can run correctly on any CUDA device, its

execution speed can vary greatly depending on the resource constraints of

each device. In this chapter, we will discuss the major types of resource

constraints in an actual CUDA device and how they can constrain the level

of parallel execution in this device. In order to achieve their goals, pro-

grammers often have to find ways to achieve a required level of perfor-

mance that is higher than that of an initial version of the application.

In different applications, different constraints may dominate and become

the limiting factors. One can improve the performance of an application on

a particular CUDA device, sometimes dramatically, by trading one resource

usage for another. This strategy works well if the resource constraint thus

alleviated was actually the dominating constraint before the strategy was

applied and the one thus exacerbated does not have negative effects on

parallel execution. Without such understanding, performance tuning would

be guesswork; plausible strategies may or may not lead to performance

enhancements. Beyond insights into these resource constraints, this chapter

further offers principles and case studies designed to cultivate intuition
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about the type of algorithms that can result in high-performance CUDA

programs. It is also establishes idioms and ideas that will likely lead to

good performance improvements during performance tuning efforts.

6.1 MORE ON THREAD EXECUTION
Let’s first discuss some aspects of thread execution that can limit perfor-

mance. Recall that launching a CUDA kernel generates a grid of threads

that are organized as a two-level hierarchy. At the top level, a grid consists

of a one- or two-dimensional array of blocks. At the bottom level,

each block, in turn, consists of a one-, two-, or three-dimensional array of

threads. In Chapter 4, we discussed the fact that blocks can execute in

any order relative to each other, which allows for transparent scalability

in parallel execution of CUDA kernels; however, we did not say much

about the execution timing of threads within each block.

Conceptually, one should assume that threads in a block can execute in

any order with respect to each other. Barrier synchronizations should be

used whenever we want to ensure that all threads have completed a com-

mon phase of their execution before any of them begin the next phase.

The correctness of executing a kernel should not depend on the fact that

certain threads will execute in synchrony with each other. Having said this,

we also want to point out that, due to various hardware cost considerations,

the current generation of CUDA devices actually does bundle multiple

threads for execution. Such implementation strategy leads to performance

limitations for certain types of kernel function code constructs. It is advan-

tageous for application developers to change these types of constructs to

other equivalent forms that perform better.

As we discussed in Chapter 4, the NVIDIA� G80/GT200 implementa-

tion bundles several threads for execution. Each block is partitioned into

warps. This implementation technique helps to reduce hardware costs and

enable some optimizations in servicing memory accesses. In the foreseeable

future, we expect that warp partitioning will remain as a popular implemen-

tation technique; however, the size of warps can easily vary from imple-

mentation to implementation. In the G80/GT200, each warp consists of

32 threads. We will use the G80/GT200 implementation to explain warp

partitioning for the rest of this chapter.

Thread blocks are partitioned into warps based on thread indices. If a thread

block is organized into a one-dimensional array (i.e., only threadIdx.x is

used), then the partition is straightforward. The threadIdx.x values within a
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warp are consecutive and increasing. For a warp size of 32, warp 0 starts with

thread 0 and ends with thread 31, warp 1 starts with thread 32 and ends with

thread 63. In general, warp n starts with thread 32*n and ends with thread

32(nþ 1) – 1. For a block whose size is not a multiple of 32, the last warp will

be padded with extra threads to fill up the 32 threads; for example, if a block

has 48 threads, it will be partitioned into 2 warps, and its warp 1 will be padded

with 16 extra threads.

For blocks that consist ofmultiple dimensions of threads, the dimensionswill

be projected into a linear order before partitioning into warps. The linear order is

determined by lining up the row with larger y and z coordinates after those with
lower ones. That is, if a block consists of two dimensions of threads, one would

form the linear order by placing all threads whose threadIdx.y is 1 after those

whose threadIdx.y is 0. Threads whose threadIdx.y is 2 will be placed after

those whose threadIdx.y is 1, and so on.

Figure 6.1 shows an example of placing threads of a two-dimensional

(2D) block into linear order. The upper part shows the 2D view of the

block. Each thread is shown as T(x,y), with x being the threadIdx.x and

y being threadIdx.y for the thread. The lower part shows the linear view

of the block. The first four threads are those threads whose threadIdx.y is

0; they are placed with increasing threadIdx.x values. The next four

threads are those threads whose threadIdx.y is 1. They are also placed

with their increasing threadIdx.x values. For this example, all 16 threads

form half a warp. The warp will be padded with another 16 threads to

complete a 32-thread warp. Imagine a 2D block with 8�8 threads. The 64

T(2,0)T(1,0)T(0,0) T(3,0)

T(1,1)T(0,1) T(2,1) T(3,1)

T(1,2)T(0,2) T(2,2) T(3,2)

Logical 2-D
organization

T(1,3)T(0,3) T(2,3) T(3,3)

T(2,0)T(1,0)T(0,0) T(3,0) T(1,1)T(0,1) T(2,1) T(3,1) T(1,2)T(0,2) T(2,2) T(3,2) T(1,3)T(0,3) T(2,3) T(3,3)

Linear order

FIGURE 6.1

Placing threads into linear order.
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threads will form 2 warps. The first warp starts from T(0,0) and ends with

T(3,7). The second warp starts with T(4,0) and ends with T(7,7). It would

be a useful exercise to draw out the picture as an exercise.

For a three-dimensional (3D) block, we first place all threads whose

threadIdx.z is 0 into the linear order. Among these threads, they are treated

as a 2D block, as shown in Figure 6.1. All threads whose threadIdx.z is 1

will then be placed into the linear order, and so on. For a 4�8�2 block

(4 in the x dimension, 8 in the y dimension, and 2 in the z dimension), the

64 threads will be partitioned into 2 warps, with T(0,0,0) through T(3,7,0)

in the first warp and T(0,0,1) through T(3,7,1) in the second warp.

The hardware executes an instruction for all threads in the same warp,

before moving to the next instruction. This style of execution, called sin-
gle-instruction, multiple-thread (SIMT),1 is motivated by hardware cost

constraints, as it allows the cost of fetching and processing an instruction

to be amortized over a large number of threads. It works well when all

threads within a warp follow the same control flow path when working their

data. For example, for an if–then–else construct, the execution works well

when either all threads execute the then part or all execute the else part.

When threads within a warp take different control flow paths, the simple

execution style no longer works well. In our if–then–else example, when

some threads execute the then part and others execute the else part, the

SIMT execution style no longer works well. In such situations, the execu-

tion of the warp will require multiple passes through these divergent paths.

One pass will be needed for those threads that follow the then part and

another pass for those that follow the else part. These passes are sequential
to each other, thus adding to the execution time.

When threads in the same warp follow different paths of control flow,

we say that these threads diverge in their execution. In the if–then–else
example, if some threads in a warp take the then path and some the else

path, one pass will be used to execute all threads that take the then path.

1Note that SIMT is distinct from single-instruction, multiple-data (SIMD) implementation

techniques, such as the popular Streaming SIMD Extensions (SSE) in CPUs. In an SSE

implementation, the multiple data elements to be processed by a single instruction must

be first collected and packed into a single register. Strict alignment requirements are

involved that often require programmers to use additional instructions to satisfy. In SIMT,

all threads process data in their own registers. There is much less burden on the program-

mers in terms of data collection and package. The option for control flow divergence in

SIMT also simplifies the requirement for programmers to use extra instructions to handle

control flow compared to SSE.
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Another pass will be used to execute the others (ones that take the else

path). Divergence also can arise in other constructs. For example, if threads

in a warp execute a for loop which can iterate 6, 7, or 8 times for different

threads. All threads will finish the first 6 iterations together. Two passes

will be used to execute the 7th iteration, one pass for those that take the

iteration and one for those that do not. Two passes will be used to execute

all threads that need the 8th iteration, one pass for those that take the itera-

tion and one for those that do not take the iteration.

An if–then–else construct can result in thread divergence when its decision
condition is based on threadIdx values. For example, the statement if

(threadIdx.x > 2) {} causes the threads to follow two divergent control

flow paths; threads 0, 1, and 2 follow a different path than threads 3, 4, and 5,

etc. Similarly, a loop can cause thread divergence if its loop condition is based

on threadIdx values. Such usages arise naturally in some important parallel

algorithms. We will use a reduction algorithm to illustrate this point.

A reduction algorithm extracts a single value from an array of values.

The single value could be the sum, the maximal value, the minimal value,

etc., among all elements. All of these types of reductions share the same

computation structure. A reduction can be easily achieved by sequentially

going through every element of the array. When an element is visited, the

action to take depends on the type of reduction being performed. For a

sum reduction, the value of the element being visited at the current step,

or the current value, is added to a running sum. For a maximal reduction,

the current value is compared to a running maximal value of all of the ele-

ments visited so far. If the current value is larger than the running maximal

value, the current element value becomes the running maximal value. For a

minimal reduction, the value of the element currently being visited is com-

pared to a running minimal value. If the current value is smaller than the

running minimal, the current element value becomes the running minimal.

The sequential algorithm ends when all of the elements are visited.

When there are a large number of elements in the array, the time needed

to visit all elements of an array becomes large enough to motivate parallel

execution. A parallel reduction algorithm typically resembles that of a soc-

cer tournament. In fact, the elimination process of the World Cup is a

reduction of “maximal,” where the maximal is defined as the team that

beats all of the other teams. The tournament “reduction” is done by multi-

ple rounds. The teams are divided into pairs. During the first round, all pairs

play in parallel. Winners of the first round advance to the second round,

whose winners advance to the third round, etc. With 16 teams entering a

tournament, the 8 winners will emerge from the first round, 4 winners the
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second round, 2 winners the third round, and 1 final winner the fourth

round. It should be easy to see that even with 1024 teams, it takes only

10 rounds to determine the final winner. The trick is to have enough soccer

fields to hold the 512 games in parallel during the first round, 256 games in

the second round, 128 games in the third round, and so on. With enough

fields, even with 60,000 teams, we can determine the final winner in just

16 rounds. Of course, one would need to have enough soccer fields and

enough officials to accommodate the 30,000 games in the first round.

Figure 6.2 shows a kernel function that performs parallel sum reduction.

The original array is in the global memory. Each thread block reduces a

section of the array by loading the elements of the section into the shared

memory and performing parallel reduction. The code that loads the ele-

ments from global memory into the shared memory is omitted from Fig-

ure 6.2 for brevity. The reduction is done in place, which means that the

elements in the shared memory will be replaced by partial sums. Each iter-

ation of the while loop in the kernel function implements a round of reduc-

tion. The —syncthreads() statement in the for loop ensures that all partial

sums for the previous iteration have been generated and thus all threads are

ready to enter the current iteration before any thread is allowed to do so.

This way, all threads that enter the second iteration will be using the values

produced in the first iteration. After the first round, the even elements will

be replaced by the partial sums generated in the first round. After the sec-

ond round, the elements whose indices are multiples of four will be

replaced with the partial sums. After the final round, the total sum of the

entire section will be in element 0. In Figure 6.2, Line 3 initializes the stride

variable to 1. During the first iteration, the if statement in Line 7 is used to

select only the even threads to perform addition between two neighboring

elements.

FIGURE 6.2

A simple sum reduction kernel.
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The execution of the kernel is illustrated in Figure 6.3. The threads and

array elements are shown in the figure as columns, and the contents of the

array at the end of iterations are shown as rows. Time progresses from top

to bottom. As shown in row 1 in Figure 6.3, the even elements of the array

now hold the pair-wise partial sums after iteration 1. Before the second

iteration, the value of the stride variable is doubled to 2. During the second

iteration, only those threads whose indices are multiples of four in

Figure 6.3, will execute the add statement in Line 8 of Figure 6.2. Each

thread generates a partial sum that covers 4 elements, as shown in row

2 of Figure 6.2. With 512 elements in each section, the kernel function

will generate the total for the entire section after 9 iterations. By using

blockDim.x as the loop bound in Line 4 in Figure 6.2, the kernel assumes

that the kernel is launched with the same number of threads as the number

of elements in the section; that is, for a section size of 512, the kernel needs

to be launched with 512 threads.2

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+91

0...3 4..7 8..112

0..7 8..153

Array elements Iterations

FIGURE 6.3

Execution of the sum reduction kernel.

2Note that using the same number of threads as the number of elements in a section is

wasteful. Half of the threads in a block will never execute. The reader is encouraged to

modify the kernel and the kernel launch execution configuration parameters to eliminate

this waste (see Exercise 6.1).
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The kernel in Figure 6.2 clearly has thread divergence. During the first

iteration of the loop, only those threads whose threadIdx.x values are

even will execute the add statement. One pass will be needed to execute

these threads, and one additional pass will be needed to execute those that

do not execute Line 8. In each successive iteration, fewer threads will exe-

cute Line 8, but two passes will still be needed to execute all of the threads.

This divergence can be reduced with a slight change to the algorithm.

Figure 6.4 shows a modified kernel with a slightly different algorithm

for sum reduction. Instead of adding neighbor elements in the first round,

it adds elements that are half a section away from each other. It does so

by initializing the stride to be half the size of the section. All of the pairs

added during the first round are half the section size away from each other.

After the first iteration, all the pair-wise sums are stored in the first half of

the array. The loop divides the stride by 2 before entering the next iteration.

This is done by shifting the stride value to the right by 1 bit, a less expen-

sive way to implement “divide by 2” than by a real integer division.

Thus, for the second iteration, the stride variable value is a quarter of the

section size; that is, the algorithm adds elements that are a quarter section

away from each other during the second iteration.

Note that the kernel in Figure 6.4 still has an if statement (Line 7) in the

loop. The number of threads that execute Line 8 remains the same as in Fig-

ure 6.2. So, why should there be a performance difference between the two

kernels? The answer lies in the positions of threads that execute Line 8 rel-

ative to those that do not.

Figure 6.5 illustrates the execution of the revised kernel. During the first

iteration, all threads whose threadIdx.x values are less than half of the

size of the section execute Line 8. For a section of 512 elements, threads

0 through 255 execute the add statement during the first iteration, while

FIGURE 6.4

A kernel with less thread divergence.
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threads 256 through 511 do not. The pair-wise sums are stored in elements

0 through 255 after the first iteration. Because a warp consists of 32 threads

with consecutive threadIdx.x values, all threads in warps 0 through 7

execute the add statement, whereas warps 8 through 15 all skip the add

statement. Because all of the threads in each warp take the same path, there

is no thread divergence!

The kernel in Figure 6.4 does not completely eliminate the divergence

due to the if statement. The reader should verify that, starting with the

5th iteration, the number of threads that execute Line 8 will fall below

32. That is, the final 5 iterations will have only 16, 8, 4, 2, and 1 threads

performing the addition. This means that the code will still have divergence

in these iterations.

6.2 GLOBAL MEMORY BANDWIDTH
One of the most important dimensions of CUDA kernel performance is

accessing data in the global memory. CUDA applications exploit massive

data parallelism; that is, CUDA applications typically process a massive

amount of data from the global memory within a short period of time.

In Chapter 5, we discussed tiling techniques that utilize shared memories

to reduce the total amount of data that must be accessed by a collection

of threads in the thread block. In this chapter, we will further discuss mem-

ory coalescing techniques that can more effectively move data from the

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

0 1 2 3 … 253 255254 258257256 …

0+256 255+5111

2

3

FIGURE 6.5

Execution of the revised algorithm.
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global memory into shared memories and registers. Memory coalescing

techniques are often used in conjunction with tiling techniques to allow

CUDA devices to reach their performance potential by more efficiently

utilizing the global memory bandwidth.3

Global memory in a CUDA system is typically implemented with

dynamic random access memories (DRAMs). Data bits are stored in

DRAM cells, which are very weak capacitors, where the presence or

absence of a tiny amount of electrical charge distinguishes between 0 and

1. Reading data from a DRAM cell that contains a 1 requires the weak

capacitor to share its tiny amount of charge to a sensor and set off a detec-

tion mechanism that determines whether a sufficient amount of charge is

present in the capacitor. Because this is a very slow process, modern

DRAMs use a parallel process to increase their rate of data access. Each

time a location is accessed, many consecutive locations that includes the

requested location are accessed. Many sensors are provided in each DRAM

chip and they work in parallel, each sensing the content of a bit within these

consecutive locations. Once detected by the sensors, the data from all of

these consecutive locations can be transferred at very high speed to the pro-

cessor. If an application can make use of data from multiple, consecutive

locations before moving on to other locations, the DRAMs can supply the

data at a much higher rate than if a truly random sequence of locations

was accessed. To achieve anywhere close to the advertised peak global

memory bandwidth, a kernel must arrange its data accesses so that each

request to the DRAMs is for a large number of consecutive DRAM

locations.

Recognizing the organization of modern DRAMs, the G80/GT200

designs employ a technique that allows the programmers to achieve high

global memory access efficiency by organizing memory accesses of threads

into favorable patterns. This technique takes advantage of the fact that

threads in a warp execute the same instruction at any given point in time.

When all threads in a warp execute a load instruction, the hardware detects

whether the threads access consecutive global memory locations. That is,

3As we will discuss in Chapter 12, future CUDA devices will likely have a large on-chip

cache for global memory data. Such a cache will automatically coalesce more of the ker-

nel access patterns and reduce the need for programmers to manually rearrange their

access patterns; however, with more than 100 million current and previous-generation

CUDA devices in use, application programmers will still find coalescing techniques

useful in the foreseeable future.
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the most favorable access pattern is achieved when the same instruction for

all threads in a warp accesses consecutive global memory locations. In this

case, the hardware combines, or coalesces, all of these accesses into a con-

solidated access to consecutive DRAM locations. For example, for a given

load instruction of a warp, if thread 0 accesses global memory location N,4

thread 1 accesses location N þ 1, thread 2 accesses location N þ 2, etc.,

then all of these accesses will be coalesced, or combined into a single

request for all consecutive locations when accessing the DRAMs. Such coa-

lesced access allows the DRAMs to deliver data at a rate close to the peak

global memory bandwidth.

Figure 6.6 illustrates the favorable versus unfavorable CUDA program

matrix data access patterns for memory coalescing. Figure 6.6A illustrates

the data access pattern of a loop where each thread reads a row of matrix

Md. Assume that threads in a warp read adjacent rows; that is, during iter-

ation 0, threads in a warp read element 0 of rows 0 through 31. During iter-

ation 1, these same threads read element 1 of rows 0 through 31. None of

the accesses will be coalesced. A more favorable access pattern is shown

in Figure 6.6B, where each thread reads a column of Nd. During iteration

0, threads in warp 0 reads element 0 of columns 0 through 31. All of these

accesses will be coalesced. In order to understand why the pattern in

Figure 6.6B is more favorable than that in Figure 6.6A, we need to under-

stand how these matrix elements are placed into the global memory.

Nd

Not coalesced

Thread 1

A B

WIDTH

Thread 2

Coalesced

Md

W
ID

T
H

FIGURE 6.6

Memory access patterns for coalescing.

4N is also required to be aligned to 16-word boundaries; that is, the lower 6 bits of N
should all be 0 bits. We will discuss techniques that address this alignment requirement

in Chapter 9.
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All locations in the global memory form a single, consecutive address

space such that every location in the global memory has a unique address.

This is analogous to a very long street where every house has a unique

address. For example, if the global memory contains 1024 locations, these

locations will be accessed by address 0 through 1023. The GT200 can have

up to 4 GB (232) locations; the addresses range from 0 to 232 – 1. All vari-

ables of a CUDA program are placed into this linear address space and will

be assigned an address.

As we showed in Chapter 3 (Figure 3.5), matrix elements in C and

CUDA are placed into the linearly addressed locations according to the

row major convention. That is, the elements of row 0 of a matrix are first

placed in order into consecutive locations. They are followed by the ele-

ments of row 1 of the matrix, and so on. In other words, all elements in a

row are placed into consecutive locations and entire rows are placed one

after another. The term row major refers to the fact that the placement of

data preserves the structure of rows; all adjacent elements in a row are

placed into consecutive locations in the address space. The row major con-

vention is illustrated in Figure 6.7 (same as Figure 3.5), where the 16 ele-

ments of 4�4 matrix M are placed into linearly addressed locations.

The four elements of row 0 are first placed in their order of appearance in

the row. Elements in row 1 are then placed, followed by elements of row 2,

followed by elements of row 3. It should be clear that M0,0 and M0,1,

M2,0M1,0M0,0

M0,1 M1,1

M0,2 M1,2

M0,3 M1,3

M

M

M0,0 M1,0 M2,0

Linearized order in increasing address

M3,0

M2,1 M3,1

M2,2 M3,2

M2,3 M3,3

M3,0 M0,1 M1,1 M2,1 M3,1 M0,2 M1,2 M2,2 M3,2 M0,3 M1,3 M2,3 M3,3

FIGURE 6.7

Placing matrix elements into linear order.
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although they appear to be consecutive in the 2D matrix, are placed four

locations away in the linearly addressed memory.

Now that we have reviewed the placement of matrix elements into

global memory, we are ready to discuss more about the favorable versus

unfavorable matrix data access patterns in Figure 6.6. Figure 6.8 shows a

small example of the favorable access pattern in accessing a 4�4 matrix.

The arrow in the top portion of Figure 6.8 shows the access pattern of the

kernel code for one thread. The accesses are generated by a loop where

threads in a warp access the 0th elements of the columns in the first itera-

tion. As shown in the bottom portion of Figure 6.8, these 0th elements

are in consecutive locations in the global memory. The bottom portion

also shows that these consecutive locations are accessed by the threads

T(0) through T(3). The hardware detects that these accesses are to consecu-

tive locations in the global memory and coalesces these accesses into a

consolidated access. This allows the DRAMs to supply data at a high rate.

Figure 6.9 shows an example of a matrix data access pattern that is not

coalesced. The arrow in the top portion of the figure shows that the kernel

code for each thread accesses elements of a row in sequence. The accesses

are generated by a loop where threads (T(0), T(1), T(2), T(3)) in the same

warp access the 0th elements (M0,0, M0,1, M0,2, M0,3) of the four rows dur-

ing the first iteration. As shown in the bottom portion of Figure 6.9, these

elements are in locations that are four elements away from each other.

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

Load iteration 1 Load iteration 2
…

M

T(0) T(1) T(2) T(3) T(0) T(1) T(0) T(3)

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2 M1,3M0,3 M2,3 M3,3

Access
direction in
kernel code

FIGURE 6.8

A coalesced access pattern.
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The “Load iteration 1” box in the bottom portion shows how the threads

access these nonconsecutive locations in the first iteration. The hardware

will determine that accesses to these elements cannot be coalesced. As a

result, when a kernel loop iterates through a row, the accesses to global

memory are much less efficient than the case where a kernel iterates

through a column.

If the algorithm intrinsically requires a kernel code to iterate through

data within rows, one can use the shared memory to enable memory coa-

lescing. The technique is illustrated in Figure 6.10 for matrix multiplica-

tion. Each thread reads a row from Md, a pattern that cannot be

coalesced. Fortunately, a tiled algorithm can be used to enable coalescing.

As we discussed in Chapter 5, threads of a block can first cooperatively

load the tiles into the shared memory. Care can be taken to ensure that these

tiles are loaded in a coalesced pattern. Once the data are in shared memory,

they can be accessed on either a row basis or a column basis without any

performance penalty because the shared memories are implemented as

intrinsically high-speed, on-chip memory that does not require coalescing

to achieve high data access rate.
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M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3
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…
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FIGURE 6.9

An uncoalesced access pattern.
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We replicate Figure 5.7 here as Figure 6.11, where the matrix multipli-

cation kernel loads two tiles of matrices Md and Nd into the shared mem-

ory. Note that each thread in a thread block is responsible for loading one

Md element and one Nd element into Mds and Nds in each phase as

defined by the for loop in Line 8. Recall that there are TILE_WIDTH
2

threads involved in each tile. The threads use threadIdx.y and

threadIdx.y to determine the element of each matrix to load.

The Md elements are loaded in Line 9, where the index calculation for

each thread uses m to locate the left end of the tile. Each row of the tile is

then loaded by TILE_WIDTH threads whose threadIdx values differ in the

x dimension. Because these threads have consecutive threadIdx.x values,

they are in the same warp. Also, the index calculation Md[row * Width þ
m*TILE_WIDTH þ tx] makes these threads access elements in the same

row. The question is whether adjacent threads in the warp indeed access

adjacent elements in the row. Because all terms of the index m*TILE_WIDTH

þ tx are identical for all threads except for tx and all threads in a warp

have adjacent tx values. The hardware detects that these threads in the

Md

Md

Original
access
pattern W

ID
T

H

WIDTH
Copy into

scratchpad
memory

Tiled
access
pattern

Perform
multiplication

with scratchpad
values

Nd

Nd

FIGURE 6.10

Using shared memory to enable coalescing.
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same warp access consecutive locations in the global memory and com-

bines them into a coalesced access.

In the case of Nd, all terms of the index (m*TILE_WIDTH þ ty)*Width þ
Col have the same value for all threads in the same warp except for the tx

term in Col. Note that all threads in the same warp have adjacent tx

values; therefore, adjacent threads in a warp access adjacent elements in a

row. The hardware detects that these threads in the same warp access con-

secutive location in the global memory and combine them into a coalesced

access.

The reader will find it useful to draw a picture based on the kernel code

in Figure 6.11 and identify the threadIdx.y and threadIdx.x values of

the threads that load each element of the tile. Lines 5, 6, 9, 10 in Figure 6.11

form a frequently used programming pattern for loading matrix elements

into shared memory in tiled algorithms. We would also like to encourage

the reader to analyze the data access pattern by the dot-product loop in

Lines 12 and 13. Note that the threads in a warp do not access consecutive

FIGURE 6.11

Tiled matrix multiplication kernel using shared memories.

110 CHAPTER 6 Performance Considerations



 

location of Mds. This is not a problem, as Mds is in shared memory, which

does not require coalescing to achieve high-speed data access.

6.3 DYNAMIC PARTITIONING OF SM RESOURCES
The execution resources in a streaming multiprocessor (SM) include regis-

ters, thread block slots, and thread slots. These resources are dynamically

partitioned and assigned to threads to support their execution. In Chapter

4, we have seen that each GT200 SM has 1024 thread slots, each of which

can accommodate one thread. These thread slots are partitioned and

assigned to thread blocks during runtime. If each thread block consists of

256 threads, the 1024 threads slots are partitioned and assigned to four

blocks. In this case, each SM can accommodate up to 4 thread blocks due

to limitations on thread slots. If each thread block contains 128 threads,

the 1024 thread slots are partitioned and assigned to 8 thread blocks.

The ability to dynamically partition the thread slots among thread blocks

makes the streaming multiprocessors versatile. They can either execute

many thread blocks, each of which consists of few threads, or execute a

few thread blocks, each of which consists of many threads. This is in con-

trast to a fixed partitioning method where each block receives a fixed

amount of resource regardless of their real needs. Fixed partitioning results

in wasted thread slots when a block has few threads and fails to support

blocks that require more thread slots than the fixed partition allows.

Dynamic partitioning of resources can result in subtle interactions

between resource limitations, which in turn can cause underutilization of

resources. Such interactions can occur between block slots and thread slots.

If each block has 64 threads, the 1024 thread slots can be partitioned and

assigned to 16 blocks; however, because there are only 8 block slots in each

SM, only 8 blocks will be allowed. This means that only 512 of the thread

slots will be utilized. To fully utilize both the block slots and thread slots,

one needs at least 128 threads in each block.

The register file is another dynamically partitioned resource. The num-

ber of registers in each CUDA device is not specified in the programming

model and varies across implementations. In the G80, there is an 8192-

entry register file in each SM. These registers are used to hold frequently

used programmer and compiler-generated variables to reduce their access

latency and to conserve memory bandwidth. As we mentioned in Chapter

5, the automatic variables declared in a CUDA kernel are placed into reg-

isters. Some kernels may use lots of automatic variables and others may
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use few of them. Thus, one should expect that some kernels require many

registers and some require fewer. By dynamically partitioning the registers

among blocks, the SM can accommodate more blocks if they require few

registers and fewer blocks if they require more registers. One does, how-

ever, need to be aware of potential interactions between register limitations

and other resource limitations.

In the matrix multiplication example, assume that the kernel code uses

10 registers per thread. If we have 16�16 thread blocks, how many threads

can run on each SM? We can answer this question by first calculating the

number of registers needed for each block, which is 10 � 16 � 16 ¼
2560. The number of registers required by three blocks is 7680, which is

under the 8192 limit. Adding another block would require 10,240 registers,

which exceeds the limit; therefore, as shown in Figure 6.12A, the register

limitation allows 3 blocks that altogether have 768 threads to run on each

SM, which also fits within the limit of 8 block slots and 768 thread slots.

Now assume that the programmer declares another automatic variable in

the kernel and bumps the number of registers used by each thread to 11.

