


Professional 
Multicore Programming

Design and Implementation for C++ Developers

Cameron Hughes

Tracey Hughes

Wiley Publishing, Inc.

ffirs.indd   vffirs.indd   v 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



Professional Multicore Programming

Introduction ............................................................................................... xxi

Chapter 1: The New Architecture ..................................................................  1

Chapter 2: Four Effective Multicore Designs ................................................. 19

Chapter 3: The Challenges of Multicore Programming ................................... 35

Chapter 4: The Operating System’s Role ....................................................... 67

Chapter 5: Processes, C++ Interface Classes, and Predicates ....................... 95

Chapter 6: Multithreading .......................................................................... 143

Chapter 7:  Communication and Synchronization 
of Concurrent Tasks .................................................................. 203

Chapter 8: PADL and PBS: Approaches to Application Design ...................... 283

Chapter 9:  Modeling Software Systems 
That Require Concurrency ......................................................... 331

Chapter 10:  Testing and Logical Fault Tolerance 
for Parallel Programs .............................................................. 375

Appendix A: UML for Concurrent Design  .................................................... 401

Appendix B: Concurrency Models ............................................................... 411

Appendix C: POSIX Standard for Thread Management ................................. 427

Appendix D: POSIX Standard for Process Managemnet ............................... 567

Bibliography .............................................................................................. 593

Index ........................................................................................................ 597

ffirs.indd   iffirs.indd   i 7/31/08   3:13:36 PM7/31/08   3:13:36 PM



ffirs.indd   iiffirs.indd   ii 7/31/08   3:13:36 PM7/31/08   3:13:36 PM



Professional 
Multicore Programming

ffirs.indd   iiiffirs.indd   iii 7/31/08   3:13:36 PM7/31/08   3:13:36 PM



ffirs.indd   ivffirs.indd   iv 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



Professional 
Multicore Programming

Design and Implementation for C++ Developers

Cameron Hughes

Tracey Hughes

Wiley Publishing, Inc.

ffirs.indd   vffirs.indd   v 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



Professional Multicore Programming: 
Design and  Implementation for C++ Developers
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-28962-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data 

Hughes, Cameron, 1960-
  Professional multicore programming : design and implementation for C++ developers/Cameron Hughes, Tracey
 Hughes.
   p. cm.
  Includes index.
  ISBN 978-0-470-28962-4 (paper/website)
 1. Parallel programming (Computer science) 2. Multiprocessors. 3. C++ (Computer program  language) 
4. System design. I. Hughes, Tracey.  I. Title. 
 QA76.642.H837 2008
 005.13'3—dc22
 2008026307

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, 
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of 
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization 
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, 
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal 
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or 
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with 
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including 
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or 
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is 
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional 
services. If professional assistance is required, the services of a competent professional person should be sought. Neither 
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is 
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the 
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further, 
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this 
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the 
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are 
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other 
 countries, and may not be used without written permission. All other trademarks are the property of their respective 
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Excerpts from the POSIX Standard for Thread Management and the POSIX Standard for Process Management in 
 Appendixes C and D are reprinted with permission from IEEE Std. 1003.1-2001, IEEE Standard for Information 
 Technology – Portable Operating System Interface (POSIX), Copyright 2001, by IEEE. The IEEE disclaims any 
 responsibility or liability resulting from the placement and use in the described manner.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available 
in electronic books.

ffirs.indd   viffirs.indd   vi 7/31/08   3:13:37 PM7/31/08   3:13:37 PM

www.wiley.com


We would like to dedicate this book to Vera and Mary, our inspiration.

ffirs.indd   viiffirs.indd   vii 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



ffirs.indd   viiiffirs.indd   viii 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



          About the Authors       
  Cameron Hughes  is a professional software developer. He is a software engineer at CTEST Laboratories 
and a staff programmer/analyst at Youngstown State University. With over 15 years as a software devel-
oper, Cameron Hughes has been involved in software development efforts of all sizes, from business and 
industrial applications to aerospace design and development projects. Cameron is the designer of the 
Cognopaedia and is currently project leader on the GRIOT project that runs on the Pantheon at CTEST 
Laboratories. The Pantheon is a 24 node multicore cluster that is used in the development of 
 multithreaded search engine and text extraction programs. 

  Tracey Hughes  is a senior graphics programmer at CTEST Laboratories, where she develops knowledge 
and information visualization software. Tracey Hughes is the lead  designer for the M.I.N.D, C.R.A.I.G, 
and NOFAQS projects that utilize epistemic visualization at CTEST Laboratories. She regularly contrib-
utes to Linux development software efforts. She is also a team member on the GRIOT project. 

 Cameron and Tracey Hughes are also the authors of six books on software development, multithreaded, 
and parallel programming:  Parallel and Distributed Programming Using C��  (Addison Wesley, 2003), 
 Linux Rapid Application Development  (Hungry Minds, 2000),  Mastering the Standard C�� Classes  (Wiley, 
1999),  Object - Oriented Multithreading Using C��  (Wiley, 1997),  Collection and Container Classes in C��  
(Wiley, 1996), and  Object - Oriented I/O Using C�� Iostreams  (Wiley, 1995)         .

ffirs.indd   ixffirs.indd   ix 7/31/08   3:13:37 PM7/31/08   3:13:37 PM



ffirs.indd   xffirs.indd   x 7/31/08   3:13:38 PM7/31/08   3:13:38 PM



Credits
Executive Editor
Carol Long

Senior Development Editor
Kevin Kent

Technical Editor
Andrew Moore

Production Editor
Christine O’Connor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield 

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Christopher Jones

Indexer
Robert Swanson

ffirs.indd   xiffirs.indd   xi 7/31/08   3:13:38 PM7/31/08   3:13:38 PM



ffirs.indd   xiiffirs.indd   xii 7/31/08   3:13:38 PM7/31/08   3:13:38 PM



          Acknowledgments       

 As with all of the projects that we are fortunate to be involved with these days, we could not have made 
it to the finish line without the help, suggestions, constructive criticisms, and resources of our colleagues 
and friends. In particular, we would like to thank the YSU student chapter of the ACM for suffering 
through some of the early versions and rough drafts of the material presented in this book. They were 
single - handedly responsible for sending us back to the drawing board on more than one occasion. 
We are indebted to Shaun Canavan for providing us with release time for this project and for picking up 
the slack on several of the colloquiums and conferences where we had major responsibilities but not 
enough time to execute them. We would like to thank Dr. Alina Lazar for excusing us from many missed 
meetings and deadlines. A big thanks goes to Trevor Watkins from Z Group who gave us free and 
unrestricted access to Site B and for helping us with Linux and the Cell processors. We owe much gratitude to 
Brian Nelson from YSU who patiently answered many of our pesky questions about the  UltraSparc T1  
Sun - Fire - T200 and for also giving us enough disk quota and security clearance to get the job done! Thanks to 
Dr. Kriss Schueller for his inspiring presentation to our group on multicore  computing and the UltraSparc 
T1 and also for agreeing to review some of the early versions of the hardware material that we present in 
the book. A special thanks goes to CTEST Labs who gave us full  access to their Pantheon cluster, 
 multicore Opterons, and multicore Macs. The CTEST Pantheon provided the primary testing  resources 
for much of the material in this book. We would like to thank Jacqueline Hansson from IEEE for her help 
with the POSIX standards material. Thanks to Greg from Intel who helped us get off to a good start on the 
Intel Thread Building Blocks library. Thanks to Carole  McClendon who saw value in this project from 
the very beginning and who encouraged us to see it through. A book of this nature is not possible without the 
input from technical editors, development editors, and reviewers. We have to  extend much appreciation to 
Kevin Kent, our senior development editor, who helped sculpt the  material and for providing us with very 
useful criticism and input throughout the project; to Carol Long, our  executive  acquisitions editor for her 
 support as we tip - toed past our share of deadlines; to Andrew Moore, our technical editor; and to Christine 
O ’ Connor, our production editor.        

ffirs.indd   xiiiffirs.indd   xiii 7/31/08   3:13:38 PM7/31/08   3:13:38 PM



ffirs.indd   xivffirs.indd   xiv 7/31/08   3:13:38 PM7/31/08   3:13:38 PM



Contents

Introduction xxi

Chapter 1: The New Architecture 1

What Is a Multicore? 2
Multicore Architectures 2

Hybrid Multicore Architectures 3
The Software Developer’s Viewpoint 4

The Basic Processor Architecture 5
The CPU (Instruction Set) 7
Memory Is the Key 9
Registers 11
Cache 12
Main Memory 13

The Bus Connection 14
From Single Core to Multicore 15

Multiprogramming and Multiprocessing 15
Parallel Programming 15
Multicore Application Design and Implementation 16

Summary 17

Chapter 2: Four Effective Multicore Designs 19

The AMD Multicore Opteron 21
Opteron’s Direct Connect and HyperTransport 22
System Request Interface and Crossbar 23
The Opteron Is NUMA 24
Cache and the Multiprocessor Opteron 25

The Sun UltraSparc T1 Multiprocessor 25
Program Profile 2-1 26
UltraSparc T1 Cores 27
Cross Talk and The Crossbar 27
DDRAM Controller and L2 Cache 28
UltraSparc T1 and the Sun and GNU gcc Compilers 28

ftoc.indd   xvftoc.indd   xv 7/31/08   3:14:27 PM7/31/08   3:14:27 PM



xvi

Contents             

The IBM Cell Broadband Engine 28
CBE and Linux 29
CBE Memory Models 29
Hidden from the Operating System 30
Synergistic Processor Unit 31

Intel Core 2 Duo Processor 31
Northbridge and Southbridge 32
Intel’s PCI Express 32
Core 2 Duo’s Instruction Set 32

Summary 33

Chapter 3: The Challenges of Multicore Programming 35

What Is the Sequential Model? 36
What Is Concurrency? 37
Software Development 37

Challenge #1: Software Decomposition 41
Challenge #2: Task-to-Task Communication 47
Challenge #3: Concurrent Access to Data or Resources by Multiple Tasks or Agents 51
Challenge #4: Identifying the Relationships between Concurrently Executing Tasks 56
Challenge #5: Controlling Resource Contention Between Tasks 59
Challenge #6: How Many Processes or Threads Are Enough? 59
Challenges #7 and #8: Finding Reliable and Reproducible Debugging and Testing 60
Challenge #9: Communicating a Design That Has Multiprocessing Components 61
Challenge #10: Implementing Multiprocessing and Multithreading in C++ 62

C++ Developers Have to Learn New Libraries 63
Processor Architecture Challenges 64
Summary 64

Chapter 4: The Operating System’s Role 67

What Part Does the Operating System Play? 68
Providing a Consistent Interface 68
Managing Hardware Resources and Other Software Applications 68
The Developer’s Interaction with the Operating System 69
Core Operating System Services 71
The Application Programmer’s Interface 75

Decomposition and the Operating System’s Role 83
Hiding the Operating System’s Role 86

Taking Advantage of C++ Power of Abstraction and Encapsulation 86
Interface Classes for the POSIX APIs 86

Summary 93

ftoc.indd   xviftoc.indd   xvi 7/31/08   3:14:28 PM7/31/08   3:14:28 PM



xvii

Contents             

Chapter 5: Processes, C++ Interface Classes, and Predicates 95

We Say Multicore, We Mean Multiprocessor 96
What Is a Process? 97
Why Processes and Not Threads? 97
Using posix_spawn() 98

The file_actions Parameter 99
The attrp Parameter 100
A Simple posix_spawn() Example 103
The guess_it Program Using posix_spawn 104

Who Is the Parent? Who Is the Child? 107
Processes: A Closer Look 108

Process Control Block 108
Anatomy of a Process 109
Process States 111
How Are Processes Scheduled? 114

Monitoring Processes with the ps Utility 116
Setting and Getting Process Priorities 119
What Is a Context Switch? 121
The Activities in Process Creation 121

Using the fork() Function Call 122
Using the exec() Family of System Calls 122

Working with Process Environment Variables 126
Using system() to Spawn Processes 127
Killing a Process 127

The exit(), and abort() Calls 128
The kill() Function 128

Process Resources 129
Types of Resources 130
POSIX Functions to Set Resource Limits 131

What Are Asynchronous and Synchronous Processes 133
Synchronous vs. Asynchronous Processes for fork(), posix_spawn(), system(), 
and exec() 135

The wait() Function Call 135
Predicates, Processes, and Interface Classes 137

Program Profile 5-1 138
Summary 141

Chapter 6: Multithreading 143

What Is a Thread? 143
User- and Kernel-Level Threads 144
Thread Context 147

ftoc.indd   xviiftoc.indd   xvii 7/31/08   3:14:28 PM7/31/08   3:14:28 PM



xviii

Contents             

Hardware Threads and Software Threads 149
Thread Resources 149

Comparing Threads to Processes 150
Context Switching 150
Throughput 150
Communicating between Entities 150
Corrupting Process Data 151
Killing the Entire Process 151
Reuse by Other Programs 151
Key Similarities and Differences between Threads and Processes 152

Setting Thread Attributes 153
The Architecture of a Thread 155

Thread States 156
Scheduling and Thread Contention Scope 157
Scheduling Policy and Priority 159
Scheduling Allocation Domains 160

A Simple Threaded Program 160
Compiling and Linking Threaded Programs 162

Creating Threads 162
Passing Arguments to a Thread 163
Program Profile 6-1 165
Joining Threads 165
Getting the Thread Id 166
Using the Pthread Attribute Object 167

Managing Threads 171
Terminating Threads 171
Managing the Thread’s Stack 180
Setting Thread Scheduling and Priorities 183
Setting Contention Scope of a Thread 187
Using sysconf() 188
Thread Safety and Libraries 190

Extending the Thread Interface Class 193
Program Profile 6-2 200

Summary 200

Chapter 7: Communication and Synchronization of Concurrent Tasks 203

Communication and Synchronization 204
Dependency Relationships 205
Counting Tasks Dependencies 208
What Is Interprocess Communication? 210
What Are Interthread Communications? 230

ftoc.indd   xviiiftoc.indd   xviii 7/31/08   3:14:29 PM7/31/08   3:14:29 PM



xix

Contents             

Synchronizing Concurrency 238
Types of Synchronization 239
Synchronizing Access to Data 240
Synchronization Mechanisms 246

Thread Strategy Approaches 268
Delegation Model 269
Peer-to-Peer Model 271
Producer-Consumer Model 272
Pipeline Model 273
SPMD and MPMD for Threads 274

Decomposition and Encapsulation of Work 276
Problem Statement 276
Strategy 276
Observation 277
Problem and Solution 277
Simple Agent Model Example of a Pipeline 278

Summary 282

Chapter 8: PADL and PBS: Approaches to Application Design 283

Designing Applications for Massive Multicore Processors 284
What Is PADL? 287

Layer 5: Application Architecture Selection 290
Layer 4: Concurrency Models in PADL 300
Layer 3: The Implementation Model of PADL 304

The Predicate Breakdown Structure (PBS) 326
An Example: PBS for the “Guess-My-Code” Game 327
Connecting PBS, PADL, and the SDLC 328
Coding the PBS 328

Summary 328

Chapter 9: Modeling Software Systems That Require Concurrency 331

What Is UML? 332
Modeling the Structure of a System 334

The Class Model 334
Visualizing Classes 336
Ordering the Attributes and Services 343
Visualizing Instances of a Class 345
Visualizing Template Classes 348
Showing the Relationship between Classes and Objects 349
Visualizing Interface Classes 353
The Organization of Interactive Objects 356

ftoc.indd   xixftoc.indd   xix 7/31/08   3:14:29 PM7/31/08   3:14:29 PM



xx

Contents             

UML and Concurrent Behavior 357
Collaborating Objects 357
Multitasking and Multithreading with Processes and Threads 359
Message Sequences between Objects 361
The Activities of Objects 363
State Machines 365

Visualizing the Whole System 371
Summary 372

Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs 375

Can You Just Skip the Testing? 376
Five Concurrency Challenges That Must Be Checked during Testing 377
Failure: The Result of Defects and Faults 379

Basic Testing Types 379
Defect Removal versus Defect Survival 380

How Do You Approach Defect Removal for Parallel Programs? 381
The Problem Statement 382
A Simple Strategy and Rough-Cut Solution Model 382
A Revised Solution Model Using Layer 5 from PADL 382
The PBS of the Agent Solution Model 383

What Are the Standard Software Engineering Tests? 386
Software Verification and Validation 387
The Code Doesn’t Work — Now What? 388
What Is Logical Fault Tolerance? 391
Predicate Exceptions and Possible Worlds 397
What Is Model Checking? 398

Summary 398

Appendix A: UML for Concurrent Design 401

Appendix B: Concurrency Models 411

Appendix C: POSIX Standard for Thread Management 427

Appendix D: POSIX Standard for Process Management 567

Bibliography 593

Index 597

ftoc.indd   xxftoc.indd   xx 7/31/08   3:14:29 PM7/31/08   3:14:29 PM



      Introduction          

 The multicore revolution is at hand. Parallel processing is no longer the exclusive domain of 
supercomputers or clusters. The entry - level server and even the basic developer workstation have the 
capacity for hardware -  and software - level parallel processing. The question is what does this mean for 
the software developer and what impact will it have on the software development process? In the race 
for who has the fastest computer, it is now more attractive for chip manufacturers to place multiple 
processors on a single chip than it is to increase the speed of the processor. Until now the software 
developer could rely on the next new processor to speed up the software without having to make any 
actual improvements to the software. Those days are gone. To increase overall system performance, 
computer manufacturers have decided to add more processors rather than increase clock frequency. This 
means if the software developer wants the application to benefit from the next new processor, the 
application will have to be modified to exploit multiprocessor computers. 

 Although sequential programming and single core application development have a place and will 
remain with us, the landscape of software development now reflects a shift toward multithreading and 
multiprocessing. Parallel programming techniques that were once only the concern of theoretical 
computer scientists and university academics are in the process of being reworked for the masses. The 
ideas of multicore application design and development are now a concern for the mainstream.  

  Learn Multicore Programming 
 Our book  Professional Multicore Programming: Design and Implementation for C++ Developers  presents 
the ABCs of multicore programming in terms the average working software developer can understand. 
We introduce the reader to the everyday fundamentals of programming for multiprocessor and 
multithreaded architectures. We provide a practical yet gentle introduction to the notions of parallel 
processing and software concurrency. This book takes complicated, almost unapproachable, 
parallel programming techniques and presents them in a simple, understandable manner. We address 
the pitfalls and traps of concurrency programming and synchronization. We provide a no - nonsense 
discussion of multiprocessing and multithreading models. This book provides numerous programming 
examples that demonstrate how successful multicore programming is done. We also include methods 
and techniques for debugging and testing multicore programming. Finally, we demonstrate how to take 
advantage of processor specific features using cross - platform techniques.  

  Different Points of View 
 The material in this book is designed to serve a wide audience with different entry points into multicore 
programming and application development. The audience for this book includes but is not limited to: 

  Library and tool producers  

  Operating system programmers  

❑

❑

flast.indd   xxiflast.indd   xxi 7/31/08   3:14:02 PM7/31/08   3:14:02 PM



Introduction

xxii

  Kernel developers  

  Database and application server designers and implementers  

  Scientific programmers and users with compute - intensive applications  

  Application developers  

  System programmers    

 Each group sees the multicore computer from a somewhat different perspective. Some are concerned 
with bottom - up methods and need to develop software that takes advantage of hardware - specific and 
vendor - specific features. For these groups, the more detailed the information about the nooks and 
crannies of multithreaded processing the better. Other groups are interested in top - down methods. This 
group does not want to be bothered with the details of concurrent task synchronization or thread safety. 
This group prefers to use high - level libraries and tools to get the job done. Still other groups need a mix 
of bottom - up and top - down approaches. This book provides an introduction to the many points of 
view of multicore programming, covering both bottom - up and top - down approaches.  

  Multiparadigm Approaches are the Solution 
 First, we recognize that not every software solution requires multiprocessing or multithreading. Some 
software solutions are better implemented using sequential programming techniques (even if the target 
platform is multicore). Our approach is solution and model driven. First, develop the model or solution 
for the problem. If the solution requires that some instructions, procedures, or tasks need to execute 
concurrently then determine which the best set of techniques to use are. This approach is in contrast to 
forcing the solution or model to fit some preselected library or development tool. The technique should 
follow the solution. Although this book discusses libraries and development tools, it does not advocate 
any specific vendor library or tool set. Although we include examples that take advantage of particular 
hardware platforms, we rely on cross - platform approaches. POSIX standard operating system calls and 
libraries are used. Only features of C++ that are supported by the International C++ standard are used. 

 We advocate a component approach to the challenges and obstacles found in multiprocessing and 
multithreading. Our primary objective is to take advantage of framework classes as building blocks for 
concurrency. The framework classes are supported by object - oriented mutexes, semaphores, pipes, 
queues, and sockets. The complexity of task synchronization and communication is significantly reduced 
through the use of interface classes. The control mechanism in our multithreaded and multiprocessing 
applications is primarily agent driven. This means that the application architectures that you will see in 
this book support the multiple - paradigm approach to software development. 

 We use object - oriented programming techniques for component implementation and primarily agent -
 oriented programming techniques for the control mechanism. The agent - oriented programming ideas 
are sometimes supported by logic programming techniques. As the number of available cores on the 
processor increase, software development models will need to rely more on agent - oriented and logic 
programming. This book includes an introduction to this multiparadigm approach for software 
development.  

❑

❑

❑

❑

❑

flast.indd   xxiiflast.indd   xxii 7/31/08   3:14:02 PM7/31/08   3:14:02 PM



Introduction

xxiii

  Why C++? 
 There are C++ compilers available for virtually every platform and operating environment. The ANSI 
American National Standards Institute (ANSI) and International Organization for Standardization (ISO) 
have defined standards for the C++ language and its library. There are robust open - source 
implementations as well as commercial implementations of the language. The language has to be widely 
adopted by researchers, designers, and professional developers around the world. The C++ language has 
been used to solve problems of all sizes and shapes from device drivers to large - scale industrial 
applications. The language supports a multiparadigm approach to software development. We can 
implement Object - Oriented designs, logic programming designs, and agent - oriented designs seamlessly 
in C++. We can also use structured programming techniques or low - level programming techniques 
where necessary. This flexibility is exactly what ’ s needed to take advantage of the new multicore world. 
Further, C++ compilers provide the software developer with a direct interface to the new features of the 
multicore processors.  

   UML  Diagrams 
 Many of the diagrams in this book use the Unified Modeling Language (UML) standard. In particular, 
activity diagrams, deployment diagrams, class diagrams and state diagrams are used to describe 
important concurrency architectures and class relationships. Although a knowledge of the UML is not 
necessary, familiarity is helpful.  

  Development Environments Supported 
 The examples in this book were all developed using ISO standard C/C++. This means the examples and 
programs can be compiled in all the major environments. Only POSIX - compliant operating system calls 
or libraries are used in the complete programs. Therefore, these programs will be portable to all 
operating system environments that are POSIX compliant. The examples and programs in this book were 
tested on the SunFire 2000 with UltraSparc T1 multiprocessor, the Intel Core 2 Duo, the IBM Cell 
Broadband Engine, and the AMD Dual Core Opteron.  

  Program Profiles 
 Most complete programs in the book are accompanied by a program profile. The profile will contain 
implementation specifics such as headers required, libraries required, compile instructions, and link 
instructions. The profile also includes a notes section that will contain any special considerations that 
need to be taken when executing the program. All code is meant for exposition purposes only.  

flast.indd   xxiiiflast.indd   xxiii 7/31/08   3:14:02 PM7/31/08   3:14:02 PM



Introduction

xxiv

  Testing and Code Reliability 
 Although all examples and applications in this book were tested to ensure correctness, we make no 
warranties that the programs contained in this book are free of defects or error or are consistent with any 
particular standard or mechantability, or will meet your requirement for any particular application. They 
should not be relied upon for solving problems whose incorrect solution could result in injury to person 
or loss of property. The authors and publishers disclaim all liability for direct or consequential damages 
resulting from your use of the examples, programs, or applications present in this book.  

  Conventions 
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of 
conventions throughout the book.     

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.   

 As for styles in the text: 

  We  highlight  new terms and important words when we introduce them.  

  We show keyboard strokes like this: Ctrl+A.  

  We show filenames, URLs, and code within the text like this:  persistence.properties .  

  We present code in two different ways: 

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that ’ s particularly important in the 
present context.  

 This book contains both code listings and code examples.  

  Code listings are complete programs that are runnable. As previously mentioned, in most cases, 
they will be accompanied with a program profile that tells you the environment the program 
was written in and gives you a description and the compiling and linking instructions, and so 
forth.  

  Code examples are snippets. They do not run as is. They are used to focus on showing how 
something is called or used, but the code cannot run as seen.     

  Source Code 
 As you work through the examples in this book, you may choose either to type in all the code manually 
or to use the source code files that accompany the book. All of the source code used in this book is 
available for download at  www.wrox.com . Once at the site, simply locate the book ’ s title (either by using 
the Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail 
page to obtain all the source code for the book.     

❑

❑

❑

❑

❑

❑

flast.indd   xxivflast.indd   xxiv 7/31/08   3:14:03 PM7/31/08   3:14:03 PM



Introduction

xxv

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is 
978 - 0 - 470 - 28962 - 4.   

