

Programming Many-Core Chips

András Vajda

Programming Many-Core
Chips

With Contributions by Mats Brorsson
and Diarmuid Corcoran

Foreword by Håkan Eriksson

1  3

ISBN 978-1-4419-9738-8 e-ISBN 978-1-4419-9739-5
DOI 10.1007/978-1-4419-9739-5
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011930407

© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

András Vajda
Oy L M Ericsson Ab
Hirsalantie 11
02420 Jorvas
Finland
andras.vajda@ericsson.com

Dedicated to the loving memory of my
grandmother.
Mama, without your dedication and sacrifices,
I would have never been in a position to
accomplish this.

Thank you.
András Vajda

vii

Foreword

Parallel computing has been confined, for much of its over 40 year history, to high-
ly specialized, technology-wise advanced domains such as scientific computing or
telecommunications. There were only a few experts who had the background and
experience to write efficient, robust and scalable programs for these parallel ma-
chines.

A few years ago all that suddenly changed with the emergence of multi-core
and many-core processors, as we reached the end of seemingly endless single-core
performance scaling. While Moore’s Law still provides chip designers with ever-
increasing amount of transistors for building chips, these chips will now all have
multiple cores and there’s no end in sight for the scalability of computing power
through the integration of ever more processor cores on the same piece of silicon.
Practically overnight parallel programming skills became mandatory for most ex-
perts working in the field of computer programming.

Ericsson has always been at the forefront of parallel programming. We have been
delivering best in class massively parallel telecommunication systems for several
decades and providing our customers with quality software running on systems with
hundreds of processors has always been one of our core assets. Continued leader-
ship in this area is essential for our future success: the amount of traffic in telecom
networks and consequently, the amount of computation required to sustain it, is
expected to grow orders of magnitude faster than what the chip industry can match,
even if it continues to deliver according to Moore’s law. I believe we are well po-
sitioned to take advantage of emerging chips with hundreds or even thousands of
cores in order to sustain our technology leadership in ICT.

This book is the result of the experience we as a company and our experts as in-
dividuals have accumulated over the past decades. It is driven by our desire to share
with the software community the knowledge we built the hard way: learning from
our mistakes and building on our successes. It is our strong belief that co-operation
is essential in order to spark and sustain innovation that can generate the cutting

viiiviii

edge technologies from which we all—the computing community and the society in
general—can ultimate benefit.

Håkan Eriksson
Senior Vice President, Chief Technology Officer
Head of Group Function Technology & Portfolio Management
Head of Ericsson in Silicon Valley

Foreword

ix

Contents

1  Introduction  ...   1
1.1 The End of Endless Scalability ... 1
1.2 The Trouble with Software ... 3
1.3 The Book .. 4

1.3.1 Applications ... 6
1.4 Summary .. 6
References ... 7

2  Multi-core and Many-core Processor Architectures  9
Mats Brorsson
2.1 Overview .. 9
2.2 Architectural Principles .. 10

2.2.1 Established Concepts ... 10
2.2.2 Emerging Concepts .. 21

2.3 Scalability Issues for Many-core Processors .. 26
2.4 Examples of Multi-core Processors ... 28

2.4.1 Processors Based on Low Number of Cores 29
2.4.2 Processors Based on Large Number of Cores 35
2.4.3 Heterogeneous Processors ... 40

2.5 Summary .. 41
References ... 42

3  State of the Art Multi-Core Operating Systems  45
3.1 Definition of an Operating System .. 45
3.2 Operating System Architecture: Micro-Kernels and

Monolithic Kernels ... 47
3.3 Scheduling .. 49

3.3.1 Symmetric Multi-Processing ... 50
3.3.2 Asymmetric Multi-Processing ... 51
3.3.3 Bound Multi-Processing .. 52

3.4 Memory Management .. 52
3.4.1 Virtual Memory and Memory Pages .. 54

xx

3.4.2 Memory Allocation and Fragmentation 55
3.5 Current Main-Stream Operating Systems .. 61

3.5.1 Linux .. 61
3.5.2 Solaris .. 65
3.5.3 Windows .. 69

3.6 Summary .. 74
References ... 74

4  The Fundamental Laws of Parallelism  ... 77
4.1 Introduction .. 77
4.2 Amdahl’s Law .. 77

4.2.1 Amdahl’s Law for Many-core Chips 79
4.3 Gustafson’s Law ... 82
4.4 The Unified Amdahl-Gustafson Law ... 84
4.5 Gunther’s Conjecture ... 86
4.6 The Karp-Flatt Metric .. 87
4.7 The KILL Rule ... 87
4.8 Summary .. 88
References ... 88

5  Fundamentals of Parallel Programming ... 89
5.1 Introduction .. 89
5.2 Decomposition and Synchronization ... 89

5.2.1 Functional Decomposition ... 90
5.2.2 Data-Based Decomposition ... 91
5.2.3 Other Types of Decomposition .. 91
5.2.4 Synchronization ... 92
5.2.5 Summary .. 93

5.3 Implementation of Decomposition ... 93
5.3.1 Summary .. 95

5.4 Implementation of Synchronization ... 96
5.4.1 Locks .. 97
5.4.2 Semaphores .. 99
5.4.3 Condition Variables and Monitors ... 100
5.4.4 Critical Sections ... 100
5.4.5 Transactional Memory ... 101
5.4.6 Shared Memory ... 102
5.4.7 The Follow the Data Pattern .. 103
5.4.8 Message Passing Based Communication 106
5.4.9 Partitioned Global Address Space (PGAS) 107
5.4.10 Future Constructs ... 107
5.4.11 Summary .. 108

5.5 Patterns of Parallel Programs ... 108
5.5.1 Structural Patterns .. 110
5.5.2 Parallel Algorithm Strategy Patterns 111

Contents

xixi

5.5.3 Implementation Strategy Patterns .. 112
5.5.4 Parallel Execution Patterns .. 114

5.6 Summary .. 115
References ... 115

6  Debugging and Performance Analysis of Many-core Programs  117
6.1 Introduction .. 117
6.2 Debugging .. 119
6.3 Analysis and Profiling .. 121
6.4 Performance Tuning ... 123
6.5 Summary .. 125
References ... 126

7  Many-core Virtualization and Operating Systems  127
7.1 Introduction .. 127
7.2 Fundamentals for a New Operating System Concept 128
7.3 Space-shared Scheduling ... 131

7.3.1 Architecture of a Space-shared Operating System 131
7.3.2 Benefits and Drawbacks of Space-shared Operating

Systems .. 133
7.3.3 Summary .. 135

7.4 Heterogeneity ... 135
7.4.1 Managing Core Capabilities in Single-ISA Chips 136
7.4.2 Managing Core Capabilities in Multi-ISA Chips 137
7.4.3 Summary .. 138

7.5 Power-aware Operating Systems ... 138
7.6 Virtualization in Many-core Systems ... 139
7.7 Experimental Many-core Operating Systems 140

7.7.1 Corey .. 141
7.7.2 fOS ... 142
7.7.3 Barrelfish ... 143
7.7.4 Tessellation .. 145
7.7.5 heliOS .. 147

7.8 Possible Future Trends: the Return of Speculative Execution 150
7.9 Summary .. 150
References ... 151

8  Introduction to Programming Models  .. 153
8.1 Introduction .. 153
8.2 Communicating Sequential Processes (CSP) 154

8.2.1 Practical Implementations of CSP ... 155
8.3 Communicating Parallel Processes and the Actor Model 157

8.3.1 Definitions and Axioms of the Actor Model 158
8.3.2 Practical Realizations of the Actor Model 160

8.4 Task-Based Programming Models ... 165

Contents

xiixii

8.4.1 Practical Realizations of the Task Based Model 167
8.5 Process Versus Task-Based Parallelism and the Usage of

Shared Memory .. 170
8.6 Summary .. 172
References ... 172

9  Practical Many-Core Programming  .. 175
Diarmuid Corcoran
9.1 Introduction .. 175
9.2 Task-Based Parallelism .. 176

9.2.1 Cilk .. 176
9.2.2 Grand Central Dispatch ... 180
9.2.3 Intel Thread Building Blocks ... 185
9.2.4 Microsoft Task Parallel Library ... 189
9.2.5 OpenMP 3.0 ... 195
9.2.6 Comparison of Task Based Programming Libraries 201
9.2.7 Summary .. 202

9.3 Data-Parallel Model ... 203
9.3.1 OpenCL .. 203

9.4 The Actor Model .. 207
9.4.1 Erlang’s Actor Model ... 207

9.5 Summary .. 210
References ... 211

10  Looking Ahead  .. 213
10.1 What We Learned Until Now ... 213
10.2 Scalability Bottlenecks ... 215
10.3 Scaling Hard to Parallelize Applications .. 216
10.4 Programming at Higher Abstraction Level 218
10.5 Interaction with Related Domains .. 220

10.5.1 Cloud Computing ... 220
10.5.2 Exascale Computing .. 221
10.5.3 Mobile Computing ... 221

10.6 Summary: the World of Computing in 2020 222
References ... 222

Index  ... 225

Contents

1

Abstract The primary goal of this chapter is to introduce the background and his-
torical reasons that led to the emergence of multi-core chips. We look at some of
the most important challenges—power constraints, memory latency and memory
bandwidth issues—that accompanied the development of computing environments
during the past two decades. Within this context we introduce the purpose and the
content of this book: a survey of the state of the art of practice and research into
programming chips with tens to hundreds of cores. The chapter is concluded with
the outline of the rest of the book.

1.1   The End of Endless Scalability

Ever since the microprocessor made its debut at the dawn of the eighth decade of
the last century, the computer software industry has enjoyed something of a free
ride—free lunch, if you wish [1]—in terms of computing power available for soft-
ware programs to use. Moore’s law [2], driven to self-fulfillment by the hardware
industry’s desire to deliver better and better chips, secured doubling number of tran-
sistors—and consequently, at least till recently, hardware performance—every two
years or so; if you ran into performance problems, those were solved within a few
months through the release of newer, faster, better hardware. Writing parallel pro-
grams was something that only the high performance computing experts or domain
experts working in similar, highly specialized fields of computing had to worry
about.

This free ride however came to a sudden halt at around 2004, when the speed of
a single processor core topped out at about 4 GHz. Since then, while Moore’s law
[2] still held (as exemplified in Fig. 1.1) and there were more and more transistors
crammed on smaller and smaller areas, the performance per single processor core,
measured as the amount of instructions per second it could execute, remained con-
stant or actually started to decline, along with the frequency at which the core was
run. All major hardware vendors started shipping processors with multiple proces-

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_1, © Springer Science+Business Media, LLC 2011

Chapter 1
Introduction

2

sor cores, finding thus a new use for the transistors churned out in accordance with
Moore’s law.

Why did this happen?
The prime reason was power consumption and power dissipation. The extra pow-

er consumption and dissipation resulting from pushing up the frequency of a single
core made this path simply not sustainable—neither from economical nor from
technological perspective. In terms of instructions per chip per second, two or more
cores running at lower frequencies could deliver significantly better performance
within the same power budget than a single core running at a higher frequency.
Following the rule of diminishing returns, it was simply not viable to improve the
performance of a chip with some low percentage points at the expense of dramatic
increase in power consumption—sometimes toppling 100%. From hardware per-
spective, Moore’s law still guaranteed higher transistor densities and all those tran-
sistors could be used to execute more instructions per second, without an unsustain-
able increase in the power consumption of chips.

There was another, more subtle observation that triggered the push for chips with
large numbers of simpler cores. It was most concisely formulated in Ref. [3] as the
KILL rule (stands for Kill if Less than Linear). Essentially, it argues for omitting
architectural innovations—such as deeper pipelines, speculative threads etc—if
the performance gain is less than linear (with respect to number of transistors and
power required). It is one of the fundamental principles underpinning the design of
chips such as Tilera’s family of Tile-architecture based, massively multi-core chips.

1 Introduction

Fig. 1.1   Moore’s law. (Source: Wikipedia, under Creative Commons license)

1971 1980 1990 2000 2008

Date of introduction

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,000,000,000

T
ra

ns
is

to
r

co
un

t

4004 8008

8080

8088

286

386

486

Pentium
K5

K6
PII

Curve shows ‘Moore’s Law’:
transistor count doubling
every two years

PIII
K6-III
K7

P4 Barton Atom

K8
Cell
Core 2 Duo

K10

Itanium 2
Core 2 Quad

RV770
GT200
Quad-Core Itanium TukwilaDual-Core Itanium 2

POWER6
G80

Itanium 2 with 9MB cache

CPU Transistor Counts 1971–2008 Moore's Law

3

1.2   The Trouble with Software

This approach however shifted the focus to software. Suddenly, software writers
found themselves in the situation of seeing the performance of their products stag-
nate or even run slower on newer hardware. For many, this was—and is—a major
shock: one had to rethink the software architecture and go through the painful pro-
cess of re-architecting a working piece of software in order to keep up with the per-
formance requirements that never ceased to come, while re-educating programmers
so used to single-threaded coding and free performance boost from newer hardware.
Needless to say, this adjustment came at a cost far greater than the Y2K problem;
even worse, we are just at the beginning of this process, as for many applications the
problem of dealing with multi-core processors is yet to come.

The challenges for the programming community do not stop here, however;
there are two other factors that will have a decisive impact on the way we will build
software: memory interface and scaling.

It’s one of the inconvenient truths of the computing industry that on-chip com-
puting power kept increasing much faster than the speed of access to memory. Hard-
ware providers tried to address this yawning gap through ever more sophisticated
caching architectures, smart predictors and pre-fetch engines, with varying degrees
of success for single-core applications. The emergence of multi-core chips adds
however an extra dimension to this problem, concurrent and competing access to
the same scarce resource. This brings a whole new set of issues that cannot be
solved anymore in hardware alone and hence will impact the software as well: how
to access a shared memory location concurrently without a major impact on perfor-
mance; how to negotiate, prioritize and manage concurrent and competing requests
to different locations in the memory; how to guarantee integrity and consistency
over time of data logically belonging to different cores; in general, how best to
exploit a scarce resource (memory bandwidth and on-chip memory) that just got a
lot more scarcer.

The second challenge, with a much more far-reaching consequence is that of
scale. The chip industry has recently coined the ‘new’ Moore’s law, predicting that
the number of cores per chip wills double every two years over the next decade,
leading us into the world of many-core processors—loosely defined as chips with
several tens, but more likely hundreds, or even thousands of processor cores. De-
pending from where we start (there are today general purpose chips with 4 to up
to 100 cores), this law, if proven to be true, will mean chips with 32–512 cores by
2014 and between 256 and 4000 cores by 2020. Indeed, looking back and setting
2004 as the base year (the last year with just one core per chip), we did see chips
with dual cores in 2006 (in fact, already during 2005) and with 4 cores in 2008,
chips with at least 8 cores being delivered by all major chip vendors during 2010;
Intel has recently announced [4] a new chip with more than 50 cores, scheduled for
introduction in 2012 or 2013.

All this data backs up, albeit within a limited time-span, the claims of the new
Moore’s law. At this scale, constructs and techniques that work well for processors

1.2 The Trouble with Software

4

with just a few cores—shared memory, locks, monolithic OS kernels, cache sys-
tems—have been shown to become bottlenecks that are increasingly more difficult
to tackle with every step in chip development.

1.3   The Book

This is the setting where this book fits in. It is based on two beliefs: first, that we
will indeed see widespread, even dominating, presence of chips with hundreds of
cores within five years; second, that using and programming these chips will re-
quire fundamental shifts in how all the layers of computing—from the hardware,
through the virtual machine monitor, operating system and middleware to the ap-
plication software, including programming models, paradigms and programming
languages—will be constructed, adapted, re-invented and connected. We do not
aim at introducing some revolutionary new way to address these issues; rather, our
goal is to present the state of the art of research and practice of designing the vari-
ous layers of the software stack for chips with tens to hundreds of processor cores,
along with our critical analysis of the suitability of technologies and approaches for
various problem domains. Our deep conviction is that there is no silver bullet—but
there is a consistent body of high quality research that every programmer using the
chips of the future shall be aware and familiarized with and use it for the domain he
or she works with. We set out to provide the tool for this, through the book you are
now holding in your hands.

Consequently, this book is structured in four main parts. In our view, no pro-
grammer can claim to be an expert without a good understanding of the hardware
on which his or her software will execute: how the hardware is organized, how
programming concepts are mapped to the hardware, how the way hardware works
can influence the correctness and performance of the software. This is the focus of
the first part of the book, which consists of only one chapter: Multi- and Many-core
Processor Architectures. In this chapter we evaluate different technologies related
to instruction set architectures, cache and shared memory structure and scalability,
on-chip interconnects, power design, but also novel ideas such as 3D stacking and
innovative usage of frequency and voltage scaling.

The second part introduces the current state of the art in existing technologies for
programming multi-core processors, covering all layers from operating systems to
the application programming models. It lays the foundation for part three, through
the detailed discussions of the concepts related to parallel programming in general.
Besides introducing the terminology that we will use in the second part of the book,
we also take a critical look at the bottlenecks and limitations with current solutions,
thus setting the frame for the ideas presented in the third part. This part consists of
four chapters:

• Chapter 3, Multi-core Operating Systems: State of the Art introduces the con-
cept of operating system, the roles of an operating system as well as the various

1 Introduction

5

architecture choices of main-stream operating systems. The chapter also surveys
the concrete implementation mechanisms behind the most important operating
systems of today: Linux, Solaris and Windows, with respect to issues relevant
from many-core programming perspective

• Chapter 4, Fundamental Laws of Parallelism focuses on the fundamental laws
of parallel programming: Amdahl’s [5] and Gustafson’s [6] law, the Karp-Flatt
metric as well as the relationship between these. We also describe some of the
more controversial observations and qualitative laws, such as Gunther’s conjec-
ture and the KILL rule [3] we already mentioned

• Chapter 5, Fundamentals of Parallel Programming describes the basic con-
cepts of parallel computing—decomposition and synchronization—as well as
the ways to realize these. This chapter also covers the main patterns of parallel
programs, captured in the unified pattern language for parallel programs called
OPL [7]

• Chapter 6, Debugging and Performance Analysis of Many-core Programs is an
introduction to the concepts of debugging, analysis, profiling and performance
tuning of programs targeting many-core processors

The third part of the book targets novel approaches to programming true many-core
chips (with hundreds to thousands of cores). This part includes three chapters:

• Chapter 7, Many-core Virtualization and Operating Systems discusses the scal-
ability issues of current operating systems, such as limitations of symmetric
multi-processing approaches, current resource management and scheduling poli-
cies, as well as approaches to synchronization, computation and data locality; it
describes the principles that shall underpin the architecture of operating systems
for many-core chips: space-shared scheduling, support for heterogeneity, power
awareness and the role of virtualization. We also introduce a conceptual architec-
tural model for operating systems for many-core chips, based on research results
from the academic and industrial community, as basis for building programming
models and programming languages. We will illustrate these concepts through
some of the most promising research operating systems emerging from the OS
research community

• Chapter 8, Introduction to Programming Models focuses on the models we be-
lieve are best suitable for many-core chips: communicating sequential processes,
the actor model and task-based parallelism, along with a comparison of process
versus task based parallelism. We illustrate each of these models through repre-
sentative programming languages and libraries, such as

− Occam and the Go language for the communicating sequential processes
model

− Erlang, Haskell and Scala for the actor model
− X10 and Chapel for the task based model

• Chapter 9, Practical Many-core Programming is a comprehensive analy-
sis of the principal frameworks for task-parallel, data-parallel and actor based

1.3 The Book

6

programming. We will illustrate, through concrete examples and an in-depth de-
scription of the internals, the following:

− Cilk, Apple’s Grand Central Dispatch, Intel’s Thread Building Blocks, Micro-
soft’s Task Parallel Library and OpenMP 3.0 for task-parallel programming,
including a comparative analysis of the strengths and weaknesses of these
libraries

− OpenCL for data-parallel and—to some extent—task parallel programming
− Erlang for actor-based programming

No book on many-core programming would be complete without a peek into the
crystal ball for what the future holds in terms of technological evolution and chal-
lenges—so we’ll end with our take at how the computing industry will look like
within ten years. This is the focus of the final part of the book, consisting of Chap. 10,
Looking Ahead. We’ll do this despite the warning from Winston Churchill, that “it’s
difficult to make predictions, especially about the future” and all the failed prophe-
cies of the computing industry over its more than 60 years of existence that proved
to be over-cautious understatements. We will analyze the problem area of scaling
programs with limited parallelism; the need for programming at higher abstraction
level; as well as the interaction with some related domains such as cloud computing,
mobile computing and exascale computing.

1.3.1   Applications

We took a decision early on to exclude discussion of specific application domains.
Our goal is to describe and compare the programming mechanisms in general; it’s
beyond our intention or, indeed, capabilities, to make qualified recommendations
for different domains. It would also be difficult to cover all important applications;
leaving some out would result in an incomplete work.

It’s our strong belief that eventually most application domains will face the chal-
lenge of adapting to multi-core chips—consequently, our duty is to address as big
part of the community as possible.

1.4   Summary

We have a confession to make: after concluding the writing of the rest of the book,
we had to re-visit the content of this chapter. Over the months of working on the
book, our field has changed so much that we had to adapt “on the fly” and conse-
quently, the content of the book is different compared to what we originally envi-
sioned and initially described in the first version of this chapter.

In this quickly changing domain, we tried to avoid insisting on transient “fashion
concepts” and instead focus on the important fundamentals required to understand

1 Introduction

7

the big picture of programming many-core chips—principles and practices that
have proven to be sound over and over and are unlikely to change. Whether we suc-
ceeded or not, it’s up to you, dear reader, to decide. We can only hope you will find
the content of this book insightful and useful for your work or passion.

We cannot conclude this chapter without thanking all those who supported us
in this work: first of all our families who endured the extended periods of time
dedicated to writing; Anders Caspár at Ericsson for his continued support and en-
couragement; our editor at Springer, Chuck Glaser, who initiated this book in the
first place and whose discrete yet efficient shepherding made sure that we actually
deliver it; last but not least, all those colleagues and friends who, through their in-
put, comments or simply encouragement facilitated the writing of this book.

References

1. Sutter, H (2005) The Free Lunch is Over: A Fundamental Turn toward Concurrency in Soft-
ware. Dr. Dobb’s Journal 30(3)

2. Moore G (1965) Cramming More Components onto Integrated Circuits. Electronics 38(8),
Available from Intel’s homepage: ftp://download.intel.com/museum/Moores_Law/Articles-
Press_Releases/Gordon_Moore_1965_Article.pdf. Accessed 11 January 2011

3. Agarwal A, Levy M (2007) The KILL Rule for Multicore. Design Automation Conference
2007: 750-753

4. Intel Corporation (2010) Petascale to Exascale: Extending Intel’s HPC Commitment. http://
download.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.pdf. Accessed
11 January 2011

5. Amdahl G (1967) Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities. American Federation of Information Processing Societies (AFIPS) Con-
ference Proceedings 30:483-485

6. Gustafson J L (1988) Reevaluating Amdahl’s Law. Communications of the ACM 31(5): 532-
533. Online at http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html. Ac-
cessed 11 January 2011

7. Mattson T (2010) Our Pattern Language (OPL). http://parlab.eecs.berkeley.edu/wiki/_media/
patterns/opl_pattern_language-feb-13.pdf. Accessed 11 January 2011

References

9

Abstract No book on programming would be complete without an overview of
the hardware on which the software will execute. In this chapter we outline the
main design principles and solutions applied when designing these chips, as well as
the challenges facing the hardware industry, together with an outlook of promising
technologies not yet in common practice. This chapter’s main goal is to introduce
the reader to the most important processor architecture concepts (core organization,
interconnects, memory architectures, support for parallel programming etc) relevant
in the context of multi-core processors as well the most common processor archi-
tectures available today. We also analyze the challenges faced by processor designs
as the number of cores will continue scaling and the emerging technologies—such
as transactional memory, support for speculative threading, novel interconnects, 3D
stacking of memory etc—that will allow continued scaling of processors in terms of
available computational power.

2.1   Overview

In 2001 the first general-purpose processor that featured multiple processing cores
on the same CMOS die was released: the POWER4 processor of IBM. Since then,
multi-core processors have become the norm and currently the only way to improve
the performance for high-end processors is to add support for more threads, either
in the number of cores, or through multithreading on cores to mask long-latency
operations.

There are multiple reasons why the clock rate gains of the past cannot anymore
be continued. The unsustainable level of power consumption implied by higher
clock rates is just the most obvious and stringent reason; equally important is the
fact that wire delays rather than transistor switching will be the dominant issue for
each clock cycle.

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_2, © Springer Science+Business Media, LLC 2011

Chapter 2
Multi-core and Many-core Processor 
Architectures

With Contribution by Mats Brorsson

10

Compared to single-threaded processors, multi-core processors are highly di-
verse and the design space is enormous. In this chapter we present the architectural
principles of multi-core chip architectures, discuss some current examples and point
out the critical issues with respect to scalability.

2.2   Architectural Principles

Many of the technologies behind current multi-core architectures were developed
during 1975–2000 for parallel supercomputers. For instance, directory-based cache
coherence was published in 1978 by Censier and Featrier ([1]) who then referred
to snoopy cache coherence (although it was not called so) as “the classical solu-
tion”. The development of semiconductor technology has permitted the integration
of these ideas onto one single-chip multiprocessor, most often called a multi-core
processor. However, as always, the trade-offs become radically different when inte-
grated onto the same silicon die.

In addition, recent advances in semiconductor technology have permitted greater
control and flexibility through separate voltage and frequency islands which pro-
vide system software the possibility to control performance and adjust power con-
sumption to the current needs.

This section is divided into two parts: established concepts, which focuses on the
architectural ideas forming the basis of all multi-core architectures, one way or the
other, and emerging concepts describing ideas that have only been tried experimen-
tally or implemented to a limited extent in commercial processors.

2.2.1   Established Concepts

The very concept of multi-core architecture implies at least three aspects that will
be the main topics of this chapter:

• There are multiple computational cores
• There is a way by which these cores communicate
• The processor cores have to communicate with the outside world.

2.2.1.1   Multiple Cores

The concept of multiple cores may seem trivial at first instance. However, as we
will see in the section about scalability issues there are numerous tradeoffs to con-
sider. First of all we need to consider whether the processor should be homogeneous
or expose some heterogeneity. Most current general-purpose multi-core processors
are homogeneous both in instruction set architecture and performance. This means

2 Multi-core and Many-core Processor Architectures

11

that the cores can execute the same binaries and that it does not really matter, from
functional point of view, on which core a program runs. Recent multi-core architec-
tures, however, allow for system software to control the clock frequency for each
core individually in order to either save power or to temporarily boost single-thread
performance.

Most of these homogeneous architectures also implement a shared global ad-
dress space with full cache coherency (which we discuss later), so that from a soft-
ware perspective, one cannot distinguish one core from the other even if the process
(or thread) migrates during run-time.

By contrast, a heterogeneous architecture features at least two different kinds of
cores that may differ in both the instruction set architecture (ISA) and functionality
and performance. The most widespread example of a heterogeneous multi-core ar-
chitecture is the Cell BE architecture, jointly developed by IBM, Sony and Toshiba
[2] and used in areas such as gaming devices and computers targeting high perfor-
mance computing.

A homogeneous architecture with shared global memory is undoubtedly easier to
program for parallelism—that is when a program can make use of the whole core—
than a heterogeneous architecture where the cores do not have the same instruction
set. On the other hand, in the case of an application which naturally lends itself to
be partitioned into long-lived threads of control with little or regular communica-
tion it makes sense to manually put the partitions onto cores that are specialized for
that specific task.

Internally the organization of the cores can show major differences. All modern
core designs are today pipelined, where instructions are decoded and executed in
stages in order to improve on overall throughput, although instruction latency is the
same or even increased. Most high-performance designs also have cores with specu-
lative dynamic instruction scheduling done in hardware. These techniques increase
the average number of instructions executed per clock cycle but because of limited
instruction-level parallelism (ILP) in legacy applications and since these techniques
tend to be both complicated and power-hungry as well as taking up valuable silicon
real estate, they are of less importance with modern multi-core architectures. In fact,
with some new architectures such as Intel’s Knights Corner [3], the designers have
reverted to simple single-issue in-order cores (although in the Knights Corner case
augmented with powerful vector instructions, in order to reduce the silicon footprint
and power consumption of each core).

A counter measure for limited instruction level parallelism added to the most
advanced cores is simultaneous multithreading (SMT), perhaps better known by its
Intel brand name hyper-threading. This is a hardware technique that allows better
utilization of hardware resources where a multi-issue pipeline can select instruc-
tions from two or more threads. The benefits are that for applications with abundant
ILP, single-thread performance is high, while with reduced ILP, thread-level paral-
lelism can be utilized. Simultaneous multithreading has the nice property that it is
relatively cheap in terms of area (the state for each thread and a simple thread selec-
tion mechanism) and extra power consumption.

2.2 Architectural Principles

12

2.2.1.2   Interconnection Networks

Having multiple cores on a chip requires inter-core communication mechanisms.
The historical way that the individual processors in a shared memory multiproces-
sor communicate has been through a common bus shared by all processors. This is
indeed also the case in the early multi-core processors from general purpose ven-
dors such as AMD or Intel. In order not to flood the bus with memory and I/O
traffic, there are local cache memories, typically one or two levels, between the
processor and the bus. The shared bus also facilitates the implementation of cache
coherency (more about that in the section about shared memory support below) as
it is a broadcast communication medium which means that there is always a global
order of shared memory operations.

More recent designs are based on the realization that shared communication me-
diums such as buses are problematic both in latency and bandwidth. A shared bus
has long electrical wires and if there are several potential slave units—in a multi-
core processor all cores and memory sub-system are both slaves and masters—the
capacitive load on the bus makes it even slower. Furthermore, the fact that several
units share the bus will fundamentally limit the bandwidth from each core.

Some popular general purpose multi-core processors at the time of this writing
use a cross-bar interconnect between processor modules—which include one or
two levels of cache memories—and the rest which includes the last-level cache and
memory interfaces. Other technologies—such as multiple ring busses, switched on-
chip networks—are emerging and gaining traction due to either lower power con-
sumption, higher bandwidth or both. As the number of cores will increase, on-chip
communication networks will increasingly face scalability and power constraints.

Figure 2.1 provides an overview of the most common designs of on-chip inter-
connect used in today’s systems.

2.2.1.3   Memory Controllers

The memory interface is a crucial component of any high-performance processor
and all the more so for a multi-core processor as it is a shared resource between all
the cores on the chip. In recent high-end chips from both AMD and Intel, the mem-
ory controller was moved onto the chip and is separated from the I/O-interfaces in
order to increase the memory bandwidth and to enable parallel access to both I/O
devices and memory.

Of particular interest is the DRAM controller where the focus during the last few
years has been to provide for increased throughput rather than low latency. DRAM
request schedulers do not maintain a FIFO ordering of requests from processors to
the DRAM. Instead, they try to combine accesses to the same DRAM page if pos-
sible, in order to best utilize open pages and avoid unnecessary switching of DRAM
pages [4]. For a multi-core system, one can get both synergies as well as interfer-
ences in these aggressive DRAM schedulers [5].

2 Multi-core and Many-core Processor Architectures

13

One would expect synergies in the case of parallel programs that divide the work
in a data-parallel fashion. In such programs, threads executing on different cores
tend to work on the same instructions and with data located close to other threads’
working-set and therefore the likelihood that they will access the same DRAM-pages
is increased. On the other hand, when multi-core processors become many-core,
we will see space-sharing in conjunction with the time-sharing that takes place in
today’s operating systems. This also happens if multi-core processors are used for
throughput computing with multiple sequential applications rather than using them
for parallelism. In these cases, the different applications will fight for the shared
resources and may severely interfere with each other.

The memory controller is also the place where sophisticated pre-fetch mecha-
nisms are usually implemented.

On the other hand, better utilization of increased memory bandwidth also leads
to increased thermal development in the shared DRAM. Therefore, recent advances
have brought forward both specialized DRAM DIMM modules for improved power
consumption performance and memory controllers with DRAM throttling to reduce
excessive temperature [6].

Fig. 2.1   Types of on-chip interconnect

P P P

Bus interconnect

P P P

P P P

Ring interconnect

P P P P

P P P P

P P P P

P P P P

Mesh interconnect

P

P

Crossbar interconnect

P

P

2.2 Architectural Principles

14

2.2.1.4   Shared Memory Support

With shared memory we mean that the processing cores can communicate with each
other storing data in shared memory locations and subsequently reading them. The
actual communication takes place over the interconnection network as discussed
earlier.

A shared address space facilitates migration from a sequential programming
model to a parallel one, in that data structures and control structures in many cases
can be kept as those were in the sequential program. Programming models such as
OpenMP [7] and Cilk [8] also allow for an incremental parallelization of the soft-
ware, rather than the disruptive approach needed for a message-passing approach.
That said, shared memory does not come for free, particularly when the core count
goes up.

In the high-performance computing area, shared memory has generally not
been used since its current implementations do not scale to the thousands or
even hundreds of thousands of nodes used in the top-performing compute clus-
ters today. These clusters, however, are built out of shared memory nodes and
although programmers may or may not use shared programming models within
a node, the hardware of these nodes typically implement a shared address space.
The best performing programs in these machines typically use a hybrid program-
ming model using message-passing between nodes and a shared memory within
a node.

For these reasons, all general-purpose multi-core processors today support a
shared address space between cores and maintain a cache-coherent memory system.
By definition, a cache system is said to be coherent if and only if all processors, at
any point in time, have a consistent view of what is the last globally written value
to each location.

Over the time, various cache organization architectures have been proposed, re-
lying on private, shared or mixed, flat or hierarchical cache structures. Figure 2.2
gives a schematic overview of various cache architectures.

The cache coherency mechanism allows processors fast access to commonly
used data in their own private caches while still maintaining consistency when
some other processor updates shared variables. The most common implementation
uses invalidation mechanisms where local copies are invalidated if a core updates
a shared variable. Figure 2.3 illustrates this basic principle of cache coherence
through a simple example of access to shared memory.

In the example in Fig. 2.3 we have three cores, each with a private level 1 (L1)
cache. For simplicity we only show the data cache, although the cores also typically
have separate private instruction caches as well. There is also a shared level 2 cache
unified for data and instructions. For now we assume that the cores and the L2 cache
are interconnected through a shared bus.

Consider the case where both core 0 and core 1 have read the value of address
A and thus both have a copy of A in their L1 caches. The need for cache coherence
arises when either core 0 and 1 needs to update the value of A and the other core
subsequently wants to read it. The example at the bottom of Fig. 2.3 illustrates

2 Multi-core and Many-core Processor Architectures

15

a sequence of accesses to block A that will lead to some coherence actions to be
performed.

The coherence actions taken on a cache block is governed by a set of state-
machines. The different coherence protocols employed are often named after these
states. An example of a commonly used cache coherence protocol is the MESI pro-
tocol, deployed in Intel processors. MESI stands for the four states a cache-block
can be in according to below:

• Modified—A block in this state is the only valid copy of the block. The memory
does not hold valid information and no other cache may have a valid copy. The
core that owns this block can write to it without notifying any other core.

• Exclusive—The first core to read in a block from memory will load it into the
Exclusive state. This means that if the same core later modifies the block, it can
silently be upgraded to the modified state without notifying anyone else. This is
beneficial for the vast majority of data which is not shared between threads or
processes. If a block is in the exclusive state we know that

Fig. 2.2   Examples of cache architectures

P P PP

Shared cache

Interconnect

Memory

P P PP

Private
cache

Interconnect

Memory

P P PP

Interconnect

Memory

Shared cache Shared cache

P P PP

2D mesh interconnect

Memory

Shared cache only for all cores

Multi-level architecture with both
private and shared cache

Private cache only for each cores

Private caches but managed as
one shared cache

Private
cache

Private
cache

Private
cache

Private
cache

Private
cache

Private
cache

Private
cache

Used as non-uniform shared cache

Private
cache

Private
cache

Private
cache

Private
cache

2.2 Architectural Principles

16

− the memory has an up-to-date copy
− there are no other cached copies in the system.

• Shared—As soon as a second core is reading the same block, it will be loaded to
the cache of that core and will be marked Shared in all caches

• Invalid—As soon as one of the copies is modified by one of the cores, all other
copies will be marked invalid and will need to be refreshed at the next access

MESI is just one of many cache coherence mechanisms proposed and implemented
over time. Our goal is just to introduce the basic concepts; for a thorough overview
of the area, we recommend one of the well-established books in computer architec-
ture, such as Ref. [9] and [10].

The concept of cache coherence makes it easy to write efficient parallel pro-
grams using threaded or task-centric programming models. However, it also adds
to the complexity of the memory hierarchy and power consumption. Clearly, for a
parallel program to be scalable, the use of shared resources—be it memory loca-
tions, interconnects or memory interfaces—leads to performance bottlenecks. We
will elaborate on this in the section dedicated to scalability issues later on.

Fig. 2.3   Example of cache coherence in practice

Initial state of block A is un-cached.

The ownership is transferred to P1. The block is now exclusive in cache 1.
The copies in both cache 0 and cache 2 are invalidated.

Store At6

Block is now also cached in cache 2. Load A

The newly updated value in cache 0 is transferred to cache 1. The block is
shared. Memory may or may not be updated depending on cache
coherence protocol used.

Load A

This load will hit in the cache and no coherence action is needed.Load At3

The copy in cache 1 needs to be invalidated. The block is
exclusive in cache 0.

Store At2

A copy in both cache 0 and 1. The block is shared.Load ALoad At1

CommentsP2P1P0
Time

P0 P1 P2

Data cache

Interconnect

t5

t4

Data cache Data cache

2 Multi-core and Many-core Processor Architectures

17

2.2.1.5   Memory Consistency

The problem of consistent view of the memory is one of the fundamental problems
that need to be tackled in any multi-core design. The existence of multiple copies
of the same physical memory location—at various levels of caches but also within
processor cores—requires a consistent and easy to understand model of how con-
current loads and stores are coordinated in order to maintain a consistent view of
the content of the memory.

One of the important concepts related to memory consistency is store atomic-
ity. In the presence of multiple copies of the same memory location, a store to that
memory location needs to be propagated to all cores in zero time—something that’s
impossible to achieve in practice. However, the appearance of instantly propagated
store can be achieved if a global order of store operations to the same memory loca-
tion is enforced and a load (use of the value) is globally performed before the value
it returns is used, meaning that the store providing the new value is performed with
respect to all cores in the system.

The strictest memory consistency model available today is called sequential con-
sistency. Formally, it is defined as follows:

A multiprocessor is sequentially consistent if the result of any execution is the same as if
the memory operations of all threads were executed in some sequential order and the opera-
tions of each individual thread appear in thread order.

Intuitively, it means that, while the order of memory accesses with respect to one
core is maintained, accesses from different cores may be interleaved in any order.
If one would perform a poll among programmers, this would be the most popular
choice of memory model—but it requires significant implementation effort in hard-
ware.

Several other models have been proposed over time, with weaker consistency
requirements. Here are a few examples:

• allow a load to bypass a store within a core, if it addresses a different location in
the memory

• allow stores issued from a core to be used by subsequent core-local loads even
before it’s globally visible

• rely on the use of atomic sections when accessing shared memory areas, thus
enforcing mutual exclusion; all other loads and stores are performed without any
consistency enforcement, as these are considered core local

• processors relying on out of order execution sometimes deploy speculative vio-
lations of memory orders: the core will assume that the values read or written
will not conflict with updates from other cores; if this assumption turns out to be
wrong, the operation is rolled back and re-executed; however significant perfor-
mance gains can be achieved in case no conflicts are detected

While taken for granted by programmers, memory consistency is one of the most
critical and complex issues to be considered when designing multi-core systems.
Understanding the fundamentals of how memory access works is therefore essen-

2.2 Architectural Principles

18

tial when dealing with tricky concurrency bugs or implementing support for basic
synchronization primitives.

2.2.1.6   Atomic Operations

As we will see further on in this book, partitioning into parallel tasks and synchroni-
zation between tasks are the fundamental activities that are required when designing
software for many-core systems. Synchronization is very hard to realize in software
alone, thus support in hardware is required; however, hardware only synchroniza-
tion is usually hard to scale and has limited flexibility. Therefore the most common
solutions rely on software with basic support from the hardware. We will look at
the software solution in Chap. 5; here we will focus on the support available in
hardware.

The mechanism that modern processors provide in order to support synchroniza-
tion mechanisms are so called read-modify-write (RMW) or conditional stores. The
basic principle behind these instructions is to provide the smallest critical section
that guarantees conflict free access to a specific memory location that will contain
the value used for synchronization. The most commonly used RMW instructions
are listed below:

• Test and set (T&S): it reads a memory location, sets it to 1 and returns the value
read in a register atomically (thus no other core can perform any store action on
this memory location while the T&S instruction is being executed). Using this
instruction, the mechanism to acquire/release a lock would look like this:

• Compare and swap (CAS): atomically compares the value in the memory to a
supplied value and, if these are equal, the content of the memory is swapped with
the value stored in a register. Lock implementation using CAS looks like this
(quite similar to T&S based implementation):

• Load-linked and store-conditional: this is a de-coupled version of T&S, which
is more pipeline-friendly. While there are two instructions in this case, the two
are linked: after a load-linked, a store-conditional will only succeed if no other
operations were executed on the accessed memory location since the execution

2 Multi-core and Many-core Processor Architectures

19

of the load—otherwise will set the register used in the store-conditional to 0.
Here’s how locking can be implemented with these mechanisms:

The presence of one of these ISA level constructs is essential for implementing
higher level synchronization mechanisms. However, just one of these basic mecha-
nisms is sufficient for most flavors of software synchronization primitives as well
as for realization of lock-free data structures.

2.2.1.7   Hardware Multi-threading

As the capabilities and speed of cores kept improving at a more rapid pace than
that of memory, the net result was that cores were idling for a significant share
of the time while waiting on high latency memory operations to complete. This
observation led to the implementation of hardware multi-threading, a mechanism
through which a core could support multiple thread contexts in hardware (includ-
ing program counter and register sets, but sharing e.g. the cache) and fast switching
between hardware threads whenever some of the threads stalled due to high latency
operations.

Various implementations of this concept have been provided over time, but most
present systems use a fine-grained multithreading approach in the context of out-
of-order cores called simultaneous multi-threading. In each cycle, instructions from
different hardware threads are dispatched, or—in case of super-scalar processors
where multiple instructions can be dispatched per core cycle—even instructions
from different threads may be executed in parallel. As instructions from different
threads use different registers, the latency of detecting where out-of-order execution
can be performed is significantly reduced, leading to a higher density of instructions
effectively executed per cycle. The goal of this technique is ultimately this: assum-
ing that the software is multi-threaded, exploit it to mask the slowness of fetching
data from memory and improve core utilization.

This technique has been implemented by most major vendors, including Intel
(through the Hyper Threading Technologies (HTT) concept), IBM (which also sup-
ports thread priorities) and Oracle Sun (where as much as eight hardware threads
are supported on each core).

Few years ago, there were arguments brought forward [11] that suggested that
hardware threads actually consume more power than similar designs based on
multiple cores, while also increasing the frequency of cache trashing. By 2010

2.2 Architectural Principles

20

however most chip vendors either already supported it or announced plans to do
so.

The usefulness of this technology also has its limit however. Recently, the gap
between the speed of memory access and speed of cores started to narrow due to the
decline in processor core frequencies; therefore latency-hiding techniques will yield
smaller benefits. Considering the performance gain per watt, it’s likely that these
techniques will be replaced by other mechanisms, such as increased cache sizes.

2.2.1.8   Multi-processor Interconnect

Multi-processor, cache coherent interconnect is an important building block for
today’s multi-processor, NUMA systems: it allows linking multiple processors to-
gether in order to provide a single logical processing unit. There are two major
technologies found in today’s systems:

• HyperTransport, a standardized low-latency packet-oriented point-to-point link
supported by many major vendors (except Intel); its latest specification allows
for speeds up to 51.2 Gbps/s, running at 3.2 GHz

• Intel’s QuickPath Interconnect (QPI), used in most Intel chips

These types of interconnects are also used for connecting with I/O devices; how-
ever, in the context of this book, their importance lies in the possibility of creat-
ing more complex, higher core count logical processors from simpler building ele-
ments, with just a few cores.

2.2.1.9   Summary

In this section we introduced the well established concepts used in the design of the
state of the art multi-core systems. There’s a red line throughout these concepts that
can be summarized in a few principles and assumptions:

• The only way forward is to start adding—albeit slowly—more cores to future
chip designs

• These cores shall still be quite complex and high performance to support single
threaded applications

• Shared memory on hardware level will still be required, even as we scale up the
number of cores per chip

• The main issues to address are still memory access latencies, hence we need con-
tinued support for cache hierarchies and mechanisms that can improve efficiency
of core usage

Only recently the community started questioning some of these principles and as-
sumptions, which we will discuss later on in this chapter. It’s therefore useful to
look at some of the other ideas that are slowly making their way into the design of
multi-core processors.

2 Multi-core and Many-core Processor Architectures

21

2.2.2   Emerging Concepts

As multi-core chips became ubiquitous, several new issues emerged that required
new solutions, while some existing, well-known problems have found novel solu-
tions. In this chapter we will look at some of these concepts.

The problem of memory wall, initially defined as the gap between the speed of
processors and the speed of memory access, has slowly morphed into a different
problem: the latency gap became smaller, but with the increase in the number of
cores, the need for memory bandwidth has increased. Interconnects became the
other issue that needed attention: existing solutions became either too power hungry
as the transistor count went up (the case of bus or ring solutions) or led to higher
latency (mesh networks), as the number of cores continues to increase. Finally, the
larger number of cores starts to question the emphasis on core usage efficiency and
ideas relying on using some of the cores (or at least hardware threads) as helpers
have popped up recently.

On software side, as the number of cores increased, the cost of pessimistic, lock-
based synchronization of access to shared memory got higher, prompting the search for
new mechanisms, leading to the emergence of the concept of transactional memory.

2.2.2.1   Scouting and Helper Threads

The idea of scouting hardware threads was promoted by Sun as part of the design of
their new processor called Rock (canceled since). The idea is to let the execution of
a hardware thread continue even if normally it would stall due to e.g. a memory ac-
cess: while waiting for the data to be fetched, the processor switches to a mode called
scouting and would execute those instructions—out of order—that are not dependent
on the result of the instruction that caused the stalling. Once the execution of the high
latency instruction completes, the execution is re-synchronized and continued from
the next instruction that was left out by the scouting process (due to data dependency
or latency of execution). This technique could be augmented with speculative execu-
tion: the processor could speculate on the likely outcome of the stalled instruction
and use this assumption for the scout thread’s run-ahead execution.

The scout thread idea clearly targeted the traditional memory wall problem, try-
ing to mask the latency of memory accesses. We believe that in this form and under
this assumption (latency is the primary concern) it is a technique of diminishing
returns; however the idea itself—using helper threads to speed up execution—has
its merits and alternative use cases have been proposed.

Paper [12] proposes the usage of helper threads to improve the efficiency of
cache usage: a separate core (or hardware thread) would monitor the memory traffic
to and from a specific core, recording memory access patterns; using this informa-
tion, whenever the same pattern is observed again, the helper core would initiate
fetching of data from memory to cache, thus pre-loading the cache ahead of time.
If the data is already in the cache, the helper core could make sure that it stays there
and no unnecessary write-backs would occur. This technique tends to reduce both

2.2 Architectural Principles

22

latency, but also optimize memory bandwidth usage: if the prediction is correct,
useful memory traffic is prioritized and unnecessary one can be avoided.

A similar idea is proposed in Ref. [13] to cache invalidation (trashing). In this
case, the execution of the OS would be offloaded to a special core, so that the
content of the cache relevant for the application would not be destroyed through
the loading of the data needed by the OS. This idea is similar to the factored OS
principle that we will present in Chap. 7.

Thread Level Speculation

Thread level speculation support in hardware is quite similar to the scouting thread
concept: the processor is capable of performing run-ahead execution on certain
branches, using private copies of data and registers, at the end either validating
or discarding the result. This idea may get more traction as the number of cores
will continue to increase: some of the cores can be used to perform speculative
execution on behalf of the main branch of execution. Such an approach suits well
heterogeneous single-ISA multi-core architectures: the main thread of execution is
placed on the high-capability core, while the simpler cores will be responsible for
low power speculative pre-execution.

These ideas have not yet made their way into actual products, but as we will see
later on in this book, such an approach could provide a way forward for scaling hard
to parallelize applications on many-core processors.

2.2.2.2   Memory-centric Architecture

It’s becoming clearer that memory bandwidth rather than memory latency is the
next bottleneck that needs to be addressed in future chips. Consequently we have
seen a dramatic increase in the size of on-chip caches, a trend that is likely to con-
tinue as the amount of logical gates on a chip will keep increasing for some time to
come, still following Moore’s law. There are however several other directions based
on novel technologies that are currently pursued in the quest of improving memory
bandwidth:

• Embedded DRAM, already in production in commercial chips such as IBM’s
Power7 processor

• Use of 3D stacking of memory with short, high bandwidth links called vias be-
tween processor cores and memory

• Use of memristors, perhaps the most radical departure from today’s designs

Embedded DRAM

DRAM has the benefit of having much higher density and lower power consump-
tion than the traditional SRAM technology used for on-chip memory, thus integrat-
ing it on the same silicon with the processing logic holds the promise of higher

2 Multi-core and Many-core Processor Architectures

23

on-chip memory density and higher bandwidth access than through external inter-
faces. Novel developments in CMOS technology allow today the usage of the same
process to manufacture both memory and processing units.

Perhaps the most well known usage of embedded DRAM is in IBM’s Power7
processor, packing a 32 Mb L3 cache built using eDRAM; however the technology
has now been deployed in various gaming and embedded processors as well.

3D Memory Stacking

Packaging memory on top of the processor cores allows the creation of very high
speed, dense interconnects (vias) between the two layers, achieving two goals at the
same time: dramatically increasing the amount available memory (to the order of
gigabytes) with access speeds comparable to cache access today.

Beside practical implementation of layering itself, this technology has a number
of challenges related to cooling the processor cores hidden under the memory layer.
The concept is still in research phase with a number of prototyping activities ongo-
ing at universities and industrial research laboratories. If realized, it will allow a
dramatic improvement in memory performance.

Memristor-based Technologies

The concept and theory of memristor (short for memory resistor) has been formu-
lated almost four decades ago [14], but only as recently as 2008 the first practical re-
alization was announced by HP Labs. In short, it’s a circuit element with “memory”:
the resistance is a function of past current, in other words, a memristor can remem-
ber a voltage applied to it even after the current is cut off. This property makes it a
prime candidate for building more compact and faster storage devices, while com-
puter designs based on memristors replacing transistors have also been proposed. If
it will materialize, it will represent a unified design base with significant possibili-
ties: 3D designs based on memristors with up to 1,000 layers have been designed.

Memristor based commercial processors and memory systems are still some
time—perhaps a decade—off, but currently this is one of the most promising basic
technologies in the quest for improving memory performance.

2.2.2.3   Future Interconnects

As the number of cores on a chip will continue to increase, the on-chip intercon-
nect is quickly becoming the bottleneck, both in terms of throughput and power
consumption. This is especially true for bus and ring based interconnects: the power
needed to drive high-speed networks across long wires is quickly becoming the
largest contributor to overall power consumption, outstripping all other components
(such as cores and peripherals). Mesh/switch based interconnects, due to shorter
wiring were able to keep power at manageable levels; however, as the size of the

2.2 Architectural Principles

24

mesh will continue to increase, the latency and delay of transporting data across the
chip will become the limiting issue.

There are two significant new ideas that aim at tackling the power, latency and
delay related issues with the on-chip interconnect: 3D stacking coupled with mesh
interconnect and optical interconnects. 3D stacking of cores, not just memory would
help limit the number of hops that would need to be used to interconnect the cores.
Consider for example the case of a 1,024 core machine: in a 2D mesh of 32 × 32, the
cost of reaching across the chip is 62 hops (31 in both directions); if it’s placed in
a 3D configuration with 4 layer of 256 cores, this value drops to only 33 hops (3 to
cross the layers and maximum of 30 in the lower layer), a factor of almost 3 × im-
provement. Obviously, 3D stacking of cores has to solve the same issues that have
so far hampered efforts of stacking memory on top of processor cores: cooling and
heat removal from the lower layers.

Optical On-chip Interconnect

Optical on-chip networks are in the focus of recent research efforts at both univer-
sities and chip manufacturing companies such as IBM or Intel. Besides offering
higher speeds, having lower power consumption and occupying less chip real-es-
tate, optical interconnects have the possibility to span multiple physical chips, thus
creating one logical chip from smaller physical chips.

Optical interconnect solutions are likely to use Wavelength Division Multiplex-
ing (WDM) as underlying transmission technology, which allows a single optical
waveguide to simultaneously carry multiple independent signals on different wave-
lengths. Optical signals use significantly less power because of the relatively low
loss even across long distances.

One interesting approach was put forward by researchers at MIT [15], illustrated
in Fig. 2.4. Their approach is to use a broadcast optical interconnect (ONet in the
figure) between islands of several cores (16 each, in their largest configuration)
and rely on island-local electric broadcast of information received over the optical
network. In addition, an island-local electric mesh network would be preserved for
local communication (ANet in the figure). This hierarchical architecture helps sim-
plifying the architecture of each network: the optical network would have only 64
endpoints in the largest (1,024 cores) architecture while the electric networks would
be a 16-way star and 4 × 4 mesh network, respectively.

On-chip optical interconnects have yet to make their ways into commercial
chips. However, in our assessment, this technology represents the best bet for im-
proving performance of on-chip interconnects.

2.2.2.4   Transactional Memory

Transactional memory emerged as an alternative to traditional locking based syn-
chronization. We will discuss it in more details in Chap. 5; here we will focus on the
hardware aspects of its realization.

2 Multi-core and Many-core Processor Architectures

25

In short, transactional memory is a mechanism to enable optimistic concurrent
updating of shared memory locations: a thread is allowed to progress with its own
updates until it completes the sequence of actions (called transactions: the changes
performed during a transaction are not visible to the rest of the system); at that
point, it is checked if any other concurrent accesses took place on the same memory
locations: if not, all the changes are atomically committed and made visible to other
cores/threads; if the memory areas modified by the transaction have been modified
elsewhere, the complete transaction is rolled back and re-attempted. All these mech-
anisms—private updates, check for concurrent access, commit/rollback/retry—are
transparent to the application and handled by the run-time system. Transactional
memory is most useful in situations where the probability of contention is very low.

There are three ways to implement the concept of transactional memory: in hard-
ware only (called Hardware Transactional Memory—HTM), in software only (Soft-
ware Transactional Memory—STM) or a hybrid solution, combining both hardware
and software solutions.

Hardware transactional memory requires significant changes to the memory
management and thread management system of the processor. Each core will have
a new state—the transactional state—in which handling of the active thread and the
memory will be different. The ISA of the processor shall support new commands for
indicating the start and end of a transaction.

How will hardware transactions work?
At the beginning of a transaction, the processor has to checkpoint the state of

the executing thread, i.e., the content of the registers and the memory. Registers are

Fig. 2.4   Architecture of a combined optical/electrical on-chip interconnect

Hub

Hub = optical hub,
converting the optical
signal to local electrical
signal distribution over
BNet

BNet

ANet

Local, 2D mesh
electrical network,
independent of
ONet/BNet
Covers 4x4
processor cores

ONet: connects 64
islands in an optical
ring

2.2 Architectural Principles

26

easy to manage by supporting two register files: the “regular” one and the “trans-
actional” one; during transactions, a copy of the regular one is created in the trans-
actional one which is then either committed (copied back to the regular one) or
discarded (in case of rollback) at the end of transactions.

There are multiple solutions proposed for handling memory during transactions.
Here we will describe a simple method, based on a mechanism called transactional
cache state. Basically, there shall be two copies of the blocks being edited: the
version before the transaction (the stable copy) and the one being modified by the
transaction (the transactional copy). The simplest way to manage the two copies is
to hold the transactional copy in the L1 cache and the stable copy in L2 cache. This
will require a new state of the block (beside the MESI ones): Transactional, indicat-
ing that the block is being modified as part of an ongoing transaction and shall not
be shared with other cores. With the method described here, this new state is needed
for blocks cached in L1 cache.

There are two methods to detect conflicting updates to the same shared memory:
the eager method detects the conflict and aborts one of the transactions immediately;
the lazy method does so only at the end of transaction. Using the modified MESI
coherence protocol, the eager implementation is the more handier one: when creating
the L1 copy of the block, the core will be notified if it’s already under editing on an
other core; in this case it can immediately abort the transaction (and retry later on).

One of the major issues with this method based on L1 caching of transactional
blocks is the limited size of the L1 cache: for long running transactions or transac-
tions that modify a lot of data, the size of the L1 cache may become insufficient to
hold all transactional blocks. There’s no easy way around this limitation—hence
keeping the size of transactions (both time- and space-wise) short is a pre-requisite
for this method to work.

Despite extensive research—the first paper on transactional memory was pub-
lished already back in 1993 [16]—transactional memory support has yet to become
part of modern processors. Many of the major players in the industry chose to rely
on STM implementations first—the only processor that was planned to support
hardware transactional memory was the now canceled Rock processor from Sun.

2.3   Scalability Issues for Many-core Processors

So far in this chapter we looked at the current well established technologies used
in building multi-core processors as well as at the emerging technologies that are
targeting some of the shortcomings of current technologies.

On manufacturing technology level, major chip manufacturers estimate that we
will be able to continue with current CMOS technologies down to approximately
the 6 nm manufacturing process (as of 2010, the most advanced technology node is
the 32 nm node). However at that level at least two major challenges will emerge:

• As the size of transistors will be measured in just a few tens of atoms at most,
quantum effects will have to be taken into account and consequently we will see

2 Multi-core and Many-core Processor Architectures

27

an increased unreliability of the hardware, with components failing more often
and—more importantly—intermittently

• There will be so many transistors on the chip that it will be, power wise, impos-
sible to switch all of these at the same time; this phenomenon—called the dark
silicon problem—will have a significant impact on how we will build future
processors

The unreliability of future hardware will likely lead to the implementation of re-
dundant execution mechanisms. Multiple cores will perform the same computation,
in order to increase the probability that at least one will succeed; in some cases a
voting scheme on the result (verifying if all the computations yielded the same
result) may be used to guarantee correctness of the calculation. Such mechanisms
will likely be invisible to the software, but will impact the complexity of the design
of logical processor cores.