Assuming the same 16�16 blocks, each block now requires 11 � 16 �
16 ¼ 2816 registers. The number of registers required by 3 blocks is now

8448, which exceeds the register limitation. As shown in Figure 6.12B,

the SM deals with this situation by reducing the number of blocks by 1, thus

reducing the number of registered required to 5632. This, however, reduces

the number of threads running on an SM from 768 to 512; that is,

Thread contexts Thread contexts

SP0 SP7

TB0 TB1 TB2

SP0 SP7

Insufficient
registers to allocate

3 blocks

32KB register file

Pre-“optimization”A B Post-“optimization”

16KB shared memory

32KB register file

16KB shared memory

FIGURE 6.12

Interaction of resource limitations.
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by using 1 extra automatic variable, the program saw a 1/3 reduction in the

warp parallelism in G80 execution! This is sometimes referred to as a per-
formance cliff, where a slight increase in resource usage can result in

a dramatic reduction in parallelism and performance achieved. The reader

is referred to the CUDA Occupancy Calculator [NVIDIA 2009], which is

a downloadable Excel sheet that calculates the actual number of threads

running on each SM for a particular device implementation given the usage

of resources by a kernel.

In some cases, adding an automatic variable may allow the programmer

to improve the execution speed of individual threads by initiating time con-

suming memory accesses early, as we will explain in more detail in Section

6.4. The improvement within each thread may be sufficient to overcome the

loss of thread-level parallelism. For example, assume that in the original

kernel, there are four independent instructions between a global memory

load and its use. In the G80, each instruction takes 4 clock cycles to pro-

cess, so the 4 independent instructions give a 16-cycle slack for the memory

access. With a 200-cycle global memory latency, we need to have at least

200/(4 � 4) ¼ 14 warps available for zero-overhead scheduling to keep

the execution units fully utilized.

Assume that the additional register allows the programmer or the com-

piler to use a program transformation technique to increase the number of

independent instructions from 4 to 8. These independent instructions give

a 32-cycle slack for the memory access. With the same 200-cycle global

memory latency, we now need to have only 200/(4 � 8) ¼ 7 warps avail-

able for zero-overhead scheduling to keep the execution units fully utilized.

Even though we just reduced the number of blocks from 3 to 2, and thus the

number of warps from 24 to 16, we may have enough warps to fully utilize

the execution units in each SM. Thus, the performance may actually

increase! A programmer typically needs to experiment with each alternative

and choose the best performing code. This can be a labor-intensive, tedious

process. Ryoo et al. [Ryoo 2008] have proposed a methodology for automat-

ing the experimentation process to reduce the programming efforts required

to reach an optimal arrangement for each variety of CUDA hardware.

6.4 DATA PREFETCHING
One of the most important resource limitations for parallel computing in

general is that global memory has limited bandwidth in serving data

accesses, and these accesses take a long time to complete. The tiling
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techniques for using shared memory address the problem of limited global

memory bandwidth. The CUDA threading model tolerates long memory

access latency by allowing some warps to make progress while others wait

for their memory access results. This is a very powerful mechanism, but it

may not be sufficient in some cases where all threads are waiting for their

memory access results. Such a situation can arise if all threads have a very

small number of independent instructions between memory access instruc-

tions and the consumer of the data accessed.

A useful, complementary solution to the problem is to prefetch the next

data elements while consuming the current data elements, which increases

the number of independent instructions between the memory accesses and

the consumers of the data accessed. Prefetch techniques are often combined

with tiling to simultaneously address the problems of limited bandwidth

and long latency. We show such a combined approach in Figure 6.13.

The algorithm in Figure 6.13A corresponds to the tiled matrix multipli-

cation kernel in Figure 6.10. Lines 9 and 10 in Figure 6.11 correspond to

“Load current tile to shared memory” in Figure 6.13A. This is the part that

loads data from global memory into shared memory. The statement in

Line 9 actually has two parts. The first part loads an Md element from

a global memory location into a register. The second part stores the regis-

ter content into a shared memory location. Note that there are no indepen-

dent instructions between these two parts. The warps that load their

Load first tile from global memory into
       registers

Loop {
Deposit tile from registers to shared
       memory

__syncthreads()

Load next tile from global memory into
       registers

Compute current tile

syncthreads()__

}

Loop {

Load current tile to shared
    memory

__syncthreads()

Compute current tile

syncthreads()__syncthreads()

}

Without prefetchingA B With prefetching

FIGURE 6.13

Data prefetching.
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current tiles will likely need to wait for a long time before they can com-

pute the current tile; therefore, we will likely need a lot of warps to keep

the floating-point units busy.

Figure 6.13B shows a prefetch version of a matrix multiplication kernel.

Before we enter the while loop, we load the first tile into registers. Once we

enter the loop, we move the loaded data into shared memory. Because this is

a consumer of the loaded data, the threads will likely remain inactive, wait-

ing for their loaded data while other threads make progress. As data arrive,

warps are selected for execution, and they deposit the tile data from their reg-

isters to the shared memory. When all threads of a block complete depositing

their data, they pass the barrier synchronization point and begin to load the

next tile into their registers. The key is that the next tile data loaded are not

immediately consumed; rather, the current block is processed from the

shared memory by the dot-product loop of Lines 12 and 13 in Figure 6.11.

When the loop iterates, the “next tile” in the current iteration becomes

the “current tile” of the next iteration. Thus, the deposit of the “current tile”

into the shared memory corresponds to the “next tile” loaded in the previ-

ous iteration. The execution of the dot-product loop provides many inde-

pendent instructions between the two parts. This reduces the amount of

time the threads will have to wait for their global memory access data.

We would like to encourage the reader to revise the kernel in Figure 6.11

to use prefetch. In addition to using twice the amount of shared memory,

data prefetch also uses two additional automatic variables (registers).

As we discussed in Section 6.3, using additional registers can reduce the

number of blocks that can run on an SM; however, this technique can still

win if it significantly reduces the amount of time each thread waits for its

global memory load data.

6.5 INSTRUCTION MIX
In current-generation CUDA graphics processing units (GPUs), each pro-

cessor core has limited instruction processing bandwidth. Every instruction

consumes instruction processing bandwidth, whether it is a floating-

point calculation instruction, a load instruction, or a branch instruction.

Figure 6.14A shows the dot-product loop of the matrix multiplication

kernel. The loop incurs extra instructions to update loop counter k and per-

forms conditional branch at the end of each iteration. Furthermore, the use

of loop counter k to index theMs and Nsmatrices incurs address arithmetic

instructions. These instructions compete against floating-point calculation
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instructions for the limited instruction processing bandwidth. For example,

the kernel loop in Figure 6.14A executes two floating-point arith-

metic instructions, one loop branch instruction, two address arithmetic

instructions, and one loop counter increment instruction. That is, only 1/3

of the instructions executed are floating-point calculation instructions. With

limited instruction processing bandwidth, this instruction mixture limits the

achievable performance to no more than 1/3 of the peak bandwidth.

A commonly used method to improve the instruction mix is to unroll the

loop, as shown in Figure 6.14B. Given a tile size, one can simply unroll all

the iterations and express the dot-product computation as one long multi-

ply–add expression. This eliminates the branch instruction and the loop

counter update. Furthermore, because the indices are constants rather than

k, the compiler can use the addressing mode offsets of the load instructions

to eliminate address arithmetic instructions. As a result, the long expression

can execute at close to peak performance!

Ideally, loop unrolling should be automatically done by the compiler.

This is one of the areas where compiler technology will likely be improved

rapidly in the near future. Until the tools mature, many programmers will

still unroll loops in their source code to achieve high performance.

6.6 THREAD GRANULARITY
An important algorithmic decision in performance tuning is the granularity

of threads. It is often advantageous to put more work into each thread and

use fewer threads. Such advantage arises when some redundant work exists

between threads. Figure 6.15 illustrates such an opportunity in matrix mul-

tiplication. The tiled algorithm in Figure 6.11 uses one thread to compute

FIGURE 6.14

Instruction mix considerations.
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one element of the output Pd matrix. This requires a dot product between

one row of Md and one column of Nd.
The opportunity for thread granularity adjustment comes from the fact

that multiple blocks redundantly load eachMd tile. As shown in Figure 6.15,

the calculation of two Pd elements in adjacent tiles uses the same Md
row. With the original tiled algorithm, the same Md row is redundantly

loaded by the two blocks assigned to generate these two Pd tiles. One

can eliminate this redundancy by merging the two thread blocks into

one. Each thread in the new thread block now calculates two Pd elements.

This is done by revising the kernel so each two dot products are computed

by the kernel. Both dot products use the same Mds row but different Nds
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Increased thread granularity with rectangular tiles.
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columns. This reduces the global memory access by 1/4. It also increases

the number of independent instructions in the case of a prefetch algorithm

in Figure 6.14, as there are two dot products calculated between the loading

of the tiles into registers and depositing these tiles into shared memories.

The reader is encouraged to write the new kernel.

The potential downside is that the new kernel now uses even more reg-

isters and shared memory. Thus, the number of blocks that can be running

on each SM may decrease. It also reduces the total number of thread blocks

by half, which may result in insufficient amount of parallelism for matrices

of smaller dimensions. For the G80/GT200, we found that combining four

adjacent horizontal blocks to compute for adjacent horizontal tiles gives

the best performance for a 2048�2048 matrix multiplication.

6.7 MEASURED PERFORMANCE AND SUMMARY
The combined effects of various performance-enhancement techniques on

the matrix multiplication kernel are shown in Figure 6.16. The techniques

covered are tiling, loop unrolling, data prefetching, and thread granularity.

The left side of the graph shows 8�8 tiling and the right side 16�16. For

each tile size, we show the base code, the code after merging two blocks,
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and the code after merging four blocks in granularity adjustment.

Within each granularity, we show unrolling effects and prefetching effects.

We can make at least four observations.

First, the tile size plays a major role in performance. Until the tile size

reaches 16�16, neither loop unrolling nor data prefetch helps. This is

reflected by the fact that all eight bars in each granularity bracket are of

the same height. For small tile sizes such as 8�8, the saturated global

memory bandwidth so severely limits the execution performance that

transformations such as loop unrolling and data prefetching simply do

not matter. On the other hand, because granularity adjustment can reduce

global memory accesses, one should expect that it should improve per-

formance. That is, 1�2 rectangular tiling reduces the global memory

access by 1/4 and resulted and 1�4 tiling by 3/8. Note that 1�8 would

have reduced the global traffic by only 7/16, a diminishing return that

makes it much less attractive than using a larger tile size. The reductions

in global memory accesses indeed help improve the performance shown in

Figure 6.16.

Second, when the tile size becomes sufficiently large (16�16, in this

case) to alleviate the saturation of global memory bandwidth, loop unrolling

and data prefetching become much more important. In most cases,

completely unrolling the loop can result in more than 20% performance

improvement.

The third observation is that, although data prefetching is very beneficial

for 1�1 tiling, it does not help much for 1�2 rectangular tiling. In fact, for

1�4 rectangular tiling, the register usage by one 16�16 block of the data

prefetching kernel exceeds the total number of registers in the SM. This

makes the code not executable in the G80! This is a good illustration of

the fact that, as one applies multiple techniques to a kernel, these techni-

ques will likely interact by reducing the resources available to other

techniques.

Finally, the appropriate combinations of performance tuning techni-

ques can make a tremendous difference in the performance achieved by

the matrix multiplication kernel. In Figure 6.16, the speed of the kernel

executing on the G80 increased from 18 gigaflops to 120 GFLOPS; how-

ever, the programming efforts required to search through these combina-

tions is currently quite large. See Ryoo et al. [RRB2008] for a more

extensive study of performance enhancement effects. Much work is being

done in both academia and industry to reduce the amount of programming

efforts needed to achieve these performance improvements with automa-

tion tools.
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6.8 EXERCISES
6.1 The kernels in Figure 6.2 and 6.4 are wasteful in their use of threads;

half of the threads in each block never execute. Modify the kernels to

eliminate such waste. Give the relevant execute configuration

parameter values at the kernel launch. Is there a cost in terms of extra

arithmetic operation needed? Which resource limitation can be

potentially addressed with such modification? Hints: Line 2 and/or

Line 4 can be adjusted in each case, and the number of elements in the

section may increase.

6.2 Compare the modified kernels you wrote for Exercise 6.1. Which

modification introduced fewer additional arithmetic operations?

6.3 Write a complete kernel based on Exercise 6.1 by: (1) adding the

statements that load a section of the input array from global memory

to shared memory, (2) using blockIdx.x to allow multiple blocks to

work on different sections of the input array, and (3) writing the

reduction value for the section to a location according to the

blockIdx.x so all blocks will deposit their section reduction value to

the lower part of the input array in global memory.

6.4 Design a reduction program based on the kernel you wrote for

Exercise 6.3. The host code should: (1) transfer a large input array

to the global memory, and (2) use a loop to repeatedly invoke the

kernel you wrote for Exercise 6.3 with adjusted execution

configuration parameter values so the reduction result for the input

array will eventually be produced.

6.5 For the matrix multiplication kernel in Figure 6.11, draw the access

patterns of threads in a warp of Lines 9 and 10 for a small 16�16

matrix size. Calculate the tx values and ty values for each thread in a

warp and use these values in the Md and Nd index calculations in

Lines 9 and 10. Show that the threads indeed access consecutive Md
and Nd locations in global memory during each iteration.

6.6 Write a matrix multiplication kernel function that corresponds to the

design illustrated in Figure 6.15.

6.7 The following scalar product code tests your understanding of the

basic CUDA model. The following code computes 1024 dot

products, each of which is calculated from a pair of 256-element
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vectors. Assume that the code is executed on the G80. Use the code to

answer the questions that follow.

1 #define VECTOR_N 1024

2 #define ELEMENT_N 256

3 const int DATA_N ¼ VECTOR_N * ELEMENT_N;

4 const int DATA_SZ ¼ DATA_N * sizeof(float);

5 const int RESULT_SZ ¼ VECTOR_N * sizeof(float);

. . .

6 float *d_A, *d_B, *d_C;

. . .

7 cudaMalloc((void **)&d_A, DATA_SZ);

8 cudaMalloc((void **)&d_B, DATA_SZ);

9 cudaMalloc((void **)&d_C, RESULT_SZ);

. . .

10 scalarProd<<<VECTOR_N, ELEMENT_N>>>(d_C, d_A, d_B, ELEMENT_N);

11

12 __global__ void

13 scalarProd(float *d_C, float *d_A, float *d_B, int ElementN)

14 {

15 __shared__ float accumResult[ELEMENT_N];

16 //Current vectors bases

17 float *A ¼ d_A þ ElementN * blockIdx.x;

18 float *B ¼ d_B þ ElementN * blockIdx.x;

19 int tx ¼ threadIdx.x;

20

21 accumResult[tx] ¼ A[tx] * B[tx];

22

23 for(int stride ¼ ElementN /2; stride > 0; stride >>¼ 1)

24 {

25 __syncthreads();

26 if(tx < stride)

27 accumResult[tx] þ¼ accumResult[stride þ tx];

28 }

30 d_C[blockIdx.x] ¼ accumResult[0];

31 }

a. How many threads are there in total?

b. How many threads are there in a warp?

c. How many threads are there in a block?

d. How many global memory loads and stores are done for each

thread?
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e. How many accesses to shared memory are done for each block? (4

pts.)

f. List the source code lines, if any, that cause shared memory bank

conflicts. (2 pts.)

g. How many iterations of the for loop (Line 23) will have branch

divergence? Show your derivation.

h. Identify an opportunity to significantly reduce the bandwidth

requirement on the global memory. How would you achieve this?

How many accesses can you eliminate?

6.8 In Exercise 4.2, out of the possible range of values for BLOCK_SIZE,

for what values of BLOCK_SIZE will the kernel completely avoid

uncoalesced accesses to global memory?

6.9 In an attempt to improve performance, a bright young engineer

changed the CUDA code in Exercise 6.8 into the code below.

__shared__ float partialSum[];

unsigned int tid ¼ threadIdx.x;

for (unsigned int stride ¼ n>>1; stride >¼ 32; stride >>¼ 1) {

__syncthreads();

if (tid < stride)

shared[tid] þ¼ shared[tid þ stride];

}

__syncthreads();

if (tid < 32) { // unroll last 5 predicated steps

shared[tid] þ¼ shared[tid þ 16];

shared[tid] þ¼ shared[tid þ 8];

shared[tid] þ¼ shared[tid þ 4];

shared[tid] þ¼ shared[tid þ 2];

shared[tid] þ¼ shared[tid þ 1];

}

a. Do you believe that the performance will improve on the G80?

Why or why not?

b. Should the engineer receive a reward or a lecture? Why?
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INTRODUCTION
In the early days of computing, floating-point arithmetic capability was

found only in mainframes and supercomputers. Although many micropro-

cessors designed in the 1980s started to have floating-point coprocessors,

their floating-point arithmetic operations were extremely slow—about three

orders of magnitude slower than that of mainframes and supercomputers.

With advances in microprocessor technology, many microprocessors

designed in the 1990s, such as Intel� Pentium� III and AMD� Athlon�,

began to have high-performance floating-point capabilities that rivaled

supercomputers. High-speed floating-point arithmetic has become a stan-

dard feature for microprocessors and graphics processing unit (GPUs)

today. As a result, it has also become important for application program-

mers to understand and take advantage of floating-point arithmetic in devel-

oping their applications. In particular, we will focus on the accuracy of

floating-point arithmetic, the precision of floating-point number repre-

sentation, and how they should be taken into consideration in parallel

computation.
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7.1 FLOATING-POINT FORMAT
The original IEEE 754 floating-point standard, published in 1985, was an

effort by the computer manufacturers to conform to a common represen-

tation and arithmetic behavior for floating-point data. Most, if not all,

of the computer manufacturers in the world have accepted this standard.

In particular, virtually all microprocessors designed in the future will either

fully conform to or almost fully conform to the IEEE-754 floating-point

standard and its more recent IEEE 754-2008 revision [IEEE 2008].

Therefore, it is important for application developers to understand the

concept and practical considerations of this standard.

A floating-point number system starts with the representation of

a numerical value as bit patterns. In the IEEE floating-point standard,

a numerical value is represented in three groups of bits: sign (S), exponent (E),

and mantissa (M). Each (S, E, M) pattern uniquely identifies a numeric value

according to the following formula:

Value ¼ ð�1ÞS �M� f2Eg; where 1:0 � M < 2:0 (1)

The interpretation of S is simple: S ¼ 0 indicates a positive number and

S ¼ 1 a negative number. Mathematically, any number, including �1,

when raised to the power of 0, results in 1; thus, the value is positive.

On the other hand, when �1 is raised to the power of 1, it is �1 itself.

With a multiplication by �1, the value becomes negative. The interpreta-

tion of M and E bits are, however, much more complex. We will use the

following example to help explain the interpretation of M and E bits.

Assume for the sake of simplicity that each floating-point number consists

of a 1-bit sign, a 3-bit exponent, and a 2-bit mantissa. We will use this hypo-

thetical 6-bit format to illustrate the challenges involved in encoding E and

M. As we discuss numeric values, we will sometime need to express a number

either as a decimal place value or as a binary place value. Numbers expressed as

a decimal place value will have the subscript D and those expressed as a binary

place valuewill have the subscript B. For example, 0.5D (5� 10�1, as the place

to the right of the decimal point carries a weight of 10�1) is the same as 0.1B
(1� 2�1, as the place to the right of the decimal point carries a weight of 2�1).

7.1.1 Normalized Representation of M

Formula (1) requires that 1.0B � M < 10.0B, which makes the mantissa

value for each floating-point number unique; for example, the only one

mantissa value allowed for 0.5D is M ¼1.0:

0:5D ¼ 1:0B � 2�1
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Another potential candidate would be 0.1B � 20, but the value of the

mantissa would be too small according to the rule. Similarly, 10.0B �
2�2 is not legal because the value of the mantissa is too large. In general,

with the restriction that 1.0B � M < 10.0B, every floating point number

has exactly one legal mantissa value. The numbers that satisfy this restric-

tion will be referred to as normalized numbers. Because all mantissa values

that satisfy the restriction are of the form 1.xx, we can omit the “1.” part

from the representation; therefore, the mantissa value of 0.5 in a 2-bit

mantissa representation is 00, which is derived by omitting “1.” from

1.00. This makes a 2-bit mantissa effectively a 3-bit mantissa. In general,

with the IEEE format, an n-bit mantissa is effectively an (nþ 1)-bit mantissa.

7.1.2 Excess Encoding of E

The number of bits used to represent E determines the range of numbers that

can be represented. Large positive E values result in very large floating-point

values; for example, if the E value is 64, the floating-point number being

represented is between 264 (>1018) and 265. You would be extremely happy

if this was the balance of your savings account! Large negativeE values result

in very small floating-point values; for example, if the E value is �64,

the number being represented is between 2�64 (<10�18) and 2�63. This is

a very tiny fractional number. The E field allows a floating-point number

representation to represent a larger range of numbers. We will come back to

this point when we look at the representable numbers of a format.

The IEEE standard adopts an encoding convention for E. If n bits are

used to represent the exponent E, then (2n�1 � 1) is added to the two’s

complement representation for the exponent to form its excess representa-

tion. A two’s complement representation is a system where the negative

value of a number can be derived by first complementing every bit of the

value and adding 1 to the result. In our 3-bit exponent representation, there

are three bits in the exponent; therefore, the value 23�1 � 1 ¼ 011 will

be added to the two’s complement representation of the exponent value.

Figure 7.1 shows the two’s complement representation and the excess pre-

sentation of each decimal exponent value. In our example, the exponent for

0.5D is �1. The two’s complement representation of �1 can be derived by

first complementing 001, the representation of 1, into 110 and then adding

001 to get 111. The excess presentation adds another 011 to the two’s

complement representation, as shown in the figure, which results in 010.

The advantage of excess representation is that an unsigned compara-

tor can be used to compare signed numbers. As shown in Figure 7.2,
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the excess-3 code increases monotonically from �3 to 3 when viewed as

unsigned numbers. The code from �3 is 000 and that for 3 is 110. Thus,

if one uses an unsigned number comparator to compare excess-3 code for

any number from �3 to 3, the comparator gives the correct comparison

result in terms of which number is larger, smaller, etc. For example,

if one compares excess-3 codes 001 and 100 with an unsigned comparator,

001 is smaller than 100. This is the correct conclusion, as the values that

they represent (–2 and 1) have exactly the same relation. This is a desirable

property for hardware implementation, because unsigned comparators are

smaller and faster than signed comparators.

FIGURE 7.1

Excess-3 encoding, sorted by two’s complement ordering.

Two’s Complement Decimal Value Excess Representation

000 0 011

001 1 100

010 2 101

011 3 110

100 Reserved pattern 111

101 �3 000

110 �2 001

111 �1 010

FIGURE 7.2

Excess-3 encoding, sorted by excess-3 ordering.

Two’s Complement Decimal Value Excess-3

100 (reserved pattern) 111

101 �3 000

110 �2 001

111 �1 010

000 0 011

001 1 100

010 2 101

011 3 110

128 CHAPTER 7 Floating Point Considerations



 

Now we are ready to represent 0.5D with our 6-bit format:

0:5D ¼ 0 010 00; where S ¼ 0; E ¼ 010; and M ¼ ð1:Þ00
That is, the 6-bit representation for 0.5D is 001000.

In general, with normalized mantissa and excess-coded exponent,

the value of a number with an n-bit exponent is

ð�1ÞS1:M� 2ðE�ð2∧ðn�1ÞÞþ1Þ

7.2 REPRESENTABLE NUMBERS
The representable numbers of a number format are the numbers that can be

exactly represented in the format; for example, the representable numbers

for a 3-bit unsigned integer format are shown in Figure 7.3. Neither �1 nor

9 can be represented in this format. We can draw a number line to identify

all of the representable numbers, as shown in Figure 7.4, where all represent-

able numbers of the 3-bit unsigned integer format are marked with stars.

The representable numbers of a floating-point format can be visualized

in a similar manner. In Figure 7.5, we show all the representable numbers

FIGURE 7.3

Representable numbers of a 3-bit unsigned format.

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

0 71 42 3 5 6−1 98

FIGURE 7.4

Representable numbers of a 3-bit unsigned integer format.
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No-Zero Abrupt Underflow Denorm

E M S ¼ 0 S ¼ 1 S ¼ 0 S ¼ 1 S ¼ 0 S ¼ 1

00 00 2�1 �(2�1) 0 0 0 0

01 2�1 þ (1 � 2�3) �[2�1 þ (1 � 2�3)] 0 0 1 � 2�2 �(1 � 2�2)

10 2�1 þ (2 � 2�3) �[2�1 þ (2 � 2�3)] 0 0 2 � 2�2 �(2 � 2�2)

11 2�1 þ (3 � 2�3) �[2�1 þ (3 � 2�3)] 0 0 3 � 2�2 �(3 � 2�2)

01 00 20 �(20) 20 �(20) 20 �(20)

01 20 þ (1 � 2�2) �[20 þ (1 � 2�2)] 20 þ (1 � 2�2) �[20 þ (1 � 2�2)] 20 þ (1 � 2�2) �[20 þ (1 � 2�2)]

10 20 þ (2 � 2�2) �[20 þ (2 � 2�2)] 20 þ (2 � 2�2) �[20 þ (2 � 2�2)] 20 þ (2 � 2�2) �[20 þ (2 � 2�2)]

11 20 þ (3 � 2�2) �[20 þ (3 � 2�2)] 20 þ (3 � 2�2) �[20 þ (3 � 2�2)] 20 þ (3 � 2�2) �[20 þ (3 � 2�2)]

10 00 21 �(21) 21 �(21) 21 �(21)

01 21 þ (1 � 2�1) �[21 þ [1 � 2�1)] 21 þ (1 � 2�1) �[21 þ (1 � 2�1)] 21 þ (1 � 2�1) �[21 þ (1 � 2�1)]

10 21 þ (2 � 2�1) �[21 þ (2 � 2�1)] 21 þ (2 � 2�1) �[21 þ (2 � 2�1)] 21 þ (2 � 2�1) �[21 þ (2 � 2�1)]

11 21 þ (3 � 2�1) �[21 þ (3 � 2�1)] 21 þ (3 � 2�1) �[21 þ (3 � 2�1)] 21 þ (3 � 2�1) �[21 þ (3 � 2�1)]

11 Reserved pattern

FIGURE 7.5

Representable numbers of no-zero, abrupt underflow, and denorm formats.
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of what we have so far and two variations. We have used a 5-bit format to

keep the size of the table manageable. The format consists of 1-bit S, 2-bit

E (excess-1 coded), and 2-bit M (with “1.” part omitted). The no-zero col-

umn gives the representable numbers of the format we discussed thus far.

The reader is encouraged to generate at least part of the no-zero column

based on the formula given in Section 7.1. Note that, with this format,

0 is not one of the representable numbers.

A quick look at how these representable numbers populate the number

line, as shown in Figure 7.6, provides further insights about these represent-

able numbers. In Figure 7.6, we show only the positive representable num-

bers. The negative numbers are symmetric to their positive counterparts on

the other side of 0.

We can make five observations. First, the exponent bits define the major

intervals of representable numbers. In Figure 7.6, there are three major

intervals on each side of 0 because there are two exponent bits. Basically,

the major intervals are between powers of twos. With two bits of exponents,

there are three powers of two (2�1 ¼ 0.5D, 2
0 ¼ 1.0D, 2

1 ¼ 2.0D), and each

starts an interval of representable numbers.

The second observation is that the mantissa bits define the number of

representable numbers in each interval. With two mantissa bits, we have

four representable numbers in each interval. In general, with N mantissa

bits, we have 2N representable numbers in each interval. If a value to be

represented falls within one of the intervals, it will be rounded to one of

these representable numbers. Obviously, the larger the number of represent-

able numbers in each interval, the more precisely we can represent a value

in the region; therefore, the number of mantissa bits determines the preci-
sion of the representation.

The third observation is that 0 is not representable in this format.

It is missing from the representable numbers in the no-zero column of

Figure 7.5. Because 0 is one of the most important numbers, not being able

to represent 0 in a number representation system is a serious deficiency.

We will address this deficiency later.

The fourth observation is that the representable numbers become closer

to each other toward the neighborhood of 0. Each interval is half the size of

0 1 2 3 4

FIGURE 7.6

Representable numbers of the no-zero representation.
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the previous interval as we move toward zero. In Figure 7.6, the right-most

interval is of width 2, the next one is of width 1, and the next one is of

width 0.5. Because every interval has the same representable numbers

(four, in Figure 7.6), the representable numbers become closer to each other

as we move toward zero. This is a desirable trend because as the absolute

value of these numbers becomes smaller, it is more important to represent

them more accurately. For example, if you have $1 billion in your bank

account, you may not even notice a $1 rounding error in calculating your

balance; however, if the total balance is $10, then having a $1 rounding

error would be much more noticeable!