 Once you download the code, just decompress it with your favorite decompression tool. Alternately, you 
can go to the main Wrox code download page at  www.wrox.com/dynamic/books/download.aspx  to 
see the code available for this book and all other Wrox books.  

  Errata 
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is 
perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or 
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save 
another reader hours of frustration, and at the same time you will be helping us provide even higher -
 quality information. 

 To find the errata page for this book, go to  www.wrox.com  and locate the title using the Search box or 
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can 
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list 
including links to each book ’ s errata is also available at  www.wrox.com/misc - pages/booklist.shtml . 

 If you don ’ t spot  “ your ”  error on the Book Errata page, go to  www.wrox.com/contact/techsupport
.shtml  and complete the form there to send us the error you have found. We ’ ll check the information 
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions 
of the book.  

  p2p.wrox.com 
 For author and peer discussion, join the P2P forums at  p2p.wrox.com . The forums are a Web - based 
system for you to post messages relating to Wrox books and related technologies and interact with other 
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of 
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, 
and your fellow readers are present on these forums. 

 At  http://p2p.wrox.com , you will find a number of different forums that will help you not only as you 
read this book but also as you develop your own applications. To join the forums, just follow these steps: 

  1.   Go to  p2p.wrox.com  and click the Register link.  

  2.   Read the terms of use and click Agree.  

  3.   Complete the required information to join as well as any optional information you wish to 
provide and click Submit.  

  4.   You will receive an e - mail with information describing how to verify your account and complete 
the joining process.        

flast.indd   xxvflast.indd   xxv 7/31/08   3:14:03 PM7/31/08   3:14:03 PM



Introduction

xxvi

 You can read messages in the forums without joining P2P, but in order to post your own messages, you 
must join.   

 Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the Web. If you would like to have new messages from a particular forum 
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to 
questions about how the forum software works as well as many common questions specific to P2P and 
Wrox books. To read the FAQs, click the FAQ link on any P2P page.         

flast.indd   xxviflast.indd   xxvi 7/31/08   3:14:03 PM7/31/08   3:14:03 PM



                                                 The New Architecture              

  If a person walks fast on a road covering fifty miles in a day, this does not mean he is 
capable of running unceasingly from morning till night. Even an unskilled runner 
may run all day, but without going very far.   

  — Miyamoto Musahi,  The Book of Five Rings     

 The most recent advances in microprocessor design for desktop computers involve putting 
multiple processors on a single computer chip. These multicore designs are completely replacing 
the traditional single core designs that have been the foundation of desktop computers. IBM, Sun, 
Intel, and AMD have all changed their chip pipelines from single core processor production to 
multicore processor production. This has prompted computer vendors such as Dell, HP, and Apple 
to change their focus to selling desktop computers with multicores. The race to control market 
share in this new area has each computer chip manufacturer pushing the envelope on the number 
of cores that can be economically placed on a single chip. All of this competition places more 
computing power in the hands of the consumer than ever before. The primary problem is that 
regular desktop software has not been designed to take advantage of the new multicore 
architectures. In fact, to see any real speedup from the new multicore architectures, desktop 
software will have to be redesigned. 

 The approaches to designing and implementing application software that will take advantage 
of the multicore processors are radically different from techniques used in single core 
development. The focus of software design and development will have to change from sequential 
programming techniques to parallel and multithreaded programming techniques. 

 The standard developer ’ s workstation and the entry - level server are now multiprocessors capable 
of hardware - level multithreading, multiprocessing, and parallel processing. Although sequential 
programming and single core application development have a place and will remain with us, the 
ideas of multicore application design and development are now in the mainstream. 

c01.indd   1c01.indd   1 7/31/08   2:43:20 PM7/31/08   2:43:20 PM



Chapter 1:                                                  The New Architecture          

2

 This chapter begins your look at multicore programming. We will cover: 

  What is a multicore?  

  What multicore architectures are there and how do they differ from each other?  

  What do you as a designer and developer of software need to know about moving from 
sequential programming and single core application development to multicore programming?     

  What Is a Multicore? 
 A  multicore  is an architecture design that places multiple processors on a single die (computer chip). Each 
processor is called a core. As chip capacity increased, placing multiple processors on a single chip 
became practical. These designs are known as  Chip Multiprocessors (CMPs)  because they allow for single 
chip multiprocessing. Multicore is simply a popular name for CMP or single chip multiprocessors. The 
concept of single chip multiprocessing is not new, and chip manufacturers have been exploring the idea 
of multiple cores on a uniprocessor since the early 1990s. Recently, the CMP has become the preferred 
method of improving overall system performance. This is a departure from the approach of increasing 
the clock frequency or processor speed to achieve gains in overall system performance. Increasing the 
clock frequency has started to hit its limits in terms of cost - effectiveness. Higher frequency requires more 
power, making it harder and more expensive to cool the system. This also affects sizing and packaging 
considerations. So, instead of trying to make the processor faster to gain performance, the response is 
now just to add more processors. The simple realization that this approach is better has prompted the 
multicore revolution. Multicore architectures are now center stage in terms of improving overall system 
performance. 

 For software developers who are familiar with multiprocessing, multicore development will be familiar. 
From a logical point of view, there is no real significant difference between programming for multiple 
processors in separate packages and programming for multiple processors contained in a single package 
on a single chip. There may be performance differences, however, because the new CMPs are using 
advances in bus architectures and in connections between processors. In some circumstances, this may 
cause an application that was originally written for multiple processors to run faster when executed on a 
CMP. Aside from the potential performance gains, the design and implementation are very similar. We 
discuss minor differences throughout the book. For developers who are only familiar with sequential 
programming and single core development, the multicore approach offers many new software 
development paradigms.  

  Multicore Architectures 
 CMPs come in multiple flavors: two processors (dual core), four processors (quad core), and eight 
processors (octa - core) configurations. Some configurations are multithreaded; some are not. There are 
several variations in how cache and memory are approached in the new CMPs. The approaches to 
processor - to - processor communication vary among different implementations. The CMP implementations 
from the major chip manufacturers each handle the I/O bus and the Front Side Bus (FSB) differently. 

❑

❑

❑

c01.indd   2c01.indd   2 7/31/08   2:43:21 PM7/31/08   2:43:21 PM



Chapter 1:                                                  The New Architecture          

3

REGISTERS

FETCH/
DECODE
UNIT

ALU

L1 CACHE

REGISTERS

FETCH/
DECODE
UNIT

ALU

L1 CACHESHARED CPU 
COMPONENTS

LOGICAL
PROCESSOR 1

LOGICAL
PROCESSOR 2

FSB

shared logical
processor on
same chip

L2
CACHE 

L2
CACHE 

multiple
processors on
separate chip

FSB

REGISTERS

ALU

L1 CACHE

REGISTERS

ALU

L1 CACHE

L2
CACHE 

L2
CACHE 

multiple
processors in
a package (chip)

FSB

PROCESSOR 1 PROCESSOR 2
HYPERTHREADED
PROCESSOR 

MULTICORE (CMP)

CONFIGURATION 1 CONFIGURATION 2 CONFIGURATION 3

FETCH/
DECODE
UNIT

FETCH/
DECODE
UNIT

Figure 1-1

  Configuration 1 in Figure  1 - 1  uses hyperthreading. Like CMP, a hyperthreaded processor allows 
two or more threads to execute on a single chip. However, in a hyperthreaded package the 
multiple processors are logical instead of physical. There is some duplication of hardware but 
not enough to qualify a separate physical processor. So hyperthreading allows the processor to 
present itself to the operating system as complete multiple processors when in fact there is a 
single processor running multiple threads.  

  Configuration 2 in Figure  1 - 1  is the classic multiprocessor. In configuration 2, each processor is 
on a separate chip with its own hardware.  

  Configuration 3 represents the current trend in multiprocessors. It provides complete processors 
on a single chip.    

 As you shall see in Chapter  2 , some multicore designs support hyperthreading within their cores. For 
example, a hyperthreaded dual core processor could present itself logically as a quad core processor to 
the operating system. 

  Hybrid Multicore Architectures 
  Hybrid multicore architectures  mix multiple processor types and/or threading schemes on a single 
package. This can provide a very effective approach to code optimization and specialization by 
combining unique capabilities into a single functional core. One of the most common examples of the 
hybrid multicore architecture is IBM ’ s Cell broadband engine (Cell). We explore the architecture of 
the Cell in the next chapter. 

❑

❑

❑

Again, most of these differences are not visible when looking strictly at the logical view of an application 
that is being designed to take advantage of a multicore architecture. Figure  1 - 1  illustrates three common 
configurations that support multiprocessing.     

c01.indd   3c01.indd   3 7/31/08   2:43:21 PM7/31/08   2:43:21 PM



Chapter 1:                                                  The New Architecture          

4

 What ’ s important to remember is that each configuration presents itself to the developer as a set of two 
or more logical processors capable of executing multiple tasks concurrently. The challenge for system 
programmers, kernel programmers, and application developers is to know when and how to take 
advantage of this.   

  The Software Developer ’ s Viewpoint 
 The low cost and wide availability of CMPs bring the full range of parallel processing within the reach 
of the average software developer. Parallel processing is no longer the exclusive domain of supercomputers 
or clusters. The basic developer workstation and entry - level server now have the capacity for hardware -  
and software - level parallel processing. This means that programmers and software developers can 
deploy applications that take advantage of multiprocessing and multithreading as needed without 
compromising design or performance. However, a word of caution is in order. Not every software 
application requires multiprocessing or multithreading. In fact, some software solutions and computer 
algorithms are better implemented using sequential programming techniques. In some cases, 
introducing the overhead of parallel programming techniques into a piece of software can degrade its 
performance. Parallelism and multiprocessing come at a cost. If the amount of work required to solve the 
problem sequentially in software is less than the amount of work required to create additional threads 
and processes or less than the work required to coordinate communication between concurrently 
executing tasks, then the sequential approach is better. 

 Sometimes determining when or where to use parallelism is easy because the nature of the software 
solution demands parallelism. For example, the parallelism in many client - server configurations is 
obvious. You might have one server, say a database, and many clients that can simultaneously make 
requests of the database. In most cases, you don ’ t want one client to be required to wait until another 
client ’ s request is filled. An acceptable solution allows the software to process the clients ’  requests 
concurrently. On the other hand, there is sometimes a temptation to use parallelism when it is not 
required. For instance, you might be tempted to believe that a keyword word search through text in 
parallel will automatically be faster than a sequential search. But this depends on the size of text to be 
searched for and on the time and amount of overhead setup required to start multiple search agents in 
parallel. The design decision in favor of a solution that uses concurrency has to consider break - even 
points and problem size. In most cases, software design and software implementation are separate 
efforts and in many situations are performed by different groups. But in the case where software 
speedup or optimal performance is a primary system requirement, the software design effort has to at 
least be aware of the software implementation choices, and the software implementation choices have to 
be informed by potential target platforms. 

 In this book, the target platforms are multicore. To take full advantage of a multicore platform, you need 
to understand what you can do to access the capabilities of a CMP. You need to understand what 
elements of a CMP you have control over. You will see that you have access to the CMP through the 
compiler, through operating system calls/libraries, through language features, and through application -
 level libraries. But first, to understand what to do with the CMP access, you need a basic understanding 
of the processor architecture. 

c01.indd   4c01.indd   4 7/31/08   2:43:22 PM7/31/08   2:43:22 PM



Chapter 1:                                                  The New Architecture          

5

L1 CACHE

REGISTERS

L2 CACHE

PROCESSOR

FETCH/
DECODE
UNIT

ALU

SYSTEM
MAIN

MEMORY 
  

I/O
SUBSYSTEM
and
DEVICES 

Figure 1-2

  The Basic Processor Architecture 
 The components you can access and influence include registers, main memory, virtual memory, 
instruction set usage, and object code optimizations. It is important to understand what you can 
influence in single processor architectures before attempting to tackle multiprocessor architectures. 
Figure  1 - 2  shows a simplified logical overview of a processor architecture and memory components.   

 There are many variations on processor architecture, and Figure  1 - 2  is only a logical overview. It 
illustrates the primary processor components you can work with. While this level of detail and these 
components are often transparent to certain types of application development, they play a more central 
role in bottom - up multicore programming and in software development efforts where speedup and 
optimal performance are primary objectives. Your primary interface to the processor is the compiler. The 
operating system is the secondary interface.     

 In this book, we will use C++ compilers to generate the object code. Parallel programming can be used 
for all types of applications using multiple approaches, from low to high level, from object - oriented to 
structured applications. C++ supports multiparadigm approaches to programming, so we use it for its 
flexibility.   

 Table  1 - 1  shows a list of categories where the compiler interfaces with the CPU and instruction set. 
Categories include floating - point, register manipulation, and memory models.    

c01.indd   5c01.indd   5 7/31/08   2:43:22 PM7/31/08   2:43:22 PM



Chapter 1:                                                  The New Architecture          

6

Table 1-1

Compiler Switch 
Options Description Examples of Usage

Vectorization This option enables the vectorizer, a 
component of the compiler that 
automatically uses Single 
Instruction Multiple Data (SIMD) 
instructions in the MMX registers 
and all the SSE instruction sets.

-x    -ax

Enables the vectorizer.

Auto parallelization This option identifies loop 
structures that contain parallelism 
and then (if possible) safely 
generates the multithreaded 
equivalent executing in parallel.

-parallel

Triggers auto parallelization.

Parallelization 
with OpenMP

With this option the compiler 
generates multithreaded code based 
on OpenMP directives in the source 
code added by the programmer.

#pragma omp parallel
{
    #pragma omp for
     // your code
}

Fast This option detects incompatible 
processors; error messages are 
generated during execution.

-O1

Optimized to favor code size and 
code locality and disables loop 
unrolling, software pipelining, and 
global code scheduling.

-O2

Default; turns pipelining ON.

Floating point Set of switches that allows the 
compiler to influence the selection 
and use of floating-point 
instructions.

-fschedule-insns

Tells the compiler that other 
instructions can be issued until the 
results of a floating-point 
instruction are required.

-float-store

Tells the compiler that when 
generating object code do not use 
instructions that would store a 
floating-point variable in registers.

c01.indd   6c01.indd   6 7/31/08   2:43:22 PM7/31/08   2:43:22 PM



Chapter 1:                                                  The New Architecture          

7

Compiler Switch 
Options Description Examples of Usage

Loop unrolling This option enables loop 
unrolling. This applies only to loops 
that the compiler determines should 
be unrolled. If n is omitted, lets the 
compiler decide whether to perform 
unrolling or not.

-unroll<n>

Enables loop unrolling; <n> sets the 
maximum time to unroll the loop.

n = 0

Disables loop unrolling, only 
allowable value for 64-bit 
architectures.

Memory bandwidth This option enables or disables 
control of memory bandwidth 
used by processors; if disabled, 
bandwidth will be well shared 
among multiple threads. This can be 
used with the auto parallelization 
option. This option is used for 64-bit 
architectures only.

-opt-mem-bandwidth<n>
n = 2

Enables compiler optimizations for 
parallel code such as pthreads and 
MPI code.

n = 1

Enables compiler optimizations for 
multithreaded code generated by 
the compiler.

Code generation With this option code is generated 
optimized for a particular 
architecture or processor; if there is a 
performance benefit, the compiler 
generates multiple, processor-
specific code paths; used for 32- and 
64- bit architectures.

-ax<processor>

Generates optimized code for the 
specified processor.

-axS

Generates specialized code paths 
using SIMD Extensions 4 (SSE4) 
vectorizing compiler and media 
accelerators instructions.

Thread checking This option enables thread analysis 
of a threaded application of 
program; can only be used with 
Intel’s Thread Checker tool.

-tcheck

Enables analysis of threaded 
application or program.

Thread library This option causes the compiler 
to include code from the Thread 
Library; The programmer needs to 
include API calls in source code.

-pthread

Uses the pthread library for 
multithreading support.

  The  CPU  (Instruction Set) 
 A CPU has a native instruction set that it recognizes and executes. It ’ s the C++ compiler ’ s job to translate 
C++ program code to the native instruction set of the target platform. The compiler converts the C++ 
and produces an object file that consists of only instructions that are native to the target processor. 
Figure  1 - 3  shows an outline of the basic compilation process.   

c01.indd   7c01.indd   7 7/31/08   2:43:22 PM7/31/08   2:43:22 PM



Chapter 1:                                                  The New Architecture          

8

compiler switches,
directives & parameters

-funroll=Value
-xcache = Value

NATIVE
LANGUAGE
OF
PROCESSOR

assembler arguments,
switches & directives

COMPILER

C/C++
PROGRAM

ASSEMBLERASSEMBLY
CODE

loop unrolling,
multithread options,
etc. 

register usage,
pipeline hints,
etc.

Figure 1-3

 During the process of converting C++ code into the native language of the target CPU, the compiler has 
options for how to produce the object code. The compiler can be used to help determine how registers 
are used, or whether to perform loop unrolling. The compiler has options that can be set to determine 
whether to generate 16 - bit, 32 - bit, or 64 - bit object code. The compiler can be used to select the memory 
model. The compiler can provide code hints that declare how much level 1 (L1) or level 2 (L2) cache is 
present. Notice in Table  1 - 1  in the floating - point operations category that switches from this category 
allow the compiler to influence the selection of floating - point instructions. For example, the GNU gcc 
compiler has the   -  - float - store  switch. This switch tells the compiler that when generating object code 
it should not use instructions that would store floating - point variable in registers. The Sun C++ compiler 
has a   - fma  switch. This switch enables automatic generation of floating - point and multi - add 
instructions. The   - fma=none  disables generation of these instructions. The   - fma=fused  switch allows 
the compiler to attempt to improve the performance of the code by using floating - point, fused, and 
 multiply=add  instructions. In both cases, the switches are provided as options to the compiler: 

gcc  -ffloat-store my_program.cc  

 or 

CC -fma=used  my_program.cc  

 Other switches influence cache usage. For instance the Sun C++ compiler has a   - xcache=c  that defines 
the cache properties for use by the optimizer. The GNU gcc compiler has the   - Funroll  - loops  that 
specifies how loops are to be unrolled. The GNU gcc compiler has a   - pthread  switch that turns on 
support for multithreading with pthreads. The compilers even have options for setting the typical 

c01.indd   8c01.indd   8 7/31/08   2:43:23 PM7/31/08   2:43:23 PM



Chapter 1:                                                  The New Architecture          

9

memory reference interval using the   - mmemory - latency=time  switch. In fact, there are compiler 
options and switches that can influence the use of any of the components in Figure  1 - 2 . 

 The fact that the compiler provides access to the processor has implications for the developer who is 
writing multicore applications for a particular target processor or a family of processors. For example, 
The UltraSparc, Opteron, Intel Core 2 Duo, and Cell processors are commonly used multicore 
configurations. These processors each support high - speed vector operations and calculations. They have 
support for the Single Instruction Multiple Data (SIMD) model of parallel computation. This support can 
be accessed and influenced by the compiler.     

 Chapter  4  contains a closer look at the part compilers play in multicore development.   

 It is important to note that using many of these types of compiler options cause the compiler to optimize 
code for a particular processor. If cross - platform compatibility is a design goal, then compiler options 
have to be used very carefully. For system programmers, library producers, compiler writers, kernel 
developers, and database and server engine developers, a fundamental understanding of the basic 
processor architecture, instruction set and compiler interface is a prerequisite for developing effective 
software that takes advantage of CMP.  

  Memory Is the Key 
 Virtually anything that happens in a computer system passes through some kind of memory. Most things 
pass through many levels of memory. Software and its associated data are typically stored on some kind 
of external medium (usually hard disks, CD - ROMs, DVDs, etc.) prior to its execution. For example, say 
you have an important and very long list of numbers stored on an optical disc, and you need to add 
those numbers together. Also say that the fancy program required to add the very long list of numbers is 
also stored on the optical disc. Figure  1 - 4  illustrates the flow of programs and data to the processor.   

L1 CACHE

REGISTERS

L2 CACHE

PROCESSOR

FETCH/
DECODE
UNIT

ALU

SYSTEM
MAIN
MEMORY

file of
important
numbers
and
fancy
programs  

Figure 1-4

c01.indd   9c01.indd   9 7/31/08   2:43:23 PM7/31/08   2:43:23 PM



Chapter 1:                                                  The New Architecture          

10

 In the maze of different types of memory, you have to remember that the typical CPU operates only on 
data stored in its registers. It does not have the capacity to directly access data or programs stored 
elsewhere. Figure  1 - 4  shows the ALU reading and writing the registers. This is the normal state of affairs. 
The instruction set commands (native language of the processor) are designed to primarily work with 
data or instructions in the CPU ’ s registers. To get your long list of important numbers and your fancy 
program to the processor, the software and data must be retrieved from the optical disc and loaded into 
primary memory. From primary memory, bits and pieces of your software and data are passed on to L2 
cache, then to L1 cache, and then into instruction and data registers so that the CPU can perform its 
work. It is important to note that at each stage the memory performs at a different speed. Secondary 
storage such as CD - ROMs, DVDs, and hard disks are slower than the main random access memory 
(RAM). RAM is slower than L2 cache memory. L2 cache memory is slower than L1 cache memory, and so 
on. The registers on the processor are the fastest memory that you can directly deal with. 

 Besides the speed of the various types of memory, size is also a factor. Figure  1 - 5  shows an overview of 
the memory hierarchy.   

L2 CACHE

CPU 0

REG 0 REG 1 REG 2 REG 3

L1 CACHE

SYSTEM MAIN MEMORY

VIRTUAL MEMORY 
(EXTERNAL DISK)            I/O DEVICES

FASTER

SLOWER

ACCESS SPEED

Figure 1-5

 The register is the fastest but has the least capacity. For instance, a 64 - bit computer will typically have a 
set of registers that can each hold up to 64 bits. In some instances, the registers can be used in pairs 
allowing for 128 bits. Following the registers in capacity is L1 cache and if present L2 cache. L2 cache is 

c01.indd   10c01.indd   10 7/31/08   2:43:23 PM7/31/08   2:43:23 PM



Chapter 1:                                                  The New Architecture          

11

currently measured in megabytes. Then there is a big jump in maximum capacity from L2 to the system 
main memory, which is currently measured in gigabytes. In addition to the speeds of the various types 
of memory and the capacities of the various types of memory, there are the connections between the 
memory types. These connections turn out to have a major impact on overall system performance. Data 
and instructions stored in secondary storage typically have to travel over an I/O channel or bus to get to 
RAM. Once in RAM, the data or instruction normally travels over a system bus to get to L1 cache. The 
speed and capacity of the I/O buses and system buses can become bottlenecks in a multiprocessor 
environment. As the number of cores on a chip increases, the performance of bus architectures and 
datapaths become more of an issue. 

 We discuss the bus connection later in this chapter, but first it ’ s time to examine the memory hierarchy 
and the part it plays in your view of multicore application development. Keep in mind that just as you 
can use the influence that the compiler has over instruction set choices, you can use it to manipulate 
register usage and RAM object layouts, give cache sizing hints, and so on. You can use further C++ 
language elements to specify register usage, RAM, and I/O. So, before you can get a clear picture of 
multiprocessing or multithreading, you have to have a fundamental grasp of the memory hierarchy that 
a processor deals with.  

  Registers 
 The  registers  are special - purpose, small but fast memory that are directly accessed by the core. The 
registers are volatile. When the program exits, any data or instructions that it had in its registers are gone 
for all intents and purposes. Also unlike swap memory, or virtual memory, which is permanent because 
it is stored in some kind of secondary storage, the registers are temporary. Register data lasts only as 
long as the system is powered or the program is running. In general - purpose computers, the registers are 
located inside the processor and, therefore, have almost zero latency. Table  1 - 2  contains the general types 
of registers found in most general - purpose processors.   

Table 1-2

Registers Description

Index Used in general computations and special uses when dealing with addresses.

Segment Used to hold segment parts of addresses.

IP Used to hold the offset part of the address of the next instruction to be executed.

Counter Used with looping constructs, but can also be used for general computational 
use.

Base Used in the calculation and placement of addresses.

Data Used as general-purpose registers and can be used for temp storage and 
calculation.

Flag Shows the state of the machine or state of the processor.

Floating point Used in calculation and movement of floating-point numbers.

c01.indd   11c01.indd   11 7/31/08   2:43:24 PM7/31/08   2:43:24 PM



Chapter 1:                                                  The New Architecture          

12

 Most C/C++ compilers have switches that can influence register use. In addition to compiler options 
that can be used to influence register use, C++ has the  asm{ }  directive, which allows assembly 
language to written within a C++ procedure or function, for example: 

void my_fast_calculation(void)
{
   ...
     asm{
            ...
            mov 2 , %r3
            inc(%r3)
            ...
      }
       ...
}  

  my_fast_calculation()  loads a  2  into the  %r3  general - purpose register on an UltraSparc processor. 
While cache is not easily visible for C++, registers and RAM are visible. Depending on the type of 
multiprocessor software being developed, register manipulation, either through the compiler or the C++ 
 asm{}  facility, can be necessary.  