The dark silicon problem is trickier to address. By lowering the frequency at
which chips operate, we can push the limit further [17], but eventually it will be-
come an issue, no matter how low we go with the frequency. Alternative solutions
include the adoption of memristors as building blocks (instead of transistors) and
chip designs where, at any given time, just a subset of components would be active,
depending on the type of application. Optical interconnects within and between
chips could also allow building smaller chips, interconnected to build larger, cache
coherent logical chips.

Another scalability bottleneck relates to the design of cache coherency proto-
cols. Synchronizing access to the same memory area from large number of cores
will increase the complexity of coherency design and will lead to increasing delay
and latency in accessing frequently modified memory areas. In our view, it will be
an uphill battle to maintain a coherent view across hundreds, let alone a thousand
cores; even if we will be able to do this, it will be hard to justify the cost associated
with it.

Memory bandwidth will be another scalability bottleneck. The leveling out of
the core frequency will lead to reduced latency, but the increase in the number of
cores will multiply the amount of data required by the cores and thus the aggregate
memory bandwidth that future chips will require. If we will indeed see the continu-
ation of Moore’s law, translated into an ever-increasing number of cores—perhaps
following the same trend of doubling core-count every two years—a similar trend
would need to be followed by memory bandwidth, something the industry failed to
deliver in the past.

Based on these observed or predicted developments and bottlenecks, we believe
the following trends will dominate the design of future processors:

• Shift towards simple, low frequency, low complexity cores, coupled with an in-
crease of the core count to the level of several hundreds within five to ten years;
heterogeneity—not in ISA, but rather in core capabilities—will play a role sim-
ply because it’s an easy optimization gain

• Focus on novel memory technologies that can deliver higher bandwidth access;
technologies such as 3D stacking, optical interconnects and perhaps memristors

2.3 Scalability Issues for Many-core Processors

28

will see an accelerated uptake by mainstream processor designs; especially opti-
cal interconnects have the potential of easing some of the pressure on how chips
are structured and interconnected

• The size of on-chip memory will also see a dramatic increase and we will see in-
novations emerging that will reduce the footprint, power consumption and com-
plexity of designing such solutions, similar to the development of the embedded
DRAM technology; once again 3D stacking and memristors may be some of the
technologies to watch

• HW accelerators will be abundant: these have low footprint and low power con-
sumption, thus we will see realizations in HW of an increasing array of algo-
rithms

• Aggressive power optimization mechanisms—near threshold operation, power
gating, frequency and voltage scaling—will be pervasive not only in tradition-
ally low power domains, but also in most areas where processors are used

Some of these predictions may fade away, but, in the absence of a revolutionary
new method of designing processors, increasing core count, heterogeneity and reli-
ance on aggressive power optimization methods will likely dominate the chip in-
dustry for the coming five to ten years.

2.4   Examples of Multi-core Processors

After following the path of predictable design—faster, more complex, single-core
RISC (Reduced Instruction Set Computer) or CISC (Complex Instruction Set
Computer) machines—for about 30 years, the chip industry has seen an explosion
of wildly differing designs over the past seven years. If anything, this trend will
continue well into the second decade of our century—thus any attempt to survey
the landscape of representative designs is likely to lead to outdated results very
quickly.

Therefore in this chapter we will try to showcase the major trends followed by
processor vendors rather than individual incarnations of certain processor families;
whenever we delve into the details of a specific processor, the goal is to highlight
and analyze a certain design choice, rather than upholding that specific version of
the chip.

There are essentially three different philosophies followed by multi-core chip
designs:

• fewer, but more complex, high performance cores with large, shared on-chip
caches and cache coherence mechanisms; this design is represented by most
server chip vendors (IBM, Intel, AMD and SUN to some extent) but also compa-
nies focusing on the mobile and low power design space

• large number of simple, low frequency, sometimes specialized cores with dis-
tributed on-chip memories (with or without cache coherence mechanisms) and
scalable interconnects; these chips usually target data-parallel applications such

2 Multi-core and Many-core Processor Architectures

29

as graphics processing or networking, with the notable exception of Tilera which
targets a broad range of applications, including data-centers

• integration of multiple cores of different capabilities and potentially supporting
different instruction set architectures

The main argument for the first type of design is support for single-threaded appli-
cations. Multi-core is regarded a “necessary evil”—the next best thing once perfor-
mance gains through higher frequencies could not be sustained. On the other hand,
the advocates of the second approach rely on the argument that overall performance
per watt will be higher using simpler but more cores. The third type of design usu-
ally targets specific domains where some measure of performance—overall, per
watt or per real estate—dominates all other factors.

We tend to agree with the second line of thinking—the first type of approach is
limited to just incremental improvements; without novel programming models that
would allow running even single threaded applications on multiple cores, this ap-
proach will eventually not be sufficient.

2.4.1   Processors Based on Low Number of Cores

In this chapter we will cover the most representative chip families where the sin-
gle-core performance still is the primary design concern: Intel’s server processors
(based on the Nehalem microarchitecture), IBM’s Power series of processors, Ora-
cle/Sun’s SPARC ISA-based processors as well as designs based on ARM’s Cortex-
A15 core design.

2.4.1.1   Intel’s Server Processors

Intel’s current (as of 2010) line-up of 64 bit server processors relies on the Nehalem
micro-architecture, first introduced in 2008 and revised in early 2010 (under the
code-name Westmere). The successor of this microarchitecture will be released in
2011, under the code name Sandy Bridge; the major change will be the integration
of dedicated graphics cores. Today chips based on this micro-architecture are manu-
factured using 45 and 32 nm processes (which will be used for the Sandy Bridge line
as well, at least initially).

The main features of this line of processors include:

• Native support for up to 8 cores/die (typical configurations have 4 or 6 cores)
• Integrated memory controller
• Support for shared L3 (missing from previous generations) with sizes up to

12 Mb, in addition to per core L1 and L2 caches
• Support for virtualization (dedicated protection ring)
• Support for Intel’s Turbo Boost, Hyper-Threading, Trusted Execution, and

SpeedStep technologies

2.4 Examples of Multi-core Processors

30

• Core speeds of up to 3.33 GHz, with a maximum turbo frequency of about
3.6 GHz

• Maximum power consumption (TDP—thermal design power) of 130 W, includ-
ing on-chip, but off-processor GPU cores, with 6 processor cores running at
3.33 GHz.

Clearly this family of processors is targeting server workloads with special empha-
sis on single-threaded applications and power management. From technology point
of view it’s important to understand the background of different technologies sup-
ported by Intel’s server chips, the focus of the following sub-sections.

Turbo Boost

Turbo boost is Intel’s implementation of dynamic frequency scaling. This technol-
ogy allows cores to run faster than the base operating frequency, if the overall power
and temperature specifications allow it. It must be explicitly activated, but the ac-
tual operating level is determined by three factors:

• Number of active cores
• Estimated power and energy consumption
• Processor temperature

The operating frequency of the core is raised stepwise, with 133 MHz at a time, at
regular intervals. The number of steps depends on the conditions (especially the
number of active cores) and the base frequency, the maximum range is typically
10–15% compared with the core base frequency.

Hyper Threading

The hyper-threading technology is essentially the implementation of hardware
threading, provided by Intel all the way from the low power Atom processor till the
top tier server chips. The support is limited however to only two threads per core.
There’s no priority assignment to threads and the hardware will make sure that no
thread gets starved.

Trusted Execution

Intel’s trusted execution technology provides hardware support for enhanced secu-
rity of program execution. Specifically, it allows for

• Creation of multiple, isolated execution environments (partitions) that are guar-
anteed to be tamper proof by any other application running in an other partition

• Secure key generation and storage
• Remote attestation of the security level of the machine

2 Multi-core and Many-core Processor Architectures

31

These features are usually realized as a combination of processor features and sup-
port in chipset and firmware.

2.4.1.2   IBM’s Power Processors

IBM’s line of POWER processors—now at its 7th generation—is based on the
Power Architecture instruction set architecture, driven primarily by IBM and Fre-
escale, within the Power.org industrial consortium. The ISA has a RISC architecture
and it’s open for licensing. Despite the pervasive nature of the X86 ISA (on which
Intel and AMD processors are based) in the server space, roughly half of the Top 50
supercomputers are based on processors using the Power Architecture (all built by
IBM). Additionally, the Power architecture is available in many specialized chips,
including almost all game console processors.

The main characteristics of the Power 7 family of processors are:

• 4, 6 or 8 cores per chip, with execution frequencies exceeding 4 GHz; a more
conventional limit is around 3–3.5 GHz—which still puts power consumption
over the 200 W bar

• 4-way SMT, resulting in 32-way SMT per processor, with aggressive out of or-
der execution

• 32 Mb on chip, embedded DRAM based shared L3 cache, on top of the 64 kb/
core L1 and 256 kb/core L2 cache, tightly coupled with the cores

• Scalability up to 32 sockets, with “near linear” performance scaling claimed by
IBM

• Advanced power optimization designs
• Distributive resource management which allows re-allocation of resources

(cache and external memory bandwidth) between cores, depending on the ap-
plication that is being executed

Power7 processors stand out—in our opinion—with two design choices: the usage
of eDRAM (which we have discussed elsewhere in this chapter) as basis for L3
cache and the advanced power management features.

The cores in the Power7 processors support two idle modes:

• nap mode, optimized for wake-up time: clocks are turned off towards the execu-
tion units, frequency is reduced, but caches and virtual memory management
tables remain coherent, thus the core can be brought back to full speed quicker

• sleep mode, optimized for power reduction: clocks are fully turned off, caches
are purged and voltage reduced to a level where leakage current is substantially
lowered; however, at wake-up still no re-initialization of the core is required

The processors also support active energy management, commercially called En-
ergy Scale, consisting of the following technologies:

• DVFS (dynamic voltage and frequency scaling) within the range of − 50% to
+ 10% of the nominal core frequency

2.4 Examples of Multi-core Processors

32

• Turbo mode, similar to Intel’s solution
• Power budgeting for different parts of the system: performance will be optimized

within pre-configured power limits

The Power 7 family of processors is a fine example of the balancing act server
chip vendors have to perform in order to deliver chips that can support both single-
threaded as well as multi-threaded workloads. Features such as high clock rate
(the highest of any chip delivered during 2010), turbo mode, distributive resource
management are geared towards supporting single-threaded performance; DVFS
(Dynamic Voltage and Frequency Scaling), the relatively large number of cores
and the distributed cache architecture have as a primary goal support for parallel
scalability.

2.4.1.3   SPARC Processors

Beside the two X86-based vendors and IBM, Sun Microsystems (acquired by Or-
acle) was one of the long-standing leaders in the area of server chips and high end
servers, with designs based on the SPARC instruction set architecture, initially de-
veloped at Sun. Recently however Sun also diversified itself into supporting X86
based architectures.

SPARC (Scalable Processor Architecture) is an open, RISC type of instruction
set architecture, licensable in a similar manner as the Power specification; several
of the processors designs based on SPARC have actually been released under open
source license (such as OpenSPARC T1 and OpenSPARC T2). One of the SPARC
architecture based processors also serves as the baseline for the widely used SPEC
(Standard Performance Evaluation Corporation) CPU benchmarks: all benchmark
results represent a relative speed compared to that of the basic SPARC processor;
for more details on the SPEC benchmarks [18]. As of 2010, there are essentially
only two large vendors providing chips based on the SPARC specification: Fujitsu
and Oracle/Sun.

An interesting feature of the SPARC ISA is the support for register windows.
The processor may have up to 160 general purpose registers, but at any time only
24 of these are visible to the software; whenever a sub-routine call is performed,
the register window is shifted by 8, so that the new procedure gets 8 local registers
and shares 8 registers with its caller as well as another 8 with any other sub-routine
it may call.

The latest processor released by Sun, based on the SPARC version 9 architecture
is the SPARC T3, code-named Rainbow Falls or Niagara 3 (all UltraSPARC proces-
sors used the Niagara code-name—the tag Ultra was dropped in this case). It’s the
server chip with most parallelism: it contains 16 cores running at 1.65 GHz, each
with support for 8 hardware threads per core, thus the chip supports 128-way SMT.
The schematic layout of the chip is shown in Fig. 2.5.

What sets the SPARC T3 apart is its on chip and off chip interconnect solution.
The basic connectivity between cores and L2 caches is through a cross-bar type of

2 Multi-core and Many-core Processor Architectures

33

interconnect that connects the cores to a total of 6 Mb of L2 cache (organized into
16 banks). On the external side, there’s a wide array of connectivity options: two
PCIe interfaces, 2 Ethernet interfaces with a bandwidth of 10 Gbps each and 6 co-
herence links per core, each with a bandwidth of 9.6 Gbps. This architecture allows
gluing together, without any additional hardware, four T3 chips in a cache coherent,
SMP structure—resulting in a system with 64 cores and 1,024-way simultaneous
multi-threading support.

The SPARC T3, while clearly a server chip, is targeted to a specific type of
workload: large number of relatively simple parallel tasks that require a lot of traf-
fic, typical for web servers and database systems (it’s not surprising that offerings
based on T3 are tightly integrated with Oracle’s database). Its focus is a different
market from Intel’s and IBM’s, whose chips are primarily geared towards more
computationally intensive applications with less inherent parallelism.

2.4 Examples of Multi-core Processors

Fig. 2.5   SPARC T3 architecture. (Source: Wikipedia, under Creative Commons Attribution 3.0
license)

memory
m

em
or

y m
em

ory
memorymisc i/o

SPARC
0

SPARC
1

SPARC
2

SPARC
3

SPARC
4

SPARC
5

SPARC
6

SPARC
7

SPARC
8

SPARC
9

SPARC
10

SPARC
11

SPARC
12

SPARC
13

SPARC
14

SPARC
15

L2D
0

L2D
1

L2D
2

L2D
3

L2D
4

L2D
5

L2D
6

L2D
7

L2D
8

L2D
9

L2D
10

L2D
11

L2D
12

L2D
13

L2D
14

L2D
15

L2T0 L2T1 L2T2 L2T3

L2T4 L2T5 L2T6 L2T7

SIU NCU CCX CTU

NIU

MCU

CLCCLC

X
A

U
I

C
O

H
E

R
E

N
C

Y
C

O
H

E
R

E
N

C
Y

COHERENCYCOHERENCY

PCU

MCU

PEUP
C

Ie
P

C
Ie

34

2.4.1.4   ARM-based Multi-Core Processors

If X86 and Power architecture based systems dominate the server and desktop
space, the mobile and low power computing space has its own pervasively present
player: most mobile phones and a lot of embedded devices today use a chipset based
on the ARM architecture, licensed by the UK based company of the same name.

ARM itself does not develop chips: its business relies on designing and licensing
aggressively power optimized core designs that can then be integrated into actual
chips by one of its licensees. Consequently, there’s a large variety of chips based on
ARM cores, all sharing the same basic ISA and core design.

Traditionally ARM cores were simple, low power designs unsuitable for desk-
top, let alone server usage; recently however ARM entered a new territory with its
Cortex A9 and A15 designs that added capabilities previously only seen in high end
desktop and server products. For this reason we include ARM into the category of
chips with fewer, yet more complex cores.

ARM Cortex A15 Architecture

The ARM ISA is a 32 bit RISC architecture with fixed instruction width and mostly
single cycle execution. It features some more peculiar features such as support for
conditional execution of instructions (the result of the last comparison can be used
as conditional for subsequent instructions) and support for folding bit-shifting in-
structions into arithmetic ones. It has been extended with optional ISAs covering
floating point operations, SIMD instructions and native execution of Java byte-code
(called Jazelle).

The Cortex A15 core design (announced in 2010, expected to ship in 2012) inte-
grates all these features into an out-of-order, speculative issue, superscalar architec-
ture with cores clocked between 1 and 2.5 GHz. The licensable solution will support
up to 4 cores in a cluster, with the possibility to link two clusters into one cache
coherent SMP system. For the first time for ARM, A15 has virtualization support
(with a new protection ring) and support for addressing more than 4 Gb of memory
(the address space is extended to 40 bits). The cache architecture will feature 64 kb
L1 cache and up to 4 Mb shared L2 cache for the 4-core cluster.

It’s yet unclear how chips based on the A15 core design will measure up against
competing products. ARM claims a significant improvement compared to the previ-
ous generation and academic evaluations have shown Cortex A9 (the predecessor
of A15) based chips to outperform—in terms of performance per watt—competing
Intel server chips by a factor of about 5–7 × ([19]). It all depends however on the
type of the application: ARM based designs will likely perform much better with
tasks that are highly parallel and do not require execution of lengthy single-threaded
code.

The main differentiating factor for ARM based processors is power efficien-
cy. While other vendors are trying to retrofit their high-performance designs with
power efficient solutions, ARM cores are trying to ramp up performance on a basic

2 Multi-core and Many-core Processor Architectures

35

design that is eminently power efficient. So far, for embarrassingly parallel applica-
tions, the second approach seems to be gaining the upper hand.

2.4.2   Processors Based on Large Number of Cores

When looking at raw performance alone (total number of instructions executed
within a unit of time), more but less powerful cores clearly outperform chips with
few but powerful cores, within a set power budget. This is a tempting prospect,
especially in domains with abundant parallelism such as networking, graphics, web
servers etc. Accordingly, this category of chips—with many, but simpler cores—is
usually represented by processors targeting a specific domain.

In this chapter we survey some of the best known representatives of this cat-
egory: Tilera’s Tile GX family, NVIDIA’s Graphics Processing Units (GPUs), pi-
coChip’s 200-core DSP as well as Intel’s recently announced Many Integrated Core
(MIC) architecture.

2.4.2.1   The Tile Architecture

The Tile architecture has its origins in the RAW research processor developed at
MIT and later commercialized by Tilera, a start-up founded by the original research
group. Chips from the second generation are expected to scale up to 100 cores based
on the MIPS ISA and running at 1.5 GHz, within a power budget of under 60 W.

The key differentiating technology of the Tile architecture is the on-chip inter-
connect and the cache architecture. As the name implies, the chip is structured as a
2D array of tiles, where each tile contains a processor core, associated L1 (64 kb)
and L2 cache (256 kb per core) and an interconnect switch that can connect the
tile to its 3 (on the edges) or 4 (inside the mesh) neighboring tiles. This way, the
interconnect is essentially a switched network with very short wires connecting
neighboring tiles linked through the tile-local switch.

The interconnect network—called iMesh by Tilera—actually consists of five dif-
ferent networks, used for various purposes:

• application process communication (UDN)
• I/O communication (IDN)
• memory communication (MDN)
• cache coherency (TDN)
• static, channelized communication (STN)

The latency of data transfer on the network is 1–2 cycle/tile, depending on whether
there’s a direction change or not at the tile. The overall architecture of the Tile pro-
cessor concept is shown in Fig. 2.6

This network based architecture allows for some innovative solutions. The net-
work of L2 caches is organized into a non-uniformly structured L3 cache, using a

2.4 Examples of Multi-core Processors

36

directory-based coherence mechanism and the concept of home tile (the tile that
holds the master copy) for cached data. While the access latency to various parts of
this virtual L3 cache varies according to the distance between tiles, this mechanism
provides an efficient (space and power wise) logical view to the programmer: a
large on-chip cache to which all cores are connected. The TDN network is exclu-
sively dedicated to the implementation of the coherency protocol.

Another mechanism implemented in the Tilera architecture using the commu-
nication networks is the TileDirect technology that allows data received over the
external interfaces to be placed directly into the tile-local memory, thus bypassing
the external DDR memory and reducing memory traffic.

In our view, the scalable, low power, high bandwidth on-chip mesh interconnect
as well as the mechanism that allows cache coherence on such scale (up to 100
cores) are the technologies that make the Tile processor concept unique and clearly
differentiates it from other chip designs.

2.4.2.2   Graphics Processing Units

The term Graphics Processing Unit (GPU) was first used back in 1999 by NVIDIA.
The introduction of the OpenGL language and Microsoft’s DirectX specification
resulted in more programmability of the graphics rendering process; eventually
this evolution led to the introduction of a GPU architecture (by the same com-

Fig. 2.6   The Tile architecture

L1C

L2C
P

L1C

L2C
P

L1C

L2C
P

L1C

L2C
P

L1C: Layer 1 cache
L2C: Layer 2 cache
P: processor
Switch: crossbar
switch for on-chip
networks

Tile x/y+1 Tile x+1/y+1

Tile x+1/yTile x/y

Switch Switch

Switch Switch

2 Multi-core and Many-core Processor Architectures

37

pany, NVIDIA) that dramatically improved programmability of these chips using
high level (C like) languages and turned this type of processors into an interesting
choice for supercomputers targeting massively data parallel applications. NVIDIA’s
CUDA (Computer Unified Device Architecture) programming model was the first
that enabled high level programming of GPUs; more recently the OpenCL language
(which we will also cover in this book) is set to become the de facto standard for da-
ta-parallel computing in general and for programming GPUs in particular (NVIDIA
itself adopted it as a layer above CUDA). On hardware side, the most radical new
chip design to date by NVIDIA is the Fermi family of chips.

The Fermi architecture crams an impressive 3 billion transistors into a system
with 512 CUDA cores running at 700 MHz each. A CUDA core has a pipelined
32 bit integer arithmetic logic unit (ALU) and floating point unit (FPU) with fused
multiply-add support, being capable to execute an integer or floating point opera-
tion in every cycle. The CUDA cores are grouped into 16 streaming multi-pro-
cessors, each featuring 32 CUDA cores and 16 load/store units allowing memory
access operations for 16 threads per each clock cycle. There are also four special
function units (SFU) that can calculate values of functions such as sin or cosine. For
a schematic view of the SM architecture, see Fig. 2.7

Regarding memory, the chip supports 6 GB of ECC protected DRAM memory.
For the first time, the GPU has support for cache coherency; each SM has 64 kb lo-
cal memory that can be configured in a 16/48 split as cache and local store; there’s
also 768 kb of shared L2 cache. The chip also has a unified address space spanning
both private and global memory addresses.

2.4 Examples of Multi-core Processors

Fig. 2.7   NVIDIA streaming multiprocessor architecture

Instruction cache

Warp scheduler Warp scheduler

Dispatch Unit Dispatch Unit

Shared L2 cache

Per SM
shared memory / L1 cache (16kb+48kb)

Interconnect network

Register file (32768 x 32 bit)

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

CUDA
core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

38

The Fermi architecture based chips have a two-level thread scheduler called Gi-
gaThread. On the chip level, an engine distributes thread blocks to different stream-
ing multiprocessors; on each streaming multiprocessor, the so called dual warp
scheduler distributes groups of 32 threads (which are called warps) to the available
CUDA cores. Each streaming multiprocessor has two instruction dispatch units,
thus at each cycle two warps are selected and an instruction from each warp is is-
sued to 16 cores.

GPUs have clearly outgrown their roots in graphics processing and are now
targeting the broader field of massively data-parallel applications with signifi-
cant amount of scientific and floating point calculations. While a particular pro-
gramming model must be followed (which we discuss later on in this book),
the programmability of these chips has increased to a level that is on par with
regular CPUs, turning these chips into a compelling choice for general purpose
utilization.

2.4.2.3   PicoChip Architecture

We included the DSP architecture developed by picoChip because it’s a prime ex-
ample of successfully addressing a particular application domain with a massively
multi-core processor.

The basic architecture of a picoChip DSP consists of a large number of various
processing units (more than 250 in the largest configuration), connected in a mesh
network (called the picoArray) using an interconnect resembling Tilera’s iMesh
technology. However, the communication is based on time division multiplexing
mechanisms with the schedule decided deterministically at compile time, thus elim-
inating the need for execution time scheduling and arbitration. While this may be
a big advantage in some cases, it will also limit the usability of the technology for
more dynamic use-cases.

The processing elements in the picoArray can be

• proprietary DSP cores: 16 bit Harvard architecture processors with three-way
very long instruction words, running at 160 MHz

• hardware accelerators for functions such as Fast Fourier Transformation (FFT),
cryptography or various wireless networking algorithms that are unlikely to
change and hence can be hard-coded into hardware

• ARM core for more complex control functions (such as operation and mainte-
nance interface)

The DSP cores come in three variants, differentiated by target role and, as a conse-
quence, available memory:

• standard: used for data-path processing with very low amount (< 1 kb) own
memory

• memory: used for local control and buffering with approx. 8 kb of memory
• control: global control functions, with 64 kb of memory

2 Multi-core and Many-core Processor Architectures

39

Chips based on the picoArray architecture—due to the low amount of memory and
very simple cores—have very low power consumption. For example, a model with
250 DSP cores running at 160 MHz, one ARM core at 280 MHz and several ac-
celerators consumes just around 1 W, while capable of executing 120 billion basic
arithmetic operations per second.

The picoChip architecture is a prime example of massively multi-core processors
found in the embedded domain, especially telecommunication products (wireless
infrastructure nodes and routers). These nodes usually perform the same, relatively
simple sequence of operations on a very large amount of entities (packets, phone
calls or data connections), hence such architectures are the best match in terms of
balance between programmability and efficiency.

2.4.2.4   Many Integrated Core Architecture

In 2010 Intel announced their first commercial many-core chip code-named Knights
Corner that will be manufactured in 22 nm and will integrate more than 50 x 86
cores. While not publicly stated, it’s most likely the continuation of the Larrabee
program that aimed at developing a GPU-like device.

There are few details available publicly about this device that is planned to be
released in 2011. Based on an Intel presentation [3], it will be based on “vector Intel
Architecture cores”, which indicates an emphasis on data parallel processing. The
cores will support hardware threading (at least 4 threads per core) and will share a
tiled, coherent on-chip cache. The chips will likely include hardware accelerators,
called fixed function logic in Intel’s presentation. A schematic view of the architec-
ture is shown in Fig. 2.8.

2.4 Examples of Multi-core Processors

Fig. 2.8   Schematic architecture of Intel’s Knights Corner chip design

Vector
IA Core …

Vector
IA Core

Vector
IA Core

Vector
IA Core

Inter -processor network

Vector
IA Core …

Vector
IA Core

Vector
IA Core

Vector
IA Core

Fixed
Function
Logic

Memory &
I/O
interfaces

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

Coherent
Cache

…

40

In many ways this chip seems to be Intel’s combined answer to the advancement
of GPUs and the Tilera-type many-core architectures. Intel brands this type of chip
a co-processor that a traditional server chip can use to offload parts of the applica-
tion—enabled by sharing the same ISA.

2.4.3   Heterogeneous Processors

From purely hardware technology point of view, using dedicated cores for specific
tasks is the best choice in terms of efficiency, as it will yield a simpler structure and
less power consumption, while will deliver higher performance. As an extension,
for a more complex problem, with sub-problems that require specific type of func-
tionality, chips that combine cores with different capabilities are the optimal choice.
Processors of this type are called heterogeneous processors.

Obviously there are other factors that make this rather simplistic line of think-
ing hard to argue for in full. Developing a chip has a significant cost, which is
proportional to the complexity of the chip; on the other hand, the more specialized
a chip is, the smallest its addressable market and hence the higher the per unit cost
will be; additionally, higher complexity inherently will lead to increased software
development cost. There is a trade-off point beyond which specialization can-
not be anymore justified, hence the addressable market shall be sufficiently large
and/or the chip design sufficiently generic so that the chip will be economically
sustainable.

There are a few good examples of such chips, especially in high volume markets
such as mobile computing or gaming. We will exemplify this type of processors
through the Cell BE, used in game consoles as well as in supercomputers.

2.4.3.1   The Cell Broadband Engine

The Cell processor is the result of the co-operation between Sony, Toshiba and IBM
and originally it was targeting gaming and other entertainment devices (including
HD television sets).

The basic architecture of the Cell processor is shown in Fig. 2.9. The processor
has nine cores, inter-connected through a circular bus called Element Interconnect
Bus (EIB):

• one Power Processing Element (PPE): two-way SMT processor core running at
3.2 GHz, based on the Power Architecture ISA and equipped with 32 kb L1 and
512 kb L2 cache; it usually runs a main-stream operating system such as Linux

• eight Synergistic Processing Elements (SPE): DSP-like SIMD processors
equipped with 256 kb of local memory (marked with LS—local store—in the
figure), that can only be accessed from outside the SPE using DMA through a
specialized memory flow controller unit (MFC)

2 Multi-core and Many-core Processor Architectures

41

Beside the basic Cell processor, there’s a special version used in supercomputers
with about an 8 × improvement in performance (to over 100GPFLOPS aggregated
throughput).

The design of the Cell processor clearly prioritized performance over program-
mability: the SPEs need to be managed, scheduled and configured explicitly by the
PPE, which adds significantly to the cost of software development. The division
of tasks is clear: the SPEs are the number-crunching workers under the strict and
necessary supervision of the PPE that takes care of all the other functions. This kind
of chip architecture bolds well for game consoles (the primary users of the Cell
processor), but also for compute-intensive supercomputers, where the PPE is the
“visible” part of the processor capable of high-speed data crunching; internally, it
can offload the work to the SPEs.

2.5   Summary

Any book on programming would be incomplete without a basic understanding of
the concepts and design choices behind the actual hardware on which the software
will have to execute. The goal of this chapter is to lay the (hardware) foundation

2.5 Summary

Fig. 2.9   The architecture of the Cell Broadband Engine chip

EIB: Element Interconnect Bus

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

L1C

L2C
PPE

L1C

L2C
PPE

DRAM
interface

42

for discussing the software stack in the context of many-core programming: we
surveyed the main design concepts available today, the challenges faced by chip
designs when scaling up to tens or hundreds of cores as well as the emerging tech-
nologies that can help mitigate these challenges.

We believe that in the future we will see a continued increase of the amount of
cores integrated on one chip—in the absence of some break-through technology,
there are very few options available that can drive the performance of individual
cores. This trend is already visible today: the success of GPUs and Tilera’s archi-
tecture and Intel’s plans for integrating more than 50 cores on a single chip all point
to this direction.

The real question however is how to make use of this parallel computing power—
the subject of the remaining part of this book.

References

 1. Censier L M, Featrier P (1978) A New Solution to Coherence Problems in Multicache Sys-
tems," IEEE Transactions on Computers, 27(12):1112-1118

 2. Gschwind M, Hofstee H P, Flachs B, Hopkin M, Watanabe Y, Yamazaki T (2006) Synergistic
Processing in Cell’s Multicore Architecture. IEEE Micro 26(2):10-24

 3. Intel Corporation (2010) Petascale to Exascale: Extending Intel’s HPC Commitment. http://down-
load.intel.com/pressroom/archive/reference/ISC_2010_Skaugen_keynote.pdf. Accessed 11
January 2011

 4. Sonics MemMax Scheduler. http://www.sonicsinc.com/uploads/pdfs/memmaxscheduler_
DS_021610.pdf. Accessed 10 January 2011

 5. Mutlu O, Moscibroda T (2009) Parallelism-Aware Batch Scheduling: Enhancing both Perfor-
mance and Fairness of Shared DRAM Systems. IEEE Micro Special Issue 29(1):22-32

 6. Ahn J H, Leverich J, Schreiber R S, Jouppi N P (2009) Multicore DIMM: an Energy Efficient
Memory Module with Independently Controlled DRAMs. Computer Architecture Letters
8(1): 5-8

 7. The OpenMP Architecture Review Board (2008) The OpenMP Application Program Inter-
face. http://www.openmp.org/mp-documents/spec30.pdf. Accessed 10 January 2011

 8. Frigo M, Leiserson C E, Randall K H (1998) The implementation of the Cilk-5 Multithreaded
Language. Proceedings of the ACM SIGPLAN 1998 conference on Programming Language
Design and Implementation, 212-223

 9. Culler D E, Gupta A, Singh J P (1998) Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann

10. Hennessy J L, Patterson D A (2006) Computer Architecture: A Quantitative Approach 4th
Edition, Morgan Kaufmann

11. Wikipedia article Hyper-threading. http://en.wikipedia.org/wiki/HyperThreading. Accessed
10.1.2010

12. Mars J, Williams D, Upton D, Ghosh S, Hazelwood K (2008) A Reactive Unobtrusive
Prefetcher for Multicore and Manycore Architecture. Proceedings of the Workshop on Soft-
ware and Hardware Challenges of Manycore Platforms 2008, 41-50

13. Nellans D, Sudan K, Balasubramonian R, Brunvand E (2010) Improving Server Perfor-
mance on Multi-Cores via Selective Off-loading of OS Functionalility. Proceedings of the
10th Workshop on Interaction between Operating Systems and Computer Architecture

14. Chua L O (1971) Memristor—the Missing Circuit Element. IEEE Transactions on Circuit
Theory 18(5):507-519

2 Multi-core and Many-core Processor Architectures

43

15. Kurian G, Miller J E, Psota J, Eastep J, Liu J, Michel J, Kimerling L C, Agarwal A (2010)
ATAC: a 1000-core Cache Coherent Processor with On-Chip Optical Network. Proceedings
of the 19th International Conference on Parallel Architectures and Compilation Techniques:
477-488

16. Herlihy M, Moss J E B (1993) Transactional Memory: Architectural Support for Lock-free
Data Structures. Proceedings of the 20th International Symposium on Computer Architecture:
289-300

17. Falsafi B (2009) Energy-Centric Computing & Computer Architecture. Proceedings of the
2009 Workshop on New Directions in Computer Architecture

18. SPEC (2008) SPEC CPU2006. http://www.spec.org/cpu2006/. Accessed 11 January 2011
19. Åbo Akademi (2010) Cloud Software Program: SIP-Proxy and Apache Running on tradi-

tional X86 vs ARM Cortex-A9. https://research.it.abo.fi/projects/cloud/posters/POSTER_
A3_Demo_2_ARM-SIP_2.pdf. Accessed 11 January 2011

References

45

Abstract Operating systems represent the software foundation that enables appli-
cations to make use of the hardware resources of the computer in an efficient way.
In this chapter we introduce the main roles of an operating system and will discuss
in detail the two features most relevant from programming perspective: schedul-
ing of threads for execution on available processor cores and resource manage-
ment, primarily virtual and physical memory management in a multi-core context.
We illustrate these concepts through the three dominant operating systems in use
today: Linux, Solaris and Windows, with particular emphasis on thread and mem-
ory handling.

3.1   Definition of an Operating System

The origins of the term operating system are lost in the mist of the sixties of the last
century, as no one seems to know for sure who first used it to describe the basic
software of a computer. We do know though that IBM used it to describe the sys-
tem software of their System/360 in 1964—called OS/360—famous for the huge
problems its development has encountered, leading to the no less famous book on
software project management, The Mythical man-month [1].

If the origins of the term are not entirely clear, the definition of what an operating
system really is made also a good subject for lengthy and passionate technical—and
lately, legal—debates (just think of the browser war and whether the browser shall
be part of the OS or not). For the purposes of this book however we will limit our-
selves to a basic definition that can be used as a clear basis for the discussion of the
subjects that require operating system service.

So, what is an operating system?
To be able to answer this question, it’s useful to take a brief look at the evolution

of computers. Back in the early fifties, only one program was executing at any time
and had full control of the complete computer. The programmer had to take care of
every single detail needed to execute the program, manage hardware events and get-
ting the data in and out of the system. Then, with the development of more compli-

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_3, © Springer Science+Business Media, LLC 2011

Chapter 3
State of the Art Multi-Core Operating Systems

46

cated peripherals (such as displays, printers, magnetic tapes etc.) in the later part of
the fifties the need arouse for maintaining these and providing a translation function
for the actual application—hence the first drivers packaged as libraries appeared,
combined gradually into an application that had to be loaded on the computer be-
fore any useful task could be executed and which provided a minimal environment
for the application itself to rely on. These libraries went by names ‘master control
program’, ‘executive’ and the like and were essentially resource managers for I/O
resources spiced up with some application start/stop functions.

The next big thing that really led to the development of operating systems was
the emergence of multitasking in the sixties, prompted by the dramatic improve-
ment in the performance of the processors and the increasing role of input/output
devices, running at significantly lower speed—which would have left the processor
unused for large periods of time, something totally unacceptable in an era when
computers still cost tens to hundreds of thousands of dollars. It’s probably fair to say
that multitasking was the last spark that triggered the emergence of modern operat-
ing systems and—even though many would argue against this claim—we believe
that OS/360, or rather the family of operating systems it has originated, was the first
truly modern operating system to see a widespread use. The rest, as the saying goes,
is history—Windows, various flavors of Unix, MacOS, Linux and the rest, with
their ever increasing range of features appeared as the range of hardware diversi-
fied, and became personal and commoditized.

What is then the core and soul of an operating system?
First of all, the operating system is, from the application perspective, the ab-

straction layer on top of the underlying hardware. It shall take care of interrupts,
processor management, low level interaction with peripherals and other similar
tasks, while providing a unified interface and abstraction for the applications to
use. This role is probably the oldest role of any operating system, tracing back to
the beginnings of modern computers—and is usually one of the least disputed ones
when it comes to drawing the limits of operating systems.

Though we will discuss the issue of virtualization further on, it’s important to
make a clarification of what hardware means in the context of the previous para-
graph, in a virtualized environment. To put it simply, it means anything that the
operating system perceives as hardware—it may be real hardware or an abstraction
presented as hardware—virtual hardware—by some underlying virtualization soft-
ware. It is the totality of (real or virtual) hardware that this specific (real or virtual)
computer may use and therefore the operating system needs to manage in order to
perform its function of abstraction layer towards the applications. The same reason-
ing still holds—the applications shall not be exposed to the nitty-gritty details of
hardware, rather shall focus on the tasks that they were designed to perform.

The second role of an operating system is that of resource owner and resource
manager. While resource may mean many things, in this context we define it as
three specific entities:

• Processor resources that may execute application code
• Memory, either on-chip or off-chip

3 State of the Art Multi-Core Operating Systems

47

• Peripherals, such as network interfaces, hardware accelerators, and any other
input or output devices that multiple applications may share.

In this context the role of the OS is that of resource broker and supervisor, with
the goal of maximizing resource exploitation while meeting requirements from the
applications. This role originates from the ever-growing gap between the speed of
processors and other resources such as memory and peripherals: in order to keep the
processors as busy as possible, multiplexing of tasks became mandatory.

In our view these two roles—hardware abstraction layer and resource owner/
manager—are at the heart of any operating system. Other functions typically as-
sociated with operating systems, such as graphical interfaces or networking stacks,
while essential for many applications are not mandatory for all applications ex-
ecuting on a certain computer. As said before, this distinction is the subject of a
long-running debate in the academic, industrial and legal sphere; our delimitation
here has the mere goal of setting the focus area for further discussions on operating
systems in the context of multi-core and many-core chips.

The rest of this chapter is structured as follows. The first sub-chapter deals with
various architectures for operating system kernels; the second sub-chapter discusses
scheduling, while the third one handles issues related to memory and peripheral
management. Finally, we will exemplify all these aspects through mainstream oper-
ating systems: Windows, Linux and Solaris.

3.2   Operating System Architecture: Micro-Kernels  
and Monolithic Kernels

There’s such a diversified offering of operating systems, that it’s hard to establish a
simple set of classification criteria. From this book’s perspective however, there are
fundamentally two dimensions along which operating systems can be classified: the
architecture of the kernel and the approach to task scheduling. We’ll briefly discuss
these different categories in this chapter, but for a thorough presentation we recom-
mend one of the books listed under Refs. [2–4]. Our goal here is to merely introduce
the fundamental ideas to be used in subsequent discussions.

The kernel of an operating system is usually defined as the part of the operat-
ing system that is mandatory and common to all other software that executes on
that specific computer. What exactly shall be ‘mandatory and common’ is at the
core of the micro-kernel versus monolithic kernel divide and it revolves around
the all-important concepts of kernel space versus user space. Essentially, a piece of
software is considered to execute in kernel space if it has direct, unrestricted access
to all protected data structures of the operating systems kernel (of all the compo-
nents considered mandatory and common), without any other specific and explicit
security restrictions—hence it has all the same rights as any other piece of software
executing in kernel space. On the other hand, software executing in user space has
no direct access to any of the kernel space data structures; it may influence the be-
havior of the kernel only through a set of well defined, restricted interfaces. These

3.2 Operating System Architecture: Micro-Kernels and Monolithic Kernels

48

interfaces may be implemented as system calls or as a messaging interface, but the
clear distinction between the two modes lies at the type of access that is granted to
kernel-space data structures.

From the kernel architecture perspective there are two main categories of op-
erating systems, with a number of variations in between. Micro-kernel operating
systems are characterized by running most of their services in user mode as user
processes and keeping only the very basic scheduling and hardware management
mechanisms in the protected kernel space. Monolithic kernels on the other hand are
characterized by incorporation of most of the operating system services into the
kernel space, sharing the same memory space.

The fundamental principle micro-kernel designs aim to follow is the principle
of separation of mechanism and policy. In a micro-kernel, the kernel’s role is to
provide the minimal support for executing processes, inter-process communication
and hardware management. All the other services—and indeed, policies—are then
implemented as servers in user space, communicating with applications and with
other components through inter-process communication mechanisms, usually mes-
sages. Micro-kernel based operating systems are usually characterized by strong
modularity, low kernel footprint and increased security and robustness, as a con-
sequence of the strong isolation of the components and the execution of most ser-
vices in user-space. On the other hand, micro-kernels traditionally require a higher
overhead for access to operating services, as there will be more context switches
between user-space and kernel-space modes.

Monolithic kernels excel primarily at speed as all the services of the operating
system execute in kernel mode and hence can share memory and perform direct
function calls, without the need for using inter-process communication mecha-
nisms, such as message passing. As most of the OS functions are packed together,
monolithic kernels tend to be bigger, more complex and hence more difficult to test
and maintain, also requiring careful, holistic approach to overall design.

There have been several long debates around these two different approaches,
most famously between Linus Torvalds, the inventor and gate keeper of Linux (on
the monolithic side) and Andrew Tannenbaum, a respected professor and author
(advocate of micro-kernel architectures), dating back to 1992 with a revived ex-
change in 2006. The essence of the debate revolves around maintainability, secu-
rity, efficiency and complexity of operating systems, with valid arguments brought
forward by both camps. The argument for micro-kernels is primarily based on the
emphasis on reliability and security, supported by as little data sharing as possible
and strict decomposition and isolation of operating system components. The coun-
ter-argument brought forward by Torvalds builds on the fact that algorithm design
for distributed, share-nothing systems is inherently more complex and hence micro-
kernels, with their emphasis on isolation would suffer on the maintainability and
performance front. It’s fair to say that on the theoretical level, the debate is undecid-
ed; however, on the practical side, mainstream general purpose operating systems
tend to have a monolithic architecture, while operating systems targeting specific
application domains have, in many cases, a micro-kernel based approach. Examples
of micro-kernel based operating systems include some real-time operating systems

3 State of the Art Multi-Core Operating Systems

49

(such as QNX [5] and OSE [6]) and Mac OS, which is in fact a hybrid built around
a micro-kernel, but using shared memory space with other OS components.

Before concluding our brief introduction to operating system kernel types, it’s
fair to mention a third form of kernels, called exokernels [7]. An exokernel’s pri-
mary design principle is to limit the HW abstractions it defines to the bare mini-
mum—focusing primarily on the multiplexing task of the operating system, offer-
ing ‘real’ HW to its users. All the other typical tasks of an operating system are then
offered through library operating systems, which can provide specific abstractions
to the applications while using the services of the exokernel. In many cases, such an
approach offers even greater flexibility in building the ‘just right’ operating system,
tailor made for each application—but at the cost of placing some of the typical OS
functionality in the domain of user-space applications.

From the perspective of multi-core operating systems this debate is only relevant
to the extent it brings forward potential bottlenecks that only become visible as we
try to scale up to more cores. As we’ll elaborate on this further on, widely shared
data structures tend to become a bottleneck at some point, hence designs that limit
large-scale sharing tend to perform better. However, this argument is essentially
orthogonal to the discussion about micro-kernels versus monolithic kernels; it has
to do more with the design of internal data structures and scheduling philosophies
than with how the software components are structured.

3.3   Scheduling

One of the fundamental concepts in any operating system is the scheduling of ap-
plications that are using the computer under the control of the operating system. Task
scheduling—also referred to as thread or process scheduling—is at the heart of any
operating system and largely defines how well the operating system is capable of
dealing with various workloads and various types of applications. In the context of
this discussion, we define scheduling as the mechanism the operating system uses to
execute available programs on the available hardware with the dual goal of maximiz-
ing processor usage and minimizing execution time for any of the programs that shall
execute on the computer it controls. In this chapter we will use the term task to denote
schedulable entities—traditionally called programs, processes or threads; a task is,
in this context, a certain piece of computation that shall be executed on a computer.

In traditional, single processor systems, the goal of the scheduling was to maxi-
mize the utilization of the CPU, traditionally considered the key resource in any
computer. As the gap between the performance of the CPU and that of other compo-
nents—memory, peripherals, networking infrastructure—was widening, it became
obvious that the best way to keep the CPU occupied was to allocate multiple tasks
(programs) to the processor and execute these in a time-multiplexed manner. Mul-
tiplexing of tasks in time—while implemented according to a bewildering number
of scheduling policies—relies traditionally on two very simple principles: the readi-
ness principle and the priority principle.

3.3 Scheduling

50

The readiness principle simply states that a task will be considered for execution
as soon as it has all the data and input that it needs to run available—i.e., it does
not wait on a memory access, peripheral device or user interaction. The readiness
principle simply defines the range of tasks that the operating system shall consider
when deciding what the processor shall execute.

The priority principle sets the high level policy for how to share the computing
power of the processor among available tasks. In fact, the priority of a task has
been—until recently—the only indication applications were able to provide to the
operating system as to the importance of a specific task and how it shall be treated
in relation to other, competing tasks. While there are several strategies for dealing
with tasks at various priority levels, the fundamental, underlying principle remained
the same: the sharing of computing capabilities and the multiplexing in time of tasks
shall be guided by the priority assigned to each task.

It’s important to emphasize that time multiplexing and priority scheduling were
driven by two factors: the gap between the performance of the CPU and peripherals
and by the much larger number of tasks to be executed, as opposed to the amount of
available processors. This approach is essentially pervasive—there’s practically no
operating system today that does not follow these two basic principles.

The emergence of shared memory multi-processors and multi-core processors
added an extra layer to the scheduling of tasks by operating systems: for the first
time, the operating system was facing multiple processors, capable of execut-
ing tasks—and in fact, operating systems—truly in parallel. Two new principles
emerged, adding extra complexity the scheduling problem: the principle of load
balancing and the principle of non-uniformity.

The load balancing principle simply states that the operating system shall aim
at balancing the load on available processors, by choosing a suitable deployment
and scheduling strategy. This principle has to be balanced however in relation to
the principle of non-uniformity: as not all resources will have equal access times
from all processors, task scheduling shall take into account the resource needs of
tasks—primarily, memory access—when choosing a certain scheduling policy. The
concept of Non-Uniform Memory Architecture (NUMA) is at the core of this prin-
ciple, with regards to memory access.

Depending on the strategy chosen for handling multiple processor cores, today’s op-
erating systems mostly fall in one of the following three categories: symmetric multi-
processing (SMP), asymmetric multi-processing (AMP) or bound-multiprocessing
(BMP). We’ll briefly introduce these categories—but for a broader discussion of the
subject, we recommend going through some of the well-established text books on the
subject, such as Refs. [2–4]. Figure 3.1 gives an overview of the three architectures.

3.3.1   Symmetric Multi-Processing

In a symmetric multi-processing context, the operating system treats all available
processor cores as equal resources, hence putting emphasis on the load balancing
principle: available tasks will be allocated to cores in such manner that all cores are

3 State of the Art Multi-Core Operating Systems

51

kept busy as much as possible. Typically there is one single operating system image
managing all cores and the memory is globally shared—a key enabler for schedul-
ing any task on any available processor core.

In case of NUMA architectures, the SMP model is usually refined with the no-
tions of clustering of cores and affinity. All cores in a cluster share the same memory
access characteristics, in the sense that every part of the globally shared memory
can be accessed with similar latency and access time from each core in the same
cluster. The affinity of a task defines on which cluster it shall execute in order to
improve its performance—however this affinity may be overruled by the operating
system in order to follow the load balancing principle.

SMP architectures are widely used today on homogeneous architectures where
programmability and shared memory semantics are the main concerns. Practically
all major operating systems—including Windows, Linux and different variants of
Unix—offer an SMP approach. As we’ll see in Chap. 7, however, SMP introduces
several issues related to cache utilization and operating system kernel scalability
that may limit its applicability to large number of cores located on the same chip.

3.3.2   Asymmetric Multi-Processing

As opposed to symmetric multi-processing, asymmetric multi-processing (AMP)
emphasizes partitioning and role specialization for available processor cores. On
the hardware level, asymmetric multi-processing usually means cores with differ-

Fig. 3.1   Operating systems architectures

Core 0 Core 1 Core N…

SMP Operating System

Application 1 Application 2

Shared Memory One OS instance, shared memory,
any application can run on any core

Core 0 Core 1 Core N…

SMP/BMP Operating System

Application 1 Application 2

Shared Memory One OS instance, shared memory,
but applications are bound to specific

cores

Core 0 Core 1 Core N…

AMP OS

Application 1 Application 2

Memory

AMP OS

Memory Multiple OS instances, no shared
memory, applications bound to one

OS instance, communication through
messages

3.3 Scheduling

52

ent capabilities—e.g. different instruction set architectures or different execution
speeds—that essentially precludes the usage of an SMP model, for the simple rea-
son that tasks may not be allocated on any of the available processor cores. Even
in case of homogeneous hardware architectures, there may be reasons for choosing
an asymmetric multi-processing approach: memory partitioning, explicit and re-
strictive affinity management or simply lack of scalability of the operating system
across multiple processor cores.

An AMP operating system is usually characterized by multiple operating system
domains executing on different sub-sets of the available processor cores. Applica-
tions are locked to one of the domains and may not transparently migrate to another
domain; at the same time, communication between applications running in differ-
ent domains is restricted and strictly controlled—in many cases, it’s only possible
through messages. In some cases, there is a master–slave relationship between dif-
ferent domains, in the sense that ‘slave’ domains can only execute tasks dispatched
from the master domain.

Asymmetric multi-processing operating systems are usually deployed on hetero-
geneous hardware architectures or in cases when isolation brings additional ben-
efits, such as real-time systems.

3.3.3   Bound Multi-Processing

A special class of operating systems is using a specialized version of symmetric
multi-processing, called bound multiprocessing (BMP). BMP provides similar
scheduling semantics as an asymmetric multiprocessing model, however in the
context of a single copy of the OS that maintains an overall view of all system re-
sources, similarly to the symmetric multi-processor model. The key differentiating
feature is that in bound multiprocessing operating systems, the location (binding)
of each task is explicitly defined; hence all tasks are locked to a specific core—in
practice, placing the task of load-balancing in the hands of the programmer. Com-
pared to conventional SMP operation, this approach offers several advantages: it
improves cache performance, by providing the programmer with the tools needed to
optimize placement with respect to cache and it provides a framework for executing
legacy applications with poor multi-processing behavior. Most SMP systems today
offer the tools necessary to use them in a BMP manner, such as the core affinity at-
tribute that can be used in Linux to steer the placement of tasks.

3.4   Memory Management

Resource (other than the processor core resources) management in general—and
memory management in special—is one of the key roles for any operating system.
Any application requires memory to execute, in the form of stack and heap and the

3 State of the Art Multi-Core Operating Systems

53

task of coordinating and servicing requests coming from various applications is
naturally handled by the operating system kernel.

The fundamental principle any OS shall adhere to is that of isolation. The operat-
ing system shall guarantee that no application can access the memory belonging to
any other application or to the kernel. Any such attempt shall result in an exception
that the OS shall handle in an orderly way (e.g. by terminating the offending ap-
plication).

Another fundamental principle is the principle of continuous memory. The
memory allocated to an application as part of one request shall be continuous,
thus addressable through a single pointer, irrespective of how it is actually laid
out in the physical memory. Main-stream, general purpose operating systems
usually complement this with another principle, that of exclusiveness: any ap-
plication shall be presented with the view of having exclusive access to the com-
plete physical memory (and, for some operating systems, to the full range of
addressable memory), irrespective of how much physical memory is actually
installed.

As we will elaborate on further in this chapter, these three principles are at the
foundation of the concepts of virtual memory and associated concepts and tech-
niques such as memory pages, swapping and address mapping.

An important principle observed to various extents by modern operating systems
is that of locality. Especially in multi-processor and multi-core systems it is very
important that memory is allocated as close to the processor core on which it will be
used as possible, in order to avoid the cost of transferring memory content in terms
of latency and core stalling. Equally important is the knowledge of whether a cer-
tain memory area (memory page) is in the core’s local cache or not; this knowledge
can steer the placement of newly allocated memory as well as steer the swapping of
pages as function of memory access patterns.

Besides these principles, an important phenomenon memory managers have to
deal with is that of memory fragmentation. Repeated allocation and de-allocation
of memory can lead to a high degree of fragmentation, where the size of the largest
continuous free memory block is significantly smaller than the total amount of free
memory. There are several techniques that were developed to deal with this issue
(most prominently the method of buddies), but so far no simple and efficient solu-
tion was proposed that would address the problem in its entirety.

In multi-core systems, the scalability of memory management is one of the ma-
jor concerns. Traditionally, all data structures dealing with memory management
are centralized, in order to keep one consistent view of the memory. However, in
multi-core systems such an approach requires either a central singleton memory
manager that can quickly become the bottleneck, or a synchronized access to the
global memory-related data structures that, as we will see in Chap. 7, will lead to
increased latency of memory management operations.

In the following sub-sections we will take a closer look at some of the estab-
lished concepts and methods related to memory management: paging and virtual
memory, memory allocation techniques and methods for preventing and managing
memory fragmentation.

3.4 Memory Management

54

3.4.1   Virtual Memory and Memory Pages

The concept of virtual memory is in no ways new: it’s a well established technique
to provide the appearance of much larger memory than what is physically available.
It relies on three techniques:

• memory content swapping to and from external storage
• statistical multiplexing of currently accessed memory areas in the main physical

memory
• HW support for mapping virtual addresses to physical ones in the memory. This

is also the prime enabler for providing each application with a continuous memo-
ry address space that is automatically mapped to potentially discontinuous physi-
cal (or swapped out) memory areas.

In an operating system using virtual memory, each application is provided with a
continuous virtual address space that it can access as if it would indeed be a continu-
ous physical memory area. This space is divided into virtual memory pages, blocks
of few kilobytes each, managed as one entity. Memory pages are the primary instru-
ment to manage the mapping of virtual address spaces to physical ones, as pages are
the smallest entities that are mapped into the physical memory or external storage.

Each virtual memory page is either mapped to a page in the physical memory—
in which case the hardware resolves automatically the mapping through the page
mapping directory managed by the operating system—or it is swapped out into
external storage. In this case, a page fault is generated by the HW and the operat-
ing system will try to swap it back into a physical page, potentially swapping out
another, recently unused page in the process. This chain of mapping is illustrated
in Fig. 3.2.

Swapping pages in and out of the physical memory obviously adds a signifi-
cant performance penalty for applications, thus intelligent management of what gets
swapped out of the cache and main memory is extremely important. Most modern
operating systems implement some form of page usage monitoring so that situations
where frequently used pages are swapped out in favor of other, perhaps just occa-
sionally accessed pages can be avoided. A more subtle, yet very important issue is
the mapping of pages to cache-lines: the operating system shall try to avoid putting
pages that are accessed together into physical memory areas that are mapped to the
same cache line, as such a situation would result in frequent cache misses and swap-
ping of data in and out of the cache memory.

Usage of virtual memory constructs usually requires a centralized management
of page faults and swapping of data to and from external storage. While such a
system works well for single-core systems or for processors with just a few cores,
it quickly becomes an unwanted contributor to the slowdown of the system as the
number of cores increases: it will be directly reflected in the contention for the
global data structures related to the management of virtual memory.

All in all, the concepts of memory pages and virtual memory are fundamental
components of most modern operating systems and we believe it’s fair to conclude

3 State of the Art Multi-Core Operating Systems

55

that such mechanisms would anyway be implemented by applications, in case none
would be provided as a system service. However, as the core count increases, there’s
a need to address scalability issues that can become a performance bottleneck due to
the need to access centralized data structures from multiple cores.

3.4.2   Memory Allocation and Fragmentation

Memory allocation techniques are some of the most studied subjects in operating
system research. In this chapter we cannot and will not attempt to cover all the re-
sults—instead we will focus on some of the fundamental principles as well as the
challenges that need to be addressed in multi-core systems.

The first principle we’ll call the coarse-grained allocation principle. In most
operating systems, the OS deals with memory pages only; any finer granularity allo-
cation is usually left to language run-time systems (such as the malloc/free methods
of the C standard library). This approach simplifies to a large extent the task of the
OS and helps mitigate the issue of memory fragmentation.

The second principle is the locality principle, especially important in distributed
SMP systems. The operating system shall always service memory allocation re-
quests as close to where the application is expected to execute as possible, in order

Fig. 3.2   Memory management concepts

Process’s Linear Virtual
Memory Space

Binary

Stack

Heap

Virtual Memory
Pages

V Ph

Memory Management
Unit (MMU):

Virtual to Physical
Page Translation

Tables & HW
mechanism

Persistent
storage for

swapped out
pages

Physical
Memory
Pages

Page fault is
generated by
HW in case
these pages
are accessed

Physical
Memory

3.4 Memory Management

56

to minimize the memory access latency. This requires co-operation with the sched-
uler, both at memory allocation and re-scheduling, in order to avoid the migration
of application threads away from cores which have the fastest access to the most
used memory pages.