Having the representable numbers closer to each other makes it possible

to represent numbers more accurately; for example, in Figure 7.6 there are

four representable numbers. Unfortunately this trend does not hold for the

very vicinity of 0, which leads to the fifth observation: There is a gap in

representable numbers in the vicinity of 0. This is because the range of

the normalized mantissa precludes 0. This is another serious deficiency.

The representation introduces significantly larger (4�) errors when repre-

senting numbers between 0 and 0.5 compared to the errors for the larger

numbers between 0.5 and 1.0. In general, with N bits in the mantissa, this

style of representation would introduce 2N times more error in the interval

closest to zero than the next interval. For numerical methods that rely on

accurate detection of convergence conditions based on very small data

values, such a deficiency can cause instability in execution time and accu-

racy of results. Furthermore, some algorithms generate small numbers and

eventually use them as denominators. The errors in representing these small

numbers can be greatly magnified in the division process and cause numer-

ical instability in these algorithms.

One method that can accommodate 0 into a normalized floating-point

number system is the abrupt underflow convention, which is illustrated in

the second column of Figure 7.5. Whenever E is 0, the number is inter-

preted as 0. In our 5-bit format, this method takes away 8 representable

numbers (4 positive and 4 negative) in the vicinity of 0 and makes them

all 0. Due to its simplicity, some minicomputers in the 1980s used abrupt

underflow. Although this method makes 0 a representable number, it cre-

ates an even larger gap between representable numbers in the vicinity of

0, as shown in Figure 7.7. It is obvious, when compared with Figure 7.6,

that the gap of representable numbers has been enlarged significantly from

0.5 to 1.0. As we explained before, this is very problematic for many

numerical algorithms whose correctness relies on accurate representation

of small numbers near 0.
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The actual method adopted by the IEEE standard is called denormaliza-
tion. The method relaxes the normalization requirement for numbers very

close to 0. As shown in Figure 7.9, whenever E ¼ 0, the mantissa is no

longer assumed to be of the form 1.xx. Rather, it is assumed to be 0.xx.
The value of the exponent is assumed to be the same as the previous

interval. For example, in Figure 7.5, the denormalized representation

00001 has an exponent value of 00 and a mantissa value of 01. The man-

tissa is assumed to be 0.01, and the exponent value is assumed to be the

same as that of the previous interval: 0 rather than �1. That is, the value

that 00001 represents is 0.01 � 20 ¼ 2�2. Figure 7.8 shows the repre-

sentable numbers for the denormalization format. The representation now

has uniformly spaced representable numbers in the close vicinity of 0.

Intuitively, the denormalized convention takes the four numbers in the last

interval of representable numbers of a no-zero representation and spreads

them out to cover the gap area. This eliminates the undesirable gap in

the previous two methods. Note that the distances between representable

numbers in the last two intervals are actually identical. In general, if the

n-bit exponent is 0, then the value is

0:M� 2�2∧ðn�1Þþ2

In summary, the precision of a floating-point representation is measured

by the maximal error that we can introduce to a floating-point number by

representing that number as one of the representable numbers. The smaller

the error is, the higher the precision. The precision of a floating-point

representation can be improved by adding more bits to the mantissa.

0.M * 2−2 ^(n−1) + 2

0 1 2 3

FIGURE 7.8

Representable numbers of a denormalization format.

0 1 2 3 4

FIGURE 7.7

Representable numbers of the abrupt underflow format.
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Adding one bit to the representation in Figure 7.8 would improve the preci-

sion by reducing the maximal error by half; thus, a number system has

higher precision when it uses more bits for mantissa.

7.3 SPECIAL BIT PATTERNS AND PRECISION
The actual IEEE format has one more special bit pattern. When all exponent

bits are ones, the number represented is an infinity value if the mantissa is

zero. It is a Not a Number (NaN) if the mantissa is not zero. All special bit

patterns of the IEEE floating-point format are shown in Figure 7.9.

All other numbers are normalized floating-point numbers. Single-

precision numbers have 1-bit S, 8-bit E, and 23-bit M. Double-precision

numbers have 1-bit S, 11-bit E, and 52-bit M. Because a double-precision

number has 29 more bits for the mantissa, the largest error for represent-

ing a number is reduced to 1/229 of that of the single precision format!

With the additional three bits of exponent, the double-precision format

also extends the number of intervals of representable numbers. This

extends the range of representable numbers to very large as well as very

small values.

All representable numbers fall between �1 (negative infinity) and þ1
(positive infinity). An 1 can be created by overflow (e.g., divided by zero).

Any representable number divided by þ1 or �1 results in 0.

A NaN is generated by operations whose input values do not make

sense—for example, 0/0, 0 �1,1/1,1 –1. They are also used for data

that have not been properly initialized in a program. There are two types of

NaNs in the IEEE standard: signaling and quiet. Signaling NaNs (SNaNs)

FIGURE 7.9

Special bit patterns in the IEEE standard format.

Exponent Mantissa Meaning

11 . . . 1 6¼ 0 NaN

11 . . . 1 ¼ 0 (�1)S � 1
00 . . . 0 6¼ 0 Denormalized

00 . . . 0 ¼ 0 0
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are represented with the most significant mantissa bit cleared, whereas quiet

NaNs are represented with the most significant mantissa bit set.

A signaling NaN causes an exception when used as input to arithmetic

operations; for example, the operation (1.0 þ SNaN ) raises an exception.

Signaling NaNs are used in situations where the programmer would like

to make sure that the program execution is interrupted whenever any

NaN values are used in floating-point computations. These situations usu-

ally mean that there is something wrong with the execution of the program.

In mission-critical applications, the execution cannot continue until the

validity of the execution can be verified with a separate means. For exam-

ple, software engineers often mark all of the uninitialized data as signaling

NaN. This practice ensures the detection of using uninitialized data during

program execution. The current generation of GPU hardware does not

support signaling NaN. This is due to the difficulty of supporting accurate

signaling during massively parallel execution.

Quiet NaN generates a quiet NaN when used as input to arithmetic

operations; for example, the operation (1.0 þ quiet NaN) generates a quiet

NaN. Quiet NaNs are typically used in applications where the user can

review the output and decide if the application should be rerun with a dif-

ferent input for more valid results. When the results are printed, quiet NaNs

are printed as “NaN” so the user can easily spot them in the output file.

This is how one can detect data corruption in CUDA� applications.

7.4 ARITHMETIC ACCURACY AND ROUNDING
Now that we have a good understanding of the IEEE floating-point format,

we are ready to discuss the concept of arithmetic accuracy. Whereas the

precision is determined by the number of mantissa bits used in a floating-

point number format, the accuracy is determined by the operations per-

formed on a floating number. The accuracy of a floating-point arithmetic

operation is measured by the maximal error introduced by the operation.

The smaller the error is, the higher the accuracy. The most common source

of error in floating-point arithmetic is when the operation generates a result

that cannot be exactly represented and thus requires rounding. Rounding

occurs if the mantissa of the result value needs too many bits to be repre-

sented exactly. The cause of rounding is typically preshifting in floating-

point arithmetic. When two input operands to a floating-point addition

or subtraction have different exponents, the mantissa of the one with the
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smaller exponent is typically right-shifted until the exponents are equal.

As a result, the final result can have more bits than the format can

accommodate.

This can be illustrated with a simple example based on the 5-bit repre-

sentation in Figure 7.5. Assume that we need to add 1.00 � 2�2 (0, 00, 01) to

1.00 � 21 (0, 10, 00); that is, we need to perform (1.00 � 21) þ (1.00 � 2�2).

Due to the difference in exponent values, the mantissa value of the second

number must be right shifted before being added to the first mantissa value;

that is, the addition becomes (1.00 � 21) þ (0.001 � 21). The ideal result

would be 1.001 � 21; however, we can see that this ideal result is not a

representable number in a 5-bit representation. It would have required 3 bits

of mantissa; thus, the best one can do is to generate the closest represent-

able number, which is 1.01 � 21. By doing so, we introduce an error

(0.001 � 21), which is half the place value of the least significant place.

We refer to this as 0.5 unit in the last place (ULP). If the hardware is

designed to perform arithmetic and rounding operations perfectly, the

greatest error that one should introduce should be no more than 0.5 ULP.

This is the accuracy achieved by the addition and subtraction operations

in the NVIDIA� G80 and GT200.

In practice, some of the more complex arithmetic hardware units, such

as division and transcendental functions, are typically implemented with

iterative approximation algorithms. If the hardware does not perform a

sufficient number of iterations, the result may have an error larger than

0.5 ULP. The inversion operation in the G80 and GT200 can introduce

an error that is twice the place value of the least place of the mantissa,

or 2 ULP. The arithmetic operations on newer generation GPUs are much

more accurate.

7.5 ALGORITHM CONSIDERATIONS
Numerical algorithms often must sum up a large number of values.

For example, the dot product in matrix multiplication needs to sum up pair-

wise products of input matrix elements. Ideally, the order of summing these

values should not affect the final total, as addition is an associative opera-

tion; however, with finite precision, the order of summing these values can

affect the accuracy of the final result, such as if we need to perform a sum

reduction on 4 numbers in our 5-bit representation: (1.00 � 20) þ (1.00 � 20)

þ (1.00 � 2�2) þ (1.00 � 2�2). If we add up the numbers in strict sequential

order, we have the following sequence of operations:
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ð1:00� 20Þ þ ð1:00� 20Þ þ ð1:00� 2�2Þ þ ð1:00� 2�2Þ
¼ ð1:00� 21Þ þ ð1:00� 2�2Þ þ ð1:00� 2�2Þ
¼ ð1:00� 21Þ þ ð1:00� 2�2Þ
¼ 1:00� 21

Note that in the second step and third step the smaller operands simply dis-

appear because they are too small compared to the larger operands.

Now, let’s consider a parallel algorithm where the first two values are

added and the second two operands are added in parallel. The algorithm

than add up the pairwise sum:

½ð1:00� 20Þ þ ð1:00� 20Þ� þ ½ð1:00� 2�2Þ þ ð1:00� 2�2Þ�
¼ ð1:00� 21Þ þ ð1:00� 2�1Þ
¼ 1:01� 21

Note that the results are different from the sequential result! This is

because the sum of the third and fourth values is large enough that it can

now affect the addition result. This discrepancy between sequential algo-

rithms and parallel algorithms often surprises application developers who

are not familiar with floating-point precision and accuracy considerations.

Although we showed a scenario where a parallel algorithm produced a more

accurate result than a sequential algorithm, the reader should be able to come

up with a slightly different scenario where the parallel algorithm produces a

less accurate result than a sequential algorithm. Experienced application

developers either make sure that the variation in the final result can be toler-

ated or ensure that the data are sorted or grouped in such a way that the

parallel algorithm results in the most accurate results.

A common technique to maximize floating-point arithmetic accuracy

is to presort data before a reduction computation. In our sum reduction

example, if we presort the data according to ascending numerical order,

we will have the following:

ð1:00� 2�2Þ þ ð1:00� 2�2Þ þ ð1:00� 20Þ þ ð1:00� 20Þ
When we divide up the numbers into groups in a parallel algorithm

(say, the first pair in one group and the second pair in another group), it

is guaranteed that numbers with numerical values close to each other are

in the same group. Therefore, when we perform addition in these groups,

we will likely have accurate results. Furthermore, the parallel algorithms

will ultimately perform sequential operations within each group. Having

the numbers sorted in ascending order allows a sequential addition to
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achieve greater accuracy. This is an important reason why sorting is fre-

quently used in massively parallel numerical algorithms.

7.6 SUMMARY
This chapter has introduced the concepts of floating-point format and repre-

sentable numbers that are foundational to the understanding of precision.

Based on these concepts, we also explain the denormalized numbers and

why they are important in many numerical applications. In early CUDA

devices such as the G80, denormalized numbers were not supported; how-

ever, later hardware generations such as the GT200 support denormalized

numbers. We have also explained the concept of the arithmetic accuracy

of floating-point operations. It is important for CUDA programmers to

understand the potentially lower accuracy of fast arithmetic operations

implemented in the special function units. More importantly, the readers

should now have a good understanding of why parallel algorithms often

can affect the accuracy of calculation results and how one can potentially

use sorting to improve the accuracy of their computation.

7.7 EXERCISES
7.1 Draw the equivalent of Figure 7.5 for a 6-bit format (1-bit sign,

3-bit mantissa, 2-bit exponent). Use your result to explain what

each additional mantissa bit does to the set of representable numbers

on the number line.

7.2 Draw the equivalent of Figure 7.5 for another 6-bit format (1-bit sign,

2-bit mantissa, 3-bit exponent). Use your result to explain what

each additional exponent bit does to the set of representable numbers

on the number line.

7.3 Assume that in a new processor design, due to technical difficulty,

the floating-point arithmetic unit that performs addition can only

do “round to zero” (rounding by truncating the value toward 0).

The hardware maintains a sufficient number of bits so the only error

introduced is due to rounding. What is the maximal ULP error

value for add operations on this machine?

7.4 A graduate student wrote a CUDA kernel to reduce a large floating-

point array to the sum of all its elements. The array will always be
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sorted with the smallest values to the largest values. To avoid branch

divergence, he decided to implement the algorithm of Figure 6.4.

Explain why this can reduce the accuracy of his results.

7.5 Assume that in a arithmetic unit design, the hardware implements

an iterative approximation algorithm that generates two additional

accurate mantissa bits of the result for the sin() function in each clock

cycle. The architect decided to allow the arithmetic function to iterate

nine clock cycles. Assume that the hardware fill in all remaining

mantissa bits are 0. What would be the maximal ULP error of the

hardware implementation of the sin() function in this design for the

IEEE single-precision numbers? Assume that the omitted “1.”

mantissa bit must also be generated by the arithmetic unit.

Reference
IEEE Microprocessor Standards Committee. (2008). Draft standard for floating-

point arithmetic P754. Piscataway, NJ: Institute of Electrical and Electronics

Engineers.
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INTRODUCTION
Application case studies teach computational thinking and practical pro-

gramming techniques in a concrete manner. They also help demonstrate

how the individual techniques fit into a top-to-bottom development pro-

cess. Most importantly, they help us to visualize the practical use of these

techniques in solving problems. In this chapter, we begin with the back-

ground and problem formulation of a relatively simple application. We

show that parallel execution not only speeds up the existing approaches

but also allows applications experts to pursue approaches that are known

to provide benefit but were previously ignored due to their excessive

computational requirements. We then use an example algorithm and

its implementation source code from such an approach to illustrate how

a developer can systematically determine the kernel parallelism structure,

assign variables into CUDA� memories, steer around limitations of

the hardware, validate results, and assess the impact of performance

improvements.

141



 

8.1 APPLICATION BACKGROUND
Magnetic resonance imaging (MRI) is commonly used by the medical com-

munity to safely and noninvasively probe the structure and function of

biological tissues in all regions of the body. Images that are generated using

MRI have had a profound impact in both clinical and research settings.

MRI consists of two phases: acquisition (scan) and reconstruction. During

the acquisition phase, the scanner samples data in the k-space domain

(i.e., the spatial–frequency domain or Fourier transform domain) along a

predefined trajectory. These samples are then transformed into the desired

image during the reconstruction phase.

The application of MRI is often limited by high noise levels, significant

imaging artifacts, and long data acquisition times. In clinical settings, short

scan times not only increase scanner throughput but also reduce patient dis-

comfort, which tends to mitigate motion-related artifacts. High image reso-

lution and fidelity are important because they enable earlier detection of

pathology, leading to improved prognoses for patients; however, the goals

of short scan time, high resolution, and high signal-to-noise ratio (SNR)

often conflict—improvements in one metric tend to come at the expense

of one or both of the others. One needs new, disruptive technological break-

throughs to be able to simultaneously improve on all three dimensions. This

study presents a case where massively parallel computing provides such a

disruptive breakthrough.

The reader is referred to MRI textbooks such as Liang and Lauterbur

[Liang 1999] for the physics principles behind MRI. For this case study,

we will focus on the computational complexity in the reconstruction phase

and how the complexity is affected by the k-space sampling trajectory. The

k-space sampling trajectory used by the MRI scanner can significantly

affect the quality of the reconstructed image, the time complexity of the

reconstruction algorithm, and the time required for the scanner to acquire

the samples. Equation (1) below shows a formulation that relates the

k-space samples to the reconstructed image for a class of reconstruction

methods.

m̂ðrÞ ¼
X

j

W kj
� �

s kj
� �

ei2pkj � r (1)

In Equation (1), m̂(r) is the reconstructed image, s(k) is the measured

k-space data, and W(k) is the weighting function that accounts for nonuni-

form sampling; that is, W(k) decreases the influence of data from k-space
regions with a higher density of sample points. For this class reconstructions,
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W(k) can also serve as an apodization function that reduces the influence of

noise and reduces artifacts due to finite sampling.

If data are acquired at uniformly spaced Cartesian grid points in the

k-space under ideal conditions, then the W(k) weighting function is a con-

stant and can thus be factored out of the summation in Equation (1). As a

result, the reconstruction of m(r) becomes an inverse fast Fourier transform

(FFT) on s(k), an extremely efficient computation method. A collection of

data measured at such uniformly spaced Cartesian grid points is referred

as a Cartesian scan trajectory. Figure 8.1A depicts a Cartesian scan

trajectory. In practice, Cartesian scan trajectories allow straightforward

implementation on scanners and are widely used in clinical settings.

Although the inverse FFT reconstruction of Cartesian scan data is

computationally efficient, non-Cartesian scan trajectories often offer the

advantages of reduced sensitivity to patient motion, better ability to provide

self-calibrating field inhomogeneity information, and reduced requirements

on scanner hardware performance. As a result, non-Cartesian scan tra-

jectories such as spirals (shown in Figure 8.1C), radial lines (projection

imaging), and rosettes have been proposed to reduce motion-related

artifacts and address scanner hardware performance limitations.

Image reconstruction from non-Cartesian trajectory data presents both

challenges and opportunities. The main challenge arises from the fact that

Cartesian scan data

ky

kx ky

ky

kx

kx

Gridding1

A B C

Spiral scan data

FFT LS

FIGURE 8.1

Scanner k-space trajectories and their associated reconstruction strategies: (A)

Cartesian trajectory with FFT reconstruction, (B) spiral (or non-Cartesian trajectory

in general) followed by gridding to enable FFT reconstruction, and (C) spiral

(non-Cartesian) trajectory with linear-solver-based reconstruction.
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the exponential terms are no longer uniformly spaced; the summation does

not have the form of an FFT anymore. Therefore, one can no longer

perform reconstruction by directly applying an inverse FFT to the k-space
samples. In a commonly used approach called gridding, the samples are

first interpolated onto a uniform Cartesian grid and then reconstructed using

the FFT (see Figure 8.1B). For example, a convolution approach to gridding

takes a k-space data point, convolves it with a gridding kernel, and accumu-

lates the results on a Cartesian grid. Convolution is quite computationally

intensive. Accelerating gridding computation on many-core processors

facilitates the application of the current FFT approach to non-Cartesian tra-

jectory data. Because we will be examining a convolution-style computa-

tion in Chapter 9, we will not cover it here.

In this chapter, we will cover an iterative, statistically optimal image

reconstruction method that can accurately model imaging physics and

bound the noise error in each image pixel value. This allows the recon-

structed image pixel values to be used for measuring subtle phenomena

such as tissue chemical anomalies before they become anatomical pathol-

ogy. Figure 8.2 shows such a measurement that generates a map of sodium,

a heavily regulated substance in normal human tissues. Because sodium is

much less abundant than water molecules in human tissues, a reliable

measure of sodium levels requires a higher SNR. An iterative, statistically

optimal reconstruction method can be used to achieve the required level

of SNR; however, such iterative reconstructions have been impractical for

large-scale, three-dimensional (3D) problems due to their excessive compu-

tational requirements compared to gridding. Recently, these reconstructions

have become viable in clinical settings when accelerated on graphics pro-

cessing units (GPUs). In particular, we will show that an iterative recon-

struction algorithm that used to take hours using a high-end sequential

central processing unit (CPU) now takes only minutes using the NVIDIA�

G80 to produce an image of moderate resolution, a delay acceptable in

clinical settings.

8.2 ITERATIVE RECONSTRUCTION
Haldar and Liang proposed a linear-solver-based iterative reconstruction

algorithm for non-Cartesian scan data, as shown in Figure 8.1C. The algo-

rithm allows for explicit modeling and compensation for the physics of

the scanner data acquisition process and can thus reduce the artifacts

in the reconstructed image. It is, however, computation intensive.
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FIGURE 8.2

The use of non-Cartesian k-space sample trajectory and accurate linear-solver-based reconstruction has resulted in new MRI

modalities with exciting medical applications. The improved SNR allows reliable collection of in vivo concentration data on

such chemical substances as sodium in human tissues. The variation or shifting of sodium concentration is an early sign of

disease development or tissue death; for example, the sodium map of a human brain can provide an early indication of brain

tumor tissue responsiveness to chemotherapy protocols, thus enabling individualized medicine.
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The reconstruction time on high-end sequential CPUs has been hours for

moderate-resolution images; thus, this approach is impractical for clinical

use. We use this as an example of innovative methods that have required

too much computation time to be considered practical. We will show that

massive parallelism in GPUs can reduce the reconstruction time to the order

of a minute, so one can begin to deploy the new MRI modalities such as

sodium imaging in clinical settings.

Figure 8.3 shows a solution of the quasi-Bayesian estimation problem

formulation of the iterative linear-solver-based reconstruction approach,

where r is a vector containing voxel values for the reconstructed image,

F is a matrix that models the physics of the imaging process, d is a vector

of data samples from the scanner, and W is a matrix that can incorporate

prior information such as anatomical constraints. In clinical settings, the

anatomical constraints represented in W are derived from one or more

high-resolution, high-SNR water molecule scans of the patient. These water

molecule scans reveal features such as the location of anatomical structures.

The matrix W is derived from these reference images. The problem is to

solve for r given all the other matrices and vectors.

On the surface, the computational solution to the problem formulation in

Figure 8.3 should be very straightforward. It involves matrix–matrix multi-

plications and addition (FHF þ lWHW), matrix–vector multiplication

(FHd), matrix inversion (FHF þ lWHW)�1, and finally matrix–matrix mul-

tiplication [(FHF þ lWHW)�1FHd]. However, the sizes of the matrices

make this straightforward approach extremely time consuming. FH and F

Compute FHF + lWHW

Acquire Data

Compute FHd

Find r

(FHF +lWHW )r = FHd

FIGURE 8.3

An iterative linear-solver-based approach to reconstruction of non-Cartesian

k-space sample data.

146 CHAPTER 8 Application Case Study: Advanced MRI Reconstruction



 

are 3D matrices whose dimensions are determined by the resolution of the

reconstructed image r. Even in a modest-resolution, 1283-voxel reconstruc-

tion, there are 1283 columns in F with N elements in each column, where N
is the number of k-space samples used. Obviously, F is extremely large.

The sizes of the matrices involved are so large that the matrix operations

required for a direct solution of the equation in Figure 8.3 is practically

intractable. An iterative method for matrix inversion, such as the conjugate

gradient (CG) algorithm, is therefore preferred. The conjugate gradient

algorithm reconstructs the image by iteratively solving the equation in Fig-

ure 8.3 for r. During each iteration, the CG algorithm updates the current

image estimate r to improve the value of the quasi-Bayesian cost function.

The computational efficiency of the CG technique is largely determined by

the efficiency of matrix–vector multiplication operations involving FHF þ
lWHW and r, as these operations are required during each iteration of

the CG algorithm.

Fortunately, matrix W often has a sparse structure that permits efficient

multiplication WHW, and matrix FHF is a Toeplitz matrix that enables effi-

cient matrix–vector multiplication via the FFT. Stone et al. [Stone 2008]

presented a GPU accelerated method for calculating Q, a data structure that
allows us to quickly calculate matrix–vector multiplication involving FHF
without actually calculating FHF itself. The calculation of Q can take days

on a high-end CPU core. It only has to be done once for a given trajectory

and can be used for multiple scans.

The matrix–vector multiply to calculate FHd takes about one order of

magnitude less time than Q but can still require about 3 hours for a 1283-

voxel reconstruction on a high-end sequential CPU. Because FHd needs

to be computed for every image acquisition, it is desirable to reduce the

computation time of FHd to minutes. We will show the details of this pro-

cess. As it turns out, the core computational structure of Q is identical to

that of FHd. As a result, the same methodology can be used to accelerate

the computation of both.

The “find r” step in Figure 8.3 performs the actual CG based on FHd.
As we explained earlier, precalculation of Q makes this step much less

computationally intensive than FHd and accounts for less than 1% of

the execution of the reconstruction of each image on a sequential CPU.

As a result, we will leave it out of the parallelization scope and focus

on FHd in this chapter. We will, however, revisit its status at the end of

the chapter.
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8.3 COMPUTING FHd
Figure 8.4A shows a sequential C implementation of the computations for

computing Q, and Figure 8.4B shows that for FHd. It should be clear from

a quick glance at Figure 8.4A and Figure 8.4B that Q and FHd have identi-

cal structure. Both computations start with an outer loop, which encloses an

inner loop. The only differences are the particular calculation done in each

loop body and the fact that Q involves a much larger m, as it implements a

matrix–matrix multiplication as opposed to a matrix–vector multiplication,

thus requiring a much longer execution time. It suffices to discuss one of

them here, and we will focus on FHd, as this is the one that will have to

be run for each image being reconstructed.

A quick glance at Figure 8.4B shows that the C implementation of FHd
is an excellent candidate for acceleration on the GPU because it exhibits

substantial data parallelism. The algorithm first computes the real and

imaginary components of Mu (rMu and iMu) at each sample point in the

k-space, then computes the real and imaginary components of FHd at each

voxel in the image space. The value of FHd at any voxel depends on the

values of all k-space sample points, but no voxel elements of FHd depend

FIGURE 8.4

Computation of Q and FHd.
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on any other elements of FHd; therefore, all elements of FHd can be

computed in parallel. Specifically, all iterations of the outer loop can be

done in parallel and all iterations of the inner loop can be done in parallel.

The calculations of the inner loop, however, have a dependence on the

calculation done by the preceding statements in the same iteration of the

outer loop.

Despite the algorithm’s abundant inherent parallelism, potential perfor-

mance bottlenecks are evident. First, in the loop that computes the elements

of FHd, the ratio of floating-point operations to memory accesses is at best

3:1 and at worst 1:1. The best case assumes that the sin and cos trigonome-

try operations are computed using 5-element Taylor series that require 13

and 12 floating-point operations, respectively. The worst case assumes that

each trigonometric operation is computed as a single operation in hardware.

As we have seen in Chapter 5, a floating-point to memory access ratio of

16:1 or more is necessary for the kernel not to be limited by memory band-

width. Thus, the memory accesses will clearly limit the performance of the

kernel unless the ratio is drastically increased.

Second, the ratio of floating-point arithmetic to floating-point trigonom-

etry functions is only 13:2; thus, GPU-based implementation must tolerate

or avoid stalls due to long-latency sin and cos operations. Without a good

way to reduce the cost of trigonometry functions, the performance will

likely be dominated by the time spent in these functions.

We are now ready to take the steps to convert FHd from sequential C

code to CUDA kernel.

Step 1. Determine the Kernel Parallelism Structure

The conversion of a loop into a CUDA kernel is conceptually straightfor-

ward. Because all iterations of the outer loop of Figure 8.4B can be exe-

cuted in parallel, we can simply convert the outer loop into a CUDA

kernel by mapping its iterations to CUDA threads. Figure 8.5 shows a ker-

nel from such a straightforward conversion. Each thread implements an

iteration of the original outer loop; that is, we use each thread to calculate

the contribution of one k-space sample to all FHd elements. The original

outer loop has M iterations, and M can be in the millions. We obviously

need to have multiple thread blocks to generate enough threads to imple-

ment all of these iterations.

To make performance tuning easy, we declare a constant, FHd_THREADS_

PER_BLOCK, which defines the number of threads in each thread block when

we invoke the cmpFHd kernel. Thus, we will use M/FHd_THREADS_PER_BLOCK
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 for the grid size (in terms of number of blocks) and FHd_THREADS_PER_BLOCK

for block size (in terms of number of threads) for kernel invocation. Within the

kernel, each thread calculates the original iteration of the outer loop that it is

assigned to cover using the formula blockIdx.x*FHd_THREADS_PER_BLOCK

þ threadIdx.x. For example, assume that there are 65,536 k-space samples

and we decided to use 512 threads per block. The grid size at kernel innovation

would be 65,536/512¼ 128 blocks. The block size would be 512. The calcula-

tion of m for each thread would be equivalent to blockIdx.x*512 þ
threadIdx.x.