  Cache 
  Cache  is memory placed between the processor and main system memory (RAM). While cache is not as 
fast as registers, it is faster than RAM. It holds more than the registers but does not have the capacity of 
main memory. Cache increases the effective memory transfer rates and, therefore, overall processor 
performance. Cache is used to contain copies of recently used data or instruction by the processor. Small 
chunks of memory are fetched from main memory and stored in cache in anticipation that they will be 
needed by the processor. Programs tend to exhibit both temporal locality and spatial locality.   

   Temporal locality  is the tendency to reuse recently accessed instructions or data.  

   Spatial locality  is the tendency to access instructions or data that are physically close to items 
that were most recently accessed.    

 One of the primary functions of cache is to take advantage of this temporal and spatial locality 
characteristic of a program. Cache is often divided into two levels, level 1 and level 2.     

 A complete discussion of cache is beyond the scope of this book. For a thorough discussion of cache, see 
[Hennessy, Patterson, 2007].   

  Level 1 Cache 
 Level 1 cache is small in size sometimes as small as 16K. L1 cache is usually located inside the processor 
and is used to capture the most recently used bytes of instruction or data.  

  Level 2 Cache 
 Level 2 cache is bigger and slower than L1 cache. Currently, it is stored on the motherboard (outside the 
processor), but this is slowly changing. L2 cache is currently measured in megabytes. L2 cache can hold 
an even bigger chunk of the most recently used instruction, data, and items that are in the near vicinity 

❑

❑

c01.indd   12c01.indd   12 7/31/08   2:43:24 PM7/31/08   2:43:24 PM



Chapter 1:                                                  The New Architecture          

13

than L1 holds. Because L1 and L2 are faster than general - purpose RAM, the more correct the guesses of 
what the program is going to do next are, the better the overall system performance because the right 
chunks of data will be located in either L1 or L2 cache. This saves a trip out to either RAM or virtual 
memory or, even worse, external storage.  

  Compiler Switches for Cache? 
 Most developers doing multicore application development will not be concerned with manually 
managing cache unless, of course, they are doing kernel development, compiler development, or other 
types of low - level system programming. However, compiler options that give the compiler a hint as to 
how much L1 or L2 cache is available or a hint about the properties of the L1 or L2 cache can be found in 
most of the mainstream compilers in use. For example, the Sun C++ compiler has an  xcache  switch. The 
man page for that switch shows the syntax and its use. 

   - xcache=c  defines the cache properties that the optimizer can use. It does not guarantee that any 
particular cache property is used. Although this option can be used alone, it is part of the expansion of 
the   - xtarget  option; its primary use is to override a value supplied by the   - xtarget  option. 

   - xcache=16/32/4:1024/32/1  specifies the following:

    Level 1 cache has:    Level 2 cache has:  

    16K bytes    1024K bytes  

    32 - byte line size    32 - byte line size  

    4 - way associativity    Direct mapping  

 Developing software to truly take advantage of CMP requires careful thought about the instruction set of 
the target processor or family of processors and about memory usage. This includes being aware of 
opportunities for optimizations, such as loop unrolling, high - speed vector manipulations, SIMD processing, 
and MP compiler directives, and giving compilers hints for values such as the size of L1 or L2 cache.   

  Main Memory 
 Figure  1 - 2  shows the relative relationship between registers, cache, the ALU, and main memory. Outside 
of external storage (for example, hard disks, CD - ROMs, DVDs, and so on), RAM is the slowest memory 
the developer works with. Also RAM is located physically outside the processor, and data transfers 
across a bus to the processor slow things down a little more. On the other hand, RAM is the most visible 
to you as a software developer of multithreaded or multiprocessing applications. The data shared 
between processors and tasks in most cases is stored in RAM. The instructions that each processor has to 
execute are kept in RAM during runtime. The critical sections that must be synchronized among 
multiple processors are primarily stored in RAM. When there is task or processor lockup, it is normally 
due to some memory management violation. In almost every case, the communication between 
processors and tasks, or multiple agents, will take place through variables, message queues, containers, 
and mutexes that will reside in RAM during runtime. A major element in the software developer ’ s view 
of multicore application programming is memory access and management. Just as was the case with the 

c01.indd   13c01.indd   13 7/31/08   2:43:24 PM7/31/08   2:43:24 PM



Chapter 1:                                                  The New Architecture          

14

other logical components shown in Figure  1 - 2  that have been discussed so far, you have access to 
compiler switches that influence how memory is handled by an application. The memory model selected 
is important. Objects created by the  new()  operator in C++ end up in either the free store (heap) or in 
virtual memory (if the data object is large enough). The free store is logically in RAM. Virtual memory is 
mapped from external storage.     

 We take a closer look at how a process or thread uses RAM in Chapter  5 .     

  The Bus Connection 
 Typically the subsystems in a computer communicate using buses. The  bus  serves as a shared 
communication link between the subsystems [Hennessy, Patterson, 1996]. The bus is a channel or path 
between components in a computer. Traditionally, buses are classified as CPU - memory buses or I/O 
buses. A basic system configuration consists of two main buses, a system bus also referred to as the Front 
Side Bus (FSB), and an I/O bus. If the system has cache, there is also usually a Back Side Bus (BSB) 
connected to the processor and the cache. Figure  1 - 6  shows a simplified processor - to - bus configuration.   

FSB

I/O
CONTROLLER

MEMORY
CONTROLLER

CPU

CACHEAGP

PCI

BSB

Figure 1-6

 In Figure  1 - 6  the FSB is used to transport data to or from the CPU and memory. The FSB is a 
CPU - memory bus. The I/O bus generally sends information to and from other peripherals. Notice in 
Figure  1 - 6  that the BSB is used to move data between the CPU, cache, and main memory. The Peripheral 
Component Interconnect (PCI) is an example of an I/O bus. The PCI provides a direct connection to the 
devices that it is connected to. However, the PCI is usually connected to the FSB through some type of 
bridge technology. Since the buses provide communication paths between the CPU, the memory 
controller, the I/O controller, cache, and peripherals, there is the potential for throughput bottlenecks. 
Configurations with multiple processors can put a strain on the FSB. The trend is to add more processors 

c01.indd   14c01.indd   14 7/31/08   2:43:24 PM7/31/08   2:43:24 PM



Chapter 1:                                                  The New Architecture          

15

to a chip. This puts more communication demands on bus - based architectures. The performance of the 
system is constrained by the maximum throughput of the buses used between the CPU, memory, and 
other system peripherals. If the bus is slower than the CPU or memory or the buses do not have the 
proper capacity, timing, or synchronization, then the bus will be a bottleneck, impeding overall system 
performance.  

  From Single Core to Multicore 
 In single core configurations you are concerned only with one (general - purpose) processor, although it ’ s 
important to keep in mind that many of today ’ s single core configurations contain special graphic 
processing units, multimedia processing units, and sometimes special math coprocessors. But even with 
single core or single processor computers multithreading, parallel programming, pipelining, and 
multiprogramming are all possible. So this section can help clear the air on some of the basic ideas that 
move you from single core to multicore programming. 

  Multiprogramming and Multiprocessing 
 Multiprogramming is usually talked about in the context of operating systems as opposed to 
applications.  Multiprogramming  is a scheduling technique that allows more than one job to be in an 
executable state at any one time. In a multiprogrammed system, the jobs (or processes) share system 
resources such as the main system memory and the processor. There is an illusion in a single core system 
that the processes are executing simultaneously because the operating system uses the technique of time 
slices. In the time slice scheme, each process is given a small interval to execute. After that interval, the 
operating system switches contexts and lets another process execute for an interval. These intervals are 
called time slices, and they are so small that the operating system switches the context fast enough to 
give the illusion that more than one process or job is executing at the same time. So in a scenario where 
you have single core architecture and two major tasks are being performed concurrently (for example, 
burning a DVD and rendering a computer graphic), you say that the system is multiprogramming. 

 Multiprogramming is a scheduling technique. In contrast, a  multiprocessor  is a computer that has more 
than one processor. In this case, you are specifically referring to the idea of having two or more general -
 purpose processors. Technically speaking, a computer with a CPU and a GPU is a multiprocessor. But for 
the purposes of this discussion, we focus instead on multiple general - purpose processors. Consequently, 
 multiprocessing  is a technique of programming that uses more than one processor to perform work 
concurrently. In this book we are interested in techniques that fall under the category of parallel 
programming.  

  Parallel Programming 
  Parallel programming  is the art and science of implementing an algorithm, a computer program, or a 
computer application, using sets of instructions or tasks designed to be executed concurrently. Figure  1 - 7  
illustrates the parts of each type and what is executed in parallel.   

c01.indd   15c01.indd   15 7/31/08   2:43:25 PM7/31/08   2:43:25 PM



Chapter 1:                                                  The New Architecture          

16

TASK A

TASK D

SUBSYSTEM 1

TASK B

TASK C

SUBSYSTEM 2

PROCEDURE B

function3()
function4()

PROCEDURE A

function1()
function2()

PROCEDURE C

thread 1
thread 3

PROCEDURE D

thread 2
thread 4

PARALLEL COMPUTER PROGRAM

GROUP 1

instruction 1
instruction 3
instruction 5

GROUP 2

instruction 2
instruction 4
instruction 6

PARALLEL ALGORITHM

Components can execute concurrently. 
The concepts are logically the same in the parallel
algorithm, program, and application. But the size of the unit
of work is different. This unit of work is the granularity. 

COMPUTER APPLICATION
WITH PARALLEL COMPONENTS 

Figure 1-7

 The parallel algorithm in Figure  1 - 7  can execute a set of instructions in parallel. Instruction 1 and 
Instruction 2 can both be executed concurrently. Instruction 5 and 6 can both be executed concurrently. 
In the algorithm, the parallelism happens between two instructions. This is in contrast to the computer 
program in Figure  1 - 7 , where the unit of work is a procedure or function, or thread. Procedure A and 
Procedure B can execute simultaneously. In addition to the concurrency between Procedure A and B, they 
may both have concurrency within themselves. Procedure A ’ s functions may be able to execute in parallel. 
So for the computer program that contains parallelism, the unit of work is larger than the algorithm. 

 The application in Figure  1 - 7  has the largest unit of work. Task A and Task B may consist of many 
procedures, functions, objects, and so on. When you look at the parallel programming at the application 
level, you are talking about larger units of work. Besides tasks, the application might contain 
subsystems, for example, background network components or multimedia components that are 
executing simultaneously in background to the set of tasks that the user can perform. The key idea here 
is that each structure in Figure  1 - 7  uses parallel programming; the difference is the unit of work, 
sometimes called  granularity .     

 We talk more about levels of parallelism in Chapter  4 .    

  Multicore Application Design and Implementation 
 Multicore application design and implementation uses parallel programming techniques to design 
software that can take advantage of CMP. The design process specifies the work of some task as either 
two or more threads, two or more processes, or some combination of threads and processes. That design 
can then be implemented using template libraries, class libraries, thread libraries, operating system calls, 
or low - level programming techniques (for example, pipelining, vectorization, and so on). This book 
introduces the basics of multithreading, multiprocessing, Interprocess Communication, Interthread 
Communication, synchronization, thread libraries, and multithreading class libraries or template 
libraries. The low cost of CMP implementations has brought parallel programming and its very close 
cousin multithreading within the reach of the average developer. The focus on this book is on 

c01.indd   16c01.indd   16 7/31/08   2:43:25 PM7/31/08   2:43:25 PM



Chapter 1:                                                  The New Architecture          

17

developing multicore applications using multiprocessing and multithreading techniques that are 
portable across operating system environments. We use only libraries and language features that are part 
of the POSIX standard for operating systems and only C++ features that are part of the ISO standard.   

  Summary 
 This chapter has covered key concepts that you need to understand as you consider developing 
multicore application. Some of the important considerations this chapter introduced are: 

  A multicore chip is a chip that has two or more processors. This processor configuration is 
referred to as CMP. CMPs currently range from dual core to octa - core.  

  Hybrid multicore processors can contain different types of processors. The Cell broadband 
engine is a good example of a hybrid multicore.  

  Multicore development can be approached from the bottom up or top down, depending on 
whether the developers in question are system programmers, kernel programmers, library 
developers, server developers, or application developers. Each group is faced with similar 
problems but looks at the cores from a different vantage point.  

  All developers that plan to write software that takes advantage of multiprocessor configurations 
should be familiar with the basic processor architecture of the target platform. The primary 
interface to the specific features of a multicore processor is the C/C++ compiler. To get the most 
from the target processor or family of target processors, the developer should be familiar with 
the options of the compiler, the assembler subcomponent of the compiler, and the linker. The 
secondary interface comprises the operating system calls and operating system synchronization 
and communication components.  

  Parallel programming is the art and science of implementing an algorithm, a computer program, 
or a computer application using sets of instructions or tasks designed to be executed 
concurrently. Multicore application development and design is all about using parallel 
programming techniques and tools to develop software that can take advantage of CMP 
architectures.    

 Now that you have in mind some of the basic ideas and issues surrounding multicore programming, 
Chapter  2  will take a look at four multicore designs from some of the computer industry ’ s leading chip 
manufacturers: AMD, Intel, IBM, and Sun. We look at each approach to CMP for the Dual Core Opteron, 
Core 2 Duo, Cell Broadband Engine architecture, and UltraSparc T1 multiprocessor cores.                 

❑

❑

❑

❑

❑

c01.indd   17c01.indd   17 7/31/08   2:43:25 PM7/31/08   2:43:25 PM



c01.indd   18c01.indd   18 7/31/08   2:43:25 PM7/31/08   2:43:25 PM



                                                Four Effective Multicore 
Designs              

  Please. As I was saying, she stumbled upon a solution whereby nearly ninety - nine 
percent of all test subjects accepted the program as long as they were given a choice, 
even if they were only aware of the choice at a near unconscious level.   

  — The Architect,  The Matrix Reloaded     

 In this chapter we take a closer look at four multicore designs from some of the computer 
industry ’ s leading chip manufacturers: 

  The AMD Multicore Opteron  

  The Sun UltraSparc T1  

  The IBM Cell Broadband Engine (CBE)  

  The Intel Core 2 Duo    

 Each of these vendors approaches the Chip Multiprocessor (CMP) differently. Their approaches to 
multicore design are implemented effectively with each design having its advantages, strengths, 
and weaknesses in comparison to the other designs. We will use these designs for all of the 
examples in this book. The program examples in this book have been compiled and executed on 
one or more of these multicore processor designs. In this chapter, we introduce you to the basics of 
each design, and throughout the book we fill in the necessary detail as it pertains to multicore 
application development and design. 

 In many mass market software applications, the differences among hardware implementations are 
abstracted away because often one of the primary design goals is to make the software compatible 
with as many different hardware platforms as possible. So there is a conscious effort to avoid 

❑

❑

❑

❑

c02.indd   19c02.indd   19 7/31/08   2:44:07 PM7/31/08   2:44:07 PM



Chapter 2:                                                 Four Effective Multicore Designs          

20

Table 2-1

Software Type Developer Type

High transaction software servers
• Database
• Financial transaction servers
• Application servers and so on

• Software architects
• Software vendors
• Software manufacturers

Kernels • System programmers

Game engines • System programmers
• Software designers
• Game developers
• Graphics programmers

Device drivers • System programmers

Large-scale matrix and vector computations • Scientific programmers
• Mathematicians
• Scientific application developers

Compilers • System programmers

Database engines • Software vendors
• Database architects

High-definition computer animation

Scientific visualization modeling

• Graphics programmers
• Game developers
• Scientific programmers

platform - specific features. In these scenarios, the software designer and developer appropriately rely on 
the operating system to hide any platform differences that the applications might encounter. The 
developers move happily and blissfully through the development process without the burden of having 
to worry about hardware - specific issues. This is a good thing! One of the primary jobs of the operating 
system is to hide and manage hardware details. And this approach works for an entire class of mass 
market or wide vertical market applications. 

 However, not every kind of software developer is so lucky. For example, those developing high -
 transaction database servers, web servers, application servers, hardware - intensive game engines, 
compilers, operating system kernels, device drivers, and high - performance scientific modeling and 
visualization software are practically forced to look for and exploit platform features that will make their 
applications acceptable to the end user. For this class of developer, familiarity with a specific processor or 
family of processors is a prerequisite for effective software development. Table  2 - 1  lists the types of 
applications that can require platform - specific optimization.   

c02.indd   20c02.indd   20 7/31/08   2:44:07 PM7/31/08   2:44:07 PM



Chapter 2:                                                 Four Effective Multicore Designs          

21

 In Table  2 - 1 , we have also listed some of the types of developers involved with these types of applications. 
System programmers, graphics programmers, application developers, and software engineers who are 
trying to optimize the performance of a piece of software need to be aware of the capabilities of the target 
platform. In the cases where cross - platform portability is the primary consideration, platform - specific 
optimizations should be approached with caution. In other cases, cross - platform compatibility is not a 
concern, and the best performance on the target platform is the goal. In these situations the more the 
developer knows about the target processor or family of processors the better. 

 In this book, we look at top - down and bottom - up approaches to multiprocessor application design and 
implementation. To take advantage of bottom - up approaches to multiprocessor programming requires a 
fundamental understanding of the CMP architecture, the operating system ’ s support for multithreading 
and multiprocessing, and the C/C++ compiler for the target platform. In Chapter  4 , we take a closer look 
at operating system and compiler support for multicore development. But first here in this chapter we 
explore the four effective multicore designs we mentioned at the start of the chapter. Table  2 - 2  shows a 
comparison of the Opteron, UltraSparc T1, CBE, and Core 2 Duo processors.    

Table 2-2

Processor Name Hyperthreaded/SMT Use FSB Shared Memory
Cache 2 
Location # Cores

Opteron No No No motherboard 2

UltraSparc T1 Yes No No die 8

CBE Yes No Yes die 9

Core 2 Duo No Yes Yes die 2

  The  AMD  Multicore Opteron 
 The dual core Opteron is the entry level into AMD ’ s multicore processor line. The dual core Opteron 
is the most basic configuration, and it captures AMD ’ s fundamental approach to multicore architectures. 
The Opteron is source and binary code compatible with Intel ’ s family of processors, that is, applications 
written for the Intel processors can compile and execute on Opterons. Figure  2 - 1  shows a simple block 
diagram of a dual core Opteron.   

c02.indd   21c02.indd   21 7/31/08   2:44:08 PM7/31/08   2:44:08 PM



Chapter 2:                                                 Four Effective Multicore Designs          

22

CROSSBAR SWITCH

DUAL CORE OPTERON

CPU 0

I D

CPU 1

I D

SYSTEM REQUEST INTERFACE

L2 CACHE  (1 MB)

L1 CACHE L1 CACHE

L2 CACHE  (1 MB)

MEMORY
CONTROLLER

HT 0 HT 1 HT 2

Figure 2-1

 The dual core Opteron consists of two AMD 64 processors, two sets of level 1 (L1) cache, two sets of level 
2 (L2) cache, a System Request Interface (SRI), a crossbar switch, a memory controller, and 
HyperTransport technology. One of the key architectural differences between the Opteron and other 
designs is AMD ’ s Direct Connect Architecture (DCA) with HyperTransport technology. The Direct 
Connect Architecture determines how the CPUs communicate with memory and other I/O devices.     

 To understand the value of AMD ’ s approach to subsystem communication, it ’ s important to remember 
what part bus technology plays in the processor architecture. See the section  “ The Bus Connection ”  in 
Chapter  1  for more information on bus technology.   

  Opteron ’ s Direct Connect and HyperTransport 
 The Opteron processor moves away from this bus - based architecture. It uses a Direct Connect 
Architecture (DCA) in conjunction with HyperTransport (HT) technology to avoid some of the 
performance bottlenecks of the basic Front Side Bus (FSB), Back Side Bus (BSB), and Peripheral 
Component Interconnect (PCI) configurations. 

  The Direct Connect Architecture 
 The DCA is a point - to - point connection scheme. It does not use the FSB. Instead the processors, memory 
controller, and I/O are directly connected to the CPU. This dedicated link approach avoids the potential 
performance problems of the bus - based communication between the CPU and the memory controller. 
Also because the links are dedicated  —  that is, each core is directly connected to its own memory 
controller and has direct links to the I/O memory controller  —  contention issues are bypassed.  

c02.indd   22c02.indd   22 7/31/08   2:44:08 PM7/31/08   2:44:08 PM



Chapter 2:                                                 Four Effective Multicore Designs          

23

  HyperTransport Technology 
 The HyperTransport Consortium defines HyperTransport as a high - speed, low - latency, point - to - point 
link designed to increase the communication speed between integrated circuits in computers, servers, 
embedded systems, and networking and telecommunications equipment. According to the 
HyperTransport Consortium, HT is designed to: 

  Provide significantly more bandwidth  

  Use low - latency responses and low pin counts  

  Maintain compatibility with legacy buses while being extensible to new network architecture 
buses  

  Appear transparent to operating systems and have little impact on peripheral drivers    

 The Opteron uses HT as a chip - to - chip interconnection between CPU and the I/O. The components 
connected with HT are connected in a peer - to - peer fashion and are, therefore, able to communicate with 
each other directly without the need of data buses. At peak throughput the HT provides 12.8 GB/s per 
link. The Opteron configuration comes configured with up four HT Links. I/O devices and buses such as 
PCI - E, AGP, PCI - X, and PCI connect to the system over HT Links. The PCIs are I/O buses, and the AGP 
is a direct graphics connection. The PCI, PCI - E, and AGP are used to connect the system to peripheral 
devices. Besides improving the connections between the processors and I/O, HT is also used to facilitate 
a direct connection between the processors on the Opteron. Multicore communication on the Opteron is 
enhanced by using HT.   

  System Request Interface and Crossbar 
 The System Request Interface (SRI) contains the system address map and maps memory ranges to nodes. 
If the memory access is to local memory, then a map lookup in the SRI sends it to the memory controller 
for the appropriate processor. If the memory access is not local (off chip), then a routing table lookup sends 
it to a HT port. For more see [Hughes, Conway, 2007 IEEE]. Figure  2 - 2  shows a logic layout of the crossbar.   

❑

❑

❑

❑

LOGICAL COMMAND CROSSBAR

LOGICAL DATA CROSSBAR

HT 0 HT 1 HT 2 MEMORY
CONTROLLER

SYSTEM
REQUEST
INTERFACE

DUAL CORE OPTERON'S CROSSBAR SWITCH

P1 P2 P3 P4 P5

Figure 2-2

 The crossbar has five ports: memory controller, SRI, and three HTs. The crossbar switch processing is 
logically separated into command header packet processing and data header packet processing. 
Logically, part of the crossbar is dedicated to command packet routing, and the other part is dedicated to 
data packet routing.  

c02.indd   23c02.indd   23 7/31/08   2:44:09 PM7/31/08   2:44:09 PM



Chapter 2:                                                 Four Effective Multicore Designs          

24

  The Opteron Is  NUMA  
 Opteron has a Non - Uniform Memory Access (NUMA) architecture. In this architecture, each processor 
has access to its own fast local memory through the processor ’ s on - chip memory controller. NUMA 
architecture has a distributed but shared memory architecture. This is in contrast to the Uniform 
Memory Access (UMA) architecture. Figure  2 - 3  shows a simplified overview of a UMA architecture.   

CPU 0

L1 CACHE

L2 CACHE

CPU 1

L1 CACHE

L2 CACHE

SYSTEM MAIN MEMORY

Figure 2-3

 Notice in Figure  2 - 3  that the processors share a single memory. Each of the access times for each 
processor is symmetric with the other. The processor configuration in Figure  2 - 3  is often called a 
symmetric (shared - memory) multiprocessor (SMP). This arises from the fact that all processors have a 
uniform latency from memory even if the memory is organized into multiple banks [Hennessy, 
Patterson, 2007]. The single main memory and the uniform access time in the SMP makes it easier to 
implement than it NUMA counterpart. Also the notion of a shared address space is more straightforward 
in the UMA architecture because there is only one main system memory to consider. 

 In contrast, Figure  2 - 4  shows a simplified overview of a NUMA architecture.   

CPU 0

L2 CACHE

MEMORY

CPU 1

L2 CACHE

MEMORY

IN
TE

RC
ON

NE
CT

IO
N

NE
TW

OR
K

Figure 2-4

c02.indd   24c02.indd   24 7/31/08   2:44:09 PM7/31/08   2:44:09 PM



Chapter 2:                                                 Four Effective Multicore Designs          

25

 The NUMA is a distributed shared memory (DSM) architecture. Notice in Figure  2 - 4  that each processor 
has its own block memory, but each block of memory shares a single address space. That is, the same 
physical address on two processors refers to the same location in memory [Hennessy, Patterson, 2007]. In 
both cases, the UMA and the NUMA configurations, the processors share address space. However, in the 
NUMA architecture the address space is shared from a logical viewpoint, and in the UMA configuration 
the processors physically share the same block of memory. The SMP architecture is satisfactory for 
smaller configurations, but once the number of processors starts to increase, the single memory 
controller can become a bottleneck and, therefore, degrade overall system performance. The NUMA 
architecture, on the other hand, scales nicely because each processor has its own memory controller. 