Note: there is another type of memory manager—process scheduler interaction
that is used when the amount of available physical memory drops below certain
level. In these cases, the memory manager may decide to temporarily swap out
some memory-resident processes in order to conserve memory—irrespective of the
scheduling decisions taken by the main process scheduler. This feature is available
in most modern operating systems.

The third principle is the cache collision avoidance principle, which aims at
minimizing the overlap of pages frequently used together in the core-local caches.
In short, each physical memory page is mapped to a specific cache-line; if two pag-
es are mapped to the same cache-line, these will compete for that part of the cache
and will repeatedly invalidate that part of the cache, resulting in constant reloading
of the cache content. Several algorithms—mostly based on page coloring according
to cache line—are available to support this principle; it’s very much dependent on
the application’s memory usage pattern which one performs best.

The fourth principle relates primarily to the management of executable code.
Most modern operating systems implement some form of the single code image
principle, i.e., having just one copy of the same program code in the memory for
all applications. This principle may not apply globally—especially in distributed
SMP systems—for performance reasons; in these systems, it’s common to have one
memory-resident image of each code segment per node (as a direct application of
the locality principle).

One of the key design choices for memory management is the selection of mem-
ory allocation algorithm with respect to the sub-slicing of memory. The driving
constraint is memory fragmentation, manifested through scattered, small sized seg-
ments of memory which make allocation of large segments impossible, even though
the total amount of free memory is sufficient. As one would expect, there are plenty
of algorithms developed over the years; here we will focus on the most widely used
ones: the buddy allocator, the slab allocator and Solaris’ Vmem allocator.

3.4.2.1   The Buddy Allocator

The buddy allocator [8] is one of the most widely used methods for managing mem-
ory with the goal of minimizing memory fragmentation. It adheres to the coarse
grained allocation principle, in the sense that it’s targeted at allocating larger chunks
of memory (on the level of few hundred bytes to few kilobytes), instead of fine
grained management of memory.

The basic idea of buddy allocator is to allocate memory in chunks of sizes of
power of two (e.g. 1024, 2048 etc.). The system keeps a free list for each chunk size
and implements a chunk slicing and merging algorithm as described below:

3 State of the Art Multi-Core Operating Systems

57

1. Initially, the complete memory is in one free list, as one large chunk
2. When a new request is received, the system will search for a free list with avail-

able chunks that are same sized or larger than the requested amount of memory
3. If the available chunk size is less than twice the requested size, one of the chunks

is allocated
4. Otherwise, one chunk is selected and repeatedly sliced up in halves until the

condition from step 3 is met. The resulting, unused chunks are put in the cor-
responding free lists

− Example: A memory block of size 512 bytes is requested; as the smallest
available chunk is of 2048 bytes, one of these chunks will be sliced up into
two chunks of 1024 bytes each, one is put on the 1024 bytes free list, while
the other one is further sliced up into two chunks of 512 bytes each: one is
allocated while the other one is stored on the 512 byte free list

5. When a block of memory is released, the system will check if the any of the two
neighboring chunks (buddies) are free; if yes, the chunks are merged and the
process is repeated; finally, the resulting chunk is put in the corresponding free
list

This method is illustrated in Fig. 3.3.
Clearly, this algorithm is just an opportunistic method to grab the low-hang-

ing fruits whenever possible: it can re-merge chunks of memory, but this is only

3.4 Memory Management

Fig. 3.3   The buddy allocator

2 n

2 n – 1

2 n – 2

2 n

2 n – 1

2 n – 2

2 n

2 n – 1

2 n – 2

t = t0

t = t0 + t1

t = t0 + t1 + t2

Chunk of size 2 n – 1 is allocated:
memory block 0 is split into two

Chunk of size 2 n – 2 is allocated:
memory block 00 is split into two

Memory block 0: free

Memory block 00: free Memory block 01: allocated

Memory block 01: allocated

Memory block 001: allocatedMemory block 000: free

58

possible if the overall allocation/de-allocation sequence has a pattern that results in
neighboring chunks being released roughly one after the other.

The basic algorithm can be further improved through additional chunk selection
mechanisms such as:

• Allocate chunks for one application from the same region of the memory: if the
application terminates, a large, compact chunk of memory can be freed up

• Choose “isolated” chunks, in order to increase the continuous allocated memory
areas

The buddy method has been significantly improved recently in the Linux kernel by
grouping the memory pages according to whether the page can be moved (the case
for most user space applications and for file caches) or not (kernel memory). By
keeping these pages separate, file-system type of de-fragmentation can be performed
for the movable pages (at the additional cost of content copying and re-mapping).

3.4.2.2   The Slab Allocator

The slab allocator [9] was designed for the Solaris kernel at Sun, but made its way
into several other mainstream operating systems (such as Linux). While Linux uses
it as a small scale allocator, in Solaris it’s the main memory management algorithm,
replacing the buddy allocator altogether.

The basic concepts of the slab allocator are those of object, to describe a memory
allocation unit, cache, i.e., set of objects of similar sizes and slab, a sub-set of ob-
jects located within the same cache and stored in a continuous group of pages. Thus
a slab represents a continuous set of pages that contain multiple objects of the same
class (similar sizes), while a cache is a collection of slabs.

Consequently, the slab allocator is made up of two main layers. The backend
(lower) layer is responsible for creating slabs using several subsequent pages al-
located through a simple page manager; the front end (higher) layer takes care of
servicing memory requests from clients. To put it simply, the backend supplies the
raw material in which to place the objects, while the front-end is responsible for
actually creating and maintaining the objects. The architecture of the slab allocator
is shown in Fig. 3.4.

In practice however, especially for multi-processor systems, the slab allocator is
usually implemented as a three layer system. Here we describe briefly the architec-
ture of the Solaris slab allocator, however most implementations are likely to follow
a similar of even more refined approach.

The lowest, CPU level layer implements a processor-level caching mechanism in
order to minimize the overhead—and especially global contention—for object allo-
cation and de-allocation. The mechanism used for this is that of magazines, groups
of objects assembled by the higher levels, possibly from different slabs and put at
the disposal of the CPU. The CPU level layer will use the magazines available to it
to service local requests and will only interact with the higher layers when it needs
more magazines.

3 State of the Art Multi-Core Operating Systems

59

The intermediate layer is that of the depot manager. The depot manager takes
care of constructing and allocating magazines as well as defining the appropriate
size of the allocated magazines (based on regularly checked and evaluated usage
patterns).

The highest layer is the global slab layer that manages the allocation of slabs
from contiguous pages of memory for the different caches and passing these down
to the depot manager. It also implements a slab coloring mechanism in order to
reduce the probability of cache line overlap; the ‘color’ is simply an offset to the
start of each slab.

One of the important characteristics of the slab allocator is that it can allocate
memory areas of different sizes, by using a ‘best fit’ cache and a ‘best fit’ available
object approach. Caches are usually created explicitly, normally at initialization
phase of a kernel module or applications. Objects and slabs can also be created ex-
plicitly, hence de-coupling the memory object construction and effective utilization
phases. This approach also allows the usage of object caching techniques: if the us-
age of objects in a cache is known a priori (e.g. as file descriptor), the file descriptor
object can be pre-created in advance (in the construction phase) and its content pre-
served after de-allocation, keeping it in hot or immediately usable state. This way,
especially for frequently used object types, the construction phase—which may be
quite expensive—can be factored out and performed only once or just rarely; the
client (user of the object) then can focus on just creating the differentiating content
of the object. In order to improve the performance of the object caching system,

Fig. 3.4   The slab allocator

memory pages for
Contiguous set of
memory pages for

slab 0

Contiguous set of

slab 1

Contiguous set of
memory pages for

slab 2

Slab 0 Slab 1 Slab 2

Object cache of
same sized objects
(grouped in 3
slabs)

Memory users
(applications and
kernel)

Front-end interface
Allocate, de-allocate, construct,

destruct objects

Objects

Back-end interfaceAllocate, de-allocate

contiguous sets of memory
pages to be used as slabs Backend memory

manager

3.4 Memory Management

60

the applications may provide object constructor and destructor methods that will be
invoked by the slab allocator whenever an object needs to be modified (this is the
approach used in Solaris).

The slab allocator has two major benefits over the buddy method. First, it is sig-
nificantly faster, not least due to the object caching functionality (in Solaris’ case,
the performance difference factor is about 2.5 ×); equally importantly, as objects are
not clustered around addresses that are powers of 2, it tends to have a better cache
behavior and hence improved application performance. Second, due to the cluster-
ing of similar sized objects, it reduces the fragmentation of the memory, again with
a factor of approximately 2.5 × compared to the buddy allocator (expressed as the
ratio of wasted memory: while for the buddy allocator it’s above 40% in many
cases, it stays under 20% for the slab allocator, according to Ref. [10]).

3.4.2.3   The Solaris Vmem Allocator

The Solaris Vmem allocator [10] was designed to handle virtual address allocation,
however it evolved to become a general purpose resource manager. In the context of
the Vmem allocator, a resource is anything that can be described by a set of integers:
for example, a memory area is defined by two integers (start address and size) while
process ids are single integers.

The Vmem allocator has a very simple external interface: it allows the creation of
arenas of resources, modification of arenas by dynamically adding more resources and
allocation/de-allocation of individual resources. An arena is defined as one or multiple
integer ranges (spans) that represent resources (e.g. memory address areas), together
with some characteristics that drive the resource management process: the quantum,
which defines the resource allocation alignment (e.g. page size for memory allocation)
and cache size which defines the maximum small integer multiplier of quantum to be
reserved for caching. These two parameters define the sizes of object caches that the
arena will have and which will be used to quickly allocate resources of those sizes:
there will be object cache for object sizes equal to small integer (usually up to 5) mul-
tiples of quantum. The allocation of memory to these caches will be done in slabs of
sizes equal to the next power of 2 above 3*cache size—a value that allows good fit for
cache size values up to 5 and helps avoiding fragmentation within the arena.

Resource allocation is done in segments, defined by a start address and a length.
The arenas will keep lists of segments grouped according to size, thus the list of best
fit segments can be quickly identified and the right sized free segment selected. Us-
ing boundary tags, the Vmem allocator will essentially implement a buddy alloca-
tor mechanism in constant time and will try to merge segments whenever possible.
Using the caching mechanism outlined above, segments of specific sizes can be
allocated directly from caches, hence speeding up the process.

The Vmem allocator has proved to be a highly scalable general purpose resource
management framework that has been reported to improve system level perfor-
mance by up to 50% and help to eliminate several existing resource allocators in
the Solaris system.

3 State of the Art Multi-Core Operating Systems

61

3.5   Current Main-Stream Operating Systems

Even though there are dozens or perhaps hundreds of operating systems targeting
specialized domains such as automotive, real-time or telecommunications, when it
comes to systems based on multi-processor architecture and multi-core processors,
there are just a few well established operating systems that have seen a widespread
usage. Of these, without the intention of completeness, we will briefly describe
Linux, Solaris and the Windows family of operating systems; our intention is not
to provide an extensive description, but rather focus on the main elements that are
relevant from a multi-core perspective: scheduling policy and memory/resource
management.

3.5.1   Linux

Linux was developed by Linus Thorvalds at the Helsinki University of Technol-
ogy and first released as an open source operating system in 1992. Since then, it
has undergone major redesigns and today is one of the most widely used operating
systems, especially in server installations and supercomputers (about 80% of the top
500 supercomputers use Linux as the operating system [11]).

Linux is an open source SMP system with a monolithic kernel, a feature fa-
mously highlighted in the debate between Thorvalds and Tannenbaum, the leader of
the MINIX project (a micro-kernel based Unix variant). Its design has undergone
several major redesigns, most recently through the swap of the core scheduler in
release 2.6.23 (currently—2010—the Linux kernel has a 2.6.3x release version),
thus it is quite difficult to describe the features of Linux in general; the description
given in this chapter is based on version 2.6.33.

3.5.1.1   Scheduling

Scheduling in Linux is structured on two levels: the core scheduler and the sched-
uler classes. The task division between the two layers is quite well defined: while
the scheduler classes’ layer takes the scheduling decisions according to various
policies, hence deciding which task to run next, the core scheduler takes care of the
general task management and task switching activities, independently of how—ac-
cording to which policy—the next task to be executed has been selected. The over-
all architecture and relationships between layers is shown in Fig. 3.5.

The core scheduler is activated in two ways: either a task yields the CPU or
through a mechanism that is run periodically and decides whether task switching
is necessary. It consists of two main functions: the periodic scheduler and the main
scheduler. The periodic scheduler performs—besides the collection of scheduling
specific statistics—two major tasks: it decides and if needed, performs load re-
balancing between CPUs in an SMP system and activates the periodic scheduling

3.5 Current Main-Stream Operating Systems

62

method of the scheduling classes to which the currently running task belongs. This,
in turn, may decide that a switch of active tasks is needed and indicates this through
setting a kernel flag that signals the need to run the main scheduler.

The main scheduler is invoked at many points throughout the kernel—for exam-
ple, after system calls, if the kernel flag indicating the need to reschedule is set—and
is the entity that actually decides and triggers a task switch. At this point it’s neces-
sary to clarify the relationship that exists between different scheduling classes (or
scheduling policies): from the main scheduler’s perspective, these are organized in
a strict hierarchy and no task belonging to a lower priority scheduling class will be
selected as long as there are any runnable tasks belonging to higher priority schedul-
ing classes. On the other hand, each task belongs to one scheduling class only (and
each task must belong to a scheduling class). Due to this algorithm, the current main
scheduler is also called the priority scheduler, as it selects the next task based on
the priority of the scheduling class to which it belongs; for the same priority level,
however, the decision—task selection policy—is delegated to the scheduler class.

It is important to clarify what exactly is being actually scheduled by the Linux
kernel. We used so far the term task; in reality however the kernel works with sched-
ulable entities, where a schedulable entity may be simply a thread but also a group
of processes. From the overall scheduling architecture point of view this is practi-
cally irrelevant, hence our choice of using the term task.

Fig. 3.5   The architecture of the Linux scheduler

CPUCPU

CPUCPU

CPUCPU

Core Scheduler (main priority scheduler, one instance / CPU)

Scheduler Classes (priority ordered, each class has one queue / CPU)

Main
Scheduler

Periodic
Scheduler

• Load balancing between CPUs
• Activation of scheduler classes’

periodic scheduler

• Task switch decision
• Interaction with actual HW

Real-time
Scheduler Class

Completely Fair
Scheduler (CFS)

Class

Tasks Tasks

Scheduling policies:
• round-robin
• FIFO

Scheduling policies:
• normal
• batch
• idle

Periodic scheduling
Per class re-balancing (task stealing)

3 State of the Art Multi-Core Operating Systems

63

Linux today supports, by default, two scheduler classes, each with different
scheduling policies. The (soft) real-time scheduling class has the higher priority
and supports the round-robin and FIFO scheduling policies; for a thorough discus-
sion of this scheduling class, we recommend one of the many books and sources
available, such as Ref. [12]. Herein we will focus on the second, more widely used
general purpose scheduling class that supports the normal, batch and idle schedul-
ing policies.

The general Linux scheduling class used prior to kernel version 2.6.23 was
based on the O(1) scheduler [13], capable of scheduling processes within a con-
stant amount of time, but this was replaced with a new, O(log n) scheduler called
the Completely Fair Scheduler (CFS). It’s based on the Rotating Staircase Dead-
line scheduler, also developed within the Linux kernel community. Consequently,
today this main scheduling class is also called the completely fair scheduling
class.

The basic principle of CFS is to provide as close to ideal as possible fairness to
each task, with respect to the computational power that it gets allocated. In a simpli-
fied case of N tasks with the same priority, it would mean equal processor time. The
core method to approximate such a situation is to keep an ordered list of tasks (us-
ing a red–black tree as implementation method), so that the tasks with the longest
waiting times are at the head of the list and will execute next. In fact, the quantity by
which tasks are ordered is modified to take into account the time it should receive
and hence simulate the ideal case more precisely; this modification is based on the
virtual clock of the CFS, which weights the wall clock by the number of available
tasks.

Once a task is selected for execution, its waiting time will be decreased periodi-
cally with the amount of time it was allowed to run and hence eventually it will not
be at the head of the ordered list—triggering the selection of another task for execu-
tion, the task that becomes first in the list.

In practice, this algorithm has to be fine-tuned in order to cater for several con-
straints: different priority levels shall be factored into the waiting time of tasks
(tasks with higher priority shall have higher ‘fair share’ times than lower prioritized
tasks), fairness shall be weighed against the cost of switching tasks too often: the
overhead of doing so may outweigh the benefits, if done too often. In fact, the Linux
kernel has two built-in parameter that controls the latency of scheduling; the first
one indicates the time period within which all tasks must get the chance to execute
at least once (default value is 20 ms); the second one sets the maximum number
of tasks that are supposed to be handled within this time period (if this configured
value is exceeded, the interval will be extended linearly).

3.5.1.2   Multi-Processor and Multi-Core Support

The multi-processor support of Linux is exclusively symmetric multi-processing
centered, with support for non-uniform topologies (such as NUMA systems), but
assuming CPUs with equal capabilities.

3.5 Current Main-Stream Operating Systems

64

SMP support in Linux is an extension of single-processor scheduling. Each CPU
has its own scheduler, but this is coupled with a periodic re-balancing between
CPUs. Essentially, at each periodic invocation (tick) of the scheduler, on each CPU,
the need for rebalancing is checked—in practice, this means that if sufficient time
has elapsed since the last rebalancing, a new rebalancing procedure is initiated.

The rebalancing is done per scheduling class and always within scheduling do-
mains. A scheduling domain is a set of CPUs that define a domain within which re-
scheduling can be performed (e.g., share the same card, processor socket or NUMA
domain). In a perfectly flat SMP, there would naturally be only one scheduling
domain.

The rebalancing is based on a task stealing mechanism. When rebalancing is de-
cided, the thief CPU will identify the CPU with the busiest run queue and, if the load
on that CPU is higher, it will attempt to move tasks from that CPU to itself (only
tasks that are currently not executing may be moved). In case the move of tasks can-
not be done for some reason, the CPU with the busiest queue will be triggered to
perform itself the off-loading of some of its tasks; this will be achieved by a special
thread called the migration thread, associated with every CPU and the procedure is
called active balancing: tasks will be moved forcefully if it’s deemed necessary.

The distributed nature of this rebalancing method is both its strength and weak-
ness. As it’s not a synchronized activity, it can work autonomously e.g. across mul-
tiple scheduling domains; for the same reason however it may be the source of
contention between CPUs as several may attempt to move tasks from the same
busiest CPU. The run-queue of any CPU may be inspected at any time by any other
CPU and attempts to modify it may happen at any time and concurrently with lo-
cal scheduling decisions. While careful locking schemes may make the mechanism
work smoothly for reasonable number of CPUs, it may become impractical for large
scale SMP systems, where it’s often either disabled or confined to reasonably-sized
scheduling domains.

3.5.1.3   Memory Management

Memory management in Linux is based on the buddy allocator for general purpose
memory management and the slab allocator for kernel-specific memory allocation.
Physical memory is divided, usually in a 3:1 ratio, between applications and the
kernel.

From multi-processor and multi-core processor support point of view, Linux of-
fers support for NUMA systems and memory page migration. For multi-processor
systems in general and NUMA architectures in particular, memory is organized
around the concepts of node and CPU sets. Each node owns part of the physical
memory and in general corresponds to one CPU (or several processor cores that
share part of the memory). A CPU set groups several CPUs (nodes) into one group
that has a uniform access to part of the memory.

Applications may be assigned to certain CPU sets and the OS supports automatic
migration of memory pages in case the application is re-assigned; the same effect

3 State of the Art Multi-Core Operating Systems

65

can be achieved by defining memory policies that force the allocation of memory
for a specific application from a specific set of nodes. The memory policy manager
can be configured to perform automatic page migration by redefining the set of
nodes on which the pages for that specific application may be allocated, coupled
with an explicit request for complying with the new policy (which in practice means
page migration).

Beside these two methods—assignment to CPU sets and memory management
policy—the Linux kernel does not support any additional automatic page migration
policies, as the fundamental principle guiding memory management design has al-
ways been to leave the control of it to the application, for lack of a good method to
predict best fit memory page localization.

3.5.1.4   Linux: Summary

Linux is a monolithic kernel, SMP-based multi-processor and multi-core enabled
operating system. It has been used for very large SMP deployments, but usually
with quite strong constraints in order to prevent automatic task migration and cross-
node memory allocations: experiments have shown that these are the areas where
Linux faces the most severe scalability issues. Research has also shown [14] that
Linux is quite intrusive with regards to cache behavior: system calls tend to destroy
application-specific cache, impacting application performance.

3.5.2   Solaris

Solaris was introduced in 1992 by Sun Microsystems (acquired by Oracle) as a
replacement of their earlier SunOS operating system. It was based on Unix System
V Release 4 and it’s certified against the Single UNIX Specification. Solaris is an
SMP operating system, supporting cache-coherent NUMA architectures. Tradition-
ally, it has been renowned for its scalability and in many ways it’s regarded as the
basis to measure up against when it comes to operating systems for massively multi-
processor computers.

Our discussion of Solaris is based on Solaris 10, first released in 2005 but regu-
larly updated throughout the years. As with Linux, we focus on task scheduling,
memory management and support for large-scale multi-processor and multi-core
systems.

3.5.2.1   Scheduling and Multi-Processing Support

It’s practically impossible to de-couple the subjects of scheduling and multi-pro-
cessor support, as the Solaris scheduler—called the dispatcher—inherently takes
multi-processing into account when making scheduling decisions. Unlike Linux,

3.5 Current Main-Stream Operating Systems

66

load balancing and task management are inter-related and whenever a task needs to
be modified in terms of its position in the scheduling hierarchy, CPU placement and
load balancing will always be considered. This way Solaris has a very fine-grained
task migration and load balancing mechanism embedded with the very fabric of
task scheduling.

There are two components of the dispatcher functionality that needs to be un-
derstood in order to get an overview of how task scheduling works in Solaris: the
abstract system model and the dispatcher architecture.

The abstract system model provides a logical view of the hardware in terms
of processing cores, CPUs, groups of processors, resource grouping and latency
hierarchy; this logical view is the one that guides the dispatcher’s decisions with
regards to thread placement. The basic concepts used in the abstract system model
are the following:

• CPU: the CPU is the abstraction of a processor, where a processor is viewed as
an execution resource for a thread; the meaning of the term is different depend-
ing on the underlying hardware: in some multi-core chips, it’s the representation
of a core, while for chips with hardware threads there will be one CPU object
for each HW thread (e.g. to represent a 8 core machine where each core has 4
hardware threads, 32 objects of type CPU are needed)

• Chip: a chip is the representation of a physical processor chip; its exact seman-
tics is dependent on the actual HW: it may represent just one core if that core has
multiple hardware threads or a complete single- or multi-core processor in case
each core has just one HW thread. From the abstract system model perspective,
a Chip is always made up of one or several objects of type CPU

• Processor sets, resource pools and CPU partitions: a processor set is a user-level
grouping of one or more processors (CPUs), used for binding tasks (processes)
to a subset of the available processors; the CPU partition is the kernel representa-
tion of a processor set with one real-time queue (called kernel preempt dispatch
queue) per CPU partition. A resource pool is essentially a stateful processor set
(we will not deal with it in the following discussion of the dispatcher)

• Locality groups (lgroups): provide a mechanism for grouping resources—pri-
marily CPUs and physical memory pages, but also I/O devices—together in or-
der to express the cost in terms of latency of accessing certain resources from
threads scheduled on specific CPUs. It’s important to make the distinction be-
tween processor sets and locality groups: two CPUs may belong to the same pro-
cessor set (a choice made by the system administrator) while being part of dif-
ferent locality groups (due to the way the actual hardware has been built). We’ll
discuss locality groups in more detail when presenting the memory management
features of Solaris.

These concepts and their relationships are illustrated in Fig. 3.6.
The dispatcher uses the abstract system model defined using these concepts to

optimize the placement of threads at creation (each thread is assigned to a home
lgroup when it’s created, based on the load level of different lgroups) and at every
rescheduling decision.

3 State of the Art Multi-Core Operating Systems

67

Internally the dispatcher is structured on two layers: the core dispatcher and the
scheduling classes. At conceptual level, this is very similar to the approach imple-
mented in Linux (or rather the Linux approach is similar to the Solaris approach):
scheduling classes provide the various policies for setting thread priorities while the
core dispatcher takes care of allocating tasks to different CPUs, task switching and
load balancing.

Solaris has 170 global priority levels of which some are reserved for specific
scheduling classes (such as real-time or system) while the others (lower than 60)
are managed jointly by multiple scheduling classes. On the core dispatcher level,
there’s a dispatch queue per CPU and each dispatch queue has an ordered sub-queue
for each priority level (except for the real-time priorities, managed separately).
Scheduler class level decisions will decide on which priority level a thread will be
placed; the core dispatcher will decide the CPU and will take care of task switching.

Solaris supports the following scheduler classes:

• Timeshare (TS): the global priority of the task (and hence its chance to execute)
are adjusted based on the time it spent waiting for the CPU and time spent using
the CPU

• Interactive (IA): same as TS, coupled with a mechanism to prioritize tasks cou-
pled with windows performing active user interaction

• Fair Share (FS): available processor time is allocated as shares to tasks through
administrative means; this scheduling class enforces that allocation

Fig. 3.6   Solaris hardware related concepts

CPU 0CPU 0

CPU 1CPU 1

CPU 2CPU 2

CPU 4CPU 4

CPU 3CPU 3

CPU 5CPU 5

CPU 8CPU 8

CPU 9CPU 9

CPU6CPU 6

CPU 7CPU 7

Chip 0 Chip 1

Chip 4

Chip 2

Chip 3

M
E
M
O
R
Y

M
E
M
O
R
Y

root lgroup

lgroup 0

lgroup 1

Processor set

3.5 Current Main-Stream Operating Systems

68

• Fixed Priority (FX): tasks placed in this scheduler class will not see their global
priority adjusted, hence will more-or-less execute according to a best effort ap-
proach, whenever other tasks with varying priorities make this possible

• Real Time (RT): have the highest priority range and guarantees the lowest pos-
sible dispatch latency

• System (SYS): used exclusively for OS functions and have the highest priority
besides the RT class

As mentioned before, re-balancing between CPUs and task (thread) migration may
happen anytime a thread’s global priority is changed and it’s placed in a new dis-
patcher queue. The high level algorithm for doing so is as follows (it’s only appli-
cable if the task is not pinned to a specific CPU):

• if the task has been waiting less than the ‘cache keep warm’ value of the CPU
where it last executed, it will stay on the CPU (there’s a good chance it still has
its data in the CPU cache)

• otherwise, a CPU is chosen, taking into account the last CPU where the task was
executed, its home lgroup, its CPU partition, its priority as well as which CPU
is currently running the lowest prioritized task (in order to boost the chances of
getting executed soon); locality is favored over priority: CPUs in the task’s parti-
tion are considered in latency distance order. As we will show in the next chapter,
this is a key feature that can help optimize memory access latencies as well.

• once a CPU is selected, load balancing may be performed, if the run queues on
different CPUs for the task’s priority level do not have their lengths within a
certain span; the scope of load-balancing is also driven by the system’s archi-
tecture: it may be limited to just one chip, one lgroup or it may be performed
globally.

In summary, Solaris provides a scheduling framework specifically targeting large
scale SMP systems and various workloads, with good support for multi-core and
multi-processor systems as well as some consideration for cache performance. As it
has a global approach to scheduling and load balancing, it inherently faces scalabil-
ity issues as well; traditionally this has been addressed through careful configura-
tion of processor sets and locality groups.

In the next chapter we’ll briefly discuss how the concept of locality groups can
help improving memory performance in distributed NUMA systems.

3.5.2.2   Memory Management and Support for NUMA Systems

Solaris’ memory management is based on the Vmem allocator described earlier in
this chapter as well as the slab allocator, specifically designed for Solaris.

What makes the Solaris infrastructure for memory management interesting is
its built in optimization support for cache-coherent non-uniform memory access
(ccNUMA) architectures as well as explicit support for chip multi-processing (both
HW threads and multi-core chips). The foundation for this support is built on the
concepts of locality groups and the abstract hierarchical latency model.

3 State of the Art Multi-Core Operating Systems

69

Conceptually, a locality group consists of hardware that is ‘close’ to a specific
reference point, i.e., HW that is tightly integrated and has access latencies within
certain limits. Hardware in this context may be processors, physical memory pages,
devices or other locality groups that are included in the current locality group. This
way, a latency hierarchy can be built, with the root latency group—representing the
complete system—at the top of the hierarchy.

The home locality group concept of threads is used as the basic guiding principle
when allocating memory in ccNUMA systems, implemented as part of the Memory
Placement Optimization (MPO) Framework. There are two physical memory alloca-
tion policies: first touch and random, each targeting different memory usage cases.

First touch allocation chooses the physical memory from the home locality
group of the thread that first uses it, thus assuming that this specific thread will be
the main user of the memory. First touch is the default policy for private memory
and underlines the importance of attempting to schedule threads on CPUs belong-
ing to there home lgroup as often as possible: it’s a simple way to improve memory
access latency and bandwidth.

The random allocation policy is suitable for large shared memory allocations
where the memory is likely to be accessed by multiple threads having different
home locality groups. The goal is to spread out the usage of memory bandwidth,
while obtaining a statistically average access time and latency. The policy can be
made processor set aware, so that memory is still allocated from locality groups
that are spanned by the processors in a specific processor set—this feature is useful
e.g. in cases processor sets are used to isolate applications, as it will lead to a more
predictable memory performance, without the applications impacting each other.

3.5.2.3   Solaris: Summary

Solaris provides a tightly integrated scheduling, memory management and SMP
system management kernel architecture with a high degree of configurability and
flexibility which, no doubt, contributed to its reputation of highly scalable operat-
ing system. We believe the abstract system model and the latency model are the key
abstractions that make Solaris perform well on different hardware architectures.

Solaris still suffers from the same issues as any other pre-emptive, fine grained
time-sharing based operating systems: potential for user task pre-emption that leads to
cache trashing and degraded performance and the non-constant overhead of large scale
co-ordination for systems where partitioning is not carefully planned and enforced.

3.5.3   Windows

The current Windows family of operating systems originates from two sources: the
Microsoft DOS based GUI systems for personal computers and the Windows NT
32-bit operating system. Starting from NT kernel version 5.0, all Windows branded
operating systems are based on the NT technology (these include Windows 2000,

3.5 Current Main-Stream Operating Systems

70

XP, Windows Server 2003 and 2008, Windows Vista and Windows 7). Since 2007,
with the launch of Windows Vista and Windows Server 2008 (in March 2008), all
the variants—both for client and server usage—share the same core system files, in-
cluding the kernel, HAL (Hardware Abstraction Layer) libraries, device drivers and
basic system utilities. In our discussion we will focus on this unified version, with
special priority given to the server versions, as the ones supporting multi-processor
and NUMA systems. Windows Server today supports configurations with 32 or 64
processors: these limits are only related to the usage of word-sized bitmasks in cer-
tain parts of the scheduler; the largest deployment can support up to 2048 gigabytes
of physical memory.

Internally, the Windows kernel is structured as a micro-kernel based hybrid ar-
chitecture: the actual kernel has a limited set of functions, with most of the services
grouped into a layer above called the Executive. However, these two layers share
the same kernel address space and are delivered as part of the same binary. Accord-
ing to a recent interview with one of the key kernel engineers at Microsoft [15],
in Windows 7 a new re-layering and restructuring took place in order to recapture
some of the original modular design.

3.5.3.1   Scheduling and Multi-Processor Support

Windows is a symmetric multiprocessing (SMP) operating system with support for
multi-processor and multi-core architectures and NUMA systems. Scheduling is
performed by a collection of routines jointly called the dispatcher and it’s based on
a pre-emptive, priority-driven policy. Windows treats all processor cores equally in
the sense that all cores capable of executing software are represented by the same
abstraction, called processor.

There are 32 priority levels in Windows: 16–31 are reserved for real-time appli-
cations, 1–15 for normal applications while 0 is reserved for special system tasks.
The kernel makes no distinction between kernel-space or user-space threads, the
only deciding factor is the priority of the thread.

The priority of a thread is a combination of a base priority associated with the
process to which it belongs and a relative priority assigned based on the role of the
thread. The priority of a thread may be changed for various reasons, such as comple-
tion of an I/O task, after waiting on a synchronization object such as a semaphore,
in case the thread has been waiting for a resource for too long, GUI threads woken
up due to user activity etc. Thread boosting is also used to resolve priority inversion
cases due to deadlocks.

Scheduling in Windows is based on quantum allocation. Each thread is allowed
to run for a certain pre-configured quantum of processor cycles (the value of quan-
tum depends on the type of Windows deployment; it’s typically longer for server
configurations). A context switch will occur if the quantum allocated to a thread
expires, but also in cases another thread with a higher priority becomes runnable or
the current thread voluntarily gives up control (due to I/O operation or synchroniza-
tion). In case of pre-emption, the pre-empted thread is put at the head of the queue
of runnable threads so that it can resume its execution—and consume its remain-

3 State of the Art Multi-Core Operating Systems

71

ing quantum—once the higher priority thread completes. In case the quantum of a
thread expires, the next thread on the same priority level is chosen; if no such thread
is available, the thread will receive another quantum to run.

The Windows dispatcher uses a number of structures collectively called the dis-
patcher database. Each processor has a set of local dispatcher queues (one per pri-
ority level) each containing the threads on that specific priority level that are ready
to execute; access to these queues is protected by a per-processor spin lock. There’s
a 32-bit (or 64-bit) mask that indicates which queue has at least one thread ready
(called the ready summary), thus a scheduling decision on which thread to run next
can be done in constant time. In addition, the dispatcher database maintains some
global structures such as information on which processors in the system are us-
able and which processors are idle; these structures are protected by a system-wide
global dispatcher spinlock.

In a multi-processor system, for each thread there are a number of configuration
parameters stored in the dispatcher database. A bitmask defines the processor affin-
ity of the thread, i.e., the processors on which the thread must execute; in addition,
each thread has two special processors associated that are defined and managed by
the dispatcher: the ideal processor, that indicates the ‘home processor’ of the thread
where it will be scheduled whenever it’s possible and the last processor, indicating
the processor where the thread was last executed.

Figure 3.7 gives an overview of the main elements of the dispatcher database and
the principal scheduling information stored for each thread.

3.5 Current Main-Stream Operating Systems

Fig. 3.7   Windows dispatcher data structure

Process 0

Process 1

Thread 00

Thread 01

Thread 10

Thread 11

Thread 12

Per thread data:
• current / base priority

• ideal processor
• last processor
• processor affinity
• quantum value
• ….

……

…

CPU 0 dispatcher ready queues

CPU 1 dispatcher ready queues

CPU 0 Ready
Summary

CPU 0 Ready
Summary

CPU 0

CPU 1

Global Dispatcher Data

Idle Processor Bitmask

Usable Processor Bitmask

72

The selection of ideal processor happens at process and thread creation, accord-
ing to the following algorithm:

• In a NUMA system, an ideal NUMA node is selected for the process when it’s
started; two processes started one after the other will be allocated to different
nodes

• Each thread will have an ideal processor allocated from the ideal NUMA node
(as a first choice); Windows will attempt to spread the threads belonging to the
same process out evenly on all available processors (the program has the option
to specifically indicate a desired ideal processor)

Scheduling decisions in an SMP system are reduced in the Windows kernel to two
choices:

• for a runnable thread, choose a processor to run on;
• for a given processor, choose the next thread to execute

Whenever a thread is ready to run, the Windows kernel executing on one of the
cores—usually the one where the state change occurred—will attempt to choose
an idle processor for the thread to execute on; if there are multiple eligible idle
processors (e.g. within the ideal NUMA node associated with the thread’s process),
preference is given to the thread’s ideal processor, then to the thread’s previous pro-
cessor and then to the processor where the scheduling decision is being made. The
thread is inserted in the corresponding queue and the processor is notified so that
the execution can be started.

If there’s no idle processor, the thread will be added to the corresponding dis-
patcher queue on its ideal processor and that processor is notified that pre-emption
is needed, in case a lower priority thread is executing. Due to this policy, Windows’
scheduler does not guarantee that all the threads with the highest priority are execut-
ed if there are a sufficient number of processors; but it guarantees that at least one
of the highest prioritized threads will execute. Also, Windows will never preempt
and move a thread in order to allow another thread that could execute only on that
specific processor to run: the thread will be queued and will have to wait until the
currently executing thread is de-scheduled.

A processor will normally execute threads available on its local dispatcher
queues—either placed there by the kernel executing on that processor or by kernels
on other processors, as described above. If no threads are available, the processor is
marked as idle and will schedule a special thread, called the system idle thread that
will search for threads that could be taken over: it will first search within the same
NUMA node, then globally. The mechanism is very similar to the one implemented
in Linux and it’s based on a task stealing mechanism.

Windows offers a special mechanism called job objects that can be used for con-
trolling multiple processes as a group. The main purpose of job objects is to allow
the definition and enforcement of resource usage limits and scheduling constraints
for a set of processes: CPU time, processor affinity and scheduling class; the sched-
uling class associated with a job object defines the length of the quantum for each
thread belonging to a process in that job object.

3 State of the Art Multi-Core Operating Systems

73

Over the different releases there were multiple refinements implemented in Win-
dows’ scheduler to improve scalability; however the need to use the global dis-
patcher spinlock for some of the operations that can occur quite frequently—e.g. for
modifying a thread’s priority—can have a significant performance impact in large
SMP systems with a large number of threads with dynamic behavior.

3.5.3.2   Memory Management and Support for NUMA Systems

The memory management system of Windows is structured into two main layers:
the virtual memory manager, responsible for coarse-grained allocation and man-
agement of virtual memory pages and the heap manager, responsible for the fine-
grained allocation of memory buffers.

On the virtual memory level, Windows supports two types of pages: small ones
(4–8 kb, dependent on the underlying HW) and large ones (4–16 Mb, also depen-
dent on the HW), but the allocation granularity is always at least 64 kb. The memory
manager supports page priorities—to drive the policy of which page gets swapped
out if more physical memory is needed—but also explicit locking of pages to physi-
cal memory, in order to improve the performance of critical applications. On the
kernel level, a similar effect is achieved by having two types of memory pools: non-
paged pool, with all the pages resident in the memory at all times and paged pool,
that will be managed as any other pool of virtual pages.

Windows also provides a variant of the slab allocator, called look-aside lists.
Each list contains same-sized memory objects that can be quickly allocated when-
ever needed; the supply of memory is achieved by allocating new sets of pages
whenever needed (similarly to the slab-based approach of the Solaris method).

The heap manager acts as a layer on top of the virtual memory manager and
provides support for allocating memory at byte granularity level; obviously there
will be one heap manager for each heap (there may be several heaps created by each
process). The default heap manager implementation offered by Windows supports
multithreading, however, it uses a global locking scheme that limits its scalability
in case of large number of threads distributed across several processors. To miti-
gate this issue, there’s a special heap manager front end offered together with the
default manager, called Low Fragmentation Heap (LFH): it organizes buffers in
buckets of different sizes and allocates memory from the best fit bucket. In order to
improve scalability, LFH has a special method of placing internal structures—and
thus logically splitting buckets—into so called slots (there are twice as many slots
as processors). Threads are allocated to a slot by an internal component called the
affinity manager and may be moved to another slot (and thus, use different set of
data structures) in case resource contention is detected. More details on this mecha-
nism can be found in Ref. [16].

In order to support NUMA systems, Windows’ memory manager creates during
startup a cost graph describing the cost of accessing memory allocated on different
nodes from all other nodes. Whenever a page needs to be allocated or swapped into
physical memory, the memory manager will ensure that the node with the lowest

3.5 Current Main-Stream Operating Systems

74

access cost is chosen, based on the information stored in the cost graph. As a basic
principle, memory needed by a thread is always prioritized from the ideal proces-
sor, both at allocation and at fault cases, even if the thread is at that point executing
on another processor; the scheduling mechanism described above makes sure that
the thread will eventually end up on its ideal processor and thus it will benefit from
having its memory paged into that processor’s RAM. Only if the ideal node is out of
resources will another node be chosen—again, based on the cost graph.

The allocation of heaps and look aside lists—including the non-paged kernel
pool—is also spread across multiple NUMA nodes in order to improve access time
for kernels running on different processors; allocation from these pools will also
ensure that the virtual address mapped closest to the allocating core will be chosen.

Beside this default behavior, the memory manager also provides support for ap-
plication managed allocation of memory, by enabling explicit specification of the
node from which a certain allocation request shall be serviced.

Windows’ memory manager is fully re-entrant and mostly distributed, with just
a few system-wide resources that need global synchronization such as the page
numbering database and operations on page files. The biggest bottleneck resides
within the heap manager which still relies on a global lock, not suitable for large,
distributed applications. Some of the impact is mitigated through the Low Fragmen-
tation Heap solution.

3.6   Summary

In this chapter we looked at the roles usually ascribed to operating systems: hard-
ware abstraction and resource management. Of the resource management tasks,
handling of processor resources and memory are the most important ones and we
briefly described the main techniques in general, as well as the particular imple-
mentations in three main-stream operating systems: Linux, Solaris (representative
for the UNIX family) and Windows Server. All these systems implement variants
of the symmetric multi-processing paradigm which, as we’ll see in more details in
Chap. 7, fails to meet the challenges of the radically different scale characteristic to
many-core systems: operating system activities related to co-ordination, scheduling
and resource management can have significant negative impact on applications, not
least due to the high importance of cache memory in massively multi-core systems.

References

 1. Brooks F P (1995) The Mythical Man Month and Other Essays on Software Engineering,
Addison Wesley

 2. Tanenbaum A S, Woodhull A S (2008) Operating Systems Design and Implementation. Pear-
son Education

3 State of the Art Multi-Core Operating Systems

75

 3. Silberschatz A (2009) Operating System Concepts. John Wiley & Sons
 4. Tanenbaum A S (2007) Modern Operating Systems: International Version. Pearson Education
 5. Krten R (1998) Getting Started with QNX 4: A Guide for Realtime Programmers. Parse Soft-

ware Devices
 6. Enea (2010) Enea OSE: Multicore Real-Time Operating System (RTOS). http://www.enea.

com/Templates/Product____27035.aspx. Accessed 11 January 2011
 7. Engler D R, Kaashoek M F, O’Toole Jr J (1995) Exokernel: An Operating System Architec-

ture for Application-Level Resource Management. Proceedings of the 15th ACM Symposium
on Operating Systems Principles: 251-266

 8. Knowlton K C (1965) A Fast Storage Allocator. Communications of the ACM 8(109:623-625
 9. Bonwick J (1994) The Slab Allocator: an Object-caching Kernel Memory Allocator. Proceed-

ings of the Usenix Summer 1994 Technical Conference: 6
10. McDougall R, Mauro J (2007) Solaris Internals. Solaris 10 and OpenSolaris Kernel Architec-

ture. Prentice Hall
11. Operating System share for 06/2010. http://www.top500.org/stats/list/35/os. Accessed 11

January 2010
12. Mauerer W (2008) Professional Linux Kernel Architecture. Wiley Publishing
13. Aas J (2005) Understanding the Linux 2.6.8.1 CPU Scheduler. http://joshaas.net/linux/

linux_cpu_scheduler.pdf, Accessed 11 January 2011
14. Nellans D, Sudan K, Balasubramonian R, Brunvand E (2010) Improving Server Performance

on Multi-Cores via Selective Off-loading of OS Functionalility. Proceedings of the 10th
Workshop on Interaction between Operating Systems and Computer Architecture:

15. Microsoft Corporation (2009) Mark Russinovich: Inside Windows 7 (video interview). http://
channel9.msdn.com/shows/Going+Deep/Mark-Russinovich-Inside-Windows-7. Accessed 11
January 2011

16. Russinovich M, Solomon D A (2009) Windows Internals 5th Edition (PRO-Developer). Mi-
crosoft Press

References

77

Abstract This chapter introduces the basic laws of parallelism that have influenced
the research and practice of parallel computing during the past decades. We discuss
Amdahl’s and Gustafson’s law as well as the equivalence of the two laws; we also
analyze how Amdahl’s law can be applied to multi-core chips and what implications
it can have on architecture and programming model research. Finally we present
some of the more controversial rules and conjectures, such as the KILL rule and
Gunther’s conjecture.

4.1   Introduction

The theory of parallel computing looks back to a tradition of over four decades.
Many of the parallel algorithms, but especially the fundamental concepts and laws
of parallelism were defined as part of this effort—however remained confided to
the niche domain of high performance computing for many years. All this body of
research was brought to the mainstream once the inevitability of multi-core chips
became clear; many of these laws guide today the practice of computer architecture
and parallel programming and set the framework for scientific research.

No serious attempt at covering the field of many-core programming would be
complete without a critical survey of these laws and the implications for the domain
of programming many-core chips.

4.2   Amdahl’s Law

Amdahl’s law is probably the best known and most widely cited law defining the
limits of how much parallel speedup can theoretically be achieved for a given ap-
plication. It was coined by Amdahl in 1967 [1], as a supportive argument for the
continuing scaling of the performance of a single core rather than aiming for mas-
sively parallel systems.

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_4, © Springer Science+Business Media, LLC 2011

Chapter 4
The Fundamental Laws of Parallelism

78

In its traditional form it provides an upper bound for potential speedup of a given
application, as function of the size of the sequential fraction of that application. The
mathematical form of the law is

where P is the fraction of the parallelized portion of the application and N is the
number of available cores. It is immediately clear that, according to Amdahl’s law,
any application with a sequential fraction will have an upper bound to how fast it
can run, independent of the amount of cores that are available for its execution.
When N approaches infinite, this upper bound will be

The speedup curve for various levels of parallelism is shown in Fig. 4.1.
Intuitively, Amdahl’s law is quite easy to deduct. Having N processors available,

the time needed for executing the parallel portion in

the total time on N processors is then

assuming

we will have

Speedup = 1/(1 − P + P/N)

Speedup = 1/(1−P)

P/N ,

T (N) = (1 − P) + P/N

T (1) = 1

Speedup = 1/(1 − P + P/N)

Fig. 4.1   Speedup curves
according to Amdahl’s law

Speedup according to Amdahl’s law

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Number of Cores

S
p

ee
d

u
p

 f
ac

to
r

80% Parallel

90% Parallel

95% Parallel

99% Parallel

4 The Fundamental Laws of Parallelism

79

The implications of Amdahl’s law were profound. Essentially it predicted that the
focus shall be on getting single cores run faster—something that was within reach
for the past four decades—instead of the costlier approach of parallelizing existing
software which would have anyway limited the scalability, in accordance with Am-
dahl’s law, as long as some part of the software remained sequential.

This law also triggered groundbreaking research that resulted in innovations
such as out of order execution, speculative execution, pipelining, dynamic voltage
and frequency scaling and, more recently, embedded DRAM. All these techniques
are primarily geared towards making single threaded applications run faster and
consequently, push the hard limit set by Amdahl’s law.

As multi-core chips were becoming mainstream, Amdahl’s law had the clear
merit of putting the sequential applications—or sequential portions of otherwise
parallelized applications—into the focus. A large amount of research is dealing with
auto-parallelizing existing applications; the research into asymmetric multi-core ar-
chitectures is also driven by the need to cater for both highly parallelized applica-
tions and applications with large sequential portions.

As we will see in the following sub-chapter, Amdahl’s law can point into in-
teresting new research directions when applied to many-core chips. However, we
cannot conclude this chapter without highlighting one of the shortcomings of Am-
dahl’s law: it assumes that the fraction of the sequential part of an application stays
constant, no matter how many cores can be used for that application. This is clearly
not always the case: more cores may mean more data parallelism that could dilute
the significance of the sequential portion; at the same time an abundance of cores
may enable speculative and run-ahead execution of the sequential part, resulting in
a speedup without actually turning the sequential code into a parallel one. The first
example lead to Gustafson’s law, while the second one to a new way of using many-
core chips, covered in Chap. 10.

4.2.1   Amdahl’s Law for Many-core Chips

The applicability of Amdahl’s law to many-core chips has first been explored, on the-
oretical level, in Ref. [2]. It considered three scenarios and analyzed the speedup that
can be obtained, under the same assumptions as in the original form of Amdahl’s law,
for three different types of multi-core chip architectures. The three scenarios were:

• Symmetric multi-core: all cores have equal capabilities
• Asymmetric multi-core: the chip is organized as one powerful core along with

several, simpler cores, all sharing the same ISA
• Dynamic multi-core: the chip may act as one single core with increased perfor-

mance or as a symmetric multi-core processor; this is a theoretical case only so
far, as no such chip was designed

In order to evaluate the three scenarios, a simple model of hardware is needed.
Let’s assume that a chip has a certain amount of resources expressed through an

4.2 Amdahl’s Law

80

abstract quantity called base processing unit (BCU). The simplest core that can be
built requires at least one BCU and speedup is reported relative to execution speed
on a core built with one BCU; multiple BCUs can be grouped together—statically
at chip design time or dynamically at execution time as in the dynamic case—in
order to build cores with improved capabilities. In Ref. [2], the performance of
the core built from n BCUs was approximated using a theoretical function perf(n),
expressed as the square root of n. It’s clearly just an approximation to express the
diminishing returns from adding more transistors (BCUs in our terminology) to a
given core design.

In the symmetric multi-core processor case, the results were equivalent to the
original scenario outlined by Amdahl’s law—essentially, using homogeneous archi-
tectures, for the canonical type of applications, the speedup will be limited by the
sequential fraction.

The more interesting results were obtained for the other two cases. In the single
ISA asymmetrical multi-core processor case, the number of cores is reduced in
order to introduce one more powerful core along a larger set of simpler cores.
Mathematically, Amdahl’s law for asymmetric multi-core processors has the fol-
lowing form:

Where

• n is the total number of BCUs
• r is the number of BCUs used for the more powerful core which has a perfor-

mance of perf(r), estimated as square root of r
• p is the share of the program that is parallelized

Figure 4.2 shows the speedup curves for programs with different degrees of paral-
lelism on a chip with 64 BCUs, organized into different asymmetric configurations.
There are two conclusions that may be drawn from this chart:

Speedup(p, n, r) = 1/((1 − p)/perf (r) + p/(perf (r) + n − r))

Fig. 4.2   Amdahl’s law
for asymmetric multi-core
processors

Amdahl’s law, asymmetric processor, n = 64

0

10

20

30

40

50

60

64 equal cores 60 equal cores +
1 core at 2x speed

48 equal cores +
1 core at 4x speed

1 core at 8x speed

R

S
p

ee
d

u
p

50% Parallel

90% Parallel

95% Parallel

99% Parallel

4 The Fundamental Laws of Parallelism

81

• The speedup is higher than what Amdahl’s classical law predicts: the availability
of the more complex (faster) core makes it possible to run the sequential part of
the program faster

• There’s a sweet spot for each level of parallelism beyond which the perfor-
mance will decline; for example for the 95% parallel type of application this
sweet spot is reached with 48 equal cores and one core running at four times
higher speed

The implication of this law is that asymmetric chip designs can help mitigate the
impact of Amdahl’s law; however the challenge is that different applications may
have their sweet spots at different configurations. In our example (assuming this
particular perf() function) the 48 equal cores + 1 core at 4× speed is a good approxi-
mation of the ideal sweet spot, but the result may be different for different organiza-
tion of the chip and/or different application profiles.

This is what makes the third case, the fully dynamic scenario really interesting.
In this scenario the HW can either act as a large pool of simple cores—when the
parallel part is executed—or as a single, fast core with performance that scales
as function of the number of simple cores it replaces, according to the perf()
function. Obviously, this mode of operation is targeted at sequential portions of
applications.

For this scenario, Amdahl’s law has the following form:

with the same notations as in the asymmetric case. The speedup for applications
with various degrees of parallelism on a 64 BCU chip is shown in Fig. 4.3, assum-
ing the performance of the chip—when used for the sequential part of the code—to
be in the range of 1× till 8× of a simple core.

It’s clear from the chart that if such a chip would be built, it could provide a speed-
up approaching linear scaling with the number of cores, thus essentially removing

Speedup(p, n, r) = 1/((1 − p)/perf (r) + p/n)

Fig. 4.3   Amdahl’s law for
dynamically organized multi-
core chips

Amdahl’s law, dynamic processor, n = 64

0

10

20

30

40

50

60

70

1x 2x 4x 8x
Sequential speed

S
p

ee
d

u
p

50% Parallel
90% Parallel
95% Parallel
99% Parallel

4.2 Amdahl’s Law

82

the limitations set by Amdahl’s law. However, we don’t yet know how to build
such a chip, thus at first sight this application of Amdahl’s law seems to be a mere
theoretical exercise.

There are however two techniques that could, in theory, make N cores look like
behaving as one single powerful core. The first, albeit with a limited scope of ap-
plicability, is dynamic voltage and frequency scaling, applied to one core, while the
others are switched off (or in very low power mode); the second, with a theoreti-
cally better scalability is speculative, run-ahead execution.

We will elaborate on the run-ahead speculative execution in Chap. 10. Briefly, it
aims at speeding up execution of single threaded applications, by speculatively ex-
ecuting in advance the most promising branches of execution on separate cores; if
the speculation is successful, the result is earlier completion of sequential portions
and thus a speedup of execution. The grand challenge of speculative execution is
the accuracy of prediction: too many mis-predictions decrease the ratio of useful
work per power consumed, making it less appealing while delivering a limited
amount of speedup. On the other hand, it does scale with the number of cores, as
more cores increase the possibility of speculating on the right branch of execu-
tion. As we’ll show in Chap. 10, the key to efficient speculation is to dramatically
strengthen the semantic link between the execution environment and the software
it is executing.

Amdahl’s law, along with Gustafson’s law that we will introduce next, is still at
the foundation of how we reason about computer architecture and parallel program-
ming in general and the architecture and programming of many-core chips in spe-
cial. At the core of it, it defines the key problem that needs to be addressed in order
to leverage on the increased computational power of many-core chips: the portions
of the program that are designed to execute within one single thread.

4.3   Gustafson’s Law

John L. Gustafson first described the law that became to be known as Gustafson’s
or Gustafson-Barsis’ law in1988, in a paper published in the Communications of
the ACM [3]. Mathematically, it states that the speedup that can be obtained on N
processors, in case the sequential fraction of the application is np, is

Apparently, this result is in conflict with Amdahl’s law, as it may suggest that ap-
plications can actually benefit from unlimited parallelism, without an upper bound.
In Gustafson’s original paper [3], the law was presented as an exception, linked to
the diluted role of the sequential portion in relation to the parallel portion as the size
of the problem and the number of available processors. As we’ll show in this chap-
ter, the two laws are in fact equivalent, thus at the core of it we really have just one
fundamental law describing how performance scales up depending on the nature of
the application and the share of the sequential portion.

Speedup = N − (N − 1) ∗ np

4 The Fundamental Laws of Parallelism

83

Intuitively, Gustafson’s law can be obtained through a simple deduction. Assum-
ing that the parallel execution of a program on N processors takes one unit of time
and it’s made up of

thus we have

The same program, executed on one processor, will have an execution time equal to

The speedup is given by

which yields the following result

which is exactly Gustafson’s law. Figure 4.4 shows the speedup curves for applica-
tions with various degrees of parallelism.

The apparent contradiction between Amdahl’s law and Gustafson’s law results
from the subtle difference in how the fraction of sequential part is defined. This
subtle difference is the root cause around much of the confusion surrounding the
two laws; as we’ll elaborate in the following sub-chapter, both laws are expressions,
written in different terms, of the same inherent law of parallelism.

np(N): sequential portion
p(N): parallel portion

T (N) = np(N) + p(N) = 1

T (1) = np(N) + N ∗ p(N)
T (1) = np(N) + N − N ∗ p(N)

Speedup = T (1)/T (N)

Speedup = N − (N − 1) ∗ np(N)

Fig. 4.4   Gustafson’s law

Speedup according to Gustafson’s Law

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256

Number of Cores

S
p

ee
d

u
p

 f
ac

to
r

50% Parallel
90% Parallel
95% Parallel
99% Parallel

4.3 Gustafson’s Law

84

4.4   The Unified Amdahl-Gustafson Law

One of the often omitted facts—and a source of some confusion—is the mathemati-
cal equivalence of Amdahl’s and Gustafson’s laws, even though the first proof of
this equivalence was provided back in 1996 [6]. The fundamental observation that
enabled resolving the apparent conflict between the two laws was that the fraction
of sequential part is defined differently for the two laws, however these two ap-
proaches can be linked by a simple formula.

To illustrate these differences, let’s define the following quantities:

• ts(1): the execution time of the sequential portion of the application on one pro-
cessor

• tp(1): the execution time of the parallel portion of the application on one proces-
sor

• tp(N): processing time of the parallel portion of the application on N processors;
it’s equal to tp(1)/N

• T(N): total execution time on N processors (N ≥ 1)

With these definitions, we obviously have

The key difference between Amdahl’s law and Gustafson’s law is how the share
of the sequential part is defined. Amdahl’s law uses the non-scaled share quantity
defined as

i.e., the ratio between the execution time of the sequential part on a single processor
and the total execution time on a single processor. By contrast, Gustafson’s law uses
the scaled share, defined as

i.e., the share of the execution time of sequential part of the application of the total
execution on N processors (hence it’s called the scaled share).