Although the kernel of Figure 8.5 exploits ample parallelism, it suffers

from a major problem: All threads write into all rFHd and iFHd voxel ele-

ments. This means that the kernel must use atomic operations in the global

memory in the inner loop in order to keep threads from trashing each

other’s contributions to the voxel value. This can seriously affect the

performance of a kernel. Note that, as is, the code will not even execute

correctly because no atomic operation is used. We need to explore other

options.

The other option is to use each thread to calculate one FHd value from all

k-space samples. In order to do so, we need to first swap the inner loop and

the outer loop so that each of the new outer-loop iterations processes one

FHd element; that is, each of the new outer-loop iterations will execute

FIGURE 8.5

First version of the FHd kernel. The kernel will not execute correctly due to conflicts

between threads writing into rFHd and iFHd arrays. All arguments except N are of

type float and the keyword float is omitted for most of them for brevity.

150 CHAPTER 8 Application Case Study: Advanced MRI Reconstruction



 

the new inner loop that accumulates the contribution of all k-space samples

to the FHd element handled by the outer-loop iteration. This transformation

to the loop structure is called loop interchange. It requires a perfectly

nested loop, meaning that there is no statement between the outer for loop

statement and the inner for loop statement. This is, however, not true for

the FHd code in Figure 8.4B. We need to find a way to move the calculation

of rMu and iMu elements out of the way.

From a quick inspection of Figure 8.6A, which replicates Figure 8.4B,

we see that the FHd calculation can be split into two separate loops, as

shown in Figure 8.6B, using a technique called loop fission or loop
splitting. This transformation takes the body of a loop and splits it into

two loops. In the case of FHd, the outer loop consists of two parts: the state-

ments before the inner loop and the inner loop. As shown in Figure 8.6B,

we can perform loop fission on the outer loop by placing the statements

before the inner loop into a loop and the inner loop into a second loop.

The transformation changes the relative execution order of the two parts

of the original outer loop. In the original outer loop, both parts of the first

FIGURE 8.6

Loop fission on the FHd computation.
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iteration execute before the second iteration. After fission, the first part of

all iterations will execute; they are then followed by the second part of

all iterations. The reader should be able to verify that this change of execu-

tion order does not affect the execution results for FHd. This is because the
execution of the first part of each iteration does not depend on the result of

the second part of any preceding iterations of the original outer loop. Loop

fission is a transformation often done by advanced compilers that are capa-

ble of analyzing the (lack of) dependence between statements across loop

iterations.

With loop fission, the FHd computation is now done in two steps. The

first step is a single-level loop that calculates the rMu and iMu elements

for use in the second loop. The second step corresponds to the loop that cal-

culates the FHd elements based on the rMu and iMu elements calculated in

the first step. Each step can now be converted into a CUDA kernel. The two

CUDA kernels will execute sequentially with respect to each other.

Because the second loop needs to use the results from the first loop, separ-

ating these two loops into two kernels that execute in sequence does not

sacrifice any parallelism.

The cmpMu() kernel in Figure 8.7 implements the first loop. The conver-

sion of the first loop from sequential C code to a CUDA kernel is straight-

forward; each thread implements one iteration of the original C code.

Because the M value can be very big, reflecting the large number of k-space
samples, such a mapping can result in a large number of threads, and,

because each thread block can have only up to 512 threads, we will need

to use multiple blocks to allow the large number of threads. This can be

accomplished by having a number of threads in each block, specified by

MU_THREADS_PER_BLOCK in Figure 8.7, and by employing M/MU_THREADS_

PER_BLOCK blocks to cover all M iterations of the original loop. For example,

if there are 65,536 k-space samples, the kernel could be invoked with a config-

uration of 512 threads per block and 65,536/512¼ 128 blocks. This is done by

FIGURE 8.7

cmpMu kernel.
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assigning 512 to MU_THREADS_PER_BLOCK and using MU_THREADS_PER_BLOCK

as the block size and M/MU_THREADS_PER_BLOCK as the grid size during kernel

innovation.

Within the kernel, each thread can identify the iteration assigned to it

using its blockIdx and threadIdx values. Because the threading structure

is one dimensional, only blockIdx.x and threadIdx.x need to be used.

Each block covers a section of the original iterations, so the iteration

covered by a thread is blockIdx.x*MU_THREADS_PER_BLOCK þ threadIdx.

Assume, for example, that MU_THREADS_PER_BLOCK ¼ 512. The thread with

blockIdx.x ¼ 0 and threadIdx.x ¼ 37 covers the 37th iteration of the

original loop, whereas the thread with blockIdx.x ¼ 5 and threadIdx.x

¼ 2 covers the 2562nd (5*512 þ 2) iteration of the original loop. Using this

iteration number to access the Mu, Phi, and D arrays ensures that the arrays

are covered by the threads in the same way they were covered by the

iterations of the original loop. Because every thread writes into its own

Mu element, there is no potential conflict between any of these threads.

Determining the structure of the second kernel requires a little more

work. An inspection of the second loop in Figure 8.6B shows that we have

at least three options when designing the second kernel. In the first option,

each thread corresponds to one iteration of the inner loop. This option

creates the most number of threads and thus exploits the greatest amount

of parallelism; however, the number of threads would be N*M, with N in

the range of millions and M in the range of hundreds of thousands. Their

product would result in too many threads in the grid.

A second option is to use each thread to implement an iteration of the

outer loop. This option employs fewer threads than the first option. Instead

of generating N*M threads, this option generates M threads. Because M cor-

responds to the number of k-space samples and a large number of samples

(on the order of 100,000) is typically used to calculate FHd, this option still

exploits a large amount of parallelism. However, this kernel suffers the

same problem as the kernel in Figure 8.5; that is, each thread will write into

all rFHd and iFHd elements, thus creating an extremely large number of

conflicts between threads. As is the case of Figure 8.5, the code in

Figure 8.8 will not execute correctly without adding atomic operations

that will significantly slow down the execution, thus this option does not

work well.

A third option is to use each thread to compute one pair of rFHd and

iFHd elements. This option requires us to interchange the inner and outer

loops and then use each thread to implement an iteration of the new outer

loop. The transformation is shown in Figure 8.9. Loop interchange is
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necessary because the loop being implemented by the CUDA threads must

be the outer loop. Loop interchange makes each new outer loop iteration

process a pair of rFHd and iFHd elements. Loop interchange is permissible

here because all iterations of both levels of loops are independent of each

other. They can be executed in any order relative to one another. Loop

interchange, which changes the order of the iterations, is allowed when

these iterations can be executed in any order. This option generates N
threads. Because N corresponds to the number voxels in the reconstructed

FIGURE 8.8

Second option of the FHd kernel.

FIGURE 8.9

Loop interchange of the FHd computation.
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image, the N value can be very large for higher resolution images. For a

1283 image, there are 1283 ¼ 2,097,152 threads, resulting in a large amount

of parallelism. For higher resolutions, such as 5123, we may need to invoke

multiple kernels, with each kernel generating the value of a subset of the

voxels. Note that these threads now all accumulate into their own rFHd

and iFHd elements, as every thread has a unique n value. There is no con-

flict between threads. These threads can run totally in parallel. This makes

the third option the best choice among the three options.

The kernel derived from the interchanged loops is shown in Figure 8.10.

The threads are organized as a two-level structure. The outer loop has been

stripped away; each thread covers an iteration of the outer (n) loop, where n
is equal to blockIdx.x*FHd_THREADS_PER_BLOCK þ threadIdx.x. Once

this iteration (n) value is identified, the thread executes the inner loop based

on that n value. This kernel can be invoked with a number of threads in

each block, specified by a global constant, FHd_THREADS_PER_BLOCK.

Assuming that N is the variable that gives the number of voxels in the

reconstructed image, then N/FHd_THREADS_PER_BLOCK blocks cover all N
iterations of the original loop. For example, if there are 65,536 k-space sam-

ples, the kernel could be invoked with a configuration of 512 threads per

block and 65,536/512 ¼ 128 blocks. This is done by assigning 512 to

FHd_THREADS_PER_BLOCK and using FHd_THREADS_PER_BLOCK as the block

size and N/FHd_THREADS_PER_BLOCK as the grid size during kernel

innovation.

FIGURE 8.10

Third option of the FHd kernel.
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Step 2. Getting Around the Memory Bandwidth Limitation

The simple cmpFHd kernel in Figure 8.10 will provide limited speedup due

to memory bandwidth limitations. A quick analysis shows that the execu-

tion is limited by the low compute-to-memory access ratio of each thread.

In the original loop, each iteration performs at least 14 memory accesses:

kx[m], ky[m], kz[m], x[n], y[n], z[n], rMu[m] twice, iMu[m] twice,

rFHd[n] read and write, and iFHd[n] read and write. Meanwhile, about

13 floating-point multiply, add, or trigonometry operations are performed

in each iteration; therefore, the compute-to-memory access ratio is

approximately 1, which is too low according to our analysis in Chapter 5.

We can immediately improve the compute-to-memory access ratio by

assigning some of the array elements to automatic variables. As we dis-

cussed in Chapter 5, the automatic variables will reside in registers, thus

converting reads and writes to the global memory into reads and writes to

on-chip registers. A quick review of the kernel in Figure 8.10 shows that

for each thread, the same x[n], y[n], and z[n] elements are used across

all iterations of the for loop. This means that we can load these elements

into automatic variables before the execution enters the loop.1 The kernel

can then use the automatic variables inside the loop, thus converting global

memory accesses to register accesses. Furthermore, the loop repeatedly

reads from and writes into rFHd[n] and iFHd[n]. We can have the itera-

tions read from and write into two automatic variables and only write the

contents of these automatic variables into rFHd[n] and iFHd[n] after the

execution exits the loop. The resulting code is shown in Figure 8.11. By

increasing the number of registers used by 5 for each thread, we have

reduced the memory access done in each iteration from 14 to 7. Thus, we

have increased the compute-to-memory access ratio from 13:14 to 13:7.

This is a very good improvement and a good use of the precious register

resource.

Recall that the register usage can limit the number of blocks that can run

in a streaming multiprocessor (SM). By increasing the register usage by 5

in the kernel code, we increase the register usage of each thread block by

1Note that declaring x[], y[], z[], rFHd[], and iFHd[] as automatic arrays will not

work for our purposes here. Such a declaration would create private copies of all five

arrays in the local memory of every thread! All we want is to have a private copy of

one element of each array in the registers of each thread.

156 CHAPTER 8 Application Case Study: Advanced MRI Reconstruction



 5*FHd_THREADS_PER_BLOCK. Assuming that we have 128 threads per block,

we just increased the block register usage by 640. Because each SM can

accommodate a combined register usage of 8192 registers among all blocks

assigned to it, we need to be careful, as any further increase of register

usage can begin to limit the number of blocks that can be assigned to an

SM. Fortunately, the register usage is not a limiting factor to parallelism

for the kernel.

We need to further improve the compute-to-memory access ratio to

something closer to 10:1 by eliminating more global memory accesses

in the cmpFHd kernel. The next candidates to consider are the k-space sam-

ples kx[m], ky[m], and kz[m]. These array elements are accessed differ-

ently than the x[n], y[n], and z[n] elements; different elements of kx,

ky, and kz are accessed in each iteration of the loop in Figure 8.11. This

means that we cannot load each k-space element into an automatic

variable register and access that automatic variable off a register through

all the iterations. So, registers will not help here; however, we should

notice that the k-space elements are not modified by the kernel. This

means that we might be able to place the k-space elements into the con-

stant memory. Perhaps the cache for the constant memory can eliminate

most of the memory accesses.

FIGURE 8.11

Using registers to reduce memory accesses in the FHd kernel.
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An analysis of the loop in Figure 8.11 reveals that the k-space elements

are indeed excellent candidates for constant memory. The index used for

accessing kx, ky, and kz is m, which is independent of threadIdx, which

means that all threads in a warp will be accessing the same element of

kx, ky, and kz. This is an ideal access pattern for cached constant memory;

every time an element is brought into the cache, it will be used at least by

all 32 threads in a warp in the G80. This means that for every 32 accesses

to the constant memory, at least 31 of them will be served by the cache.

This allows the cache to effectively eliminate 96% or more of the accesses

to the constant memory. Better yet, each time a constant is accessed from

the cache, it can be broadcast to all the threads in a warp. This means that

no delays are incurred due to any bank conflicts in the access to the cache.

This makes constant memory almost as efficient as registers for accessing

k-space elements.2

There is, however, a technical issue involved in placing the k-space ele-
ments into the constant memory. Recall that constant memory has a capac-

ity of 64 kB, but the size of the k-space samples can be much larger, on the

order of hundreds of thousands or even millions. A typical way of working

around the limitation of constant memory capacity is to break down a large

dataset into chunks or 64 kB or smaller. The developer must reorganize the

kernel so the kernel will be invoked multiple times, with each invocation of

the kernel consuming only a chunk of the large dataset. This turns out to be

quite easy for the cmpFHd kernel.

A careful examination of the loop in Figure 8.11 reveals that all threads

will sequentially march through the k-space arrays. That is, all threads in

the grid access the same k-space element during each iteration. For large

datasets, the loop in the kernel simply iterates more times. This means that

we can divide up the loop into sections, with each section processing a

chunk of the k-space elements that fit into the 64-kB capacity of the con-

stant memory.3 The host code now invokes the kernel multiple times. Each

time the host invokes the kernel, it places a new chunk into the constant

memory before calling the kernel function. This is illustrated in

Figure 8.12.

2The reason why a constant memory access is not exactly as efficient as a register access

is that a memory load instruction is still needed to access the constant memory.
3Note that not all accesses to read-only data are as favorable for constant memory as what

we have here. In Chapter 10, we present a case where threads in different blocks access

different elements in the same iteration. This more diverged access pattern makes it much

more difficult to fit enough of the data into the constant memory for a kernel launch.
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In Figure 8.12, the cmpFHd kernel is called from a loop. The code

assumes that the kx, ky, and kz arrays are in the host memory. The dimen-

sion of kx, ky, and kz is given by M. At each iteration, the host code calls

the cudaMemcpy() function to transfer a chunk of the k-space data into the

device constant memory. The kernel is then invoked to process the chunk.

Note that when M is not a perfect multiple of CHUNK_SIZE, the host code

will need to have an additional round of cudaMemcpy and one more kernel

invocation to finish the remaining k-space data.

Figure 8.13 shows the revised kernel that accesses the k-space data from
constant memory. Note that pointers to kx, ky, and kz are no longer in the

parameter list of the kernel function. Because we cannot use pointers to

access variables in the constant memory, the kx_c, ky_c, and kz_c arrays

are accessed as global variables declared under the __constant__ keyword,

as shown Figure 8.12.4 By accessing these elements from the constant

FIGURE 8.12

Chunking k-space data to fit into constant memory.

4As we will discuss in Chapter 12, future generations of CUDA architectures and pro-

gramming models will likely allow pointers to constant memories. This will allow one

to use the same kernel structure and launch statements for both situations and simplify

the work needed when moving a data structure between global memory and constant

memory.
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cache, the kernel now has effectively only four global memory accesses to

the rMu and iMu arrays. The compiler will typically recognize that the four

array accesses are made to only two locations. It will only perform two

global accesses, one to rMu[m] and one to iMu[m]. The values will be

stored in temporary register variables for use in the other two. This makes

the final number of memory accesses two. The compute-to-memory access

ratio is up to 13:2. This is still not quite the desired 10:1 ratio but is suffi-

ciently high that the memory bandwidth limitation is no longer the only fac-

tor that limits performance. As we will see, we can perform a few other

optimizations that make computation more efficient and further improve

performance.

If we ran the code in Figures 8.12 and 8.13, we would find out that the

performance enhancement was not as high as we expected. As it turns out,

the code shown in these figures does not result in as much memory band-

width reduction as we expected. The reason is because the constant cache

does not perform very well for the code. This has to do with the design

of the constant cache and the memory layout of the k-space data. As shown
in Figure 8.14, each constant cache entry is designed to store multiple con-

secutive words. This design reduces the cost of constant cache hardware

FIGURE 8.13

FHd kernel revised to use constant memory.
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design. If multiple data elements that are used by each thread are not in

consecutive words, as illustrated in Figure 8.14A, they will end up taking

up multiple cache entries. Due to cost constraints, the constant cache has

only a very small number of entries. As shown in Figures 8.12 and 8.13,

the k-space data is stored in three arrays: kx_c, ky_c, and kz_c. During

each iteration of the loop, three entries of the constant cache are needed

to hold the three k-space elements being processed. Because different warps

can be at very different iterations, they may require many entries altogether.

As it turns out, the G80 cache capacity was not sufficient to provide a

sufficient number of entries for all the warps active in an SM.

The problem of inefficient use of cache entries has been well studied in

the literature and can be solved by adjusting the memory layout of the

k-space data. The solution is illustrated in Figure 8.14B and the code

based on this solution in Figures 8.15. Rather than having the x, y, and z
components of the k-space data stored in three separate arrays, the solution

stores these components in an array whose elements as a struct. In the

literature, this style of declaration is often referred to as an array of structs.
The declaration of the array is shown at the top of Figure 8.15. By storing

the x, y, and z components in the three fields of an array element, the devel-

oper forces these components to be stored in consecutive locations of the

constant memory. Therefore, all three components used by an iteration

can now fit into one cache entry, reducing the number of entries needed

to support the execution of all the active warps. Note that, because we have

only one array to hold all k-space data, we can just use one cudaMemcpy

to copy the entire chunk to the device constant memory. The size of the

transfer is adjusted from 4*CHUNK_SIZE to 12*CHUNK_SIZE to reflect the

transfer of all the three components in one cudaMemcpy call.

kx[i] ky[i] kz[i] phi[i]

Scan data
kxkx[i]

ky[i]

Scan data

kz
phi

ky[i]
phi[i]

Constant memoryConstant memory

k-space data stored in separate arrays.A B k-space data stored in an array
whose elements are structs.

ky

FIGURE 8.14

Effect of k-space data layout on constant cache efficiency.
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With the new data structure layout, we also need to revise the kernel so

the access is done according to the new layout. The new kernel is shown

in Figure 8.16. Note that kx[m] has become k[m].x, ky[m] has become

k[m].y, and so on. As we will see later, this small change to the code

can result in significant enhancement of its execution speed.

FIGURE 8.15

Adjusting k-space data layout to improve cache efficiency.

FIGURE 8.16

Adjusting the k-space data memory layout in the FHd kernel.
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Step 3. Using Hardware Trigonometry Functions

CUDA offers hardware mathematic functions that provide much higher

throughput than their software counter parts. These functions are imple-

mented as hardware instructions executed by the special function units

(SFUs). The procedure for using these functions is quite easy. In the case

of the cmpFHd kernel, we need to change the calls to sin and cos functions

into their hardware versions: __sin and __cos. These are intrinsic functions

that are recognized by the compiler and translated into SFU instructions.

Because these functions are called in a heavily executed loop body, we

expect that the change will result in a very significant performance

improvement. The resulting cmpFHd kernel is shown in Figure 8.17.

We need to be careful about the reduced accuracy when switching from

software functions to hardware functions. As we discussed in Chapter 7,

hardware implementations currently have slightly less accuracy than soft-

ware libraries. In the case of MRI, we need to make sure that the hardware

implementation passes test cases that measure the SNR of the resulting

image, as defined in Figure 8.18. The testing process involves a “perfect”

image (I0). We use a reverse process to generate corresponding “scanned”

k-space data that are synthesized. The synthesized scanned data are

then processed by the proposed reconstruction system to generate a

FIGURE 8.17

Using hardware __sin() and __cos() functions.
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reconstructed image (I). The values of the voxels in the perfect and recon-

structed images are then plugged into the mean square error (MSE), peak

signal-to-noise ratio (PSNR), and SNR formulas in Figure 8.18.

The criteria for passing the test depend on how the image will be applied.

In our case, we worked with the MRI clinical experts to ensure that the SNR

changes due to hardware functions is well within the accepted limits for

their applications. In applications where the images are used by physicians

for injury or disease evaluation, one also needs to have visual inspection of

the image quality. Figure 8.19 shows the visual comparison of the original

“true” image. It also illustrates that the PSNR achieved by both CPU

double-precision and single-precision implementations was 27.6 dB, an

acceptable level for the application. A visual inspection also shows that the

reconstructed image does, indeed, correspond well with the original image.

The advantage of iterative reconstruction compared to a simple bilinear

interpolation gridding/inverse fast Fourier transform (iFFT) is also obvious

in Figure 8.19. The image reconstructed with the simple gridding/iFFT has

a PSNR of only 16.8 dB, substantially lower than the PSNR of 27.6 dB

achieved by the iterative reconstruction method. A visual inspection of

the gridding/iFFT image in Part 2 of Figure 8.19 reveals severe artifacts

that can significantly impact the usability of the image for diagnostic pur-

poses. These artifacts do not occur in the images from the iterative recon-

struction method.

When we moved from double-precision to single-precision arithmetic on

the CPU, there was no measurable degradation of PSNR, which remained at

27.6 dB. When we moved the trigonometric function from the software

library to the hardware units, we observed a negligible degradation of

PSNR, from 27.6 dB to 27.5 dB. The slight loss of PSNR is within an

acceptable range for the application. A visual inspection confirms that the

∑∑ (I(i, j ) − I0(i, j))2

i j
MSE = mn

1

)
max(I0(i, j ))

(
MSE

PSNR = 20 log10

∑∑I0(i , j )2=As mn
1

i j

)(
MSE

AsSNR = 20 log10

Netravali, A. N., & Haskell, B. G. (1995). Digital pictures: Representation, compression, and
standards (2nd ed.). New York, NY:  Plenum Press.

FIGURE 8.18

Metrics used to validate the accuracy of hardware functions. I0 is the perfect

image; I is the reconstructed image. MSE, mean square error; PSNR, peak signal-

to-noise ratio; SNR, signal-to-noise ratio.
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(1) True (2) Gridded
41.7% error

PSNR = 16.8 dB

(3) CPU.DP
12.1% error

PSNR = 27.6 dB

(4) CPU.SP
12.0% error

PSNR = 27.6 dB

(5) GPU.Base
12.1% error

PSNR = 27.6 dB

(6) GPU.RegAlloc
12.1% error

PSNR = 27.6 dB

(7) GPU.Coalesce
12.1% error

PSNR = 27.6 dB

(8) GPU.ConstMem
12.1% error

PSNR = 27.6 dB

(9) GPU.FastTrig
12.1% error

PSNR = 27.5 dB

FIGURE 8.19

Validation of floating-point precision and accuracy of the different FHd

implementations.
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reconstructed image does not have significant artifacts compared to the

original image.

Step 4. Experimental Performance Tuning

Up to this point, we have not determined the appropriate values for the con-

figuration parameters for the kernel; for example, we need to determine the

optimal number of threads for each block. On one hand, using a large num-

ber of threads in a block is necessary to fully utilize the thread capacity of

each SM (given that only eight blocks can be assigned to each SM). On the

other hand, having more threads in each block increases the register usage

of each block and can reduce the number of blocks that can fit into an SM.

Some possible values of number of threads per block are 32, 64, 128, 256,

and 512. One could also consider non-power-of-two numbers.

One also needs to determine the number of k-space scan points per grid.

All the scan point data consumed by a grid must fit into the 64-kB constant

memory. This translates to 16 K single-precision floating point numbers.

Because each scan point requires three single-precision, floating-point data,

we can have up to 4 K scan points if we want to use power-of-two scan

points in each grid for convenient loop control. Some possible numbers

are 32, 64, 128, 256, 1024, 2048, and 4096. Intuitively, the larger numbers

should be better because they require fewer kernel innovations.

Another kernel configuration parameter is the number of times one

should unroll the body of the for loop. On one hand, unrolling the loop

can reduce the number of overhead instructions and potentially reduce the

number of clock cycles to process each k-space sample data. On the other

hand, too much unrolling can potentially increase the usage of registers

and reduce the number of blocks that can fit into an SM.

Note that the effects of these configurations are not isolated from each

other. Increasing one parameter value can potentially use the resource that

could be used to increase another parameter value. As a result, one must

evaluate these parameters jointly in an experimental manner; that is, one

may need to change the source code for each joint configuration and mea-

sure the run time. There can be a large number of source code versions to

try. In the case of FHd, the performance improves about 20% by systemati-

cally searching all the combinations and choosing the one with the best

measured runtime, as compared to a heuristic tuning search effort that

explores some promising trends. Ryoo et al. presented a Pareto-optimal-

curve-based method to screen away most of the inferior combinations using

[Ryoo 2008].
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8.4 FINAL EVALUATION
To obtain a reasonable baseline, we implemented two versions of FHd on

the CPU. Version CPU.DP uses double-precision for all floating-point

values and operations, while version CPU.SP uses single-precision. Both

CPU versions are compiled with the Intel� Cþþ Compiler (icc, version

10.1) using flags -O3 -msse3 -axT -vec-report3 -fp-model fast ¼ 2,

which (1) vectorizes the algorithm’s dominant loops using instructions

tuned for the Core 2 architecture, and (2) links the trigonometric operations

to fast, approximate functions in the math library. Based on experimental

tuning with a smaller dataset, the inner loops are unrolled by a factor of

four and the scan data are tiled to improve locality in the L1 cache.

Each GPU version of FHd is compiled using the NVIDIA� CUDA com-

piler driver nvcc -O3 (version 1.1) and executed on a 1.35-GHz NVIDIA�

Quadro� FX 5600. The Quadro card is housed in a system with a 2.4-GHz

dual-socket, dual-core AMD� Opteron� 2216 CPU. Each core has a 1-MB

L2 cache. The CPU versions use p-threads to execute on all four cores of

the 2.66-GHz Intel� Core� 2 Extreme quad-core CPU, which has peak the-

oretical capacity of 21.2 gigaflops per core and a 4-MB L2 cache. The CPU

versions perform substantially better on the Core 2 Extreme quad-core than

on the dual-socket, dual-core Opteron; therefore, we will use the Core

2 Extreme quad-core results for the CPU.

All reconstructions use the CPU version of the linear solver, which exe-

cutes 60 iterations on the Quadro FX 5600. Two versions of Q were com-

puted on the Core 2 Extreme, one using double-precision and the other

using single-precision. The single-precision Q was used for all GPU-based

reconstructions and for the reconstruction involving CPU.SP, while the dou-

ble-precision Q was used only for the reconstruction involving CPU.DP. As

the computation of Q is not on the reconstruction’s critical path, we give Q
no further consideration.

To facilitate comparison of the iterative reconstruction with a conven-

tional reconstruction, we also evaluated a reconstruction based on bilinear

interpolation gridding and iFFT. Our version of the gridded reconstruction

is not optimized for performance, but it is already quite fast.

All reconstructions were performed on sample data obtained from a

simulated, three-dimensional, non-Cartesian scan of a phantom image.

There were 284,592 sample points in the scan dataset, and the image was

reconstructed at 1283 resolution, for a total of 221 voxels. In the first set

of experiments, the simulated data contained no noise. In the second set of

experiments, we added complex white Gaussian noise to the simulated data.
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When determining the quality of the reconstructed images, the percent error

and PSNR metrics were used. The percent error is the root-mean-square

(RMS) of the voxel error divided by the RMS voxel value in the true image

(after the true image had been sampled at 1283 resolution).

The data (runtime, gigaflops, and images) were obtained by reconstruct-

ing each image once with each implementation of the FHd algorithm

described above. There are two exceptions to this policy. For GPU.Tune

and GPU.Multi, the time required to compute FHd was so small that run-

time variations in performance became non-negligible; therefore, for these

configurations we computed FHd three times and reported the average

performance.

As shown in Figure 8.20, the total reconstruction time for the test image

using bilinear interpolation gridding followed by iFFT required less than 1

minute on a high-end sequential CPU. This confirms that there is little

value in parallelizing this traditional reconstruction strategy. It is, however,

obvious from Part 2 in Figure 8.19 that the resulting image exhibits an

unacceptable level of artifacts.

The LS (CPU, DP) row in Figure 8.20 shows the execution timing of

reconstructing the test image using double-precision, floating-point arith-

metic on the CPU. The timing shows that the core step (Q) of calculating
FHF þ lWHW. The first observation is that the Q computation for a

moderate-resolution image based on a moderate number of k-space samples

takes un unacceptable amount of time—more than 65 h on the CPU. Note

FHd Total

Recon.
time (m)

Gridding + FFT
(CPU,DP)

0.39

LS (CPU, DP) 519.59

LS(CPU, SP) 2678.7 0.5 342.3 0.7 1.61 343.91

LS (GPU, Naïve) 42.65

LS (GPU, CMem) 11.37

LS (GPU, CMem, 
SFU, Exp)

3.19

108X228X357X

Q

Reconstruction Run time
(m)

Run
time
(m)

GFLO
P

GFLOP Linear
solver

(m)

N/A N/A N/A N/A N/A

4009.0 0.3 518.0 0.4 1.59

260.2 5.1 41.0 5.4 1.65

72.0 18.6 9.8 22.8 1.57

7.5 178.9 1.5 144.5 1.69

FIGURE 8.20

Summary of performance improvements.
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that this time is eventually reduced to 6.5 min on the GPU with all the opti-

mizations described in Section 8.3. The second observation is that the total

reconstruction time of each image requires more than 8 h, with only 1.59

min spent in the linear solver. This validates our decision to focus our paral-

lelization effort on FHd.
The LS (CPU, SP) row shows that we can reduce the execution time

significantly when we convert the computation from double-precision,

floating-point arithmetic to single-precision on the CPU. This is because

the Streaming SIMD Extensions (SSE) instructions have higher throughput;

that is, they calculate more data elements per clock cycle when executing in

single-precision mode. The execution times, however, are still unacceptable

for practical use.