 If you look at the configuration in Figure  2 - 4  as a simplified Opteron configuration, then the network 
interconnection is accomplished by the Opteron HyperTransport technology. Using the HyperTransport 
technology, the CPUs are directly connected to each other and the I/O is directly connected to the CPU. 
This ultimately gives you a performance gain over the SMP configuration.  

  Cache and the Multiprocessor Opteron 
 The dual core Opteron supports two levels of cache. L1 cache can be logically divided between I - Cache 
(for instructions) and D - Cache (for data). Each core has its own L1 cache. Each core in the Opteron also 
has its own 1MB L2 cache between the processor and main system memory.   

  The Sun UltraSparc T1 Multiprocessor 
 The UltraSparc T1 is an eight - core CMP and has support for chip - level multithreading (CMT). Each core 
is capable of running four threads. This is also sometimes referred to as hyperthreaded. The CMT of the 
UltraSparc T1 means that the T1 can handle up to 32 hardware threads. What does this mean for the 
software developer? Eight cores with four threads presents itself to an application as 32 logical 
processors. Listing  2 - 1  contains code that can be used to see how many processors are apparently 
available to the operating system (without special compilers and so on). 

   Listing 2 - 1  

// Listing 2-1
// uses sysconf() function to determine how many
// processors are available to the OS.
                    
using namespace std;
#include  < unistd.h > 
#include  < iostream > 
                    
int main(int argc,char *argv[])
{
   cout  <     <  sysconf(_SC_NPROCESSORS_CONF)  <     <  endl;
   return(0);
}       

c02.indd   25c02.indd   25 7/31/08   2:44:10 PM7/31/08   2:44:10 PM



Chapter 2:                                                 Four Effective Multicore Designs          

26

 When appropriate, in this book listings are accompanied by a program profile stating the environment 
platform for the program. Anyone wishing to run code for a noncompliant OS needs to use the 
POSIX - compliant features for that OS.   

  Program Profile 2 - 1 
  Program Name:   

program2-1.cc   

  Description: 
 This program uses  sysconf()  function to determine how many processors are available to the operating 
system.  

  Libraries Required: 
 None  

  Headers Required:   
 < unistd.h >     < iostream >    

  Compile and Link Instructions:   
g++ -o program2-1 program2-1.cc   

  Test Environment: 
 SuSE Linux 10, gcc 3.4.3  

  Hardware: 
 AMD Opteron Core 2, UltraSparc T1, CBE  

  Execution Instructions:   
./program2-1   

  Notes: 
 None 

 When this program is executed on a T1, it prints 32. The  sysconf()  function provides a method for an 
application to get values for system limits or variables. In this case the  _SC_NPROCESSORS_CONF  
argument asks for the number of processors configured. The  _SC NPROCESSORS_MAX  argument can be 
used to get the maximum number of processors supported. The UltraSparc T1 offers the most on - chip 
threads of the architectures that we discuss in the book. Each of the eight cores equates to a 64 - bit 
execution pipeline capable of running four threads. Figure  2 - 5  contains a functional overview of an 
UltraSparc T1 multiprocessor.     

c02.indd   26c02.indd   26 7/31/08   2:44:10 PM7/31/08   2:44:10 PM



Chapter 2:                                                 Four Effective Multicore Designs          

27

CROSSBAR INTERCONNECT FOR ON-CHIP COMMUNICATION   (132  GB/s)

SPARC 
CORE

SPARC 
CORE

SPARC
CORE

SPARC
CORE

SPARC
CORE

SPARC
CORE

SPARC
CORE

SHARED L2 CACHE  (3 MB)

MEMORY
CONTROLLER 1

MEMORY
CONTROLLER 2

MEMORY
CONTROLLER 3

MEMORY
CONTROLLER 4

FPU

ULTRASPARC  T1  MULTICORE  PROCESSOR 

SPARC
CORE

SPARC V9
CORE

I (16k)
L1 CACHE

D (8k)
L1 CACHE

4 THREADS

Figure 2-5

  UltraSparc T1 Cores 
 The T1 consists of eight Sparc V9 cores. The V9 cores are 64 - bit technology. Each core has L1 cache. 
Notice in Figure  2 - 5  that there is a 16K L1 instruction cache and an 8K L1 data cache. The eight cores all 
share a single floating - point unit (FPU). Figure  2 - 5  shows the access path of the L2 cache and the eight 
cores. The four threads share L2 cache. Each core has a six - stage pipeline: 

  Fetch  

  Thread selection  

  Decode  

  Execute  

  Memory access  

  Write back     

  Cross Talk and The Crossbar 
 Notice in Figure  2 - 5  that the cores and the L2 cache are connected through the cross - switch or crossbar. 
The crossbar has 132 GB/s bandwidth for on chip communications. The crossbar has been optimized for 
L2 cache - to - core communication and for core - to - L2 cache communication. The FPU, the four banks of L2 
cache, the I/O bridges, and the cores all communicate through the crossbar. Basically the crossbar acts as 
the mediator, allowing the components of the T1 to communicate to each other.  

❑

❑

❑

❑

❑

❑

c02.indd   27c02.indd   27 7/31/08   2:44:10 PM7/31/08   2:44:10 PM



Chapter 2:                                                 Four Effective Multicore Designs          

28

   DDRAM  Controller and L2 Cache 
 The UltraSparc T1 has four separate memory controllers. Each controller is connected to one bank of L2 
cache. The L2 cache is divided on the T1 into four banks. The T1 can support up to 128GB of RAM.  

  UltraSparc T1 and the Sun and  GNU  gcc Compilers 
 We introduce the architecture of the UltraSparc T1 to contrast it with that of the AMD Opteron, IBM Cell 
Broadband architecture, and the Intel Core 2 Duo. While each of these architectures is multicore, the 
different implementations are dramatic. From the highest level, an application designed to take 
advantage of multicore will see them all as a collection of two or more processors. However, from an 
optimization point of view, there is much more to take into consideration. Two of the most commonly 
used compilers for the UltraSparc T1 are the Sun C/C++ compiler (part of Sun Studio) and the GNU gcc, 
the standard open source C/C++ compiler. While Sun ’ s compilers obviously have the best support for 
their processors, GNU gcc has a great deal of support for T1, with options that take advantage of threads, 
loop unrolling, vector operations, branch prediction, and Sparc - specific platform options. Virtually all of 
the program examples in this book have been compiled and executed on a SunFire 2000 with an eight -
 core T1 processor. Look at the program profiles for the program listings, and you will see which compiler 
switches we explored for the T1.   

  The  IBM  Cell Broadband Engine 
 The CBE is a heterogeneous multicore chip. It is a heterogeneous architecture because it consists of two 
different types of processors: PowerPC Processing Element (PPE) and Synergistic Processor Element 
(SPE). The CBE has one PPE and eight SPEs, one high - speed memory controller, one high - bandwidth 
element interconnect bus, high - speed memory, and I/O interfaces all integrated on - chip. This makes it a 
kind of hybird nine - core processor. Figure  2 - 6  shows an overview of the CBE processor.   

local store
(256 KB)

SPE 0

local store
(256 KB)

SPE 1

local store
(256 KB)

SPE 2

local store
(256 KB)

SPE 3

local store
(256 KB)

SPE 4

local store
(256 KB)

SPE 5

local store
(256 KB)

SPE 6

local store
(256 KB)

SPE 7L2 CACHE
(512 KB)

MEMORY
INTERFACE
CONTROLLER

PPE

64 bit

2 thread SMT
VMX

L1 CACHE

CELL PROCESSOR

INTERRUPT
CONTROLLER

BUS
INTERFACE
CONTROLLER

...

RAM

RAM

...

I/O
DEVICES 

I/O
DEVICES 

ELEMENT INTERCONNECT BUS (EIB)

Figure 2-6

c02.indd   28c02.indd   28 7/31/08   2:44:11 PM7/31/08   2:44:11 PM



Chapter 2:                                                 Four Effective Multicore Designs          

29

 Most of the common CMPs have homogeneous processors, that is, ones with the same instruction set. 
The processors on the CBE have two different instruction sets. Although each of the processor elements 
has been optimized for certain types of operations, both types of elements can be used for general -
 purpose computing.   

  The first element in the Cell processor is a 64 - bit PowerPC processor. This element complies 
fully with the 64 - bit PowerPC architecture and can execute either 32 - bit or 64 - bit operating 
systems and applications.  

  The second type of processor element is the SPE. The SPEs have been optimized for running 
Single Instruction Multiple Data (SIMD) applications.    

 Although there are several commercial scientific uses of the CBE, its most common use is as the 
processor for Sony ’ s Playstation 3. 

   CBE  and Linux 
 We selected the CBE as one of our four effective multicore architecture designs because it is able to 
deliver so much performance in a Linux environment. The Playstation 3 is a flexible device and comes 
with ready - to - install Linux. Currently, there is a Fedora and a Yellow Dog distribution of Linux for the 
CBE. The low cost of the Playstation 3 (PS3) brings heterogeneous multicore application development 
into reach of virtually any software developer. The PPE element and the SPEs can be programmed using 
the standard GNU gcc compiler. There is a CBE SDK available for downloading from IBM that includes 
tools necessary to compile the SPE code. Basically, the SPE code is compiled separately and then linked 
with the PPE code to form a single execution unit. The PPE and SPEs act cooperatively, with both 
bringing specialties to the table. Typically, the SPEs use the PPE to run the operating system code and in 
most applications the main or top - level thread. The PPE (the general purpose processor) uses the SPEs as 
the application ’ s high - performance workhorse. The SPEs have good support for SIMD operations, 
computer - intensive applications, and vector type operations. When you execute the code from Listing  
2 - 1  on the CBE, the number printed to the console is 2. This is because the SPEs are directly accessible. 
The 2 represents the fact that the PPE is a CMT; it is a dual thread processor. So in the right configuration, 
you can have multiple logical processors (including the SPEs) available in a CBE configuration. The 
heterogeneous architecture also makes for some interesting design choices. 

 While standard POSIX threads (pthreads) and process management can be used with the PPE element, 
the SPE has to be programmed using the thread library that ’ s available as part of the CBE SDK. The good 
news is the SPE thread calls are designed to be compatible with pthreads and require no learning curve 
for developers who are familiar with the pthread library.  

   CBE  Memory Models 
 The PPE accesses memory differently than the SPEs. Although there is only a single memory flow 
controller, the CBE avoids the normal single bus bottleneck potentials because the SPEs each have their 
own local memory. Figure  2 - 7  shows the memory configurations for the PPE and the SPE.   

❑

❑

c02.indd   29c02.indd   29 7/31/08   2:44:11 PM7/31/08   2:44:11 PM



Chapter 2:                                                 Four Effective Multicore Designs          

30

...

I/O
DEVICES

local store
(256 KB)

SPU 0

SPE 0

L1 CACHE

MMU

RMT

MFC

PPU 0

PPE 0

ELEMENT INTERCONNECT BUS (EIB)

MICIICBIC

MEMORY

RMT

CELL PROCESSOR

...

Synergistic Processing Element

Synergistic Processing Unit

PowerPC Processing Element

PowerPC Processing Unit

Memory Flow Controller

Memory Management Unit

Replacement Manangement Table

Bus Interface Controller

Internal Interrupt Controller

Memory Interface Controller    

SPE

SPU

PPE

PPU

MFC

MMU

RMT

BIC

IIC

MIC

RM
T

L1 CACHERM
T

Figure 2-7

 The SPE configuration is where most of the savings come in. The SPE has a three - level memory access. 
It uses its local store, register files, and direct memory access (DMA) transfers to main memory. This 
three - tier memory architecture allows programmers to schedule simultaneous data and code transfers. 
The CBE processor can support up to 128 simultaneous transfers between the SPE local stores and main 
storage. Although the SPE is optimized for SIMD type operations, the PPE has support for parallel 
vector/SIMD operations as well.  

  Hidden from the Operating System 
 The CBE is a good example of a multicore that must be directly addressed to get the maximum 
performance from it. The standard Linux system calls can see the dual threads of the PPE but are not 
fully aware of the SPEs. The developer must explicitly develop and compile code that works with the 
SPEs, and then that code must be linked with the code from the PPE. At that point Linux knows how to 
handle the eight SPE processors. The heterogeneous architecture of the CBE also provides exciting 
design choices for the developer who is willing to dig a little deeper into the possibilities.  

c02.indd   30c02.indd   30 7/31/08   2:44:11 PM7/31/08   2:44:11 PM



Chapter 2:                                                 Four Effective Multicore Designs          

31

  Synergistic Processor Unit 
 An SPE comprises a synergistic processor unit (SPU) designed to accelerate a wide range of 
workloads, providing an efficient data - parallel architecture, and the synergistic memory flow controller 
(MFC), providing coherent data transfers to and from system memory [Gschwind, Erb, Manning, and 
Nutter, 2007]. The SPU does not access main memory directly but rather must issue DMA commands to 
the MFC. The communication between the SPU and the PPU is through the interconnect bus (EIB). Since 
each SPE has its own memory management unit (MMU), this means that it can execute independently 
from the PPE. But that independence has limits. The SPUs are primarily optimized for data manipulation 
and calculation.   

  Intel Core 2 Duo Processor 
 Intel ’ s Core 2 Duo is only one of Intel ’ s series of multicore processors. Some have dual cores and others 
have quad cores. Some multicore processors are enhanced with hyperthreading, giving each core two 
logical processors. The first of Intel ’ s multicore processors was the Intel Pentium Extreme Edition 
introduced in 2005. It had dual cores and supported hyperthreading, giving the system eight logical 
cores. The Core Duo multicore processor was introduced in 2006 and offered not only multiple cores but 
also multiple cores with a lower power consumption. Core 2 Duo, also introduced in 2006, has dual 
cores; it has no hyperthreading but supports a 64 bit architecture. 

 Figure  2 - 8  shows a block diagram of Intel ’ s Core 2 Duo ’ s motherboard. The Core 2 Duo processor has 
two 64 - bit cores and 2 64K level 1 caches, one for each core. Level 2 cache is shared between cores. 
Level 2 cache can be up to 4MB. Either core can utilize up to 100 percent of the available L2 cache. This 
means that when the other core is underutilized and is, therefore, not requiring much L2 cache, the more 
active core can increase its usage of L2.   

PCI-E x16
PCI-E x16

L2 CACHE  (4 MB)

L1 CACHE
(64 KB)

CORE 0

L1 CACHE
(64 KB)

CORE 1

FSB
NORTHBRIDGE

(MEMORY
CONTROLLER

HUB)

SOUTHBRIDGE

(I/O
CONTROLLER

HUB)

RAM

RAM I/O DEVICES

I/O DEVICES

PCI-E x16 6 PCI-E

LPC BIOS
SUPPORT 

CORE 2 DUO PROCESSOR

MOTHERBOARD

. . .

Figure 2-8

c02.indd   31c02.indd   31 7/31/08   2:44:12 PM7/31/08   2:44:12 PM



Chapter 2:                                                 Four Effective Multicore Designs          

32

  Northbridge and Southbridge 
 Besides the CPUs, the next most important component of the motherboard is the chipset. The  chipset , 
shown in Figure  2 - 8 , is a group of integrated circuits designed to work together that connects the CPUs 
to the rest of the components on the motherboard. It is an integrated part of the motherboard and, 
therefore, cannot be removed or upgraded. It is manufactured to work with a specific class or series of 
CPUs in order to optimize its performance and the performance of the system in general. The chipset 
moves data back and forth from CPU to the various components of the motherboard, including memory, 
graphics card, and I/O devices, as diagrammed in Figure  2 - 8 . All communication to the CPU is routed 
through the chipset. 

 The chipset comprises two chips: Northbridge and Southbridge. These names were adopted because of the 
locations of the chips on the motherboard and the purposes they serve. The Northbridge is located in 
the northern region, north of many the components on the motherboard, and the Southbridge is located in the 
southern region, south of some components on the motherboard. Both serve as bridges or connections 
between devices; they bridge components to make sure that data goes where it is supposed to go.   

  The  Northbridge , also called the  memory controller hub , communicates directly with the CPU 
via the Front Side Bus. It connects the CPUs with high - speed devices such as main memory. It 
also connects the CPUs with Peripheral Component Interconnect Express (PCI - E) slots and the 
Southbridge via an internal bus. Data is routed through the Northbridge first before it reaches 
the Southbridge.  

  The  Southbridge , also called the  I/O controller , is a slower than the Northbridge. Because it is 
not directly connected to the CPUs, it is responsible for the slower capabilities of the 
motherboard like the I/O devices such as audio, disk interfaces, and so on. The Southbridge is 
connected to BIOS support via the Serial Peripheral Interface (SPI), six PCI - E slots, and other 
I/O devices not shown on the diagram. SPI enables the exchange of data (1 bit at a time) 
between the Southbridge and the BIOS support using a master - slave configuration. It also 
operates with a full duplex, meaning that data can be transferred in both directions.     

  Intel ’ s  PCI  Express 
 PCI - E or PCI Express is a computer expansion card interface. The slot serves as a serial connection for 
sound, video, and network cards on the motherboard. Serial connections can be slow, sending data 1 bit 
at a time. The PCI - E is a high - speed serial connection, which works more like a network than a bus. It 
uses a switch that controls many point - to - point full - duplex (simultaneous communication in both 
directions) serial connections called lanes. There can be 4, 8, of 16 lanes per slot. Each lane has two pairs 
of wires from the switch to the device  —  one pair sends data, and the other pair receives data. This 
determines the transfer rate of the data. These lanes fan out from the switch directly to the devices where 
the data is to go. The PCI - E is a replacement of the PCI and provides more bandwidth. Devices do not 
share bandwidth. The Accelerated Graphics Port (AGP) is replaced with a PCI - E x16 (16 lanes) slot that 
accommodates more data transferred per second (8 GB/s).  

  Core 2 Duo ’ s Instruction Set 
 The Core 2 Duo has increased performance of its processor by supporting Streaming SIMD Extensions 
(SSE) and special registers to perform vectorizable instructions. SSE3 provides a set of 13 instructions 
that are used to perform SIMD operations on packed integers and floating - point data elements. This 
speeds up applications that utilize SIMD operations such as highly intensive graphics, encryption, 

❑

❑

c02.indd   32c02.indd   32 7/31/08   2:44:12 PM7/31/08   2:44:12 PM



Chapter 2:                                                 Four Effective Multicore Designs          

33

and mathematical applications. The processor has 16 registers used to execute SIMD instructions: 8 
MMX and 8 XMM registers. The MMX registers support SIMD operations on 64 - bit packed byte, word, 
and doubleword integers. The XMM data registers and the MXCSR registers support execution of SIMD 
operations on 128 - bit packed single - precision and double - precision floating - point values and 128 - bit 
packed byte, word, doubleword, and quadword integers. Table  2 - 3  gives a brief description of the three 
registers, XMM, MMX, MXCSR, involved in executing SIMD operations.   

Table 2-3

Register Set Description

MMX Set of eight registers used to perform operations on 64-bit packed integer data types

XMM Set of eight registers used to perform operations on 128-bit packed single- and 
double-precision floating-point numbers

MXCSR Register used with XMM registers for state management instructions

 There are many compiler switches that can be used to activate various capabilities of the multicore 
processors. For the Intel C\C++ compiler, there are compiler switches that activate vectorization options 
to utilize the SIMD instructions, auto parallelization options, loop unrolling, and code generation 
optimized for a particular processor.     

 You might recall that Chapter  1 , Table  1 - 1  lists the categories of compiler switches that interface with 
the CPU and instruction set that affect how your program or application performs and utilizes core 
resources.     

  Summary 
 Although one of the primary jobs of the operating system is to encapsulate the details of the hardware 
and provide a hardware - independent interface, certain types of developers need to be aware of 
hardware specifics. These include library developers, compiler designers, system programmers, kernel 
programmers, server developers, game designers and developers, and others who have maximum 
system performance as a primary design goal. Four effective yet different designs for multicore 
architectures are the 

  Opteron  

  UltraSparc T1  

  Cell Broadband Engine  

  Core 2 Duo    

 As we have shown, each of these designs has unique features that you as a developer can leverage when 
you consider programming from a multicore perspective. The C/C++ compiler is the first - level interface 
to these designs. Homogeneous CMP designs have identical cores. Heterogeneous designs have cores 
with different instruction sets and architectures. The CBE is a good example of a heterogeneous CMP. 

❑

❑

❑

❑

c02.indd   33c02.indd   33 7/31/08   2:44:12 PM7/31/08   2:44:12 PM



Chapter 2:                                                 Four Effective Multicore Designs          

34

 This chapter has now introduced the four architectures that we shall reference throughout this book. All 
of the code examples have been compiled and tested in one or more of these architectures. Most of the 
examples have been compiled and tested in all these environments. The program profiles for the 
program listings contain specific compiler switches and linking options when required. Although each of 
these architectures is different, we demonstrate methods for dealing with them all in a standard fashion. 
We want you to be able to take advantage of hardware specifics in the most general way if it ’ s possible. 
For many software applications, the differences between hardware implementations are hidden because 
one of the primary design goals is to make the software compatible with as many different hardware 
platforms as possible. So there is an effort to avoid platform - specific features, as that is one of the 
primary jobs of the operating system. But with some applications you need to know the specifics of the 
hardware implementation so that you can optimize the code. Optimization for these applications 
becomes more important than compatibility. These applications include high - transaction database 
servers, web servers, application servers, hardware - intensive game engines, compilers, operating system 
kernels, device drivers, and high - performance scientific modeling and visualization software. 
Developers of these applications are practically forced to look for and exploit platform features that 
make their applications acceptable to the end user. So if you are this class of developer, familiarity with a 
specific processor or family of processors is a prerequisite for effective software development. 

 In Chapter  3  we turn to the challenges of multicore programming.              

c02.indd   34c02.indd   34 7/31/08   2:44:13 PM7/31/08   2:44:13 PM



                                                                                                                                The Challenges of Multicore 
Programming              

  Assume we ’ re facing multiple enemies and disperse the sets  . . .  Split up into four 
groups and activate the threshold triggers!   

   —  Shirow Masamune,  Ghost in the Shell     

 Until recently, the most accessible tools and techniques used for software development were 
centered on notions from the sequential model of computer program execution. The basic (and 
often unstated) assumption in Information Technology (IT) and Computer Science programs at 
universities, colleges, and technical schools was that the software developer would be working in 
the context of single processor computers. This is evidenced by the fact that until recently 
educational institutions placed very little emphasis on the ideas of parallel programming. Two of 
the primary reasons for the lack of focus on parallel programming were cost and tradition.   

   Cost : First, single processor computers were considerably cheaper and enjoyed a much 
wider availability than multiple - processor computers. Cost and availability made single 
processor computers the configuration of choice for most businesses, academic 
institutions, and government agencies.  

   Tradition : Second, the fundamental ideas behind software development and computer 
programming were worked out decades ago within the constraints of single processor 
environments. Basic algorithms for searching, sorting, counting, parsing, and retrieving 
were developed, refined, and perfected under a sequential programming model. These 
same basic algorithms, data structures, programming models, and software engineering 
methodologies form the basis of most software development approaches in use today.    

❑

❑

c03.indd   35c03.indd   35 7/31/08   2:45:52 PM7/31/08   2:45:52 PM



Chapter 3: The Challenges of Multicore Programming

36

 Sequential programming techniques are important and will always have their place. However, 
multiprocessor computer configurations are now widely available. This opens up a host of very different 
approaches to program decomposition and software organization. Software architectures that include a 
mix of sequential programming, multiprocessing, and multithreading will become common place. For 
the majority of developers these hybrid software architectures will be uncharted waters. The trend is that 
multiprocessor computers will in most cases replace single processor configurations in business, 
academia, and government. To take advantage of the multiprocessor environments, you as a software 
developer must add a new set of tools and techniques to your repertoire. Software projects that require 
multicore or parallel programming present unique challenges to software developers who are only 
accustomed to the sequential programming model, and this chapter addresses the challenges that 
developers face as they move into projects requiring multicore or parallel programming. We discuss the 
Software Development Life Cycle (SDLC) and methodologies as they apply to the concurrency model. 
Also, we discuss decomposing a problem as well as a solution, and procedural and declarative models.  

  What Is the Sequential Model? 
 In the basic  sequential  model of programming, a computer program ’ s instructions are executed one at a 
time. The program is viewed as a recipe, and each step is to be performed by the computer in the order 
and amount specified. The designer of the program breaks up the software into a collection of tasks. 
Each task is performed in a specified order, and each task stands in line and must wait its turn. In the 
sequential model computer programs are set up in almost story form. The programs have a clear 
beginning, middle, and end. The designer or developer envisions each program as a simple linear 
progression of tasks. Not only must the tasks march in single file, but the tasks are related in such a way 
that if the first task cannot complete its work for some reason, then the second task may never start. Each 
task is made to wait on the result of previous task ’ s work before it can execute. In the sequential 
model, tasks are often serially interdependent. This means that A needs something from B, and B needs 
something from C, and C needs something from D and so on. If B fails for some reason, then C and D 
will never execute. In a sequential world, the developer is accustomed to designing the software to 
perform step 1 first, then step 2, and then step 3. This  “ one  - at - time ”  model is so entrenched in the 
software design and development process that many programmers find it hard to see things any other 
way. The solution to every problem, the design of every algorithm, the layout of every data structure  — 
 all rely on the computer accessing each instruction or piece of data one at a time. 