Both laws obviously define speedup as

Expressing this formula as function on np_ns we get

which is the classical form of Amdahl’s law.
Expressing the same formula in terms of np_sc(N), the result will be

T (1) = ts(1) + tp(1)
T (N) = ts(1) + tp(N)

np_ns = ts(1)/T (1) = ts(1)/(ts(1) + tp(1))

np_sc(N) = ts(1)/T (N) = ts(1)/(ts(1) + tp(N))

speedup = T (1)/T (N)

speedup = 1/(np_ns + (1 − np_ns)/N)

speedup = ts(1)/(ts(1) + tp(N)) + tp(1)/(ts(1) + tp(N))

4 The Fundamental Laws of Parallelism

85

rewritten in terms on np_sc(N):

which is the traditional formulation of Gustafsson’s law.
As the two speedup factors—obtained through the two laws—shall be mathe-

matically equivalent, we can establish the relationship between np_ns and np_sc(N).
Indeed, starting from

we obtain:

For a practical illustration, let’s assume that we have N = 10, and an application or
which np_sc(10) = 0.3, i.e., 30% of the time is spent on executing the sequential part of
the application. If we assume T(10) = 10, then T(1) will be 3 (sequential part) + 10 × 7
(10 processors and parallel time was 7), so T(1) = 73. In consequence, np_ns will be

Using np_sc(10) in Gustafson’s law and np_ns in Amdahl’s law we will obtain

The major question raised by the proven equivalence of the two laws is whether the
scale-up potential is limited (as implied by Amdahl’s law) or not (as proposed by
Gustafson’s law) by the sequential portion of the application. The answer, unsur-
prisingly, is application dependent: for some applications, the time share of the se-
quential part will stay constant as the number of available processors increases—as
assumed in Amdahl’s law—and thus these applications will have an upper bound
for their scalability; for others, the time share of the sequential portion will diminish
as the number of available cores increases and consequently, will continue to gain
speedup as more cores are added.

An interesting class of applications is those where supra-linear speedup can be
obtained, at least in comparison with a specific sequential implementation. This
however is a bit of catch 22: while it may be possible to prove supra linear speedup,
the newly parallelized version will perform better on a single processor than the
original sequential version. These types of sequential implementations are some-
times called non-structure persistent algorithms.

The simple conclusion of our analysis is that there is really just one law—we
call it the Amdahl-Gustafson law—that sets un upper bound on how much an ap-
plication may be sped up using N cores; as N increases, this upper bound may or

speedup = np_sc(N) + N ∗ (1 − ts(1)/(ts(1) + tp(N))

speedup = np_sc(N) + N ∗ (1 − np_sc(N)) = N − (N − 1) ∗ np_sc(N)

1/(np_ns + (1 − np_ns)/N) = N − (N − 1) ∗ np_sc(N)

np_ns = np_sc(N)/(np_sc(N) + N ∗ (1 − np_sc(N)))

np_sc(N) = np_ns/(1/N + np_ns ∗ (1 − 1/N))

np_ns = 3/73 = 0, 0411

speedup = 10 − (10 − 1) ∗ 0.3 = 7.3 (according to Gustafson’s law)

speedup = 1/0.0411 + (1 − 0.411)/10 = 7.3 (according to Amdahl’s law)

4.4 The Unified Amdahl-Gustafson Law

86

may not be limited to N, depending on the nature of the application and how the
sequential portion compares with the parallelized part. The basic fact remains also
in place: ultimately, it’s the sequential part that needs to be tackled in order to bend
the speedup curve closer to linear.

4.5   Gunther’s Conjecture

Gunther’s law [4]—called Universal Scalability Law by it’s proponent, Neil Gun-
ther—is actually a conjecture (empirical formula) based on measurement data that
aims at modeling performance scalability, taking into account also the impact of
synchronization and other sources of delay related to maintaining a coherent state
of the system, in order to give a more accurate picture of the scalability curve of
a given piece of software on a number of processors. Its mathematical formula is

Where

• N is the number of processors
• s is a parameter modeling contention (such as the sequential portion of an ap-

plication), with values between 0 and 1
• k is a parameter modeling coherence, i.e., the extra cost due to synchronization

and any other coordination activity that is not strictly related to the implementa-
tion of the algorithm.

If k is zero, Gunther’s conjecture defaults to Amdahl’s law, thus it can be perceived
as a generalization of Amdahl’s law that takes into account the overhead cost due
to the need to synchronize among multiple cores. It is capable of modeling the ret-
rograde performance phenomena that is often observed in practice: many applica-
tions stop gaining performance after a certain number of cores, even decreasing in
performance as more cores are available. This ‘sweet spot’ happens, according to
Gunther’s conjecture for

i.e., for any N > NLimit, the performance will be lower.
Clearly, for k = 0, we will not see retrograde performance scaling (the law falls

back on Amdahl’s law); for fully parallelized applications (s = 0), the coherency
parameter will alone define the point where the performance will turn retrograde.

Intuitively, applications can be classified according to the values of s and k spe-
cific to them. The main categories are

• s = 0, k = 0: ideal case, with linear scaling of performance with the number of
cores

• s > 0, k = 0: contention limited scalability due to serialization (according to Am-
dahl’s law)

• any s, k > 0: coherency limited scalability due to the overhead of synchronization
between cores

C(N , s, k) = N/(1 + s ∗ (N − 1) + k ∗ N ∗ (N − 1))

NLimit = sqrt ((1−s)/k)

4 The Fundamental Laws of Parallelism

87

The major drawback of Gunther’s conjecture is that it does not give any indication
with respect to what exactly is modeled through k, what the absolute values of k may
mean and how the value of k may be estimated for a given architecture and possibly
a given software architecture. Large sets of empirical data have indicated that it
indeed approximates very well the performance curve of different applications (in
the sense that a value pair (s, k) can be found that will produce the same curve as the
one drawn based on the empirical data); it remains an interesting research subject to
design a method that can estimate these values a priori and provide a framework for
reasoning on how architecture and software need to be changed so that the values of
s and k will be as close to zero as possible.

4.6   The Karp-Flatt Metric

The Karp-Flatt metric [5] was proposed in 1990 by Alan H. Karp and Horace P.
Flatt as a practical way to estimate how well an application scales with the number
of processor cores available to it. It assumes that the speedup S on N processor
cores versus the execution on one core can be measured and consequently used to
estimate the sequential, non parallelized part of the application.

Mathematically, it provides the following formula:

where np is the estimated non-parallelized fraction of the application; obviously,
the lower the value of np, the better. A simple deduction shows that the Karp-Flatt
metric is consistent with Amdahl’s law, in the sense that extracting the sequential
fraction as function of speedup and number of cores from Amdahl’s law yields the
same result.

The Karp-Flatt metric provides a simple yet powerful tool to assess the reasons
for limited scalability. For any application, running in an ideal environment, with no
memory, cache, communication or synchronization overhead, the sequential frac-
tion shall be lower or equal than the fraction of sequential portion defined for Am-
dahl’s law; any value larger than that points to some sort of inefficiency in the way
the hardware is used or how the synchronization mechanisms are designed.

While not a law in the proper sense of the term, the Karp-Flatt metric is an es-
sential quantitative measure of parallelism, with wide applicability in the domain of
multi-core programming.

4.7   The KILL Rule

The KILL rule [6] is a qualitative empirical law—rather, a rule of thumb—introduced
by MIT researchers (the same group that developed the Tile concept and multi-core
architecture) to guide the development of multi-core hardware. It stands for Kill If
Less than Linear and has the following definition: any architectural feature—such

np = (1/S − 1/N)/(1 − 1/N)

4.7 The KILL Rule

88

as out-of-order execution, pre-fetching schemes etc—shall only be implemented on
a processor core level if it yields a linear speedup for some relevant application in
relation to chip area, power budget or transistor count required for implementing it.
Consequently, if this requirement is not fulfilled, the feature shall be scrapped and
the resources used for other features or addition of more cores.

This rule was clearly one of the guiding principles behind the development of
the Tilera chip. It is, however, not universally endorsed by everyone, as it does not
answer the all important question of how the performance of single threaded ap-
plications can be boosted. In the context of applications with limited parallelism,
even innovations with sub-linear performance gains may be highly desired, for lack
of alternative solutions.

We believe however that, in the context of applications that can make use of mas-
sive amount of cores, the KILL rule is an important guiding principle for designing
many-core chips and deciding on the right dimensioning of cores, on-chip commu-
nication mechanisms and memory architectures.

4.8   Summary

This chapter’s goal was to familiarize the reader with the fundamental laws of par-
allelism and the relationship between these. Some of these laws—for example the
KILL rule—are not universally accepted, yet it provides a good practical guidance
for understanding how some of the many-core chip designs emerged. Others, such
as the two fundamental laws have had and continue to have a defining impact and
shall always be kept in mind when programming many-core chips. To paraphrase
an IBM engineer: everyone knows Amdahl’s law, but conveniently pretends it does
not exist.

References

1. Amdahl G (1967) Validity of the Single Processor Approach to Achieving Large-Scale Com-
puting Capabilities. American Federation of Information Processing Societies (AFIPS) Con-
ference Proceedings 30:483-485

2. Hill M D, Marty M R (2008) Amdahl’s Law in the Multi-core Era. IEEE Computer
3. Gustafson J L (1988) Reevaluating Amdahl’s Law. Communications of the ACM 31(5): 532-

533. Online at http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html. Ac-
cessed 11 January 2011

4. Gunther N J (2002) A New Interpretation of Amdahl’s Law and Geometric Scaling. http://arxiv.
org/PS_cache/cs/pdf/0210/0210017v1.pdf. Accessed 11 January 2011

5. Karp A H, Flatt H P (1990) Measuring Parallel Processor Performance. Communications of the
ACM 33(5): 539 - 543

6. Shi Y (1996) Reevaluating Amdahl’s Law and Gustafson’s Law. http://www.cis.temple.edu/
~shi/docs/amdahl/amdahl.html. Accessed 11 January 2011

4 The Fundamental Laws of Parallelism

89

Abstract In this chapter we will look at some of the fundamental concepts and
techniques specific to parallel programming. We do not aim at providing an all-
inclusive detailed description of parallel computing as that would require much
more than the total length of this book; rather we aim at presenting a theoretical
framework on which later chapters, dealing with programming many-core chips
can build on. We will consider, on conceptual level, the fundamental types of par-
allelism, the synchronization concepts as well as how these are implemented and
supported in modern computing systems. Finally, we describe the basic patterns for
architecting and designing parallel software.

5.1   Introduction

The history of programming parallel computers—systems with multiple proces-
sors—goes back several decades. For much of this time, it was confined to the
domain of high performance and scientific computing: the author of this chapter
remembers how surprised some of his colleagues were when he took an optional
undergraduate course in parallel programming, as the whole area was considered a
sort of overspecialized, almost esoteric field. Understanding the basic concepts of
parallel programming—decomposition and synchronization—and the techniques to
achieve these has however became an indispensable body of knowledge for any
programmer planning to write software for multi-core chips.

5.2   Decomposition and Synchronization

The execution of any software on multiple processors requires some form of de-
composition of the computation into multiple chunks of smaller entities that can
be executed in parallel on the available processors. Correspondingly, these chunks
shall in some way synchronize with each other in order to generate the final result

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_5, © Springer Science+Business Media, LLC 2011

Chapter 5
Fundamentals of Parallel Programming

90

of the computation. Without decomposition and synchronization, parallel program-
ming—save for certain forms of speculative execution—would be inconceivable;
therefore the methods of decomposition and synchronization are at the foundation
of parallel programming. In this section we will focus on the main types of decom-
position and synchronization and how these relate to the basic concepts provided
by the hardware.

There are fundamentally just two types of decomposition—all other flavors ul-
timately fall back on these two. Functional decomposition aims at dividing up the
overall computation along functional dimensions; for example, in order to calculate
something like h(x) = f(x) + g(x), the execution of f and g may be done in parallel on
two processors (assuming that no other dependencies exist). Data-based decom-
position on the other hand targets the parallel execution of the same computation
but on multiple data instances; the classical example is the application of the same
function f on all elements of an array in parallel.

Obviously, these two methods of decomposition have different applicability, de-
pending on the problem domain. When working with massive amount of data, or
designing a system based on independent events (e.g. a telecommunication system),
data based decomposition is the natural first choice; for computations made up of
many simple computations that may be executed independently—at least most of
the time—functional decomposition is probably the right path to go.

5.2.1   Functional Decomposition

Functional decomposition can be of two distinct types: static and dynamic. For
static decomposition, the example given above is the typical one—it’s known at
design time that h is easily decomposed into f and g and the system is designed ac-
cordingly. The primary issue related to static decomposition is the lack of scalability
when the number of processor cores is increased. Staying with the same example,
it’s impossible to use more than two cores, unless f or g is further decomposed—a
task that would have to be performed every time more cores become available. As a
consequence, while widely used in embedded systems, static functional decomposi-
tion is rarely used for more than as first step break down of applications before other
techniques are applied.

Dynamic functional decomposition on the other hand has good speedup potential
and it’s one of the widely used methods to gain core count agnostic decomposition.
The core technique is to generate new tasks whenever possible, tasks that can then
be executed by any available processor core. Dynamic functional decomposition
is thus essentially one flavor of the task based model that we will discuss later on:
whenever possible, instead of executing the chunk of code directly, a new task is
created that can be picked up and executed by any of the available cores. This model
is essentially independent of the number of available processor cores, as the parti-
tioning of computation is done independently of where and when the tasks will be
executed and thus can result in better speedup. It’s important to note however that

5 Fundamentals of Parallel Programming

91

dynamic functional decomposition is not the only form of the task based model:
data parallelism can also yield task based models.

While static functional decomposition has limited applicability, dynamic de-
composition has recently enjoyed renewed interest, primarily due to the popularity
of the task based models, such as OpenMP [1], Cilk [2] or Intel’s thread building
blocks [3]. We will explore these models in more details in Chap. 9.

5.2.2   Data-Based Decomposition

The basic idea of data-based decomposition is to perform the same computation on
different sets of data in parallel, on multiple processor cores. The typical example
is the mapping of a function onto each element of an array: as long as there are no
dependencies between the different elements, the function may be calculated in
parallel for each of these, on different processor cores.

Another, less obvious, case of data-based decomposition is certain type of event-
driven systems, where events may trigger computations that may take longer time
to execute. A typical example of this case is a telecommunication system, where an
event (initiation of a call) may trigger data processing (e.g., speech compression)
that will last as long as the call is ongoing. At the core of it, this case is an example
of the task based model applied in a data parallel context, where the event (initiation
of the call) triggers the task (speech compression).

A special case of data-based parallelism that incorporates certain elements of
static functional decomposition is the pipeline model. The main characteristic of the
pipeline model is the shifted processing of data: while processing does happen in
parallel, it is functionally decomposed into several steps and different data elements
may be at different stages of the processing. The key characteristic of the pipeline
model is that each processor core is executing just one type of processing (while
there may be several cores executing the same function), data is handed over to the
next stage and the same computation is performed on the next available chunk of
data. The concept of pipelined execution is shown in Fig. 5.1.

5.2.3   Other Types of Decomposition

For some problem domains, neither functional, nor data-based decompositions pro-
vide acceptable results. Typical examples include finite state machines or the more
common Huffman decoding algorithm: in both cases, there’s a chain of dependency
in how and on which data the next computation shall be performed, hence parallel
execution becomes difficult or impossible.

The most common form of parallelization for this class of problems is the us-
age of what commonly is referred to as helper computation (see Refs. [4, 5] for
examples). A helper computation is usually not part of the main computation, but it

5.2 Decomposition and Synchronization

92

helps the main computation progress faster; examples include data usage prediction
and pre-fetching (in order to minimize memory access latency), pre-computation of
the most probable computations as well as all variants of speculative and run-ahead
execution. Especially the later is believed to hold great potential, which however
largely failed to materialize so far.

5.2.4   Synchronization

Independent of how a program is decomposed into computations that can be ex-
ecuted in parallel, there is usually a need for the parallel computations to interact:
access the same data, exchange information, wait on each other—in general, to syn-
chronize. More than anything else, minimizing the cost of synchronization is one of
the central issues that the parallel programming community has to tackle.

There are basically two reasons why parallel computations need to synchronize.
The first one stems from functional dependency, also called data dependency in
some contexts: in order to continue, some of the computations need the results of
other computations—hence need to wait and synchronize on the termination of the
computations these computations depend on. This type of dependency naturally

Fig. 5.1   Pipelined execution and scheduling

Stages from different flows are independent, thus can be executed in parallel

Stage 3 Stage 1

Stage 3 Stage 1

Stage 3 Stage 1

Stage 3 Stage 1

Flow 4

Flow 3

Flow 2

Flow 1

Core 0

Core 1

Core 0 & 1 execute all
computations in Stage 3,

organized as a task list

Core 2

Core 2 is
responsible for
Stage 2
execution

Cores 3,4,5 share
the stage 1

processing in parallel

Stage 2

Stage 2

Stage 2

Stage 2

Core 3

Core 4

Core 5

5 Fundamentals of Parallel Programming

93

stems primarily from functional decomposition—Google’s MapReduce algorithm
is a prime example.

The second reason computations need to synchronize is resource contention.
Except for some special cases, computations belonging to the same program will
share some resources—primarily data—and are likely to need access to system re-
sources (such as peripherals) where may compete with other computations as well.
Synchronizing access to shared memory areas is one of the most researched and
debated subjects in the computer science community and a bewildering variety of
solutions have been proposed; the bottom line however is that eventually access to
the resource needs to be serialized, which implies that computations will have to
queue and wait—an unwanted delay that needs to be minimized in order to improve
performance.

5.2.5   Summary

Using multiple processor cores requires decomposition of the computation, while
decomposition generates the need to synchronize the parallel computations and may
give rise to resource contention situations. In this sub-chapter we briefly explored
the three main classes of decomposition as well as the main sources for the need
to synchronize. In the following sections we will briefly survey how these funda-
mental techniques are materialized in practice and which hardware and software
concepts are used to support the implementation.

5.3   Implementation of Decomposition

The goal of decomposition is to create tasks that can be executed in parallel on
multiple processor cores. When discussing how decomposition is mapped to the
hardware and system software (operating system and potential middleware), it’s
important to distinguish between how the operating system views the application
and how the application can act within that frame.

The basic concepts on the operating system level, when it comes to application
level parallelism, are those of process and thread. Both are used to model paral-
lel computations, but there are two fundamental characteristics along which these
two concepts are differentiated: hierarchy and isolation. First of all, there is a hi-
erarchical dependency between processes and threads: in most operating systems,
processes are made up of multiple threads that share the same virtual address space
(the address space of the process), while processes are strictly isolated in terms of
address space and are handled as equal entities by the operating system. In most
cases, each process is required to contain at least one thread and thus the process is
viewed—and used—as the unit of isolation only, while parallelism related mecha-
nisms are implemented primarily based on the concept of threads. For most operat-

5.3 Implementation of Decomposition

94

ing systems, processes are also the unit of failure, as the process is the smallest iso-
lated entity that can be safely and predictably managed by the operating system. In
summary, processes can be regarded as units of isolation, especially when it comes
to memory and fault management, while threads are the operating system level
units of concurrency, where threads belonging to the same process share resources,
primarily the same memory space. Processes and threads also have an associated
priority, which guides the operating system in the prioritization of the access to
the computing resources. Figure 5.2 illustrates the relationship between threads,
processes and priorities.

Any application level partitioning strategy shall be mapped to these three funda-
mental concepts; applications may use the concepts of thread, process and priority
to implement various approaches including synchronization and scheduling mecha-
nisms.

Before discussing how different types of partitioning approaches could be
mapped to threads, it’s important to clarify one important terminology aspect. The
concept of task has been used for several purposes, both on the operating system
and application level. In this chapter we will use the term task to denote an applica-
tion level chunk of computation that may be executed in parallel with other tasks.
Thus, a task is an application level unit of concurrency, as opposed to threads which
are operating system level constructs, used to implement tasks.

Fig. 5.2   The concepts of process, threads and priorities

Process Memory
shared between

threads

T
h
r
e
a
d

1

T
h
r
e
a
d

2

T
h
r
e
a
d

3

Process Memory
shared between

threads

T
h
r
e
a
d

A

T
h
r
e
a
d

B

Process: unit of
memory

isolation and
program failure

Thread: unit of execution scheduled by the OS
based on assigned priority

Prio-x Prio-y Prio-x Prio-z Prio-x

5 Fundamentals of Parallel Programming

95

Static functional decomposition can directly be mapped to threads: each chunk
of computation—task—will be assigned to a thread and operating system level
scheduling will make sure that the threads will be executed in parallel whenever
possible. In this case the number of threads is defined in the design phase by the
number of computation chunks, irrespective of the number of available cores. We
will call this approach application driven thread pool sizing.

Dynamic functional decomposition on the other hand demands a different kind
of threading strategy. The number of tasks may not be known at design time and
it also may be higher than the number of available cores. Thus the only viable ap-
proach in this case is to apply a target driven thread pool sizing, in the sense that
the number of threads will depend on the number of available cores (normally, the
number of threads shall be equal or higher than the number of cores).

This strategy leads however to the question of who will take care of allocation
(or mapping) of the tasks to threads. There are multiple examples of addressing the
task scheduling problem, of which we will survey some of the more representative
ones in Chap. 9; essentially the most common approaches are based on either op-
erating system level solutions (such as in MacOS’ Grand Central Dispatch [6]) or
language based middleware (such as the Cilk [2] run-time system).

For both types of functional decomposition, the thread pool sizing is essentially
static or semi-static (decided at the start of program execution). For the data-based
decomposition method however the thread pool sizing tends to be much more dy-
namic: a new thread is usually created as new data becomes available (up to an
architecture dependent limit). A notable exception is the pipeline model, where
threads may be pre-allocated for each pipeline stage; however, even in this case new
threads may be created for each pipeline stage as multiple data elements become
available. We will call this threading strategy semi-dynamic thread pool sizing.

The speculation based partitioning schemes usually require a completely dy-
namic thread pool sizing policy, as threads will need to be created quickly and
will probably have a very short lifespan. Speculative execution techniques usually
require very specialized middleware, operating system or even hardware level solu-
tions with tailor-made threading mechanisms.

5.3.1   Summary

Threads, processes and priorities are the fundamental operating system level mech-
anisms that the programmer may use to map decomposition techniques to concrete
implementation. As we saw, the difference really lies in the granularity and dy-
namicity of thread management, with different decomposition approaches requiring
different dimensioning and timing of threads and thread creation. We would like
to emphasize that the methods described in this chapter are solely general rules of
thumb that may or may not be always implemented as such in practice. We urge
the reader to use this chapter as a guidebook, rather than as a strict specification of
threading rules.

5.3 Implementation of Decomposition

96

5.4   Implementation of Synchronization

This chapter is dedicated to the most commonly used techniques of inter-thread
synchronization. As application level tasks are mapped, one way or the other, to
threads, the problem of task synchronization is consequently mapped to the problem
of inter-thread synchronization.

At the foundation of any type of synchronization there will be a computational
resource to which all the threads that need to synchronize have access. This com-
putational resource may have different forms, but the lack of it would mean that the
threads in question would not be able to communicate and hence any synchroniza-
tion would be impossible.

As we saw earlier, there are two basic reasons why application level tasks—and
consequently, threads—need to synchronize: functional dependency and resource
contention. There is a third, more subtle form of concurrency control that is how-
ever extremely important in some cases: the need to express the need for certain
chunks of code to execute completely, uninterrupted by other tasks (these chunks
of code are usually called critical sections or atomic sections). While the solutions
to the three cases of synchronization may share common elements, the logical con-
straints are different.

For functional dependency synchronization, the threads need to communicate
and inform each other when a certain milestone has been reached by one of the
threads. Handling of resource contention on the other hand requires guardian func-
tionality: threads do not necessarily need to communicate, but a mechanism needs
to be in place to guarantee that only the allowed amount of resource user threads
have access to the guarded resource. Critical sections require a global synchroniza-
tion mechanism that prevents other threads to access the same resources while the
code in the critical section is being executed.

While there is a wide range of communication methods between threads, essen-
tially all of these can be reduced to a message-based approach coupled with some
form of the Observer pattern: the observed thread will notify its observer(s) when-
ever certain conditions are met. This notification may be done in several ways, we
will list here the most common ones—all others will implement a variant of these:

• Using an OS or middleware level message passing scheme, such as MPI [7],
signals or similar mechanisms. In this case, the notification may include the
actual information the observer is interested in or could point to a shared storage
where the information is available (it may be a shared memory area or a file on
persistent storage)

• Using a synchronization mechanism, such as a lock or similar construct. In this
method, the observed thread shall hold the ownership of the synchronization ob-
ject until its results are available; the observers shall regularly attempt to acquire
ownership of the synchronization object (poll it) until successful—possible only
if the observed thread released its hold, indicating that the required information
is available. As in the message passing case, the actual information will be stored
in some additional form (shared memory or file on persistent storage)

5 Fundamentals of Parallel Programming

97

Thus, communication between threads is implemented either through messaging with
‘share nothing’ semantics or some form of shared memory semantics coupled with
synchronization primitives. This underlines the observation we made at the begin-
ning of this sub-chapter: at implementation level, synchronization solutions due to
functional dependencies and resource contention will share some of the mechanisms.

Handling of resource contention requires a guardian function that can police
the access to the guarded resource. The concrete implementation will depend on
the cardinality of the resource, in terms of the number of threads that are allowed
to access the resource in parallel: for a cardinality that’s higher than one, special
solutions are needed; for a cardinality of one, several methods can be used, as we’ll
explain briefly.

It’s important to discuss the fundamental functionality that is required of the
hardware in order to be able to provide an efficient implementation. Essentially,
there shall be a way to atomically execute at least two operations on a certain
memory location, as a mandatory pre-requisite for being able to safely verify and
set the value of a memory location in a parallel environment. Atomicity is required
for two reasons: to prevent pre-emption during the operation of the guardian func-
tionality and to safeguard against concurrent execution on multiple processors. The
typical atomic operation supported by modern hardware is test-and-set: atomically
verify the value of a memory location and, if the condition is true, update it to a new
value. Using such an atomic operation, safe checking and update of variables used
for implementation of synchronization primitives can be implemented. Other simi-
lar atomic operations are fetch and add and compare and swap. For a more detailed
discussion of the hardware level synchronization mechanisms, see Chap. 2.

The most common constructs used for implementing resource guardian func-
tions are various types of locks, semaphores, monitors, conditional variables and
transactional memory. Together with critical sections, message passing mechanisms
and the shared memory paradigm, these form the foundation of inter-thread syn-
chronization and we’ll describe briefly each of these in the following chapters.

5.4.1   Locks

Locks are probably the most used and most debated synchronization mechanisms;
in fact, locks are at the foundation of many other synchronization primitives.

A lock is essentially a resource that can only be owned simultaneously by just a
few execution threads (typically just one). It can be viewed as an object that exposes
two mandatory and one optional method: acquire, release (mandatory) and test (op-
tional), with the following semantics:

• acquire sets the owner of the lock to the calling thread if the lock is free, other-
wise will block the calling thread

• release releases the ownership of the lock and consequently other threads wait-
ing to acquire the lock may gain ownership of it

5.4 Implementation of Synchronization

98

• test checks—without blocking the caller thread—whether the lock is acquired by
a thread or not

The main usage of locks is mutual exclusion: the goal is to secure exclusive access
to the protected resource. For this reason, a lock is sometimes also called mutex, but
essentially it’s just a different name for the same concept.

One feature of locks is that a lock is usually not associated by default with any
resource—the scoping is left for the application to decide. The usual way to use
locks is to allocate a lock as a guardian for each logically related set of resources
(such as memory) and require that each thread that needs to access that set of re-
sources acquires the associated lock. The scoping of locks is sometimes refined also
along the lines of operations that are protected: it may be that only writes shall be
protected, while any thread is allowed to access for reading the protected resource
(in this case the lock is called a write lock).

There are several special cases of locks. Spin-locks have the following seman-
tics: attempts to acquire the lock will not block the calling thread, instead return
an indication of failure—then the thread may decide to attempt acquiring the lock
later—spin until it succeeds (the same effect could be achieved through the use of
the test and acquire methods, but these will have to be implemented as one atomic
action). Spin locks have the advantage of preventing pre-emption by the OS (due
to blocking while waiting for the lock), but it may have adverse effects if the thread
has to spin too long and prevent other threads to progress, by keeping the proces-
sor for itself. Reader/writer locks allow multiple readers to access the protected
resource for reading, while there may be only one thread modifying the resource
(while there are no threads holding a reader lock); these types of locks provide bet-
ter concurrency behavior as multiple threads could access the resource for reading,
as long as no write is being performed (think of a rarely updated, but often used
configuration parameter).

One of the basic problems with locks relates to the lack of composability. Given
two pieces of software that individually perform well, these may fail to do so when
combined in certain ways. Consider the case in Fig. 5.3: if function f1 acquires locks
A and B in this order, while function f2 acquires locks A and B in reverse order (B
then A), the two functions executed in parallel may lead to a situation where f1 has
acquired lock A, f2 has acquired B, but both fail to continue, as will be mutually
waiting on the other function to release the acquired lock; this situation is called
dead-lock and it’s one of the trickiest issues to handle in a parallel program. Several
dead-lock resolution methods have been proposed but all of these tend to have hefty
overhead and often fail to resolve all cases. In the chapter on shared memory we’ll
describe such an algorithm, applicable for the cases when locks are used to protect
access to shared memory areas (the dominating case).

Another issue characteristic to locks is priority inversion, which occurs in cases
a lower priority thread holds a lock needed by a higher priority thread. The com-
mon way to deal with such cases (e.g. in Solaris) is to temporarily lend the lower
prioritized thread the same priority as the higher prioritized thread competing for
the same lock and thus guarantee that the lock will be released as soon as possible.

5 Fundamentals of Parallel Programming

99

5.4.2   Semaphores

Semaphores were first proposed by Dijkstra [8] and are in fact a generalization of
locks. In its simplest form as a binary semaphore with two values (allowed/denied),
a semaphore is equivalent to a lock: it either allows a thread to pass it (if it’s in
the allowed state) or blocks the thread until its state changes to allowed. There are
opinions claiming otherwise based on established usage patterns, but in our view,
there’s no semantic difference between the two concepts that would justify such an
arbitrary distinction.

The more interesting variant of semaphores is the counting semaphore. A count-
ing semaphore allows up to N threads to pass it (the binary semaphore has N = 1) and
it’s primarily used for controlling access to a resource that can accommodate up to
N users at a time. A simple analogy to describe the meaning of semaphores is that of
a restaurant with N tables: when all tables are occupied, newly arrived guests have
to queue at the front desk until one of the previous guests leaves—the restaurant’s
tables are the protected resources, while the counter at the entrance is the sema-
phore protecting the resources. The two operations characteristic to semaphores—
passing the semaphore and acquiring the resource and release of the resource—are
traditionally called P and V (names given by Dijkstra, based on Dutch words) and
implementations usually follow these conventions.

Semaphores, while more general and flexible than locks, suffer from much
the same composability and priority inversion issues as locks. Nevertheless,

Fig. 5.3   Dead-lock example

Time

Thread I: Thread II:

… some code ….

acquire (lockA)

acquire (lockB)

Thread I holds lockA, thread II holds lockB

… some code ….

… some more code ….

acquire (lockA)

acquire (lockB)
Blocks, waiting on thread I to

release lockABlocks, waiting on thread II to
release lockB

Deadlock: Thread I and Thread II are mutually
waiting on each other

5.4 Implementation of Synchronization

100

semaphores are the synchronization method of choice for most modern operating
systems and are at the foundation of other, higher level constructs, such as monitors.

5.4.3   Condition Variables and Monitors

Condition variables were proposed by Hoare and Hansen in 1974–1975 [9, 10] as
a mechanism for operating systems. Essentially, it’s a way to wait on and signal
the fulfillment of a condition. Consequently, a conditional variable c is associated
with an assertion P and it provides two operations: wait c and signal c. A thread
may block and wait on a condition variable, but it will not block it; another thread
may in turn signal it, thus waking up one of the waiting threads. For example, a
semaphore can be implemented using a condition variable associated with the value
of the semaphore: if the value is not positive, the thread issuing a P operation will
wait; every time a V operation is performed, the condition variable is signaled (the
condition is fulfilled, the associated value is guaranteed to be positive).

There is a long standing academic debate on who shall own a condition variable
(i.e., continue progressing) once a signal operation is performed. In the original
proposal, the issuing thread is blocked and any waiting thread will progress; this
approach is called blocking condition variables. In case the signaling thread is al-
lowed to continue, the condition variable is called non-blocking, but also Mesa style
(for the language with the same name) or signal and continue condition variable.

Monitors provide a primarily language level mechanism for implementing ob-
jects that can be used safely by multiple threads A monitor is thus an object with
both mutual exclusion property (only one thread at a time may execute its meth-
ods—implemented through the use of semaphores or mutexes) and support for
conditional access, implemented through condition variables. A good example is
an object modeling a bank account: only one thread at a time may perform opera-
tions on it; at the same time, threads that want to withdraw money have to wait
until the condition variable expressing the constraint of having sufficient funds is
signaled.

Condition variables and monitors have been extensively implemented and used
in multiple languages and operating systems such as Ada, Java, .NET languages,
Python and the Solaris operating system (for implementation of the sleep/wake-up
mechanism).

5.4.4   Critical Sections

As we mentioned briefly in the discussion of the sources of synchronization, one of
the more subtle ways of synchronization relates to the need to make sure a certain
piece of code, once started, is not interrupted by other threads until it fully com-
pletes; in a more relaxed form, the requirement is to guarantee that no other thread

5 Fundamentals of Parallel Programming

101

can enter that piece of code while it’s being executed. Using the banking example
again, executing an inter-account transfer is a prime candidate to be handled in
this way.

Such pieces of code are called critical sections and are said to execute atomi-
cally. In order to be able to efficiently manage critical sections, there shall be a
way to mark these accordingly; this is usually implemented in language runtimes,
rather than through operating system support. Under the hood, the most common
implementation is through a combination of a mutex or a semaphore and special
handling in the operating system scheduler; however critical sections are a higher
level, handy way to express atomicity, consistency and isolation requirements in
parallel programs, even though same effect can be obtained through locks and ma-
nipulation of the OS scheduling.

Several operating systems provide pre-defined critical sections that can guaran-
tee atomic execution of some simple operations; for example, Linux has a library of
atomic integer operations including arithmetic and set-and-test type of operations.

Critical sections are also extensively used in the implementation of transactional
memory mechanisms.

5.4.5   Transactional Memory

Transactional memory was proposed in an ISCA paper in 1993 [11] as a method
to support efficient implementation of lock-free data structures. It was proposed as
a generalization of the wide-spread HW level load-link/store-conditional instruc-
tion pair, which guaranteed that once a value was read from a memory location,
it was only written back if the content of the memory location was not changed
in-between.

Transactional memory aims at removing at least some of the problems inher-
ent to locking based solutions for concurrent access to memory. The basic idea of
transactional memory is to treat a set of memory access operations as a transac-
tion that either succeeds fully or it’s rolled back completely. To achieve this, all
memory accesses need to be cached until the transaction completes and committed
(made visible to other threads) if and only if none of the accessed memory locations
was modified by any other thread, otherwise, the transaction is rolled back and re-
executed later.

On application level, transactional memory is usually implemented using critical
sections to mark the code that shall be treated as a transaction. Additionally, some
implementations also require that memory areas that may be accessed from within
transactions are explicitly marked, in order to provide a mechanism for monitoring
those areas for concurrent access. Beside this, normally no other action is required
from the programmer: in fact, the strength of transactional memory lies in the built
in mechanism to transparently re-try transactions until these succeed.

Recently [12], transactional memory was proposed as a method for guaranteeing
safe execution of critical code in safety-critical systems: the same transaction is ex-

5.4 Implementation of Synchronization

102

ecuted on multiple processors and only if the same result is obtained, the execution
declared correct and used further on.

On implementation level, transactional memory may be implemented either
in software (in which case it’s called Software Transactional Memory—STM) or
hardware (Hardware Transactional Memory—HTM). STM is usually implemented
through a combination of compiler support and run-time library; during run-time,
all changes to memory are logged and either committed (executed within one criti-
cal section) or just removed, if other transactions modified the same shared area.
While there are several STM libraries available, at the time of writing this chapter
(2010) there was no commercially available hardware platform that would support
HTM.

One of the reasons behind this is that after the initial hype, transactional memory
is traversing a period characterized by reports on lack of scalability, lack of pre-
dictability (essential for some problem domains such as real-time applications) and
complexity of handling some of the consistency and tracking problems, especially in
case of STM. While some of these issues are due to the very nature of shared mem-
ory, other stem from the complexity of efficiently tracking memory updates, main-
taining thread local copies and re-executing failed transactions in a transparent way.

5.4.6   Shared Memory

The concepts discussed above are the basic building blocks allowing implementa-
tion of the shared memory model. The shared memory paradigm is the most used
and easiest to grasp method for inter-thread communication. Its main attractiveness
is that it feels like a natural extension of single-threaded applications and does not
require major re-thinking of program structure.

The concept itself is simple and straightforward: threads that need to communi-
cate all hold a reference to a location in the memory that can be used to place infor-
mation into which then can be accessed by anyone else holding a reference to the
same memory location. Usage of shared memory is one of the main drivers behind
the SMP paradigm: most SMP machines strive to provide the appearance of a single
memory space, uniform computing environment, where any processor can access
any memory location in the system.

There are however two fundamental issues with shared memory: in order to
maintain the consistency of the memory content, access to the memory must be
policed and all threads need to synchronize; for the same consistency reasons, lo-
cal copies of the shared memory held in processor caches must be synchronized
and updated, while the hardware must provide mechanisms for keeping the logical
ordering of memory writes, the primary focus of memory consistency models, dis-
cussed in Chap. 2.

The first issue—policing access to shared memory—lies entirely in the applica-
tion developers’ hands. Traditionally, locks and/or semaphores were used, with a
synchronization object associated with each logically related group of shared mem-

5 Fundamentals of Parallel Programming

103

ory areas; any thread wanting to access the shared memory would need to acquire
the ownership of the synchronization object before accessing the shared memory
area. More recently, transactional memory was proposed as a method for policing
access to shared memory, through automatic commit or re-execution of critical sec-
tions accessing it.

The two methods—locks and transactional memory based—differ in their ap-
proach to concurrency. Lock based solutions are inherently pessimistic and defen-
sive: assume that conflict will occur and hence make sure the program will progress
only if it’s guaranteed to have exclusive access. Transactional memory takes a more
optimistic approach: it assumes that the access to the shared memory areas will suc-
ceed, but provides a graceful exit if it doesn’t, through rollback and re-execution of
transactions. It also guarantees that at least one thread will make progress, elimi-
nating the possibility of dead-locks. This comes however at the cost of potentially
wasted computing resources: while in locking schemes the OS may schedule other
threads while some of the threads are waiting to acquire a certain lock, with the
transactional memory based approach, the processor is kept busy re-executing—po-
tentially many times—the same code.

Both cases however will lead to delayed execution and slowed down progress of
threads in case some of the shared memory is highly contested: threads will either
be blocked waiting to acquire a lock or will be busy re-executing rolled-back trans-
actions. This slow down and delay is not due to locking or transactional memory;
it’s rather the manifestation of a symptom often overlooked by practitioners of par-
allel programming: as the number of parallel tasks (threads) increases, any shared
resource will eventually become a bottleneck and a point at which the tasks need to
execute sequentially. Based on Amdahl’s law discussed in Chap. 4, this sequential
execution will define the scalability (or rather, the lack of it) for the entire program.

The second issue—cache coherence and hardware ordering—is usually solved
entirely in hardware through the implementation of memory consistency and cache
coherence and validation protocols; however, these will have impact on software
performance: the number of processor cycles needed for keeping the caches co-
herent and the size of the logic required to implement it (consequently, the power
consumption) will increase with the number of cores that are concurrently accessing
the same memory location. Optimizing for cache behavior requires extremely good
understanding of the underlying hardware and often leads to application level solu-
tions that are not immediately obvious, such as ‘un-natural’ partitioning or sizing
of data, bundling of memory updates etc. We’ll take a look at these techniques in
Chap. 6.

5.4.7   The Follow the Data Pattern

One of the promising ideas that have recently been put forward and aim to tackle
both the cache coherence and concurrent access policing issues focuses on enforced
execution locality [13, 14]. The idea is to prioritize the placement of data, rather than

5.4 Implementation of Synchronization

104

that of the program: instead of replicating shared memory content across multiple
CPUs’ caches, the data shall be locked to and accessed from just a few (or, ideally,
just one) processor cores; consequently, threads would need to be migrated instead,
whenever access to the shared memory area is performed (e.g. whenever a critical
section is entered). On application level, this method requires only that portions of
the program that access shared memory are marked as critical sections and, at least
in the general implementation, that shared memory areas are explicitly marked.

In its simpler version, all shared memory accesses are performed from just one
core, called the resource guardian core, thus no other core is allowed to access any
shared memory areas. In this approach, threads that need to access a shared memory
area (e.g. by entering a critical section) are blocked, migrated to the resource guard-
ian core and will be executed there. As the core will only execute one single thread
at a time, using the critical section paradigm (i.e., non-interrupted execution of the
complete critical section), this approach guarantees by design that all accesses to
shared memory are serialized and thus no dead-locks will occur and no explicit
locks are needed.

In fact, the resource guardian core (the only one allowed to execute critical sec-
tions) implements one big system wide lock: threads that will get to execute on that
core are in fact acquiring this global lock. Such a design obviously limits scalabil-
ity: even un-related accesses to disjoint shared memory areas will have to wait on
each other, as all will execute on that single processor core.

The generalized version of the Follow the Data pattern groups critical sections
into critical section groups and assigns a resource guardian to each of the groups.
A critical section belongs to a specific group if there’s at least one other critical
section in that group with which it shares at least one shared memory area (in the
sense that both access that specific shared memory area). Critical section groups are
essentially clusters of inter-related critical sections and represent the concurrency
dependencies between different critical sections, hence these critical sections shall
execute on one single resource guardian that will own all the shared memory areas
accessed by the critical sections in that group. The conceptual architecture is shown
in Fig. 5.4.

This approach obviously improves the scalability of the system, as only criti-
cal sections with the potential of resource contention are serialized on one single
resource guardian. However, this method brings in the potential of dead-locks: in
a modular system, not all dependencies may be known a priori, hence nested criti-
cal sections may be allocated to different groups and execute on different resource
guardians, thus dead-lock may occur. There’s however an elegant solution for re-
solving such cases by having resource guardians share information on which critical
sections triggered which other critical sections and on which resource guardian.
Based on this information, a dependency graph of the critical sections can be built
which will contain a loop if and only if there’s a dead-lock in the system. To resolve
it, at least one critical section will be rolled back (using e.g. a simplified form of
transactional memory) and the execution can resume by skipping the critical section
(and re-executing it later). In addition, this dead-lock resolution algorithm provides
a method for merging the resource guardians frequently involved in dead-locks, in

5 Fundamentals of Parallel Programming

105

order to prevent future dead-locks; in fact this method implements an elastic and
automatic lock-scoping strategy (as we mentioned earlier, resource guardians are in
fact a different implementation of locks).

The Follow the Data pattern has some significant benefits. First, both in the
simplified and in the generalized version provides a dead-lock free solution for
implementing shared memory semantics (either by construction or through a built-
in dead-lock detection, resolution and avoidance mechanism).

Secondly, it also has significant benefits from memory access point of view: as
shared memory areas are only accessed from one single core, the content of these
areas in the memory can be kept in the core’s fast L1 or L2 cache, thus reducing the
cost of memory access. For cases when the size of data is much larger than that of the
code accessing it, such an approach improves memory performance significantly, by
reducing the amount of memory-to-cache traffic to code only—experiments have
shown that the benefits easily compensate for the cost of thread migration [14].

There are two subtle consequences for hardware as well from using the Fol-
low the Data pattern. In the simplified case, the system will perform better if the
resource guardian is implemented as a fast core with a large local cache: the criti-
cal sections will execute faster and hence will reduce the weight of the sequential
portion in relation to the parallel part (and result in better performance according
to Amdahl’s law). The same is true for the generalized case as well, but in this case
more than one fast core could be used efficiently. All in all, the Follow the Data

Fig. 5.4   Conceptual architecture of the implementation of the Follow the Data pattern

Resource Guardian (RG) -
(core owning the shared

memory)

Task:
• CS (critical section)
Identifier
• calling thread id
• list of SDI (shared
data id)
• CS location

Task queues,
1 for each prio

level

On-chip
communication network

User Processing Element
(UPE) - (core in a CMP)

User Processing Element
(UPE) - (core in a CMP)

Task(s) to RGs
(critical sections)

Task(s) to RGs
(critical sections)

CRITICAL CS2 SHARED SDI1, SDI2
{
// code written normally
};

CRITICAL CS1 SHARED SDI1, SDI2
{
// code written normally
};

CRITICAL CS2 SHARED SDI1, SDI2
{
// code written normally

};
// other code

Critical sections
executed sequentially

CRITICAL CS1 SHARED SDI1, SDI2
{
// code written normally

};
// other code

5.4 Implementation of Synchronization

106

pattern performs better on single ISA, asymmetric processors, where a large num-
ber of simpler cores are coupled with few fast cores with large caches.

The second consequence has to do with the way shared memory is accessed. As
any shared memory area is accessed from one single core, on hardware level there is
actually no memory sharing between cores: any memory location is either private to
a thread or it’s shared among several threads, but accessed from just one core. Either
way, cache coherence and memory consistency mechanisms become superfluous
and consequently could be removed, reducing either the power consumption of the
chip or using the freed-up logic for other functions [15].

In summary, the Follow the Data pattern is a way to provide shared memory
semantics on application level without actually implementing shared memory on
middleware, OS or hardware level. It has a number of clear benefits in terms of pro-
grammability, memory performance and support required from the hardware and
it’s a clear candidate to replace both lock and transactional memory based solutions.

5.4.8   Message Passing Based Communication

The message passing paradigm is considered by many the complete opposite of the
shared memory model, as it usually relies on a ‘share nothing’ approach. In a message
passing based system, threads will have no shared memory areas, all information ex-
change happening through messages that are passed between the threads. Message
passing is usually considered the foundation for any thread isolation solution: shared
memory means that if one thread fails, the other threads may fail as well, as the con-
tent of the shared memory may be corrupted; the same situation will not occur in a
message passing based system, as threads can protect themselves through analysis
and possible discarding of erroneous messages. Due to this characteristic, message
passing is common in real-time systems, such as telecommunication software.

There are many implementations of message passing systems, both as part of op-
erating system kernels, various middleware and language systems. These methods
can be classified along several criteria: reliability of message delivery, delivery or-
der guarantees, communication channel architectures (one-to-one, many-to-one or
various multi-casting solutions), and whether messaging happens in a synchronous
or asynchronous fashion. Most systems provide reliability and delivery order guar-
antees and support for at least one-to-one channels. Asynchronous communication
is more wide-spread.

There are several well known and used message passing solutions. TIPC (Trans-
parent Inter-Process Communication, [16]) is an open-source messaging stack
aiming at distributed systems and integrated with the Linux kernel as well as the
VxWorks and Solaris operating system. MCAPI (Multi-core Communication API,
[17]) was developed specifically for multi-core chips and aims at hiding the hard-
ware variations under one unified communication system. MPI (Message Passing
Interface, [7]) is the long standing de facto standard for message-based communica-
tion in high performance computing.

5 Fundamentals of Parallel Programming

107

On the language side, several high level languages such as Java support messag-
ing interfaces. The one most intimately associated with the share nothing, message
passing based style is Erlang, specifically developed for implementing massively
parallel systems which however require strong isolation between threads. We’ll dis-
cuss Erlang in more detail in Chaps. 8 and 9.

5.4.9   Partitioned Global Address Space (PGAS)

The Partitioned Global Address Space (PGAS) model was proposed by the high
performance computing community as a way to tackle the inherent scalability issues
of the shared memory model. With a grain of oversimplification, it’s a combination
of the traditional shared memory model and a variant of the Follow the Data pattern.

The PGAS model has a locally coherent, globally de-coupled view of the mem-
ory. From an application perspective, it maintains a global address space view of
shared memory: all memory areas are accessible and addressable from any proces-
sor core (many of the systems and languages built on the PGAS model also allow
threads to have private local storage, unavailable to other threads). However, each
memory area has a home location, i.e., a set of processor cores from which actual
manipulation of the content of that memory area is possible. If an application task
(or thread) needs to access that specific memory area, its execution must be shifted
to one of the cores belonging to the home location of the memory, in a very similar
manner to how the Follow the Data pattern implements shared memory access.
Some implementations of the PGAS model also deploy data shifting techniques but
these are usually less efficient than techniques relying on shifting of computation to
the location of the memory that needs to be addressed.

Recently, as the limitations of the globally shared and coherent memory models
became hard to circumvent, PGAS has gained a wider acceptance, with several new
languages having built in support for this model (such as X10, Chapel etc.). We will
take a closer look at these languages in Chap. 8.

5.4.10   Future Constructs

Future as a synchronization construct was proposed in 1976 [18] and it’s also called
in some cases promise, delay or eventual. It’s a construct that represents a place-
holder for the result of a computation that may not have been yet performed—a task
may declare it as an indication that at some point it may need this specific result,
but the execution of the computation may be delayed until the task will actually
need the result. Due to this property, futures may be used as input to scheduling
tasks in an operating system or a language middleware; this feature is exploited by
some language runtimes (such as that of language E) and it’s also called promise
pipelining.

5.4 Implementation of Synchronization

108

There are several choices related to the implementation of futures. The usage of
the future may be implicit if it is resolved automatically the first time it is used or
explicit if the user has to call a get-like method of the future to receive its value. The
behavior of the receiver task may also differ according to the specific implementa-
tion: the receiver task may block waiting for the future to be resolved or may be
terminated in case the result is not readily available. Finally, the evaluation of the
futures may be done eagerly—initiated as soon as the future is created—or lazily,
only when it’s actually needed.

Futures are available in most mainstream languages, either as part of the lan-
guage itself or as a separate library. Java, C++0x, OCaml, C##, Ruby or Python all
support different variants with different semantics, usually implemented as standard
libraries or modules (in the case of C++0x it will be part of the standard).

5.4.11   Summary

Decomposing a program into parallel tasks inherently means that the resulting tasks
will have to communicate in order to synchronize and share results. While over the
past decades many synchronization and communication primitives have been pro-
posed, these can ultimately be reduced to just a few basic ones: mutual exclusion
primitives for synchronization, shared memory and message passing for commu-
nication. In fact, there is a layering of these primitives, where higher level meth-
ods—such as transactional memory, condition variables, critical sections etc.—can
be built using simpler constructs such as locks, shared memory or message passing.
The ultimate choice between these will depend on the characteristics of the applica-
tion, the nature of the hardware as well as the support available in the underlying
operating system.

5.5   Patterns of Parallel Programs

So far, we looked at the fundamental methods of decomposition and synchroniza-
tion characteristic to any parallel program, as well as how these can be implemented
as atomic primitives. However, in order to give a more detailed picture of parallel
programming, we have to look at the higher level issue of architecting parallel pro-
grams (which then can make use of the techniques addressed earlier in this chapter).

Patterns have been used to capture best practices ever since the book of the Gang
of Four [19] made the concept popular within the computer science community. For
a deeper understanding of what patterns are, we recommend Ref. [20], which also
lists the main conferences in this area.

When it comes to parallel programming, there were two main attempts at defin-
ing a pattern language (a collection of patterns and associated rules to combine them
into an architectural style): the Pattern Language for Parallel Programs (PLPP),

5 Fundamentals of Parallel Programming

109

described in Ref. [21] and Our Pattern Language (OPL), an effort led by the ParLab
at Berkeley. Recently, the two proposals were merged into one language—called
OPL—debated at ParaPLOP 2010 and available in Ref. [22]. In this chapter we’ll
provide an outline of this unified pattern language, as we believe it’s one of the
most comprehensive and structured approaches for describing the most important
architectural choices a programmer will have to make.

OPL is structured into layers, which loosely correspond to the typical design
steps; Fig. 5.5 gives an overview of these layers. The top-most layer comprises
the structural and computational patterns, at the foundation of the high level soft-
ware architecture of any parallel program. Structural patterns capture the overall
architectural styles of programs (the ‘box and arrows’ view), while computational
patterns describe the different classes of computations (the ‘inside the box’ view),
loosely based on the dwarf concept introduced by Berkeley researchers [23]. These
two categories of patterns—structural and computational—are strongly coupled, as
choices within one category will influence the other, thus an iterative approach is
needed to settle the architecture and computational model for a specific application.

The following three layers relate directly to the design of parallel software. The
top-most comprises the parallel algorithm strategies patterns, methods for map-
ping the high level software architecture onto parallel algorithms. Implementation
strategies patterns capture the mapping of parallel algorithms into program and

5.5 Patterns of Parallel Programs

Fig. 5.5   The high level structure of the OPL pattern language

Structural & Computational patterns

Parallel Algorithm Strategy patterns

Implementation Strategy patterns

Parallel Execution patterns

Parallel foundation constructs (examples)

StructuralPipe and filter
Agent and Repository

Process Control
Event based

Iterative refinement
MapReduce

Layers
Puppeteer

Static Task Graph

Computational
(examples)

Graph algorithms
FSM

Dynamic
Programming

Task parallelism
Pipeline

Discrete Event

Speculation

Data Parallelism

Divide and Conquer

Geometric Decomposition

Program Structure Data Structure
Single Program /
Multiple Data

Data Parallel

Fork/Join
Actors

Loop level parallelism

Task Queue

Shared queue

Shared map

Partitioned graph
Distributed arrays

Shared Memory

Multiple Instruction, Multiple Data (MIMD)
Single Instruction, Multiple Data (SIMD)

Thread Pool
Task GraphTransactions

Threads Mutual exclusion primitives Transactional memory
Message Passing

Model-View-Controller

110

data structures, i.e., realization of selected algorithm strategies in source code. Fi-
nally, the parallel execution patterns capture the most common methods of support-
ing the implementation strategies in e.g. language run-time systems or middleware
that supports concurrency.

All these layers will make use of some fundamental services—essentially the
same we have been discussing so far: thread and process management, communica-
tion as well as synchronization primitives. The authors of OPL call these parallel
foundation constructs and consider these beyond the scope of OPL.

In the following discussion of the patterns that comprise each layer, we will skip
the computational patterns and focus instead on the lower three layers of parallel
design patterns and briefly look at the structural patterns.

5.5.1   Structural Patterns

OPL includes the following structural patterns:

• Pipe and filter: the program can be organized as data streams flowing through a
chain of operations (filters) connected through communication channels called
pipes

• Agent and repository: the program consists of a collection of data elements (re-
pository), accessed asynchronously by a number of agents that need to be sched-
uled so that the consistency of the data is maintained

• Process control: analogous to industrial control processes, where the process is
monitored and based on the status, actions are decided and performed by control-
lers

• Event based systems: programs are modeled as a collection of tasks that respond
to events by performing some computations and issuing new events as a re-
sponse

• Model-view-controller: essentially the classical GUI design pattern
• Iterative refinement: the result of the program is obtained through repeated (stati-

cally or dynamically dimensioned) application of a set of operations until a pre-
defined goal is realized

• MapReduce: the result is obtained through the mapping of the same processing
function onto multiple subsets of data, followed by a reduce operation that com-
bines the results of the sub-computations into one final result

• Layers: the classical layered system pattern
• Puppeteer: programs are realized as interacting software agents, with interac-

tions managed by a central entity called the puppeteer
• Static task graph: the program is structured into independent tasks whose inter-

action is described as a graph

Of these patterns, Layers, Iterative Refinement, Process Control and Model-view-
controller are general patterns that just happen to be applicable to parallel software.
Pipes and filters is primarily applicable to data stream processing and we have

5 Fundamentals of Parallel Programming

111

already discussed it in our introduction to decomposition; Static task graph is the
high level expression of static functional decomposition. The Agent and Repository
and the Puppeteer patterns are essentially the manifestation of the same basic pat-
tern, the only difference is the scope of the co-ordination (access to the shared data
or inter-agent communication). Event based systems are found in e.g. telecommuni-
cations; the Erlang language is a prime example for the implementation of support
for this pattern.

5.5.2   Parallel Algorithm Strategy Patterns

Parallel algorithm strategies are deployed to map the structural patterns in the con-
text of parallel programs. Without the aim of completeness, we will discuss the most
important ones in this chapter.

Task parallelism addresses the scheduling of tasks resulting from high level de-
composition on available parallel processing units (e.g. cores). It builds on the dy-
namic decomposition method and the main challenges relate to load balancing and
inter-task dependency management.

Pipeline is the parallel mapping of the pipes and filters and process control
structural patterns; as we discussed in the data parallel decomposition chapter,
the opportunity for parallelism results from having multiple data items flowing
through the series of pipeline stage computations—as soon as the previous data
item was processed, any stage can start working on the next item; if the pipeline
stages are allocated on different processing elements (cores), parallel execution
will be obtained.

The discrete event pattern represents the event handling functionality at the basis
of multiple structural patterns, such as event based systems, model-view-control-
ler and in some cases process control. It provides the infrastructure for delivering
events generated by tasks to tasks that can process it; it does not require (nor ex-
clude) that tasks know the source or destination of received (or sent) events.

The speculation pattern captures the speculative execution type of decomposi-
tion. To be effective, it requires support for two essential features: method for reli-
ably and deterministically determine whether speculation in general or on some
branches in particular were successful or not and support for rolling back and re-
executing unsuccessful speculations in case execution conflicts have been detected.
The pattern can be applied in combination with several structural patterns, such as
static task graph or agent and repository.

Data parallelism is the direct implementation of the data-based decomposition
method: it implements support for applying concurrently the same set of operations
on multiple elements of data.

Divide and conquer is the parallel version of the classic decomposition method.
As opposed to task parallelism, it tends to be synchronous or at least more strictly
orchestrated in a hierarchical fashion: a specific task generates multiple sub-tasks
and then combines the results into a higher order result.

5.5 Patterns of Parallel Programs

112

The geometric decomposition pattern deals with the issue of data parallelism
in the presence of dependencies between data chunks. Thus, computations will
be made in three phases: exchange chunk boundary information with neighboring
chunks; perform computation in the interior of the chunk; update boundary infor-
mation. The process is repeated until a satisfactory result is obtained; obviously,
operation on different chunks can be done in parallel on different processors. This
pattern is typically used in scientific computing on large arrays or matrices.

The relatively low number of parallel algorithm strategy patterns underlies
the important observation that when everything is considered, there are basically
very few ways to map a program onto a parallel architecture: different types of
task decomposition, message passing, shared memory, scheduling techniques.
The secret sauce comes with the art of combining these techniques and finding
the right level of abstraction for each problem domain and target computing
environment.