The LS (GPU, Naı̈ve) row shows that a straightforward CUDA imple-

mentation can achieve a speedup of about 10 times for Q and 8 times for

the reconstruction of each image. This is a good speedup, but the resulting

execution times are still unacceptable for practical use.

The LS (GPU, CMem) row shows that significant further speedup is

achieved by using registers and constant cache to get around the global

memory bandwidth limitations. These enhancements achieve about

4� speedup over the naı̈ve CUDA code! This demonstrates the importance

of achieving optimal compute to global memory access (CGMA) ratios

in CUDA kernels. These enhancements give the CUDA code about a

40� speedup over the single-precision CPU code.

The LS (GPU, CMem, SPU, Exp) row illustrates the use of hardware

trigonometry functions and experimental tuning together, which resulted

in a dramatic speedup. A separate experiment, not shown here, shows that

most of the speedup comes from hardware trigonometry functions. The

total speedup over CPU single-precision code is very impressive: 357�
for Q and 108� for the reconstruction of each image.

An interesting observation is that in the end, the linear solver actually

takes more time than FHd. This is because we have accelerated FHd dra-

matically (228�). What used to be close to 100% of the per-image recon-

struction time now accounts for less than 50%. Any further acceleration

will now require acceleration of the linear solver, a much more difficult

type of computation for massively parallel execution.
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8.5 EXERCISES
8.1 Loop fission splits a loop into two loops. Use the FHd code in

Figure 8.4B to enumerate the execution order of the two parts of the

outer loop body, the statements before the inner loop, and the inner

loop. (a) List the execution order of these parts from different

iterations of the outer loop before fission. (b) List the execution order

of these parts from the two loops after fission. (c) Determine if the

execution results will be identical. The execution results are identical

if all data required by a part are properly generated and preserved for

their consumption before that part executes and the execution result of

the part is not overwritten by other parts that should come after the

part in the original execution order.

8.2 Loop interchange swaps the inner loop into the outer loop and vice

versa. Use the loops from Figure 8.9 to enumerate the execution

order of the instances of loop body before and after the loop exchange.

(a) List the execution order of the loop body from different iterations

before loop interchange; identify these iterations with the values of m
and n. (b) List the execution order of the loop body from different

iterations after loop interchange. Identify these iterations with the

values of m and n. (c) Determine if the (a) and (b) execution results

will be identical. The execution results are identical if all data

required by a part are properly generated and preserved for their

consumption before that part executes and the execution result of the

part is not overwritten by other parts that should come after the part in

the original execution order.

8.3 In Figure 8.11, identify the difference between the access to x[] and

kx[] in the nature of indices used. Use the difference to explain

why it does not make sense to try to load kx[n] into a register for the

kernel shown in Figure 8.11.

8.4 During a meeting, a new graduate student told his advisor that he

improved his kernel performance by using cudaMalloc() to allocate

constant memory and cudaMemcpy() to transfer read-only data from

the CPU memory to the constant memory. If you were his advisor,

what would be your response?
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INTRODUCTION
The previous case study illustrated the process of selecting the appropriate

level of a loop nest for parallel execution, the use of constant memory for

magnifying the memory bandwidth for read-only data, the use of registers

to reduce the consumption of memory bandwidth, and the use of special

hardware functional units to accelerate trigonometry functions. In this case

study, we use an application based on regular grid data structures to illus-

trate the use of additional practical techniques that achieve global memory

access coalescing and improved computation throughput. We present

a series of implementations of an electrostatic potential map calculation

kernel, with each version improving upon the previous one. Each version

adopts one or more practical techniques. The computation pattern of this

application is one of the best matches for graphics processing unit (GPU)

computing. This case study shows that the effective use of these practical

techniques can significantly improve the execution throughput and is

critical for the application to achieve its potential performance.
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9.1 APPLICATION BACKGROUND
This case study is based on Visual Molecular Dynamics (VMD) [Humphrey

1996], a popular software system designed for displaying, animating,

and analyzing biomolecular systems. As of 2009, VMD had more than

10,000 registered users. Although it has strong built-in support for analyzing

biomolecular systems, such as calculating electrostatic potential values at spa-

tial grid points of amolecular system, it has also been a popular tool for display-

ing other large datasets such as sequencing data, quantum chemistry simulation

data, and volumetric data due to its versatility and user extensibility.

Although VMD is designed to run on a diverse range of hardware—

laptops, desktops, clusters, and supercomputers—most users utilize VMD

as a desktop science application for interactive three-dimensional (3D)

visualization and analysis. For computation that runs too long for interac-

tive use, VMD can also be used in a batch mode to render movies for later

use. A motivation for using GPU acceleration in VMD is to make slow,

batch-mode jobs fast enough for interactive use. This can drastically

improve the productivity of scientific investigations. With CUDA�-

enabled GPUs widely available on desktop PCs, such acceleration can have

a broad impact on the VMD user community. To date, multiple aspects of

VMD have been accelerated with CUDA, including electrostatic potential

calculation, ion placement, molecular orbital calculation and display, and

imaging of gas migration pathways in proteins.

The particular calculation used in this case study is that of electrostatic

potential maps in a grid space. This calculation is often used in placement

of ions into a structure for molecular dynamics simulation. Figure 9.1

shows the placement of ions into a protein structure in preparation for

molecular dynamics simulation. In this application, the electrostatic poten-

tial map is used to identify spatial locations where ions (dark dots) can fit

in according to physical laws. The function can also be used to calculate

time-averaged potentials during molecular dynamics simulation, which is

useful for the simulation process as well as the visualization and analysis

of simulation results.

Among the several methods for calculating electrostatic potential maps,

direct Coulomb summation (DCS) is a highly accurate method that is

particularly suitable for GPUs [Stone 2007]. The DCS method calculates

the electrostatic potential value of each grid point as the sum of contribu-

tions from all atoms in the system. This is illustrated in Figure 9.2. The con-

tribution of atom i to lattice point j is the charge of that atom divided by the

distance from lattice point j to atom i. Because this must be done for all grid
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points and all atoms, the number of calculations is proportional to the prod-

uct of the total number of atoms in the system and the total number of

grid points. For a realistic molecular system, this product can be very

large; therefore, the calculation of the electrostatic potential map has been

traditionally done as a batch job in VMD.

Lattice point j
being evaluated

atom[i]

rij: distance
from lattice [j]

to atom[i]

FIGURE 9.2

The contribution of atom[i] to the electrostatic potential at lattice point j

(potential[j]) is atom[i].charge/rij. In the direct Coulomb summation

(DCS) method, the total potential at lattice point j is the sum of contributions from

all atoms in the system.

FIGURE 9.1

Electrostatic potential map used to build stable structures for molecular dynamics

simulation.
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9.2 A SIMPLE KERNEL IMPLEMENTATION
Figure 9.3 shows the base C code of the DCS code. The function is written

to process a two-dimensional (2D) slice of a three-dimensional grid. The

function will be called repeatedly for all the slices of the modeled space.

The structure of the function is quite simple, with three levels of for loops.

The outer two levels iterate over the y-dimension and the x-dimension of

the grid-point space. For each grid point, the innermost for loop iterates

over all atoms, calculating the contribution of electrostatic potential energy

from all atoms to the grid point. Note that each atom is represented by four

consecutive elements of the atoms[] array. The first three elements store

the x, y, and z coordinates of the atom and the fourth element the electrical

charge of the atom. At the end of the innermost loop, the accumulated value

of the grid point is written out to the grid data structure. The outer loops

then iterate and take the execution to the next grid point.

Note that the DCS function in Figure 9.3 calculates the x and y coordi-

nates of each grid point on the fly by multiplying the grid-point index

values by the spacing between grid points. This is a uniform grid method,

where all grid points are spaced at the same distance in all three

dimensions. The function does take advantage of the fact that all the grid

FIGURE 9.3

Base Coulomb potential calculation code for a two-dimensional slice of the

three-dimensional grid.
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points in the same slice have the same z coordinate. This value is precalcu-
lated by the caller of the function and passed in as a function parameter (z).

Based on what we learned from the magnetic resonance imaging (MRI)

case study, two attributes of the DCS method should be apparent. First, the

computation is massively parallel; the computation of electrostatic potential

for each grid point is independent of that of other grid points. There are two

alternative approaches to organizing parallel execution. In the first option,

we can use each thread to calculate the contribution of one atom to all grid

points. This would be a poor choice, as each thread would be writing to all

grid points, requiring extensive use of atomic memory operations to coordi-

nate the updates done by different threads to each grid point. The second

option uses each thread to calculate the accumulated contributions of all

atoms to one grid point. This is a preferred approach, as each thread will

be writing into its own grid point and it is not necessary to use atomic

operations.

We will form a two-dimensional thread grid that matches the two-

dimensional energy grid-point organization. In order to do so, we need to

modify the two outer loops into perfectly nested loops so we can use each

thread to execute one iteration of the two-level loop. We can either perform

a loop fission (introduced in Section 8.3) or move the calculation of the y
coordinate into the inner loop. The former would require us to create a

new array to hold all y values and result in two kernels communicating data

through global memory. The latter increases the number of times that the

y coordinate will be calculated. In this case, we choose to perform the latter

because there is only on calculation that can be easily accommodated into

the inner loop without significant increase in execution time of the inner

loop. The former would have added a kernel launch overhead for a kernel

where threads do very little work. The selected transformation allows all

i and j iterations to be executed in parallel. This is a tradeoff between the

amount of calculation done and the level of parallelism achieved.

The second experience that we can apply from the MRI case study is

that the electrical charge of every atom will be read by all threads. This

is because every atom contributes to every grid point in the DCS method.

Furthermore, the values of the atomic electrical charges and their positions

are not modified during the computation. This means that the atomic charge

and position values (the contents of the atoms[] array) can be efficiently

stored in the constant memory (in the GPU box in Figure 9.4). Because

there can be more than 64 kB of atom charges in the input, we need to par-

tition them into 64-kB chunks in the same way that we did for the MRI case

study.
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Figure 9.4 shows an overview of the DCS kernel design. The host

program (“Host” box) inputs and maintains the atomic charges and their

coordinates in the system memory. It also maintains the grid-point data

structure in the system memory (left side of the “Host” box). The DCS

kernel is designed to process a 2D slice of the energy grid-point structure

(not to be confused with thread grids). The grid on the right side of the

“Host” box shows an example of a 2D slice. For each 2D slice, the central

processing unit (CPU) transfers its grid data to the device global memory.

The atom information is divided into chunks to fit into the constant mem-

ory. For each chunk of the atom information, the CPU transfers the chunk

into the device constant memory, invokes the DCS kernel to calculate

the contribution of the current chunk to the current slice, and prepares to

transfer the next chunk. After all chunks of the atom information have been

processed for the current slice, the slice is transferred back to update the

grid-point data structure in the CPU system memory. The system then

moves on to the next slice.

Within each kernel invocation, the thread blocks are organized to calcu-

late the electrostatic potential of tiles of the grid structure. In the simplest

kernel, each thread calculates the value at one grid point. In more sophisti-

cated kernels, each thread calculates multiple grid points and exploits the

Grid of thread blocks

Lattice padding

Atomic
coordinates

charges

Host

GPUConstant memory

Parallel data
cache

Texture Texture Texture

Global memory

Texture Texture Texture

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Thread blocks:
64−256 threads

Threads compute
up to eight potentials,
skipping by half-warps

FIGURE 9.4

Overview of the DSC kernel design.
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redundancy between the calculations of the grid points to improve execu-

tion speed. This is illustrated in the left side of the figure, labeled as

“Thread blocks.”

Figure 9.5 shows the resulting CUDA kernel code. We omitted some of the

declarations. As in the case the MRI case study, the atominfo[] array is the

device code counter part of the atoms[] array in the host base code of

Figure 9.3. The host code also needs to divide up the atom information

into chunks that fit into the constant memory for each kernel invocation.

This means that the kernel will be invoked multiple times when there are

multiple chunks’ worth of atoms. Because this is similar to theMRI case study,

we will not show the details.

The outer two levels of the loop in Figure 9.3 have been removed from

the kernel code and are replaced by the execution configuration parameters

in the kernel invocation. This is also similar to one of the steps we took the

MRI case study, so we will not show the kernel invocation but leave it as an

exercise for the reader. The rest of the kernel code is straightforward and

corresponds directly to the original loop body of the innermost loop.

One particular aspect of the kernel is somewhat subtle and worth men-

tioning. The kernel code calculates the contribution of a chunk of atoms

to a grid point. The grid point must be preserved in the global memory

and updated by each kernel invocation. This means that the kernel needs

to read the current grid point value, add the contributions by the current

. . .

float curenergy = energygrid[outaddr];

float coorx = gridspacing * xindex;

float coory = gridspacing * yindex;

float energyval=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {

float dx = coorx - atominfo[atomid].x;

float dy = coory - atominfo[atomid].y;

energyval += atominfo[atomid].w*

energygrid[outaddr] = curenergy + energyval;

}

Start global memory reads
early.  Kernel hides some of

its own latency.

Only dependency on global
memory read is at the end of

the kernel...

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

int atomid;

FIGURE 9.5

DCS Kernel Version 1.
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chunk of atoms, and write the updated value to global memory. The code

attempts to hide the global memory latency by loading the grid value at

the beginning of the kernel and using it at the end of the kernel. This helps

to reduce the number of warps needed by the streaming multiprocessor

(SM) scheduler to hide the global memory latency.

The performance of the kernel in Figure 9.5 is quite good, having been

measured at 186 gigaflops on an NVIDIA� G80. In terms of application-

level performance, the implementation can process 18.6 billion atom eva-

luations per second. A quick glance over the code shows that each thread

does nine floating-point operations for every four memory elements

accessed. On the surface, this is not a very good ratio. We need a ratio of

at least 8 to avoid global memory congestion; however, all four memory

accesses are done to an atominfo[] array. These atominfo[] array

elements for each atom are cached in a hardware cache memory in each

SM and are broadcast to a large number of threads. A calculation similar

to that in the MRI case study shows that the massive reuse of memory

elements across threads makes the constant cache extremely effective,

boosting the effective ratio of floating operations per global memory access

much higher than 10:1. As a result, global memory bandwidth is not a

limiting factor for this kernel.

9.3 INSTRUCTION EXECUTION EFFICIENCY
Although the kernel in Figure 9.5 avoids global memory bottleneck through

constant caching, it still must execute four constant memory access instruc-

tions for every nine floating-point operations performed. These memory

access instructions consume hardware resources that could be otherwise

used to increase the execution throughput of floating point instructions.

This section shows that we can fuse several threads together so the

atominfo[] data can be fetched once from the constant memory, stored

into registers, and used for multiple grid points. This idea is illustrated in

Figure 9.6.

Furthermore, all grid points along the same row have the same y coordi-
nate; therefore, the difference between the y coordinate of an atom and the y
coordinate of any grid point along a row has the same value. In the DCS

Kernel Version 1 in Figure 9.5, this calculation is redundantly done by all

threads for all grid points in a row when calculating the distance between

the atom and the grid points. We can eliminate this redundancy and

improve the execution efficiency.
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The idea is to have each thread to calculate the electrostatic potential

for multiple grid points. In the kernel shown in Figure 9.7, each thread

calculates four grid points. For each atom, the code calculates dy, the

difference of the y coordinate in line 2. It then calculates the expression

dy*dy plus the precalculated dz*dz information and saves it to the auto var-

iable dysqpdzsq, which is assigned to a register by default. This value is

the same for all four grid points; therefore, the calculation of energyvalx1

through energyvalx4 can just use the value stored in the register. Further-

more, the electrical charge information is also accessed from constant

memory and stored in the automatic variable charge. Similarly, the x coor-
dinate of the atom is also read from constant memory into auto variable x.

Altogether, this kernel eliminates three accesses to constant memory for

atominfo[atomid].y, three accesses to constant memory for atominfo

[atomid].x, three accesses to constant memory for atominfo[atomid].w,

...for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
 float x = atominfo[atomid].x;
 float dx1 = coorx1 - x;
 float dx2 = coorx2 - x;
 float dx3 = coorx3 - x;
 float dx4 = coorx4 - x;
 float charge = atominfo[atomid].w;
 energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);

energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);
}

Compared to non-unrolled
kernel: memory loads are
decreased by 4x, and FLOPS
per evaluation are reduced, but
register use is increased...

FIGURE 9.7

DCS Kernel Version 2.

Distances to
Atom[i]

Atom[i]

FIGURE 9.6

Reusing information among multiple grid points.
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three floating-point subtraction operations, five floating-point multiply

operations, and nine floating-point add operations when processing an atom

for four grid points. A quick inspection of the kernel code in Figure 9.7

should show that each iteration of the loop performs four constant memory

accesses, five floating-point subtractions, nine floating-point additions, and

five floating-point multiplications for four grid points.

The reader should also verify that the version of DCS kernel in

Figure 9.5 performs 16 constant memory accesses, 8 floating-point subtrac-

tions, 12 floating-point additions, and 12 floating-point multiplications, a

total of 48 operations for the same four grid points. Going from Figure 9.5

to Figure 9.7, there is a dramatic reduction from 48 operations down to 25

operations. This is translated into an increased execution speed from 186

gigaflops to 259 gigaflops. In terms of application-level throughput, the

performance increases from 18.6 billion atom evaluations per second to

33.4 billion atom evaluations per second. The reason why the application-

level performance improvement is higher than the floating-point operations

per second (FLOPS) improvement is that some of the floating-point opera-

tions have been eliminated.

The cost of the optimization is that more registers are used by each

thread. This reduces the number of threads that can be assigned to each

SM. However, as the results show, this is a good tradeoff providing an

excellent performance improvement.

9.4 MEMORY COALESCING
The performance of the DCS Kernel Version 2 shown in Figure 9.7 is quite

high, but a quick profiling run reveals that the threads perform memory

writes inefficiently. As shown in Figures 9.6 and 9.7, each thread calculates

four neighboring grid points. This seems to be a reasonable choice; how-

ever, as we illustrate in Figure 9.8, the access pattern of threads will result

in uncoalesced global memory writes.

We can identify two problems that are causing the uncoalesced writes in

DCS Kernel Version 2. First, each thread calculates four adjacent neighbor-

ing grid points; thus, for each statement that access the energygrid[]

array, the threads in a warp are not accessing adjacent locations. Note

that two adjacent threads access memory locations that are three elements

apart. Thus, the 16 locations to be written by all the threads in warp write

are spread out, with three elements in between the loaded/written locations.

This problem can be solved by assigning adjacent grid points to adjacent
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threads in each half-warp. Assuming that we still want to have each thread

calculate 4 grid points, we first assign 16 consecutive grid points to the

16 threads in a half-warp. We then assign the next 16 consecutive grid

points to the same 16 threads. We repeat the assignment until each thread

has the number of grid points desired. This assignment is illustrated in

Figure 9.8. With some experimentation, the best number of grid points

per thread turns out to be 8 for the G80.

The kernel code with warp-aware assignment of grid points to threads is

shown in Figure 9.9. Note that the x coordinates used to calculate the dis-

tances are offset by the variable gridspacing_coalescing, which is the

original grid spacing times the constant BLOCKSIZEX (in this case, 16). This

reflects the fact that the x coordinates of the 8 grid points are 16 grid points

away from each other. Also, after the end of the loop, memory writes to the

energygrid[] array are indexed by outaddr, outaddrþBLOCKSIZEX, . . .,
outaddrþ7*BLOCKSIZEX. Each of these indices is one BLOCKSIZEX (16)

away from the previous one. The detailed thread block organization for this

kernel is left as an exercise. The reader should keep in mind that by setting

the x-dimension size of the thread block to be equal to the half-warp

size (16), we can simplify the indexing in the kernel.

Thread blocks:
64−256 threads

. . . 

1,0

0,0

Grid of thread blocks:

Padding waste

1,1

0,1

. . . . . . 

. . . 

. . . 

Unrolling increases
computational tile size

(unrolled, coalesced)

Threads compute
up to eight potentials,
skipping by half-warps

FIGURE 9.8

Organizing threads and memory layout for coalesced writes.
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The other cause of uncoalesced memory writes is the layout of the

energygrid[] array, which is a three-dimensional array. If the x-dimension

of the array is not a multiple of half-warp size, the beginning location of the

second row, as well as the beginning locations of the subsequent rows, will

no longer be at the 16-word boundaries. This means that the half-warp

accesses will not be coalesced, even though they write to consecutive loca-

tions. This problem can be corrected by padding each row with additional

elements so the total length of the x-dimension is a multiple of 16. This

can require adding up to 15 elements, or 60 bytes to each row, as shown

in Figure 9.8. With the kernel of Figure 9.9, the number of elements in

the x-dimension needs to be a multiple of 8 � 16 ¼ 128. This is because

each thread actually writes eight elements in each iteration. Thus, one

may need to add up to 127 elements, or 1016 bytes, to each row.

Furthermore, there is a potential problem with the last row of thread

blocks. Because the grid array may not have enough rows, some of the

threads may end up writing outside the grid data structure. The grid data

structure is a 3D array, so these threads will write into the next slice of grid

points. One potential solution is to add a test in the kernel and avoid writing

the array elements that are out of the known y-dimension size; however,

this would have added a number of overhead instructions and incurred

...float coory = gridspacing * yindex;
float coorx = gridspacing * xindex;
float gridspacing_coalesce = gridspacing * BLOCKSIZEX;
int atomid;
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx − atominfo[atomid].x;

[...]

Points spaced for
memory coalescing

Reuse partial distance
components dy^2 + dz^2

Global memory ops
occur only at the end

of the kernel,
decreases register use

[...]

}

[...]

float dx8 = dx7 + gridspacing_coalesce;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);

energygrid[outaddr                            ] += energyvalx1;

energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

FIGURE 9.9

DCS Kernel Version 3.
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control divergence. A more desirable solution is to pad the y-dimension of

the grid structure so it contains a multiple of tiles covered by thread blocks.

This is shown in Figure 9.8 as the bottom padding in the grid structure.

In general, one may need to add up to 15 rows due to this padding.

The cost of padding can be substantial for smaller grid structures.

For example, if the energy grid has 100 � 100 grid points in each 2D slice,

it would be padded into a 128 � 112 slice. The total number of grid points

would increase from 10,000 to 14,336, or a 43% overhead. If we had to pad

the entire 3D structure, the grid points would increase from 100 � 100 �
100 ¼ 1,000,000 to 128 � 112 � 112 ¼ 1,605,632, or a 60% overhead!

This is part of the reason why we calculate the energy grids in 2D slices

and use the host code to iterate over these 2D slices. Writing a single kernel

to process the entire 3D structure would incur a lot more extra overhead.

This type of tradeoff appears frequently in simulation models, differential

equation solvers, and video processing applications.

The DCS Kernel Version 3 kernel shown in Figure 9.9 achieves about

291 gigaflops, or 39.5 billion atom evaluations per second. The measured

speed of this kernel also has a slight enhancement from moving the read

access to the energygrid[] array from the beginning of the kernel to the

end of the kernel. The contributions to the grid points are first calculated

in the loop. The code loads the original grid-point data after the loop, adds

the contribution to them, and writes the updated values back. Although this

movement exposes more of the global memory latency to each thread, it

saves the consumption of eight registers. Because the kernel is already

using many registers to hold the atom data and the distances, such saving

in number of registers used relieves a critical bottleneck for the kernel.

This allows more thread blocks to be assigned to each SM and achieves

an overall performance improvement.

9.5 ADDITIONAL PERFORMANCE COMPARISONS
Figure 9.10 shows a summary of the performance comparison between

the various DCS kernel implementations and how they compare with an opti-

mized single-coreCPUexecution.One important observation is that the relative

merit of the kernels varies with grid dimension lengths; however, DCS Kernel

Version 3 (CUDA-Unroll8clx) from Figure 9.9 performs consistently better

than all others once the grid dimension length is larger than 300. The notation

Unroll8clx indicates that the kernel assigns 8 grid points to each thread and

uses padding and strided grid point assignment to threads to ensure coalescing.
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A detailed comparison of the CPU performance and the CPU/GPU joint

performance reveals a commonly observed tradeoff. Figure 9.11 shows a

plot of the execution time of a medium-sized grid system for varying num-

bers of atoms to be evaluated. For 400 atoms or fewer, the CPU performs

better. This is because the GPU has a fixed initialization overhead of

110 ms, regardless of the number of atoms to be evaluated. Also, for a

small number of atoms, the GPU is underutilized, thus the curve of the

GPU execution time is quite flat, between 100 and 1000 atoms.

The plot in Figure 9.11 reinforces a commonly held principle that GPUs

perform better for large amounts of data. Once the number of atoms reaches

10,000, the GPU is fully utilized. The slopes of the CPU and the CPU/GPU

execution times become virtually identical, with the CPU/GPU execution

being consistently 44� faster than the CPU execution for all input sizes.

9.6 USING MULTIPLE GPUs
In Section 9.2, we gave an overview of the DCS kernel design. Recall that

for each slice of the energy grid structure, the CPU first transfers the slice

to the device memory and then streams the atom information through the

device constant memory. This design provides a very straightforward path

to using multiple GPUs to further improve the execution speed of the kernel.

For a multi-GPU design, the CPU first launches multiple p-threads. The

CUDA runtime requires that each GPU must be associated with a separate

p-thread running on the CPU. The CPU then forms a task pool, each

task being the processing of one energy grid slice. When one of the GPUs

becomes available, its corresponding p-thread picks up a task (slice), trans-

fers the slice to the GPU, and begins to stream the atom information

through the device constant memory of that GPU. In this way, the GPUs

collaboratively process the pool of slices, thus increasing the rate of proces-

sing the grid. Using three GeForce� 8800 GTX GPUs, we have measured

863 gigaflops, or 117 billion atom evaluations per second. This is a 131�
speedup over a single CPU core. This was measured from a PC with three

GPU cards, as shown in Figure 9.12. With such speed, experiments that

used to take a month on a PC box now take a few hours. This has been

shown to greatly improve the productivity of researchers in the area of

molecular science and medicine.

Although the use of multiple GPUs for the DCS kernel is conceptually

simple, the detailed mechanics for creating CPU p-threads, creating a task

pool, and handling errors and exception conditions can be tedious and error
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prone. This has motivated the creation of the WorkForce framework and

runtime to simplify the use of multiple GPUs. Interested readers should

download WorkForce for their multiple-GPU applications.

9.7 EXERCISES
9.1 Complete the implementation of the DCS kernel shown in Figure 9.5.

Fill in all of the missing declarations. Develop a kernel launch

statement with all of the execution configuration parameters.

9.2 Compare the number of operations (memory loads, floating-point

arithmetic, branches) executed in each iteration of the kernel shown

in Figure 9.7 compared to that in Figure 9.5. Keep in mind that each

iteration of the former corresponds to four iterations of the latter.

9.3 Complete the implementation of the DCS kernel shown in Figure 9.9.

Explain in your own words how the thread accesses are coalesced in

this implementation.

FIGURE 9.12

A PC with three GeForce� 8800 GTX GPUs at 700 W of total system power.
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9.4 For the memory padding in Figure 9.8 and the DCS kernel shown

in Figure 9.9, show why one needs to pad up to 127 elements in the

x-dimension but only up to 15 elements in the y-dimension.

9.5 Give two reasons for adding extra “padding” elements to arrays

allocated in the GPU global memory, as shown in Figure 9.8.

9.6 Give two potential disadvantages associated with increasing the

amount of work done in each CUDA thread, as shown in Section 9.3.
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INTRODUCTION
We have so far concentrated on the practical experience of parallel pro-

gramming, which consists of the CUDA� programming model features,

performance and numerical considerations, and systematic case studies.