 This all changes when the software requirements include multithreading or multiprocessing 
components. When parallel processing is called for, virtually every aspect of the software design and 
implementation is affected. The developer is faced with what we call the 10 challenges of concurrency: 

  1.   Software decomposition into instructions or sets of tasks that need to execute simultaneously  

  2.   Communication between two or more tasks that are executing in parallel  

  3.   Concurrently accessing or updating data by two or more instructions or tasks  

  4.   Identifying the relationships between concurrently executing pieces of tasks  

  5.   Controlling resource contention when there is a many - to - one ratio between tasks and resource  

  6.   Determining an optimum or acceptable number of units that need to execute in parallel  

  7.   Creating a test environment that simulates the parallel processing requirements and conditions  

c03.indd   36c03.indd   36 7/31/08   2:45:53 PM7/31/08   2:45:53 PM



Chapter 3: The Challenges of Multicore Programming

37

  8.   Recreating a software exception or error in order to remove a software defect  

  9.   Documenting and communicating a software design that contains multiprocessing and 
multithreading  

  10.   Implementing the operating system and compiler interface for components involved in 
multiprocessing and multithreading     

  What Is Concurrency? 
 Two events are said to be  concurrent  if they occur within the same time interval. Two or more tasks 
executing over the same time interval are said to  execute concurrently . For our purposes, concurrent 
doesn ’ t necessarily mean at the same exact instant. For example two tasks may execute concurrently 
within the same second but with each task executing within different fractions of the second. The first 
task may execute for the first tenth of the second and pause. The second task may execute for the next 
tenth of the second and pause. The first task may start again executing in the third tenth of a second and 
so on. Each task may alternate executing. However, the length of a second is so short that it appears that 
both tasks are executing simultaneously. 

 We may extend this notion to longer time intervals. Two programs performing some task within the 
same hour continuously make progress on the task during that hour. They may or may not be executing 
at the same exact instant. We say that the two programs are executing concurrently for that hour. Tasks 
that exist at the same time and perform in the same time period are concurrent. They may or may not 
perform at the same exact instant. Concurrent tasks can execute in a single -  or multiprocessing 
environment. In a single - processing environment, concurrent tasks exist at the same time and execute 
within the same time period by context switching. In a multiprocessor environment, if enough 
processors are free, concurrent tasks may execute at the same instant over the same time period. The 
determining factor for what makes an acceptable time period for concurrency is relative to the 
application. In this book, we will deal with the challenges of concurrency in terms of three categories: 

  Software development  

  Software deployment  

  Software maintenance    

 While there are many other ways to think about and group the issues related to multiprocessing and 
parallel programming, we chose these categories because in our experience most of the heavy lifting 
involved in multicore programming falls into at least one of these categories.     

 In this chapter, we primarily discuss software development. In Chapter  10 , we discuss maintenance and 
deployment.    

  Software Development 
 The software development effort comes in all shapes and sizes, from device driver development to the 
construction of large - scale  N  tier enterprise applications. Although the software development techniques 
involved vary with the size and scope of the application, there is a set of challenges that any application 
that uses multiprocessing, or multithreading, have in common. These challenges present themselves in 

❑

❑

❑

c03.indd   37c03.indd   37 7/31/08   2:45:53 PM7/31/08   2:45:53 PM



Chapter 3: The Challenges of Multicore Programming

38

every phase of the SDLC. It is important for you to understand the connection between multicore 
programming and the SDLC well. This is because the easiest way to deal with the complexity, demands, 
and potential pitfalls of multicore programming is to tackle the issues during the appropriate stage in the 
SDLC. The SDLC describes the necessary activities that designers and developers perform in the process 
of producing high - quality software. Since the act of creating good software is part art, part engineering, 
and part science, there are competing theories for exactly what makes up the SDLC. Table  3 - 1  lists the 
major activities that are found in most versions of the SDLC.   

Table 3-1

Major SDLC Activities Description

Specifications Documents the agreement between the developer and the client by 
specifying what the software must do and the constraints of the 
software.

Design Specifies how the software will fulfill what has been stated in 
the specifications. The design determines the internal structure of the 
software. The design can be broken down into two approaches: 
architectural design (system broken down into modules) and detailed 
design (description of the modules).

Implementation The translation of the detailed design into code.

Testing and evaluation The process of exercising the software in order to judge its quality by 
determining how well the software has met the fulfillment of the 
specified requirement.

Maintenance The modification of a software product after delivery in order to correct 
faults, improve performance, improve attributes, or adapt the software 
to a changed environment.

 There are many ways to think about and organize the activities in Table  3 - 1 . Further, the activities listed 
in Table  3 - 1  are just the core activities that most versions of the SDLC have in common. Each approach to 
organizing the activities in the SDLC has spawned its own software development methodology. Once a 
software development methodology has been established, tool sets, languages, and software libraries are 
created to support that methodology. For example the object - oriented software revolution spawned the 
notions of: 

  Object - Oriented Software Engineering (OOSE)  

  Object - Oriented Analysis (OOA)  

  Object - Oriented Design (OOD)  

  Object - Oriented Programming (OOP)  

  Object - Oriented Database Management Systems (OODBMS), and so on    

❑

❑

❑

❑

❑

c03.indd   38c03.indd   38 7/31/08   2:45:54 PM7/31/08   2:45:54 PM



Chapter 3: The Challenges of Multicore Programming

39

 These software development methodologies have dedicated languages such as Eiffel, Smalltalk, C++, 
Objective C, Java, Python, and CLOS. From these languages and methodologies have sprung libraries and 
tools, such as the Standard Template Library (STL), Unified Modeling Language (UML), Common Object 
Request Broker Architecture (CORBA), Rational Rose, Together, and Eclipse. These languages, libraries, 
and tools sets are very different from those used in logic programming or software development using 
structured programming techniques. Table  3 - 2  lists some commonly used software development 
methodologies.   

Table 3-2

Software Development 
Methodologies Description Activities/Phases

Agile Software is developed in short time 
intervals. Each interval or iteration is a 
miniature development project that 
delivers some part of the functionality of 
the software.

• Planning 
• Requirement analysis
• Design
• Coding
• Testing
• Documentation

Build and fix Software is developed and built and then 
reworked as many times as necessary until 
the client is satisfied with the product.

• Build first version
•  Modify until client is 

satisfied
• Maintenance phase
• Retirement

Extreme programming Model based on the incremental model; 
the developer informs the client how long 
it will take to implement and the cost of 
each feature, and the client selects which 
features are to be included in each 
successive build.

• Specifications
• Design
•  Implementation/

integration
• Delivery

Incremental The software is built in increments or 
steps; the software is designed, 
implemented, and integrated module by 
module. For each build the modules are 
assembled to fulfill a specified 
functionality.

• Requirements
• Specification
• Architectural design
• Build loop
• Maintenance
• Retirement

Object-oriented Software development based on the 
identification of the objects in the system; a 
bottom-up approach.

• Requirements
• OO analysis
• OO design
•  Implementation/

integration
• Operations mode
• Maintenance

Table continued on following page

c03.indd   39c03.indd   39 7/31/08   2:45:54 PM7/31/08   2:45:54 PM



Chapter 3: The Challenges of Multicore Programming

40

Software Development 
Methodologies Description Activities/Phases

Rapid prototyping With the model a prototype is created of 
the system. After that the SDLC continues 
based on the acceptance of the prototype. 
At each phase, there is interaction with the 
client to either test or verify the 
progression of the product.

• Rapid prototype
• Specification
• Design
• Implementation
• Integration
• Maintenance
• Retirement

Spiral The spiral model is similar to the 
incremental model with an emphasis on 
risk analysis and verification in each 
phase. Each pass through these phases 
occurs iteratively (called spirals).

• Planning
• Risk analysis
• Evaluation
• Engineering

Structured A top-down approach to software 
development in which the system is 
iteratively decomposed by functionality, 
starting from the highest levels of 
abstractions into its lowest functionality.

• Requirements
• Design
• Implementation
• Testing
• Deployment

Waterfall Most common and classic of the models. 
Also called the linear-sequential model. 
With this model, each phase must be 
completed in its entirety before moving to 
the next phase.

• Requirements
• Specifications
• Design
• Implementation
• Integration
• Maintenance
• Retirement

 Selecting a software development methodology is a challenge in itself, and once a methodology is 
selected, the possible tool sets and techniques come along by default. The choice of methodology has 
critical implications for how multiprocessing and multithreading are implemented in a piece of software. 
The developer who has multicore programming requirements needs to proceed with caution when 
selecting a particular approach because the tool sets and techniques of that methodology might restrict 
the developer to awkward and error prone implementations of multiprocessing or multithreading. 
Software approaches that are procedure driven handle multithreading and multiprocessing very 
differently from methodologies that are object or data driven. Object - Oriented Programming approaches 
present a very different set of options to the developer than what is available in logic programming. It is 
also the case that once the software development effort has begun and human resources and tools are in 
place, it is difficult to change paradigms in midstream or after the software has been deployed. In some 
software development efforts, tools sets, languages, and libraries are selected even before software 
requirements or specifications are understood. This is unfortunate because this often leads to a software 
implementation that is forced into the selected languages and tool sets whether it fits or not. Again, 
understanding the relationship between the various activities in the SDLC and multicore programming 
is important, and we emphasize this relationship throughout this book. 

c03.indd   40c03.indd   40 7/31/08   2:45:54 PM7/31/08   2:45:54 PM



Chapter 3: The Challenges of Multicore Programming

41

 Although there can be (and are!) disagreements about which is the best direction to take, there are basic 
activities that are common to all of the approaches. These activities are present in one form or another in 
every software development effort regardless of size. For example, every approach has some process for 
getting the requirements and specifications for a project. Every approach has activities centered on 
designing a solution prior to actually coding the finished product. Another example of a basic activity is 
the testing of software prior to its release. These type of common activities may occur in different places 
and amounts among the various software development methods, but they are present in each. If you 
deal with the 10 challenges of concurrency during the appropriate activities in the SDLC, the chances of 
producing correct and reliable programs are greatly increased. If the software you have to develop 
requires some kind of concurrency, then some portion of every activity in Table  3 - 1  is affected. We focus 
on the SDLC here because we advocate a software engineering approach to multicore application 
development as opposed to some trial and error, ad hoc plug - in methods that are being used to get 
 “ multicore - aware  ”   applications to market quickly. While there are ways to hide and abstract away some 
complexity of parallel programming and multithreading, there are no real shortcuts. The deployment of 
robust, correct, and scalable software applications that can take advantage of Chip Multiprocessors 
(CMPs) requires sound software engineering and an effective solid understanding of the SDLC. 

 Determining when, where, and how to incorporate multiprocessing and multithreading into the 
software development effort is the major theme of this book  —  which brings us to two of the primary 
questions that we will answer: 

  1.   How do you know when your software application needs multicore programming?  

  2.   How do you know where to put the multicore programming in your piece of software?    

 These questions are related to the first challenge in our list of 10 challenges presented earlier in this 
chapter. Both questions are central to the challenge of software decomposition. 

  Challenge #1: Software Decomposition 
 The need or opportunity for multithreading or multiprocessing is most often discovered during the 
decomposition activity. For our purposes,  decomposition  is the process of breaking down a problem or 
solution into its fundamental parts. Sometimes the parts are grouped into logical areas (that is, searching 
sorting, calculating, input, output, and so on). In other situations, the parts are grouped by logical 
resource (processor, database, communication, and so on). The decomposition of the software solution 
amounts to the Work Breakdown Structure (WBS) or its Architectural Artifacts (AAs).   

  The WBS determines which piece of software does what.  

  The AA determines what concepts or things a software solution is divided into.    

 The WBS typically reflects a procedural decomposition, whereas the AA represents an object - oriented 
decomposition. Unfortunately, there is no cookbook approach to identifying the WBS or the AA of a 
software solution.     

 We can say that model - driven decomposition is one of the most practical approaches, and we will have 
much to say about models throughout this book.   

 You cannot talk about where to use threads or whether to use simultaneously executing processes in the 
software solution until you have decomposed both the problem and the solution. Problem and solution 
decompositions are typically performed during the analysis and design activities in the SDLC. 

❑

❑

c03.indd   41c03.indd   41 7/31/08   2:45:55 PM7/31/08   2:45:55 PM



Chapter 3: The Challenges of Multicore Programming

42

A successful decomposition is one of the primary ingredients of a successful software development 
effort. On the other hand, a poor or inappropriate problem and solution breakdown almost certainly 
leads to failed software. 

  An Example of Decomposition 
 To show you what we mean by decomposition, we take as a simple example the problem of painting the 
house before the guests arrive for the holidays. Of course, we will take this opportunity to use the latest 
craze  —  software - automated painters. Take a look at how you might decompose the problem of painting 
the house, as well as the solution.   

Decomposition #1 
 The  problem  could be broken down into: 

  Deciding paint color and type  

  Acquiring paint and painters tools  

  Determining which rooms to paint first  

  Identifying which type of automated painter to use  

  Choosing which days of the week to paint  

  Figuring out when to start painting    

 This is one decomposition of the problem of painting the house. 

 A decomposition of the  solution  might look like this: 

  Select and purchase the paint that matches the furniture.  

  Use the neighbor ’ s software - automated painter.  

  Have the automated painter start at the front of the house and work to the back.  

  Only paint during the hours of 6:00 A.M. to 1:00 P.M. on weekdays.  

  Start the painting on the next available weekday.    

 You can quickly see part of the challenge of decomposition. The first thing you might notice is that there 
is typically more than one way to decompose the problem. As you look at the problem and solution 
breakdown, you may have had a very different set of steps in mind. In fact you could have chosen an 
entirely different approach to the problem of painting the house before the guests arrive for the holidays:

    Decomposition #2 
 Consider the following alternate  problem  decomposition: 

  Identifying rooms that would be better off with wallpaper  

  Finding walls where windows could be added to reduce wall surface area  

  Verifying if cleaning the walls could be a substitute for paint  

  Determining how much paint the neighbors have to donate  

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd   42c03.indd   42 7/31/08   2:45:55 PM7/31/08   2:45:55 PM



Chapter 3: The Challenges of Multicore Programming

43

  Figuring out which walls can be removed instead of painted  

  Obtaining the travel plans of the guests  

  Acquiring demo software - automated painters for a free 30 - day trial    

 You might use the solution decomposition from the first approach, or you could choose an entirely 
different  solution  decomposition: 

  Strategically use lighting to showcase the best - looking walls.  

  Where lighting is not appropriate, the judicious use of mirrors is acceptable.  

  Add windows to external walls.  

  In the event that mirrors are inconvenient, use wallpaper.  

  Use as many demo painters as can be obtained.  

  Delay guests ’  arrival until software - automated painters are done.    

 The second observation you can make is that a decomposition might be incomplete or inappropriate! 
Ideally, the fundamental parts of a decomposition should collectively represent the initial problem or 
solution. It ’ s like putting the pieces of a puzzle back together again. If the pieces don ’ t collectively 
represent the whole, then the decomposition is incomplete. This means you haven ’ t captured the entire 
problem, and you won ’ t have the entire solution. In the painting the house problem, was identifying the 
amount or cost of the paint part of the original problem? You can ’ t tell from the statement of the 
problem. So you don ’ t know if Decomposition #1 or #2 is incomplete. On the other hand, clearly you 
need to paint the house before the guests arrive. The problem and solution in Decomposition #1 do not 
address the guests ’  arrival at all. So it is not clear whether the solution in Decomposition #1 will be 
acceptable. While Decomposition #2 does attempt to address the arrival of the guests, the problem and 
solution are geared toward finding ways not to paint the house at all or to paint as few walls as possible. 
This decomposition may be inappropriate. It might reflect a poor understanding of the intent of the 
initial problem. 

 You can also see that in the solution for Decomposition #1, a single software - automated painter is 
suggested, and in Decomposition #2 multiple software - automated painters were chosen. So not only 
does Decomposition #2 seek to minimize the number of walls to be painted, but it also attempts to do so 
as fast as possible. Appropriate decomposition is a primary challenge for applications based on the 
sequential model. It is even more of an issue where parallel processing is called for. There are software 
tools and libraries that can help the developer with implementing a decomposition; however, the process 
itself remains part of the problem solving and design activity. Until you get the problem and solution 
breakdown right, the application of multithreading or multiprocessing will be murky. 

 Earlier, we defined decomposition as the process of breaking down a problem or solution into its 
fundamental parts. But what are the fundamental parts of a problem or solution? The answer depends 
on what model you use to represent the problem and the solution. One of the challenges of software 
decomposition is that there are multiple ways to represent a problem and its solution. It could also be 
reasonably argued that  there is no one right way  to decompose a problem or a solution. So which 
decomposition should you choose? Another challenge is making sure that the decomposition is 
complete, appropriate, and correct. But how will you know if the breakdown is right? In some cases, it ’ s 
not a matter of choosing between multiple and possibly conflicting WBSs; it is a matter of coming up 
with any decomposition at all. This might be due to the complexity of the original problem. 

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd   43c03.indd   43 7/31/08   2:45:55 PM7/31/08   2:45:55 PM



Chapter 3: The Challenges of Multicore Programming

44

The decomposition issue is front and center in any software development effort. It ’ s especially important 
where parallel processing tools or techniques will be deployed. But the WBS or AA chosen rely on the 
idea of models. Wherever decomposition takes place, there is always one or more models in the vicinity. 
Hiding beneath the surface of the choices in Decomposition #1 and #2 is an assumed and shared model.   

  Finding the Right Model 
 Models are the stuff decomposition is made of! Complicating the challenges of decomposition is the 
selection of a suitable model that appropriately represents problem, task, or solution.   

What Is a Model? 
 Software development is the process of translating concepts, ideas, patterns of work, rules, algorithms, 
or formulas into sets of instructions and data that can be executed or manipulated by a computer. It is a 
process that relies heavily on the use of  models.  For our purposes a  model  is a scaled artificial 
representation of some real process, thing, concept, or idea. The scaled representation is some smaller, 
simpler, or easier to deal with approximation of the process, thing, concept, or idea. 

 The primary function of the model is to imitate, describe, or duplicate the behavior and characteristics of 
some real - world entity. The model is to be a stand - in containing enough information to allow analysis 
and decision making. The better the model represents the real - world entities, the more natural the 
decomposition, WBS, or Architectual Artifacts will be. 

 One of the challenges to multicore programming is to select the appropriate model of the problem and 
solution. In terms of parallel programming, multiprocessing, and multithreading, you succeed when the 
appropriate model is used and fail when the wrong model is selected. The question of how to break up 
an application into concurrently executing parts can often be answered during an analysis of the solution 
model or the problem model. The selected model affects what decomposition choices are available. 

 For example, in the house - painting problem we assumed one familiar model of a house: 

   Model #1 : The house as something that has walls, rooms, and support for windows. You should 
add to this model ceilings, doors, archways, floors, banisters, a roof, and so on.    

 This is probably one of the models that immediately comes to mind when you are thinking about the 
house - painting problem. But as was the case with decomposition, there is more than one model for a 
given problem or solution. You could have selected a totally different model for the house: 

   Model #2 : The house as a dwelling measured in square feet, having an entry and an exit, having 
reasonable space for a family of two or more, providing protection from the weather, offering a 
modicum of privacy, and having a place to rest for all inhabitants.    

 While Model #2 might be good for certain scenarios (for example, igloo selection), Model #1 appears to 
be more helpful for the house - painting problem. 

 What this shows is that the notion of decomposition is closely related to models. In fact, the decomposition 
follows the parts, processes, and structure of the model used. Specifically, the decomposition is limited by 
the underlying model of the problem and solution. So part of the challenge of decomposition is the 
challenge of model selection.    

❑

❑

c03.indd   44c03.indd   44 7/31/08   2:45:56 PM7/31/08   2:45:56 PM



Chapter 3: The Challenges of Multicore Programming

45

Procedural Models or Declarative Models? 
 Earlier in the chapter we introduced the idea of a Work Breakdown Structure (WBS) and Architectural 
Artifacts (AAs) of a solution. The WBS breaks a problem or solution down into the tasks that need to be 
performed or the work that needs to be done. On the other hand, the AA divide a problem or solution into a 
set of persons, places, things, or ideas. Table  3 - 3  shows the differences between the WBS and AA approaches.   

Table 3-3

Attributes WBS AA

Definition Breaks a problem or solution down 
into the tasks that need to be 
performed or the work that needs 
to be done

Divides a problem or solution into a 
set of persons, places, things, or ideas

Model used Uses task-driven models Uses object-oriented or relational-
driven models

Decomposition model Uses procedural models Uses declarative models

Scalability/complexity Does not scale well; difficulty with 
very complex system

Can scale well; works best with 
complex system

 As you can see, whereas WBS decomposes the problem and solution into a set of actions, AAs break 
down problems and solutions into a set of things. Whereas the WBS uses task - driven models, AAs use 
object - oriented or relational - driven models. And most significant, whereas WBS decompositions follow 
from procedural models, AA follows from declarative models. 

 Perhaps the most important and critical decision that can be made for a software design that will include 
multiprocessing or parallel programming is whether to use procedural models or declarative models or 
some combination of the two. The fundamental differences in approach, technique, design, and 
implementation between procedural models and declarative models are so dramatic that they require 
radically different paradigms of computer programming [Saraswat, 1993]. In some cases, these paradigms 
are supported by very different languages. In other cases, the paradigms are supported by using familiar 
languages in extremely different ways. As the trend moves toward more processors on a single chip, 
toward single - chip massive multiprocessors (with 100s or 1000s) of processors on a chip, procedural 
models and their corresponding WBS will not be able to scale. They will collapse under the complexities 
of synchronization and communication. Declarative models and decompositions will have to be used. 

 The transition to declarative models is a major challenge because the procedural model and its WBS are 
based in the traditional sequential approach to programming discussed in the  “ What Is the Sequential 
Model? ”  section earlier in this chapter. The sequential model of computation currently has the most 
commonly used languages, tools, and techniques. Until very recently, the sequential model of 
computation was also the most frequently taught model in universities, colleges, trade schools, and so 
on. Although the declarative models have been with us for some time, they are not as widely used or 
taught (with the exception of OOP). Table  3 - 4  shows a list of declarative programming paradigms and 
some commonly used languages in that paradigm.   

c03.indd   45c03.indd   45 7/31/08   2:45:56 PM7/31/08   2:45:56 PM



Chapter 3: The Challenges of Multicore Programming

46

Table 3-4

Declarative Programming Paradigms Commonly Used Languages

Object-oriented C++
Java
Eiffel
SmallTalk
Python

Functional C++
Haskell
Lisp
ML
Scheme

Concurrent constraint C++
Prolog
Prolog-based languages

Constraint Prolog
Prolog-based languages

 One of the advantages that the C++ programmer has in the new world of CMPs is the fact that C++ 
supports multiparadigm development. That is, unlike languages like Java where everything must be an 
object, C++ supports object - oriented, parameterized, and imperative (procedural) programming. 
Because of C++ ’ s power of expressiveness and flexibility, it can be used to implement ideas from all of 
the programming paradigms listed in Table  3 - 4 . We will have much to say about declarative approaches 
to parallelism versus procedural approaches to parallelism throughout this book. As with most problems 
and solutions, the challenge is learning to use the right tool for the job.

    One Room at a Time or All at Once? 
 Earlier in the chapter for the problem of painting the house before the guests arrive for the holidays, you 
saw two problem and solution WBS. Decomposition #1 chose to use a single software - automated painter, 
and Decomposition #2 chose to use as many software - automated painters as possible. Note that the 
solution in Decomposition #1 specified that the software - automated painter start at the front of the house 
and work to the back. However, Decomposition #2 does not mention how the multiple software -
 automated painters should proceed. 

 Does it make sense to paint the house one room at a time? Or is it best to paint as many rooms 
simultaneously as possible? If you do attempt to paint more than one room at a time, will you need 
multiple paint brushes? Will each of the software - automated painters share a brush, or a bucket, or an 
elevation device? How many automated painters are enough  —  one for each room? One for each wall? 
Do the automated painters need to communicate with each other? What if some are done before others, 
should they proceed to help any painter that is not yet finished? What if some but not all rooms can be 
painted simultaneously? What if the rooms that can be painted simultaneously change from day to day? 
How is this communicated and coordinated with the software - automated painters? What if there is so 
much time between the recognition that the house needs painting and guests arriving for the holidays 
that a single automated painter can easily get the job done satisfactorily? Do you use multiple painters 
anyway? So, how do you perform a declarative decomposition for the house - painting problem? These 

c03.indd   46c03.indd   46 7/31/08   2:45:56 PM7/31/08   2:45:56 PM



Chapter 3: The Challenges of Multicore Programming

47

are the types of problems that you run into during problem and solution decomposition. And as you will 
soon see, the decomposition problems lead to other challenges.     

 It is one thing for a software solution or architecture to require multiprocessing or multithreading as a 
result of design decisions or user specifications. That ’ s different from the case where insightful analysis 
of an existing piece of software or software design reveals opportunities to exploit multiprocessing where 
it was otherwise not required or included. In this book, we focus our attention on software solutions or 
architectures that require multiprocessing as result of design decisions or user specifications.      