5.5.3   Implementation Strategy Patterns

Implementation strategy patterns capture the most common methods for mapping
higher level constructs into concrete code and the associated data structures that
can support concurrent access efficiently. OPL groups the implementation strategy
patterns into two categories: those related to program structure and those related to
supporting data structures; there are six program structure patterns (single program/
multiple data, data parallel, fork/join, actors, loop level parallelism and task queue)
and five data structure patterns (shared queue, shared map, partitioned graph, dis-
tributed array and shared data). These will not cover all the possible structures one
might find in a real program, but should rather be regarded as the most common
basic building blocks from which other structures may be created.

The single program/multiple data pattern represents the approach where the
threads that make up the program will decide based on their identity the actual
functionality to be performed as well as the actual data set on which to act. Still, the
same program is available on all processor cores—hence this pattern is primarily
a method for managing one set of source code when different functions need to be
performed on different types of data.

The data parallel implementation strategy pattern is essentially the realization
of data parallelism on source code level. Typically the data is organized in arrays
or matrices and partitioning is done using index ranges relative to that structure
(hence the pattern is sometimes called index space as well). The computations are
executed in parallel on all of these disjoint index ranges and results are then poten-
tially merged at the end. This pattern is the implementation level mapping for the
data parallel and MapReduce patterns from the layers above.

Fork/join models the organization of computations along spawning new threads
coupled with join operations (wait synchronization) for co-ordination, usually with-
in a shared address space. It’s the typical implementation level realization of the

5 Fundamentals of Parallel Programming

113

Divide and Conquer and sometimes of the Task Parallelism pattern (for example,
the OpenMP library), using generally available operating system primitives.

The Actors pattern is the realization of the programming model with the same
name. Computations are organized into objects that communicate primarily asyn-
chronously (through messages/events, though remote procedure call based imple-
mentations are also available) with each other and hence can be deployed on differ-
ent processor cores. It’s very popular in soft real-time, event based systems as well
as in data-flow programming and it’s usually at the basis of the implementation of
event based patterns.

Loop level parallelism is probably the most researched parallelization technique
as it is at the basis of many algorithms (usually from the scientific domain) and
provides plenty opportunities for parallelization. The idea is to structure loops in
such a way that there are no dependencies between successive iterations and thus
different iterations can be executed in parallel. To achieve such a structure, usually
several structuring techniques need to be deployed: loop splitting, loop un-rolling
or loop alignment (increasing the number of iterations in order to eliminate carried
dependencies between different iterations). Ref. [24] has a good discussion of these
techniques.

Realization of task parallelism requires an implementation level mechanism for
task queuing. The idea is to organize available tasks into one or several task queues
from which processor cores can pull tasks—concurrently—for execution. In its
simplest form, the pattern proposes a single task queue; however, for massively
parallel systems this is likely to be a bottleneck. Hence most realization of the task
parallelism pattern—such as Cilk or Intel Thread Building Blocks—use multiple,
one per-core, queues coupled with task stealing: when a core’s queue runs out of
tasks, it may take over some of the tasks from another queue. We will discuss these
libraries in depth in Chap. 9.

The practical realization of these patterns requires specific data structures—the
scope of the data structure implementation strategy patterns. We would like to em-
phasize again that this list is not comprehensive: these structures are likely to be
useful in many cases, but sometimes different or further specialized structures will
be needed.

The shared queue and shared map patterns provide the mechanisms for imple-
menting the basic structures of queues and maps so that these can be accessed con-
currently from multiple processor cores. The synchronization mechanisms are built
into the implementation of the typical operations (such as put and get) so that any
user of the data structure can access it as if it would be the only user. There are many
implementations of such structures, e.g. in Ref. [3].

Partitioned graph provides a recipe for enabling parallel computations on differ-
ent regions of a graph structure so that the need for mutual exclusion is minimized.
Such data structures are useful for some problem domains where patterns such as
geometric decomposition are used.

In many cases there is a need to distribute arrays across multiple cores or proces-
sors: either because of the size of the structure or simply for partitioning reasons
(such as usage of the data parallel pattern). The most practical way to achieve such

5.5 Patterns of Parallel Programs

114

a distribution is to provide a data structure that can hide and efficiently manage
mapping of global indices to local indices and provide support for boundary over-
laps between cores(such as in the case of the geometric decomposition pattern). In
many ways, the distributed array concept mirrors the virtual memory mechanisms
found in most modern operating systems.

Last but not least, shared memory is a well known, used and often abused mecha-
nism. OPL proposes a mechanism through which access to shared data structures
is wrapped into a strict API backed up by synchronization mechanisms that can
guarantee safe concurrent access. There are plenty of ways to implement this: trans-
actional memory and the follow the data pattern we discussed earlier in this chapter
are good examples.

5.5.4   Parallel Execution Patterns

The lowest layer in the pattern hierarchy of OPL consists of patterns that are usually
input to the implementation of language run-time systems, middleware solutions
and occasionally operating systems. These five patterns represent recipes for using
the basic concepts offered by the HW and the OS (processes, threads, synchroniza-
tion and communication primitives) in order to support implementation of the pat-
terns from the higher level layers.

Multiple Instruction, Multiple Data (MIMD) captures the wide-spread paradigm
of executing different programs working on different data sets on different proces-
sor cores; these streams of computations will occasionally synchronize through e.g.
message passing or shared memory. This pattern is the natural choice for several
types of applications.

Single Instruction, Multiple Data (SIMD) captures a special class of processing
environments, commonly found in Graphics Processing Units (GPUs): all the cores
(in practice, a subset of cores) execute in lock step the same instruction flow, but
act on different data sets. Such execution environments are best suited for problem
domains were data parallelism is the natural choice.

Thread pool is a method for guaranteeing fast allocation of threads to fulfill the
application’s needs. Threads are pre-allocated and managed in an idle thread pool;
whenever the application needs a new thread of execution, one of the pre-allocated
threads is woken up and given the task indicated by the application; when the task
is completed, the thread is returned to the pool. This pattern is often used with dy-
namic functional decomposition methods and it’s at the basis of task based models.
The same effect can be obtained—and hence we consider it an implementation of
this pattern—through specific language run-time systems that can quickly create
and destroy user-space threads, without actually maintaining a thread pool; the Er-
lang run-time system is a prime example, with thread creation times far lower than
through any OS level primitive.

The Task Graph pattern captures the mechanism through which task dependen-
cies can be expressed as a directed acyclic graph and presented to the run-time

5 Fundamentals of Parallel Programming

115

system for scheduling and execution on a machine with multiple processor cores.
Such mechanisms are typical to data-flow type of applications found in e.g. the
signal processing parts of mobile communication systems.

Transactions are the prime mechanism for implementing speculative execution.
The run-time system has to provide and support the mechanism for implementing
units of execution (chunks of programs and memory these are accessing) that either
complete without conflicts with other units of execution or need to be rolled back
and re-executed at a later time. It is sometimes implemented using transactional
memory as a vehicle for detecting and rolling back conflicting memory operations.

5.6   Summary

In this chapter we set out to describe the fundamentals of designing software for
parallel systems, i.e., systems with multiple execution units (either on one chip or
across a communication network). There are two fundamental procedures for de-
signing parallel software: decomposition into multiple, parallel tasks and design of
synchronization/communication mechanisms through which the tasks resulting from
decomposition can interact in order to achieve the ultimate goal of the program. We
also introduced OPL, probably the most ambitious attempt at capturing the best prac-
tices through which parallel software can be architected, designed, implemented and
deployed over an execution environment, for multiple application domains.

Is OPL the Answer for the big question of how to program multi-processor and
multi-core system? Obviously not. It’s merely a comprehensive, structured snap-
shot of the current best practices that proved to be useful; it’s the result of a close
co-operation between academic and industrial partners and thus captures the experi-
ences of both practitioners and researchers.

The goal of this chapter is to introduce the basic concepts and methods of design-
ing parallel software and hence it’s the foundation on which other chapters—pri-
marily Chaps. 8 and 9—can build. In those chapters we will return to some of the
techniques introduced here and detail those in the context of many-core chips.

References

 1. The OpenMP Architecture Review Board (2008) The OpenMP Application Program Inter-
face. http://www.openmp.org/mp-documents/spec30.pdf. Accessed 10 January 2011

 2. Frigo M, Leiserson C E, Randall K H (1998) The implementation of the Cilk-5 Multithreaded
Language. Proceedings of the ACM SIGPLAN 1998 conference on Programming Language
Design and Implementation, 212-223

 3. Reinders J (2007) Intel Thread Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media

 4. Mars J, Williams D, Upton D, Ghosh S, Hazelwood K (2008) A Reactive Unobtrusive
Prefetcher for Multicore and Manycore Architecture. Proceedings of the Workshop on Soft-
ware and Hardware Challenges of Manycore Platforms 2008, 41-50

References

116

 5. Nellans D, Sudan K, Balasubramonian R, Brunvand E (2010) Improving Server Performance
on Multi-Cores via Selective Off-loading of OS Functionalility. Proceedings of the 10th
Workshop on Interaction between Operating Systems and Computer Architecture

 6. Apple Corporation (2009) Grand Central Dispatch : A Beter Way to Do Multicore. http://im-
ages.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090903.pdf. Accessed
11 January 2011

 7. Gropp W, Lusk E, Skjellum A (1994) Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press Scientific And Engineering Computation Series, Cam-
bridge MA, USA

 8. Dijkstra E (1974) Over seinpalen (in Dutch). EWD 1974. http://www.cs.utexas.edu/users/
EWD/ewd00xx/EWD74.PDF. Accessed 11 January 2011

 9. Hoare, C A R (1974) Monitors: an Operating System Structuring Concept. Communications
of the ACM 17(10):549-557

10. Hansen B P (1975) The Programming Language Concurrent Pascal. IEEE Transactions on
Software Engineering 2:199-206

11. Herlihy M, Moss J E B (1993) Transactional Memory: Architectural Support for Lock-free
Data Structures. Proceedings of the 20th International Symposium on Computer Architecture:
289-300

12. Yalcin G, Unsal O, Hur I, Cristal A, Valero M (2010) FaultTM: Fault Tolerance using Hard-
ware Transactional Memory. Proceedings of the 3rd Workshop on Parallel Execution of Se-
quential Programs on Multi-Core Architectures

13. Vajda A (2010) Handling of Shared Memory in Many-Core Processors without Locks and
Transactional Memory. Proceedings of the 2010 Workshop on Programmability Issues for
Multi-Core Computers

14. Suleman M A, Mutlu O, Qureshi M K, Patt Y N (2009) Accelerating Critical Section Execu-
tion with Assymetric Multi-Core Architectures. Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems

15. Vajda A (2010) The Case for Coherence-less Distributed Cache Architecture. Proceedings of
the 4th Workshop on Chip Multi-processor Memory Systems and Interconnects

16. TIPC Working Group (2010) TIPC: Transparent Inter Process Communication Protocol.
http://tipc.sourceforge.net/doc/draft-spec-tipc-07.txt. Accessed 11 January 2011

17. Multicore Association (2010) Multicore Communication API, available from http://www.
multicore-association.org/workgroup/mcapi.php. Accessed 11 January 2011

18. Friedman D, Wise D (1976) The impact of Applicative Programming on Multiprocessing.
Proceedings of the International Conference on Parallel Processing: 263-272

19. Gamma E, Helm R, Johnson R, Vlissides J M (1994) Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Professional

20. http://www.hillside.net
21. Mattson T G, Sanders B A, Massingill B L (2004) Patterns for Parallel Programming. Ad-

dison Wesley
22. Mattson T (2010) Our Pattern Language (OPL). http://parlab.eecs.berkeley.edu/wiki/_media /

patterns/opl_pattern_language-feb-13.pdf. Accessed 11 January 2011
23. Asanovic K et al (2006) The Landscape of Parallel Computing Research: A View from

Berkeley. University of California, Berkeley Technical report
24. Tasharofi S, Johnson R (2010) Patterns of Optimized Loops, Proceedings of the Workshop on

Parallel Programming Patterns

5 Fundamentals of Parallel Programming

117

Abstract Testing, debugging, maintenance and performance tuning of software
applications usually take up more than 50% of the total effort that goes into design-
ing software systems. The introduction of parallelism, the challenges posed by the
complexity of memory systems and cache hierarchies exacerbates the already com-
plex issues surrounding this area: concurrency bugs are notoriously hard to repro-
duce or detect through intrusive debugging techniques; cache misses and resource
contention usually require deep understanding of the hardware and operating sys-
tem. In this chapter we survey the most important issues in this area, the specific
challenges in the context of software systems designed for many-core hardware as
well as the most promising approaches for tackling correctness and performance
problems.

6.1   Introduction

The major challenge verifying, debugging and profiling applications on many-core
processors comes from the non-intuitive nature of the program flow: in fact, there
are at least as many independent, yet interacting program flows as there are cores
(or even more, when multi-threading within a core is used). While these program
flows are executing independently, synchronization will introduce dependencies on
the software level; access to shared resources—such as memory interfaces, on-chip
cache or I/O devices—even if there’s no apparent sharing on the application level,
can introduce subtle dependencies that are hard to detect. Consider the simple ex-
ample of a cache shared between two cores: even if the programs running on the two
cores may access different, logically unrelated areas in the main memory, if those
two areas happen to be mapped to the same cache line, the two cores will compete
for the same resource and the result will be a constant trashing of the shared cache.
Such errors and performance bottlenecks are extremely hard to detect even in such
a simple case—let alone in a case where hundreds of cores are involved.

Traditionally, the area of verifying and tuning software systems is sub-divided
into three main areas, briefly discussed here and shown in Fig. 6.1.

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_6, © Springer Science+Business Media, LLC 2011

Chapter 6
Debugging and Performance Analysis of Many-
core Programs

118

• Debugging: Making sure that the software is logically correct is obviously the
first step taken once the software is designed and it can be executed—either in a
simulated environment or directly on the target hardware. There are essentially
two main areas that fall under debugging: static analysis of the source code and
dynamic analysis of target code under execution. While static analysis methods
have shown some promising results, reasoning about complex interactions and
race conditions usually requires observation of executing code; identifying re-
source usage integrity issues (on software and hardware level) and detecting race
conditions (such as deadlocks) are the primary concerns, specific to many-core
software.

• Analysis and Profiling: once the software system is considered logically correct,
the next step is to understand the runtime characteristics. This aspect of software
tuning relies heavily on sampling and collecting information about execution
times of different parts of the system, memory usage, memory access patterns,
cache usage patterns, idling times due to synchronization or I/O operations etc.
In the context of many-core systems, it’s critical to record per-thread and per-core
behavior as well as the interaction between different parts with respect to access
to shared resources and impact on the usage of shared hardware components.

• Tuning: the goal of software tuning is to adjust the software so that—while pre-
serving correctness—some specific metric of quality is improved. In the context

Fig. 6.1   Main areas of software verification and tuning

System and software design

Software implementation

Verification and debugging

Analysis and profiling
System redesign

Fault correction,
Re-factoring

Code re-
factoring

Performance tuning

Using profiling information

System re-
factoring

6 Debugging and Performance Analysis of Many-core Programs

119

of software for many-core systems such metric may be idle time due to syn-
chronization and/or resource access, average resource utilization, especially how
well the software can exploit the availability of processor cores etc. An impor-
tant aspect is the scalability of the software: how well the availability of more
resource can be exploited by the system?

In the following chapters we will look at each of these areas in more depth. Our goal
is not to pinpoint specific tools, but rather to highlight those aspects that need to be
covered in the process of verifying, debugging and performance tuning applications
in general and on many-core processors in particular. Occasionally however we will
highlight certain tools that we found particularly useful or interesting in the context
of software for many-core processors.

6.2   Debugging

Debugging is arguably as old as programming itself; still, finding faults in software
is usually considered the costliest component of the whole design chain. Conse-
quently, there’s a bewildering array of hardware and software tools available—both
open source and commercial—targeting the area of software correctness.

As mentioned in the introduction, there are two broad categories of debugging
methods. Static analysis relies on—automatic or programmer-guided—analysis of
the source code in order to detect omissions by the programmer. We consider the
errors found by such tools mechanical errors, as usually these highlight coding er-
rors rather than system or algorithm design flaws. Typical faults identified by such
methods include

• Un-allocated or un-released memory as well as buffer overflows: the program-
mer failed to properly allocate memory for a pointer variable before accessing
the content

• Un-initialized variables
• Infinite loops and un-reachable code segments
• Data structures that are inefficient with respect to memory usage and cache be-

havior, in the light of how those data structures are used. For example, instead of
an array of structures, a structure of arrays with the different fields of the original
structure may be more appropriate, if the data is mostly accessed in loops that
only touch a few of the structure members. While detecting such issues is not
really in the realm of debugging—more relate to profiling and tuning—static
analysis tools routinely identify such bottlenecks

In the context of software for many-core processors, static analysis is most efficient
in revealing unprotected/unsynchronized (through a lock, atomic section, transac-
tional memory or similar) access to shared memory as well as potential race condi-
tions and, occasionally, potential deadlocks. While such violations are relatively
easy to detect through static analysis, dynamic execution may simply fail to create

6.2 Debugging

120

the race condition within a reasonable time; hence we believe static analysis of the
source code for potential synchronization issues shall always be the first step in the
process of securing correctness of the software.

Dynamic debugging relies on observing the software system under execution.
In order to be useful, dynamic debugging has to fulfill at least one of the following
conditions:

• It shall allow recording of execution information through the software for post-
run analysis and potentially replay. The recording shall include sufficient infor-
mation in order to deterministically identify the path through the code, timing
and interaction between different threads and the data context (which memory
areas were accessed and the content of those areas)

• It shall allow step-wise or slowed-down execution of the software in order for the
programmer to inspect the dynamic state of the executing software and poten-
tially modify it in order to either correct an observed fault or induce a potential
fault

Arguably the trickiest issues in debugging multi-core and multi-threaded applica-
tions are related to timing and intrusiveness. Determining accurate timing of events
across multiple processor cores—let alone across multiple timing domains—is ex-
tremely difficult without intrusion; on the other hand, intrusive techniques (includ-
ing breakpoints and recording of debugging information) tend to alter the behavior
of the system to an extent where ‘real’ behavior cannot be observed anymore.

There are two promising techniques emerging that may address these issues,
both relying on the abundance of computing power brought about by many-core
chips. The first one relies on allocating some of the cores on the chip purely to
monitoring, unobtrusively, the other cores’ behavior as well as memory accesses,
caches etc. The usage of such helper cores was explored in other contexts as well,
such as support for memory pre-fetching, off-loading of certain functions (such as
OS services), see e.g. Refs. [1, 2]. Such a technique has a negligible impact in case
of many-core chips, as long as just a few cores are sufficient for the task.

The second technique relies on using full-scale hardware simulators, where the
complete hardware, including cores, caches, interconnects and memory interfaces
are modeled and simulated in software. In such a simulated environment, as long as
it’s very closely replicating the behavior of the real hardware, it becomes possible
to completely halt the complete system—including the clock—inspect any aspect
of it, simulate hardware faults, induce specific behaviors (especially delays and
synchronization between cores) and much more in a completely unobtrusive man-
ner. Obviously, the downside of such an approach is the drastically reduced speed
of execution, sometimes by as much as two orders of magnitude; nevertheless, we
found such techniques really useful in tackling some of the trickiest synchroniza-
tion or hardware sharing problems. An added benefit of large scale simulators is
that these allow easy tweaking of hardware in order to evaluate how changes in
hardware may impact the behavior of the software—a tool that, beyond debugging,
is of great use for a software company wanting to steer the development of next
generation hardware.

6 Debugging and Performance Analysis of Many-core Programs

121

Of the available simulation platforms, we would like to highlight two. Vir-
tutech’s Simics [8] (now acquired by WindRiver) is a commercial product with
wide-ranging support for various processors that allows execution and inspection
of unchanged binaries, as well as definition of new hardware simulators to fit the
needs of the user. Beside simulating single-processor machines, complete cards and
networks can be defined and simulated. For more commercial details on Simics
please see Ref. [3].

A similar, but more research focused tool called Graphite was developed at
MIT’s CSAIL laboratory [4]. It is a parallel, distributed, software only infrastruc-
ture running on commodity Linux machines and it supports both functional and
performance modeling for processor cores, on-chip networks, memory systems and
cache hierarchies with full coherence. It’s not cycle accurate, but it has built in
mechanisms to generate reliable estimates of expected performance; these short-
comings are offset by a relatively high speed of simulation. The simulator is avail-
able for free download from the research group’s web page.

Recording and reliable replay of software behavior is another area that has been
extensively researched. The goal of the research is to design solutions that are capa-
ble of recording sufficient behavioral information about running applications so that
a particular execution can later on be repeated or even automatically re-executed.
Unfortunately, we are still quite some effort away from a solution that is capable of
non-intrusive recording: today’s solutions have such a significant overhead, that the
intrusive impact obscures many of the fine-grained synchronization and race issues
and may even be impractical for applications with tight timing requirements.

6.3   Analysis and Profiling

Software analysis and profiling are obviously the required activities in order to
support tuning of software performance. In many respects, static analysis for debug-
ging purposes and static analysis for performance purposes are overlapping activi-
ties, albeit with different goals; we already mentioned some of the aspects of static
analysis with respect to performance in the previous chapter.

One of the key characteristics of analysis and profiling is the dependence on two
parameters: the hardware architecture on which the software will execute and the
language in which it was developed. Very few performance issues can be resolved
in a hardware independent manner: the pipeline architecture of the processor, the
cache hierarchy, bus speed, memory interfaces all have an impact on the software
and hence need to be considered when analyzing an application. Similarly, the
language in which the application was implemented will impact the nature of the
analysis and the feedback that a tool can provide: a Java application will be depen-
dent on the JVM; a C program with extensive use of pointers leaves too little room
for automatic actions; the semantic link from a very high level functional language
down to machine code may be very hard to maintain or follow—just to name a few
of the issues that need to be considered.

6.3 Analysis and Profiling

122

Analysis and profiling usually requires some form of instrumentation or at least
configuration of the monitoring environment. More often than not, some form of
instrumentation of the source code or the binary—e.g. by using a special compiler
or a post-compilation tool—is required. Instrumentation of the binary is usually au-
tomatic, with no programmer intervention; however techniques that require instru-
mentation of the source code usually demand active involvement of the program-
mer in identifying those critical paths in the software that can most benefit from the
collection of profiling information.

Alternative techniques to instrumentation include simulation in a virtual envi-
ronment, similarly to the method described in the previous chapter. Despite the
speed penalty, such methods provide the programmer with a wealth of opportuni-
ties to monitor many aspects of the software, perform on the fly adjustments and
quickly evaluate how minor changes can impact performance—hence we regard it
as one of the most efficient and productive techniques. A similar technique is statis-
tical sampling: based on pre-calculated sampling rates deemed efficient for certain
performance factors, the analysis technique can periodically sample some charac-
teristics of the running software and infer conclusions on the overall performance.
Such techniques proved to be surprisingly accurate, while having comfortably low
overhead (in the order of 5–20%), especially with respect to cache and memory
performance. In our view, combinations of statistical sampling techniques with vir-
tual execution environment and/or helper core techniques are the least intrusive
while sufficiently productive methods for collecting relevant profiling information
on running software.

What are the most important aspects that effective analysis and profiling meth-
ods for software deployed on many-core processors shall support?

The obvious challenge is dealing with the ever increasing number of threads and
cores. Analysis and profiling techniques have to keep a constant overhead while
dealing with exponentially increasing number of cores—in other words, the profiling
overhead has to be constant in time. Recording thread interactions, contention points
between threads and cores—both on application and hardware level—synchroniza-
tion points and involved threads and resources are critical in profiling applications
on many-core platforms with respect to synchronization bottlenecks that eventually
will translate to scalability issues. Monitoring the useful and idle load each thread
generates is also critical in assessing the usefulness of a particular threading model.
Similarly, profiling access patterns to shared resources can yield useful information
on the threading model’s performance as well as how this may be improved.

Optimizing the usage efficiency of the cache hierarchy can also yield significant
performance gains: in many cases simple improvements of access patterns and data
re-structuring led to performance gains of up to 4×. As we briefly touched upon
already, the following factors are important in this context:

• Usage of cache lines: profiling shall identify overlaps between cache lines map-
ping that can hamper the performance of concurrently executing threads

• Cache usage and usage density: the higher the usage rate of the cache (the per-
centage of cache content that is relevant from the code currently executing and
the proximity of code fragments acting on the same data in the cache), the lower

6 Debugging and Performance Analysis of Many-core Programs

123

the over head due to memory accesses will be; profiling tools shall be able to
monitor and present the usefulness and timing of access to data in the cache

• Cache miss rate: how often and why the data needed by the executing code is not
available in the cache and what techniques can be used to reduce it

Figure. 6.2 shows an example of cache usage level and cache miss rate level for an
application before and after bottlenecks were identified—and corrected—using a
cache usage profiling tool.

In this context, we believe one of the most productive technology is provided
by Acumem (now acquired by RogueWave), through its cache and memory usage
analysis and profiling tools. Acumem’s tools deploy low overhead statistical sam-
pling techniques coupled with tuning suggestions for C programs. For more details,
please see Ref. [5].

6.4   Performance Tuning

Tuning the performance of an application running on a many-core processor is ar-
guably the trickiest and most human-centered activity in the area of verification
and performance modeling. Tuning usually requires an informed human decision

Fig. 6.2   Example of cache behavior of an application before and after optimization

0
10
20

30
40
50
60

70
80
90

1 2 3 4 5 6 7 8 9 10
Time

%

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10
Time

%

Cache utilization/cache miss rate
Before optimization

Cache utilization/cache miss rate
After optimization

Cache Utilization Cache miss rate

Cache Utilization Cache miss rate

6.4 Performance Tuning

124

relying on deep semantic understanding of the software that is being tuned and care-
ful analysis of data provided by analysis and profiling activities.

The actual actions performed as part of performance tuning can vary widely de-
pending on the metric that is being improved. In our view the most important ones
in the context of many-core deployments are the following:

• Processor load, load distribution and idle processor time: the deciding factor
may be load balancing and distribution, scalability or power efficiency (achiev-
ing the same performance at lower energy consumption). Optimizing this metric
may imply better balancing of tasks between threads and cores, loop optimiza-
tions and unrolling, reduction of contention for shared resources but it could
result in a re-design of the application with respect to the deployed parallel pro-
gramming model

• Memory and cache performance: this is arguably the trickiest and least understood
aspect of performance tuning. Optimizing cache utilization usually requires deep
understanding of cache coherency mechanisms, the concept of sharing on the hard-
ware level—all besides the usual application level memory performance issues

An interesting technique emerging recently in the research community is auto-tun-
ing [6]. The technique is based on two principles:

• Acknowledge that no technique and optimization works best for all platforms:
instead of creating a single variant of a program that can execute efficiently
on any platform, rely on searching for the best solution through generating and
evaluating multiple variants of the software

• Avoid optimizations in the code provided by the programmer: the programmer
shall design the correct algorithm, but let the technique of auto-tuning generate
the best variant for the platform at hand.

So how does auto-tuning work? It starts with the premise that the software is written
in some high level language where the focus is on what shall be achieved, rather
than how to achieve it efficiently. Starting from this source code and equipped with
knowledge of both the application domain and especially the target hardware, the
auto-tuning infrastructure will generate a multitude of variants of the software, with
variations of some key parameters and deploying pre-configured optimization tech-
niques. All the variants are compiled to target code, executed and profiled automati-
cally on the target hardware (the auto-tuning infrastructure can also generate the
instrumentation required for profiling); finally the variant with best performance is
chosen as the result of auto-tuning. The process is illustrated in Fig. 6.3.

This technique resembles closely the technique we will discuss in Chap. 10:
auto-parallelization based on software written in high level domain specific lan-
guages. The key insights in both cases are

• Deep knowledge of the application domain: what are the characteristics of the
application that we are tuning?

• Un-obstructed source code: no hand-written optimizations that may hamper au-
tomatic tuning

• Built in knowledge of the target hardware platform

6 Debugging and Performance Analysis of Many-core Programs

125

This technique is still in early research state and large scale deployment is some
time away; however, we believe a combination of high level and domain specific
abstraction for software design, coupled with automatic search of possible solution
domain, offers the best hope for less programmer-reliant and more tool based per-
formance tuning. However, for some time to come, the state of the art of commer-
cially available performance tuning tools will still be based on hints generated based
on profiling information collected from previous executions of compiled software.

6.5   Summary

In this chapter we surveyed the three typical correctness assurance and performance
improvement techniques—debugging, analysis and profiling, tuning—in the con-
text of software deployed on many-core hardware systems. We highlighted the most
important metrics and bottlenecks that need to be addressed as well as the charac-
teristics that tools supporting these activities will have to fulfill. While our goal
is certainly not to promote specific vendors’ solutions, we briefly described those
commercially and freely available tools—developed by companies and research
institutions—that in our opinion have the potential of yielding the highest benefits
for debugging, profiling and tuning software on many-core chips. Finally, we intro-
duced some of the emerging tuning techniques—based on high level domain spe-

Fig. 6.3   The process of auto-tuning an application

Source code in high level language

Tuned version 1 Tuned version 2 Tuned version n

Automatically generate

….

Profiling result 1 Profiling result 2 Profiling result n….

Profiling,
feedback-

based
refinement

Profiling,
feedback-

based
refinement

Profiling,
feedback-

based
refinement

Tuned version i

Final auto-tuned software

6.5 Summary

126

cific languages and automatic search of the potential optimization space—that have
the potential for radically improving the efficiency and accuracy of performance
tuning on many-core platforms.

As further reading, we recommend interested readers to consider the study listed
in Ref. [7] which summarizes the key benefits and features of some of the most well
established tools suitable for multi-core software development, debugging, profil-
ing and performance tuning.

References

1. Mars J, Williams D, Upton D, Ghosh S, Hazelwood K (2008) A Reactive Unobtrusive Prefetch-
er for Multicore and Manycore Architecture. Proceedings of the Workshop on Software and
Hardware Challenges of Manycore Platforms 2008, 41-50

2. Nellans D, Sudan K, Balasubramonian R, Brunvand E (2010) Improving Server Performance
on Multi-Cores via Selective Off-loading of OS Functionalility. Proceedings of the 10th Work-
shop on Interaction between Operating Systems and Computer Architecture

3. Magnusson P S et al (2002) Simics: A Full System Simulation Platform. Computer, 35(2):50-
58

4. Miller J E et al (2010) Graphite: A Distributed Parallel Simulator for Multicores. IEEE Interna-
tional Symposium on High-Performance Computer Architecture.

5. Acumem/RogueWave (2007) Performance Analysis for HPC/Multi-core Systems. http://www.
acumem.com/images/stories/AcumemSlowSpotter.pdf. Accessed 11 January 2011

6. Samuel W, Datta K, Carter J, Oliker L, Shalf J, Yelick K et al (2008) PERI: Auto-tuning Memo-
ryIntensive Kernels for Multi-core. Journal of Physics.

7. Spath D, Weisbecker A, Hebish E (2010) Market Overview of Tools for Multi-core Software
Development. Fraunhofer Verlag

8. Windriver (2010) White Paper: WindRiver Simics for Multi-core Systems Development. http://
www.windriver.com/whitepapers/whitepaper.php?f=WP_Multi-core_Bug_Simics_0410.pdf.
Accessed 11 January 2011

6 Debugging and Performance Analysis of Many-core Programs

127

Abstract In this chapter we focus on the design of future operating systems that
can support, in a scalable manner, chips with hundreds of cores. We evaluate the
fundamental design principles—space sharing, support for heterogeneity, power
efficiency, virtualization and layering—and the reasons behind these principles, as
well as the forces driving a departure from today’s established concept. In the sec-
ond part of the chapter we introduce the most promising experimental operating
systems—such as Corey, fOS, HeliOS, Tessellation and Barrelfish—to exemplify
how these principles can and most likely will be implemented in commercial oper-
ating systems. Finally, we shortly look at emerging weak signals that may add fur-
ther features to operating systems that can support many-core chips.

7.1   Introduction

Suitability of current mainstream operating systems for chips with potentially hun-
dreds and thousands of cores is one of the most hotly debated subjects in the aca-
demic and industrial community. The debate is fueled partly by the uncertainty sur-
rounding how exactly such chips would look like, but most prominently by findings
that suggest that some of the concepts at the foundation of current operating systems
may face challenges when extrapolated to large number of cores and still limited
amount of on-chip memory and external memory bandwidth.

A recent analysis [1] of the most contended data structures in the Linux kernel
indicates that these are related to I/O operations (about 50%), scheduling (about
25%) and timer management (about 9%). This observation is consistent with other
measurements of the cost of updating shared data structures from multiple cores [2],
indicating close to linear increase of latency with the number of cores. The visible
impact, as we scale the number of cores up, is reduced responsiveness of the oper-
ating system—in fact, the ratio of OS cycles (number of cycles spent performing
operating system tasks) versus useful cycles (cycles spent executing user programs)
is increasing, reducing the overall usage level of many-core processors.

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_7, © Springer Science+Business Media, LLC 2011

Chapter 7
Many-core Virtualization and Operating 
Systems

128

There are fundamentally two issues limiting scalability of current operating sys-
tems to many-core platforms. The first is related to memory access cost: while the
number of cores and total on-chip memory may be increasing, the amount of memory
bandwidth per core is actually decreasing; however, at their core, current operating
systems still try to maximize utilization of the processor, at the expense of cache and
memory performance. Time-shared scheduling inherently means pre-emption, with
drastic consequences for the cache miss rate and cache utilization metrics—often
resulting in more wasted cycles, rather than improved utilization of the processor.

The second reason is related to the scalability of the shared memory model. As
the measurements of the contention for Linux kernel data structures show, sharing
information on tasks and scheduling—a must in any symmetric multi-processor
system—adds significant overhead in the kernel that increases with the number of
cores, thus increasing the share of processing performed in the kernel. This data ac-
tually show a more subtle underlying problem: simultaneous access from multiple
cores to the same memory locations increases the cost associated with maintaining
cache coherence to levels that directly influence the performance of the software (in
our case the performance of the operating system).

Some of these bottlenecks can be addressed through careful tuning, cache-aware
optimizations and ever finer scoping of contention management techniques such
as various types of locks. We believe however that experimental data from many
types of applications show that the scalability of any software is eventually limited
by the resources it shares globally—much the same way as the sequential portion of
any parallel software limits its scalability. This, in fact, is a corollary to Amdahl’s
law: since shared memory access requires serialization, shared memory areas will
define, when pushed to the extreme (everything else is parallelized), the sequential
portion of the software—and, consequently, the limit to its scalability.

In this chapter we will analyze some of the emerging concepts in operating sys-
tem design that indicate the direction operating systems will likely take in the fu-
ture. At the time of writing this chapter, few of these are mainstream, established
concepts, though some ideas—such as task-based and work-stealing based mecha-
nisms—have made their way into current systems.

7.2   Fundamentals for a New Operating System Concept

There are three trends that are observable in the design of massively multi-core
chips, all driven by the need to maximize the raw processing capability of modern
chips within a certain power budget. While all these pose extra challenges and cre-
ate new constraints, all create opportunities for new approaches to operating system
design as well.

The first trend is the shift to more but simpler, rather than fewer and bigger
cores. This trend is fueled by power constraints, as lowering frequency and remov-
ing logic allows more cores to be instantiated within the same power budget and
transistor count (albeit with lower complexity). The primary reason this did not

7 Many-core Virtualization and Operating Systems

129

happen faster is the large body of legacy, non-parallelized applications that simply
cannot make use of more (and even less, slower) cores. However, the trend is iden-
tifiable in most new chip designs and is in fact one of the underlying assumptions
throughout this book.

The second trend is the emergence of heterogeneous architectures. Heteroge-
neity is driven both by legacy, non-parallelized applications (that require bigger,
faster, more complex cores) as well as by the significantly higher power efficiency
of specialized hardware solutions compared to general purpose cores. As long as
hardware accelerators can outperform software by at least one order of magnitude,
we will see specialized hardware components; similarly, as long as there’s no uni-
versally applicable method for running sequential applications faster, there will be
cores with different capabilities, grouped together on the same chip.

The third trend is connected to recent advances in chip design in general and
memory design in particular that enable more memory to be placed on chips. There
are two major technologies that hold the promise of better memory structure: three-
dimensional stacking of processor cores and memory cells as well as novel memory
designs—such as embedded DRAM—that allow more capacity at lower cost and
lower footprint. We don’t believe these advances will reverse the trend towards less
memory bandwidth per core within modern chips; however, it shall be possible to
slow down or even stop this trend, hence stabilizing new designs at some sustain-
able levels.

What do these three tends mean for operating system design?
An interesting insight based on the first trend is that it is likely that the aver-

age ratio of threads per core will continue to decline and eventually approach the
ultimate limit of one thread per core; this insight is supported by the observed limit
on scalability in terms of threads in existing applications, coupled with the trend
of increasing amount of cores. If this indeed will be the case, it will have a dra-
matic impact on how we think about computers, something we did not experience
ever since the birth of modern computers: processing cores will become a resource
where limited waste actually is possible and even beneficial, as we will not be able
to benefit from trying to get the cores do something else useful in case the threads
currently running will stall—for the simple reason that there will not be sufficient
threads.

An immediate consequence will eventually be that time sharing of cores will not
be needed anymore. This idea has only recently surfaced in the academic research
and in presentations given by e.g. members of the Microsoft operating system ar-
chitecture group [3]; it is, at first, so counter-intuitive and against the conventional
wisdom that it’s hard to accept by a community that was so used to trying to squeeze
the last bit of performance out of processor cores. However, as we’ll detail in subse-
quent chapters, the benefits are immediate, even at intuitive level: less complexity
in the operating system; better—and user-controlled rather than OS dictated—us-
age of on-chip memory and cache; significantly improved scalability of operating
systems.

The second trend—shift towards heterogeneity—introduces its own set of con-
straints and opportunities. Operating systems cannot rely anymore on a pure or

7.2 Fundamentals for a New Operating System Concept

130

semi-pure (augmented with NUMA semantics) symmetric multi-processing archi-
tectures, instead will be forced to deal with a wide range of combinations of cores
with different characteristics. Different parts of applications will have different re-
quirements as to where should be executed (different ISAs, different speeds etc)
and the operating system has to provide a mechanism for the applications to convey
this information to the OS, as priorities will not be sufficient. In addition, operating
systems will have to become much more adaptable, being capable of executing on
different types of core architectures and providing abstraction levels to pure, non-
programmable hardware accelerators. We will evaluate some of the most promis-
ing approaches—such as architecture signatures, affinity information, user-driven
adaptability etc—in a dedicated sub-chapter.

The third trend is likely the most controversial, as a large slate of the academic
and industrial community will still argue that the trend of declining memory band-
width per core will continue. We believe however that we have reached a level
where no further decrease is acceptable without such a dramatic loss in perfor-
mance that the chips would actually become unusable; therefore, either the pace
of increasing the number of cores shall slow down, or new ways of incorporating
memory shall be implemented. We believe the second approach will eventually
prevail, based on recent developments in technology, primarily 3D stacking with
high-speed short interconnects between cores and memory and novel ways to build
smaller, more power-efficient embedded memories (embedded DRAM or emerg-
ing memristor-based solutions are just a few examples). The consequence for OS
design is that, though memory efficiency will remain extremely important, there is a
possibility to shift focus slightly and optimize within the same memory constraints
that we are seeing today.

Summarizing the design constraints on operating systems for many-core chips,
we believe operating systems will have to undergo a significant change in how
resources are managed. We believe there shall be a gradual shift away from time-
shared approaches towards novel trends, such as space-sharing that we’ll elaborate
on in subsequent chapters. At the same time the operating systems will have to em-
brace pervasive heterogeneity in hardware which will directly impact the hardware
abstraction concepts as well as the interaction between applications and operating
systems; applications will have to provide much more details and with increased dy-
namicity on their resource and processing needs. How exactly this can be achieved
has been the subject of several research projects recently and we’ll evaluate the
most promising ones.

Beside these hardware driven trends, the emergence of power-aware computing
will put additional constraints and requirements on how operating systems work.
Today’s SMP systems have very limited support for power-saving modes at system
level, even in cases the available workload would not require full utilization of
the hardware. This phenomenon will be even more visible when systems comprise
hundreds to thousands of cores, as the probability of not needing all cores at all
times will increase. Hence, operating systems for many-core processors will have to
incorporate strategies and methods for managing power at the system level, through
dynamic on/off powering of processing elements.

7 Many-core Virtualization and Operating Systems

131

7.3   Space-shared Scheduling

As the number of threads per core will decrease, while the number of cores will in-
crease significantly, time-shared scheduling will increasingly become a bottleneck
and source of unnecessary complexity in the operating system kernel. The funda-
mental reason behind increasing amount of operating system cycles that produce
diminishing returns is the complexity of the optimization problem that the OS needs
to address: mapping a very large number of threads onto a large number of cores,
while considering constraints related to memory locality, affinity, cache usage etc.
This has been recently recognized as a potential bottleneck, both in the academic
and commercial community.

The most significant proposals yet center on the idea of space-sharing comput-
ing resources as opposed to time-sharing. It rests on a simple basic design choice,
with far reaching consequences: in a many-core chip, memory access characteris-
tics are far more important than close to 100% utilization of computing resources,
especially if managing cores at fine grained level increases the share of the cycles
consumed by the operating system; in other words, many-core operating systems
shall optimize for memory usage and latency and reduction of OS complexity, in-
stead of traditional core usage efficiency.

The essence of the space-shared approach is to allocate several cores completely
to one application and let the application manage any finer grained scheduling it-
self, thus making sure that the operating system will not interfere with applications,
neither will it try to micromanage all the threads available. In this context, some of
the cores will be reserved for the operating system where no other applications will
execute, hence simplifying the overall design and making the approach to memory
and kernel integrity protection more robust.

This approach makes a space-shared operating system somewhat more similar to
hypervisors than to traditional time-shared operating systems: it ‘hands out’ com-
puting resources (cores) to applications, but it is not involved in how the applica-
tions use those cores. The analogy to hypervisors is obvious: a hypervisor hands
out computing resources (virtual machines) to applications (in that case, operating
system instances), but does not schedule those instances for the applications execut-
ing within the guest operating systems.

Figure 7.1 gives a comparative overview of the concepts of space-shared and
time-shared scheduling.

7.3.1   Architecture of a Space-shared Operating System

It’s very likely that we will see a large number of different space-shared OS designs,
each with its own architectural flavor. This trend is already visible today: the most
well known experimental OSes—Corey [4], Tessellation [5], fOS [6], Barrelfish [7]
etc—all have a slightly different take on the same fundamental principles.

7.3 Space-shared Scheduling

132

There are however a few basic concepts that will underpin any architecture:
space-based separation of applications and space-based separation of operating sys-
tem and application; no pre-emption and no central operating system scheduler. All
space-shared OSes available today share these traits, with the notable exception of
Tessellation when it comes to scheduling.

A generic architecture of a space shared operating system is visible in Fig. 7.1.
The operating system kernel and all its services are executing on a set of special
cores, dedicated to the operating system alone. Internally, on the operating system
cores, the operating system may still have either a micro-kernel or monolithic kernel
architecture, completely invisible to the applications—as noted previously, the inter-
nal architecture of the operating system is orthogonal to how resources are managed.

An interesting design choice, from an operating system architecture perspective,
is the handling of OS executives located on each application core. These extremely
simple kernels—in fact libraries—will provide a very basic local hardware abstrac-
tion layer and the gateway to all the other OS services, including memory manage-
ment and peripherals. It’s an important design choice how these executives will
interact with the other parts of the OS: may execute in the same kernel space as
the central OS functions—hence resulting in a monolithic structure—or in separate
address spaces, only interacting with the central functions through explicit mes-
saging—which would give a micro-kernel approach. We believe that in the long
term, taking also heterogeneity into account, a micro-kernel, separate address-space

Fig. 7.1   Time-shared and space-shared scheduling

T
hr

ea
d

1

OS

T
hr

ea
d

A

T
hr

ea
d

2

Core 0

OS

T
hr

ea
d

B

T
hr

ea
d

3

Core 1

OS

T
hr

ea
d

C

T
hr

ea
d

4

Core 2

OS

Core 3

T
hr

ea
d

1

uOS

T
hr

ea
d

2

Core 0

T
hr

ea
d

3

uOS

T
hr

ea
d

A

T
hr

ea
d

4

Core 1

uOS

T
hr

ea
d

B

Core 2

uOS

T
hr

ea
d

C

Core 3

T
hr

ea
d

D

T
hr

ea
d

A

T
hr

ea
d

B

T
hr

ea
d

C

T
hr

ea
d

D

Process I

Time-shared scheduling

T
hr

ea
d

D

OS Service 2

OS Service 1

T
hr

ea
d

1

T
hr

ea
d

2

T
hr

ea
d

3

T
hr

ea
d

4

Process II

Space-shared scheduling

P
ar

tit
io

n
1

P
ar

tit
io

n
2

7 Many-core Virtualization and Operating Systems

133

approach will win out as it will provide better isolation between applications and
OS and will support heterogeneous processors where a shared address space may
not even be possible. Another important aspect to consider will be the likely unreli-
ability of many-core chips, where core failures will be more common; providing
strict isolation of central OS functions from potentially faulty application cores will
enhance the reliability of the overall system.

Scheduling—one of the fundamental tasks of any OS—is greatly simplified in a
space-shared architecture. Essentially, the operating system’s role is reduced to that
of a resource manager, very similar to the memory manager: allocating cores to the
applications and performing the basic hardware house-keeping (interrupt handling,
core restart and initialization etc). As we’ll discuss in subsequent chapters, while
this removes one of the scalability bottlenecks of operating systems, it also increases
the potential for resource waste, leaving the control in the hands of the applications.

A special type of scheduling was implemented in Tessellation. This experimental
operating system, developed at Berkeley, uses space-sharing as the foundation of
the computing resource management; however, in addition, it also retains the time-
sharing approach to scheduling. At any given time, an application has complete
control over a set of cores; however, the OS may decide to swap out the current
application and let another application use exclusively the same set of cores for a
certain period of time. It’s important to highlight that this is not traditional time-
sharing, as it’s operating on a set of cores at a time, as opposed to the traditional
approach of managing the resources of each core individually; in addition, Tessel-
lation treats all the threads of an application together—another difference to the
individual, thread-based scheduling choice of traditional operating systems.

In case the number of threads within an application is greater than the num-
ber of cores allocated to that application, there will be a need for application level
scheduling. In theory, from the operating system perspective, this is just another
application function, completely invisible to the OS—the application is fully in
charge. In practice however concrete realizations may range from completely ap-
plication level scheduling—similar to today’s user level threads such as those of
the Erlang language—to an application decided, but OS performed task switch. In
this later model, the OS provides no pre-emption support, just system calls that can
perform a switch to another, application specified thread, much in the similar way
as collaborative multi-tasking was implemented in Windows 3.1. We would like to
emphasize however, that conceptually the task still lies with the application; the OS
may provide pre-implemented schedulers and system calls, but these are more a
‘good will’ service than a regular, mandatory OS function.

7.3.2   Benefits and Drawbacks of Space-shared  
Operating Systems

A space shared approach to computing resource management simplifies greatly the
task of an operating system: instead of dealing with thousands of threads and at-

7.3 Space-shared Scheduling

134

tempting to schedule those threads on tens or hundreds of processor cores, it man-
ages processing cores as a bulk resource, similarly to memory. In fact, what the
operating system will do is to allocate cores much like any OS does with memory;
even the enforcement of protection of resources between applications is very simi-
lar to protecting memory from access from other processes. If previous experience
with memory management is anything to go by, such an approach is guaranteed to
scale to thousands of cores and most probably well beyond that—hence eliminating
one of the key bottlenecks in today’s time-shared operating system.

The impact on memory performance is also significant. A space shared OS will
never pre-empt an application executing on any core, as any application core is
dedicated to that single application and hence it will not compete with other appli-
cations. This has dramatic impact on cache behavior, as it will now be completely
under the control of one application that will never be pre-empted; consequently,
application-specific cache usage strategies can be implemented, enhancing the ap-
plication’s performance.

The “one core, one application” principle allows deterministic power manage-
ment, both globally and locally on a core; globally all non-allocated cores can be
switched off (or put to a very low power state) to save power; locally, on a core,
especially in the case of a “one core, one thread” model, the core can be determinis-
tically put into low power modes when the thread is idling and waken up when the
thread again has work to do. This way a globally optimal power management can be
achieved with very little overhead.

Improved security and better support for managing un-reliable hardware are ad-
ditional assets. As the OS will execute on just a few cores, isolated from the other
applications and cores, itself will not be impacted by any HW fault experienced by
an application core. The OS will have the means to detect such failures and safely
take the core out of service, without impact on other applications (as the failed core
was used by just one application) or on the OS itself.

There are two fundamental arguments that are raised against space-shared op-
erating systems. The first one has to do with the perceived waste of resources; the
second with the shift of operating system functions to applications.

Since cores are allocated to applications, the OS has no direct control over how
efficiently—or badly—the cores are used, hence an application that does not “be-
have” properly will drain system resources leading to inefficient usage. To add to
this issue, I/O intensive applications may have some of their cores idling for a sig-
nificant amount of time waiting for external operations to complete.

The first of these problems may be addressed by giving the OS the possibility
to monitor core usage and revoke and re-use cores that have been idling for a long
time. In such cases, the impacted application will have to either re-apply for the
cores that were reclaimed by the OS or implement internal scheduling and re-locate
computations to other cores. While this is not an optimal solution, it may help in
some resource-constrained cases; future research may yield more sophisticated al-
gorithms. A second approach to the problem is Tessellation’s solution to also time-
multiplex the allocation of cores, hence reducing the idle time of under-utilized
cores.

7 Many-core Virtualization and Operating Systems

135

For the moment however, this remains indeed one of the drawbacks of space-
shared operating systems that needs to be addressed.

The second problem—cores idling around waiting for external events or I/O
operations—basically reflects a trade-off between OS design simplicity and scal-
ability on one hand and maximizing core usage on the other. It’s not at all clear that
micro-managing all cores would actually improve the usage significantly; as we
described in the beginning of this chapter, it means a significant overhead in the OS.
In addition, in truly many-core systems, a couple of idling cores translates to only
a low percentage of non-utilized resources which may be an acceptable solution.
All in all, we believe this issue is not significant and it will be even less so as the
number of cores will continue to increase.

7.3.3   Summary

We believe the space-shared approach represents the likely direction mainstream
operating systems will take in the future, as it provides a way to build simpler, more
scalable and less intrusive operating systems. Space shared OSes will increase the
flexibility for applications, but will also shift some of the OS responsibilities (e.g.
thread scheduling) to the application domain. Some issues remain to be addressed—
fairness and better control of computing resource allocation and porting of legacy
applications are the chief challenges that the OS community will need to address.

7.4   Heterogeneity

Heterogeneity in processors can take multiple forms, along three dimensions: instruc-
tion set architecture and core capabilities, programmability and on-chip memory.

Cores on a chip may share exactly the same instruction set architecture (ISA),
may have partly overlapping ISAs or could have different (disjunctive) ISAs. In ad-
dition, some cores may have enhanced capabilities: may operate at different frequen-
cies or have other enhancements that make them more suitable for specific tasks:
deeper pipe-lines, out of order execution capabilities, higher number of hardware
threads etc. While the supported ISA determines the portability of a specific piece of
code from one core to the other, the capabilities will define the efficiency of execu-
tion of that code on different types of cores. In state-of-the-art processors is increas-
ingly a common practice to mix cores capable of executing software with hardware
accelerators for various well defined and usually hard-coded tasks. Supporting these
different types of components with different capabilities in a transparent way is one
of the issues modern many-core operating systems will have to address.

As the number of cores will increase, on-chip memory will increasingly be dis-
tributed and processor cores will experience different access speeds to different
parts of the memory, even if the hardware will present a uniform address space.

7.4 Heterogeneity

136

In addition, some cores may have larger local on-chip memories, giving these an
advantage over the other cores when executing code which requires access to larger
memory areas. Many-core operating systems will have to consider memory locality
and access latencies in order to maximize the overall efficiency of program execu-
tion.

This double challenge—heterogeneity of core capabilities and non-uniformity
of on-chip memory architecture—is one of the key issues that many-core operat-
ing system need to address. In this chapter we’ll present and evaluate some of the
promising approaches that have been proposed so far.

7.4.1   Managing Core Capabilities in Single-ISA Chips

The approach to tackling heterogeneous core capabilities depends to a large extent
on whether the cores support the same ISA or not, as this defines to what extent ap-
plications may be moved from one core to the other.

Single-ISA, heterogeneous systems—where some cores have improved capa-
bilities—have been shown to be more suitable for applications with a varying mix
of sequential and parallel sections [8–12]. The basic idea is rather simple: as soon
as a sequential portion of the code is reached, the execution shall move to one of the
higher performance cores in order to reduce execution time; whenever a parallel-
ized section of the code is executed, the execution can be moved back to the simpler
cores.

There have been several methods proposed for determining when to move the
execution of programs from one core to the other. A key characteristic of all these
methods is that it relies on the application to provide additional information, beyond
the ‘traditional’ thread priority in order to enhance the operating system’s ability to
decide the best thread placement.

The most explicit approach is to mark all parts of the code that need to execute
on special hardware—such as higher capability cores—as special sections, akin to
critical sections. This will allow the compiler to generate code that will explicitly
trigger the OS to migrate the execution of the special section to the specific type
of core (and back, once the special section completes). This approach also enables
further optimizations, such as pre-loading of data needed by the special section to
the cache of the target core, advance scheduling etc.

Using architectural signatures to convey information about the characteristics
of applications is a simplified version of the approach based on explicit markings.
An architectural signature describes the nature of the application (e.g. amount of
parallelism, non-parallelized parts) as a recipe for the OS to decide where to execute
which part of the application. The architectural signature can be provided either
by the programmer or can be generated by the compiler, for example relying on
explicit markings in the code.

Implicit exploitation of the benefits of heterogeneous systems has been re-
searched from the perspective of access to shared memory. Instead of replicating

7 Many-core Virtualization and Operating Systems

137

memory content to the cores that need to access it, an approach based on migration
of the execution to the location of data—fixed to a specific core or set of cores—is
used (also called the Follow the Data pattern, see e.g. Refs. [11, 12]). The funda-
mental observation is again that accessing shared memory areas requires sequential
execution of the program code; hence the execution shall be moved to a core with
enhanced capabilities. This approach has the added benefit of reducing or com-
pletely eliminating the potential for dead-locks by guaranteeing that shared memory
areas are only accessed from one core and improving cache behavior, as all accesses
to a certain memory area are always from the same core and consequently, the prob-
ability of having the data in the cache is higher, while the probability of cache line
invalidation is practically zero.

7.4.2   Managing Core Capabilities in Multi-ISA Chips

Multi-ISA chips have emerged as viable alternatives for highly cost-sensitive or
power-constrained systems. Typically such processors will need to execute software
composed of software entities requiring specialized architectures—such as digital
signal processing, network processing, graphics and similar—and components best
executed on general purpose hardware. Example domains include mobile devices
and networking equipment.

Multi-ISA chips pose a different set of challenges for many-core operating sys-
tems. One of the key requirements from application point of view is same or similar
interface to the operating system from all the cores in order to simplify the task of
designing application software. A shared memory space or some uniform inter-core
communication mechanism—such as message passing—is also desirable in order
to remove the complexity of managing heterogeneous computing environments.
Ideally, the only difference to homogeneous computing shall be in the affinity of
particular pieces of software for a specific ISA and the different compilers used to
generate code for the different targets.

One of the promising approaches builds on the concept of satellite operating sys-
tem [13]. In this architecture, the main processor cores—typically general purpose
cores based on e.g. X86, Power, MIPS or similar instruction set architectures—will
execute the main operating system (which may be an SMP or space-shared OS).
The other processor cores will run specialized operating systems, but exposing the
same kernel interface, called satellite operating systems. The main and satellite OS
instances will form an asymmetric multi-processing system, but exposing a unified
OS interface towards the applications.

On the application side, heterogeneity is managed through ISA affinity. Specific
parts of the application will be marked as ‘would best execute on x ISA core’, using
e.g. the concept of special sections that we introduced in Chap. 7.4.1. These parts
will be compiled for both the main processor cores and the preferred core; which
version will get executed will be decided during run-time and will depend on the
scheduling decision that the operating system will take.

7.4 Heterogeneity

138

This approach therefore requires a specific scheduling mechanism in the operat-
ing system. Essentially, the OS will need to take into account the affinity of differ-
ent parts of the application and try to move the execution to those cores whenever
possible. From the application perspective, this will be visible as a simple inter-core
thread migration; however the main and satellite operating systems will have to
make sure that the right ISA version will be executed. A shared address space be-
tween cores of different ISAs will contribute to the impression of homogeneity, as
memory can be addressed equally from the different cores.

Such an approach is commercially available as part of the OSE [14] real-time
operating system from Enea, supporting chips with e.g. ARM and DSP cores and
shared memory space. On the research side, HeliOS, a prototype OS from Microsoft
advocated the concept of satellite OS and showcased how such an architecture can
be implemented in practice.

7.4.3   Summary

Heterogeneous ISA many-core processors will likely have a niche appeal due to
the associated software complexity. However, operating systems can significantly
help reducing this complexity by providing a uniform operating system view of the
system, providing a mechanism for expressing ISA-affinity of the software and sup-
porting multi-target compilation and creation of executables. These concepts have
already been proven in commercially available operating systems.

7.5   Power-aware Operating Systems

Traditionally, operating systems aimed at balancing the computational load among
available processing elements in order to avoid overloading certain cores. The ben-
efits of such an approach are obvious when the load is high, even approaching the
maximum capacity of the chip; however, at low load levels, this approach is actu-
ally counter-productive as it triggers undue re-scheduling of tasks and keeps un-
necessary amount of processor cores busy. In fact, SMP systems have largely failed
in exploiting the capabilities of modern chips simply because the OS architecture
makes it inevitable that the largest possible amount of cores are active—instead of
the lowest possible amount, the goal of power aware scheduling.