We will now switch gears to more abstract concepts. We will first general-

ize parallel programming into a process of decomposing a domain problem

into well-defined, coordinated work units that can each be realized with

efficient numerical methods and well-known algorithms. A programmer

with strong computational thinking skills not only analyzes but also trans-

forms the structure of a domain problem by determining which parts are

inherently serial, which parts are amenable to high-performance parallel

execution, and the tradeoffs involved in moving parts from the first cate-

gory to the second. With good problem decomposition, the programmer

has to select and implement algorithms that achieve an appropriate com-

promise among parallelism, computational efficiency, and memory band-

width consumption. A strong combination of domain knowledge and

computational thinking skills is often needed for creating successful

computational solutions to challenging domain problems. This chapter will

give the reader more insight into parallel programming and computational

thinking in general.
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10.1 GOALS OF PARALLEL PROGRAMMING
Before we discuss the fundamental concepts of parallel programming, it is

important for us to first review the three main reasons why people adopt

parallel computing. The first goal is to solve a given problem in less time.

An investment firm, for example, may need to run a financial portfolio sce-

nario risk analysis package on all of its portfolios during after-trading

hours. Such an analysis may require 200 hours on a sequential computer;

however, the portfolio management process may require that analysis be

completed in 4 hours in order to make timely decisions based on the infor-

mation. Using parallel computing may speed up the analysis and allow it to

complete within the required time window.

The second goal of using parallel computing is to solve bigger problems

within a given amount of time. In our financial portfolio analysis example,

the investment firm may be able to run the portfolio scenario risk analysis

on its current portfolio within an acceptable time window using sequential

computing, but suppose the firm is planning on expanding the number of

holdings in its portfolio. The enlarged problem size would cause the run-

time of analysis under sequential computation to exceed the time window.

Parallel computing that reduces the runtime of the bigger problem size can

help accommodate the planned expansion to the portfolio.

The third goal of using parallel computing is to achieve better solutions for a

given problem and a given amount of time. The investment firmmay have been

using an approximatemodel in its portfolio scenario risk analysis. Using amore

accurate model may increase the computational complexity and increase the

runtime based on sequential computing beyond the allowed window. A more

accurate model may require consideration of interactions between more types

of risk factors using a more numerically complex formula. Parallel computing

that reduces the runtime of the more accurate model may complete the analysis

within the allowed time window. In practice, the use of parallel computingmay

be driven by a combination of these three goals.

It should be clear from our discussion that parallel computing is primar-

ily motivated by increased speed. The first goal is achieved by increased

speed in running the existing model on the current problem size. The sec-

ond goal is achieved by increased speed in running the existing model on

a larger problem size. The third goal is achieved by increased speed in run-

ning a more complex model on the current problem size. Obviously, the

increased speed through parallel computing can be used to achieve a com-

bination of these goals; for example, parallel computing can reduce the run-

time of a more complex model on a larger problem size.
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It should also be clear from our discussion that applications that are good

candidates for parallel computing typically involve large problem sizes and

high modeling complexity. That is, these applications typically process a large

amount of data, performmany iterations on the data, or both. For such a problem

to be solved with parallel computing, the problem must be formulated in such a

way that it can be decomposed into subproblems that can be safely solved at the

same time. Under such formulation and decomposition, the programmer writes

the code and organized data to solve these subproblems concurrently.

In Chapter 8, we presented a problem that is a good candidate for

parallel computing. The magnetic resonance imaging (MRI) reconstruction

problem involves a large amount of k-space sample data. Each k-space
sample datum is also used many times for calculating its contributions to

the reconstructed voxel data. For a reasonably high-resolution reconstruc-

tion, the sample data are used a very large number of times. We showed

that a good decomposition of the FHD problem in MRI reconstruction is

to form subproblems that calculate the value of an FHD element. All of

these subproblems can be solved in parallel with each other, and we use a

massive number of CUDA threads to solve them.

In Chapter 9, we presented another problem that is a good candidate for

parallel computing. Figure 9.11 further showed that the electrostatic potential

calculation problem should be solved with a massively parallel CUDA device

only if there are 400 or more atoms. A realistic molecular dynamic system

model typically involves at least hundreds of thousands of atoms and millions

of energy grid points. The electrostatic charge information of each atom is

used many times in calculating its contributions to the energy grid points.

We showed that a good decomposition of the electrostatic potential calculation

problem is to form subproblems to calculate the energy value of each grid

point. Once again, all of these subproblems can be solved in parallel with each

other, and we use a massive number of CUDA threads to solve them.

The process of parallel programming can typically be divided into four

steps: problem decomposition, algorithm selection, implementation in a

language, and performance tuning. The last two steps were the focus of

previous chapters. In the next two sections, we will discuss the first two

steps both generally and in depth.

10.2 PROBLEM DECOMPOSITION
Finding parallelism in large computational problems is often conceptually

simple but can turn out to be challenging in practice. The key is to identify

thework to be performed by each unit of parallel execution (a thread in CUDA)
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so the inherent parallelism of the problem is well utilized. For example,

in the electrostatic potential map calculation problem, it is clear that all atoms

can be processed in parallel and all energy grid points can be calculated in

parallel; however, one must take care when decomposing the calculation

work into units of parallel execution, which will be referred to as threading
arrangement. As we discussed in Section 9.2, the decomposition of the elec-

trostatic potential map calculation problem can be atom centric or grid

centric. In an atom-centric threading arrangement, each thread is responsible

for calculating the effect of one atom on all grid points. In contrast, a grid-

centric threading arrangement uses each thread to calculate the effect of all

atoms on a grid point.

Both threading arrangements lead to similar levels of parallel execution

and the same execution results, but they can exhibit very different perfor-

mance in a given hardware system. The grid-centric arrangement has a

memory access behavior called gather, where each thread gathers or col-

lects the effect of input atoms into a grid point. This is a desirable arrange-

ment in CUDA devices because the threads can accumulate their results in

their private registers. Also, multiple threads share input atom values and

can effectively use constant memory caching or shared memory to conserve

global memory bandwidth.

The atom-centric arrangement, on the other hand, exhibits a memory

access behavior called scatter, where each thread scatters, or distributes,

the effect of an atom into grid points. This is an undesirable arrangement

in CUDA devices, because the multiple threads can write into the same grid

point at the same time. The grid points must be stored in a memory that can

be written by all the threads involved. Atomic operations must be used to

prevent race conditions and loss of value during simultaneous writes to a

grid point by multiple threads. These atomic operations are much slower

than the register accesses used in the grid-centric arrangement.

A real application often consists of multiple modules that work together.

The electrostatic potential map calculation is one such module in molecular

dynamics applications. Figure 10.1 shows an overview of major modules of a

molecular dynamics application. For each atom in the system, the application

needs to calculate the various forms of forces—vibrational, rotational, and non-

bonded—that are exerted on the atom. Each form of force is calculated by a dif-

ferentmethod. At the high level, a programmer needs to decide how thework is

organized. Note that the amount of work can vary dramatically between these

modules. The nonbonded force calculation typically involves interactions

among many atoms and incurs much more calculation than the vibrational

and rotational forces; therefore, these modules tend to be realized as separate
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passes over the force data structure. The programmer needs to decide if each

pass is worth implementing in a CUDA device. For example, the programmer

may decide that the vibrational and rotational force calculations do not involve

a sufficient amount of work to warrant execution on a device. Such a decision

would lead to a CUDA program that launches a kernel that calculates nonbond-

ing forces for all the grid points while continuing to calculate the vibrational

and rotational forces for the grid points on the host. The module that updates

atomic positions and velocities may also run on the host. It first combines the

vibrational and rotational forces from the host and the nonbonding forces

from the device. It then uses the combined forces to calculate the new atomic

positions and velocities.

The portion of work done by the device will ultimately decide the appli-

cation-level speedup achieved by parallelization. Assume, for example, that

the nonbonding force calculation accounts for 95% of the original sequen-

tial execution time, and it is accelerated by 100� using a CUDA device.

Further assume that the rest of the application remains on the host and

receives no speedup. The application-level speedup is 1/[5% þ (95%/

100)] ¼ 1/(5% þ 0.95%) ¼ 1/(5.95%) ¼ 17�. This is a demonstration of

Amdahl’s law: The application speedup due to parallel computing is limited

by the sequential portion of the application. In this case, even though the

sequential portion of the application is quite small (5%), it limits the appli-

cation level speedup to 17� even though the nonbonding force calculation

has a speedup of 100�. This example illustrates a major challenge in

decomposing large applications, in that the accumulated execution time of

small activities that are not worth parallel execution on a CUDA device

can become a limiting factor in the speedup seen by the end users.

Neighbor list

Vibrational and
rotational forces

Nonbonded force

Next time step

Update atomic positions and velocities

FIGURE 10.1

Major tasks of a molecular dynamics application.
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Amdahl’s law often motivates task-level parallelization. Although some

of these smaller activities do not warrant fine-grained massive parallel exe-

cution, it may be desirable to execute some of these activities in parallel

with each other when the dataset is large enough. This could be achieved

by using a multicore host and executing each such task in parallel. This is

a illustration of Gustafson’s Law, which states that any sufficiently large

problem can be effectively parallelized. When the data set is large enough

and the more demanding calculation has been parallelized, one can effec-

tively parallelize the less demanding calculation. Alternatively, we could

try to simultaneously execute multiple small kernels, each corresponding

to one task. The current CUDA devices do not support such parallelism,

but the next-generation devices will.

An alternative approach to reducing the effect of sequential tasks is to

exploit data parallelism in a hierarchical manner. In a typical Message Pass-

ing Interface (MPI) implementation, a molecular dynamics application

would typically distribute large chunks of the spatial grids and their asso-

ciated atoms to nodes of a networked computing cluster. By using the host

of each node to calculate the vibrational and rotational force for its chunk

of atoms, we can achieve speedup for these lesser modules. Each node

can use a CUDA device to calculate the nonbonding force at higher-level

of speedup. The nodes will need to exchange data to accommodate forces

that go across chunks and atoms that move across chunk boundaries.

Details of MPI programming is beyond the scope of this book. The main

point here is that MPI and CUDA can be used in a complementary way

in applications to achieve a higher level of speed with large datasets.

10.3 ALGORITHM SELECTION
An algorithm is a step-by-step procedure where each step is precisely stated

and can be carried out by a computer. An algorithm must exhibit three

essential properties: definiteness, effective computability, and finiteness.

Definiteness refers to the notion that each step is precisely stated; there is

no room for ambiguity as to what is to be done. Effective computability
refers to the fact that each step can be carried out by a computer. Finiteness
means that the algorithm must be guaranteed to terminate.

Given a problem, we can typically come up with multiple algorithms to

solve the problem. Some require fewer steps to compute than others; some

allow higher degrees of parallel execution than others; and some consume

less memory bandwidth than others. Unfortunately, there is often not a single
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algorithm that is better than others in all three aspects. Given a problem and a

decomposition strategy, a parallel programmer often needs to select an algo-

rithm that achieves the best compromise for a given hardware system.

In our matrix multiplication example, we decided to decompose the

matrix–matrix multiplication problem by having each thread compute the

dot product for an output element. Given this decomposition, we presented

two different algorithms. The algorithm in Section 3.5 is a straightforward

algorithm where every thread simply performs an entire dot product.

Although the algorithm fully utilizes the parallelism available in the decom-

position, it consumes too much global memory bandwidth. In Section 5.3,

we introduced tiling, an important algorithm strategy for conserving mem-

ory bandwidth. Note that the tiled algorithm partitions the dot products into

phases. All threads involved in a tile must synchronize with each other so

they can collaboratively load the tile of input data into the shared memory

and collectively utilize the loaded data before they move on to the next

phase. As we showed in Figure 5.7, the tiled algorithm requires each thread

to execute more statements and incur more overhead in indexing the input

arrays than the original algorithm; however, it runs much faster because it

consumes much less global memory bandwidth. In general, tiling is one

of the most important algorithm strategies for matrix applications to

achieve high performance.

As we demonstrated in Sections 6.6 and 9.3, we can systematically

merge threads to achieve higher levels of instruction and memory access

efficiency. In Section 6.6, threads that handle in the same columns of neigh-

boring tiles are combined into a new thread. This allows the new thread to

access each Md element once in calculating multiple dot products, thus

reducing the number of address calculation and memory load instructions

executed. It also further reduces the consumption of global memory band-

width. The same technique, when applied to the DCS kernel, further

reduces the number of distance calculations while achieving a similar

reduction in address calculations and memory load instructions.

One can often come up with even more aggressive algorithm strategies.

An important algorithm strategy known as cutoff binning can significantly

improve the execution efficiency of grid algorithms by sacrificing a small

amount of accuracy. This is based on the observation that many grid calcu-

lation problems are based on physical laws where numerical contributions

from particles or samples that are far away from a grid point can be

negligible. This is illustrated for the electrostatic potential calculation in

Figure 10.2. Figure 10.2(a) shows the direct summation algorithms dis-

cussed in Chapter 9. Each grid point receives contributions from all atoms.
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Whereas this is a very parallel approach and achieves excellent speedup

over CPU-only execution for moderate-sized energy grid systems, it does

not scale well for very large energy-grid systems where the number of

atoms increases proportional to the volume of the system. The amount of

computation increases with the square of the volume. For large-volume

systems, such an increase makes the computation excessively long even

for massively parallel devices.

In practice, we know that each grid point needs to receive contributions

from atoms that are close to it. The atoms that are far away from a grid

point will have negligible contribution to the energy value at the grid point

because the contribution is inversely proportional to the distance. Fig-

ure 10.2(b) illustrates this observation with a circle drawn around a grid

point. The contributions to the grid point energy from atoms outside the

large shaded circle are negligible. If we can devise an algorithm where each

grid point only receives contributions from atoms within a fixed radius of

its coordinate (1), the computational complexity of the algorithm would be

reduced to linearly proportional to the volume of the system. This would

Direct summation
At each grid point, sum the
electrostatic potential from
all charges

Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin

A

B

C

FIGURE 10.2

Cutoff summation algorithm.
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make the computation time of algorithm linearly proportional to the volume

of the system. Such algorithms have been used extensively in sequential

computation.

In sequential computing, a cutoff algorithm handles one atom at a time.

For each atom, the algorithm iterates through the grid points that fall within

a radius of the atom’s coordinate. This is a straightforward procedure, as the

grid points are in an array that can be easily indexed as a function of their

coordinates; however, this simple procedure does not carry easily to parallel

execution. The reason is what we discussed in Section 10.2: The atom-

centric decomposition does not work well due to it scatter memory access

behavior.

We need to find a cutoff binning algorithm based on the grid-centric

decomposition, where each thread calculates the energy value at one grid

point. Fortunately, there is a well-known approach to adapting a direct

summation algorithm, such as the one in Figure 9.5, into a cutoff binning

algorithm. Rodrigues et al. [Rodrigues 2008] presented such an algorithm

for the electrostatic potential problem.

The key idea of the algorithm is to first sort the input atoms into bins

according to their coordinates. Each bin corresponds to a box in the grid

space, and it contains all atoms whose coordinates fall into the box. We

define a neighborhood of bins for a grid point to be the collection of bins

that contain all the atoms that can contribute to the energy value of a grid

point. If we have an efficient way to manage neighborhood bins for all grid

points, we can calculate the energy value for a grid point by examining the

neighborhood bins for the grid point. This is illustrated in Figure 10.2(c).

Although Figure 10.2 shows only one layer of bins that immediately sur-

round the bin containing a grid point as its neighborhood, a real algorithm

will typically have multiple layers of bins in a grid’s neighborhood. In this

algorithm, all threads iterate through their own neighborhoods. They use

their block and thread indices to identify the appropriate bins. Note that

some of the atoms in the surrounding bins may not fall into the radius;

therefore, when processing an atom, all threads need to check if the atom

falls into its radius. This can cause some control divergence among threads

in a warp.

The main source of improvement in computational efficiency comes

from the fact that each thread now examines a much smaller set of atoms

in a large grid system. This, however, makes constant memory much less

attractive for holding the atom information. Because all thread blocks will

be accessing different neighborhoods, it is not likely that the limited-size

constant memory will be able to hold all the atoms that are needed by all
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active thread blocks. This motivates the use of global memory to hold a

much larger set of atoms. To mitigate the bandwidth consumption, threads

in a block collaborate in loading the atom information in the common

neighborhood into the shared memory. All threads then examine the atoms

out of shared memory. The reader is referred to Rodrigues et al. [Rodrigues

2008] for more details of this algorithm.

One subtle issue with binning is that bins may end up with different

numbers of atoms. Because the atoms are statistically distributed in the grid

system, some bins may have lots of atoms and some bins may end up with

no atom at all. In order to guarantee memory coalescing, it is important that

all bins are of the same size and aligned at appropriate coalescing bound-

aries. To accommodate the bins with the largest number of atoms, we

would need to make the size of all other bins the same size. This would

require us to fill many bins with dummy atoms whose electrical charge is

0, which causes two negative effects. First, the dummy atoms still occupy

global memory and shared memory storage, and they consume data-transfer

bandwidth to the device. Second, the dummy atoms extend the execution

time of the thread blocks whose bins have few real atoms.

A well-known solution is to set the bin size at a reasonable level, typi-

cally much smaller than the largest possible number of atoms in a bin.

The binning process maintains an overflow list. When processing an atom,

if the atom’s home bin is full, the atom is added to the overflow list instead.

After the device completes a kernel, the result grid point energy values are

transferred back to the host. The host executes a sequential cutoff algorithm

on the atoms in the overflow list to complete the missing contributions from

these overflow atoms. As long as the overflow atoms account for a small

percentage of the atoms, the additional sequential processing of the over-

flow atoms is typically negligible. One can also design the kernel so each

kernel invocation calculates the energy values for a subvolume of grid

points. After each kernel completes, the host launches the next kernel and

processes the overflow atoms for the completed kernel. Thus, the host will

be processing the overflow atoms while the device executes the next kernel.

This approach can hide most if not all of the delays in processing overflow

atoms, as it is done in parallel with the execution of the next kernel.

Figure 10.3 shows a comparison of scalability and performance of the

various electrostatic potential map algorithms. Note that the CPU-SSE3

curve is based on a sequential cutoff algorithm. For a map with small

volumes (around 1000 Å3), the host (CPU with SSE) executes faster than

the direct summation kernel shown in Figure 9.9. For moderate volumes

(between 2000 and 500,000 Å3), the DCS kernel performs significantly
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better than the host due to its massive execution. As we anticipated, the

DCS kernel scales poorly when the volume size reaches about

1,000,000 Å3 and runs longer than the sequential algorithm on the CPU.

Figure 10.3 also shows the runtime of three binned cutoff algorithms.

The LargeBin algorithm is a straightforward adaptation of the DCS kernel

for cutoff. The kernel is designed to process a subvolume of the grid points.

Before each kernel launch, the CPU transfers all atoms that are in the com-

bined neighborhood of all the grid points in the subvolume. These atoms

are still stored in the constant memory. All threads examine all atoms in

the joint neighborhood. The advantage of the kernel is its simplicity. It is

essentially the same as the DCS kernel with a preselected neighborhood

of atoms. Note that the LargeBin approach performs reasonably well for

moderate volumes and scales well for large volumes.

The SmallBin algorithm allows the threads running the same kernel to

process different neighborhoods of atoms. This is the algorithm that uses

global memory and shared memory for storing atoms. The algorithm

achieves higher efficiency than the LargeBin algorithm because each thread

needs to examine a smaller number of atoms. For moderate volumes (e.g.,

around 8000 Å3), the LargeBin algorithm slightly outperforms SmallBin.

The reason is that the SmallBin algorithm does incur more instruction
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FIGURE 10.3

Scalability and performance of various algorithms for calculating electrostatic

potential map.
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overhead for loading atoms from global memory into shared memory. For a

moderate volume, the entire system has a limited number of atoms. The

ability to examine a smaller number of atoms does not provide sufficient

advantage to overcome the additional instruction overhead; however, the

difference is so small at 8000 Å3 that the SmallBin algorithm is still a clear

winner across all volume sizes. The SmallBin-Overlap algorithm overlaps

the sequential overflow atom processing with the next kernel execution. It

provides a slight but noticeable improvement in runtime over SmallBin.

The SmallBin-Overlap algorithm achieves a 17� speedup for an efficiently

implemented sequential CPU-SSE cutoff algorithm and maintains the same

scalability for large volumes.

In summary, we have discussed the main dimensions of algorithm selec-

tion. The key lesson is that, given a problem decomposition decision, the

programmer will typically have to select from a variety of algorithms.

Some of these algorithms achieve different tradeoffs while maintaining

the same numerical accuracy. Others involve sacrificing some level of

accuracy to achieve much more scalable runtimes. The cutoff strategy is

perhaps the most popular of such strategies. Even though we introduced

cutoff in the context of electrostatic potential map calculation, it is used

in many domains, including ray tracing in graphics and collision detection

in games.

10.4 COMPUTATIONAL THINKING
Computational thinking is arguably the most important aspect of parallel

application development [Wing 2006]. We define computational thinking

as the thought process of formulating domain problems in terms of compu-

tation steps and algorithms. Like any other thought processes and problem-

solving skills, computational thinking is an art. As we mentioned in the

Introduction in Chapter 1, we believe that computational thinking is best

taught with an iterative approach, where students bounce back and forth

between practical experience and abstract concepts.

The electrostatic potential map example used in Chapters 9 and 10

serves as a good example of computational thinking. In order to develop

an efficient parallel application that solves the electrostatic potential map

problem, one must come up with a good high-level decomposition of the

problem. As we showed in Sections 8.3, 9.2, and 10.2, one must have a

clear understanding of the desirable (gather in CUDA) and undesirable

(scatter in CUDA) memory access behaviors to make a wise decision.
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Given a problem decomposition, the parallel programmer faces a poten-

tially overwhelming task of designing algorithms to overcome major

challenges in parallelism, execution efficiency, and memory bandwidth

consumption. There is a very large volume of literature on a wide range of

algorithm techniques that can be difficult to understand. It is beyond the scope

of this book to provide comprehensive coverage of the available techniques,

but we did discuss a substantial set of techniques that have broad applicabil-

ity. Although these techniques are based on CUDA, they help the readers

build up the foundation for computational thinking in general.We believe that

humans understand best when we learn from the bottom up. That is, we must

first learn the concepts in the context of a particular programming model,

which provides us with solid footing, before we generalize our knowledge

to other programmingmodels. An in-depth experience with the CUDAmodel

also enables us to gain maturity, which will help us learn concepts that may

not even be pertinent to the CUDA model.

Myriad skills are needed for a parallel programmer to be an effective

computational thinker. We summarize these foundational skills as follows:

• Computer architecture—Memory organization; caching and locality;

memory bandwidth; single-instruction, multiple-thread (SIMT) versus

single-program, multiple-data (SPMD) versus single-instruction, multiple-

data (SIMD) execution; and floating-point precision versus accuracy. These

concepts are critical in understanding the tradeoffs between algorithms.

• Programming models and compilers—Parallel execution models, types

of available memories, array data layout and loop transformations, all

concepts necessary for thinking through the arrangements of data struc-

tures and loop structures to achieve better performance.

• Algorithm techniques—Tiling, cutoff, binning, and other techniques that

form the toolbox for designing superior parallel algorithms; understand-

ing of the scalability, efficiency, and memory bandwidth implications of

these techniques is essential in computational thinking.

• Domain knowledge—Numerical methods, models, accuracy require-

ments, and mathematical properties; an understanding of these ground

rules allows a developer to be much more creative in applying algorithm

techniques.

We believe that this book provides a solid foundation for all four areas.

Readers should continue to broaden their knowledge in these areas after

finishing this book. Most importantly, the best way to build up more

computational thinking skills is to keep solving challenging problems with

excellent computational solutions.
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10.5 EXERCISES
10.1 Write a host function to perform binning of atoms. Determine the

representation of the bins as arrays. Think about coalescing

requirements. Make sure that every thread can easily find the bins

it needs to process.

10.2 Write the part of the cutoff kernel function that determines if an atom

is in the neighborhood of a grid point based on the coordinates of

the atoms and the grid points.
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INTRODUCTION
Now that you have learned high-performance parallel programming using

CUDA�, we would like to introduce you to two new ways to exploit the

parallel computing capabilities of graphics processing units (GPUs) and cen-

tral processing units (CPUs). During the writing of this book, two new appli-

cation programming interfaces (APIs) were introduced: OpenCL� and

DirectCompute�. In this chapter, we will give a brief overview of OpenCL

to CUDA programmers. The fundamental programming model of OpenCL is

so similar to CUDA that there is a one-to-one correspondence for most

features. With your understanding of CUDA, you will be able to start writing

OpenCL programs with the material presented in this chapter. In our opinion,

the best way to learn OpenCL is actually to learn CUDA and then map

the OpenCL features to their CUDA equivalent. We will then offer some

pointers to introductory information about Microsoft’s DirectCompute.

11.1 BACKGROUND
OpenCL is a standardized, cross-platform, parallel-computing API based

on the C language. It is designed to enable the development of portable

parallel applications for systems with heterogeneous computing devices.
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The development of OpenCL was motivated by the need for a standardized

high-performance application development platform for the fast-growing

variety of parallel-computing platforms. In particular, it addresses signifi-

cant limitations of the previous programming models for heterogeneous

parallel-computing systems.

The CPU-based parallel programming models have typically been based

on standards such as OpenMP� but usually do not encompass the use of

special memory types or SIMD execution by high-performance program-

mers. Joint CPU/GPU heterogeneous parallel programming models such

as CUDA address complex memory hierarchies and SIMD execution

but are typically platform, vendor, or hardware specific. These limitations

make it difficult for an application developer to access the computing

power of CPUs, GPUs, and other types of processing units from a single

multiplatform source-code base.

The development of OpenCL was initiated by Apple� and developed by

the Khronos Group, the same group that manages the OpenGL� standard.

On one hand, it draws heavily on CUDA in the areas of supporting a single

code base for heterogeneous parallel computing, data parallelism, and com-

plex memory hierarchies. This is the reason why a CUDA programmer will

find these aspects of OpenCL familiar once we connect the terminologies.

The reader will especially appreciate the similarities between OpenCL

and the low-level CUDA driver model.

On the other hand, OpenCL has a more complex platform and device

management model that reflects its support for multiplatform and multi-

vendor portability. OpenCL implementations already exist on AMD�

ATI� and NVIDIA� GPUs as well as x86 CPUs. In principle, one can

envision OpenCL implementations on other types of devices such as digital

signal processors (DSPs) and field-programmable gate arrays (FPGAs).

Whereas the OpenCL standard is designed to support code portability

across devices produced by different vendors, such portability does not

come free. OpenCL programs must be prepared to deal with much greater

hardware diversity and thus will exhibit more complexity. Also, many

OpenCL features are optional and may not be supported on all devices,

so a portable OpenCL code must avoid using these optional features.

Some of these optional features, though, allow applications to achieve

significantly more performance in devices that support them. As a result,

a portable OpenCL code may not be able to achieve its performance poten-

tial on any of the devices; therefore, one should expect that a portable

application that achieves high performance on multiple devices will employ

sophisticated runtime tests and choose among multiple code paths accord-

ing to the capabilities of the actual device used.
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The objective of this chapter is not to provide full details on all program-

ming features of OpenCL; rather, the objective is to give a CUDA pro-

grammer solid conceptual understanding of the OpenCL programming

model features. With this foundation, the reader can immediately begin to

program in OpenCL and consult the OpenCL specification [Khronos 2008]

and programming guides [NVIDIA 2010, AMD 2009] on a needs basis.

11.2 DATA PARALLELISM MODEL
OpenCL employs a data parallelism model that has direct correspondence

with the CUDA data parallelism model. An OpenCL program consists of

two parts: kernels that execute on one or more OpenCL devices and a host

program that manages the execution of kernels. Figure 11.1 summarizes the

mapping of OpenCL data parallelism concepts to their CUDA equivalents.

Like CUDA, the way to submit work for parallel execution in OpenCL

is for the host program to launch kernel functions. We will discuss the

additional kernel generation, device selection, and management work that

an OpenCL host program must do as compared to its CUDA counterpart

in Section 11.4.

When a kernel function is launched, its code is run by work items, which
correspond to CUDA threads. An index space defines the work items and

how data are mapped to the work items; that is, OpenCL work items are

identified by global dimension index ranges (NDRanges). Work items form

work groups, which correspond to CUDA thread blocks. Work items in the

same work group can synchronize with each other using barriers that are

equivalent to syncthreads() in CUDA. Work items in different work

groups cannot synchronize with each other except by terminating the kernel

function and launching a new one. As we discussed in Chapter 4, this

limited scope of barrier synchronization enables transparent scaling.

CUDA equivalentOpenCL parallelism concept

KernelKernel

Host program Host program

NDRange (index space) Grid

Work item

Work group

Thread

Block

FIGURE 11.1

Mapping between OpenCL and CUDA data parallelism model concepts.
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 Figure 11.2 illustrates the OpenCL data parallelism model. The reader

should compare Figure 11.2 with Figure 9.8 for similarities. The NDRange

(CUDA grid) contains all work items (CUDA threads). For this example,

we assume that the kernel is launched with a two-dimensional (2D)

NDRange.