  Challenge #2: Task - to - Task Communication 
 If you have two tasks, A and B, that are concurrently executing and one of the tasks is dependent on the 
other for information, then the tasks need to have some way to communicate the information. If the tasks 
need to share some resource (that is, file, memory, object, a device, or so on) and that resource supports 
only one at a time access, then the tasks need to have some way to pass on information that the resource 
is available or that the resource is requested. If the tasks involved are separate operating system 
processes, the communication between the tasks is called  Interprocess Communication (IPC) . 

 Processes have separate address spaces. These separate address spaces serve to isolate processes from 
each other. This isolation is a useful protection mechanism, and this protection is sometimes a reason to 
choose multiprocessing over multithreading. The operating system keeps the resources of processes 
separate. This means that if you have two processes, A and B, then the data declared in process A is not 
visible to process B. Furthermore, the events that happen in process A are unknown by process B, and 
vice versa. If process A and B are working together to accomplish some task, information and events 
must be explicitly communicated between the two processes. The data and events for each process are 
local to process. In Chapter  5 , we discuss the anatomy of a process in more detail, but for now we use 
Figure  3 - 1  to show the basic layout of two processes and their resources.   

LOCAL VARIABLES LOCAL VARIABLES
GLOBAL VARIABLES

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

IPC
MECHANISMS 

string Phrase("Hello");
void main() {
  ...
  write(fd[WRITE], Phrase,...);

string Msg;

void main() {
   ...
   read(fd[READ], Msg,...);
   string Word = new string(Msg);
} 

Phrase

"Hello"

Msg

"Hello"

Word

"Hello"

shared
memory filesmessages

PROCESS B’S ADDRESS SPACE

PROCESS A’S ADDRESS SPACE

pipe

LOCAL VARIABLES
GLOBAL VARIABLES

Process B’s
stack ...

Process A’s
stack ...

Figure 3-1

c03.indd   47c03.indd   47 7/31/08   2:45:57 PM7/31/08   2:45:57 PM



Chapter 3: The Challenges of Multicore Programming

48

 Note that in Figure  3 - 1  the resources of process A are isolated from the resources of process B. The 
processes have a text, data, and stack segment. Processes may also have other memory allocated from 
the free store. The data that a process owns is generally in the data segment, the stack segment, or the 
process ’ s own dynamically allocated memory. This data is protected from other processes by the 
operating system. In order for one process to have access to another process ’ s data, special IPC 
mechanisms must be used. Likewise, in order for one process to be made aware of what happens within 
the text segment of another process, a means of communication must be established between the 
processes. This also requires the assistance of operating - system - level IPCs. One of the primary 
challenges for the multiprocessing program is the management of IPC. The number of IPC mechanisms 
increases as the number of the number of processes involved in a single application increases. More 
processes almost always mean more IPC mechanisms and usage. In many instances, coordinating the 
communications among multiple processors is the real challenge. 

  Managing  IPC  Mechanisms 
 The POSIX specification supports six basic mechanisms used to accomplish communication between 
processes: 

  Files with lock and unlock facilities  

  Pipes (unnamed, named also called FIFOs  —  First - In, First - Out)  

  Shared memory  

  POSIX message queues  

  Sockets  

  Semaphores    

 Table  3 - 5  contains simple descriptions of the POSIX IPC mechanisms for processes.   

❑

❑

❑

❑

❑

❑

Table 3-5

POSIX Interprocess Communication Description

Command-line arguments Can be passed to the child process during the invocation 
of the exec or spawn functions.

Environment variables/file descriptors Child processes can receive a copy of the parent’s 
environment data and file descriptors. The parent 
process can set the variables, and the child process can 
read those values. The parent process can open files and 
advance the location of the file pointers, and the child 
process can access the file using the same offset.

Files with locking facilities Used to transfer data between two processes. Locking 
facilities are used to synchronize access to the file 
between the processes.

c03.indd   48c03.indd   48 7/31/08   2:45:57 PM7/31/08   2:45:57 PM



Chapter 3: The Challenges of Multicore Programming

49

POSIX Interprocess Communication Description

Pipes A form of communication channel between related or 
unrelated processes. Normally accessed with file read 
and write facilities.

Shared memory A block of memory accessed by processes that resides 
outside of their address space.

Message queues A linked list of messages that can be shared between 
processes.

Semaphores A variable used to synchronize access between threads 
or processes of a resource.

Sockets A bidirectional communication link between processes 
that utilizes ports and IP addresses.

 Each of these IPC mechanisms has strengths, weaknesses, traps, and pitfalls that the software designer 
and developer must manage in order to facilitate reliable and efficient communication between two or 
more processes. We cover these in detail in Chapter  5 , but we want to mention here some of the primary 
challenges of using these IPC mechanisms: 

  They must be correctly created or the application will fail.  

  They require the proper user permissions for use.  

  They require the proper file permissions for use.  

  In some cases they have stringent naming conventions.  

  They are not object - friendly (that is, they use low - level character representations).  

  They must be properly released or they ’ ll cause lockups and resource leaks.  

  Source and destination processes are not easily identified in their use.  

  Initial deployments of the software can be tricky because all environments are not compliant.  

  Mechanisms are very sensitive to correct size of data sent and received.  

  Wrong data type or size can cause lockups and failures.  

  Flushing the mechanisms is not always straightforward.  

  Some of the mechanisms are not visible use user utilities.  

  Depending on type, the number of IPCs that a process can access may be limited.    

 These IPC mechanisms can be used as bridges between concurrently executing processes. Sometimes the 
bridge is a two - way bridge, sometimes it ’ s not. For instance, a POSIX message queue might be created 
with the permission allowing processes to read messages and to write messages. Some processes might 
open the queue up for reading, some for writing, and some for both. The software developer has to keep 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd   49c03.indd   49 7/31/08   2:45:58 PM7/31/08   2:45:58 PM



Chapter 3: The Challenges of Multicore Programming

50

track of which process opens up which queue for what. If a process opens up the queue for read-only 
access, then later tries to write the queue, it can cause problems. If the number of concurrently executing 
tasks involved is small, this can be readily managed. However, once you move beyond a dozen or so 
concurrently executing processes, then managing the IPC mechanisms become a challenge. This is 
especially true for the procedural models of decomposition mentioned earlier in the chapter. Even when 
the two - way or one - way traffic requirements are properly managed, you face issues of the integrity of 
the information transmitted between two or more processes. The message passing scheme might 
encounter issues such as interrupted transmissions (partial execution), garbled messages, lost messages, 
wrong messages, wrong recipients, wrong senders, messages that are too long, messages that are too 
short, late messages, early messages, and so on. 

 It is important to note that these particular communication challenges are unique to processes and don ’ t 
apply to threads. This is because each process has its own address space and the IPC mechanisms are 
used as a communication bridge between processes. Threads, on the other hand, share the same address 
space. Simultaneously executing threads share the same data, stack and text segments. Figure  3 - 2  shows 
a simple overview of the anatomy of a thread in comparison to that of a process.   

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

main() {...}GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

PROCESS A’S ADDRESS SPACE

LOCAL VARIABLES
GLOBAL VARIABLES

LOCAL VARIABLES

IPC
MECHANISMS 

shared
memory filesmessages

PROCESS B’S ADDRESS SPACE

pipe

LOCAL VARIABLES LOCAL VARIABLES
GLOBAL VARIABLES

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

Thread A’s
stack

...

GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

Thread B’s
stack

...

Main
Thread’s
stack ...

//executed by ThreadA

task1(...)  { ...} 
ITC MECHANISMS

//executed by ThreadB

task2(...)  { ... }

main() { 
   //create ThreadA
   //create ThreadB

FILE
HANDLES

GLOBAL
VARIABLES

GLOBAL DATA

PARAMETERS

Figure 3-2

c03.indd   50c03.indd   50 7/31/08   2:45:58 PM7/31/08   2:45:58 PM



Chapter 3: The Challenges of Multicore Programming

51

 Communication between two or more threads (sometimes called lightweight processes) is easier because 
threads don ’ t have to worry about address space boundaries. This means that each thread in the 
program can easily pass parameters, get return values from functions, and access global data. As you see 
in Figure  3 - 2 , threads of the same process access the global variables of its process stored in the data 
segment. Here we highlight the basic difference between Interprocess Communication (IPC) and 
Interthread Communication (ITC) mechanisms: IPC mechanisms reside outside the address space of 
processes, whereas ITC mechanisms reside within the address space of a process. That ’ s not to say that 
threads don ’ t have their own challenges; it ’ s just that they are immune from the problems of having to 
cross address spaces.  

  How Will the Painters Communicate? 
 Earlier in the chapter, in the example problem of painting the house before the guests arrive for the 
holidays, Decomposition #2 used as many software - automated painters as possible in its approach. But if 
the painters are in different rooms how will they communicate with each other? Do they need to 
communicate with each other? What if they are sharing a single bucket  —  how many painters can access 
it simultaneously? What happens when it needs to be refilled? Do the painters wait until the bucket is 
filled or do other work while the bucket is being refilled? What happens when multiple painters need 
the elevation device at the same time? Should you add more elevation devices? How many devices are 
enough? How does one painter let another painter knows that an elevation device is available? These 
kinds of questions plague multiprocessing and multithreading efforts. If they are not dealt with during 
the appropriate stages in the SDLC, then an application that requires multiprocessing or multithreading 
is in jeopardy before it is even installed. If the communication is not appropriately designed, then 
deadlock, indefinite postponement, and other data race conditions can easily occur. Data race, deadlock, 
and indefinite postponement are among the most notorious issues that multithreading or 
multiprocessing face, and they are the problems at the core of Challenge #3.   

  Challenge #3: Concurrent Access to Data or 
Resources by Multiple Tasks or Agents 

 Three common problems appear when concurrently executing instructions, tasks, or applications have 
been required to share data, devices, or other resources. These problems can result in the corruption of 
the data, the stalling of the task, or the freezing of the agent. The three problems are: 

  Data race  

  Deadlock  

  Indefinite postponement    

❑

❑

❑

c03.indd   51c03.indd   51 7/31/08   2:45:59 PM7/31/08   2:45:59 PM



Chapter 3: The Challenges of Multicore Programming

52

  Problem #1: Data Race 
 If two or more tasks attempt to change a shared piece of data at the same time and the final value of the 
data depends simply on which tasks get there first, then a race condition has occurred. When two or 
more tasks are attempting to update the same data resource at the same time, the race condition is called 
a  data race . Information that is subject to race conditions is not reliable. This goes for input values as well 
as output values. The status of the paint bucket in the house - painting problem using Decomposition #2 
is a candidate for data race. 

 Consider the following description of the update process for the paint bucket: Each painter ’ s bucket 
routines include a get instruction for getting 1 or more gallons from the bucket. A read instruction for 
reading the status of the bucket and a write instruction for updating the status of the bucket after gallons 
have been removed. So a bucket process for a painter might look like this: 

Read  Bucket Status into Total
If N is  < = Total
   Get N Gallons of Paint 
   Total = Total - N
   Write Total to Bucket Status
end if  

 In this process, each painter once it removes paint from the bucket records how much paint is left based 
on the bucket ’ s previous paint status. Say that two of the painters, Painter A and Painter B, get to the 
bucket at the same time, and Painter A starts the bucket routines and removes 20 gallons of paint. Before 
Painter A can update the status of the bucket, Painter B removes 10 gallons of paint from the bucket and 
updates the status first. It ’ s possible since Painter B ’ s paint requirement was smaller than Painter A ’ s that 
Painter B finished first and, therefore, updated the  Bucket Status  first. Painter B has updated the 
status of the paint bucket with an incorrect amount. This is because, although Painter A removed 20 
gallons of paint first, the update status had not yet been stored. In addition to this, Painter B has already 
read the value in  Bucket Status  prior to Painter A ’ s update. Further, the monitor for the software -
 automated painters that is responsible for filling the bucket based on the  Bucket Status  happens to 
look at the status before Painter A has updated the status but after Painter B ’ s update. Any decisions that 
the monitor makes based on bucket status will be incorrect. Painter A is totally unaware of Painter B ’ s 
activity and updates the  Bucket Status  with a value of 10 gallons. At this point as a result of Painter 
A ’ s paint removal and Painter B ’ s paint removal, the bucket is actually empty, but the  Bucket Status  
variable reads  10 . Figure  3 - 3  shows the data race scenario for Painter A and Painter B.   

c03.indd   52c03.indd   52 7/31/08   2:46:00 PM7/31/08   2:46:00 PM



Chapter 3: The Challenges of Multicore Programming

53

N

PAINTER A 

Total

BUCKET

Status

N

PAINTER B 

Total

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N 
   Write Total to Bucket Status
end if

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N
    Write Total to Bucket Status
end if

20

30

10

30 10

N

PAINTER A 

Total

BUCKET

Status

N

PAINTER B 

Total

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N 
    Write Total to Bucket Status
end if

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N 
    Write Total to Bucket Status
end if

20

30

10

30 10 30 20

20

N

PAINTER A 

Total

BUCKET

Status

N

PAINTER B 

Total

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N 
    Write Total to Bucket Status
end if

Read Bucket Status into Total
If N is <= Total
   Get N Gallons of Paint
   Total = Total - N 
    Write Total to Bucket Status
end if

20

30

10

30 10 30 20

20 10

Figure 3-3

c03.indd   53c03.indd   53 7/31/08   2:46:00 PM7/31/08   2:46:00 PM



Chapter 3: The Challenges of Multicore Programming

54

 In a multithreading or multiprocessing environment, this is entirely possible because of the way that the 
operating system schedules threads and processes. It can all boil down to clock cycles. Since in this scenario 
the process of taking paint out of the bucket is separate from the process of updating the bucket status, the 
events can be separated by the operating system schedule. The painter that gets to the bucket status first 
turns out to be a matter of operating system scheduling, processor states, latency, and chance. This situation 
creates a race condition. Under these circumstances what will be the real status of the paint bucket? 

 Distinguishing shared modifiable resources from read - only resources is important. If multiple threads or 
processes are attempting to simultaneously access a resource that cannot be modified (that is, read - only 
memory or const objects), then data race is not a concern. Likewise, if multiple threads or processes are 
simply attempting to read a block of data simultaneously, data race does not occur. In order for a race 
condition to exist, the resource under consideration must be modifiable, and multiple threads or processes 
must be trying to simultaneously access the resource with at least one of the threads or processes 
attempting to modify the resource. 

 Whenever tasks concurrently share a modifiable resource, rules, and policies have to be applied to the 
task ’ s access. For instance, for the bucket routine you may have to deploy Exclusive Read Exclusive 
Write (EREW) policies so that when one painter starts other painters have to wait until the entire routine 
is completed. Or you might have to set up a painter whose only job is to update the bucket status. If 
more than one painter needs the bucket at the same time, then the requests must be held and organized 
according to some rule and then the painters must be granted access one at a time. But if you set up the 
bucket status so that only one painter at a time can access it, then aren ’ t you defeating the purpose of 
having multiple threads or processes? Will not the shared bucket status become a performance 
bottleneck? Identifying data race conditions can be tricky because the precise order in which the 
concurrently running processes or threads can execute is determined by what else the operating system 
is doing at the point. It depends on the other potentially unrelated processes or threads that are 
executing. Even computers with multiprocessors will be reduced to multiprogramming if the number of 
threads or processes that the operating system is managing is greater than the number of available 
processors. This means that the operating system will suspend and resume threads or processes as 
necessary. And, what to suspend and when to suspend it is typically up to the operating system. 
This introduces a degree of uncertainty when a collection of processes or threads are executing.     

 We will have more to say about this in Chapters  5 ,  6 , and  7 . Here, we just want to bring your attention 
to the fact that a data race is one of the potential pitfalls of multicore programming.    

  Problem #2: Deadlock 
 Deadlock is another waiting - type pitfall. To illustrate an example of deadlock, assume that the three 
painters (A, B, C) in the house - painting problem are working with two buckets (1, 2) of paint (different 
colors) instead of one. Painter A is responsible for updating the bucket statuses for both buckets of paint. 
Painter A, B, and C can perform their work concurrently. However, Painters B and C may only use one 
bucket of paint at a time. Painter A grants bucket status update access on a first come, first serve basis. 
Say that Painter B has exclusive access to Bucket 1, and Painter C has exclusive access to Bucket 2. 
However, Painter B needs access to Bucket 2 to complete its painting, and Painter C needs access to 
Bucket 1 to complete its processing. Painter B decides to hold on to Bucket 1 waiting for Painter C to 
release Bucket 2, and Painter C decides to hold on to Bucket 2 waiting for Painter B to release Bucket 1. 
Painter B and Painter C are engaged in a deadly standoff also known as a  deadlock . Figure  3 - 4  shows the 
deadlock situation between Painter B and Painter C.   

c03.indd   54c03.indd   54 7/31/08   2:46:00 PM7/31/08   2:46:00 PM



Chapter 3: The Challenges of Multicore Programming

55

BUCKET 1

PAINTER B EXCLUSIVE
ACCESS to BUCKET 1

PAINTER C EXCLUSIVE
ACCESS to BUCKET 2

PAINTER C REQUESTS
ACCESS to BUCKET 1

PAINTER B REQUESTS
ACCESS to BUCKET 2

BUCKET 2

PAINTER CPAINTER B

Figure 3-4

 The form of deadlock shown in Figure  3 - 4  requires concurrently executing tasks that have access to some 
shared modifiable resource, which they must wait for each other to finish using before they can access. 
In Figure  3 - 4 , the shared resources are Bucket 1 and Bucket 2. Both Painters have access to these buckets. 
It happens that instead of one Painter getting access to both buckets at the same time, by the luck of the 
draw each Painter got access to one of the buckets. Since Painter B can ’ t release Bucket 1 until it gets 
Bucket 2, and Painter C can ’ t release Bucket 2 until it gets Bucket 1, the software - automated painting 
process is locked. Notice that Painter B and C can drive another task(s) into indefinite postponement 
(which is discussed in more detail in the next section). For example, Painter A, who is responsible for 
updating the bucket status, is also waiting for Painter B or Painter C to issue a write or read request. If 
other tasks are waiting for access to Bucket 1 or Bucket 2 and Painter B and Painter C are engaged in a 
deadlock, then those tasks are waiting for a condition that will never happen. 

 In your attempts to coordinate concurrently executing tasks, deadlock and indefinite postponement are 
two of the ugliest obstacles that you must overcome. To make matters worse, it ’ s not always clear when 
it has occurred. The tasks involved may be waiting for legitimate events to happen. It could also be the 
case that Task A is simply taking a little longer than expected. So identifying legitimate deadlocks also 
poses another challenge on the road to multicore programming. The steps involved in identifying 
deadlocks (deadlock detection), preventing deadlocks, and avoiding deadlocks are critical to 
applications that use multiprocessing or multithreading.     

 We discuss techniques for deadlock detection, prevention, and avoidance in Chapter  7 .    

c03.indd   55c03.indd   55 7/31/08   2:46:01 PM7/31/08   2:46:01 PM



Chapter 3: The Challenges of Multicore Programming

56

  Problem #3: Indefinite Postponement 
 Scheduling one or more tasks to wait until some event or condition occurs can be tricky. First, the event 
or condition must take place in a timely fashion. Second, it requires carefully placed communications 
between tasks. If one or more tasks are waiting for a piece of communication before they execute and 
that communication either never comes, comes too late, or is incomplete, then the tasks may never 
execute. Likewise, if the event or condition that you assumed would eventually happen actually never 
occurs, then the tasks that you have suspended will wait for ever. If one or more tasks are suspended, 
waiting for some condition or event that never occurs, this is known as indefinite postponement. In the 
software - automated painting solution, if Painter B does not release Bucket 1 until it has Bucket 2, Painter 
C does not release Bucket 2 until it has Bucket 1, Painter B and Painter C both do not request a  Bucket 
Status  update until they are finished, and Painter A waits for Painter B and C, then the work of all the 
involved painters is headed for  indefinite postponement . 

 Data race, deadlock, and indefinite postponement are examples of synchronization problems. These 
types of problems take the form of competition for the same resource by two or more tasks at the same 
time. Resources can be software or hardware. 

   Software resources  include files, records within files, fields within records, shared memory, 
program variables, pipes, sockets, and functions.  

   Hardware resources  include interrupts, physical ports, and peripherals such as printers, 
modems, displays, storage, and multimedia devices.    

 Some of these resources are easily sharable such as disks or files. Other resources require that access be 
carefully managed as in the case of interrupts. When two or more tasks attempt to change the state of the 
same resource at the same time, there is the possibility of data loss, incorrect program results, system 
failure, and in some cases, device damage.   

  Challenge #4: Identifying the Relationships between 
Concurrently Executing Tasks 

 The synchronization problems of data race, deadlock, and indefinite postponement are sometimes 
magnified by the challenges involved in setting up the right execution relationships between threads or 
processes. 

  The Basic Synchronization Relationships 
 There are four basic synchronization relationships between any two threads in a single process or any 
two processes in a single application. Table  3 - 6  lists the four basic synchronization relationships and their 
descriptions.   

❑

❑

c03.indd   56c03.indd   56 7/31/08   2:46:01 PM7/31/08   2:46:01 PM



Chapter 3: The Challenges of Multicore Programming

57

Table 3-6

Synchronization Relationship Description

Start-to-start (SS) One task cannot start until another task starts.

Finish-to-start (FS) One task cannot finish until another starts.

Start-to-finish (SF) One task cannot start until another task finishes.

Finish-to-finish (FF) One task cannot finish until another task finishes.

 So, if you have two tasks, A and B: 

  In a  start - to - start (SS)  relationship, Task A cannot start until Task B starts. Task B may start at the 
same time that Task A starts or after A starts, but never before Task A starts.  

  In a  finish - to - start (FS)  relationship Task B cannot start until Task A finishes or completes a 
certain operation. For example, if Task B is reading from the POSIX message queue that Task A 
is writing to, Task A needs to write at least one element in the queue before Task B can process it. 
Again if Task B needs to perform a binary search on a list that Task A has to sort, Task B should 
be synchronized with Task A so that Task B does not start the search until Task A has finished 
the sort. Finish - to - start relationships normally suggest information dependencies.  

  The  start - to - finish (SF)  synchronization relationship says that Task A cannot start until Task B 
finishes. This kind of relationship is common in situations where a parent process requires IPC 
from a child process to complete, or when a process or thread recursively calls itself after it has 
supplied the parent with the information or event needed.  

  Finally, you have the  finish - to - finish (FF)  synchronization relationship, which says that Task A 
cannot finish until Task B finishes. Whereas Task A may finish after Task B finishes, Task A is not 
allowed to finish before Task B.    

 Figure  3 - 5  shows the four synchronization relationships. The SS, FS, SF, and FF synchronization 
relationships are present in multithreaded or multiprocessing applications. Sometimes these 
relationships are very subtle, and discovering all of the variations of them during the various activities in 
SDLC can be perplexing. Some of the relationships between tasks are obvious, while others are only 
implied and require careful examination. There are timing considerations in addition to the 
synchronization relationships.    

❑

❑

❑

❑

c03.indd   57c03.indd   57 7/31/08   2:46:01 PM7/31/08   2:46:01 PM



Chapter 3: The Challenges of Multicore Programming

58

<< signal >>

Thread A Thread B

<< signal >>

Thread A Thread B

Thread A Thread B Thread A Thread B

<< signal >>
ThreadA blocks

<< signal >>

START-TO-START FINISH-TO-FINISH

FINISH-TO-START START-TO-FINISH

ThreadB blocks

ThreadB blocks
ThreadA blocks

Thread B

Figure 3-5

  Timing Considerations 
 If you have more than one of the software - automated painters in the room, should the ceiling painter 
start first? Should the wall painters wait until the ceiling painters are finished? Should both start at 
the same time? Or are you happy as long as they all finish at the same time? Perhaps the wall painters 
should wait 15 minutes before starting. It ’ s not just a matter having as many automated painters as 
possible; there has to be some kind of synchronization relationship among the painters. 

 Sometimes the synchronization relationships need to be augmented with timing - specific information. 
This means that in designing the synchronization relationship, time and events need to be considered. 
For example, if you have Task A and Task B executing concurrently, where Task A is performing a 
communication task and Task B is a monitor watching for a timeout, Task A and Task B might be 
synchronized with a start - to - start relationship. There is no need for Task B to begin checking for a 
timeout condition until Task A has started a communication task. However, once Task A starts its 
communication task and continues for so many milliseconds without any activity, Task B might issue a 
timeout message. In this case, Task B is using a  lag time  before it issues a timeout message. A lag time is 
used to define a synchronization relationship further. Lag times require that an element of time be added to 
the specification of a synchronization relationship. For instance, you might say that Task A and Task B have 
a start - to - start synchronization with the additional requirement that Task B has to wait 10 nanoseconds 
after Task A starts before starting. 

c03.indd   58c03.indd   58 7/31/08   2:46:01 PM7/31/08   2:46:01 PM



Chapter 3: The Challenges of Multicore Programming

59

 These types of timing considerations are another major reason to give close attention to multiprocessing 
or multithreading requirements during the appropriate activities in the SDLC. Also, the implementation 
of the synchronization relationships and timing considerations are dramatically impacted by whether a 
procedural model or declarative model of decomposition is chosen.   