Recently, power awareness has been steadily climbing up on the list of important
features for computational systems. The exploding cost of powering data centers,
the infrastructure limitations as well as environmental awareness are all contribut-
ing factors to the drive for lower values of the watts/computation metrics. Essential-
ly, there are three levels at which power consumption can be regulated in a compu-
tational system: HW/firmware level; operating system level; and application level.

At HW level, several techniques—such as aggressive power gating and fine-
grained adaptation of performance levels—have shown potential for savings without

7 Many-core Virtualization and Operating Systems

139

compromising performance, as long as these are supported by the operating system as
well. Essentially, all techniques focus on using ‘just enough’ of the chip’s transistors at
‘just enough’ performance level to meet the application requirements; therefore input
from OS and applications is crucial for the performance of such approaches.

On the OS level, power efficiency can be improved by taking into account the
capabilities of the underlying hardware, but, more importantly, through careful re-
source management techniques. In order to save power, the computations shall be
merged to as few cores as possible, in order to be able to set the other cores into
low-power modes—this however requires a radical departure from the traditional
load-balancing based approach.

Space shared operating systems naturally support such designs: cores are either
allocated to applications or are ‘free’—and free cores can safely be put into a low
power mode without impacting the performance of the system. In a space-shared
OS further techniques, such as frequency scaling of cores can contribute to power
saving: for a highly parallel application, it may be more power efficient to allocate
double amount of cores, but with each core running at just half of maximum fre-
quency. In such a scenario, overall power consumption can be reduced by at least
50%, while still delivering the same performance.

7.6   Virtualization in Many-core Systems

Virtualization as a concept dates back to the seventies of the last century [15], but
it entered the mainstream of computing only during the last decade. The primary
promise of virtualization is efficiency in the usage of computation resources,
achieved through de-coupling of the real hardware view from the view offered to
the operating systems and the applications running on top of these.

The main driver for virtualization was—and still is—efficient exploitation of the
computational power of chips that would otherwise idle, for a significant share of
the time, without doing useful work. Virtualization’s answer to this problem is the
creation of virtual machines that look and behave like real hardware machines for the
operating system and applications running on top of it. Multiple virtual machines are
managed and time-multiplexed onto the real hardware by a small executive called
the hypervisor (or virtual machine monitor, VMM), that makes sure that all virtual
machines get a fair share of the processor’s time and—ideally—the processor will
never have to idle while waiting for an application to be executed. The key feature
of virtualization is the possibility to create, stop, resume and delete virtual machines
easily, as well as the possibility to move VMs around to processors with lower load.

At a closer look, however, operating systems and hypervisors share a lot of com-
mon traits. Both manage the computing power of the underlying processor; both
deal with scheduling of applications (either user applications or complete stacks of
operating system and applications); both aim at balancing the computational load of
the system. Essentially, hypervisors add an extra layer of scheduling and resource
management in order to manage the diversity in the requirements for operating sys-
tems of different applications—to fill the gap a single OS cannot do.

7.6 Virtualization in Many-core Systems

140

What will be the role of virtualization in many-core chips?
We believe operating systems will move to a space-sharing based scheduling

of computations, as opposed to today’s time-sharing methods. In this context,
the need for time-sharing a core’s resources at a lower level than the operating
system is basically removed, as cores will be so abundant that such an approach
would be inefficient. What will not disappear however is the need to manage a
diversity of applications with different requirements on the underlying operating
system and hence the need to support multiple operating systems on the same
chip.

There is an interesting trend in the operating systems for many-core systems that
can be observed in most of the experimental OSes we will explore. Essentially, all
the operating systems targeting many-core systems have a layered architecture: the
lower layer takes care of the space-sharing and basic management of resources,
while the actual scheduling of application threads is left to the higher layer—usu-
ally called the library operating system—that tends to be application dependent. In
many ways, the lower level corresponds to traditional hypervisors, while the higher
layer resembles closely today’s operating system.

Consequently, we believe we will see a double trend when it comes to virtual-
ization and hypervisors: the disappearance of the need for time-sharing individual
cores between operating systems, coupled with an increasing integration of and
blurring of the dividing line between functionalities offered by hypervisors and
operating systems. Space-shared operating systems may take over the remaining
role of hypervisors—management of OS diversity—while hypervisors could evolve
into something similar to the basic layer of a space-shared OS. This trend is also
underlined by the strategies outlined by leading virtualization providers: growing
the role of the hypervisor, that can execute ‘just-enough operating systems’ (JE-OS)
[16], tailored to the needs of individual applications and only providing the services
needed by that specific application.

7.7   Experimental Many-core Operating Systems

In recent years several experimental operating systems focusing on many-core chips
have been proposed. Most of this research has either been performed by commercial
operating system vendors or has been supported by these—an acknowledgement, in
our view, of the need to reconsider the current OS principles and shift the OS design
focus to new directions. None of these experimental OSes made their way yet into
mainstream, commercial use; however, several ideas—related to managing hetero-
geneity and intra-chip communication—have been incorporated into commercially
available operating systems.

In this chapter, we’ll survey the most promising experimental OSes. We will
focus primarily on the strengths of the technologies implemented in these operating
systems, especially in the areas of scheduling, management of heterogeneity and
power efficiency.

7 Many-core Virtualization and Operating Systems

141

7.7.1   Corey

Corey [4] was developed at MIT’s Parallel & Distributed Operating Systems Group,
the same group that initially developed the concept of exokernel. Corey’s basic
principle centers on the idea of shifting the control of what exactly gets shared be-
tween cores—both in user space and kernel space—to the application.

There are three fundamental concepts in Corey: shares, address trees and kernel
cores (mapped to the concept of ‘pcore’, explained in subsequent chapters). Shares
provide a mechanism for applications to control precisely how kernel structures
are shared; address trees control which page-table entries are private to a core and
which ones are really shared; kernel cores allow space-separation of kernel func-
tions and applications, by defining a set of cores dedicated exclusively to the kernel.
In addition, Corey supports the concept of library operating systems, first intro-
duced in connection with the exokernel concept.

In the following sub-chapters we examine these concepts more closely.

7.7.1.1   Shares

Fundamentally, Corey is an exokernel operating system and hence applications are
required to use ‘library operating systems’ to implement functionality beyond the
basic management and protection of hardware resources. By default, he Corey ker-
nel ensures that cores use only local resources and share no state between cores—
it’s the responsibility of the applications to create sharing whenever needed using
the shares kernel interface.

Hardware resources are modeled in Corey as five classes of objects: shares, seg-
ments, address trees, pcores, and devices. Each object has a unique 64-bit id, called
object ID, stored in a lookup table. Every core has access to a set of lookup tables,
called shares, which define the range of objects it may access: a core can never ac-
cess any object that is not included into one of its shares. Library operating systems
have the possibility to define the shares of each core, and explicitly, the amount and
limits of sharing among cores: core local objects will be mapped to private shares,
while shared objects will belong to one of the global shares, mapped to each of the
cores participating in the sharing.

7.7.1.2   Memory Management and Address Trees

In Corey, physical memory is represented through the segment (defined as a mem-
ory area of specific size) abstraction. By default, only the core allocating the seg-
ment may access it—unless it is added to one of the global shares. A key concept
in Corey is that of address trees. An address tree is used to define the address space
for each core: it maps virtual addresses to segments and maps virtual addresses to
internal address trees that can be shared (referenced from core-local address trees)
between cores.

7.7 Experimental Many-core Operating Systems

142

This approach gives a fine-grained, dynamic mechanism for controlling which
memory address areas get shared and how those are mapped to each core’s address
range. The key insight is that there is no need for a global memory structure in the OS,
which limits the potential contention cases to explicitly defined areas (where possibil-
ity for contention is really due to application characteristics).

The concept of segments and shares is also used for communicating with de-
vices. When an application opens a devices (requests access to it), it will get access
to a segment belonging to the device; any read or write from or to the device will
then happen through this shared memory segment.

7.7.1.3   Core Management and Scheduling

Physical cores are represented in Corey using pcore objects. Applications—or kernel
services—are started on specific cores by requesting the kernel to execute a specific
piece of software, configured using a stack pointer, a set of shares (to define what
that specific piece of software will share with software executing on other cores) and
an address tree (to define the initial address space of the software and core).

This design essentially implements a space-shared scheduling mechanism. Fin-
er-grained scheduling policies—such as traditional time-sharing—may be imple-
mented through library operating systems, instantiated to execute on application
cores; however, from the Corey kernel point of view, the library OS is just a support
function of the application.

In the standard library OS implementation (called libOS) Corey provides a
many-core enabled variant of the traditional UNIX fork system call: cfork will start
a new thread on a new core, using a copy (copy-on-write, to be precise) version of
the parent’s address tree. Sharing can be achieved again by passing a set of global
shares to the new core’s pcore object.

7.7.1.4   Summary

We believe Corey’s approach—giving applications much more fine-grained con-
trol—is an incarnation of the principle we base our argumentation for a new OS
approach on: the need for more fine-grained semantic information sharing between
applications and operating systems. Shares, address trees and pcores are essentially
mechanisms through which applications can control what gets shared at different
levels and how cores are best mapped to the problem at hand.

7.7.2   fOS

Factored operating system (fOS) [6] is another prototype to emerge from the Mas-
sachusetts Institute of Technology, this time from the group that initially devel-

7 Many-core Virtualization and Operating Systems

143

oped the concepts behind the RAW and Tile architectures (commercially available
through Tilera). The fundamental concepts behind fOS are strikingly similar to
those of Corey: space sharing as opposed to time sharing; separation of operating
system and application domains; strict isolation and drastic limitation of sharing
memory between cores.

fOS however takes the concept of isolation even further. All the operating system
services are strictly factored out and communicate with other services and applica-
tions purely through messaging—in fact, operating system services may execute,
in theory, anywhere, even on other processors, completely transparently for the ap-
plications. This strict enforcement of separation and ‘share nothing’ actually allows
fOS to scale from single chips to large-scale data centers and cloud computing en-
vironments.

Operating system services are designed with scalability as a primary design re-
quirement. Internally, each service (such as file system or memory manager) are
implemented using a co-operative set of cores (called servers), invisible to the ap-
plication. The OS design also makes sure that individual server faults are invisible
outside the service domain, by automatically re-routing communication to server
cores executing correctly.

fOS is still in early design phase, but it holds the promise of an operating system
concept that can scale from individual many-core chips to cloud computing envi-
ronments. The key to such scalability lies in the four design principles:

• share nothing, communicate through messaging
• space-share computing power instead of time-sharing
• design operating system services so that performance can be scaled up by adding

more cores to the service group of cores implementing the service
• fault tolerance through automatically re-routing tasks handled by failed cores to

other cores belonging to the same service group.

7.7.3   Barrelfish

Barrelfish [7] is the result of co-operation between ETH in Zürich and Microsoft
Research. It is officially called a multikernel, i.e. an operating system that views a
chip as a network of independent cores, assumes no inter-core sharing and moves
traditional OS functions to a set of distributed processes communicating solely
through message passing. It also aims at supporting heterogeneity in HW, primarily
with respect to core capabilities within a single ISA domain. There are three design
principles at the foundation of Barrelfish:

• make all inter-core communication explicit
• make the OS structure HW neutral
• view state as replicated instead of shared.

Barrelfish is essentially a micro-kernel based operating system. On each core, the
OS kernel is factored into a privileged mode CPU driver and a user mode monitor

7.7 Experimental Many-core Operating Systems

144

process; the rest of OS functionality—device drivers and system services—are run
in user-level processes. Interrupts are routed to the appropriate core, handled by the
CPU driver and delivered as messages to the driver process. Figure 7.2 shows the
high level architecture of Barrelfish.

The CPU driver’s main task is to enforce protection, authorization, time-slicing
(if needed) and HW abstraction; it also provides same-core, fixed size message
based inter-process communication facility. The CPU driver of any core shares no
state with any other core and it’s fully event-driven, single-threaded and non pre-
emptive. In many ways it resembles an exokernel and has such an extremely small
footprint that allows it to be entirely located in the core’s local memory. It is the part
of the Barrelfish operating system that is heavily hardware specific and needs to be
customized for each new hardware version.

Monitor processes are responsible for system wide co-ordination and also ex-
ecute as single core user-space processes. All global kernel data structures—such
as memory allocation tables—are distributed and replicated in Barrelfish; monitors
secure that these structures are kept globally consistent using an OS-specific agree-
ment protocol. Consequently, monitor processes mediate application requests that
require access to global data structures.

In addition, monitors also have a housekeeping function, implementing power
save modes of operation, setting the core in low power mode when there’s no ap-
plication to be run. This becomes possible as inter-core communication is managed
by the local monitor, hence it has a consistent and comprehensive view of the status
of all tasks executing locally.

Fig. 7.2   Barrelfish operating system architecture

CPU – 1 CPU – 2 CPU – 3 CPU – NHW:

Processors may be of different types (capability and ISA-wise)

CPU
Driver 1

CPU
Driver 2

CPU
Driver 3

CPU
Driver N

Inter-processor
interrupts

Kernel space,
HW specific

Monitor Monitor Monitor Monitor
User-space

remote
procedure calls

User space,
OS functions,
HW agnostic

Application I Application II Application III
User space,
Application
domain

7 Many-core Virtualization and Operating Systems

145

The concept of process is implemented differently in Barrelfish compared to
traditional operating systems. On each core where the process might execute, it
is represented by a local dispatcher object, which is invoked by the CPU monitor
whenever it shall execute; each dispatcher object typically implements a core-
local, user-space thread scheduler. Shared space semantics can be provided for
threads within the same process—even if executing on different cores—either
through actual sharing of the relevant hardware page table among the dispatchers
or replication and consistency protocols between the dispatchers. Thread migra-
tion and load balancing is achieved through message based communication be-
tween dispatchers.

It’s important to note in this context that Barrelfish is only responsible for time-
multiplexing the dispatchers on a specific (and all) cores; all the mechanisms lead-
ing to shared memory semantics and thread balancing are implemented in user
space. This way, Barrelfish actually offers a space-time multiplexed approach to
scheduling applications.

An interesting concept in Barrelfish is that of the system knowledge base. It’s
essentially a database of hardware information implemented as a subset of first-
order logic. It enables the OS to make efficient decisions with regards to e.g. alloca-
tion of drivers to cores, selection of message passing mechanisms or NUMA-aware
memory allocation.

One of the weak spots of Barrelfish is the memory management sub-system. It
is implemented as a capability system: all memory management is explicit, done
through manipulation of capabilities, which are essentially just references to physi-
cal memory regions. In practice, this removes dynamic memory management from
the kernel, which merely checks the correctness of memory operations, and moves
it to user processes; while this approach results in a decentralized memory man-
agement, it puts unnecessary complexity into the user-space applications, without
actually obtaining significant performance gains in comparison to optimized global
memory managers.

All in all, Barrelfish is an interesting OS that proposes a de-coupled model,
where core-local OS components only communicate with their peers on other cores
through messages. It also advocates placing more responsibility into applications,
relegating the kernel to basic HW abstraction and communication mechanisms. One
of the strengths of the Barrelfish model is the potential to support different—poten-
tially heterogeneous—hardware architectures, as it models the chip as a network of
nodes, a model easily mapped to most types of available processors.

7.7.4   Tessellation

Tessellation [5] is an experimental client-side operating system developed at the
Parallel Computing Laboratory at Berkeley. Its fundamental principle is space-time
partitioning (STP), a combination of space-shared scheduling (slicing of available

7.7 Experimental Many-core Operating Systems

146

resources into a number of entities called partitions in Tessellation) and time-shar-
ing, whereas applications may be swapped out to give way to new applications,
executing in the same partition. In many ways, a combination of application and
space partition and time-shared scheduling is very similar to the concept and man-
agement of virtual machines, making Tessellation similar in some functionality to
hypervisors.

In its approach to space-sharing and structuring of operating system services,
Tessellation is very similar to fOS: it builds on a micro-kernel approach with sched-
uling responsibility delegated to the applications; it treats OS services as special
applications that have their own partition allocated; it relies on message passing for
communication between partitions. The key differentiating factor is time-multiplex-
ing: applications have exclusive control over the resources in their partitions only
for the duration of a scheduling quantum (which is likely to be much larger than in
traditional SMPs), however may be suspended and replaced with other applications
once their quantum elapsed.

Time-multiplexing in Tessellation is largely event driven: as applications only
communicate with the outside world through messages, an application is ready
to be scheduled when it has at least one pending, unprocessed external message.
Some applications with high levels of QoS requirements or real-time characteristics
may be pinned to a particular set of resources (primarily cores) and will never be
swapped out in favor of other applications.

Quality of service management is one of the interesting features of Tessella-
tion. It relies on monitoring and policing message flows between partitions and
the outside world, approach made possible by having message passing as the sole
communication mechanism between cores. For instance, in case two applications
share equal parts of some global resource or service and there is an imbalance in the
access pattern to the resource, superfluous access requests to that global resource
or service are suppressed at the source—the offending application—in order to pre-
vent contention and overloading of the resource or service.

Architecture-wise, the key components of the Tessellation kernel are the Parti-
tion Mechanism Layer and the Partition Manager. The Partition Mechanism Layer
is essentially the HW abstraction mechanism that provides a machine-independent
partition management interface to the policy implementation layer. It also provides
the abstract messaging infrastructure for communication between the partitions.

The Partition Manager represents the policy layer that allocates and schedules
resources to applications and partitions, based on the abstract, machine independent
model provided by the Partition Mechanism Layer. It supports dynamic adjustment
and resizing of application partitions, based on requests from applications. It is
responsible for time-multiplexing as well, based on application priority and ready
state (i.e., an application can be scheduled if it has at least one message that it needs
to process).

Partitions in Tessellation can be fixed sized or dynamically sized. An application
allocated to a dynamically sized partition may add, remove or modify the resources
it controls through kernel APIs and it’s the more common type recommended by the

7 Many-core Virtualization and Operating Systems

147

OS. Fixed sized partitions are recommended for static applications and applications
with high predictability requirements.

In summary Tessellation, while still in early phases, proposes an interesting
model that aims at combining traditional—time-shared based—techniques with
novel, space-shared approaches. It aims at mitigating the inherent problem of time-
sharing, its collaborative nature, with coarse-grained timing control on the operat-
ing system level. While it’s likely to remain an experimental OS, the principle of
space-time sharing is one that will be re-encountered in future OS designs.

7.7.5   HeliOS

HeliOS [13] was developed at Microsoft Research, based on a previous research OS
called Singularity. Its main goal is to address the issue of heterogeneous hardware
by providing a single set of operating system abstractions across cores of different
architectures or characteristics, coupled with a re-targeting mechanism that allows
applications to be run on cores with ISAs best matching the performance require-
ments.

HeliOS aims to meet four fundamental design goals in the context of heteroge-
neous processors: heterogeneity in kernels, but with one set of abstractions; trans-
parent inter-process communication; simplified deployment and tuning; encapsula-
tion of multiple hardware architectures.

The solution to meet these goals in HeliOS relies on two basic concepts: satellite
kernels and affinity metric supported re-targeting. We’ll explain these concepts in
the context of the four fundamental design goals of HeliOS.

7.7.5.1   Heterogeneity in Kernels

In order to manage cores with disparate characteristics, HeliOS requires that each
type of core has an OS kernel which in turn supports a basic, common set of OS
abstractions. These kernels are implemented as micro-kernels, and are called satel-
lite kernels in HeliOS terminology.

Satellite kernels are executing largely autonomously of each other and are re-
quired to implement only a few APIs, primarily memory, process and thread man-
agement. The reference satellite kernel of HeliOS requires access to CPU, memory,
a timer, an interrupt controller and the ability to catch an exception—which makes
it a good candidate to run on most modern cores, including even specialized ones.

The key benefit of satellite kernels is the uniform view of the hardware that is
exposed to the programmer; cores may differ in the speed at which applications of
certain type will be executed; but otherwise all look similar from an application
point of view. This is further enhanced through the usage of an intermediate repre-
sentation of the applications.

7.7 Experimental Many-core Operating Systems

148

7.7.5.2   Transparent Inter-process Communication

In order to provide efficient inter-process communication, the operating system
must provide an abstraction of where applications are executing and, at the same
time, guarantee that the communication will be as efficient as possible, especially if
the two processes are co-located on the same core.

The main mechanism provided by HeliOS for application registry and discovery
is a global namespace. It provides a unified mechanism to advertise services, both
from applications and the operating system. Drivers may use it to publish peripher-
als and the services supported by these; the OS may advertise basic services such
as the file system; applications can use it to discover each other. This mechanism is
not new for HeliOS; it has been previously implemented in other contexts, such as
the real-time operating system OSE [14].

Efficiency is achieved through the usage of the best communication mecha-
nism available, behind the same uniform messaging APIs. For core-local mes-
saging, a zero-copy, memory based mechanism may be used; for inter-core com-
munication shared memory, on-chip networks or even network protocols such as
Ethernet/IP are valid options. In fact, this allows HeliOS to scale across chips,
similarly to fOS.

7.7.5.3   Simplified Deployment, Tuning and Hardware Encapsulation

Traditionally, heterogeneous architectures pose a number of challenges for applica-
tion developers: the need to choose the placement of each computation; the diffi-
culty of re-allocating (migrating) threads; the difference in performance for certain
computational paradigms (such as shared memory or message passing) when de-
ployed on different targets.

HeliOS attempts to simplify development and efficient execution of applications
on heterogeneous hardware platforms through two mechanisms: affinity and two-
phase compilation. Each process is allowed to express its—positive or negative—
affinity to other processes or types of cores as a metadata managed by the OS and
used to schedule applications. A positive affinity between two processes indicates a
benefit from running the two on the same satellite kernel; similarly, positive affin-
ity to a certain type of core gives a hint on the type of architecture the application
could best exploit (e.g. speech encoding fits best on a DSP). In contrast, negative
affinity indicates that two applications might interfere with each other when run on
the same kernel or that a particular type of architecture is not optimal for a certain
type of application; an interesting sub-case is the negative affinity towards itself:
it indicates, in HeliOS terminology, that multiple instances of the same application
shall not be co-located.

Affinities for each application are expressed in XML format in a manifest that
shall accompany any executable. It is automatically generated during compilation,
but it can be edited by the programmer in order to fine-tune the application. When
processing a manifest, HeliOS prioritizes positive affinities, with CPU affinity be-

7 Many-core Virtualization and Operating Systems

149

ing the tie-breaker and the one with highest priority. It’s important to note that af-
finities are not constraints that will always be met, rather preferences that the OS
will try—but may not always succeed—to accommodate.

Reliance on metadata alone is not sufficient however, especially in the case of
chips with multiple ISAs. This is the main reason why HeliOS supports a two-
phased compilation: applications are first compiled into a representation in CIL
(Common Intermediate Language, the byte-code of Microsoft’s .NET platform);
when the target where the application will be run is decided, the CIL representation
is transformed into executable code, through a translation into the ISA of the target
processor core.

This approach has clear advantages in terms of flexibility over the fat binary
approach, where versions for different ISAs are readily included into the deliv-
ered binary: it allows applications to take advantage of newer architectures without
modification and allows deployment on any platform using HeliOS for which a CIL
to native ISA compiler is available.

7.7.5.4   Programming Model and Handling of NUMA Domains

A process in HeliOS can only execute on one single satellite kernel, thus all its
threads must execute on that kernel; communication between kernels is through
message passing only. However, HeliOS does not mandate that one satellite kernel
may only execute on one core only: the current design of the OS supports the con-
cept of NUMA domain satellite kernel that we describe in this sub-chapter.

A NUMA domain satellite kernel presents a uniform memory access island of
cores as one device to the rest of the system, essentially executing an SMP-type OS
on those cores. As processes are locked to satellite kernels and communication be-
tween different satellite kernels only happens through message passing, this method
essentially guarantees locality of data and makes remote memory accesses explicit,
even on cache coherent systems. This design essentially reflects a design choice for
non-shared memory space and enforcement of locality—some of the issues relevant
from many-core systems’ point of view.

7.7.5.5   Summary

HeliOS is a good example of OS design that embraces heterogeneity while using
space-partitioning (through the concept of NUMA domain satellite kernels) to miti-
gate the challenge of scalability for many-core operating systems. Some of the ideas
prototyped in HeliOS have proven to be successful in commercial offerings as well,
especially in the embedded domain.

We believe the concept of affinity and its usage to guide the OS with regards to
the specific needs of applications is a promising approach, which however will have
to be made much more fine-grained—down to individual sections of code—in order
to be usable in a truly heterogeneous context.

7.7 Experimental Many-core Operating Systems

150

7.8   Possible Future Trends: the Return of Speculative 
Execution

Before we conclude this chapter on future many-core operating systems, we shall
return to one of the ideas whose time came, passed but may be returning again:
speculative execution [17].

Increased number of cores is good news for applications with lots of inherent
parallelism and for applications that were carefully engineered to take advantage of
multiple cores. However, there is still a large class of applications that have defied
attempts at efficient parallelization and are the prime candidates to be executed on
complex, high-speed cores. Precisely for this kind of applications, the idea of specu-
lative execution has been extensively researched, but with very limited results. A
major reason for that is that it is very difficult to decide at run-time when specu-
lation will be successful. Relying on run-time information has not offered much
gain. On the other hand, limit studies have shown that there is indeed a wealth of
parallelism to be exploited [18], therefore speculation as an approach should not be
abandoned. Provided that we can apply speculation where it pays off, the upside is
that we can use the higher amount of transistors to perform speculative execution of
sequential software at radically larger scale than attempted before.

The pre-requisite however, in our opinion, is to strengthen the interface between
high level software and hardware/operating system, so that the operating system
and the hardware can utilize detailed semantic knowledge at large scale to sup-
port execution of single threaded applications. One approach proposed recently [19]
uses the possibilities offered by the design by contract paradigm—in terms of possi-
ble and/or realistic execution paths—coupled with speculative, run-ahead execution
of sequential programs. Such approach can exploit chips with thousands of simple
cores, running at lower speed for improving the performance of applications with
limited amount of parallelism, without the need for rewriting the actual software.

Obviously, such an approach requires support from the operating system. Fast
creation of speculative threads, efficient replication of data, detection and squashing
of wrong speculative threads will all require mechanisms provided by the operating
system. How this will be implemented is still an open research question; however
this technology holds the promise of mapping and speeding up sequential applica-
tions on massively multi-core processors.

7.9   Summary

In this chapter we surveyed the most pressing challenges that operating systems will
face when scaling up to massively multi-core processors. We focused on the two
most important scalability issues: firstly, the increasing overhead of time-shared
scheduling fueled by the cost of pre-emption and cache misses; secondly, the unsus-
tainable nature of shared memory models, both in applications and in the operating
system kernel itself.

7 Many-core Virtualization and Operating Systems

151

We argue that the emergence of chips with large number of cores will trigger a
re-structuring of operating systems and hypervisors along two dimensions: the ap-
proach to scheduling and the approach to the internal architecture of the operating
system. Lessons from experimental operating systems indicate that the core of the
operating system is likely to become much more like a virtual machine monitor fo-
cusing on the management of HW resources, isolation and very few basic services.
Unlike VMMs however, this lower layer of an operating system for many-core pro-
cessors is likely to have distributed, micro-kernel like architecture, with controlled,
limited or no sharing between instances on different cores. This basic OS core will
likely implement a space-shared scheduling strategy and have support built in for
power efficient operation—made possible precisely by the usage of space shared
scheduling methods. It’s main goal is partitioning—a form of divide et impera—and
support for diversity in higher layers of the software stack.

On top of this low level, basic OS we will see a proliferation of application tai-
lored ‘user (or library) operating systems’ characterized by strong semantic integra-
tion with the application (through the usage of affinities as in HeliOS or some other
similar mechanism). The key trend here is that applications will get better—almost
OS level—control of the resources needed for execution, a far cry from today’s
simplistic, thread priority-based approach.

References

 1. Gough C, Siddha S, Chen K (2007) Kernel Scalability – Expanding the Horizon Beyond Fine
Grain Locks. Proceedings of the Linux Simposium 1:153-166

 2. Baumann A et al (2009) The Multikernel: a New OS Architecture for Scalable Multicore Sys-
tems. Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles:
29-44

 3. Multicore requires OS rework, Windows Architect advises. http://www.networkworld. com/
news/2010/031910-multicore-requires-os-rework-windows.html. Accessed 11 January 2011

 4. Boyd-Wickizer S et al (2008) Corey: An Operating System for Many Cores. Proceedings of
the 8th USENIX Symposium on Operating Systems Design and Implementation: 43-59

 5. Colmenares J A et al (2010) Resource Management in the Tessellation Manycore OS. Pro-
ceedings of the 2nd USENIX Workshop on Hot Topics in Parallelism

 6. Wentzlaff D et al (2010) An Operating System for Multicore and Clouds: Mechanisms and
Implementation. ACM Symposium on Cloud Computing.

 7. Baumann A et al (2010) The Multikernel: A New OS Architecture for Scalable Multicore
Systems. Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Prin-
ciples: 29-44

 8. Hill M D, Marty M R (2008) Amdahl’s Law in the Multi-core Era. IEEE Computer
 9. Shelepov D, Fedorova A (2008) Scheduling on Heterogeneous Multicore Processors Using

Architectural Signatures. Proceedings of the Workshop on the Interaction between Operating
Systems and Computer Architecture

10. Saez J C, Prieto M, Fedorova A, Blagodurov S (2010) A Comprehensive Scheduler for Asym-
metric Multicore Processors. Proceedings of the 5th ACM European Conference on Computer
Systems

11. Vajda A (2010) Handling of Shared Memory in Many-Core Processors without Locks and
Transactional Memory. Proceedings of the 2010 Workshop on Programmability Issues for
Multi-Core Computers

References

152

12. Suleman M A, Mutlu O, Qureshi M K, Patt Y N (2009) Accelerating Critical Section Execu-
tion with Assymetric Multi-Core Architectures. Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating SystemsFollow the data

13. Nightingale E B, Hodson O, McIlroy R, Hawblitzel C, Hunt G (2009) HeliOS: Heteroge-
neous Multiprocessing with Satellite Kernels. Proceedings of the ACM SIGOPS 22nd Sym-
posium on Operating Systems Principles: 221-234

14. Enea (2010) Enea OSE: Multicore Real-Time Operating System (RTOS). http://www.enea.
com/Templates/Product____27035.aspx. Accessed 11 January 2011

15. Popek G J, Goldberg R P (1974) Formal Requirements for Virtualizable Third Generation
Architectures. Communications of the ACM 17(7):412-421

16. Krishnamurti S (2007) Get Juiced! VMWare’s Executive Blog, http://blogs.vmware.com/
console/2007/07/get-juiced.html. Accessed 11 January 2011

17. Ohsawa T, Takagi M, Kawahara S, Matsushita S (2005) Pinot: Speculative multi-threading
processor architecture exploiting parallelism over a wide range of granularities. Proceedings
of the 38th annual IEEE/ACM International Symposium on Microarchitecture: 81–92

18. Steffan J G, Mowry T C (1998) The potential for using thread level data speculation to fa-
cilitate automatic parallelization. Proceedings of the 4th International Symposium on High-
Performance Computer Architecture: 2–13

19. Vajda A, Stenström P (2010) Semantic Information based Speculative Parallel Execution.
Proceedings 3rd Workshop on Parallel Execution of Sequential Programs on Multi-Core
Architectures

7 Many-core Virtualization and Operating Systems

153

Abstract In this chapter we introduce the foundations for the programming mod-
els we consider most suitable for programming many-core chips: communicating
sequential processes (CSP), the Actor model and the task based model. For each of
these, we shortly survey and compare the most commonly available programming
language implementations: the goal is to lay the groundwork for the more in-depth
analysis and presentation in the next chapter. An important part of the chapter will
deal with the comparative analysis of thread/process based and task based parallel-
ism, as well as an analysis of shared memory based models.

8.1   Introduction

The computer science community was quite successful in proposing a large number
of programming models and paradigms for tackling the issue of writing software
for parallel computers. Each of these has its own merits as well as drawbacks; some
have become widely adopted and used, some are confined to specific problem or
computing platform domains. In the following two chapters we’ll try to elaborate
and illustrate the most promising ones, from the perspective of designing software
for many-core processors.

At the root of them all, there are fundamentally two basic paradigms that define
where a certain programming model will fit in: the global state based paradigm
and the de-centralized (without any global state) paradigm. In a global state based
paradigm, the computational system can be fully characterized, at any point in time,
through a global, finite set of values and the system will evolve from one state to
the next through a computational step, the execution of a finite set of instruction.
These models are the natural evolution of the abstract Turing machine [1] based
computational model and are a direct extension of the sequential, single processor
model. It’s extremely important however to make the distinction between the con-
cepts of global state and shared memory, as these are not equivalent; as we’ll see
in this chapter, a programming model may be global state based while not sharing

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_8, © Springer Science+Business Media, LLC 2011

Chapter 8
Introduction to Programming Models

154

any data between execution threads and similarly, shared memory may be used in a
de-centralized paradigm.

In the de-centralized paradigm, there’s no global state that would characterize the
whole system: the system is made up of autonomous un-synchronized entities that
may react in any order to external stimulus or requests coming from the other com-
ponents of the system. The best known example of such a system is the Actor model
[2], where the system is made up of a variable number of independent, un-bound
entities that may communicate with each other asynchronously through messages
and there’s no pre-defined logic as to in which order the tasks will be executed.

In this chapter we will look at the three basic models of concurrency that influ-
enced most of the programming models and languages we detail in the next chapter:
the theory of communicating sequential processes, the Actor model and the task
based model. While these are not the only possible fundamental models—general,
shared memory based programming is a notable one—we believe that these shall be
at the foundation of any model that aims at scaling to hundreds of cores. We show
how these are at the basis of more elaborate models and how these basic models of
concurrency influenced the development of support for concurrency in program-
ming languages.

8.2   Communicating Sequential Processes (CSP)

The concept of communicating sequential processes (CSP) was proposed as a new
language by Hoare in his seminal paper with the same title [3] published in 1978. In
it Hoare defined a new concept for modeling concurrency that was later at the basis
of a process calculus theory aimed at reasoning mathematically about concurrent
programs. Initially however, the model was presented as a language for describing
concurrent systems and introduced a number of concepts still found in many mod-
ern programming languages.

The language proposed by Hoare built on seven principles:

1. It adopted Dijkstra’s guarded command concept [4] as a sequential control struc-
ture and the sole source of non-determinism. Briefly, a guarded command is a
combination of conditional statements and program code that shall be executed
if the conditional statement is true

2. It introduced a mechanism to indicate that sets of sequential commands (called
sequential processes) shall be executed in parallel; these processes are statically
defined

3. It defined the concept of input and output operations as message sending and
receiving primitives that shall be used for communication between processes and
between the system and its environment; messages are the sole way for processes
to communicate

4. Communication paths are explicitly named and communication will only occur
if a process names another process as a destination for a message and that pro-
cess names the first process as a sender

8 Introduction to Programming Models

155

5. Incoming messages were used in guards to steer execution; if multiple messages
were available, the semantics of the language required that one was chosen, thus
creating a source of nondeterministic behavior

6. Guards were used as synchronization primitive for a repetitive command: if all
the sources named by the guards have terminated, the repetitive command also
terminated

7. Pattern matching scheme was used to discriminate the structure of messages and
facilitate selection of the right type of message to be processed next

According to these principles, the model of communicating sequential processes is
based on the global state paradigm: the configuration of processes and their interaction
is defined statically and any nondeterminism has a finite set of choices (thus the system
exhibits bound nondeterministic behavior). This restriction has been lifted in later ver-
sions of the CSP model, but it’s of little interest from our discussion’s point of view.

The CSP model also introduces several important concepts. The share nothing
principle is enforced by requiring processes to communicate exclusively through
messages, without sharing any storage among them. Communication between pro-
cesses is elevated to the status of first class primitive concept, to the same level as
traditional arithmetic operations, emphasizing the overarching importance of mes-
saging in a concurrent system without shared storage (memory). In the same con-
text, usage of messages as guards is also a novel way for providing program control,
as the primary mechanism to steer the program’s control flow. By construction,
CSP didn’t need any of the other synchronization mechanisms—the lack of shared
memory and the usage of messaging for synchronization purposes made all other
forms of synchronization redundant.

One important characteristic of the CSP model is the rendez-vous nature of
inter-process communication: a process may only transmit a message if the cor-
responding receiver process is ready to accept it; otherwise it will be delayed until
the receiver is ready to process the message. This is an important restriction with
important implications for how the processes will be scheduled on a real hardware.

The original language proposed by Hoare was later developed into full-blown
algebraic process calculi with support for formally specifying, verifying and rea-
soning about the concurrency behavior of software systems. While it has found
some applicability at small scale, especially in safety critical systems, it largely
fails at large complex systems, thus remaining in the realm of theoretical research.
The main practical merit of CSP, in our opinion, is the introduction of a compelling
model for designing concurrent systems, based on small-scale, internally sequential
processes that communicate with each other and their environment in a predictable
and well specified way, without using any explicit sharing of data.

8.2.1   Practical Implementations of CSP

Probably the most well publicized concrete implementation of CSP was through the
occam language [5], the programming language of choice for the transputers [6],

8.2 Communicating Sequential Processes (CSP)

156

developed during the 80s. Recently the Go language [7], proposed by Google, re-
vived some of the ideas from CSP in the context of a C-like language. In this chap-
ter we review the main concepts—relevant from many-core programming point of
view—offered by these two languages.

8.2.1.1   Occam

Occam was developed as the main language for programming the transputer family
of processors, directly based on the CSP model (the original design was actually ad-
vised by Hoare himself). In its latest form—occam-pi [8]—it is supported through a
university-developed compiler and encompasses major additions beyond the scope
of CSP, such as dynamic process creation.

An occam application is defined as a collection of processes that may execute
concurrently and can communicate with each other through channels or restricted
shared memory. The simplest process in occam is an action which may be an as-
signment, an input or an output operation; processes can be organized hierarchically
into higher level processes using so called construction primitives. Occam supports
the following type of constructions:

• SEQ: builds a sequential process where component processes shall be executed
sequentially in the order listed by the construction

• IF: builds a combination of processes where each process is guarded by one
conditional, evaluated in sequence; the process associated with the first true con-
ditional will be executed (there may be any number of conditionals)

• CASE: acts similarly to traditional CASE constructs, the process corresponding
to the first matching conditional is executed

• WHILE: repeats a process while the associated Boolean expression is true
• PAR: executes the component processes in parallel with each other
• ALT: just one of component guarded processes will be executed; if two or more

guards are true, the language run-time will select one arbitrarily or according to a
priority hierarchy that may be optionally specified; a guard can be a combination
of Boolean expressions and message reception

As mentioned above, occam allows shared memory between processes, but in a
restricted manner. Basically, sharing is read-only: if a variable or array element is
written in one process (e.g. through assignment of message reception), it cannot be
assigned or used in any expression in any other process executing in parallel. For
arrays, occam provides a mechanism for partitioning so that different partitions of
the same array can be accessed freely in different processes.

Communication between parallel processes is through messages passed along
communication channels. A channel is a unidirectional, un-buffered, named and typed
point to point communication mechanism between two parallel processes (thus, for
bi-directional communication, two channels are needed). The type of messages that
can be sent and received over a particular channel are defined in the type of the chan-
nel (called protocol) and may be just a simple type, arrays or composite structures.

8 Introduction to Programming Models

157

Today occam is largely relegated to university research and it’s currently main-
tained by the Programming Languages and Systems group at the University of Kent,
UK. Its main legacy is that it was the first language to show how the concepts of
CSP can be successfully implemented in practice, which was the baseline for later
realizations, such as Google’s Go language.

8.2.1.2   The Go Language

The Go language [7] was developed at Google and released as open source in 2009.
It is a Java/C++ like imperative language and it relies heavily on the concepts pio-
neered by the CSP model.

The concurrency model of Go relies on two concepts: goroutines and communica-
tion channels. A goroutine is a process spawn off by another process that may com-
municate with other processes through communication channels. A communication
channel is a mechanism that can be used to transfer data between different processes
in a half synchronous manner: the receiver will block on a receive statement until
there is something to receive on that particular channel. Channels are first class data
types in Go and thus may be passed around and even sent over another channel.

While shared memory is supported in Go, messages sent over channels are the
primary synchronization mechanism between goroutines. The authors of the lan-
guage use the principle “don’t communicate by sharing memory; share memory by
communicating”; in practice it means explicit hand-off of data between goroutines
through passing around references to data that needs to be accessed. In fact, Go
implements also many of the specifics of the Actor model and task based model that
we will describe later in this chapter, but the overwhelming use of named channels
as the primary mechanism for synchronization puts Go closer to the CSP model.

The Go language development is still work in progress with many features such
as atomicity not yet fully defined. There are indications however that its usage is
taking off, primarily within Google, its originating company.

8.3   Communicating Parallel Processes and the Actor Model

The Actor model was first proposed in 1973 by Hewitt, Bishop and Steiger [9] and
was intended for usage in Artificial Intelligence research. It was motivated as a
model for systems with thousands of independent processors, each with local mem-
ory and communicating via a high performance network, a model that has become
again relevant in the context of many-core processors.

The basic structuring principle of the Actor model is centered on the concept of
Actor. An actor is an entity that

• interacts with its surrounding through messages: it performs a certain computa-
tion based on its internal state and the message received from outside (other ac-

8.3 Communicating Parallel Processes and the Actor Model

158

tors) and, as a response, may generate (finite number of) new messages sent to
other actors

• can create a finite number of new actors

The principle of interaction within the Actor model is based on asynchronous, un-
ordered, fully distributed, address-based messaging. An actor may send messages
only to actors it already knows about, but there’s no built in guarantee for preserv-
ing the order of messages or for providing implicit feedback on message deliv-
ery. While the original Actor model does not provide for buffering of messages,
in practice such buffering is a must in order to support the asynchronous model of
communication.

Inherently, there’s no upper bound on when the system will settle on a stable
state (all messages have been delivered and processed and no messages are pend-
ing)—the Actor model only guarantees that all messages will eventually be ser-
viced. It’s theoretically proven that the Actor model provides an implementation
for unbounded nondeterminism (as opposed to the CSP’s bounded nondetermin-
ism, where it can be guaranteed that the system will finish in one of a finite set of
states).

There are several fundamental differences between the Actor model and the CSP
model. The original CSP model is based on parallel composition of a fixed set of se-
quential processes and synchronous communication between these (a message will
be sent only if the receiver is ready to receive it), based on pre-defined channels. By
contrast, in the Actor model actors (processes) can be created dynamically, any ac-
tor can communicate with any other actor whose address is available to it (received
through e.g. a message) and communication is asynchronous. While a CSP system
can be characterized by a global state, this is usually not the case for Actor model
based systems: it’s fully dynamic, distributed and without any central entity that
can provide the full view of the system. In practice, a CSP-based application can be
implemented using actors (by restricting e.g. actor creation, introducing actors to
model synchronous communication etc); hence the CSP model is in fact a simpli-
fied, restricted incarnation of the Actor model.

Figure 8.1 gives a comparative example of two systems, one based on the CSP
model and one based on the Actor model.

8.3.1   Definitions and Axioms of the Actor Model

In a paper published in 1977 [10], Hewitt and Baker laid down some basic defini-
tions and axioms (also called laws, but without a formal proof) for the actor model.
For a better understanding of the philosophy behind this model as well as the ter-
minology associated with it, it’s worth revisiting these axioms as a clarification of
some of the underlying behavioral aspects of the model.

One of the fundamental aspects of the Actor model is the emphasis on local state,
time and name space instead of global equivalents, found in other models. There’s

8 Introduction to Programming Models

159

no central entity managing the whole system—it’s fully distributed without any no-
tion of a central scheduler. In fact, a computation is not a sequence of global states,
but a partially ordered set of events where each event is a transition from one local
state to another and unordered events may proceed in parallel, creating multiple
new local states asynchronously (an event is defined as receipt of a message by a
target actor).

Actor computations are constructed inductively, by adding events in discrete
steps and each event has a well defined set of immediate predecessors and a finite
set of well defined set of immediate successors—except for the initial event which
sets the actor system in motion.

The flow of events in an actor system form an activation suborder tree express-
ing for every event a causality order with a finite path back to the initial event; dif-
ferent branches of the tree represent parallel event chains.

The Actor model postulates a total ordering of the events that have the same
target. In practice this means that every actor will have an ordered list of received
but not yet processed messages. The rules of ordering are however not defined—it’s
totally up to an arbiter function associated with every actor (which acts a message
queue manager).

The Actor model enforces strict locality: every information exchange occurs ex-
clusively through messages which may contain information on other actors as well.
In fact an actor A can get knowledge about the existence of another actor B if it has
created actor B or has received the name of that actor from a third actor (which may

Fig. 8.1   Comparative overview of CSP and Actor model

Process – 1 Process – 3

Process – 2 Pre-defined, static
sequential processes

Pre-configured, static,
synchronous channels Communicating Sequential Processes

Actor 1

Actor 2

Actor 3

Dynamic
message
channels
Asynchronous
communication

Actors may be
dynamically

created

Actor Model

8.3 Communicating Parallel Processes and the Actor Model

160

be actor B). At every point in its timeline, an actor has a local list of acquaintances:
actors it has created or received information about. Initially this list contains only
the actor that created this actor.

The most common types of messages in an actor system are requests and replies
to requests; in this context an activity is a set of events that take place between the
reception of a request and the sending of the reply. Two activities are considered
concurrent if their request events occur in parallel, even if the activities may have
some overlap (e.g. activate the same actor, the Actor model’s equivalent of shared
resource contention). An activity corresponding to a request is considered determi-
nate if exactly one reply is generated (and non-determinate otherwise). The concept
of activity also allows grouping of actors in layers: an actor that simply generates a
reply to a request without activating any other actors is defined as primitive and be-
longs to the lowest layer of the system; all other actors are composite and are placed
in higher layers. Obviously, the same actor may be primitive within one activity
and composite in others—but this classification offers a basis for reasoning about
the structure of interaction within an actor-based system. For example, it can help
determine if the system follows the principles of proper layering, where actors in a
given layer only activates actors in lower layers.

One important aspect that is not considered part of the Actor model is the reli-
ability of message delivery. Hewitt et al. considered this an orthogonal issue with
impact on how the behavior of the actors is implemented: in an unreliable network
environment the actors (or some specifically designed actors) need to take care that
proper re-transmission and fault handling protocols are in place.

8.3.2   Practical Realizations of the Actor Model

Besides direct implementations in various languages, the Actor model is at the basis
of many derivative programming models. For example, the pipeline model or flow
based model [11] can be viewed as a restricted instantiation of the Actor model.

In object oriented programming, the concept of active object [12] has been pro-
posed as the mechanism and pattern to model an actor’s semantics. An active object
is an object that executes in its own thread of control, can receive calls of its meth-
ods asynchronously and notify its caller, upon completion of the request, through a
callback function or a shared memory area where it will write its result.

The Actor model is also widely used in event-driven soft real-time systems—
such as telecommunications—where, coupled with message and/or actor priorities
and “run to completion” semantics, has proven to be a successful model. Most real-
time operating systems implement some form of the Actor model, augmented with
priorities (OSE [13] and Qnx [14] are some of the better known examples) for man-
aging parallel computations (threads or processes). The Actor model is also at the
basis of the Real-time Object Oriented Modeling (ROOM) methodology [15], today
commercialized by IBM as part of their Rational Rose Real-time product suite and
used in large scale systems at e.g. Ericsson or NASA.

8 Introduction to Programming Models

161

On the language side, some well known languages draw inspiration or implement
directly the Actor model, such as Erlang, Scala or Haskell; more recently Microsoft
also released a new language based on the Actor model called Axum. In this chapter,
we will briefly introduce the concurrency support found in some of these languages.

8.3.2.1   Erlang

Erlang [16] was developed in the later part of the 1980s at Ericsson’s Computer
Science Laboratory, as a method for programming software for telecommunication
equipment. According to its main developer, Joe Armstrong [17], the main inspira-
tion came from Prolog, augmented with parallel processes. After being released
to the open source community in 1998, Erlang slowly gained acceptance in the
programming community, a trend accelerated with the emergence of multi-core
processors and the adaptation of the Erlang run-time system, OTP (Open Telecom
Platform) to multi-core processors.

There are two main characteristics of Erlang that stand out at first sight: it’s a
functional programming language and it has built in constructs for process-based
parallelism and fault tolerance. Though it may sometimes be confusing, these two
characteristics are actually orthogonal to each other as the parallelism constructs
may very well be implemented in an imperative language as well. In fact, the func-
tional nature of Erlang simply reflects the preference of its developers and any
attempt to link it to the powerful support for parallelism is based on false assump-
tions. There are however very compelling reasons for designing Erlang as a lan-
guage with its own runtime system: many of the key features of Erlang (such as
lightweight processes or fault tolerance mechanisms) were difficult to map to exist-
ing languages or operating systems—so faced with the choice between designing a
new language or a new operating system, the original design team choose the first
option (as a matter of fact, Ericsson later pursued the other track as well).

There are a few basic principles that underpin Erlang’s design, collectively
defining what Armstrong calls Concurrency Oriented Programming (COP) [17].
These are:

• The basic element for building programs is the concept of process. Any program
is built as a collection of interacting processes. Each process is uniquely iden-
tifiable and addressable, but processes are strongly isolated and may implicitly
share no information or state. The run-time system of Erlang implements a light-
weight mechanism for quickly creating and destroying processes, an essential
feature for a language relying on processes as a basic building block. It’s impor-
tant to highlight that an Erlang process is not equivalent to an operating system
process; it’s rather a language construct to model concurrency and isolation.

• The sole way of interaction between processes is through asynchronous mes-
sages. The delivery of messages is not guaranteed, irrespective if the destination
of the process is running on the same physical machine as the originator or not
(sometimes called a send and pray approach). Processes may choose to process
the messages they receive in any order.

8.3 Communicating Parallel Processes and the Actor Model

162

Based on these two principles, an Erlang process is essentially equivalent to an ac-
tor in the Actor model, turning Erlang into one of the cleanest implementation of
the Actor model.

• Fault isolation: no failure in any process shall impact any other process, unless
this is a conscious decision by the programmer. Hence, processes shall be able to
detect the failure in any other process, including the reason for failure. This prin-
ciple of fault isolation provides the foundation for Erlang’s let it fail approach:
each process shall have a supervisor process monitoring its behavior and, in case
of encountering a fault, it shall simply fail and rely on its supervisor process to
take the necessary recovery actions. This philosophy proved to be a powerful
one, leading to much simpler, more compact and more resilient programs.

As implied by the principles above, Erlang naturally supports distribution across
multiple cores, processors and physical machines, as long as there is an underlying
communication mechanism between these. The unreliability of message delivery is
justified exactly by this support for distributed systems (and reflects the origins of
Erlang as a language for programming telecommunication systems).

It is also important to note that the “share nothing” semantics of the language
does not imply a similar implementation in the run-time system; in fact, message
passing between Erlang processes executing on the same processor is indeed done
without explicit copying—but this is strictly an implementation feature of the run-
time system and does not violate the principle itself.

As Erlang supports virtually thousands of simultaneous processes distributed
across multiple processors, it provides a powerful environment for programming
many-core processors. However, the exclusive reliance on process-based parallel-
ism is also one of the limiting factors for some problem domains: Erlang does not
support implicitly a de-coupling between application specific parallelism and avail-
able parallelism in the underlying hardware, as for example in task based models.
Processes and their cardinality must be identified during design time and further
partitioning—in order to cater for an increased number of available processor
cores—requires a redesign of the application.

8.3.2.2   Haskell

Haskell [18] is the result of several decades of research into functional languages. It
is a purely functional language with powerful constructs for expressing and contain-
ing side effects as well as concurrency. While it’s a standardized language, the open
source compiler for Haskell—Glasgow Haskell Compiler [19]—is defining the de
facto standard version of the language.

Haskell incorporates today multiple flavors of concurrency, implemented as add-
on packages; however, the basic model relies on lightweight threads that communi-
cate either through special synchronization variables (called MVar) or through mes-
sages over named channels, in CSP style. The concept of synchronizing variable—
Mvar—provides a single-element message box semantic: such a variable may either
be empty or may contain a single value; if it’s not empty, any attempt to put a new

8 Introduction to Programming Models

163

value into it will trigger a suspension of the thread attempting it. When this mecha-
nism is not sufficient, named communication channels may be used, quite similarly
to the communication channels of the Go language.

The Haskell community also produced two interesting packages worth mention-
ing in this context. The first one is Data Parallel Haskell, adding support for parallel
arrays and operations on these arrays in UMA (Uniform Memory Access) systems.
The second package supports Software Transactional Memory (STM), a mechanism
we described in Chap. 5. It’s also worth mentioning that the basic concurrency
mechanisms were expanded—through new libraries—to support CSP-style concur-
rency (by the group that developed Occam) as well as the Actor model in a more
explicit way. These are not part of the ‘standard’ Haskell release, but provide power-
ful mechanisms for writing CSP- or Actor-style programs in a functional language.

In our opinion, Haskell is a good candidate for systems where productivity is the
primary concern and a functional style of programming is acceptable. In our view,
Haskell offers the most complete set of basic building blocks for writing parallel
programs using various styles of concurrency—but at the cost of somewhat lower
performance and the usage of a purely functional style of programming.

8.3.2.3   Scala

Scala (short for Scalable Language) [20] was developed from 2001 onwards at
EPFL in Switzerland. It has a unique blend of object oriented and functional style
programming and it’s primary goal was to provide a language environment that’s
suitable for both small scale and large scale systems, as well as one that’s easily
extendable—a language that can act as a workbench for creating new, domain spe-
cific languages. Recently Scala was embraced by researchers at Stanford [21] who
aim at creating domain specific languages that allow automatic extraction of paral-
lelism during compile time.

Scala is fully compatible with Java—it is compiled to Java byte code and is
executed within a JVM (support for the .NET Common Language Run-time (CLR)
platform was also implemented). The design philosophy of Scala is however to
focus on abstraction and composition capabilities that enable building just about
any programming flavor through libraries rather than basic language constructs. It
has a uniform object model, support for pattern matching on objects and support
for higher order functions; each function is considered a value and each value is
modeled as an object; functions are implemented as objects with an apply method.
A further example of the blend of object oriented and functional paradigm is the
support for both parameterization of data types and for abstract members, expand-
ing the possibilities for re-use; Scala even allows operations on parameterized types
without instantiating the parameter—as long as the computation is consistent.

The support for concurrency in Scala is very similar to the Erlang style actor
based model (in fact, the Scala community readily admits copying Erlang’s solu-
tion). However, the Actor model is not part of the basic language in Scala; true to
its principles, it’s implemented as a bolt-on library. In its basic form, Scala’s actors
are implemented as sub-classes of the abstract Actor class, with behavior provided

8.3 Communicating Parallel Processes and the Actor Model

164

through overriding the Actor.act method; even the send operator is the same as
Erlang’s default “!” send operator. Scala supports Erlang-style selective receive as
well: all messages not matching any of the case statements of the receive block are
kept in the mailbox until a matching receive is executed. As a small—but useful—
extension, Scala supports replies to messages; instead of extracting the sender and
sending an explicit message, all incoming messages support the reply method for
sending a quick answer back to the sender.

On top of the basic support however, Scala adds a number of additional features.
The first one is support for synchronous messages: using the “?!” operator, the
sender is blocked until a reply is received on the sent message, basically implement-
ing the semantics of a blocking remote procedure call.

By default, Scala actors are mapped to Java threads and are scheduled by the
JVM; these actors are called thread based actors. This approach however highlights
the very reasons why Erlang has its own process management mechanisms: operat-
ing system or virtual machine level threads are just too heavy-weight (in terms of
memory and computational overhead) and will quickly become a bottleneck in case
a large number of actors are used. To mitigate this issue, Scala also supports event
based or reactive actors: these actors are not run on their own thread, but rather are
multiplexed over the same thread; whenever an actor blocks waiting on a message,
the Scala run-time system will create a closure that will be activated once a message
is available. Syntactically, reactive actors are described using the statement react
(hence the name) instead of normal receive.

The code snippets below show how receive and react constructs would look like
in Scala. Using receive:

Scheduling of actors in Scala relies on dynamically sized thread pools: the run-time
system will adjust the amount of threads allocated for actor processing based on the
amount and type of actors: with event based actors, the thread pool size will stay
constant; with thread-based actors it will expand or shrink based on how many ac-
tors are concurrently active (processing messages).

8 Introduction to Programming Models

165

In summary, Scala is an interesting language that has seen some significant
take-up recently, both in industry (Scala’s web page reports production usage by
a fair amount of companies, both small and large) and in academia (primarily as
a language creation workbench). While the basic support for concurrency is fairly
straightforward, the possibilities offered by Scala for extending the semantics of the
language and creating new, more restricted languages make it an attractive basis
for novel research into using domain specific languages to create an environment
where automatic mapping of functionality to parallel hardware can be achieved.

8.4   Task-Based Programming Models

The origins of the task based programming model are much more murkier than
those of CSP or the Actor model; however in our view some of the fundamental
research results were published in 1991 by Erich Mohr, David A. Krantz and Robert
H. Halstead Jr. in their paper about lazy task creation [22] and in 1998 by Matteo
Frigo, Charles E. Leiserson and Keith H. Randall, reporting there work on the Cilk
extension to the C language [23].

The core idea of the task based model was expressed in Ref. [22]: the program-
mer’s task is to identify parallelism (what can be computed safely in parallel), while
the run-time system takes care of how the exposed parallelism can best be exploit-
ed—usually limiting the parallelism to a manageable level that can be efficiently
executed on the available hardware. The obvious way to do this is to provide the
programmer with simple means to expose computations (called tasks)—no matter
how simple—that may be executed in parallel and the necessary synchronization
mechanisms that can guarantee that the task execution will yield correct results.
Everything else—mapping to available hardware resources, load balancing, sched-
uling in general—is handled by the run-time system and is transparent to the pro-
grammer.