All work items have their own unique global index values. There is a

minor difference between OpenCL and CUDA in the way they manage

these index values. In CUDA, each thread has a blockIdx value and

a threadIdx value. The two values are combined to form a global thread

ID value for the thread. For example, if a CUDA grid and its blocks are

organized as 2D arrays, the kernel code can form a unique global thread index

value in the x-dimension as blockIdx.x � blockDim.x þ threadIdx.x.

These blockIdx and threadIdx values are accessible in a CUDA kernel

as predefined variables.

In an OpenCL kernel, a thread can get its unique global index values by

calling an API function, get_global_id(), with a parameter that identifies

the dimension. See the get_global_id(0) entry in Figure 11.3. The calls

get_global_id(0) and get_global_id(1) return the global thread index

values in the x-dimension and the y-dimension, respectively. The global index

value in the x-dimension is equivalent to the blockIdx.x � blockDim.x þ
threadIdx.x in CUDA. See Figure 11.3 for the get_local_id(0) function,
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FIGURE 11.2

Overview of the OpenCL parallel execution model.
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which is equivalent to threadIdx.x. We did not show the higher dimension

parameter values in Figure 11.3; they are 1 for the y-dimension and 2 for the

z-dimension.

An OpenCL kernel can also call the API function get_global_size()

with a parameter that identifies the dimensional sizes of its NDRanges.

The calls get_global_size(0) and get_global_size(1) return the total

number of work items in the x- and y-dimensions of the NDRanges. Note

that this is slightly different from the CUDA gridDim values, which are

in terms of blocks. The CUDA equivalent for the get_global_size(0)

return value would be gridDim.x�blockDim.x.

11.3 DEVICE ARCHITECTURE
Like CUDA, OpenCL models a heterogeneous parallel computing system

as a host and one or more OpenCL devices. The host is a traditional CPU

that executes the host program. Figure 11.4 shows the conceptual architec-

ture of an OpenCL device. Each device consists of one or more compute
units (CUs) that correspond to CUDA streaming multiprocessors (SMs);

however, a CU can also correspond to CPU cores or other types of execu-

tion units in compute accelerators such as DSPs and FPGAs.

Each CU, in turn, consists of one or more processing elements (PEs),
which correspond to the streaming processors (SPs) in CUDA. Computa-

tion on a device ultimately happens in individual PEs. The reader should

compare Figure 11.4 with Figure 3.7 for similarities between the

blockIdx.x�blockDim.x+threadIdx.x

threadIdx.x

gridDim.x �blockDim.x

OpenCL API call Explanation CUDA equivalent

get_global_id(0); Global index of the work
item in the x-dimension

get_local_id(0) Local index of the work
item within the work 
group in the x-dimension

get_global_size(0); Size of NDRange in the
x-dimension

get_local_size(0); Size of each work group
in the x-dimension

blockDim.x

FIGURE 11.3

Mapping of OpenCL dimensions and indices to CUDA dimensions and indices.
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OpenCL device architecture model and the CUDA device architecture

model.

Like CUDA, OpenCL also exposes a hierarchy of memory types that

can be used by programmers. Figure 11.4 illustrates these memory types:

global, constant, local, and private. Figure 11.5 summarizes the supported

use of OpenCL memory types and the mapping of these memory types

to CUDA memory types. The OpenCL global memory corresponds to the

Compute device

Private
memory 1

Private
memory 1

Local
memory 1

Local
memory N

Global/Constant memory data cache

Global memory

Constant memory

Compute device memory

PE 1 PE 1PE M PE M
... ... ...

Private
memory M

Private
memory M

Compute unit 1 Compute unit N

FIGURE 11.4

Conceptual OpenCL device architecture; the host is not shown.

OpenCL Memory Types

constant memory

local memory

private memory Local memory

global memory

CUDA Equivalent

constant memory

shared memory

global memory

FIGURE 11.5

Mapping of OpenCL memory types to CUDA memory types.
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CUDA global memory. Like CUDA, the global memory can be dynami-

cally allocated by the host program and supports read/write access by both

host and devices.

Unlike CUDA, the constant memory can be dynamically allocated

by the host. The constant memory supports read/write access by the host

and read-only access by devices. To support multiple platforms, the size

of constant memory is not limited to 64 kB in OpenCL. Instead, a device

query returns the constant memory size supported by the device.

The mapping of OpenCL local memory and private memory to CUDA

memory types is more interesting. The OpenCL local memory actually

corresponds to CUDA shared memory. The OpenCL local memory can

be dynamically allocated by the host and statically allocated in the device

code. Like the CUDA shared memory, the OpenCL local memory cannot

be accessed by the host and support shared read/write access by all work

items in a work group. The private memory of OpenCL corresponds to

the CUDA local memory.

11.4 KERNEL FUNCTIONS
OpenCL kernels have identical basic structure as CUDA kernels. All

OpenCL kernel function declarations start with a __kernel keyword, which

is equivalent to the __global keyword in CUDA. Figure 11.6 shows a sim-

ple OpenCL kernel function that performs vector addition. The function

takes three arguments: pointers to the two input arrays and one pointer to

the output array. The __global declarations in the function header indicate

that the input and output arrays all reside in the global memory. Note that

this keyword has the same meaning in OpenCL as in CUDA. The body

of the kernel function is instantiated once for each work item. In Fig-

ure 11.6, each work item calls the get_global_id(0) function to receive

its unique global index. This index value is then used by the work item to

select the array elements to work on.

FIGURE 11.6

A simple OpenCL kernel example.
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11.5 DEVICE MANAGEMENT AND KERNEL LAUNCH
OpenCL defines a much more complex model of device management

than CUDA. The extra complexity stems from the OpenCL support for

multiple hardware platforms. In OpenCL, devices are managed through

contexts. Figure 11.7 illustrates the main concepts of device management

in OpenCL. In order to manage one or more devices in the system, the

OpenCL programmer first creates a context that contains these devices.

This can be done by calling either clCreateContext() or clCreateCon-

textFromType() in the OpenCL API. An application typically needs to

use the clGetDeviceIDs() API function to determine the number and

types of devices that exist in a system and to pass the information on

to the CreateContext functions. The reader should read the OpenCL

programming guide regarding the details of the parameters to be used for

these functions.

To submit work for execution by a device, the host program must first

create a command queue for the device. This can be done by calling the

clCreateCommandQueue() function in the OpenCL API. Once a command

queue is created for a device, the host code can perform a sequence of API

function calls to insert a kernel along with its execution configuration para-

meters into the command queue. When the device is available for executing

the next kernel, it removes the kernel at the head of the queue for execution.

Figure 11.8 shows a simple host programs that creates a context for a

device and submits a kernel for execution by the device. Line 2 shows

a call to create a context that includes all OpenCL available devices in

Kernel

Kernel

Application

Cmd queue

OpenCL device

OpenCL context

OpenCL device

Cmd queue

FIGURE 11.7

OpenCL context required to manage devices.
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the system. Line 4 calls the clGetContextInfo() function to inquire about

the number of devices in the context. Because Line 2 asks that all OpenCL

available devices be included in the context, the application does not know

the number of devices actually included in the context after the context

is created. The second argument of the call in Line 4 specifies that the

information being requested is the list of all devices included in the context;

however, the fourth argument, which is a pointer to a memory buffer where

the list should be deposited, is a NULL pointer. This means that the call does

not want the list itself. The reason is that the application does not know the

number of devices in the context and does not know the size of the memory

buffer required to hold the list.

Line 4 provides a pointer to the variable parmsz, where the size of a

memory buffer required to accommodate the device list is to be deposited;

therefore, after the call in Line 4, the parmsz variable holds the size of

the buffer needed to accommodate the list of devices in the context.

The application now knows the amount of memory buffer needed to hold

the list of devices in the context. It allocates the memory buffer using

parmsz and assigns the address of the buffer to pointer variable cldevs at

Line 5.

Line 6 calls clGetContextInfo() again with the pointer to the memory

buffer in the fourth argument and the size of the buffer in the third argu-

ment. Because this is based on the information from the call at Line 4,

the buffer is guaranteed to be the right size for the list of devices to

be returned. The clGetContextInfo function now fills the device list

information into the memory buffer pointed to by cldevs.

Line 7 creates a command queue for the first OpenCL device in the list.

This is done by treating cldevs as an array whose elements are descriptors

FIGURE 11.8

Creating an OpenCL context and command queue.

21311.5 Device Management and Kernel Launch



 

of OpenCL devices in the system. Line 7 passes cldevs[0] as the second

argument into the clCreateCommandQueue(0) function; therefore, the call

generates a command queue for the first device in the list returned by the

clGetContextInfo() function.

The reader may wonder why we did not need to see this complex

sequence of API calls in our CUDA host programs. The reason is that we

have been using the CUDA runtime API that hides all of this complexity

for the common case where there is only one CUDA device in the system.

The kernel launch in CUDA handles all of the complexities on behalf of the

host code. A developer who wants to have direct access to all CUDA

devices in the system would need to use the CUDA driver API, where sim-

ilar API calling sequences would be used. To date, OpenCL has not defined

a higher level API that is equivalent to the CUDA runtime API. Until such

a higher level interface is available, OpenCL will remain much more

tedious to use than the CUDA runtime API.

11.6 ELECTROSTATIC POTENTIAL MAP IN OpenCL
We now present an OpenCL case study based on the DCS kernel in

Figure 9.9. This case study is designed to give a CUDA programmer a prac-

tical, top to bottom experience with OpenCL. The first step in porting the

kernel to OpenCL is to design the organization of the NDRange, which is

illustrated in Figure 11.9. The design is a straightforward mapping of

CUDA threads to OpenCL work items and CUDA blocks to OpenCL work

groups. As shown in Figure 11.9, each work item will calculate up to eight

grid points, and each work group will have 64–256 work items. The effi-

ciency considerations in Chapter 9 apply.

The work groups are assigned to the computing units in the same way

that CUDA blocks are assigned to the SMs. Such assignment is illustrated

in Figure 11.10. One can use the same methodology demonstrated in

Chapters 6 through 9 to derive a high-performance OpenCL DCS kernel.

Although the syntax is different, the underlying thought process involved

in developing a high-performance OpenCL kernel is very much the same

as CUDA.

The OpenCL kernel function implementation closely matches the

CUDA implementation. Figure 11.11 shows the key differences. One is

the __kernel keyword in OpenCL versus the __global keyword in CUDA.

The main difference lies in the way the data access indices are calculated.
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Grid of thread blocks:

Work groups:
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. . . 

Unrolling increases
computational tile size

(unrolled, coalesced)

FIGURE 11.9

DCS Kernel Version 3 NDRange configuration.

NDRange containing
all work items,
decomposed into
work groups

Lattice padding

Atomic
coordinates

charges

Host

Constant memory

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

Parallel data
cache

TextureTextureTextureTexture

Global memory

TextureTexture

GPU

Work groups:
64−256 work items

Work items compute
up to eight potentials,
skipping by coalesced

memory width

FIGURE 11.10

Mapping DCS NDRange to OpenCL device.
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In this case, the OpenCL get_global_id(0) function returns the equivalent

of CUDA blockIdx.x*blockDim.x þ threadIdx.x.

Figure 11.12 shows the inner loop of the OpenCL kernel. The reader

should compare this inner loop with the CUDA code in Figure 9.9.

The only difference is that the __rsqrt() call has been changed to a

native_rsqrt() call, the OpenCL way to call an intrinsic function on

a particular device.

OpenCL adopts a dynamic compilation model. Unlike CUDA, the host

program needs to explicitly compile and create a kernel program. This is

illustrated in Figure 11.13 for the DCS kernel. Line 1 declares the entire

OpenCL DCS kernel source code as a string. Line 3 delivers the source

FIGURE 11.11

Data access indexing in OpenCL and CUDA.

FIGURE 11.12

Inner loop of the OpenCL DCS kernel.

216 CHAPTER 11 A Brief Introduction to OpenCL�



 
code string to the OpenCL runtime system by calling the clCreate-

ProgramWithSource() function. Line 4 sets up the compiler flags for the

runtime compilation process. Line 5 invokes the runtime compiler to build

the program. Line 6 requests that the OpenCL runtime create the kernel and

its data structures so it can be properly launched. After Line 6, clkern

points to the kernel that can be submitted to a command queue for

execution.

As we explained in Section 11.5, OpenCL kernel has a much more com-

plex device management model. We also discussed the creation of context

and command queues in the host code. Figure 11.8 actually shows a simple

host code that creates a context and command queue for a system with just

one GPU to execute the kernel.

Figure 11.14 shows the host code that actually launches the DCS kernel.

Line 1 and Line 2 allocate memory for the energy grid data and the atom

information. The clCreateBuffer function corresponds to the cudaMalloc()

function. The constant memory is implicitly requested by setting the mode of

access to ready only for the atominfo array. Note that each memory buffer is

associated with a context, which is specified by the first argument to the

clCreateBuffer function call.

const char* clenergysrc =

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and
retrieve a handle to the “clenergy” kernel

1

2

3

4

5

6

cl__program clpgm;

clpgm = clCreateProgram WithSource(clctx, 1, &clenergysrc, NULL, &clerr);
char clcompileflags[4096];

sprintf(clcompileflags, “-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-precision-
        constant -cl-denorms-are-zero -cl-mad-enable”, UNROLLX);

clerr =  clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);

cl_kernel clkern = clCreateKernel(clpgm, “clenergy”, &clerr);

“__kernel__attribute__((reqd_work_group_size_hint(B LOCKSIZEX, BLOCKSIZEY, 1))) \n”

“void clenergy(__constant int numatoms, __constant float gridspacing, __global float *energy, __constant float4
   *atominfo) { \n“   [...etc and so forth...]

FIGURE 11.13

Building an OpenCL kernel.
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Lines 3 through 6 in Figure 11.14 set up the arguments to be passed into

the kernel function. In CUDA, the kernel functions are launched with C

function call syntax extended with <<<>>>. In OpenCL, there is no

explicit call to kernel functions, so one needs to use the clSetKernelArg()

functions to set up the arguments for the kernel function.

Line 8 in Figure 11.14 submits the DCS kernel for launch. The argu-

ments to the clEnqueueNDRangeKernel() function specify the command

queue for the device that will execute the kernel, a pointer to the kernel,

and the global and local sizes of the NDRange. Lines 9 and 10 check for

errors if any. Line 11 transfers the contents of the output data back into

the energy array in the host memory. The OpenCL clEnqueueReadBuffer

() copies data from the device memory to the host memory and corresponds

to the device to host direction of the cudaMemcpy() function.

The clReleaseMemObject() function is a little more sophisticated than

cudaFree(). OpenCL maintains a reference count for data objects.

OpenCL host program modules can retain (clRetainMemObject()) and

release (clReleaseMemObject()) data objects. Note that clCreateBuffer()

also serves as a retain call. With each retain call, the reference count of the

object is incremented. With each release call, the reference count is decre-

mented. When the reference count for an object reaches 0, the object is freed.

This way, a library module can hang onto a memory object even though the

other parts of the application no longer need the object and thus have released

the object.

FIGURE 11.14

OpenCL host code for kernel launch and .
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11.7 SUMMARY
OpenCL is a standardized, cross-platform API designed to support portable

parallel application development on heterogeneous computing systems.

Like CUDA, OpenCL addresses complex memory hierarchies and data-

parallel execution. It draws heavily on the CUDA driver API experience.

This is the reason why a CUDA programmer finds these aspects of OpenCL

familiar. We have seen this through the mappings of the OpenCL data

parallelism model concepts, NDRange API calls, and memory types to their

CUDA equivalents.

On the other hand, OpenCL has a more complex platform and device

management model that reflects its support for multiplatform and multiven-

dor portability. Although the OpenCL standard is designed to support code

portability across devices produced by different vendors, such portability

does not come for free. OpenCL programs must be prepared to deal with

much greater hardware diversity and thus will exhibit more complexity.

We see that the OpenCL device management model, the OpenCL kernel

compilation model, and the OpenCL kernel launch are much more complex

than their CUDA counterparts.

We have by no means covered all the programming features of OpenCL.

The reader is encouraged to read the OpenCL specification [Khronos 2008]

and tutorials [Khronos 2010] for more OpenCL features. In particular, we

recommend that the reader pay special attention to the device query, object

query, and task parallelism model.

We would like to also point the reader to another important parallel

programming API for heterogeneous computing systems. Microsoft’s Direct-

Compute is an API that takes advantage of the massively parallel processing

power of a modern GPU to accelerate PC application performance in Micro-

soft� Windows Vista� or Windows 7 [Wikipedia]. DirectCompute is part of

Microsoft’s DirectX� collection of APIs. Other DirectX APIs include

Direct3D�, Direct2D, DirectWrite, DirectDraw�, DirectMusic�, DirectPlay�,

and DirectSound�. DirectCompute is released with the DirectX 11 API

but runs on both DirectX 10 and DirectX 11 GPUs. DirectCompute defines

several versions of compute shader capabilities to ensure that applications

can take advantage ofGPUs. The reader should also expect thatDirectCompute

will have level of complexity similar to that of OpenCL in terms of device

management and kernel launch models.
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11.8 EXERCISES
11.1 Using the code base in Appendix A and examples in Chapters 3, 4,

5, and 6 to develop an OpenCL version of the matrix–matrix

multiplication application.

11.2 Read the “OpenCL Platform Layer” section of the OpenCL

specification. Compare the platform querying API functions with

what you have learned in CUDA.

11.3 Read the “Memory Objects” section of the OpenCL specification.

Compare the object creation and access API functions with what

you have learned in CUDA.

11.4 Read the “Kernel Objects” section of the OpenCL specification.

Compare the kernel creation and launching API functions with

what you have learned in CUDA.

11.5 Read the “OpenCL Programming Language” section of the OpenCL

specification. Compare the keywords and types with what you have

learned in CUDA.
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INTRODUCTION
You made it! We have arrived at the finishing line. In this final chapter, we

will briefly review the goals that we have achieved through this book.

Instead of drawing a conclusion, we will offer our vision for the future

evolution of massively parallel processor architectures and how the

advancements will impact parallel application development.

12.1 GOALS REVISITED
As we stated in the Chapter 1, our primary goal is to teach you, the reader,

how to program massively parallel processors to achieve high performance.

We promised that it would become easy once you develop the right insight
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and go about it the right way. In particular, we promised to focus on compu-
tational thinking skills that would enable you to think about problems in

ways that are amenable to parallel computing.

We delivered on these promises through an introduction to perfor-

mance considerations for CUDA� (Chapter 6), two detailed case studies

(Chapters 8 and 9), and a chapter dedicated to computational thinking

skills (Chapter 10). Through this process, we introduced the pertinent

computer architecture knowledge needed to understand the hardware

limitations that must be addressed in high-performance parallel pro-

gramming. In particular, we focused on the memory bandwidth limita-

tions that will remain as the primary performance limiting factor in

massively parallel computing systems (Chapters 4–6 and 8–10). We also

introduced the concepts of floating-point precision and accuracy and

how they relate to parallel execution (Chapter 7). With these insights,

high-performance parallel programming becomes a manageable process

rather than a black art.

We stated that our second goal was to teach high-performance parallel pro-

gramming styles that naturally avoid subtle correctness issues. To deliver on

this promise, we showed that the simple data parallelism CUDA program-

ming model (Chapters 3 and 4) based on barrier synchronization can be used

to develop very high-performance applications. This disciplined approach to

parallel programming naturally avoids the subtle race conditions that plague

many other parallel programming systems (Chapter 4).

We promised to teach parallel programming styles that transparently scale

across future hardware generations, which will be more and more parallel.

With the CUDA threading model (Chapter 4), massive numbers of thread

blocks can be executed in any order relative to each other. Your application

will benefit from more parallel hardware coming in the future. We also

presented algorithm techniques, such as tiling and cutoff, that allow your

application scale naturally to very large datasets (Chapter 10).

Now that we have reviewed our promises, we would like to share our

view of the coming evolution of the massively parallel processor archi-

tectures and how the advancements will likely impact application deve-

lopment. We hope that these outlooks will help you to peek into

the future of parallel programming. Our comments reflect the new

features in graphics processing units (GPUs) based on the NVIDIA�

Fermi compute architecture that arrived at the market when this book

went into press.
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12.2 MEMORY ARCHITECTURE EVOLUTION
12.2.1 Large Virtual and Physical Address Spaces

Graphics processing units have traditionally used only a physical address

space with up to 32 address bits, which limited the GPU dynamic random

access memory (DRAM) to 4 gigabytes or less. This is because graphics

applications have not demanded more than a few hundred megabytes of

frame buffer and texture memory. This is in contrast to the 64-bit virtual

space and 40þ bits of physical space that central processing unit (CPU)

programmers have been taking for granted for many years.

Fermi adopts a CPU-style virtual memory architecture with a 64-bit

virtual address space and a physical address space of at least 40 bits. The

obvious benefit is that Fermi GPUs can incorporate more than 4 gigabytes

of DRAM and that CUDA kernels can now operate on very large datasets,

whether hosted entirely in onboard GPU DRAM or by accessing mapped

host memory.

The Fermi virtual memory architecture also lays the foundation for a

potentially profound enhancement to the programming model. The CPU

system physical memory and the GPU physical memory can now be

mapped within a single, shared virtual address space [Gelado 2009].

A shared global address space allows all variables in an application to have

unique addresses. Such a memory architecture, when exposed by the pro-

gramming tools and runtime system to applications, can result in several

major benefits.

First, new runtime systems can be designed to allow CPUs and GPUs to

access the entire volume of application data under traditional protection

models. Such a capability would allow applications to use a single pointer

system to access application variables, thus removing a confusing aspect

of the current CUDA programming model where developers must not

deference a pointer to the device memory in host functions.

These variables can reside in the CPU physical memory, the GPU physical

memory, or even in both. The runtime can implement data migration and

coherence support like the GPU Memory Access (GMAC) system [Gelado

2009]. If a CPU function dereferences a pointer and accesses a variable

mapped to the GPU physical memory, the data access would still be serviced

but perhaps at a longer latency. Such capability would allow the CUDA pro-

grams to more easily call legacy libraries that have not been ported to GPUs.

In the current CUDA memory architecture, the developer must manually

transfer data from the device memory to the host memory in order to use
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legacy library functions to process them on the CPU. GMAC is built on

the current CUDA runtime application programming interface (API) and

gives the developer the option to either rely on the runtime system to ser-

vice such accesses or manually transfer data as a performance optimiza-

tion. However, the GMAC system currently does not have a clean

mechanism for supporting multiple GPUs. The new virtual memory capa-

bility would enable a much more elegant implementation.

Ultimately, the virtual memory capability will also enable a mechanism

similar to the zero copy feature in CUDA 2.2 to allow the GPU to directly

access very large physical CPU system memories. In some application

areas such as computer-aided design (CAD), the CPU physical memory

system may have hundreds of gigabytes of capacity. These physical mem-

ory systems are needed because the applications require the entire dataset

to be “in core.” It is not currently feasible for such applications to take

advantage of GPU computing. With the ability to directly access very large

CPU physical memories, it becomes feasible for GPUs to accelerate these

applications.

The second potential benefit is that the shared global address space

enables peer-to-peer direct data transfer between GPUs in a multi-GPU sys-

tem. In current CUDA systems, GPUs must first transfer data to the CPU

physical memory before delivering them to a peer GPU. A shared global

address space enables the implementation of a runtime system to provide

an API to directly transfer data from one GPU memory to another GPU

memory. Ultimately, a runtime system can be designed to automate such

transfers when GPUs reference data in each other’s memory but which still

allow the use of explicit data-transfer APIs as a performance optimization.

The third benefit is that one can implement I/O-related memory transfers

directly in and out of the GPU physical memory. In current CUDA systems,

the I/O data must first be transferred into the CPU physical memory before

they can be copied into the GPU physical memory. The ability to directly

transfer data in and out of the GPU physical memory can significantly

reduce the copying cost and enhance the performance of applications that

process large datasets.

12.2.2 Unified Device Memory Space

In the current CUDA memory model, constant memory, shared, memory,

local memory, and global memory form their own separate address spaces.

The developer can use pointers into the global memory but not others. In

the Fermi architecture, these memories are now all parts of a unified
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address space. This makes it easier to abstract which memory contains a

particular operand, allowing the programmer to deal with this only during

allocation and making it simpler to pass CUDA data objects into other

procedures and functions, irrespective of which memory area they come

from. It makes CUDA code modules much more composable; that is, a

CUDA device function can now accept a pointer that may point to any of

these memories. The code would run faster if a function argument pointer

points to a shared memory location and slower if it points to a global

memory location. The programmer can still perform manual data placement

and transfers as a performance optimization. This capability will signifi-

cantly reduce the cost of building production-quality CUDA libraries.

12.2.3 Configurable Caching and Scratch Pad

The shared memory in previous CUDA systems served as programmer-

managed scratch memory and increased the speed of applications where

key data structures had localized, predictable access patterns. In Fermi,

the shared memory has been enhanced to a larger on-chip memory that

can be configured to be partially cache memory and partially shared

memory, thus allowing coverage of both predictable and less predictable

access patterns to benefit from on-chip memory. This configurability allows

programmers to apportion the resources according to the best fit for their

application.

Applications in an early design stage that are ported directly from CPU

code will benefit greatly from enabling caching as the dominant part of the

on-chip memory. This would further smooth the performance-tuning pro-

cess by increasing the level of “easy performance” when a developer ports

a CPU application to GPU.

Existing CUDA applications and those that have predictable access

patterns will have the ability to increase their use of fast shared memory

by a factor of 3 while retaining the same GPU “occupancy” they had on

previous-generation devices. For CUDA applications whose performance

or capabilities are limited by the size of the shared memory, the three times

increase in size will be a welcome improvement. For example, in stencil

computation, such as finite volume methods for computational fluid

dynamics, the state loaded into the shared memory also includes “halo”

cells from neighboring areas.

The relative portion of halo decreases as the size of the stencil

increases. In three-dimensional simulation models, the halo cells can be

comparable in data size to the main data for current shared memory sizes.
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This can significantly reduce the effectiveness of the shared memory due

to the significant portion of the memory bandwidth spent on loading of

halo cells. For example, if the shared memory allows a thread block to

load a 83 (¼512)-cell stencil into the shared memory, with one layer of

halo cells on every surface, then only 63 (¼216) cells, or fewer than half

of the loaded cells, are the main data. The bandwidth spent on loading the

halo cells is actually bigger than that spent on the main data. A three times

increase in shared memory size allows some of these applications to have

a more favorable stencil size where the halo accounts for a much smaller

portion of the data in shared memory. In our example, the increased size

would allow an 113 (¼1331)-cell stencil to be loaded by each thread

block. With one layer of halo cells on each surface, a total of 93 (¼729)

cells, or more than half of the loaded cells, are the main data. This signifi-

cantly improves the memory bandwidth efficiency and the performance of

the application.

12.2.4 Enhanced Atomic Operations

The atomic operations in Fermi are much faster than those in previous

CUDA systems. Atomic operations are frequently used in random scatter

computation patterns such as histograms. Faster atomic operations reduce

the need for complex algorithm transformations such as prefix scanning

[Sengupta 2007] and sorting [Satish 2009] for implementing such random

scattering computations in GPUs. These transformations tend to increase

the number of kernel invocations needed to perform the target computation.

Faster atomic operations can also reduce the need to involve the host CPU

in algorithms that do collective operations or where multiple CUDA thread

blocks update shared data structures, thus reducing the data transfer

pressure between the CPU and GPU.

12.2.5 Enhanced Global Memory Access

The speed of random memory access is much faster in the Fermi architec-

ture than previous CUDA systems. Programmers can be less concerned

about memory coalescing. This allows more CPU algorithms to be directly

used in the GPU as an acceptable base, further smoothing the path of

porting applications that access a diversity of data structures such as ray

tracing, and other applications that are heavily object oriented and may

be difficult to convert into perfectly tiled arrays.
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12.3 KERNEL EXECUTION CONTROL EVOLUTION
12.3.1 Function Calls within Kernel Functions

Previous CUDA versions did not allow function calls in kernel code.

Although the source code of kernel functions can appear to have function

calls, the compiler must be able to inline all function bodies into the kernel

object so there are no function calls in the kernel function at runtime.

Although this model works reasonably well for the performance-critical

portions of many applications, it does not support the software engineering

practices in more sophisticated applications. In particular, it does not

support system calls, dynamically linked library calls, recursive function

calls, and virtual functions in object-oriented languages such as Cþþ.

Fermi supports function calls in kernel functions at runtime. The com-

piler is no longer required to inline the function bodies. It can still do so

as a performance optimization. This capability is partly achieved by a

cached, much faster local memory implementation that underlies a fast

implementation of massively parallel call frame stacks for CUDA threads.

It improves the composability of CUDA device code by allowing different

authors to write different CUDA kernel components and assemble them all

together without heavy redesign costs. In particular, it allows modern

object-oriented techniques such as virtual function calls and software engi-

neering practices such as dynamically linked libraries.