  Challenge #5: Controlling Resource Contention 
Between Tasks 

 Resource contention occurs when multiple tasks compete for the use of the same resource. This topic is 
covered in Chapter  7 .  

  Challenge #6: How Many Processes or Threads 
Are Enough? 

 There is a point where the overhead in managing multiple processors outweighs the speed improvement 
and other advantages gained from parallelization. The old adage  “ you can never have enough 
processors ”  is simply not true. Communication between threads or synchronization between processors 
comes at a cost. The complexity of the synchronization or the amount of communication between 
processors can require so much computation that the performance of the tasks that are doing the work 
can be negatively impacted. In these cases, it ’ s more effective to write a program based on a sequential 
model. For example, if you want to sort a list of 100 numbers, you could attempt to divide up the list of 
100 into groups of 10, sort each group in parallel, and then merge the groups of 10 into one sorted list. But 
the time it would take to divide the list into groups of 10, then communicate that list to each group, and 
then merge the results into a single group all while trying to avoid a data race requires more effort 
and time than it would take to simple sort the numbers using a sequential method. On the other hand, 
if you have a few terabytes of numbers, the parallel approach could be more productive. 

 The question is how many processes, tasks, or threads should a program be divided into? Is there an 
optimal number of processors for any given parallel program? At what point does adding more 
processors or computers to the computation pool slow things down instead of speeding them up? It 
turns out that the numbers change depending on the program. Some scientific simulations may max out 
at several thousand processors, while for some business applications several hundred might be 
sufficient. For some client server configurations, eight processors are optimal and nine processors would 
cause the server to perform poorly. 

 The limit of software processes might be reached before you ’ ve reached the optimum number of 
processors or computers. Likewise, you might see diminishing returns in the hardware before you ’ ve 
reached the optimum number of concurrently executing tasks. 

 Ideally, something in the model decomposition of the problem or the model decomposition of the 
solution can help determine how many threads or processes are necessary. However, the actual 
implementation of the model can introduce so much complexity and overhead that a new model may 
have to be selected. Remember some of the challenges of IPC mechanisms between processes mentioned 
earlier in the chapter. These IPC mechanisms have to be synchronized. If the communication between 
two or more tasks is not properly synchronized, then data race conditions, deadlock, or indefinite 
postponement can be introduced into a piece of software. 

c03.indd   59c03.indd   59 7/31/08   2:46:02 PM7/31/08   2:46:02 PM



Chapter 3: The Challenges of Multicore Programming

60

 While we are strong advocates for the notion that the techniques, tools, languages, and software libraries 
should follow the decomposition model and not the other way around; the complexity of implementing 
the solution decomposition model has to be considered. You also can face many varieties of halting 
problems in applications that include multithreading and multiprocessing. As the number of cooperating 
tasks in an application increases, the complexity of the interdependencies increases as well. This can lead 
to very fickle and brittle software implementations. When multiple tasks are cooperating to provide the 
solution to some problem, what happens if one or more of the tasks fail. Should the program halt or 
should the work be redistributed somehow? This is a problem if you have only two concurrently 
executing tasks. The difficulty in resolving possible task failures rise exponentially as the number and 
interdependencies of threads or processes in a single application increase.  

  Challenges #7 and #8: Finding Reliable and Reproducible 
Debugging and Testing 

 When you test a sequential program, you can trace the logic of a program in a step - by - step manner. 
If you start with the same data and make sure that the system is in the same state, then the outcome 
or flow of the logic is predictable. You can find bugs in the software by starting the program in the 
necessary state, using the appropriate input, and then tracing through the logic step by step. Testing and 
debugging in the sequential model depends on the predictability of program ’ s initial state and current 
state, given the specified input. 

 This changes in multiprocessing and multithreaded environments. It is difficult to reproduce the exact 
context of parallel or concurrent tasks because of operating system scheduling policies, dynamic workloads 
on the computer, processor time slices, process and thread priorities, communication latency, execution 
latency, and the random chance involved in parallel contexts. Add to the workloads the issue of the tasks 
working with different data sets and the changing semantics of data as it is processed by the tasks. 
To reproduce the exact state of the environment during testing and debugging requires that every task the 
operating system was working on be recreated. The processor scheduling state must be known. The status 
of virtual memory and context switching must be reproduced exactly. Interrupt and signal conditions must 
be recreated. In some cases, even networking traffic would have to be recreated! Data must be set and reset 
to its original values and states. Even the testing and debugging tools impact the exact environment. This 
creates a debugging or testing atmosphere of nondeterminism. A situation is nondeterministic if for some 
initial state, the final state is not unambiguously determined [Gries, Scheider, 1993]. 

 In our experience, all but the most trivial multiprocessing and multithreaded applications have the look 
and feel of nondeterminism. This means that recreating the same sequence of events in order to test or 
debug a program is often out of the question. The reason that these things would have to be recreated is 
that they can all help to determine which process or thread can execute and on which processor they can 
execute. And it is the particular mix of executing processes and threads that could be the reason for a 
deadlock, indefinite postponement, data race, or other problem. Although some of these issues also 
affect sequential programming, they don ’ t disrupt the assumptions of the sequential model. The kind of 
predictability that is present in the sequential model is simply not available in concurrent programming. 
This forces the developer to acquire new tactics for testing and debugging programs. It also requires that 
the developer find new ways to prove program correctness. Again, the issues involved with testing and 
debugging are viewed through very different prisms when declarative models are chosen over 
procedural models. Program correctness can be a very elusive concept for programs that involve 
complex parallel - processing schemes. 

c03.indd   60c03.indd   60 7/31/08   2:46:02 PM7/31/08   2:46:02 PM



Chapter 3: The Challenges of Multicore Programming

61

 This nondeterminism also has consequences for cross - platform development. The operating system 
treatment of processes and threads in different operating system environments such as Linux, Solaris, 
Darwin, and so on can vary. Some systems have threads that are have high - , medium - , and low - priority 
options. Some systems have user - defined priority levels. Some systems have mission critical priorities, 
real - time priorities, normal priorities, background priorities, and so on. Operating systems can have 
different types of schedulers, different implementations of IPC mechanisms, and different 
implementations of kernel threads versus user threads. 

  Finding the Right Debugger and Profiler 
 Many debuggers and profilers that are commonly in use were developed under the assumption of single 
processor computers. Multicore application development requires debuggers and profilers that can see 
all of the physical and logical processors that are available. You need the debugger to be as intrusive as 
possible to the operating system workload. Debuggers need to have a clear window into kernel 
processes and system calls. The debugger needs to be able attach or detach a process or thread. It needs 
to be able to see all of the processor states or thread states that the operating system may put a process or 
thread in. A good debugger for multithreaded or multiprocessing applications should be able to start 
and stop threads and processes. It should be able to examine the thread stacks and free store.   

  Challenge #9: Communicating a Design That Has 
Multiprocessing Components 

 You also face the challenge of how to accurately capture a parallel design in documentation. You must be able 
to describe the WBS as well as the synchronization and communication between tasks, objects, processes, and 
threads. Designers must be able to effectively communicate to developers. Developers must be able to 
communicate with those who must maintain and administer the system. Ideally, this should be done using a 
standard notation and representation that is readily available to all concerned. However, finding a single 
documentation language that is broadly understood and can clearly represent the multiparadigm nature of 
some of these systems is elusive. We have chosen the Unified Modeling Language (UML) for this purpose. 
Table  3 - 7  lists the UML diagrams that are helpful for multithreaded and parallel programs.   

Table 3-7

UML Diagrams Descriptions

Structural/Architectural Diagrams

Component diagram A diagram that shows the dependencies and organization 
among a set of physical modules of code (packages) in a 
system.

Deployment diagram A diagram that shows the runtime configuration of processing 
nodes, hardware, and software components in a system.

Table continued on following page

c03.indd   61c03.indd   61 7/31/08   2:46:02 PM7/31/08   2:46:02 PM



Chapter 3: The Challenges of Multicore Programming

62

UML Diagrams Descriptions

Behavioral Diagrams

State/Concurrent State diagram A diagram that shows the sequence of an object’s 
transformation as it responds to events in the system. With a 
concurrent state diagram, these transformations can occur 
during the same time interval.

Sequence diagram An interaction diagram that shows the organization of the 
structure of objects that sends and receives messages.

Collaboration diagram An interaction diagram that shows the time ordering of 
messages.

Activity diagram A diagram that shows the flow from one activity to another; 
similar to a flowchart but can show the activities of several 
objects and the flow of several parallel activities.

 The diagrams in Table  3 - 7  are only a subset of the diagram types available in the UML. But these diagrams 
are immediately applicable to what you want to capture in currency designs. In particular, the UML ’ s 
Activity, Deployment, and State diagrams are very useful in communicating parallel - processing behavior.     

 Since the UML is the de facto standard for communicating object - oriented and agent - oriented designs, 
we rely upon its use in this book. Appendix  A  contains a description and explanation for the notation 
and symbols used in these diagrams.    

  Challenge #10: Implementing Multiprocessing 
and Multithreading in C++ 

 How can software developers that use C++ take advantage of the new CMPs? How can you implement 
multiprocessing in C++? The C++ language does not include any keyword primitives for parallelism. 
The C++ ISO standard is for all intents and purposes mute on the topic of multithreading. There is no 
way within the language to specify that two or more statements should be executed in parallel. Other 
languages use built - in parallelism as a selling feature. Bjarne Stroustrup, the inventor of the C++ 
language, had something else in mind. In Stroustrup ’ s opinion:   

 It is possible to design concurrency support libraries that approach built - in concurrency support 
both in convenience and efficiency. By relying on libraries, you can support a variety of 
concurrency models, though, and thus serve the users that need those different models better 
than can be done by a single built - in concurrency model. I expect this will be the direction taken 
by most people and that the portability problems that arise when several concurrency - support 
libraries are used within the community can be dealt with by a thin layer of interface classes. 
[Stroustrup, 1994]   

c03.indd   62c03.indd   62 7/31/08   2:46:03 PM7/31/08   2:46:03 PM



Chapter 3: The Challenges of Multicore Programming

63

 Further, Stroustrup says,  “ I recommend parallelism be represented by libraries within C++ rather than as 
a general language feature. ”  We have found Stroustrup ’ s position and recommendation on parallelism 
as a library the most practical option. This book is only made possible because of the availability of high -
 quality libraries that can be used for parallel and distributed programming. The libraries that we use to 
enhance C++ implement national and international standards for parallelism and distributed 
programming and are used by thousands of C++ programmers worldwide.   

  C++ Developers Have to Learn 
New Libraries 

 Although there are special versions of C++ that implement parallelism, we present methods on how 
parallelism can be implemented using the ISO (International Organization for Standardization) standard 
for C++. As we implied at the end of the previous section, the library approach to parallelism is the most 
flexible. System libraries and user - level libraries can be used to support parallelism in C++. System 
libraries are those libraries provided by the operating system environment. For example, the POSIX 
threads library is a set of system calls that can be used in conjunction with C++ to support parallelism. 
The Portable Operating System Interface (POSIX) threads are part of the new Single Unix Specification. The 
POSIX threads are included in the IEEE Std. 1003.1 - 2001. The Single Unix Specification is sponsored by 
the Open Group and developed by the Austin Common Standards Revision Group. According to the 
Open Group, the Single Unix Specification: 

  Is designed to give software developers a single set of APIs to be supported be every Unix 
System  

  Shifts the focus from incompatible Unix system product implementations to compliance to a 
single set of APIs  

  Is the codification and dejure standardization of the common core of Unix system practice  

  Has the basic objective of portability for both programmers and application source code    

 The Single Unix Specification Version 3 includes the IEEE Std. 1003.1 - 2001 and the Open Group Base 
Specifications Issue 6. The IEEE POSIX standards are now a formal part of the Single Unix Specification 
and vice versa. There is now a single international standard for a portable operating system interface. 
C++ developers benefit because this standard contains APIs for creating threads and processes. Excluding 
instruction - level parallelism, dividing a program up into either threads or processes is the only way to 
achieve parallelism with C++. The new standard provides the tools to do this. The developer can use: 

  POSIX threads (also referred to as pthreads)  

  POSIX  spawn  function  

  The  exec()  family of functions    

❑

❑

❑

❑

❑

❑

❑

c03.indd   63c03.indd   63 7/31/08   2:46:03 PM7/31/08   2:46:03 PM



Chapter 3: The Challenges of Multicore Programming

64

 These are all supported by system API calls and system libraries. If an operation system complies with 
the Single UNIX Specification Version 3, then these APIs will be available to the C++ developer.     

 These APIs are discussed in Chapter  5 ,  6 , and  7 . They are used in many examples in this book. In addition, 
the relevant portions of the POSIX standard are included in Appendixes  C  and  D .    

  Processor Architecture Challenges 
 We looked at four effective multicore architectures in Chapter  2 . They were the Opteron, the Cell, the 
UltraSparc T1, and the Intel Core 2. While these processors each offer multicore capabilities, they have 
different architectures. These different architectures translate to difference sets of compiler switches, and 
directives. To get the most out of those different architectures, the developer has to be familiar with 
compiler -  and linker - specific features. In this book, we look at the compiler multicore support in the 
GNU C++ compiler, Intel C/C++ compiler, and the Sun C/C++ compiler. Each has its own set of 
switches and directives that supports multithreading and multiprocessing. In some cases (for example, 
the Cell processor), multiple types of compilers are needed to generate a single executable program. The 
danger is that taking advantage of a particular architecture can make the software nonportable. While 
portability is not an issue for all applications, it is for many. How can you take the most advantage of 
some multicore architecture without using features that will hurt portability? That is another key 
question you have to answer as you develop multicore applications.  

  Summary 
 Parallel and distributed programming present challenges in several areas. New approaches to software 
design and architectures must be adopted. Many of the fundamentals assumptions that are held in the 
sequential model of programming don ’ t apply in the realm of parallel. The developer is faced with a number 
of challenges of concurrency that we outlined in this chapter. Some of the keys points covered include: 

  Four primary coordination problems  —  data race, indefinite postponement, deadlock, and 
communication synchronization  —  are among the major obstacles to programs that require 
concurrency.  

  Every aspect of the Software Development Life Cycle (SDLC) is impacted when the 
requirements include parallelism or distribution  —  from the initial design down to the testing 
and documentation. Opportunities for parallelism and multiprocessing will be identified during 
various activities in the SDLC. It is important that the software developer understand the 
relationship between multicore programming and the SDLC.  

  Perhaps the most important and critical decision that can be made for a software design that will 
include multiprocessing or parallel programming is whether to use procedural models or 
declarative models. The fundamental differences in approach, technique, design, and 
implementation between procedural models and declarative models are so dramatic that they 
require radically different paradigms of computer programming.    

 In this book, we present architectural approaches to many of these problems. In addition to the 
architectural approach, we take advantage of the multiparadigm capabilities of C++ to provide 
techniques for managing the complexity of parallel and distributed programs. 

❑

❑

❑

c03.indd   64c03.indd   64 7/31/08   2:46:03 PM7/31/08   2:46:03 PM



Chapter 3: The Challenges of Multicore Programming

65

 The trend is that multiprocessor computers will in most cases replace single processor configurations in 
business, academia, and government. As we have shown you in this chapter, to take advantage of the 
multiprocessor environments, you as a software developer must expand on the tools and techniques you 
already possess. Software projects that require multicore or parallel programming present unique 
challenges to those who are only accustomed to the sequential programming model. While hiding and 
abstracting away some of the complexity of parallel programming and multithreading, you have no real 
shortcuts around this idea. The deployment of robust, correct, and scalable software applications that 
can take advantage of CMPs requires sound software engineering and an effective a solid understanding 
of the SDLC. The chapters that follow will take on the challenges laid out in this chapter and show you 
what you, as the software developer, can do to overcome them.          

c03.indd   65c03.indd   65 7/31/08   2:46:03 PM7/31/08   2:46:03 PM



c03.indd   66c03.indd   66 7/31/08   2:46:04 PM7/31/08   2:46:04 PM



                                                                                                        The Operating System ’ s Role           

   Functional Simplicity, Structural Complexity; The Best Life for All. That ’ s the maxim   . . .   

   —  Shirow Masamune,  Appleseed: The Promethean Challenge    

 So far we ’ ve described some of the primary challenges of multicore programming. We ’ ve briefly 
covered some of the notions of multithreading, multiprocessing, and multiprogramming. In 
Chapter  2 , we introduced the Multicore Opteron, Cell, Duo Core 2, and UltraSparc T1. These chips 
represent four effective but very different approaches to multicore architectures. We explained 
how hardware - specific compiler switches are sometimes necessary to get to certain specific 
features of a Chip Multiprocessor (CMP). But we ’ ve said very little about the operating system ’ s 
role in the design, development, and execution of multicore programs and applications. This 
chapter now turns to that topic. In this chapter we: 

  Provide an overview of the operating system  

  Discuss the developer ’ s interface to the multiprocessor  

  Explore how threads, processes, and processors are connected through the operating 
system  

  Examine how the operating system Application Program Interfaces (APIs) and system 
calls are used in conjunction with C++ for multicore programming and application 
development  

  Explain how the operating system functions as the gatekeeper of the multiprocessor  

  Discuss how to use the Portable Operating System Interface (POSIX) standard to design 
and implement multicore applications that work on all major hardware and operating 
system platforms     

❑

❑

❑

❑

❑

❑

c04.indd   67c04.indd   67 7/31/08   2:48:39 PM7/31/08   2:48:39 PM



Chapter 4: The Operating System’s Role

68

  What Part Does the Operating System Play? 
 Our focus on the operating system is the role it plays as a development tool. In this book, we discuss 
multicore programming from both the system programmer ’ s and the application programmer ’ s point of 
view. From these viewpoints, the operating system ’ s role can be divided into two primary functions: 

   Software interface : Providing a consistent and well - defined interface to the hardware resources 
of the computer  

   Resource management : Managing the hardware resources and other executing software 
applications, jobs, and programs    

  Providing a Consistent Interface 
 Prior to the advent of operating systems, programmers had to be familiar with the particular instruction 
sets and idiosyncrasies of each device. Video adapters, disk drives, printers, keyboards  —  all have 
specific and different instruction sets and command sets. Not only is the access to each device different; 
the same kinds of devices made by different manufacturers have different instructions sets and 
peculiarities. This led to programmers constantly having to rewrite the same functionality using different 
instruction sets. For example, if a developer had written a program that sorted a file to disk, that program 
could not be reused on another manufacturer ’ s disk until the device id, instruction set, device modes, 
and so on were all updated to reflect those from the new manufacturer ’ s device! In addition to unique 
instruction sets, each device connected to the computer had a specific address, port, or interrupt. Prior to 
the advent of operating systems, the programmer would have to know a device ’ s physical address, port, 
or interrupt before the device could be accessed. So, programs contained device ids, hardware addresses, 
port numbers, and interrupts. The programmer had to virtually write a device driver for each piece of 
hardware the program accessed. Program and software portability were out of the question! 

 The notion of the operating system changed all of this. Operating systems provided the programmer 
with common interfaces to similar devices. The operating system encapsulated internal structures for 
devices, like video adapters, sound cards, keyboards, monitors, disk drives, printers, and so on. Instead 
of forcing the programmer to use peculiar device specific instructions, the operating system provided the 
programmer with a couple of layers of software between the developer ’ s program and the hardware 
resources connected to the computer. These layers are called the  Application Program Interface (API)  and 
the  System Program Interface  ( SPI) . It became the operating system ’ s job to directly address hardware 
resources and all of their peculiarities. So, now the programmer only has to use the simplified API and 
SPI, and the operating system deals with all of the device - specific translation.  

  Managing Hardware Resources and 
Other Software Applications 

 In addition to providing an API and SPI to the developer, the operating system negotiates the access to 
processors, memory, I/O ports, interrupts, and storage on behalf of a program ’ s processes or threads. In 
most workstation environments and server environments, there are multiple programs being executed 
or waiting for execution at any one instant. Since the number of processors and amount of memory are 
limited, it ’ s the operating system ’ s job to decide which programs get access to which processor, for how 
long, and when. The operating system determines how much memory a process or collection of 
processes is allowed to hold and for how long. For programs that are too large to fit in main storage, the 
operating system manages the process of switching in pieces of the software for execution. The operating 
system assigns hardware resources to processes. The operating system then protects one processor ’ s 

❑

❑

c04.indd   68c04.indd   68 7/31/08   2:48:40 PM7/31/08   2:48:40 PM



Chapter 4: The Operating System’s Role

69

resources from access or violation by another process. In general, the operating system manages all of 
the hardware resources in a computer. In addition to managing hardware resources it also schedules and 
manages processes and threads  .

  The Developer ’ s Interaction with the Operating System 
 Regardless of whether you use class libraries, high - level function libraries, or application frameworks for 
your multicore development, the operating system still plays the role of gatekeeper to the processors, 
memory, filesystems, and so on connected to the computer. This means that the multithreading or 
multiprocessing functionality that is contained in class libraries, high - level function libraries, or 
application frameworks still needs to pass through operating system APIs or SPIs. Figure  4 - 1  shows the 
developer ’ s view of the software layers and the operating system.   

Developer’s application with multithreading or multiprocessing requirements

Application framework for parallel programming
(for example, STAPL)

Operating system, system calls, IPCs

Class libraries & object-oriented components for
multiprocessing and multithreaded libraries
(for example, TBB)

Thread function libraries
(for example, POSIX spawn and threads)

LE
VE

L 
2

LE
VE

L 
1

LE
VE

L 
3

LE
VE

L 
4

CORE 0 CORE 1 CORE 2 CORE 3 MAIN
MEMORY

 Figure 4 - 1   

 Figure  4 - 1  shows the software layers that can be used to provide multithreading or multiprocessing 
functionality to a software application. Notice the levels for each software layer in Figure  4 - 1 . In Figure 
 4 - 1 , the lower the level, the more details of the parallel programming mechanisms the developer has 
control over, has responsibility for using correctly, and has to have knowledge of. The lower the level, the 
more design and programming skill required to implement the software correctly. 

c04.indd   69c04.indd   69 7/31/08   2:48:40 PM7/31/08   2:48:40 PM



Chapter 4: The Operating System’s Role

70

   Level 4  is the highest level. This level provides the most insulation from the details of parallel 
programming for the developer. The Standard Template Adaptive Parallel Library (STAPL) is an 
example of this kind of application framework. STAPL is a framework for developing parallel 
programs in C++. The goal of a framework like STAPL is to allow the developer to provide 
parallelism in a software application while not having to worry about all of the specific 
implementation - related issues that are involved with parallel programming.     

 We take a closer look at STAPL in Chapter  8 .    

   Level 3  in Figure  4 - 1  is represented by template or class libraries like Intel Threading Building 
Blocks (TBB) library. The Intel Threading Building Block library is a set of high - level generic 
components that also encapsulate much of the detail of multiprocessing and multithreading. 
Developers using the TBB invoke high - level algorithm templates and synchronization objects 
that do the low - level work.     

 We also take a look at TBB in Chapter  8 .    

  Both STAPL and the TBB library allow the programmer to focus more on the software solution 
that is being implemented rather than on how the parallelism for the solution is implemented. 
Keep in mind that while this type of abstraction and information hiding is good for certain types 
of application developers, it may not be desirable for certain classes of system programmers, 
library developers, or server development. In Chapter  3  we stressed the fact that modeling and 
the Software Development Lifecycle (SDLC) are critical in determining where, when, or if 
multithreading or multiprocessing is needed. High - level application frameworks and thread 
building block libraries do not change this fact. They do not replace the job of modeling or any of 
the steps in the SDLC. However, if used correctly, they can make modeling and some of the steps 
in the SDLC easier to implement. We cannot stress enough the fact that parallel programming 
techniques and tools should come after problem and solution decomposition and modeling.  

   Level 2  in Figure  4 - 1  includes thread and process APIs provided by the operating system 
environment. In this book, we use POSIX APIs to interact with the OS for process management and 
thread management. Level 2 provides the application and system programmer with the most 
flexibility, but that flexibility comes at a cost. Working with multithreading and multiprocessing at 
level 2 requires detailed knowledge of process and thread management, Interprocess 
Communication, and a command of synchronization techniques. It requires intimate knowledge of 
operating system APIs related to process and thread management. It requires specific knowledge of 
the implementation of parallel algorithms. It requires knowledge of the specific compiler and linker 
directives that relate to multiprocessing and multithreading. In some cases, the control and flexibility 
of programming at level 2 is an acceptable tradeoff for the additional skill and effort required.  

  The programming at  level 1  in Figure  4 - 1  requires the most knowledge of operating system 
internals, hardware interfaces, and kernel - level interfaces. Level 1 programming directly 
accesses the hardware with few or no software barriers. Programming at level 1 is in the domain 
of system programming.    

 Regardless of whether your application has been developed with tools and techniques from level 4 or from 
level 3, the frameworks, templates, and class libraries ultimately have to call APIs that exist at level 2 and 
level 1. Levels 1 and 2 provide the SPI and API gateways to the operating system, and at the end of the day, 
it ’ s the operating system that controls access to the multiple cores that we are interested in exploiting. 