Cilk provides an elegant implementation of this concept, using just three keywords:
cilk, spawn and synch. The keyword cilk is used to mark functions that may generate
tasks (a marking useful for the compiler); spawn creates tasks that may be executed in
parallel with their creator task; synch simply waits until all the tasks spawned by the
current task finish their job. These concepts are best illustrated with the un-optimized
implementation of a function that calculates the nth Fibonacci number:

8.4 Task-Based Programming Models

166

The strength of this model is that removing the three keywords—cilk, spawn
and sync—results in an equivalent sequential program, allowing an easy fallback to
sequential execution. As an extension to the C language, the Cilk model—as most
of the task based parallel programming models—is implicitly supporting shared
memory, but requires the programmer to take care of access to shared resources; this
inherently means that generic task based models suffer from the same issues as any
shared memory model based programming models.

The key to the performance of task based programming models is the underlying
scheduling policy. Most task based model implementations today use a variant of
the work stealing method, which is based on three simple principles:

1. All tasks generated by tasks under execution on a specific core are placed in
the core local task queue of the processor core where the originating task was
executing

2. All processor cores will execute tasks from their local queue as long as the queue
is not empty

3. When the core local queue is empty (there are no tasks left to execute), the core
will steal some tasks from another core; the choice of the victim core may be
based on various policies, but most often a random selection is used

This approach has the benefit of minimizing contention on task queues: as long as
each core has some work to do, there will not be any interaction between the run-
time system instances running on each core (other than possible application level
synchronization) and hence no synchronization bottlenecks will occur.

In Ref. [23] the authors established upper bounds for execution time, memory
need and communication overhead for work stealing algorithms. Regarding execu-
tion time, on P processors, the upper bound is

where T1 is the minimum serial execution time (on one processor) and T∞ is the min-
imum execution time with an infinite number of processors. Similar upper bounds
were established for memory and communication; all are within a constant factor
multiple of optimal values (this factor is 2 for execution time, hence work stealing
guarantees execution times within 2× of optimal).

Task based models (scheduled using a variant of the work stealing algorithm)
provide an elegant de-coupling of application level parallelism from the parallelism
available in the underlying hardware. These models also map naturally to space
shared operating systems introduced in Chap. 7: an application, provided with P
cores, can create one single thread on each core that will execute tasks generated
by the application, based on work-stealing, hence the task-scheduler becomes the
application level operating system library.

As we already touched upon, task based models implicitly support shared memo-
ry based systems or rather are orthogonal to the use (or not) of shared memory (task
based parallelism implemented in the context of a functional language is a good
example of task based parallelism without shared memory). In the context of shared
memory systems, most languages and run-time environments supporting the task

T1/P + O (T∞)

8 Introduction to Programming Models

167

based model, used in large scale computer systems rely on the Partitioned Global
Address Space (PGAS) mechanisms that we introduced in Chap. 5.

8.4.1   Practical Realizations of the Task Based Model

The task based model is at the foundation of several well established libraries and
languages. We will deal with the libraries in Chap. 9; here we will focus on the
languages relying on the task based model for their parallelism constructs, namely
X10 and Chapel. Obviously, these are not the only ones supporting the paradigm;
however we believe these are the ones that were purposefully built around the con-
cept and hence most suitable for practical usage.

8.4.1.1   X10

X10 [24] is a language developed by IBM, as part of a DARPA-financed program
aimed at creating high productivity programming environments for the US’ national
security and industry (the other language coming out of the same effort is Chapel,
covered in the next sub-chapter). X10 is targeted specifically to parallel comput-
ing, primarily in the context of high-performance systems. It is an object oriented
language similar to C++ and Java, compiled to Java byte code and run within a
Java Virtual Machine. In addition, X10 supports transformation to various backend
systems, including C++.

X10 is heavily relying on PGAS. The logical model of the target environment is
made up of a number of places, an abstract model of a collection of locally resident
objects and activities (equivalent to the concept of task). In practice a place is likely
to be a processor core or complete processor with own share of memory.

Any object may be referenced from any place, but any read/write access to the
object has to execute at the home place of the object, requiring that any activity
doing such access must shift its execution to the specific place where the object
resides. The X10 run-time is globally asynchronous: there is no ordering guarantee
for activities between places; however, locally within a place, synchronous behav-
ior is guaranteed. The concepts of places, activities and object location are shown
in Fig. 8.2.

The model of concurrency in X10 relies—beside the concept of place—on ac-
tivities, i.e. tasks. Concurrency is expressed basically through six constructs:

• asynch: creates a new child activity that cannot be aborted or canceled and is
executed in parallel with the parent activity; essentially it’s equivalent with cilk’s
spawn statement. The new activity may reference any of the enclosing block’s
objects

• finish: the statement marked with the keyword is executed, but the system will
not continue beyond the scope of the statement before all transitively spawned

8.4 Task-Based Programming Models

168

activities (using asynch) have terminated; it will also aggregate all exceptions
potentially thrown by spawned activities

• atomic: the statement marked with atomic is executed without interruption, in-
troducing this way a sequential ordering of activities; the body of the atomic
statement must be non-blocking, sequential (may not create new activities) and
local (may not access objects located at other places)

• when: the current activity is suspended until the Boolean expression associated
with it becomes true

• at: specifies explicitly at which place the statement associated with it shall be
executed—it is primarily used to access objects located at some other places; the
current activity will block until the statement is executed at the remote place

− Note: in many ways, this is an implementation of the Follow the Data pattern
that we discussed in Chap. 5, with explicit movement of the computation

• clocks: X10 supports step-wise synchronization of multiple activities using a
concept called Clock (multi-stop barrier) and the construct next. Each participat-
ing activity will execute one phase of its execution then call next to synchronize
with all other activities on the same clock; once all activities reached the same
phase, all of them are allowed to proceed—concurrently—with the next phase
of the execution.

Fig. 8.2   X10 concurrency concepts

Place I

Place II

Global ArrayPlace I local section Place II local section

Place I local object space Place II local object space

Referenced, but not
accessible from Place I

Asynchronous
transfer of activities

between places

Activities, with
activities local data

Local
reference,

access
possible

Run-time system manages activity migration, reference
resolution, scheduling

8 Introduction to Programming Models

169

The code snippet below illustrates some of these concepts, based on examples from
the X10 reference manual [25]:

In addition to these constructs, X10 also supports mechanisms for data parallelism,
through the concept of distributed arrays, where parts of an array (called regions)
are allocated to different places, in order to facilitate parallel execution of some
algorithms and better management of locality for large data sets.

X10 is still very much a work in progress, but gaining momentum especially
within the academic community. Its simple syntax, similar to C++ and Java, as well
as the powerful yet simple concurrency support make it an attractive choice for de-
signing software for many-core systems. However, as most imperative languages, it
requires that programmers identify and express parallelism.

8.4.1.2   Chapel

In many ways, Chapel [26], developed by Cray in co-operation with academic part-
ners, is the sister language of X10, developed with the same goal and DARPA fund-
ing: making programming large parallel systems easier. Consequently, the basic
concurrency model in Chapel is based on tasks and a PGAS model very similar to
X10.

Concurrency, synchronization and distribution are supported in Chapel through
the following constructs and mechanisms:

• begin, cobegin and coforall statements are used to start a single new task (begin),
multiple tasks (cobegin) or a task for each iteration of a loop (coforall)

• sync: all tasks started within the scope of this statement must be finished before
continuing to the statement after sync

8.4 Task-Based Programming Models

170

• sync variables are special variables that, beside value, can store a full/empty
state, allowing multiple tasks to synchronize with each other on writes and reads
to and from variables

• atomic sections are supported with the same basic syntax and semantics as in
X10

PGAS implementation in Chapel relies on the concept of locale, the equivalent of
place in X10. The concept of locale is however in many ways more powerful than
place in X10: tasks may be run on a locale explicitly described (using the statement
on, similar to at in X10), but allocation may be based on the locale of a data set as
well.

Chapel also has powerful mechanisms for data parallelism, through the concepts
of domains and distributions. An array may be partitioned into multiple domains and
domains may be mapped to distributions that specify locality of data and implicitly,
locality of data access (where computations accessing the data will execute).

The example below illustrates some of the concepts of Chapel through a simple
tree traversal algorithm (taken from the Chapel tutorial material):

Despite the similarities and in many ways competing solutions, Chapel seems to be
more geared towards high performance computing, while X10 is apparently aiming
at a broader audience, a claim backed up by their choices of syntactic sugar and
backend support. How and where these two promising languages will eventually
find their niche will depend a lot on the strength and nature of communities building
up around the two solutions, as well as the long term commitment of their parent
companies, IBM and Cray respectively.

8.5   Process Versus Task-Based Parallelism and the Usage 
of Shared Memory

In this chapter we introduced three parallel programming models which we believe
are the most widely used and also most promising ones in the context of program-
ming chips with large number of cores.

There are several important differences between these models that are important
to understand when making a choice for the design of an application. The most
important issues revolve around the nature of the parallelism that can be extracted

8 Introduction to Programming Models

171

from the application and the need (or desire) to use any sharing of data between the
tasks that need to execute in parallel.

CSP and the Actor model are most suitable for applications where parallel tasks
tend to have a longer lifespan and are relatively independent of each other—i.e.,
can communicate solely based on messages. Consider the case of a telecom node,
for which Erlang was originally developed: each call—lasting from several seconds
to many minutes or even hours—can be modeled as a process that has a fairly long
execution time and only interacts sparsely with other processes (likely some sort of
database and possibly related calls). For such a case, the Actor model is a natural
choice: the system is distributed and loosely coupled, thus a model based on share
nothing and loose interaction is the best bet. CSP and the Actor model also tend to
suit applications with a slower pace in terms of generating parallel workloads as
well as applications where the nature of the hardware—the amount of parallelism
available—is fairly well known.

Task based parallelism on the other hand emphasizes quick dispatch of usually
short tasks that may interact with each other through shared memory. As we men-
tioned in the previous sub-chapter, the basic philosophy behind the task based mod-
el is to expose as much parallelism as possible from the application point of view
and then let the hardware limit it if necessary. Task based parallelism is more op-
portunistic as well and hence its performance may be less predictable: creating too
much parallelism may add unwanted overhead that could adversely impact perfor-
mance. On the other hand, task based implementations are less coupled with actual
hardware and my scale better as more processor cores are added. These conflicting
forces must be carefully judged when deciding on how much parallelism shall actu-
ally be exposed through tasks.

Regarding usage of shared memory, it’s our firm belief that large scale usage
will eventually lead to bottlenecks and hence it shall be limited. However, there are
cases when shared memory is simply the most convenient approach with limited
performance impact. To use a real life analogy, consider the social network of a
person, usually consisting of at least two layers. First, it’s his or her immediate fam-
ily with whom there’s a frequent interaction, sharing of and (friendly) competition
for resources (such as the bathroom); then there’s the second layer of friends with
whom messaging based interaction (e-mails, Facebook updates, phone calls) may
be just fine. The first layer corresponds to a shared memory model in programming
terms, where sharing may be inevitable, but it’s restricted to a small amount of com-
peting tasks (persons); the second layer represents a model of fairly large amount of
parallel entities with sparse, message-based interaction. For the first case, the task
model with memory sharing may be the most suitable one; the second case is a clear
candidate for a CSP/Actor model based approach.

Finally, as we also touched upon, there’s a potential for layering the two models
(process and task based) of parallelism. The threading model can be used to provide
an abstract model of the underlying HW, while the task model exposes the amount
of parallelism from the application. The modeling of the HW can be extremely
simple: just allocate one thread (or lightweight process) to each processor core or
HW thread to model workers waiting to execute tasks that are delivered by previous

8.5 Process Versus Task-Based Parallelism and the Usage of Shared Memory

172

tasks executed by some of these worker threads. This model suits perfectly a many-
core system with a large pool of simple cores; it can also incorporate heterogeneous
systems comprising high capability cores as well by just modeling those as multiple
threads. The interface between these two layers—HW modeled as threads and ap-
plications modeled as graphs of tasks—is obviously the scheduling policy. How
tasks are managed (queuing)? How are constraints (e.g. timing) taken into account?
How is load balancing—or power management—handled? We believe these are the
fundamental issues that will need to be addressed and will serve as the foundation
of future many-core programming models.

8.6   Summary

In this chapter we introduced the theoretical background of the most promising
models for programming many-core processors: communicating sequential pro-
cesses, the Actor model and the task based model. We also looked at the program-
ming languages implementing these models directly, as a basis for the more in-
depth coverage in the next chapter. Finally, we compared these models with a focus
on where the usage of each of these makes more sense.

In the next chapter we’ll cover the most important libraries implementing these
models as well as the practical usage of some of the languages introduced in this
chapter.

References

 1. Turing A M (1936) On Computable Numbers, with an Application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society 42:230-265

 2. Agha G (1986) Actors: A Model of Concurrent Computation in Distributed Systems. Doc-
toral Dissertation, MIT Press

 3. Hoare C A R (1978) Communicating Sequential Processes. Communications of the ACM
21(8):666-677.

 4. Dijkstra E W (1975) Guarded Commands, non-determinacy and formal derivation of pro-
grams. Communications of the ACM 18(8):453-457

 5. Ericsson-Zenith S (1988) occam 2 Reference Manual. Prentice Hall
 6. Barron I M, Aspinall D (1978) The Transputer. The Microprocessor and its Application: an

Advanced Course. Cambridge University Press
 7. Google Inc (2011) A Tutorial for the Go Programming Language. http://golang.org/doc/go_

tutorial.html. Accessed 11 January 2011
 8. Barnes F, Welch P (2006) occam-pi: blending the best of CSP and pi-calculus. http://www.

cs.kent.ac.uk/projects/ofa/kroc/. Accessed 11 January 2011
 9. Hewitt C, Bishop P, Steiger R (1973) A universal modular ACTOR formalism for artificial

intelligence. Proceedings of the 3rd International Joint Conference on Artificial Intelligence:
235-243

10. Baker H, Hewitt C (1977) Laws for Communicating Parallel Processes. MIT Artificial Intel-
ligence Laboratory

8 Introduction to Programming Models

173

11. Morrison J P (1994) Flow-based Programming: A New Approach to Application Develop-
ment. van Nostrand Reinhold

12. Schmidt D, Stal M, Rohnert H, Buschmann F (2000) Pattern-Orineted Software Architecture
Volume 2: Patterns for Concurrent and Networked Objects. John Wiley & Sons

13. Enea (2010) Enea OSE: Multicore Real-Time Operating System (RTOS). http://www.enea.
com/Templates/Product____27035.aspx. Accessed 11 January 2011

14. Krten R (1998) Getting Started with QNX 4: A Guide for Realtime Programmers. Parse Soft-
ware Devices

15. Selic B, Gullekson G, Ward P T (1994) Real-Time Object Oriented Modelling. John Wiley &
Sons

16. Armstrong J (2007) Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf

17. Armstrong J (2003) Making Reliable Distributed Systems in the Presence of Software Er-
rors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden. http://www.erlang.org/
download/armstrong_thesis_2003.pdf. Accessed 11 January 2011

18. O’Sullivan B, Goerzen J, Stewart D (2008) Real World Haskell. O’Reilly Media.
19. The Glasgow Haskell Compiler. http://www.haskell.org/ghc/. Accessed 11 January 2011
20. Odersky M, Spoon L, Venners B (2008) Programming in Scala: A Comprehensive Step-by-

Step Guide. Artima Inc
21. Chafi H, Sujeeth A K, Brown K J, Lee H J, Atreya A R, Olukotun K (2011) A Domain-

Specific Approach to Heterogeneous Parallelism. Proceedings of the 16th Annual Symposium
on Principles and Practice of Parallel Programming

22. Mohr E, Kranz D A, Halstead R H Jr (1991) Lazy task creation: a technique for increasing
the granularity of parallel programs. IEEE Transactions on Parallel and Distributed Systems
2(3):264-280

23. Frigo M, Leiserson C E, Randall K H (1998) The implementation of the Cilk-5 Multithreaded
Language. Proceedings of the ACM SIGPLAN 1998 conference on Programming Language
Design and Implementation, 212-223

24. Murthy PVR (2008) Parallel Computing with X10. Proceedings of the 1st International Work-
shop on Multicore Software Engineering: 5-6

25. Saraswat V, Bloom B, Peshansky I, Tardieu O, Grove D (2010) X10 Language Specification
Version 2.1. http://dist.codehaus.org/x10/documentation/languagespec/x10-latest.pdf. Ac-
cessed 11 January 2011

26. Cray Inc (2010) The Chappel Parallel Programming Language. http://chapel.cray.com/. Ac-
cessed 11 January 2011

References

175

Abstract In the previous chapters we introduced the foundations for programming
many-core chips: current and expected hardware architectures; operating system
designs; foundations of parallel programming; the basic programming models that
we believe are the most promising ones in the context of many-core chips. This
chapter focuses on the concrete technologies available today which we believe will
endure the test of time, providing a solid background for programming the many-
core chips of the future. Specifically, we cover several task based models (such
as Cilk, Grand Central Dispatch, OpenMP, Thread Building Blocks, Microsoft’s
Task Parallel Library), data parallel models (illustrated through OpenCL which also
supports the task model) and a well established representative of the actor model
(Erlang). The goal of this chapter is to provide a guiding map for the choice of the
most suitable programming model and implementation library when addressing the
challenge of ‘best solution’ for a specific application domain.

9.1   Introduction

It should be pretty clear by now that, at least in the view of the authors of this book,
there are essentially two basic models of parallelism that we believe will eventually
prevail:

• Task based parallelism: The concept of exposing abundant parallelism indepen-
dently of the underlying hardware is the most promising approach for supporting
scale-up of applications with sufficient amount of parallelism. Unsurprisingly,
just about every emerging parallel programming language or library supports
some form of this model

• Actor model: The actor model’s attractiveness comes from its distributed, loose-
ly coupled approach, which bolds well for chips where co-ordination and syn-
chronization is likely to be the primary source for bottlenecks

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_9, © Springer Science+Business Media, LLC 2011

Chapter 9
Practical Many-Core Programming

With Contribution by Diarmuid Corcoran

176

These two models are fairly low level and require the programmer to identify par-
allelism and expose it in a suitable form to the underlying run-time system and
hardware. This is exactly the focus of the current chapter; we look at two other
promising, yet higher level approaches (domain specific languages and semantic
speculation) in the final chapter of this book.

9.2   Task-Based Parallelism

This chapter focuses on the most promising task-based libraries and solutions avail-
able today: Cilk and Thread Building Blocks (TBB) from Intel, Task Parallel Li-
brary (TPL) from Microsoft, Grand Central Dispatch (GCD) from Apple and the
OpenMP v3 library. While these are not the only libraries and languages available,
we believe that these are the most representative ones, not least due to the sizable
community already using or supporting these technologies.

9.2.1   Cilk

Cilk [1] emerged as a spin-off from research done at MIT, which led to the design
of the work stealing task scheduler. It was recently acquired by Intel and included
into Intel’s parallel programming offering, alongside the more established Thread
Building Block library (that we will cover in the next sub-chapter).

Cilk is a multi-core programming model based on a simple extension to the C
(and more recently, C++) programming language (through the introduction of a
three new keywords), together with a sophisticated work-stealing scheduler. By de-
sign all Cilk programs preserve the semantics of their C equivalent, in the sense that
when the specific Cilk keywords are removed from the program, it should be an
exactly equivalent C program, minus the multi-task capabilities.

Let’s look again at the pedagogical implementation of the calculation of the nth
Fibonacci number (first introduced in Chap. 8, shown here in Fig. 9.1). It is the most
commonly cited example in the Cilk research literature and we follow that tradition
here, as it exposes the most important keyword additions, namely spawn and sync.
The spawn keyword tells the Cilk run-time that the function may, but doesn’t have
to, run in parallel with its parent caller. The sync keyword is a barrier that indicates
that control cannot pass this point until all spawned children have returned. This is
about the extent of language features one needs to know in order to write useful Cilk
programs. One of the characteristics of Cilk is that both the compiler and run-time,
with supporting scheduler, bear the responsibility for efficient execution of Cilk
programs. The Cilk scheduler’s algorithmic design makes certain guarantees, which
can be proven about the achievable efficiency of a program run on it.

Figure 9.1 also illustrates the concept of a Cilk thread. In effect a Cilk thread is
the maximal sequence of statements that execute until the next spawn or sync state-

9 Practical Many-Core Programming

177

ment. The T1 strand runs in some initial worker thread. On reaching the first spawn
statement, a new possible parallel thread of execution is created. The Cilk model
of execution is such that the spawned thread continues to execute using its parent
worker thread context. The parent or spawning thread is then placed on a queue of
possible thread work items. If more then one processor is available and this proces-
sor has nothing to do then it will steal this work item; thus the parent has a continu-
ation context in a new thread. The same happens when the parent context reaches
the second spawn statement: the spawned thread continues using the parent thread
context, then the parent thread is placed on the work list queue and if there is an idle
processor available it will again steal from this work list.

It is interesting to note that the concept of a parent continuation being popped
onto a queue of available work items is rather analogous to the semantics of the C
equivalent program where the parent frame or context would be popped onto the
stack while execution continues in a branched child function. The sync statements
function as a barrier and guarantee that all spawned children have returned after the
statement. This is important as the values of partial Fibonacci sums f1 and f2 in the
example cannot be relied upon until after the sync statement.

Figure 9.2 shows yet another view of what happens at execution time. The figure
captures what happens on execution of fibonacci(4). In effect a DAG (directed acy-
clic graph) of the program execution unfolds as the program executes. This DAG
represents a graph of control and data flow and can be defined formally as G = (V,E)
where each vertex v is an element of the set of vertices V and each edge e is an ele-
ment of the set of edges E. A vertex then represents a sequence of instructions that

Fig. 9.1   Fibonacci numbers
using Cilk

9.2 Task-Based Parallelism

178

does not contain a Cilk language statement and an edge represents a Cilk spawn, a
function return or a continuation.

In Fig. 9.2 the edge espawn represents a branch in the execution graph through the
creation of a new Cilk thread. After the espawn branch the parent has a continuation
edge econt that may result in continued parallel execution, through the process of work-
stealing, in a free processor. The upward edges, shown by ereturn, represent a flow of
data back to the creating context. Finally execution completes in a final thread.

9.2.1.1   The Cilk Scheduler

The Cilk scheduler uses the concept of work-stealing in which a processor, often
called a thief, who runs out of work steals work from the task queue of some victim
processor, who has more tasks waiting to execute that it can currently service. The
strategy in Cilk is to select the victim processor at random.

The theory behind the Cilk scheduler states that the performance of a Cilk com-
putation is related to two quantities. The first is work, which is the cost of the com-
putation when run serially on one processor. The second is termed critical-path
length, which is the cost of the computation when run on a theoretically infinite
number of processor. Figures 9.3 and 9.4 illustrate these concepts on the Fibonacci
example using a value of 1 per task computation cost.

Fig. 9.2   The execution of fibonacci(4)

Fibonacci (1)

Fibonacci (2)

Fibonacci (4)

Fibonacci (1) Fibonacci (1)Fibonacci (2)

Fibonacci (3)

Fibonacci (0)Fibonacci (1)

espawn ereturn

econt

Tf1 Tf1Tf2

Tf3 Tf3

Tf2

1

11

Tf0
1

Tf1
1

1

Tf4
1

Tf3
1 2

Tf3
2

Tf4
2

2

Tf4
3

3

Tf3
3

Tf3
3

Tf1

1
Tf2

9 Practical Many-Core Programming

179

The term T1 is the same as the work, the time to execute on one processor. Tp
is the time to execute on P processors. Then Tp ≥ T1/P since P processors can do at
most P work in one step.

Another important principle of the Cilk scheduler is the work-first principle.
This principle states that the scheduling overhead should not be borne by the work
of a computation but, rather, moved onto the critical path to the point where stealing
is necessary. The Cilk scheduler is termed a “greedy scheduler” as it attempts to do
as much work as possible at each step. There are basically two types of schedule
steps. The first is called complete: in this step there are at least P tasks ready and
P processing resources available. In this case the scheduler selects any P and runs
them. The second is called incomplete: in this step there are less than P tasks avail-
able to run; the scheduler will then select all for execution on subset of processing
resources. Stealing—and consequently, scheduling—will only occur when there is
at least one processor out of work.

Fig. 9.3   Total work in case
of fibonacci(4) 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

1 1

Total Work = 17

Fig. 9.4   Critical path for
fibonacci(4) 1 1

1 1

1 1 1

1 Critical Path = 8

9.2 Task-Based Parallelism

180

In their paper [1], the original designers of Cilk and its scheduling algorithm
have shown that its performance is within a constant multiplier of optimal execution
time, for execution time, required memory and communication. This theoretical
underpinning—verified in practice as well—is the main reason for the enduring
success of the work stealing scheduling method.

9.2.2   Grand Central Dispatch

Grand Central Dispatch (GCD) [2] is Apple’s solution to the many-core program-
ming problem. The source code for GCD has been released as open source under
the Apache license version 2, in the hopes that it will spread as a general solution to
many-core programming problems.

The programming model recognises the fact that building software on many-
core environments using the traditional techniques of operating system threads,
locks and semaphores is very difficult to get right. The mechanism builds upon
using the queue as an abstraction to control access to resources, be they processors,
or some other shared application or system level resource. As in the Cilk program-
ming model, the approach builds upon extensions to the compiler called blocks as
well as a scheduler which distributes tasks to processing resources through the GCD
queues. In general, the programming model is very simple to understand if you are
comfortable with using the concept of a queue to control access to some resource.
This is a pattern which is widely used within the software world, especially within
deeply embedded technical domains. Outside the software world, the queue is of
course well know to all and sundry as a technique to regulate access to some limited
resources, be it bank machine or a bartender (if we were to extend the concepts of
locks and semaphores to our real world example it would mean passing around
some kind of “token” in a crowded bar to gain access to the bartender—indeed
without queues, our world would be a chaotic place).

9.2.2.1   Blocks

In order to understand how GCD works it is necessary to understand what blocks
are. Blocks are a semantic and syntactic addition to the C and C++ (also Objective-
C) languages to allow the concept of closures, found in many other languages as
well. The block abstraction has been added to certain release branches of the gcc
compiler, in addition to the clang compiler chain by Apple. Apple has also submit-
ted the block additions to C and C++ for future standardisation into the languages;
however, for now blocks should be considered an Apple OS X specific extension.

The syntax additions are very straight forward. A block is declared by using the
^ caret symbol and then surrounding the “code block” by curly braces. A simple
example is shown below:

int(∧squareBlock)(int) = ∧(int x){return x ∗ x}

9 Practical Many-Core Programming

181

This rather simple example misses some of the powerful advantages of blocks:
blocks can refer to variables within the same lexical scope from within which they
are created.

The next example below highlights this: the variable solution is copied from the
solveEverything() function context. This variable now lives within the block con-
text as a copy. It is important to note that the block context can outlive the context
of its creating scope, in this case the function solveEverything(). Blocks can also be
used to describe what are often termed anonymous functions in other languages. In
general, a framework like GCD would traditionally have been implemented using
call-back functions and indeed the API still allows for usage of these. Implementa-
tion issues are considerably simplified by the usage of blocks however.

9.2.2.2   Grand Central Dispatch Queues

Grand Central Dispatch relies on management of a number of queues. Some of
these queues are pre-determined by the GCD run-time, while others are defined
by the application and their meaning is up to each application design to determine.
Jobs or tasks are dispatched to these queues and it is then up to the GCD run-time
to utilize the underlying processor resources in best possible way by distributing the
tasks to the processor pool.

The scheduler builds upon the thread pool pattern where a number of threads are
fired up in advance of their use in order to build up a resource pool. A task on one of
the dispatch queues that is ready to run is then paired up with a free resource from
the thread pool. If there are many processing resources available then, depending on
which queues the tasks have been dispatched on, these will be distributed in parallel
across the processor pool.

The GCD programming model has three classifications of queues:

• Global asynchronous queues
• Main queue
• User defined serial queue

Each of these queues has differing behavioral properties, described in the following
sub-chapters.

GCD queues can be arranged in a system of higher order queues giving arbi-
trarily complex directed acyclic graphs. Queue hierarchies can be used to funnel
tasks from disparate subsystems into a narrower set of centrally controlled queues.
GCD also supports suspending/resuming individual queues: no block on a suspend-
ed queue will be executed. These mechanisms are asynchronous and take place be-

9.2 Task-Based Parallelism

182

tween blocks (i.e., the currently executing block will be completed before suspend
takes effect).

Figure 9.5 shows an overview of the GCD architecture and its respective queues.
The global asynchronous queues are a set of three queues of different prior-

ity levels (1 is High, 2 is Default and 3 is Low). Tasks dispatched towards these
queues will be removed from the queues in order of priority. Also these queues
have the property that many tasks may be removed from the queues, in parallel, and
dispatched to available processing resources with the prerequisite that the priority
order is preserved.

An application can create any number of custom serial queues. Task dispatched
to these queues will be executed serially per queue instance but if there are many
serial queues instances jobs across these will be executed in parallel. Dispatching
jobs to a serial queue instance implies some dependency either in terms of control
or data. The serial queues can be used to control access to some global resources
instead of a lock or other mutual exclusion mechanism.

The process main queue is in some ways analogous to the main program in C:
it can be used as a global synchronization point. An important property of the main
queue is that it is not drained automatically by the scheduler, but rather must be
drained as part of the program or application design.

Fig. 9.5   GCD Queue architecture

ProcessorProcessor

bsn

bsn

GCD Queue Abstraction

bgn

bg2

bg1

Global Main Queue

bhn

bh2

bh1

bdn

bd2

bd1

bln

bl2

bl1

bs2

bs1

Global Asynchronous Queues

High Default Low

Custom Serial Queues

Processor

Scheduler

Processor Resource
Pool

bsnbsn

9 Practical Many-Core Programming

183

The example below shows a code snippet of how a block is added as a task to
the default asynchronous queue. In this case the block is anonymous. The snippet
also illustrates how a reference is found to the global default queue. The dispatch_
async() call dispatches asynchronously, that is the dispatching context continues to
run after the task is placed on the appropriate queue.

It is also possible to do a synchronous dispatch to global queue. In this case the
calling task waits until the dispatched task has completed before continuing. The
next example shows how two new user serial queues are created using the dis-
patch_queue_create() call:

An application using blocks dispatched to queues might want to be notified when
the block completes; the best way to achieve this is to let the block dispatch itself
a special block—called completion block—to a queue supplied by the application.
The code snippet below exemplifies this:

9.2 Task-Based Parallelism

184

GCD also supports a special version of the dispatch operation for parallelizing
loops. It is essentially a C implementation of an iterator, but it generates asynchro-
nous tasks (blocks), and waits for all to complete before returning. The code ex-
ample below shows two loops, one implemented with a classic for and the second
one using dispatch_apply, the parallel iterator provided by GCD:

9.2.2.3   Synchronization in GCD

GCD supports two methods of synchronization: dispatch semaphores and waiting on
a group of queued blocks. We’ll briefly describe and exemplify both in this section.

Dispatch semaphores are essentially equivalent to regular semaphores but are
primarily implemented in the GCD library rather than in kernel, hence takes less
time to pass an open semaphore; the only case when the kernel is invoked is when
the semaphore has no available resources: in this case the thread trying to pass it
must be suspended. Otherwise the regular methods are supported:

• dispatch_semaphore_create: create a dispatch semaphore with a pre-defined
maximum number of resources

• dispatch_semaphore_wait: wait on the semaphore
• dispatch_semaphore_signal: signal the semaphore (the resource controlled by

the semaphore is released)

GCD supports mechanisms to wait on the completion of multiple blocks. This is
achieved through the use of dispatch groups. A dispatch group is a set of blocks
dispatched to the same queue, with the property that the application may wait on the
group to complete, i.e., wait until all tasks associated with the group are completed.
The main primitives involved in this mechanism are:

• dispatch_group_create: creates a new dispatch group
• dispatch_group_async: dispatches a block on the specified queue and adds it to

the group
• dispatch_group_wait: waits until all blocks in the group are completed
• dispatch_release: releases the group when it’s no longer needed

This mechanism is quite similar to Cilk’s spawn/sync pair, but it’s more flexible:
while sync will synchronize on all tasks spawned within the scope of its block (in-
cluding nested ones), dispatch groups allow more flexible control (the programmer
can pick and choose the tasks/blocks), but also require more manual, explicit speci-
fication by the programmer.

9 Practical Many-Core Programming

185

The example below shows a simple usage example for dispatch groups:

9.2.2.4   GCD Summary

GCD is an attractive task management library, more flexible than Cilk, but still
building on the same foundations. As with Cilk, it requires modified language syn-
tax which makes it less portable without compiler modification. Still, the real power
of GCD lies in the possibility of creating multiple hierarchies of queues with dif-
ferent priorities, an interesting approach to managing complex systems that can be
described through task graphs.

9.2.3   Intel Thread Building Blocks

It may be somewhat surprising, but Intel has lately invested massively into building
up its software portfolio, both in terms of tools (compiler, profiler etc) and libraries.
The acquisition of Cilk is one example; the continuous development of the Thread-
ing Building Blocks (TBB) library is another proof point.

TBB [3] is essentially a collection of various C/C++ library functions and tem-
plates that provide mechanisms for building software that can execute efficiently on
multi-core hardware. TBB is not bound to Intel processors only; ports to other pro-
cessors are also available. It is integrated with Microsoft’s Visual Studio and Intel’s
own development tools; supported operating systems (by Intel) include Windows,
Linux and MacOS.

The main components of TBB are:

• Support for loop parallelism: TBB supports various constructs such as paral-
lel_for (for parallel version of for loops), parallel_reduce (for implementation
of the Map-Reduce algorithm), parallel_do (parallel version of while), along

9.2 Task-Based Parallelism

186

with support for affinity and cache-aware partitioning. TBB also has support for
lambdas, part of the upcoming C++ standard.

• Parallel containers: TBB includes parallelism-safe templates for implementing
hash tables, vectors and queues which may be accessed concurrently by multiple
threads. These containers rely on either lock-free data structures or fine-grained
locking in order to improve scalability and are a useful basis for building soft-
ware which requires concurrent access to such shared structures

• Synchronization mechanisms and atomic sections: TBB has its own mutex im-
plementation and support for defining atomic sections

• Task-based programming support: TBB has its own task management mecha-
nism and scheduler implementation, quite similar to the one offered by Cilk

These components together offer a coherent and useful set of abstractions that
contain all the ingredients needed to build parallel software according to various
models (loop parallelism, shared memory based parallelism, task-based parallelism
etc). We found the parallel containers especially useful; through their support across
multiple operating systems, these are good candidates for cross-platform, scalable
applications.

In this chapter we will focus primarily on the task based programming support.

9.2.3.1   TBB Task Model Overview

You may be forgiven for wondering what the exact difference between Cilk and
TBB’s task model really is: the fundamentals are the same; the only real difference
is that TBB has a much more elaborate and flexible model. Supporting both has his-
torical reasons: TBB was developed long before the Cilk technology was acquired
by Intel.

Let’s start with the conventional example of calculating Fibonacci numbers. The
example below is loosely based on the one provided by Intel in the TBB tutorial [4],
simplified a bit in order to aid understanding of the basic concepts.

9 Practical Many-Core Programming

187

The most important parts in the code are highlighted with bold.
Any task in TBB is a subclass of the library class task. This class contains a virtual

function called execute that any task needs to override—it will be the method that’s
invoked when the task will execute. In our case, we created a new class called Fi-
bonacci and have overridden the execute method to calculate the required Fibonacci
number. Please note, the execute method cannot return its result, hence a pointer to
the place where the result shall be stored is added to the task class (long* const result).

There are two basic ways to create a task: either using the static method
task::allocate_root, which creates the root of the task graph or using the non-static
task::allocate_child method which creates a sub-task of the current task. This way,
an acyclic graph of tasks is built up, something that the scheduler will exploit when
scheduling the tasks for execution. In our example, when the calculation of the
Fibonacci number is triggered, the root task is created and spawned; all other tasks
will be its sub-tasks (created within the execute method).

There are two ways to spawn a task: either using the basic task::spawn method
(used in our example to trigger the task y_task) or using a spawn-combined-with-
wait method. In our example, there are two such cases:

• task::spawn_root_and_wait for triggering the scheduling of the root task
• task::spawn_and_wait_for_all: used in the execute model to trigger task x_task

and wait until all sub-tasks have finished executing

A peculiar feature of TBB is the need to set the reference count of the tasks that
need to complete, using set_ref_count. The documentation does a pretty poor job
explaining the reasons behind this, other than offering a simple rule of thumb: if
no task continuation shall be used, the value shall be set to number of tasks + 1; for
continuation style task management (explained later on in this chapter), the value
shall be number of tasks.

9.2.3.2   Continuation Passing and Scheduler Bypass

TBB support continuation style task synchronization. The goal is to free the parent
task from having to wait on its children; instead children tasks are allocated on a

9.2 Task-Based Parallelism

188

special type of task called continuation task. Again, loosely based on the tutorial
example, here’s the Fibonacci number calculation using continuation tasks:

First of all, there’s a new task created using task::allocate_continuation which takes
on the role of concluding the work of the spawned sub-tasks (in our case, generating
the sum of the results). Two important issues need to be highlighted: the reference
count is set to 2 (there will be a continuation of tasks x_task and y_task) and—not
obvious from the code—while the execute method of the Fibonacci class may re-
turn, the task itself will only be considered completed when the continuation task
allocated by it will also complete—hence the original invocation of the Fibonacci
task will still work: task::spawn_root_and_wait will only return when the continua-
tion task itself is completed. One final note: there’s no need for calling task::spawn_
and_wait_for_all: once all sub-tasks (x_task and y_task) completed their execution,
the continuation task will be automatically invoked.

TBB offers two additional features that may be useful under certain circumstanc-
es. The first one is called scheduler bypass: the task::execute method has a return
value a pointer to an object of type task; if it return a valid pointer, the task pointed
to will be the next task that will execute on the current thread, hence bypassing any
scheduler decision. For the Fibonacci example this is actually a useful feature, as it
reduces the overhead that may be generated by scheduler decisions.

The second feature is called task recycling. A parent task, instead of completing
its execution may recycle itself (using a library call like task::recycle_as_child_of)
to become the child of another task. Again, in our example, the parent task my re-

9 Practical Many-Core Programming

189

cycle itself as e.g. x_task; returning itself can guarantee that it will be called again
and the execution will continue as the new child task.

9.2.3.3   TBB Task Scheduler

The TBB task scheduler—as most task schedulers—is essentially evaluating a task
graph that is constructed by the active tasks as these go along and generate more
children, continuation or even root tasks.

TBB’s scheduler is sometimes characterized as a breadth-first theft and depth-
first work scheduler. In practice it’s a variant of the work stealing algorithm: each
thread has its own queue of tasks that have priority of execution; if no tasks are
available, stealing from other tasks will occur. The simplified algorithm can be sum-
marized in three steps:

1. If the execute method of the current task returns a pointer to a task, that task will
be executed next

2. Otherwise, take the youngest task from local queue (the one added last)
3. If no tasks are available, randomly choose another thread and steal the oldest task

from its queue

Rules 1 and 2 guarantee a depth first execution, as long as this is feasible. This ap-
proach can have beneficial impacts in terms of cache reuse (child tasks are likelier
to act on similar data) and tend to avoid an exponential explosion of the amount of
tasks. Stealing (rule 3), on the other hand obviously aims at balancing load.

9.2.3.4   TBB Summary

TBB offers a useful toolbox of components and templates that can simplify the task
of writing parallel programs in C++ (its target language). Its task-based program-
ming support partly overlaps with Cilk, but it’s much more feature rich and, through
the complete exposure of the task interface, it allows a much more flexible usage,
including the possibility of building new schedulers as well. Thus, in case the goal
is to get a simple, C-based task support library, Cilk shall be the primary choice; in
case a more sophisticated solution is needed, TBB might be the right solution (of
course, in the context of using Intel-only libraries).

9.2.4   Microsoft Task Parallel Library

Microsoft first released the Task Parallel Library (TPL) for the .NET framework as
a community technology preview in 2007. Since then, it became an integral part of
the .NET framework (starting from release 4.0). It’s once again a task-based pro-
gramming framework geared towards CLR (Common Language Run-time) based

9.2 Task-Based Parallelism

190

languages (such as C# or Visual Basic). Consequently, we will use C# throughout the
examples in this chapter. For an in-depth discussion of TPL, we recommend Ref. [5].

Microsoft’s support for parallel programming in the .NET framework obviously
incorporates other mechanisms as well. These mechanisms are grouped in the Par-
allel class and include the following models:

• Support for loop level parallelism: Parallel provides a wide range of For and
ForEach methods with support for various features, such as external control,
monitoring, alteration and parameterization

• Support for task execution: the method Invoke is the basic mechanism for ex-
ecuting multiple tasks in parallel

In this chapter we will focus on the features of the task based model and the task
scheduler as well as the Future concept supported by TPL.

9.2.4.1   TPL Task Model

The concept of task is modeled in TPL through the class Task in the namespace
System.Threading.Tasks. Tasks are created using the task factory available through
the static Task.Factory property, which is an instance of the TaskFactory class. The
method TaskFactory.StartNew is responsible for creating a new task consisting of
the method passed to it. Execution of tasks is done through the method Parallel.
Invoke, waiting on completion of tasks is done with Task.Wait (for single specific
task), Task.WaitAny (for any single task) and Task.WaitAll.

In the example below, we rewrite the TBB version of the Fibonacci number
generator using TPL, in C#:

The code is fairly straight-forward: two tasks are created (please note the use of
lambda expressions) and then invoked (Parallel.Invoke will only return once both
tasks have completed—internally, it used Task.WaitAll for this). The code is quite
similar to Cilk code; but, as we’ll see later on, it can be made even simpler using
the concept of Future.

9 Practical Many-Core Programming

191

TPL supports mechanisms for task cancellation and task error handling. Task
cancellation is a co-operative feature: the task itself has to support it and willingly
obey to a cancel request. The mechanism to support this is called cancellation to-
ken: it is created outside of the task; passed on to the task when it’s created (as a
second parameter to Task.Factory.StartNew); the task then can check if a cancel
was requested through the token. If this is the case, it shall throw a special excep-
tion that contains that specific token (OperationCanceledException)—this way the
.NET run-time system will take the required actions for canceling the task and set-
ting its status to Canceled (in which state then can be inspected elsewhere in the
code). Note: the token object actually supports a method that checks the token and
throws the exception automatically.

The code snippet below illustrates this behavior:

The possibility to cancel tasks is a powerful feature that can support various execu-
tion models, including application level speculative execution.

In TPL, tasks are allowed to throw exceptions which can be handled by the
thread that has invoked the task. The .NET framework provides a mechanism to
integrate all the exceptions thrown by multiple tasks invoked together or waited on
together; the exception handler can then filter these exceptions and act on each one
independently.

By default, tasks are independent of each other and bound only through being
invoked or waited on together. TPL supports a mechanism to bind a child task to
its parent task explicitly, in which case the parent task will only complete once all
its children tasks have completed. This can be achieved through an explicit binding
option when the child task is created using Task.Factory.StartNew.

Figure 9.6 shows the different states a TPL task may be in during its lifecycle.

9.2.4.2   Futures, Continuations and Pipelines

TPL also supports the concept of futures and task continuations. A future is modeled
as a task with a result value of a specific type; the task is the stand-in for the actual
result. When an attempt is made to access the result stored in the future, one of the
following four cases may be valid:

• The task has already completed successfully: the result will be read and used
• The task is under execution: the reader thread will block until the result is available

9.2 Task-Based Parallelism

192

• The task did not start yet: it will be executed immediately within the current
thread (save for some very special situations)

• The task failed—the attempt to read the result will throw an exception that will
need to be handled

Futures are created through instantiation of the parameterized class Task<TResult>
and invoking its StartNew method. In the code example below, we calculate the nth
Fibonacci number using futures:

Clearly, the use of future task made the code cleaner and almost equivalent with the
sequential one, while still executing in parallel. Please note, this code is not excep-
tion safe—future_x.Result should be read inside a try statement to catch possible
exceptions and/or cancellations.

Fig. 9.6   Task state machine in TPL

Waiting To Run

The task is created and
queued, but not yet

executed

Running

The task is being
executed on one of the

threads

Canceled

The task has been
canceled through the use

of a cancellation token

Waiting For Children To Complete

The task has completed its
execution, but at least one child

task is still not completed

Faulted

The task terminated with
an exception that needs to

be handled

Ran To Completion

The task terminated
normally

9 Practical Many-Core Programming

193

Futures can be used to model task graphs, where some steps may execute in
parallel. Consider the small example in Fig. 9.7, where S2, S3, S4 can all execute in
parallel and S5 will use the value of all three (all are functions). For sake of simplic-
ity, we assumed that all data dependencies are integers.

The concept of futures is also used in TPL to model continuations (tasks that can
be triggered only when one or several previous tasks have completed). Continua-
tions can be expressed in one of two forms:

• Using a special task factory method, Task.Factory.ContinueWhenAll which can
take as argument a list of tasks that must be completed before the current task
that’s being created can be executed

• For a specific task a new task is being defined that will be its continuation, using
the method Task.ContinueWith

For the example given in Fig. 9.7, execution of S5 could have been expressed using
the following mechanism:

The final feature of TPL that is interesting in the context of programming many-
core chips is the support for blocking collections. A BlockingCollection<T> is a
data structure that blocks any thread that tries to access it until the structure is ex-

9.2 Task-Based Parallelism

Fig. 9.7   Example of task graph executed with futures

S1

S2 S3 S4

S5

input_value

final_result

int s1 Result = S1(input_value);

// three futures are launched
// one for S2, S3, S4, respectively

Task<int> s2 Result = Task.Factory.StartNew<int>(
() => S2(s1Result));

Task<int> s3 Result = Task.Factory.StartNew<int>(
() => S3(s1Result));

Task<int> s4 Result = Task.Factory.StartNew<int>(
() => S4(s1Result));

// final result is calculated once all input is available
// for S5 to execute

int final_result = S5(s2Result.Result,
 s3Result.Result,
 s4Result.Result);

194

plicitly de-blocked by the thread accessing it, through calling a special method
(BlockingCollection<T>.CompleteAdding). Using this particular data structure and
tasks that take as arguments such structures, one can create automatic pipelines
whose stages will be triggered automatically once the previous stage is complete
(signaled through the call of CompleteAdding on its output data structure). The code
fragment below illustrates a simple S1 → S2 → S3 pipeline:

Note: for sake of simplicity, the default task factory was used in this example; this
however may not be the best choice in case the different stages have a long execu-
tion time. TPL does support custom task factories; for more information please see
Ref. [5].

9.2.4.3   The Default TPL Task Scheduler

The TPL task scheduler—unsurprisingly—relies on a task-manager thread pool,
thread local queues and a variant of the work stealing algorithm for managing tasks.
However, the concept of global queue is also kept, but it has a specific role: it is
used to store tasks generated by threads that are not member of the thread pool that
are responsible for task execution. The framework also provides a mechanism to
force any task onto the global task queue.

The global task queue has FIFO semantics while thread local queues are LIFO
(similar to the TBB task scheduler). If a thread runs out of tasks (the thread local
queue is empty), it will attempt to fetch a task from the global queue; if there are no
tasks in the global queue an attempt to steal from other threads in the thread pool
will be performed.

The TPL scheduler also supports in-lining of tasks. If a task is waiting on another
task and that task is in the local queue of the current thread, it will be immediately
executed, so that the original task can make progress. Long running tasks and tasks
in the global queue are not in-lined.

The scheduler automatically manages the thread pool by injecting or removing
threads at regular intervals, based on the observed behavior: if there’s no progress
made with existing queues, new threads may be added; the same will happen if
some cores experience lengthy idle times due to I/O operations generated by the

9 Practical Many-Core Programming

195

tasks. Frequent work stealing attempts—especially failed ones—are an indication
that a reduction of the thread pool size may be appropriate.

9.2.4.4   Summary

TPL is clearly Microsoft’s solution for parallel programming in .NET/CLR based
languages. It is quite similar—architecture and functionality wise—to Intel’s TBB,
but it addresses a different application domain, namely, those written in managed
languages, primarily for the Windows platform. We found especially the concept
and implementation of futures quite powerful and useful for a large class of applica-
tions, resulting in a clean and easily comprehensible source code.

9.2.5   OpenMP 3.0

OpenMP (Open Multi-Programming) [6] is a standardized programming model
specification for shared-memory based multiprocessing. It’s backed by most major
hardware and software vendors and consequently it has been successfully used, pri-
marily in the high-performance computing domain. The latest version of the stan-
dard [7], released in 2008, added support for explicit tasks and it’s supported for C,
C++ and Fortran.

OpenMP itself is a collection of compiler directives (of the type #pragma omp),
library routine API definitions and environmental variables that shall obey to a stan-
dard-defined set of semantic constraints. Beyond the standard definitions, vendors
are free to provide their own library and compiler implementations.

OpenMP defines support for the following features:

• Parallel regions: sections of code that can be executed in parallel by multiple
threads

• Synchronization primitives: co-ordination between parallel regions
• Data-sharing attributes: OpenMP supports both thread-private and shared mem-

ory constructs, as well as directive-driven partitioning of data and variable val-
ues among threads

• Nested parallelism, including task nesting
• Thread pool dimensioning and management

These features are usually realized through a combination of directives, libraries
and environmental variables.

While our goal is to describe OpenMP’s support for task-based parallelism, it’s im-
portant to understand the logic behind the structuring of OpenMP programs (the con-
cepts of parallel regions, thread teams and data-sharing attributes are of particular inter-
est). Hence, we’ll start with a brief overview of the key features of OpenMP (memory
model, execution model, parallel regions and data-sharing mechanisms) before mov-
ing on to the in-depth analysis of the support for explicit tasks and task scheduling.

9.2 Task-Based Parallelism

196

9.2.5.1   Structure of an OpenMP Program

An OpenMP program is a multi-threaded, shared-memory based application, but
with support for thread-private data structures as well. There are five principles
underlying the memory model of OpenMP:

• All threads have access to the same, globally shared address space: there are no
address space islands

• Data can be shared or private to a thread
• Shared data is accessible by all threads: there’s no concept of process, i.e., group

of threads that can share memory just among themselves
• Private data is strictly local to one thread
• Transfer of data is transparent to the programmer; synchronization is mostly (but

not always) implicit.

Consequently, all data needs to be, implicitly or explicitly, labeled. While there are
some variations, there are essentially two basic labels: shared, with only one version
of the data available globally and private, where all relevant threads have their own
private copies. As we will see, threads may access the private data through the same
variable—the compiler and run-time system make sure that the specific variable has
a different meaning for each thread. OpenMP supports variations of the private data
declaration in order to support specification of how data shall be privatized.

The basic execution model of Open MP programs is based on a fork-join model.
Each program starts with one master thread; as parallelization directives are en-
countered, more threads—forming a thread team—will be spawned that will share
the work that is marked as possible to execute in parallel. Here’s the perhaps sim-
plest OpenMP program, where a loop is marked to execute over multiple threads:

The #pragma omp statement instructs the compiler that the subsequent statement is
a candidate for loop parallelization. As the number of threads is set to 10 (through
an environmental variable), the for loop will be distributed over 10 threads; de-
pending on the library implementation, the distribution could be so that values of i
between 0 … 199 are handled by thread 0, 200 … 399 is handled by thread 1 and so
on. What’s important to note that the compiler and the run-time system will implic-
itly create a private version of i for each thread (and a private loop as well). All this
happens behind the scene, without any programmer intervention.

9 Practical Many-Core Programming

which could be compiled and launched like this:

197

A parallel region is thus a block of code executed by all threads simultaneously;
the threads working on the same region are said to form an OpenMP (or thread)
team. Parallel regions are defined using #pragma omp parallel; the directive allows
for specifying the type of parallelism (e.g. loop parallelism), a condition for when
parallel execution shall be performed as well as explicit specification of which vari-
ables shall be shared and which shall be private. Considering our simple example
above, it may be rewritten as follows:

In this example parallel execution will only happen is the loop is big enough (more
that 10 iterations) and the programmer explicitly specifies that z, x, y and n shall not
be privatized, while i must be (again, that means that each thread will have its own
private i, initialized to one of the possible values).

Within a parallel region, some code may require that only one thread will execute
it. Such areas shall be marked using the #pragma omp single directive (later on we
will show a practical usage of this feature).

By default, the end of a parallel region constitutes a barrier, where all threads
shall wait before the execution can be continued by the master thread (in the exam-
ple above, the closing ‘}’ represents such a barrier). Explicit barriers can be added
with the directive #pragma omp barrier; on the other hand, a parallel region may be
marked as non-synchronized (no barrier at the end) by adding the keyword nowait
to the #pragma omp parallel directive. In this case, the execution of the master
thread would continue without waiting for all threads to finish.

OpenMP also supports critical sections and atomic sections. While single code
sections can be executed by only one thread overall, a critical section (or an atomic
section) will be executed by all threads, but only one at a time; thus a critical section
is another form of synchronization between members of the thread team. The syntax
for defining critical sections and atomic sections is

The only difference between the two is that only a single statement (e.g. assign-
ment) can be marked with atomic, while critical can be used for code sections of
any size. The reason for this distinction is purely optimization of execution.

9.2.5.2   Explicit Tasks

Arguably, OpenMP has always had the implicit concept of tasks: when a parallel
construct is encountered, an implicit task per thread is created and executed. The

9.2 Task-Based Parallelism

198

task is tied to that specific thread and—unless nowait is used—all threads would
synchronize at the end of the parallel region.

In OpenMP 3.0 the concepts of explicit task and decoupled execution was in-
troduced. Any thread encountering a task will package a new instance (code and
possible private data), but the task may be executed by a thread in the same team at
some later time. Nesting of tasks is also permitted, i.e. tasks may themselves gener-
ate new tasks.

Tasks are defined using the #pragma omp task directive, with syntax similar to
the #pragma omp parallel directive. Here’s the complete definition:

The semantics of the clauses are slightly different and require some explanation.
The if clause controls the execution of the task: if expression is false, the encoun-
tering thread will execute the task immediately, thus in-lining the task. We already
looked at shared and private, however at this point it’s important to understand the
difference between the semantics of private and firstprivate. The clause private is
primarily relevant for parallel execution of for loops: each thread (or task) will get
a private version of the variable that is initialized to one of the possible values that
is encountered during loop execution (the typical example is a loop control variable
that will be set to one of the values in the loop range); firstprivate on the other hand
initializes the privatized variable to the value that is encountered when creating the
private copy.

To illustrate the meaning of these clauses, let’s look at a concrete example. The
code snippet below performs the traversal of a list using tasks that would act on each
element of the list in parallel:

9 Practical Many-Core Programming

where clause can be

199

Here’s what happens through the execution of this code:

• #pragma omp parallel will trigger the creation of a thread team that will execute
the enclosed code in parallel

• #pragma omp single will make sure that the list traversal will happen only within
one thread. This is required, otherwise all threads within the thread team would
traverse the list and, consequently, each node would be visited by as many times
as the number of threads in the pool.

• #pragma omp task will generate a new task for each element of the list. By using
firstprivate each task will have its own local list_p pointer copy, set to the value
available when the task was created—i.e, each task will have a list_p pointing
to the specific element that the function visit_node will act upon. The generated
tasks are not executed by the thread that performs the list traversal, but rather are
put in a task queue and executed by the threads in the thread team

The final clause available in #pragma omp task is untied. This clause controls how
a task may be scheduled: a tied task can only be executed by the thread that first
‘grabbed’ it (started executing it, at which point it becomes tied to that thread),
while the execution of an untied task can be handed over to any other thread. Tasks
are by default tied because it’s likely that their execution may rely on some thread
local data; if this is not the case and only task local and shared data is accessed from
a task, untied will give more freedom to the run-time system in scheduling tasks.
We’ll look at this feature in the context of task scheduling.

A final aspect that needs to be clarified is task synchronization and task comple-
tion. All tasks generated within a parallel region will be synchronized (waited upon)
at implicit and explicit barriers; in addition, OpenMP 3.0 supports the directive
#pragma omp taskwait which introduces an explicit synchronization point for all
child tasks—but only tasks on the first level, not further descendents. This leaves
an important aspect undefined: if a function generates a task tree, what will hap-
pen to private (and shared) data structures accessed by those child tasks that did
not complete, if the original function returns meanwhile? As the behavior is unde-
fined—and similar to the dangling pointer problem—best approach is to make sure
that such situations will not occur through explicit synchronization and wait for
completion mechanisms.

Here’s a code snippet to illustrate #pragma omp taskwait, through a post-order
traversal of a tree:

9.2 Task-Based Parallelism

200

Here the #pragma omp taskwait directive guarantees that the sub-trees are visited
first, before the current node is accessed; as there will be a synchronization point
at each level, it’s guaranteed that the processing of the complete sub-trees is com-
pleted before visiting the root node.

9.2.5.3   Task Scheduling

According the OpenMP specification [7], scheduling decisions can occur at task
scheduling points, where task switching may be performed. The specification de-
fines the following locations as task scheduling points:

• At the generation of an explicit task
• The last instruction of a task region
• At #pragma omp taskwait directives
• At explicit and implicit barrier regions
• Optionally, anywhere in untied tasks

Task switch means beginning or resuming execution of a different task bound to the
current thread team. Specifically, the following actions may be performed by threads:

• Start execution of a tied or untied task bound to the current thread team
• Resume any suspended task to which the thread is tied or resume any suspended,

untied task that is bound to the same thread team

The order of choice between these options is left unspecified and thus is implemen-
tation specific. Finally, the specification defines two scheduling constraints that any
scheduling algorithm must follow:

• If the if clause of an explicit task evaluates to false, the task shall be executed
immediately after generation

• Scheduling of new tied tasks is constrained by the availability of other, not sus-
pended tied tasks: if any such tasks are available, these shall have scheduling
priority from the current thread’s perspective. The only exception is if the new
task is a descendent of all tasks pending execution

These constraints leave quite some freedom for practical implementation of task
scheduling, in terms of task selection, queuing and load balancing. As we will see
when we compare the performance of the different task based models, this leads to
significant differences in the performance of practical implementations.