Support for function calls at runtime allows recursion and will signifi-

cantly ease the burden on programmers as they transition from legacy

CPU-oriented algorithms toward GPU-tuned approaches for divide-and-

conquer types of computation. This also allows easier implementation of

graph algorithms where data structure traversal often naturally involves

recursion. In many cases, developers will be able to “cut and paste” CPU

algorithms into a CUDA kernel and obtain a reasonably performing kernel,

although continued performance tuning would still be needed.

12.3.2 Exception Handling in Kernel Functions

Previous CUDA systems did not support exception handling in kernel code.

This was not a significant limitation for performance-critical portions of

many high-performance applications, but it often incurs software engineering

costs in production-quality applications that rely on exceptions to detect

and handle rare conditions without executing code to explicitly test for such

conditions. Also, it does not allow kernel functions to utilize operating
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system services, which is typically avoided in performance-critical portions

of the applications, except during debugging situations.

With the availability of exception handling and function call support in

Fermi, kernels can now call standard library functions such as printf() and

malloc(), which can lead to system call traps. In our experience, the ability

to call printf() in a kernel provides a subtle but important aid in debugging

and supporting kernels in production software. Many end users are not techni-

cal and cannot be easily trained to run debuggers to provide developers with

more details on what happened before a crash. The ability to execute printf

() in the kernel allows the developers to add a mode to the application to

dump the internal state so end users can submit meaningful bug reports.

12.3.3 Simultaneous Execution of Multiple Kernels

Previous CUDA systems allow only one kernel to execute on each GPU

device at any point in time. Multiple kernel functions can be submitted

for execution; however, they are buffered in a queue that releases the next

kernel after the current one completes execution. Fermi allows multiple

kernels from the same application to be executed simultaneously, which

provides at least two user-level benefits.

First, multiple kernel execution reduces the pressure for the application

developer to batch multiple kernel invocations into the launch of a larger

kernel in order to more fully utilize the GPU. Second, parallel cluster appli-

cations often segment work into local and remote partitions, where remote

work is involved in interactions with other nodes and resides on the critical

path of global progress. In previous CUDA systems, kernels had to be large

to keep the machine running efficiently, and one had to be careful not to

launch local work such that global work could be blocked. Previously, this

meant choosing between leaving the GPU idle while waiting for remote

work to arrive or eagerly starting on local work to keep the GPU productive

at the cost of increased latency for the completion of remote work units. With

multiple kernel execution on Fermi, the application can use much smaller

kernel sizes for launching work; as a result, when high-priority remote work

arrives, it can start running with low latency instead of being stuck behind a

large kernel of local computation.

12.3.4 Interruptible Kernels

Fermi allows running kernels to be canceled, thus easing the creation of

CUDA-accelerated applications that allow the user to abort a long-running
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calculation at any time, without requiring significant design effort on the

part of the programmer. When software support is available, this will

enable implementation of user-level task scheduling systems that can better

perform load balance between GPU nodes of a computing system and allow

more graceful handling of cases where one GPU is heavily loaded and may

be running slower than its peers [Stone 2009a].

12.4 CORE PERFORMANCE
12.4.1 Double-Precision Speed

The GPUs based on the NVIDIA GT200 architecture perform double-preci-

sion floating arithmetic in hardware but with significant speed reduction

(around eight times slower) compared to single precision. The Fermi archi-

tecture’s floating-point arithmetic units have been significantly strength-

ened to perform double-precision arithmetic at about half the speed of

single precision. Applications that are intensive in double-precision, float-

ing-point arithmetic will benefit tremendously. Other applications that use

double precision carefully and sparingly will incur little or no noticeable

performance cost.

In practice, the most significant benefit will likely be obtained by devel-

opers who are porting CPU-based numerical applications to GPUs. With

the improved double-precision speed, they will have little incentive to

spend the effort to evaluate whether their applications or portions of their

applications can fit into single precision. This can significantly reduce the

development cost for porting CPU applications to GPUs and addresses a

major criticism of GPUs by the high-performance computing community.

12.4.2 Better Control Flow Efficiency

Fermi adopts a general compiler-driven predication technique [Mahlke

1995] that can more effectively handle control flow than previous CUDA

systems. This technique was moderately successful in Very Long Instruc-

tion Word (VLIW) systems, but it can provide more dramatic speed

improvements in GPU warp-style, single-instruction, multiple-data (SIMD)

execution systems. This capability can potentially broaden the range of

applications that can take advantage of GPUs. In particular, major perfor-

mance benefits can potentially be realized for applications that are very

data driven, such as ray tracing, quantum chemistry visualization, and cel-

lular automata simulation.
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12.5 PROGRAMMING ENVIRONMENT
The CUDA 3.0 software development kit (SDK) compiler generates

standard object file formats used by standard CPU integrated development

environments (IDEs). This enables integration of CUDA application debug-

ging and profiling into standard IDEs such as Microsoft� Visual Studio�.

Developers no longer need to leave the IDE in order to run the CUDA

debugger or profiler. Also, through driver enhancements, when program-

mers are debugging on the graphics card the GPU will no longer crash or

interfere with the host operating system or the windowing system.

Future CUDA compilers will include enhanced support for Cþþ
templates and virtual function calls in kernel functions. Although hardware

enhancements, such as runtime function calling capability, are in place,

enhanced Cþþ language support in the compiler will take more time.

The Cþþ try/catch features will also likely be fully supported in kernel

functions in the near future. With these enhancements, future CUDA com-

pilers will support most mainstream Cþþ features. The remaining features

in kernel functions such as new, delete, constructors, and destructors will

likely be available in later compiler releases.

12.6 A BRIGHT OUTLOOK
The new CUDA 3.0 SDK and the new GPUs based on the Fermi architec-

ture mark the beginning of the third generation of GPU computing that

places real emphasis on support for developer productivity and modern

software engineering practices. With the new capabilities, the range of

applications that will offer reasonable performance at minimal development

costs will expand significantly. We expect that developers will immediately

notice the reduction in application development, porting, and maintenance

costs compared to previous CUDA systems. The existing applications

developed with PyCUDA and similar high-level tools that automatically

generate CUDA code will also likely get an immediate boost in their

performance. Although the benefit of hardware enhancements in memory

architecture, kernel execution control, and compute core performance will

be visible in the associated SDK release, the true potential of these

enhancements may take years to be fully exploited in the SDKs and run-

times. For example, the true potential of the hardware virtual memory capa-

bility will likely be fully achieved only when a shared global address space

runtime that supports direct GPU I/O and peer-to-peer data transfer for
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multiple-GPU systems becomes widely available. We predict an exciting

time for innovations from both industry and academia in programming

tools and runtime environments for GPU computing in the next few years.

Enjoy the ride!
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INTRODUCTION
This appendix shows a host-only source code that can be used as the base of

your CUDA� matrix multiplication code. We have already inserted timer

calls in key places so you can use the measurement to isolate the execution

time of the function that actually performs the matrix multiplication. It also

has the code that you can use to print out the matrix contents and verify the

results.

A.1 matrixmul.cu
/******************************************************

File Name [matrixmul.cu]

Synopsis [This file defines the main function to do

matrix-matrixmultiplication.]

Description []

*******************************************************/

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

// Included C libraries

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

#include <stdlib.h>

#include <stdio.h>
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#include <string.h>

#include <math.h>

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

// Included CUDA libraries

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

#include <cutil.h>

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

// Included helper functions

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

#include “assist.h”

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

// Included host matrix-matrix multiplication function

prototype

//––––––––––––––––––––––––––––––––––––––––––––––––––––––

#include “matrixmul.h”

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

/* */

/* Synopsis [Main function] */

/* Description [] */

/* */

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

int

main(int argc, char** argv)

{

bool if_quiet ¼ false;

unsigned int timer_compute ¼ 0;

int i, j;

char*matrix_id¼ NULL,*input_fn¼ NULL,*gold_fn¼ NULL;

int Mw ¼ 0, Mh ¼ 0, Nw ¼ 0, Nh ¼ 0, Pw ¼ 0, Ph ¼ 0;

if (argc ¼¼ 2) {

matrix_id ¼ strdup(argv[1]);

} else {

fprintf(stderr, “Error: Wrong input parameter

numbers.\n”);

fprintf(stderr, “Usage:\n”

“$> ./lab1.1-matrixmul <8, 128, 512,

3072, 4096>\n”

“Examples:\n”
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“ $> ./lab1.1-matrixmul 128\n”

);

exit(1);

}

Mw ¼ Mh ¼ Nw ¼ Nh ¼ Pw ¼ Ph ¼ atoi(matrix_id);

input_fn ¼ (char *) malloc(30*sizeof(char));

gold_fn ¼ (char *) malloc(30*sizeof(char));

sprintf(input_fn, “matrix_%s.bin”, matrix_id);

sprintf(gold_fn, “matrix_%s.gold”, matrix_id);

if (Pw*Ph > 15*15) {

if_quiet ¼ true; // If not display matrix contents

}

printf(“Input matrix size: %d by %d\n”, Mw, Mh);

//––––––––––––––––––––––––––––––––––––––––––––––––––––

// Setup host side

//––––––––––––––––––––––––––––––––––––––––––––––––––––

printf(“Setup host side environment:\n”);

// allocate host memory for matrices M and N

printf(“ Allocate host memory for matrices M and N.\n”);

printf(“ M: %d x %d\n”, Mw, Mh);

printf(“ N: %d x %d\n”, Nw, Nh);

unsigned int size_M ¼ Mw * Mh;

unsigned int mem_size_M ¼ sizeof(float) * size_M;

float* hostM ¼ (float*) malloc(mem_size_M);

unsigned int size_N ¼ Nw * (Nh);

unsigned int mem_size_N ¼ sizeof(float) * size_N;

float* hostN ¼ (float*) malloc(mem_size_N);

// allocate memory for the result on host side

printf(“ Allocate memory for the result on host side.\n”);

unsigned int size_P ¼ Pw * Ph;

unsigned int mem_size_P ¼ sizeof(float) * size_P;

float* hostP ¼ (float*) malloc(mem_size_P);

// Initialize the input matrices.

printf(“ Generate input matrix data for matrix M and N.\n”);

GenMatrixFile(input_fn, Pw, Ph, if_quiet);

unsignedint*matrix¼ReadMatrixFile(input_fn,Pw,Ph,true);
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for (i ¼ 0; i < Mw; iþþ)

for (j ¼ 0; j < Nw; jþþ)

hostM[i * Mw þ j] ¼ hostN[i * Mw þ j] ¼ (float)

matrix[i*Mw þ j];

free(matrix); matrix ¼ NULL;

//¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
// Do matrix-matrix multiplication

//¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
printf(“ Computing matrix multiplication M x N:\n”);

if (Pw*Ph > 512*512) {

printf(“ (It takes time since matrix is larger than

512by512.\n”);

}

CUT_SAFE_CALL(cutCreateTimer(&timer_compute));

CUT_SAFE_CALL(cutStartTimer(timer_compute));

float* reference ¼ (float*) malloc(mem_size_P);

computeGold(reference, hostM, hostN, Mh, Mw, Nw);

CUT_SAFE_CALL(cutStopTimer(timer_compute));

printf(“ CPU Processing time : %f (ms)\n”,

cutGetTimerValue(timer_compute));

CUT_SAFE_CALL(cutDeleteTimer(timer_compute));

printf(“ Matrix data checksum : %g\n”, CheckSum(reference,

Mw, Nw));

if (!if_quiet) {

printf(“ Matrix data contents :\n”);

printf(“ ”);

}

matrix¼ (unsignedint*)malloc(Pw*Ph*sizeof(unsignedint));

for (i ¼ 0; i < Ph; iþþ) {

for (j ¼ 0; j < Pw; jþþ) {

matrix[i*Pwþj]¼ (unsignedint) reference[i*Pwþj];

if (!if_quiet) printf(“%u ”, matrix[i*Pw þ j]);

}

if (!if_quiet) printf(“\n ”);

}
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if (!if_quiet) printf(“\n”);

WriteMatrixFile(gold_fn, matrix, Pw, Ph, 1);

free(matrix); matrix ¼ NULL;

free(reference);

// clean up memory

free(hostM); free(hostN); free(hostP);

free(input_fn); free(gold_fn);

return 0;

}

A.2 matrixmul_gold.cpp
This “gold” version of the matrix multiplication function can be used to

verify the results of your parallel implementation.

/******************************************************

File Name [matrixmul_gold.cpp]

Synopsis [Thisfiledefinesthegold-versionmatrix-matrix

multiplication.]

Description []

*******************************************************/

#include <stdio.h>

#include “matrixmul.h”

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

/* */

/* Synopsis [Sequential/Gold version of matrix-matrix

multiplication.] */

/* */

/* Description [This function computes multiplication

of two matrix M and N, */

/* and stores the output to P.] */

/* */

/*¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼*/

void

computeGold(

float* P, // Resultant matrix data
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const float* M, // Matrix M

const float* N, // Matrix N

int Mh, // Matrix M height

int Mw, // Matrix M width

int Nw) // Matrix N width

{

int i, j, k;

float sum, a, b;

for (i ¼ 0; i < Mh; iþþ)

for (j ¼ 0; j < Nw; jþþ)

{

sum ¼ 0;

for (k ¼ 0; k < Mw; kþþ)

{

a ¼ M[i * Mw þ k];

b ¼ N[k * Nw þ j];

//printf (“A[%d] * B[%d]\n”, i * Mw þ k, k * Nw þ j);

sum þ¼ a * b;

}

P[i * Nw þ j] ¼ (float)sum;

}

}

A.3 matrixmul.h
/*******************************************************

File Name [matrixmul.h]

Synopsis [This file defines the function prototype of

the gold-versionmatrix-matrix multiplication.]

Description []

*******************************************************/

#ifndef MATRIXMUL_H

#define MATRIXMUL_H

extern “C”

void computeGold(

float*P,constfloat*M,constfloat*N,intMh,intMw,intNw);

#endif
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A.4 assist.h
This file contains helper functions that assist in reading, writing, and veri-

fying matrix data files to make your implementation easier.

/*****************************************************

File Name [assist.h]

Synopsis [This file defines the helper functions to assist

In file access and result verification in matrix-

matrix multiplication.]

Description []

******************************************************/

FILE *

OpenFile (const char * const fn_p,

const char * const open_mode_p,

const int if_silent // If not show messages

)

{

FILE * f_p ¼ NULL;

if (fn_p ¼¼ NULL) {

printf (“Null file name pointer.”);

exit (�1);

}

if (!if_silent) {

fprintf(stdout,“Opening the file %s . . . “, fn_p);

}

f_p ¼ fopen(fn_p, open_mode_p);

if (f_p ¼¼ NULL) {

if (!if_silent) {

fprintf(stdout,“failed.\n”);

} else {

fprintf(stdout,“\nOpening the file %s . . . failed.

\n\n”, fn_p);

}

exit (�1);

}

if (!if_silent) fprintf(stdout,“succeeded.\n”);

return (f_p);

}
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int

GenMatrixFile (

const char * const matrix_fn_p,

const unsigned int M_WIDTH, // matrix width

const unsigned int M_HEIGHT, // matrix height

const int if_silent // If not show messages

)

{

FILE * matrix_fp ¼ NULL;

const unsigned int M_SIZE ¼ M_WIDTH * M_HEIGHT;

unsigned int * matrix ¼ NULL;

unsigned int i ¼ 0, j ¼ 0;

matrix_fp ¼ OpenFile (matrix_fn_p, “wb”, 1);

matrix ¼ (unsigned int *) malloc (M_SIZE * sizeof

(unsigned int));

//if (!if_silent) fprintf (stdout, “Generated contents

of matrix:\n”);

if (!if_silent) fprintf (stdout, “ ”);

for (i ¼ 0; i < M_HEIGHT; iþþ) {

for (j ¼ 0; j < M_WIDTH; jþþ) {

matrix[i*M_WIDTH þ j] ¼ iþjþ1;

if (!if_silent) fprintf (stdout, “%u ”, matrix

[i*M_WIDTH þ j]);

}

if (!if_silent) fprintf (stdout, “\n ”);

}

if (!if_silent) fprintf (stdout, “\n”);

fwrite (matrix, 1, M_SIZE * sizeof (unsigned int),

matrix_fp);

fclose (matrix_fp);

free (matrix); matrix ¼ NULL;

return (1);

}

unsigned int *

ReadMatrixFile (

const char * const matrix_fn_p,

const unsigned int M_WIDTH, // matrix width

const unsigned int M_HEIGHT, // matrix height

const int if_silent // If not show messages

240 APPENDIX A Matrix Multiplication Host-Only Version Source Code



 

)

{

FILE * matrix_fp ¼ NULL;

const unsigned int M_SIZE ¼ M_WIDTH * M_HEIGHT;

unsigned int * matrix ¼ NULL;

unsigned int i ¼ 0, j ¼ 0;

matrix_fp ¼ OpenFile(matrix_fn_p, “rb”, if_silent);

matrix ¼ (unsigned int *) malloc(M_SIZE * sizeof

(unsigned int));

fread(matrix, 1, M_SIZE * sizeof (unsigned int),

matrix_fp);

if (!if_silent) {

fprintf (stdout, “Read contents of matrix:\n”);

fprintf (stdout, “ ”);

for (i ¼ 0; i < M_HEIGHT; iþþ) {

for (j ¼ 0; j < M_WIDTH; jþþ) {

fprintf (stdout, “%u “, matrix[i*M_WIDTH

þ j]);

}

fprintf (stdout, “\n ”);

}

fprintf(stdout, “\n”);

}

fclose (matrix_fp);

return (matrix);

}

int

WriteMatrixFile (

const char * const matrix_fn_p,

const unsigned int * const matrix,

const unsigned int M_WIDTH, // matrix width

const unsigned int M_HEIGHT, // matrix height

const int if_silent // If not show messages

)

{

FILE * matrix_fp ¼ NULL;

const unsigned int M_SIZE ¼ M_WIDTH * M_HEIGHT;

unsigned int i ¼ 0, j ¼ 0;
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matrix_fp ¼ OpenFile (matrix_fn_p, “wb”, if_silent);

fwrite (matrix, 1, M_SIZE * sizeof (unsigned int),

matrix_fp);

if (!if_silent) {

fprintf (stdout, “Written contents of matrix:\n”);

for (i ¼ 0; i < M_HEIGHT; iþþ) {

for (j ¼ 0; j < M_WIDTH; jþþ) {

fprintf(stdout,“%u”,matrix[i*M_WIDTHþ j]);

}

fprintf (stdout, “\n”);

}

}

fclose (matrix_fp);

return (1);

}

// Usage:

// CompareMatrixFile (“your output”, “golden output”, WC,

HC, 1);

void

CompareMatrixFile (

const char * const matrix_fn_p1,

const char * const matrix_fn_p2,

const unsigned int M_WIDTH, // matrix width

const unsigned int M_HEIGHT, // matrix height

const int if_silent // If not show messages

)

{

unsigned int i ¼ 0, j ¼ 0, wrong ¼ 0;

int check_ok ¼ 1;

unsigned int * m1 ¼ ReadMatrixFile (matrix_fn_p1,

M_WIDTH, M_HEIGHT, if_silent);

unsigned int * m2 ¼ ReadMatrixFile (matrix_fn_p2,

M_WIDTH, M_HEIGHT, if_silent);

printf (“ Comparing file %s with %s . . .\n”, matrix_fn_p1,

matrix_fn_p2);

for (i ¼ 0; i < M_HEIGHT && wrong < 15; iþþ) {

for (j ¼ 0; j < M_WIDTH && wrong < 15; jþþ) {

//printf(“m1[%d][%d]?¼ m2[%d][%d]:%d?¼ %d\n”,
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// i,j,i,j, m1[i*M_WIDTHþj], m2[i*M_WIDTHþj]);

if (m1[i*M_WIDTHþj] !¼ m2[i*M_WIDTHþj]) {

printf (“m1[%d][%d] !¼ m2[%d][%d] : %d !¼ %d\n”,

i,j,i,j, m1[i*M_WIDTHþj],

m2[i*M_WIDTHþj]);

check_ok ¼ 0; wrongþþ;

}

}

}

printf (“ Check ok? ”);

if (check_ok) printf (“Passed.\n”);

else printf (“Failed.\n”);

}

float

CheckSum(const float *matrix, const int width, const int

height)

{

int i, j;

float s1, s2;

for (i ¼ 0, s1 ¼ 0; i < width; iþþ) {

for (j ¼ 0, s2 ¼ 0; j < height; jþþ) {

s2 þ¼ matrix[i * width þ j];

}

s1 þ¼ s2;

}

return s1;

}

A.5 EXPECTED OUTPUT
Input matrix size: 8 by 8

Setup host side environment:

Allocate host memory for matrices M and N.

M: 8 � 8

N: 8 � 8
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Allocate memory for the result on host side.

Generate input matrix data for matrix M and N.

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 9

3 4 5 6 7 8 9 10

4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12

6 7 8 9 10 11 12 13

7 8 9 10 11 12 13 14

8 9 10 11 12 13 14 15

Computing matrix multiplication M x N:

CPU Processing time : 0.009000 (ms)

Matrix data checksum : 35456

Matrix data contents :

204 240 276 312 348 384 420 456

240 284 328 372 416 460 504 548

276 328 380 432 484 536 588 640

312 372 432 492 552 612 672 732

348 416 484 552 620 688 756 824

384 460 536 612 688 764 840 916

420 504 588 672 756 840 924 1008

456 548 640 732 824 916 1008 1100
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B.1 GPU COMPUTE CAPABILITY TABLES
As we discussed in Chapters 6–10, maximizing the kernel performance on

a particular graphics processing unit (GPU) requires knowledge of the

resource limitations in the GPU hardware. For this reason, the main hard-

ware resource provisions in each GPU are typically exposed to applications

in a standardized system called compute capability. The general specifica-

tions and features of a compute device depend on its compute capability.

For CUDA�, the compute capability starts at Compute 1.0. Each higher

level of compute capability indicates a newer generation of GPU devices

with a higher number of features. In general, a higher level compute capa-

bility defines a superset of features of those at a lower level. Table B.1

shows the main dimensions of compute capability specifications. The table

also gives the numerical value of each dimension for Compute 1.0. Each

higher level of compute capability enhances one more of these dimensions

as follows:

Compute Capability 1.1 adds support for atomic functions operating on

32-bit words in global memory.

Compute Capability 1.2 adds support for atomic functions operating in

shared memory, atomic functions operating on 64-bit words in global

memory, and warp vote functions. The number of registers per multipro-

cessor is increased to 16,384, the maximum number of active warps per

multiprocessor is 32, and the maximum number of active threads per

multiprocessor is 1024. Memory coalescing is improved (see below).

Compute Capability 1.3 adds support for double-precision, floating-

point numbers and operations.
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Depending on the time of its introduction, each GPU product supports up to

a particular generation of compute capability. The compute capability and

number of multiprocessors of all CUDA-enabled devices are given in

Table B.2.

B.2 MEMORY COALESCING VARIATIONS
Each level of compute capability also specifies a different level of hardware

memory coalescing capability. Knowing the compute capability, one can

determine the number of global memory transactions that a load instruction

Table B.1 Main Dimensions of Compute Capability and the Attributes of

Compute 1.0

Features Compute 1.0

Number of stream processors per SM 8

Maximum number of threads per block 512

Maximum grid dimension (x, y) 65,535, 65,535

Maximum block dimension (x, y, z) 512, 512, 64

Threads in a warp 32

Registers per SM 8192 (8 K)

Shared memory per SM 16,384 (16 K)

Banks in shared memory 16

Total constant memory 65,536 (64 K)

Cache working set for constants per SM 8192 (8 K)

Local memory per thread 16,384 (16 K)

Cache working set for texture per SM 6 to 8 kB

Maximum number of active blocks per SM 8

Maximum active warps per SM 24

Maximum active threads per SM 768

1D texture bound to CUDA array—maximum width 213

1D texture bound to linear memory–maximum width 227

2D texture bound to linear memory or CUDA array—
maximum dimension (x, y)

216, 215

3D texture bound to a CUDA array—maximum
dimension (x, y, z)

211, 211, 211

Maximum kernel size 2 million microcode
instructions
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Table B.2 Many Device-Specific Features and Sizes Can Be Determined

Calling the Runtime CUDA Function cudaGetDeviceProperties() (See

CUDA Programming Guide for Details)

Product Name
Number of
Multiprocessors

Compute
Capability

GeForce�

GTX 295 2 � 30 1.3

GTX 285, GTX 280, GTX275 30 1.3

GTX 260 24 1.3

9800 GX2 2 � 16 1.1

GTS 250, GTS 150, 9800 GTX, 9800
GTXþ, 8800 GTS 512

16 1.1

8800 Ultra, 8800 GTX 16 1.0

9800 GT, 8800 GT, GTX 280 M, 9800 M
GTX

14 1.1

GT 130, 9600 GSO, 8800 GS, 8800 M
GTX, GTX 260 M, 9800 M GT

12 1.1

8800 GTS 12 1.0

9600 GT, 8800 M GTS, 9800 M GTS 8 1.1

9700 M GT 6 1.1

GT 120, 9500 GT, 8600 GTS, 8600 GT,
9700 M GT, 9650 M GS, 9600 M GT,
9600 M GS, 9500 M GS, 8700 M GT,
8600 M GT, 8600 M GS

4 1.1

G100, 8500 GT, 8400 GS, 8400 M GT 2 1.1

9500 M G, 9300 M G, 8400 M GS,
9400 mGPU, 9300 mGPU, 8300 mGPU,
8200 mGPU, 8100 mGPU, 9300 M GS,
9200 M GS, 9100 M G, 8400 M G

1 1.1

Tesla�
S1070 4 � 30 1.3

C1060 30 1.3

S870 4 � 16 1.0

D870 2 � 16 1.0

C870 16 1.0

Quadro�

Plex 2200 D2 2 � 30 1.3

Plex 2100 D4 4 � 14 1.1

Plex 2100 Model S4 4 � 16 1.0

(continued)
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in a warp will incur. In Compute 1.0 and Compute 1.1, memory transac-

tions are done for memory 64- or 128-byte segments. Coalescing of

accesses in a warp requires that the kth thread in a warp accesses the kth
word in a 64-byte segment when accessing 32-byte words (or the kth word

in two contiguous 128-byte segments when accessing 128-byte words). Not

all threads need to participate for coalescing to work. In the top case in

Figure B.1, one of the threads in a warp did not participate, but the accesses

still coalesced into one transaction.

In particular, all accesses must be in sequence. If one or more of the

accesses are out of sequence, the accesses will no longer be coalesced. In

the middle part of Figure B.1, two of the accesses are out of sequence,

and the accesses are not coalesced; 16 transactions to the global memory

are necessary for the access.

In Compute 1.2 and above, the global memory transactions are issued in

32-, 64-, or 128-byte segments. Having a smaller segment size allows the

hardware to reduce the waste of global memory bandwidth for some less

coherent warp access patterns.

Table B.2 Many Device-Specific Features and Sizes Can Be Determined

Calling the Runtime CUDA Function cudaGetDeviceProperties() (See

CUDA Programming Guide for Details)—cont’d

Product Name
Number of
Multiprocessors

Compute
Capability

Plex 1000 Model IV 2 � 16 1.0

FX 5800 30 1.3

FX 4800 24 1.3

FX 4700 X2 2 � 14 1.1

FX 3700 M 16 1.1

FX 5600 16 1.0

FX 3700 14 1.1

FX 3600 M 12 1.1

FX 4600 12 1.0

FX 2700 M 6 1.1

FX 1700, FX 1700 M, FX 570, FX 570 M,
NVS 320 M, FX 1600 M, FX 770 M

4 1.1

FX 370, NVS 290, NVS 140 M, NVS
135 M, FX 360 M

2 1.1

FX 370 M, NVS 130 M 1 1.1
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Figure B.2 illustrates improvements in memory coalescing in Compute

1.2. The top part shows that warp accesses within a segment can be out

of sequence and still be fully coalesced into one transaction. The middle

part shows that the access can be nonaligned across a 128-byte boundary.

One extra 32-byte segment transaction will be issued, and the accesses

Coalesces—1 transaction

Out of sequence—16 transactions

Misaligned—16 transactions

FIGURE B1

Memory coalescing in Compute 1.0 and 1.1.

1 transaction—64B segment

2 transactions—64B and 32B segments 

1 transaction—128B segment

2

FIGURE B2

Memory coalescing in Compute 1.2 and above.
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are still coalesced. The bottom part shows that, if warp accesses are not

aligned but stay within a 128-byte boundary, a single 128-byte segment

transaction will be used to access all of the words involved. In these two

cases, the global memory bandwidth consumption is much less than that

in Compute 1.0 or 1.1, where 16 transactions of 64-byte segments would

be used.
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