A particular feature of OpenMP’s task model is that it allows for suspension of
an untied task and thread switching: a task may be suspended in the middle of its
execution and resumed by another thread. This feature is missing from other task
based libraries: once a task is started, it is either canceled (possible e.g. in Micro-
soft’s TPL) or it completes; the only case when a task may be suspended is when the
OS may decide to suspend the thread that executes it. However, from the thread’s
perspective, the task will be run to completion.

Figure 9.8 illustrates the parallel execution framework of OpenMP and the pos-
sible sequential execution on just one thread.

9 Practical Many-Core Programming

201

9.2.5.4   Summary

OpenMP is perhaps the best known and most widely used standardized solution for
writing shared memory based parallel programs. It provides powerful features—
such as automatic privatization of data, flexibility in defining parallel regions etc—
that make it a preferred choice for cases when shared memory is of prime interest.
However, as we will see through empirical results, in terms of performance it lags
behind quite significantly when compared with some of the other task-based li-
braries. The flexibility it provides seems to be its weak point as well: variations in
implementation question its portability.

9.2.6   Comparison of Task Based Programming Libraries

As the parallel computing community seems to be settling on the consensus that
task based models are a promising way forward (and most vendors are jumping on
the train and churning out their own implementations), the performance of different
flavors becomes ever more relevant. Obviously portability and support for multiple
OS and language environments is of prime interest; but performance clearly is an
important factor when deciding for a particular solution.

Quite recently there were several empirical results published that aimed directly
at comparing various task based models in the context of different applications. Our

9.2 Task-Based Parallelism

Fig. 9.8   Parallel execution of OpenMP programs and the concept of thread teams

Parallel execution using thread teams:

Master

Master

A

B

C

Master D

E

Master

Parallel region 1
with 4 threads

Parallel region 2
with 3 threads

Barriers

Master MasterA B C Master MasterD E Master

Potential serial execution on one thread:

Corresponds to
parallel region 1

Corresponds to
parallel region 2

Master

202

analysis is based on the studies available in ref. [8–10]. The first one is focusing on
the impact of task granularity on the performance; the second one was evaluating
performance while taking into account development effort; the third one evaluated
the different models when applied to executing unbalanced task graphs (specifi-
cally, the problem of unbalanced tree search). All studies included OpenMP 3.0
variants, Cilk (or Cilk++) and TBB, thus we ill focus on these ones. One of the
studies also included plain pThread-based implementations [9], while another one
[8] also evaluated a highly optimized Cilk-like task based library called Wool (for
more information on Wool [11]).

The first conclusion—consistent across the three studies—is that OpenMP seems
to yield the lowest performance, while Cilk and TBB are competing for the top spot
(Cilk seems to be coming out on top slightly more often). It’s also important to em-
phasize that Cilk and TBB based implementations were able to show consistently
improving performance as the number of cores kept increasing, often expressible
as first order polynomial equations. OpenMP’s performance on the other hand was
also degrading as the granularity of tasks became higher (more fine-grained tasks),
consistent with the high overhead due to task scheduling reported by one of the
studies (ranging from 4% till as much as 80%, with a typical value hovering around
20%). This wide variation in overhead also highlights the importance of actual im-
plementations: the variance was between different tools, not within a single tool
applied to different applications.

Interestingly, the speedup obtained in Ref. [10] with hand-crafted, optimized,
manually load-balanced, non-task based OpenMP implementations was only mar-
ginally higher than the speedup measured with Cilk and TBB (11× on 16 cores
versus 9×). In our view this shows the efficiency of the simple model behind both
Cilk and TBB.

The benefits of hard-optimizing the spawn mechanism were reported in Ref. [8],
where the Wool implementation often outperformed Cilk with as much as 50%,
when applied on problems with a very large number of fine-grained tasks. This
indicates that indeed the cost of generating a task seems to be dominant factor, con-
sistent with the observations regarding OpenMP as well.

It is also interesting to note the experiences reported in Ref. [9] with respect to
development efficiency and cost of faults when using different libraries. The devel-
opment times with TBB and Cilk were comparable, but OpenMP had a 50–100%
penalty (still significantly lower compared to pThreads). The same pattern was ob-
served also with respect to the time needed to correct bugs, with Cilk significantly
outperforming even TBB.

9.2.7   Summary

While there are significant variations between the different task based models, the
basic principles are the same: large number of tasks generated independently of the
capabilities of the underlying machines; distributed scheduling; work stealing as a

9 Practical Many-Core Programming

203

load balancing mechanism. The performance evaluations we analyzed show that
the task based paradigm has the potential for supporting scalability as the number
of cores is increasing, making it a prime candidate for programming many-core
systems.

OpenMP deserves a particular mentioning. While its performance with respect
to explicit tasks still needs significant improvements, it provides an interesting ap-
proach that has the potential of gaining acceptance in the industry (due to standard-
ization and the significant amount of tools supporting it).

Finally, we cannot conclude without noting that the best performing libraries
(Cilk and TBB) seem to be coming from the largest hardware vendor—Intel. In
our view this underlines once again the importance of coupling the development
of hardware with the development of supporting software models; this coupling
will be even more important as the scale of modern chips will pose new software
challenges.

9.3   Data-Parallel Model

Data-parallel programming models look back to a long history, especially in sci-
entific and graphics computing, where the typical computational problem involves
applying the same algorithm on a (very) large data set. More recently, as parallel
computing was emerging once again as the prime candidate for programming new
chips, the usage of Graphics Processing Units (GPUs) expanded well beyond tra-
ditional domains, including the world’s top supercomputers. This success was also
due to the emergence of programming models and libraries that made these chips
programmable even by programmers without special training in GPUs—if any, the
CUDA (Computer Unified Device Architecture) model [12] has done the most in
bringing GPUs and data-parallel programming into the main-stream.

In this chapter we detail one of the promising approaches to bridging the gap
between main-stream CPU and GPU programming, OpenCL [13]. Our choice of
OpenCL is motivated by multiple reasons: it’s standardized and backed by most
GPU and CPU vendors; it’s GPU-independent; it provides a uniform model for
writing portable programs for both CPU and GPU processors using both the da-
ta-parallel and task parallel model. Other frameworks for data-parallel program-
ming—such as CUDA—have pretty much the same characteristics and use similar
constructs and concepts.

9.3.1   OpenCL

Open Computing Language (OpenCL) was initially promoted by Apple (who still
holds the copyright on the name), but it’s now backed by most major chip vendors
through the Khronos Compute Working Group, responsible for its standardization.

9.3 Data-Parallel Model

204

At the writing of this chapter, release 1.1 [14] was just made available, but the
main-stream release 1.0 was already supported by most CPUs and GPUs as well as
Apple’s MacOS X v10.

OpenCL is based on C, but it excludes support for some features (such as func-
tion pointers, recursion, variable length arrays, bit fields etc) while adding some
features to support specific concepts such as work items, workgroups, synchroniza-
tion and new data types. In addition it has a powerful library of built-in functions,
e.g. for image processing.

9.3.1.1   OpenCL Architecture

The execution platform on which an OpenCL program is executed is modeled as
a collection of OpenCL devices, managed by a host processor, responsible for dis-
patching work to the devices. Internally an OpenCL device consists of one or sev-
eral compute units (CU), each divided into one or more processing elements (PE)
that may have SIMD or SPMD characteristics. For a CPU, cores will usually be
reported as compute units.

The basic execution model of OpenCL relies on the concepts of kernel and pro-
gram. A kernel is the basic unit of executable code, similar to a function in another
language which can be applied over a data set (for data parallel execution) or as one
instance, to model a task. A program is a collection of kernels and supporting func-
tions for managing kernels.

When a kernel is executed on a device, an N-dimensional index space is associ-
ated with it and for each point in the index space an instance of the kernel will be
launched. This instance is called a work item and it’s identified by its position in the
index space. Work items may be organized into work groups, also identified with
unique ids. All work items within a work group will execute concurrently on the
processing elements of one compute unit. For example, a 9 × 9 array may be sub-
divided into 9 work groups, each consisting of 3 × 3 work items.

Execution of an OpenCL program is based on the concept of a command queues.
The host will place commands into one of the command queues (of which there may
be several) which are then scheduled for execution on the available devices. There
are three types of commands supported in OpenCL:

• Kernel execution: a kernel is scheduled for execution using an index space
• Memory management: transferring data between memory objects and mapping

memory objects between address spaces
• Synchronization: constrain the execution order of commands

Commands are executed asynchronously between host and devices. OpenCL sup-
ports two styles of command execution:

• In order: commands are executed serially, the next command cannot start before
the previous one completes

• Out-of-Order: commands are still issued in order for execution, but do not wait
on each other, thus any synchronization requires the use of explicit mechanisms

9 Practical Many-Core Programming

205

OpenCL also defines a hierarchical memory model, shown in Fig. 9.9. There are
four main types of memory:

• Global memory areas are read/write accessible from any work item executing
anywhere in the system

• Constant memory is initialized once and remain constant with read access from
anywhere in the system (it’s a write-once-read-many type of global memory)

• Local memory is only accessible from within one work group and is shared be-
tween work items. It can be allocated by the host or the devices, but it’s only
accessible from the devices executing the kernels associated with the work items

• Private memory is local to a single work item and may not be accessed from
anywhere else in the system

Note: memory allocated on the host and used exclusively on the host is not included
into these categories.

Memory management is explicit, including access, thus applications must make
sure that no concurrent update of the same global memory is done without proper
control. OpenCL offers library functions for explicitly mapping memory between
devices and global memory; the usage of these is essentially required if global shar-
ing needs to be achieved.

As work groups are essentially isolated, synchronization only makes sense with-
in work groups and not between work groups. In addition, synchronization between
commands is supported.

9.3 Data-Parallel Model

Fig. 9.9   OpenCL memory hierarchy

Compute Device

Private
Memory

Private
Memory

PE 1 PE M…

Local
Memory 1

Compute Unit 1

Private
Memory

Private
Memory

PE 1 PE R…

Local
Memory N

Compute Unit N

Global / Constant memory device-local cache

Globally shared Memory

Global Memory Constant Memory

206

OpenCL provides two synchronization mechanisms for work groups:

• Work group barriers require that all work items execute the barrier before any is
allowed to continue

• Memory fences guarantee that all load/store operations issued before the fence
are committed before any subsequent memory operation will be executed

Similarly, there are two synchronization mechanisms for commands:

• A command queue barrier ensures that all previously queued commands will be
completed before any new commands will be executed

• Event-based synchronization allows a command to wait on the completion event
of a previously issued command. This mechanism can be used to model depen-
dencies within a task graph

It shall be clear from this very brief and condensed description that OpenCL is
primarily targeted at writing programs that can be distributed across multiple GPU-
like devices; however it takes the design of such programs to a higher abstraction
level and allows for a single environment to be used to design software spanning
multiple processors with different characteristics.

9.3.1.2   OpenCL for Many-Core Programming

As mentioned earlier, the power of OpenCL lies in the support for both the data par-
allel and the task parallel model, across multiple types of hardware, in a transparent
manner. However, to be fair, there are very few actual usage examples of OpenCL
outside the GPU world: the primary usage area was and still is the programming of
SIMD machines.

The basic abstractions that allow support for both models of programming are
kernels and command queues. Kernels represent tasks that are either executed as
one work item (in which case it defaults to a single task) or as a collection of work
items, across an index space (in a SIMD fashion). For each type of device in a
system (GPU/SIMD machine or normal CPU) there will be at least one command
queue where kernels will be queued for execution; the runtime system will be re-
sponsible for dispatching the kernel instances (tasks) from the command queue to
the available compute units in that specific device. The run-time system will also
make sure that SIMD kernels can execute in parallel and can synchronize using one
of the methods described in the previous chapter.

Besides support for modeling single tasks as kernels with one work item, barriers
and command completion events allow modeling of task graphs: a task dependent on
another task will synchronize on the completion event of the command that contains
that specific task. However OpenCL has a very important limitation with respect to
task parallel programming: kernels are simple calculations that cannot act as host func-
tions and enqueue new kernels for execution—in other terms, dynamic, task generated
tasks are hard to realize in OpenCL. This is the main reason the Fibonacci example is
missing from this sub-chapter: it cannot be implemented efficiently in OpenCL.

9 Practical Many-Core Programming

207

9.3.1.3   Summary

OpenCL is a good candidate for data-parallel applications and for applications that
can be expressed as static task-graphs; but it’s not suitable—as it is today—for
applications with dynamically unfolding task graphs, where tasks would need to
be generated by previously executed tasks. We believe that allowing dynamic task
management on CPU type of processors would be a welcome addition to the Open-
CL standard that would put this language on par with other task-based libraries,
while preserving the powerful data parallel and cross-platform capabilities.

9.4   The Actor Model

We introduced and discussed the Actor model extensively in Chap. 8. In this chapter,
our focus is on how programs that can exploit many-core hardware capabilities can
be written using this paradigm; we will use Erlang to showcase these capabilities.

9.4.1   Erlang’s Actor Model

The basic unit of parallelism in Erlang is the light-weight process, which shares no
data with any other process and can only communicate with other processes through
asynchronous messages, whose delivery is not guaranteed by the run-time system.
An Erlang process—other than a process spawn to perform a simple calculation
(which is the Erlang way to implement the concept of a task or OpenCL kernel)—is
a reactive parallel entity, waiting for external messages, reacting on those by per-
forming some computations, optionally triggering other processes to perform cal-
culations and usually replying to the received message with an answer (a message
sent to the originator of the received message).

Erlang has a powerful mechanism for abstracting out concurrency and letting the
programmer focus on implementing the logic of the application called behaviors.
A behavior is an abstract implementation of a certain type of application, encom-
passing all the generic mechanisms required by that type of application, while the
functional behavior is left for implementation by the user of the behavior, in the
form of a set of callback functions that the behavior requires to be present in order
to function correctly. Some examples of default behaviors provided as part of OTP
(Open Telecom Platform), the run-time system of Erlang, include:

• gen_server: implements a generic server to be used in client-server type of ap-
plications

• gen_fsm: implements a generic Finite State Machine (FSM) that can instantiated
for any type of FSM

• supervisor: implements the concept of process supervision tree, used in Erlang’s
fault management system

9.4 The Actor Model

208

We will exemplify how behaviors can be used to separate concurrency concerns
from actual functional implementation through a simplified implementation of a
server that performs authentication of users and then hands off the handling of re-
quests from clients to a function that is provided by the programmer instantiating
the server. This example is based on the generic server implementation in Ref. [15]
and the ftp example program on the main Erlang site, www.erlang.org.

We define the server as a module that exports two functions. Here’s the source
code:

9 Practical Many-Core Programming

209

What happens in this code?
We define a module called ex_server which exports two functions: start and

stop. The function start is responsible for initializing the server and it requires from
its user

• the Name of the server, that can be used later to connect to the server
• the database of Users, which contains the list of users allowed to connect to the

server
• the function F that implements the functionality of the server and which accepts

one argument, the pid (process identifier) of the client that has connected to the
server; the function is expected to terminate when the handling of the user is
completed.

The main implementation of the server is the function loop (Name, Users, F, N)
which loops indefinitely. It performs the following actions:

• accepts connect requests from users and verifies that the user is member of the
database Users and that the server has not reached its maximum capacity (if the
user is unknown or maximum capacity has been reached, a negative response is
sent back)

• if the user is authenticated and the server has not reached the maximum capacity,
a new process is spawned and linked to the server process (using spawn_link),
which will handle this user; the core of the process will be the function F re-
ceived in the start function; the pid of the newly spawned process is returned to
the user

• as the spawned process is linked to the server, the server will receive an EXIT
signal when it terminates which will be used to keep track of the connected cli-
ents

Note: this example uses a so-called tail recursive implementation: the last action
in the loop function is always a call to itself, with new arguments; as this is the last
action, the Erlang run-time system will execute the new instance in the same stack
space as the caller instance of the function; hence no additional memory will be
used. This is an often used technique in functional languages.

What we achieved here is a complete de-coupling of concurrency implementa-
tion and actual functional content: the user of our simple ex_server module will not
have to worry about how concurrency and scalability will be handled; the only thing
it has to supply is a function (F) that implements the protocol logic (probably as a
state machine) and can interact with a single client. Internally, the server is a typical
realization of the actor model: it creates a new Erlang process (a new actor instance)
with functionality F for every interaction and lets the originating actor know about
this new instance; the two instances will communicate using messages; when the
interaction is concluded, the actor destroys itself and its creator is notified. The
server implementation then will perform the cleanup that is required (in our case an
update of the number of active users).

A possible implementation of the protocol logic (pseudo-ftp, taken from Erlang’s
home page) could look like this:

9.4 The Actor Model

210

(For this case, the argument Name in the ex_server:start function is set to ftp_serv-
er). Clearly this is a clean protocol implementation, with absolutely no logic for
distribution or scalability. In fact, this function simply implements the internal logic
of an Actor instance.

Within this model, there may be thousands of users and for each of these there
will be a new process spawned. In our simple example, all processes are cre-
ated on the current Erlang node (roughly equivalent to a processor) and thus—as-
suming the use of the SMP version of Erlang—will seamlessly make use of all
the cores available on this particular node. This approach is reminiscent of the
principle underlying the task model: expose as much parallelism as possible and
let the run-time system limit it; as Erlang processes are light-weight—not much
more costlier to create and destroy than tasks in some task based libraries—we
believe this approach offers the possibility to scale up as the number of cores will
increase.

It’s important however to understand that the Actor model is not equivalent to
the task based model. While implementation of some form of task model would
be possible in Erlang (or in any other Actor library), the Actor model is clearly
targeted at applications with different type of parallelism: coarser grained and in-
teraction based, where the parallel activities have to co-operate in order to achieve
their goals. Neither is better than the other—just simply target different type of
applications.

9.5   Summary

In this chapter we illustrated how the different parallel programming models that
we believe are prime candidates for many-core processors—task model, data paral-
lel and Actor model—are implemented and how these can be used in practice. This
presentation is by no means exhaustive and some other important environments
(such as the Haskell language or MPI for message passing/Actor style programming
or CUDA for data parallel programming—and the list would be very long) were
not covered simply for lack of space. Our goal was to illustrate the mechanisms
underlying these models and how these can be applied in real world applications;
consequently, many of the principles and solutions we presented here can be applied
directly when using other languages or libraries.

9 Practical Many-Core Programming

211

References

 1. Frigo M, Leiserson C E, Randall K H (1998) The implementation of the Cilk-5 Multithreaded
Language. Proceedings of the ACM SIGPLAN 1998 conference on Programming Language
Design and Implementation, 212-223

 2. Gruman G, Hattersley M, Butler T R (2009) Mac OS X Snow Leopard Bible. Wiley & Sons
 3. Reinders J (2007) Intel Thread Building Blocks: Outfitting C++ for Multi-core Processor

Parallelism. O’Reilly Media
 4. Intel Corporation (2010) Intel Threading Building Blocks. http://www. threadingbuilding-

blocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Getting_Started.
pdf. Accessed 11 January 2011

 5. Campbell C, Johnson R, Miller A, Toub S (2010) Parallel Programming with Microsoft
.NET: Design Patterns for Decomposition and Coordination on Multicore Architectures (Pat-
terns & Practices). Microsoft Press

 6. Chapman B, Jost G, van der Pas R, Kuck D J (2007) Using OpenMP: Portable Shared Mem-
ory Parallel Programming. The MIT Press

 7. The OpenMP Architecture Review Board (2008) The OpenMP Application Program Inter-
face. http://www.openmp.org/mp-documents/spec30.pdf. Accessed 10 January 2011

 8. Podobas A, Brorsson M, Faxén K-F (2010) A Comparison of some recent Task-based Parallel
Programming Models. 3rd Workshop on Programmability Issues for Multi-core Computers

 9. Ravela S C (2010) Comparison of Shared Memory Based Parallel Programming Models.
PhD Thesis, School of Computing, Blekinge Institute of Technology.

10. Olivier S L, Prins J F (2010) Comparison of OpenMP 3.0 and Other Task Parallel Frame-
works on Unbalanced Task Graphs. International Journal of Parallel Programming 38(5-
6):341-360

11. Faxén K-F (2008) Wool: a Work Stealing Library. SIGARCH Computer Architecture News-
letter 36(5):93-100

12. Sanders J, Kandrot E (2010) CUDA by Example: An Introduction to General-Purpose GPU
Programming. Addison-Wesley Professional

13. Khronos Group (2010) OpenCL: Introduction and Overview. http://www.khronos.org/devel-
opers/library/overview/opencl_overview.pdf. Accessed 11 January 2011

14. Khronos OpenCL Working Group (2010) The OpenCL Specification Version 1.1. http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf. Accessed 11 January 2011

15. Armstrong J (2003) Making Reliable Distributed Systems in the Presence of Software Er-
rors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden. http://www.erlang.org/
download/armstrong_thesis_2003.pdf. Accessed 11 January 2011

References

213

Abstract This final chapter summarizes the experiences of the first decade of
multi-core programming and looks at the challenges the research and practitioner
community will face in the next decade. We discuss how we can tackle the issue
of scaling the performance of single threaded applications, how we can deal with
the bottlenecks that emerge as the level of parallelism increases and what higher
abstraction level of software design will mean for deployment on many-core hard-
ware; in general, how the hardware and software environment may look like in a
few years’ time. Finally we discuss how related fields of computing technology—
such as exascale computing, cloud computing and pervasive mobile computing—
may influence (and be influenced in the process) by advancements in programming
many-core processors.

10.1   What We Learned Until Now

When the computing community realized that single-core performance scaling is
coming to an end, it didn’t have to start from scratch: it was looking back at over
three decades of experiences from programming large scale parallel computers. It
would have been fair to assume that the transition will be rather smooth and the
whole issue will be remembered just as a minor bump in a triumphal march forward.

Yet this is not what happened. Companies were postponing their transition to
multi-core processors as long as they could, but when they finally had to do it, it
was rarely painless. Researchers were pouring out large quantities of papers, yet
very few of the results were really groundbreaking and good solutions remained
few and far between.

Why did this happen? In our view, there are two broad categories of reasons:

• Human reasons: most of the programmers were ill-prepared to make the switch
from multi-threading to true parallelism and when they did, the results were sub-
optimal; some of the root causes were related to technologies used for decades,
but we simply cannot avoid the brutal fact that the competence of most was not
sufficient to tackle the tricky issues that were emerging; in addition, the co-oper-

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5_10, © Springer Science+Business Media, LLC 2011

Chapter 10
Looking Ahead

214

ation with the high performance computing community often lacked the breadth
and depth that would have been required to facilitate hand-over of accumulated
experiences

• Technology reasons: firstly, the industry—and research community—were try-
ing to preserve as much as possible of the conventional wisdom of the single-
core era and thus focused on approaches that were trying to maintain the well
known and understood shared memory model in a completely new context; sec-
ondly, we underestimated the additional challenges of integrating parallelism on
a single chip, both from hardware and software perspective; thirdly, we had to
deal with a large legacy that was still required to continue scaling in performance

This is by no means and exhaustive list, but in our view captures the main issues
that we faced. These are significant barriers in isolation; but in combination it posed
a challenge far larger than anticipated.

What kind of conclusions can we draw from the past decade?
It became painfully clear that we reached the end of single core (and, implicitly,

few-threaded) scalability: recently released chips were not delivering more than
20–30% improvement in the performance of single-threaded applications in the
time-span of 2 years, a paltry annual improvement of around 10–14% (and de-
clining). We can also be pretty confident that we will not be able to extract suffi-
cient parallelism from all applications to enable these to improve performance on a
multi-core hardware—neither manually nor—even less—automatically; while this
may not matter for most applications (think of desktop applications such as text edi-
tors or spreadsheet managers), there will be sufficient amount of applications where
failure will not be an option. Hence, we must continue our quest for the holy grail
of parallel computing: improving performance of hard to parallelize applications on
parallel machines with better overall performance. This is one of the central themes
we address in this chapter.

We also learned that automatic parallelization of software written in traditional
imperative languages has a limit that we are fast approaching or have even reached.
In practice this means that the only option for extracting more parallelism from
applications written in traditional imperative languages is manual rewriting, every
time performance improvements are required. As a consequence, we need to look
into new ways of expressing software that can help tools perform better when it
comes to extracting parallelism from software. In general, we need to improve radi-
cally the amount of semantic information that is transmitted from software down to
execution environment.

During the past few years, a large number of new computational models were
proposed; however, we seem to slowly converge around a model based on generat-
ing a large number of tasks that—when executed in parallel—can help the applica-
tion progress make progress. These tasks may share memory on a small scale, but
we have learned that large scale sharing quickly becomes a limiting factor. At the
same time, we have seen innovation in how cores are used: we don’t have to execute
the actual application on a specific core to make use of it; we can use the additional
cores to perform helper functions that will help the main application progress faster.

10 Looking Ahead

215

As we will see, this technique can be used in many different contexts to help ap-
plications scale better on many-core processors.

During the past decade, the computing industry was able to deliver the first su-
percomputers capable of petaflops performance and the quest now is on for building
exascale machines. One important lesson from these efforts that will apply to many-
core programming as well is that such performance will not be possible with pure,
homogeneous architectures: we will have to accommodate heterogeneity and we
must find ways to design software that can exploit heterogeneity—without losing its
portability or future scalability.

The first decade of multi-core programming also coincided with the first decade
of cloud computing: the promise of unlimited, on a need basis and eventually very
cheap computing power delivered as a utility. The pre-requisite of “free” computing
power is starting to impact the way software is designed for cloud; we see similar
trends in many-core computing that we have yet to fully understand and absorb into
our ways of building software.

Finally, it’s hard to ignore the unprecedented rise of mobile computing. Today
smart-phones are ubiquitous in the developed world and will soon reach the same
status in developing countries; at the same time the mobile industry already talks
about 50 billion interconnected devices [1], the so-called mobile swarm. The re-
source management challenges of this field can certainly influence strategies for
increasingly unreliable many-core chips.

These are the basic elements on which the rest of this chapter is built. Unlike the
rest of the book, this chapter is highly speculative and, consequently, potentially
contradictory or controversial: it will introduce novel concepts and ideas that have
yet to become mature, but which may change the way we design software in the
next 5 to 10 years.

10.2   Scalability Bottlenecks

We have discussed this subject throughout the book, in the chapters dedicated to
hardware, operating systems and programming models. The red thread throughout
the discussion was the impact of sharing resources on different levels:

• Hardware: explicit sharing (of memory and execution resources) adds overhead
through synchronization mechanisms in general and cache coherence implemen-
tation in particular; implicit sharing (e.g. two un-related data structures mapped
to the same cache line) adversely impacts performance, ruining the performance
of the cache system

• Operating system: time sharing of core resources and in general sharing of op-
erating system central resources will lead to an increased share of the time being
used up by the operating system; in many cases, the OS is optimizing the wrong
resource: core resources, ignoring e.g. memory access

• Programming models: memory sharing on application level quickly becomes the
bottleneck both in terms of productivity (it’s much harder to get synchronization

10.2 Scalability Bottlenecks

216

right) and performance: the larger the contention, the more time is wasted for
access to resources

In our view the single most important task of the coming decade is to gradually
shift away from sharing based models to more decoupled (hardware and software)
systems that work autonomously, and interact sparsely and asynchronously. By now
we have most of the basic technologies in place (e.g. 3D stacking of core-dedicated
memory, space-shared operating systems, Actor/task based models), but we need to
integrate these into a working stack of hardware and software.

10.3   Scaling Hard to Parallelize Applications

Allowing applications with just a few threads to make use of new machines where
single-core performance has increased just moderately, yet there are more cores is
one of the hardest research questions facing the research community. Automatic
parallelization yielded modest results, even when guided by the programmer; for a
significant amount of applications we have yet to find novel algorithms that would
scale reasonably on a parallel machine.

Some of the approaches that have been extensively researched were instruc-
tion and thread level parallelism (ILP [2] and TLP [3]) and speculative execution
[4]. ILP support is found today in most modern chips; however applications have
been shown to have fairly limited amount of parallelism on machine code level that
can be exploited by the hardware. Speculative execution—while intuitively appeal-
ing—failed because of the difficulty in predicting the likely paths in the code on
which to speculate, thus leading to a large amount of squashed speculative execu-
tion paths, without any sizable gains.

The root cause for limited success or failure with both of these techniques is that
the hardware simply lacks sufficient information to perform efficiently. It’s very
much like trying to find a needle in a haystack in the dark: it’s essentially random
experimentation that will rarely succeed.

Recently at least three research results were presented in Refs. [5–7] that revis-
ited speculative execution from a different perspective and have shown encourag-
ing results. All three approaches relied on the same idea: the programmer (and the
software) has to provide more information on what it tries to achieve. In Ref. [5]
this information is limited to indicating when the execution of two functions is com-
mutative (may be performed in any order); in the second paper [6] the programmer
is required to provide a predictor function that can be used to decide how to perform
speculative execution; finally in the third paper [7], this conveying of semantic
information is made pervasive, providing a wealth of information to the execution
environment and the hardware to help speculative execution. This approach also
enabled speculative execution on a much larger scale: the programmer is able to tell
where it makes sense—not just on a short sequence of machine instructions, but on
the level of whole functions.

10 Looking Ahead

217

Interestingly, papers [6] and [7] report results on the same application, namely
Huffman decoding. It’s considered embarrassingly sequential because the encoded
data cannot be easily split up in the middle: it’s hard to predict where compressed
code boundaries are. In Ref. [6], an intelligent predictor is presented that has a
fairly good accuracy; using this predictor, the run-time system can speculatively
pre-execute decoding of the stream from the position predicted by it; if it was ac-
curate, by the time the main execution path reaches this point, the result is already
available—hence a speedup was obtained.

Paper [7] uses the same pre-execution techniques, but it makes a decision on
where to speculate based on a different information: by analyzing the Huffman
code tree, it can establish that, with a certain probability (say, 95%), there’s a code
boundary within 8 consecutive bits; by starting 8 parallel speculative threads, it can
be reasonably certain that one of those will speculate on the right position (in our
case, the certainty level is 95%). Hence, a speedup may be obtained—something
confirmed by simulations, in both cases.

This may seem a waste of computing resources: especially in Ref. [7], 87% per-
cent of the effort is always wasted (while 13% will succeed with a high probability).
This is however, in our opinion, a false argument: the same paper has shown that
speedup can be obtained even within the same power budget: replacing one high
performance core with many simpler cores, speculative execution still resulted in
8 × speedup on 64 simple cores—within the same power budget. The gain obviously
comes from increased use of parallelism: while decoding individual chunks will be
much slower, this slow-down is more than compensated for through increased suc-
cessful parallelism.

There are two conclusions that can be drawn from these research results that
show a potential way forward for applications with limited amount of ‘traditional’
parallelism.

First, the amount of semantic information exploited in parallelizing the Huffman
decoding algorithm is beyond reach for hardware or software that is just observing
a running application. The speedup was possible exactly because this information
was conveyed to the run-time system in a form that it was able to make use of.

Second, especially Ref. [7] has shown that applications with limited amount of
parallelism can still benefit from an increased amount of cores: the performance
gains (while nearly not linear) followed an upward trend as the number of cores
kept increasing. In fact speculative execution—and a related technique called spec-
ulative pre-execution—will benefit from the increased core count, even if these are
simpler cores. This aspect is especially promising, as it provides a path forward for
hard to parallelize applications deployed on many-core processors.

In summary, we believe applications with limited traditional parallelism can ben-
efit from many-core processors by deploying speculative execution enhanced with
dramatically increased amount of information on the nature of the application and
especially where speculation is likely to yield results. The more cores there will be,
the less important it will be if the work of a single core is wasted—as long as one
will succeed in its speculation and the space of speculation can be limited using
programmer provided information to a level that ensures faster execution than on a

10.3 Scaling Hard to Parallelize Applications

218

single core. Much research remains to be done in this area, especially on the inter-
face between software and hardware as well as on which type of semantic informa-
tion is likely to be most beneficial.

10.4   Programming at Higher Abstraction Level

Efficiency of compiled code on one hand and portability, ease of programming,
coupled with productivity on the other hand have been the major drivers behind
development of new programming languages, libraries and programming models,
from the first version of Fortran all the way to today’s scripting languages. How-
ever these three characteristics—efficiency of code on one hand, portability and
productivity on the other hand—were more than often at odds with each other: ef-
ficiency usually required languages close to the actual hardware (most imperative
languages), while productivity and portability usually meant the usage of high level
languages, often coupled with automatic code generation (through model compila-
tion, for example). General purpose very high level languages almost always carry
with them a sizable performance penalty.

We already discussed the issues around auto-parallelizing compilers and the im-
pact the lack of semantic information has on performance. The same is valid with
programming using high abstraction general purpose languages: the compiler still
lacks domain knowledge: about what is it that the programmer really wants to model?

The tension between the need for higher productivity and lower performance fu-
eled fresh research into using high level, yet domain specific languages (DSLs). In
theory at least these shall combine the best parts of the two worlds: be sufficiently
high level to enable higher productivity of even non-programmer experts while re-
stricting the domain sufficiently for tools to be able to reason about the semantics of
programs. By restricting the problem domain, DSLs aim at achieving two targets:
provide constructs that are easily recognizable by experts and restrict the domain to
such an extent, that tools can reason about the concepts and take efficient decisions
on how to transform these into target code within the given context.

This line of research—at least in the context of programming many-core proces-
sors—is still in early stages. Ericsson is working on a Haskell-embedded domain
specific language for programming massively multi-core DSPs, with encouraging
results [8]; a more holistic approach is being pursued at the Pervasive Parallelism
Laboratory (PPL), part of Stanford University [9]. Their vision of a holistic parallel
computing stack is shown in Fig. 10.1; the main components of this vision—on the
software side—are:

• A family of embedded domain specific languages targeting different well de-
fined domains (such as scientific computing, robotics etc.)

• A virtualized embedding language, that provides an infrastructure which enables
domain specific optimizations without the need to re-write the environment for
each and every new DSL

10 Looking Ahead

219

• A parallel run-time that enables dynamically defined domain specific optimiza-
tions and supports both data- and task-based parallelism. It’s important to note
that this run-time environment, in the Stanford vision, executes on top of a Java
Virtual Machine, thus somewhat limiting its applicability

The most interesting concept put forward by PPL is that of virtualized host lan-
guage [10]. It is defined as a language that can provide an environment to a
series of embedded languages in which the implementation of the embedded
languages is not distinguishable from an equivalent stand-alone implementation,
in terms of expressiveness (including syntax, semantics, ease of use by domain
experts), performance (support for static and dynamic optimizations and code
optimizations similar to stand-alone languages) and safety (it shall not be pos-
sible to use constructs not included in the embedded language). The choice for
such language is Scala [11], which we also covered in this book; it allows over-
loading of all language constructs and polymorphic re-definition of basically any
language construct. Using these mechanisms, the DSL-specific implementation
of certain operations can be re-defined to take into account the knowledge about
the domain itself. For example, a simple DSL for matrix operations may figure
out that a sum of multiplications can be re-written as a multiplication with the
result of a sum.

In our view DSLs offer powerful new opportunities for both raising the abstrac-
tion level at which software is designed and automating the extraction of parallel-

Fig. 10.1   DSL based parallel computing software infrastructure

Hardware Multiple homogeneous or heterogeneous HW platforms

Parallel run-time system

Dynamic domain specific optimizations Task and data parallelism, scheduling

Virtualized Embedding Language (SCALA)

Polymorphic embedding Static domain specific optimizations

DSL - 1 DSL - 2 DSL - 3 DSL - N …

Application A Application B Application C

DSL
Infrastructure

DSLs
(rendering,
matrices etc)

Applications,
each using
one or
several DSLs

10.4 Programming at Higher Abstraction Level

220

ism. The key insight is that by restricting the domain, specific domain knowledge
can be built into the analysis, compilation and optimization phases—yet another
way to improve the amount and quality of semantic information available to the
run-time system and hardware.

10.5   Interaction with Related Domains

The field of computing has witnessed four important trends during the first decade
of the 21st century: the rise of cloud computing, the rise of mobile computing, the
push for exascale computing farms and multi-core programming. In this chapter we
look at the interdependencies between these domains and how these will interact
during the next decade.

10.5.1   Cloud Computing

Simply put, cloud computing is the remote delivery of IT resources (processing
and storage) on a pay-per-use basis; it is built on a few fundamental principles and
technologies:

• Virtualization, which enables on-demand instantiation of computing resources,
de-coupled of the physical location; it is the cornerstone of most cloud comput-
ing offerings

• Pay per use model, which allows users to lease (virtual) resources instead of
buying physical computers

• Elastic capacity management, which allows scaling up or down the allocated
resources, depending on the needs

• Self-service, remote interface: the user can manage the leased computational
resource himself, remotely, usually through a shell or web interface.

The concept of cloud computing is changing in a significant manner the way we
reason about software: the cost of computational and persistent storage resources
has declined to a level where it’s not anymore a defining factor; other character-
istics—such as the cost of networking and security—started playing an important
role. This is quite similar to the trend we see in many-core chips: the level of utiliza-
tion of cores is becoming less important than the cost of moving data to and from
memory as well as inside the chip. Optimizing data movement is one of the primary
concerns in both cases; speeding up execution by deploying speculation on a large
scale—see e.g. Ref. [7] for many-core programming and Ref. [12] for cloud com-
puting—is another one.

In our view there’s a good opportunity for cross-fertilization and re-use of results
between these two areas, as both face similar issues (large amount of communica-

10 Looking Ahead

221

tion constrained computing resources); thus we believe the two communities shall
co-ordinate their efforts more closely.

10.5.2   Exascale Computing

Building a data center capable of exaFLOPS performance is still perhaps a decade
away, however there are compelling reasons for doing so—some domains, such as
global weather forecast or biological simulations demand processing power at this
scale.

There are interesting similarities between the challenges faced by exascale com-
puting and many-core chips. Power is the evident one: the problem of dark silicon
(the impossibility to power up all transistors within a chip) is actually quite simi-
lar to the problem of supplying sufficient electricity to power a 1,000 petaflops
machine—and so could be the solutions. Utilization of hardware accelerators, low
power cores and advanced power management schemes and algorithms are appli-
cable to both domains.

Eliminating scalability bottlenecks and mitigating reliability at such a scale are
also related problems in the two domains. Experts agree that exascale machines are
unlikely to be shared memory based, thus a more decoupled approach is needed; on
the reliability side, there’s a need to design mechanisms that can deal with failures
that will occur at much higher rates—in absolute terms—simply due to the sheer
size of the system. Here again the two fields shall co-operate much closer.

Some people are still doubtful that exascale machines will ever be built—and
the camp of those claiming that a 1,000 core chip will never be practical is equally
large. We believe however that there’s really no alternative in sight—solving our
most stringent problems will require machines at such scale—and the two domains
of macro-computing and micro-computing can for sure co-operate on these impor-
tant issues: power efficiency, scalability and reliability.

10.5.3   Mobile Computing

Just ten years ago mobile phone were used for little more than making calls and
sending text messages. By contrast, today’s mobile phones are more capable inter-
net connected devices than the PCs of the 1990s of the last century and we are fast
approaching the point in time when virtually anyone on this planet who wants to
will have access to a mobile device. The industry is thinking even further, predicting
50 billion connected devices within a decade [1].

Managing such a computationally and network-wise complex, distributed, un-
reliable (in terms of accessibility) system—the mobile computing swarm—poses
major challenges in terms of resource allocation, fault detection, containment and
management. This is another domain that can positively influence the domain of

10.5 Interaction with Related Domains

222

many-core programming, primarily with respect to resource management tech-
niques and fault tolerance.

10.6   Summary: the World of Computing in 2020

As Winston Churchill, the wartime British Prime Minister once noted, “it’s dif-
ficult to make prediction, especially about the future”. Predictions about the future
of computing have been proven wrong more than once in the past: just think about
IBM’s estimate back in 1950 of how many computers would be sold worldwide
(under 10) and the estimate of reaching speeds of 10 GHz+ well before 2010. How-
ever, if the current trend of shift to multi-core parallel computing will continue, we
believe there are a few likely developments we will witness during the next decade:

• The emergence of what could be called semantic computing: provisioning suf-
ficient amount of semantic information to the run-time system that would allow
it to autonomously decide how best to execute the given program, including
speculative execution and pre-calculation techniques

• The pervasive importance of power-conscious computing: if anything, power
will be the dominant cost factor and constraint during the coming years and will
influence design choices on hardware, operating system and application level

• Computing will evolve towards a much less centralized, distributed, loosely co-
ordinated model, on chip, data center and mobile computing level; everything
will be interconnected, but software will likely consist of loosely coupled threads
of execution with as little sharing with other entities as possible.

This is the place where the famous final word shall be placed. Luckily, there’s no
such thing in the ever-changing, ever-evolving, ever-surprising yet wonderful world
of computer science: it’s just a series of amazing achievements and new challenges
that have transformed the world we live in—and surely will do so in the future as
well.

References

 1. Ericsson (2010) CEO to shareholders: 50 billion connections 2020. http://www.ericsson.
com/thecompany/press/releases/2010/04/1403231. Accessed 11 January 2010

 2. Hung P, Flynn M J (1999) Optimum Instruction-level Parallelism (ILP) for Superscalar and
VLIW Processors. Technical report, Stanford University

 3. Steffan J G, Mowry T C (1998) The Potential for Using Thread Level Data Speculation
to Facilitate Automatic Parallelization. Proceedings of the 4th International Symposium on
High- Performance Computer Architecture: 2–13

 4. Liu S, Gaudiot J-L (2008) The Potential of Fine-Grained Value Prediction in Enhancing the
Performance of Modern Parallel Machines. 13th Asia-Pacific Computer Systems Architecture
Conference: 1-8

10 Looking Ahead

223

 5. Bridges M, Vachharajani N, Zhang Y, Jablin T, August D (2007) Revisiting the Sequential
Programming Model for Multi-Core. Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture: 69-84

 6. Prabhu P, Ramalingam G, Vaswani K (2010) Safe Programmable Speculative Parallelism.
Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation: 50-61

 7. Vajda A, Stenström P (2010) Semantic Information based Speculative Parallel Execution.
Proceedings 3rd Workshop on Parallel Execution of Sequential Programs on Multi-Core Ar-
chitectures

 8. Axelsson E, Claessen K, Devai G et al (2010) Feldspar: A Domain Specific Language for
Digital Signal Processing algorithms. Proceedings of the 8th ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign

 9. Chafi H, Sujeeth A K, Brown K J, Lee H J, Atreya A R, Olukotun K (2011) A Domain-
Specific Approach to Heterogeneous Parallelism. Proceedings of the 16th Annual Symposium
on Principles and Practice of Parallel Programming

10. Chafi H, DeVito Z, Moors A, Rompf T, Sujeeth A K, Hanrahan P, Odersky M, Olukotun K
(2010) Language Virtualization for Heterogeneous Parallel Computing. Onward! ’10: Pro-
ceedings of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications

11. Odersky M, Spoon L, Venners B (2008) Programming in Scala: A Comprehensive Step-by-
Step Guide. Artima Inc

12. Cadar C, Pietzuch P, Wolf A L (2010) Multiplicity Computing: A Vision of Software Engi-
neering for Next-Generation Computing Platform Applications. FSE/SDP Workshop on the
Future of Software Engineering Research: 81-86

References

225225

Index

A
Actor, 5, 153, 154, 157–165, 171, 172, 175,

207, 209, 210
Actor model, 5, 153, 154, 157–163, 165, 171,

172, 175, 207, 209, 210
Agent and repository pattern, 110
Amdahl’s law, 77–88, 103, 105, 128
Amdahl’s law for many-core chips, 79
Analysis and profiling, 118, 121–125
Asymmetric multi-processing, AMP, 51
Atomic operation, 18, 97
Auto tuning, 124

B
Barrelfish, 127, 131, 143–145
Bound multi-processing, BMP, 52
Bounded nondeterminism, 158
Buddy allocator, 56–58, 60, 64
Bus interconnect, 12

C
Cache coherence, 10, 14–16, 28, 36, 103, 106,

128, 215
Cache coherence protocol, 15
Cache miss, 54, 117, 123, 128, 150
Cache miss rate, 123, 128
Cache-coherent non-uniform memory access,

ccNUMA, 68
Cell Broadband Engine, Cell BE, Cell

processor, 40
Chapel language, 5, 107, 167, 169
Cilk, 6, 14, 91, 95, 113, 165, 166, 175–180,

185, 186, 189, 190, 202, 203
Cloud computing, 6, 143, 213, 215, 220
CMOS 9, 23, 26
Communicating parallel processes, 157, 159,

161, 163
Communicating sequential processes, CSP,

153–157

Compare and swap, 18, 97
Concurrency Oriented Programming, 161
Continuation passing, 187
Corey, 127, 131, 141, 142
Cortex, A15, 34
CPU, 32, 49, 50, 58, 61, 64–68, 72, 143–145,

147, 148, 203, 204, 206, 207
Critical section, 18, 96, 97, 100–105, 108,

136, 197
Crossbar interconnect, 12, 13

D
Dark silicon, 27, 221
Data-based decomposition, 90, 91, 95, 111
Data-parallel, 5, 6, 13, 28, 37, 38, 203, 205,

207
Debugging, 5, 117, 119–121, 125, 126
Decomposition, 5, 48, 89–91, 93, 95, 108,

111–115
Divide and conquer, 111, 113
Domain specific language, DSL, 218–220
DVFS 31, 32

E
Embedded DRAM, eDRAM, 22–23, 28, 31,

79, 129, 130
Erlang behaviors, 207–210
Erlang language, 111, 133
Event based systems, 110, 111, 113
Exascale computing, 6, 213, 220, 221
Exokernel, 49, 141, 144

F
Fermi architecture, 37, 38
Follow the Data pattern, 103–107, 114, 137,

168
Fork/join, 112
fOS, 127, 131, 142, 143, 148

A. Vajda, Programming Many-Core Chips,
DOI 10.1007/978-1-4419-9739-5, © Springer Science+Business Media, LLC 2011

226226

Functional decomposition, 90, 91, 93, 95, 111,
114

Future, 107, 190–195

G
Go language, 5, 156, 157, 163
Grand Central Dispatch, GCD, 176, 180–185
Graphics Processing Unit, GPU, 30, 35,

36–38, 40, 42, 114, 203, 204, 206
Gunther’s conjecture, 5, 77, 86, 87
Gustafson’s law, 77, 79, 82–85

H
Hardware multi-threading, 19, 20
Hardware Transactional memory, 24–26, 102
Haskell language, 5, 161, 162, 163, 218
HeliOS, 127, 138, 147–149, 151
Helper core, 21, 120, 122
Helper thread, 21, 22
Heterogeneous processor, 40, 133, 147
Hyper-threading, 11, 29, 30
HyperTransport, 20
Hypervisor, 131, 139, 140

I
Implementation strategy patterns, 112, 113
Instruction level parallelism, ILP, 11, 216
Instruction set architecture, ISA, 11, 19, 22,

27, 29, 31, 32, 34, 35, 40, 79, 80, 106, 130,
135–138, 140, 144, 147, 149

Intel’s Knights Corner, 11, 39
Interconnect, interconnection, interconnect

network, 4, 12, 13, 20, 21, 23–25, 27, 28,
32, 33, 35, 36, 38, 40, 120, 130

Iterative refinement, 110

J
Java, 34, 100, 107, 108, 121, 157, 163, 164,

167, 169
Java Virtual Machine, JVM, 121, 163, 164,

219

K
Karp-Flatt metric, 5, 87
KILL Rule, 2, 5, 77, 87, 88

L
Language virtualization, 219
Linux, 5, 40, 45–48, 51, 52, 58, 61–65, 67, 72,

74, 101, 106, 121, 127, 128, 185
Load-linked and store-conditional, 18
Locality group, 66, 68, 69

Lock, 18, 71, 74, 96–98, 103, 104, 106, 114,
119, 182

Loop level parallelism, 112, 113, 190
Low frequency, 27, 28

M
MacOS, 46, 95, 185, 204
Many Integrated Core Architecture, 39
MapReduce, 93, 112, 185
Memory allocation, 53, 55, 56, 58, 60, 64, 65,

69, 144, 145
Memory consistency, 17, 102, 103, 106
Memory fragmentation, 53, 55, 56
Memory management, 25, 31, 45, 52, 53,

55–59, 64–66, 68, 69, 73, 132, 134, 141,
145, 204, 205

Memory page, 53–56, 58, 64–66, 69, 73, 74
Memory wall, 21
Memristor, 22, 23, 27, 28, 130
Mesh interconnect, 24, 36
MESI, 15, 16, 26
Message passing, 48, 96, 97, 106–108, 112,

114, 137, 143, 145, 146, 148, 149, 162,
210

Micro kernel, 47–49, 61, 70, 132, 135, 143,
146, 147, 151

Mobile computing, 6, 40, 213, 215, 220–222
Model-view-controller, 110, 111
Monolithic kernel, 47–49, 61, 65, 132
Moore’s law, 1–3, 22, 27
Multikernel, 143
Multiple instruction multiple data, MIMD,

109, 114
Multi-processor interconnect, 20

N
Nehalem, 29
New Moore’s law, 3
Non-uniform Memory Access, NUMA, 20,

50, 51, 63, 64, 65, 68-70, 72, 73, 74, 130,
145, 149

O
Occam language, 5, 155–157
OpenCL, 6, 37, 175, 203–207
OpenMP, 6, 14, 91, 113, 175, 176, 195–203
Operating system, 4, 5, 13, 40, 45–56, 58, 61,

63, 65, 67, 69–71, 73, 74, 93–95, 100, 101,
106–108, 113, 114, 117, 127–151, 160,
161, 164, 166, 175, 180, 185, 186, 215,
216, 222

Optical (on-chip) interconnect, 24, 25, 27

Index

227227

OS scheduling, 24, 25, 27, 49–52, 61–63,
65–68, 70–73, 131–135, 142, 146

OSE, 49, 138, 148, 160
Our Pattern Language, OPL, 5, 109–115

P
Parallel algorithm strategy patterns, 111, 112
Parallel execution patterns, 110, 114
Partitioned Global Address Space, PGAS, 107,

167, 169, 170
Patterns, 5, 21, 53, 59, 89, 99, 108–114, 118,

122
Performance analysis, 5, 117
Performance tuning, 5, 117, 119, 123–126
Pipe and filter pattern, 109, 110
Pipeline, 11, 91, 95, 111, 121, 160
Pipelined execution, 91, 92
Power dissipation, 2
Power, 7 22, 23, 31
Power-aware computing, power-aware

scheduling, 130, 138, 139
Process, 3, 5, 11, 21, 23, 26, 35, 36, 49, 54,

56, 57, 60, 62, 70, 72, 73, 93, 94, 110–112,
119, 120, 124, 125, 144–149, 154–157,
161, 162, 164, 171, 178, 182, 196, 207,
209, 210, 213

Process control pattern, 109–111

Q
QNX, 49, 160
QuickPath Interconnect, 20

R
Real-time, 48, 49, 52, 62, 63, 66, 67, 70, 102,

106, 113, 138, 146, 148, 160
Ring interconnect, 13, 23
ROOM, 121, 160

S
Satellite operating system, 137, 138
Scala language, 5, 161, 163–165, 219
Scheduling, 5, 11, 38, 45, 47–52, 56, 61–72,

74, 92, 94, 95, 101, 107, 111, 112, 115,
127, 128, 131–140, 142, 145, 146, 150,
151, 164–166, 172, 179, 180, 187, 195,
199, 200, 202

Scouting thread, 22
Semantic information, 142, 214, 216–218,

220, 222
Semaphore, 70, 99–101, 184
Sequential consistency, 17
Share nothing principle, 155

Shared memory, 3, 14–18, 51, 102–106, 114,
128, 170–172

Simultaneous multi-threading SMT, 11, 31
Single program multiple data, SIMD, 109,

114, 204, 206
Single-threaded processor, 10
Slab allocator, 56, 58–60, 64, 68, 73
Software Transactional memory, 25, 102, 163
Solaris, 5, 45, 47, 56, 58, 60, 61, 65–69, 73,

74, 98, 100, 106
Space-shared operating systems, 134, 135,

140, 216
Space-shared scheduling, 5, 131–133, 142,

145, 151
SPARC, 29, 32, 33
Speculative execution, 21, 22, 79, 82, 90, 95,

111, 115, 150, 191, 216, 217, 222
Static task graph, 110, 111
Statistical sampling, 122, 123
3D (memory) stacking, 4, 23, 24, 27, 28, 130,

216
Step-wise execution, 120
Store atomicity, 17
Structural patterns, 109–111
Symmetric multi-processing, SMP, 50, 51, 61,

64, 70
Synchronization, 5, 18, 19, 21, 24, 70, 74, 86,

87, 89–92, 94, 96, 97, 99–103, 105, 107,
108, 110, 112–114, 117–122, 155, 157,
162, 165, 166, 168, 169, 175, 182, 186,
187, 195–197, 199, 200, 204–206, 215

T
Tail recursive, 209
Task graph, 110, 111, 114, 185, 187, 189, 193,

202, 206, 207
Task Parallel Library, TPL, 176, 189–195
Task queue, 112, 113, 166, 178, 194, 199
Task scheduling, 47, 49, 50, 65, 66, 95, 195,

199, 200, 202
Task-based programming model, 165, 167, 169
Task-parallel, 5, 6
Tessellation, 127, 131–133, 145–147
Test and set, 18
Thread, 6, 11, 17, 19, 21, 22, 25, 30, 38,

45, 49, 64, 66–72, 74, 82, 91, 93–107,
110, 113, 114, 122, 129, 133–136, 138,
142, 145, 147, 151, 160, 163, 164, 166,
171, 175–178, 181, 184, 185, 188, 189,
191–201, 215, 216

Thread Building Blocks, Threading Building
Blocks, TBB, 176, 185–189, 201

Thread level parallelism, TLP, 216

Index

228228

Thread level speculation, 22
Thread pool, 95, 114, 164, 181, 194, 195
Thread priority, 136, 151
Tile architecture, 35, 36, 143
Time-shared scheduling, 128, 131, 146, 150
Transactional memory, 9, 21, 24–26, 97,

101–104, 106, 108, 114, 115, 119, 163

U
Unbounded nondeterminism, 158
Unreliability of HW, 27, 133, 215

V
Virtual memory, 31, 53, 54, 73, 114
Virtualization, 5, 29, 34, 46, 127, 139, 140,

220
Vmem allocator, 56, 60, 68

W
Windows, 5, 32, 45–47, 51, 61, 67, 69–74,

133, 185, 195
Work stealing, 166, 176, 180, 189, 194, 195,

202
X10 language, 5, 107, 167–170

Index

	Cover
	Programming Many-Core
Chips
	ISBN 9781441997388
	Foreword
	Contents
	Chapter 1
	Introduction
	1.1 The End of Endless Scalability
	1.2 The Trouble with Software
	1.3 The Book
	1.3.1 Applications

	1.4 Summary
	References

	Chapter 2
	Multi-core and Many-core Processor Architectures
	2.1 Overview
	2.2 Architectural Principles
	2.2.1 Established Concepts
	2.2.1.5 Memory Consistency
	2.2.1.8 Multi-processor Interconnect
	2.2.1.9 Summary

	2.4 Examples of Multi-core Processors
	2.4.1 Processors Based on Low Number of Cores
	2.4.1.1 Intel’s Server Processors
	2.4.1.2 IBM’s Power Processors

	2.4.2 Processors Based on Large Number of Cores
	2.4.2.3 PicoChip Architecture

	References

	Chapter 3
	State of the Art Multi-Core Operating Systems
	3.1 Definition of an Operating System
	3.2 Operating System Architecture: Micro-Kernels
and Monolithic Kernels
	3.3 Scheduling
	3.3.3 Bound Multi-Processing

	3.4 Memory Management
	3.4.1 Virtual Memory and Memory Pages

	3.5 Current Main-Stream Operating Systems
	3.5.1 Linux
	3.5.1.3 Memory Management

	3.5.2 Solaris
	3.5.2.2 Memory Management and Support for NUMA Systems
	3.5.2.3 Solaris: Summary

	3.5.3 Windows

	3.6 Summary
	References

	Chapter 4
	The Fundamental Laws of Parallelism
	4.8 Summary
	References

	Chapter 5
	Fundamentals of Parallel Programming
	5.1 Introduction
	5.2 Decomposition and Synchronization
	5.2.1 Functional Decomposition
	5.2.5 Summary

	5.3 Implementation of Decomposition
	5.4 Implementation of Synchronization
	5.4.1 Locks
	5.4.6 Shared Memory

	5.5 Patterns of Parallel Programs
	5.5.1 Structural Patterns
	5.5.2 Parallel Algorithm Strategy Patterns
	5.5.3 Implementation Strategy Patterns
	5.5.4 Parallel Execution Patterns

	5.6 Summary
	References

	Chapter 6
	Debugging and Performance Analysis of Many-core Programs
	6.1 Introduction
	6.2 Debugging
	6.3 Analysis and Profiling
	6.4 Performance Tuning
	6.5 Summary

	Chapter 7
	Many-core Virtualization and Operating Systems
	7.2 Fundamentals for a New Operating System Concept
	7.3 Space-shared Scheduling
	7.3.2 Benefits and Drawbacks of Space-shared Operating Systems
	7.3.3 Summary

	7.4 Heterogeneity
	7.7 Experimental Many-core Operating Systems
	7.7.5 heliOS
	7.7.5.4 Programming Model and Handling of NUMA Domains
	7.7.5.5 Summary

	References

	Chapter 8
	Introduction to Programming Models
	8.6 Summary
	References

	Chapter 9
	Practical Many-Core Programming
	9.1 Introduction
	9.2 Task-Based Parallelism
	9.2.3 Intel Thread Building Blocks
	9.2.3.3 TBB Task Scheduler
	9.2.3.4 TBB Summary

	9.2.4 Microsoft Task Parallel Library

	9.3 Data-Parallel Model
	9.3.1 OpenCL
	9.3.1.2 OpenCL for Many-Core Programming
	9.3.1.3 Summary

	9.4 The Actor Model
	9.4.1 Erlang’s Actor Model

	References

	Kapitel-10
	Looking Ahead
	10.1 What We Learned Until Now
	10.6 Summary: the World of Computing in 2020
	References

	Index