 While not every developer that is writing software to take advantage of multicore computers will or 
should work with level 1 and 2, a fundamental understanding of how things work at this level is very 
important during the SDLC. It ’ s important to understand the fundamentals because no single library, 

❑

❑

❑

❑

❑

c04.indd   70c04.indd   70 7/31/08   2:48:41 PM7/31/08   2:48:41 PM



Chapter 4: The Operating System’s Role

71

framework, or tool provides all of the services that most applications need. Further, many of these tools 
have to be mixed and matched. Virtually all medium -  and large - scale software applications are built 
using a combination of libraries. These libraries are not always  thread safe  or  multicore - aware . When there 
is a problem, the software developer needs to understand at least the basics of what is going on with 
process and thread management. The high - level tools used in level 3 and 4 from Figure  4 - 1  have to be 
configured. Configuration requires a basic understanding of how things work. In some cases, the mixing 
and matching causes conflicts that need to be resolved. 

 In addition to this, not all high - level tools run in every environment. For instance, the TBB runs on many 
Intel - based processors but is not yet available on all other major non - Intel processors. To make it 
available for or completely compatible with your platform might require porting and so on. The nature 
of multithreaded and multiprocessing application requires that the developer understand the 
fundamental relationship between the software, the operating system, and the processors and memory. 
This is absolutely necessary to effectively deal with the debugging process, the testing process, and the 
final software deployment. High - quality, correct, reliable multiprocessing and multithreading 
applications require that the developer have a clear understanding of the operating system ’ s role.  

  Core Operating System Services 
 The operating system ’ s core services can be divided into: 

  Process management  

  Memory management  

  Filesystem management  

  I/O management  

  Interprocess Communication Manager    

 Table  4 - 1  shows a brief description of these core services.   

❑

❑

❑

❑

❑

Table 4-1

Operating System’s Core 
Services Description

Process management Manages the behavior and resources of a process. This includes 
process execution, resource allocation and protection, and 
synchronization.

Memory management Manages memory allocation for processes, which includes how 
memory is allocated to a process and what to do when memory is 
fully utilized.

Filesystem management Organizes collections of data on storage devices and provides an 
interface for accessing the data on those devices.

I/O management Manages the input and output requests from and to hardware devices.

Interprocess 
Communication Manager

Manages the communication between processes.

c04.indd   71c04.indd   71 7/31/08   2:48:41 PM7/31/08   2:48:41 PM



Chapter 4: The Operating System’s Role

72

 While these services are of concern to all application developers, they are far more visible for developers 
of multithreaded or multiprocessing applications. This is because functions like process scheduling or 
Interprocess Communication tend to be transparent to sequential processing applications. For example, 
in a sequential processing application, the operating system simply loads the developer ’  s program. The 
developer is usually not concerned with how the operating system breaks the application down into 
processes, how the processes are scheduled, or what priority the scheduled processes have. There is no 
worry about shared memory violations; as long as the operating system gives the application enough 
memory, everybody is happy. Since there are no concurrently executing substasks in a sequential 
processing application, Intertask Communication and synchronization are not issues. It is a very 
different picture for multiprocessing and multithreaded applications. In Chapter  3 , we discussed the 
challenges that the developer faces for these types of applications. Some of the challenges that relate 
specifically to the operating system services from Chapter  3  are: 

  Software decomposition into instructions or sets of tasks that need to execute simultaneously  

  Communication between two or more tasks that are executing in parallel  

  Concurrently accessing or updating data by two or more instructions or tasks  

  Identifying the relationships between concurrently executing pieces of tasks  

  Controlling resource contention when there is a many - to - one ratio between tasks and resource  

  Determining an optimum or acceptable number of units that need to execute in parallel  

  Documenting and communicating a software design that contains multiprocessing and 
multithreading  

  Creating a test environment that simulates the parallel processing requirements and conditions  

  Recreating a software exception or error in order to remove a software defect  

  Involving the operating system and compiler interface components of multithreading and 
multiprocessing    

 Once the software design process determines that the application is best divided into two or more 
concurrently executing tasks, the transparency of the operating system is immediately brought into question. 
This is because automatic task decomposition is not a feature of the operating system, but process and thread 
creation and management are responsibilities of the operating system. Ultimately, the concurrently executing 
tasks have to be mapped to either processes, threads, or both. Today ’ s operating systems and compilers are 
not capable of automatically doing this mapping. Someone has to be the liaison between the application ’ s 
requirements for concurrency and the operating system ’ s APIs and SPIs that support multiprocessing and 
multithreading. If you are working with tools and techniques taken from level 3 and 4 from Figure  4 - 1 , then 
the operating system ’ s role for the most part is transparent (but definitely present). If you are working at level 
1 or 2 as shown in Figure  4 - 1 , then specific knowledge of the operating system ’ s APIs and SPIs is required. 

 To get a closer view of the operating system ’ s role in deploying tasks that must execute concurrently, you 
can take a look at an application that has been decomposed into four simultaneously executing tasks. 
The C++ developer using any of today ’ s modern operating systems has three basic choices for 
implementing the tasks. The tasks can be implemented as: 

  Processes  

  Threads  

  A combination of processes and threads    

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd   72c04.indd   72 7/31/08   2:48:41 PM7/31/08   2:48:41 PM



Chapter 4: The Operating System’s Role

73

 Figure  4 - 2  shows a block diagram of the basic decomposition choices for the example four - task 
application.   

MAIN
MEMORY

B

PROCESS A 

SINGLE KERNEL
THREAD

TASK 1

PROCESS A 

SINGLE KERNEL
THREAD

TASK 3 & 4 

PROCESS A 

SINGLE KERNEL
THREAD

TASK 2

TASK 4 TASK 1 TASK 2 TASK 3 TASK 4 TASK 1 TASK 2 TASK 3

IPC IPC

Operating system, system calls, IPCs

PROCESS A 

USER THREAD A

TASK 1

KERNEL
THREAD 1

KERNEL
THREAD 2

CASE 1:
Application with 4 concurrently executing tasks and decomposed
into 3 processes.

CASE 2:
Application with 4 concurrently executing tasks made into 1 
process decomposed into 3 user threads.

USER THREAD B

TASK 3 & 4
USER THREAD C

TASK 2

CORE 0 CORE 1 CORE 2 CORE 3

 Figure 4 - 2   

In   Case 1  in Figure  4 - 2  the application is divided into four tasks. These four tasks are implemented by 
three operating system processes. Figure  4 - 2  shows that the application will be deployed on a quad core 
computer. The fact that the four tasks are implemented by three processes means that it is possible for 
three of the tasks to be actually executing on three separate processors simultaneously or 
multiprogrammed on any number of processors. In multiprogramming, the operating system rapidly 
switches between processes, thus allowing multiple processes to accomplish work concurrently in a 
given time interval. Although only one process is actually using the processor at a time, the switching 
between processes is so fast that within, say, one second, two or more processes have been placed on the 
processor and performed work. Although we have a quad core computer in Figure  4 - 2 , we can actually 
execute only three tasks simultaneously. This is because the four user tasks have been mapped to three 
processes. The operating system can only schedule processes or kernel threads (lightweight processes) to 
execute on the processor. It cannot schedule logical tasks unless they have been mapped to processes or 
kernel threads. Even if all four cores were free, in  Case 1  only three cores would be used by the 
application simultaneously. Tasks 3 and 4 share a single process.  Case 1  is using multiprocessing because 
it takes advantage of the operating system ’ s multiprocessors by assigning its tasks to operating system 
processes. The system assigns processes to any free cores that it might have. So if the application is 
divided into processes, it can exploit the fact that the system can run as many processes in parallel as it 
has processors. 

c04.indd   73c04.indd   73 7/31/08   2:48:41 PM7/31/08   2:48:41 PM



Chapter 4: The Operating System’s Role

74

  How Do You Get from Tasks to Processes? 
 To map a user task to a system process, you use an operating system API. In this case you use the 
 posix_spawn()  function.  posix_spawn()  is used to create a new operating system process.  posix_
spawn()  is part of the operating system ’ s process management API. You pass the task that you want to 
associate with an operating system process to  posix_spawn() . Any task associated to a process through 
 posix_spawn()  can be scheduled by the operating system to run in parallel with other processes. 
Notice in  Case 1  that Task 1 needs one - way communication with Tasks 3 and 4, and Tasks 3 and 4 need 
two - way communication with Task 2. This brings up another question about interaction with the 
operating system. How can you pass information between concurrently executing processes? There are 
many ways to do this, but all of them require some kind of interaction with an operating system API. In 
this case, you can use a POSIX message queue. Table  4 - 2  contains brief descriptions for the POSIX 
message queue functions. These are examples of some of the POSIX API functions that allow 
concurrently executing processes to pass information.    

Table 4-2

POSIX Message 
Queue Functions Description

mq _open() Establishes the connection between a process and a message queue with a 
message queue descriptor

mq _close() Removes the association between the message queue descriptor and its 
message queue

mq _send() Adds the message pointed to the message queue specified

mq _receive() Receives the oldest of the highest priority message(s) from the message queue 
specified

mq _notify() Registers the calling process to be notified of a message arriving at an empty 
message queue that is associated with the specified message queue descriptor

mq _getattr() Obtains the status information and attributes of the message queue and the 
open message queue description associated with the message queue 
descriptor

mq _setattr() Sets the status information and attributes of the message queue

  Using the Thread Approach 
 The decomposition in  Case 1  in Figure  4 - 2  uses the process as the unit of decomposition.  Case 2  uses the 
thread as the unit of decomposition. Whereas the application spawns three processes in  Case 1 , the 
application has only one process in  Case 2 . However, that one process is divided into three user threads 
that can execute concurrently. In this scenario, the four concurrent tasks requirement has been 
implemented using three threads. Threads A, B, and C are each assigned tasks. This means that the four 
tasks have to be distributed among three threads. It is important to notice that  Case 2  has only two 
kernel threads. Since the operating system schedules processes or kernel threads for processors, this 
means that the single process in  Case 2  could be scheduled to a single processor or the two kernel 
threads could be scheduled to separate processors. Thus, if all four cores were free, at most two tasks 
would be executing simultaneously. 

c04.indd   74c04.indd   74 7/31/08   2:48:42 PM7/31/08   2:48:42 PM



Chapter 4: The Operating System’s Role

75

 In  Case 2  Threads A, B, and C are user threads. User threads can be bound to kernel threads in some 
cases and unbound in others (as we discuss later in the book). In  Case 2  the user threads have to be 
associated with kernel threads before they are actually executed. So, you can see that in our thread 
approach we map the software tasks to user threads, and then the user threads are mapped to kernel 
threads or lightweight processes (lwp).   

 We explain the differences between user threads and kernel threads in Chapter  6 .    

  How Do You Get from Tasks to Threads? 
 The  pthread_create()  operating system API is used to associate a software task with a thread. This 
function also falls under the process management duties of the operating system. We take a close look at 
POSIX thread API in Chapter  6 . Unless you are working with tools and techniques from level 3 or 4 (as shown 
Figure  4 - 1 ), associating software tasks with threads requires an understanding of how to use the POSIX thread 
API. Notice in Figure  4 - 2  that the communication requirements for the tasks do not require special operating 
system intervention when using the thread approach for decomposition. This is because the threads share the 
same address space and therefore can share data structures that are kept in the data segment of the process.   

  The Application Programmer ’ s Interface 
 It is important to note that, in both  Case 1  and  Case 2  in Figure  4 - 2 , the software tasks had to be mapped 
to entities that the operating system could manage and schedule. The programmer cannot simply assign a 
processor to each task that must be performed. This can be done only by the operating system. The 
programmer has to make the software tasks comprehensible to the operating system by using execution 
units that the operating system can understand. The operating system is the layer of software between the 
developer ’ s software and the multiple cores. The operating system provides a set of interfaces (APIs) that 
make hardware resources and OS services available to the application developer. To take advantage of 
any operating system services the developer must use an API. The problem is which OS API to use? Each 
operating system vendor provides its own unique API. While the functionality of these APIs is basically 
the same, they are not portable to different platforms. That is, software that has been developed using the 
Mac OS X (Darwin) API cannot be directly compiled and executed on Solaris, the Solaris API cannot be 
directly compiled and executed in a Windows environment, and so forth. So, programs that need to use 
the operating system API in order to gain full access to the multiple cores will not be portable if they use 
system - specific APIs. This means that applications would have to be rewritten in order to be used in a 
new environment. In most cases, this is not acceptable. That ’ s why in this book we use the POSIX API. 

  What Is  POSIX  and Why Use It? 
 Portable Operating System Interface (POSIX) is a standard that defines a standard operating system 
interface and environment, including a command interpreter (or  “ shell ” ) and common utility programs to 
support applications portability at the source code level. The standard is intended be used by both 
applications developers and system implementors. To make this book accessible to the broadest possible 
audience of system and application developers we choose to present OS API material using the POSIX 
standard. The major operating system environments  —  ZOS, Solaris, AIX, Windows, Mac OS X, Linux, HP -
 UX, IRIX  —  all claim basic support for the POSIX standard. While each of these environments has its own 
proprietary APIs, each also has support for the POSIX standard. Since the concepts, examples, and 
programs we discuss are based on the POSIX standard, you can try them out in virtually any environment. 
The POSIX standard plays the role of a cross - platform pseudocode that allows us to cover the main concepts 
of multicore programming in a language that can be implemented in all of the major environments. Further, 
POSIX implements a kind of  “ common denominator ”  OS interface. This means that, in most cases, it is 
straightforward to translate concepts, rationale, and functions calls to the proprietary OS APIs if necessary. 

c04.indd   75c04.indd   75 7/31/08   2:48:42 PM7/31/08   2:48:42 PM



Chapter 4: The Operating System’s Role

76

 Because the POSIX standard aims to provide portability at the source code level, we can build class 
libraries, template libraries, and application frameworks on top of POSIX components that can then be 
compiled and used in all of the major operating system environments. Obviously, this is not the case for 
platform - specific OS APIs. In particular, the developers working at level 3 and 4 as shown in Figure  4 - 1  
can benefit from this type of portability. Application frameworks for parallel processing, such as STAPL, 
and the template or class libraries such as TBB can be made portable by using the POSIX APIs for 
processes and threads for their low - level implementations. Further, mixing and matching high - level 
application frameworks and building block libraries in multiple environments is made practical if the 
POSIX APIs are used. Developers working at level 1 and 2 using POSIX APIs can write once and compile 
everywhere. Since large - scale computer configurations such as clusters, enterprise - class servers 
(mainframes), and even supercomputers have POSIX - compatible operating environments, the developer 
has the complete range of hardware support when scalability is a serious issue. While multicore 
processors are just now becoming commonplace for desktop computers, developer workstations, and 
small servers, they have been widely available for large - scale computer configurations for more than a 
decade. Therefore, when you invest in learning the POSIX API, it is applicable from small business 
application servers to the largest cluster - based configurations. 

 The POSIX standard allows us to talk about the intersection between multicore programming and core 
operating system services listed in Table  4 - 1  in a cross - platform fashion. All of the examples and programs 
in this book have been written and compiled in POSIX - compatible environments, and two of the 
appendices of this book contain POSIX reference material on process management and thread management.  

  Process Management 
 The process lifecycle is one of the important aspects of process management that we revisit throughout 
this book. For our purposes, the process lifecycle is summarized as: 

  Process creation  

  Process scheduling/execution  

  Process termination    

 The standard C++ library does not provide any services that deal with the major activities in the process 
lifecycle. So you need to look to the OS API when you need to do programming that requires processes. 
Even in a CMP there are not enough processors to run all processes simultaneously. The operating system 
has to multitask the processes. Multitasking allows more than one process to execute at the same time, 
whereas multithreading allows a single process to perform more than one task at the same time. When the 
operating system uses a scheduling policy to allow two or more processes to share a CPU concurrently, this 
is called  multitasking . Each process executes until some designated amount of time has expired or until some 
event has occurred. The interval of time a process is given to execute on a core is called a  quantum . Then the 
operating system switches to another process. This switching happens rapidly, giving the illusion that 
processes are being executed simultaneously, where in fact only one process is active at a time on a core. 
This switching between processes occurs until each process has completed. The scheduling policy in effect 
determines when a process should be switched. The scheduling policy also controls what happens when: 

  A process or thread is a running thread, and it becomes a blocked thread.  

  A process or thread is a running thread, and it becomes a preempted thread.  

  A process or thread is a blocked thread, and it becomes a runnable thread.  

  A running thread calls a function that can change the priority or scheduling policy of a process 
or thread.    

❑

❑

❑

❑

❑

❑

❑

c04.indd   76c04.indd   76 7/31/08   2:48:42 PM7/31/08   2:48:42 PM



Chapter 4: The Operating System’s Role

77

 In this book, we assume that your environment supports the four basic scheduling policies supported by 
the POSIX standard: 

SCHED_FIFO
SCHED_RR
SCHED_SPORADIC
SCHED_OTHER  

 Table  4 - 3  contains a description for each of the basic scheduling policies that you can use.   

Table 4-3

POSIX Scheduling 
Policies Description

SCHED_FIFO When the quantum expires, the thread is placed at the head of the queue 
of its priority level.

SCHED_RR When the quantum expires, the thread is placed at the end of the queue of 
its priority level.

SCHED_SPORADIC Sporadic server scheduling policy.

SCHED_OTHER Implementation defined; the most effective scheduling policy for general 
use.

 Each process is controlled by an associated scheduling policy and priority. Associated with each policy is 
a priority range. Each policy definition specifies the minimum priority range for that policy. The priority 
ranges for each policy may overlap the priority ranges of other policies. 

 The operating system is also the transport for signals between processes. When Process A has to signal a 
termination to Process B, the operating system transports the signal. Each of the primary steps in the 
process lifecycle is in the domain of the operating system, and you have to use POSIX APIs to access 
these services. Keep in mind that software or programs stored on disk are not processes or threads. A 
process is a program that is in execution, that has a process control block and process table, and that is 
being scheduled by the operating system. Threads are parts of processes. Software and programs have to 
be loaded by the OS before any processes are created. Processes or lightweight processes have to be 
created before threads can be created.  

  Process Management Example: The Game Scenario 
 To illustrate how all this works, we are going to take a look at a classic game. I ’ m thinking of a six -
 character code. My code can contain any character more than once. However, my code can only contain 
any characters from the numbers 0 – 9 or characters a – z. Your job is to guess what code I have in mind. In 
the game the buzzer is set to go off after 5 minutes. If you guess what I ’ m thinking in 5 minutes, you 
win. You take out paper and pencil and with a little addition and a little subtraction you quickly realize 
that there are over 4,496,388 possibilities. So, in 2 of your 5 minutes you run through the entire SDLC and 
come up with the following strategy. First, as luck would have it, you just happen to have a file that 
contains the 4,496,388 possibilities. So, you simply write a C++ program that does something like the one 
in Example  4 - 1 .

c04.indd   77c04.indd   77 7/31/08   2:48:43 PM7/31/08   2:48:43 PM



Chapter 4: The Operating System’s Role

78

   Example 4  - 1   

Example 4-1
                
//...
                
  bool Found = false;
  ifstream Fin(Possibilities)
  while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
  {
      getline(Fin,Guess);
      if(Guess == MagicCode){
          Found = true;
      }
                
   }
                
//...   

 The problem is that you don ’ t know where in the file of 4,496,388 possibilities the six - character code I ’ m 
thinking of occurs. Depending on where my code is in the file, it might take longer than 5 minutes to find. 
Sorting the file does not help because you don ’ t know anything other than the length of my code and the 
possible characters that it can contain, so convenient techniques like the binary search can ’ t be used. 

 However, say that in your case you just happen to have access to a dual core CMP. So, the strategy then is 
to divide the big file containing over four million possibilities into two files containing two million 
possibilities. So you develop the program called  find_code . The  find_code  program takes as input a file 
containing codes, and it performs a brute - force (exhaustive/sequential) search looking for the code. The trick 
is that you need the OS to help you use both of the cores in the search. Ideally, you would have the two cores 
each searching through one of the files simultaneously. Your theory is that two heads are better than one, 
and if you divide the list in half, it should take half the time to find the code. So, you want the OS to run 
two versions of the  find_code  program simultaneously, with each version searching through half the 
original file. You use a  posix_spawn()  call to launch the program, as shown in Listing  4 - 1 .

   Listing 4  - 1   

//Listing 4-1  Program (guess_it) used to launch find_code.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < string > 
 4  #include  < spawn.h > 
 5  #include  < sys/wait.h > 
 6
 7  int main(int argc,char *argv[],char *envp[])
 8  {
 9
10     pid_t ChildProcess;
11     pid_t ChildProcess2;
12     int RetCode1;
13     int RetCode2;
14     int Value;
15     RetCode1 = posix_spawn( & ChildProcess,”find_code”,NULL,

c04.indd   78c04.indd   78 7/31/08   2:48:43 PM7/31/08   2:48:43 PM



Chapter 4: The Operating System’s Role

79

16                            NULL,argv,envp);
17     RetCode2 = posix_spawn( & ChildProcess2,”find_code”,NULL,
18                            NULL,argv,envp);
19     wait( & Value);
20     wait( & Value);
21     return(0);
22  }   

 The  posix_spawn()  call on lines #15 and #17 launches the program named  find_code . For this to 
work, the program  find_code  has to be a binary executable program that the OS can locate on your 
computer. In this case  find_code  is a standalone program that implements the basic idea from Example 
 4 - 1 . When the program in Listing  4 - 1  is executed, it causes the operating system to generate three 
processes. Recall that it is the operating system not programs that assigns processes to execute on cores 
and CPUs. The processes can execute simultaneously. Two processes are associated with the  find_code  
program, and the third process is the process called  posix_spawn()  in the first place. The processes that 
are created as a result of calling  posix_spawn  are referred to as child processes.   

 We take a closer look at  posix_spawn()  in Chapter  5 .    

  Program Profile 4 - 1   
Program Name: 

  guess_it.cc  (Listing  4 - 1 )    

Description: 
  posix_spawn()  launches the program named  find_code .  find_code  is a standalone program that 
implements the basic idea from Example  4 - 1 . The program causes the operating system to generate three 
simultaneously executing processes. Two processes execute the  find_code  program, and the third 
process executes  posix_spawn() .

    Libraries Required: 
 None    

User - Defined Headers Required: 
 None    

Compile and Link Instructions:   
c++ -o guess_it  guess_it.cc

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6    

Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

c04.indd   79c04.indd   79 7/31/08   2:48:43 PM7/31/08   2:48:43 PM



Chapter 4: The Operating System’s Role

80

Notes: 
 None 

 It is important to note that the child processes that are spawned by  posix_spawn  are always binary 
executables that exist outside of the calling program. Unlike  pthread_create() , which calls a routine 
in the program,  posix_spawn()  uses code that exists outside of the calling program. 

 Each operating system environment has its own unique method of spawning child processes. The 
 posix_spawn()  method works in any operating environment that has the proper POSIX compliance. 
So, you can build cross - platform components that can be used for process creation. 

 The process that calls  posix_spawn()  is referred to as the parent process. So, the OS creates two 
child processes and a parent process. If the two cores are free, the operating system can assign two of the 
three processes to be executed simultaneously. Now you realize that, although you have divided the list 
in half and you have two simultaneous searches going on, you are not certain to find the code in the 
two million possibilities in time, so you need to divide the list in half once more. This gives four lists of 
one million codes, give or take a few that can be searched concurrently. Certainly, you can find the 
mystery code in a list of one million possibilities in 5 minutes. To generate four searches, you divide the 
 find_code  program into two threads of execution. So, the main program named  guess_it  in Listing  4 -
 1 , spawns two  child_processes  that execute the program  find_code . The program  find_code  
creates two threads called  Task1  and  Task2 . Listing  4 - 2  is the new multithreaded version of  find_code .

   Listing 4  - 2   

//Listing 4-2  A multithreaded version of the find_code program.
                
 1  #include  < pthread.h > 
 2  using namespace std;
 3  #include  < iostream > 
 4  #include  < fstream > 
 5  #include “posix_queue.h”
 6  string MagicCode(“yyzzz“);
 7  ofstream Fout1;
 8  ofstream Fout2;
 9  bool Found = false;
10  bool magicCode(string X)
11  {
12      //...
13
14     return(X == MagicCode);
15  }
16
17
18
19  void *task1(void *X)
20  {
21     posix_queue PosixQueue;
22     string FileName;
23     string Value;
24     if(PosixQueue.open()){
25        PosixQueue.receive(FileName);
26        ifstream Fin(FileName.c_str());

c04.indd   80c04.indd   80 7/31/08   2:48:43 PM7/31/08   2:48:43 PM



Chapter 4: The Operating System’s Role

81

27        string FileOut(FileName);
28        FileOut.append(“.out”);
29        Fout1.open(FileOut.c_str());  
30        while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
31        {
32           getline(Fin,Value);
33           if(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found){
34              if(magicCode(Value)){
35                 Found = true;
36              }
37           }
38        }
39        Fin.close();
40        Fout1.close();
41     }
42     return(NULL);
43  }
44
45
46
47  void *task2(void *X)
48  {
49
50     posix_queue PosixQueue;
51     string FileName;
52     string Value;
53     if(PosixQueue.open()){
54        PosixQueue.receive(FileName);
55        ifstream Fin(FileName.c_str());
56        string FileOut(FileName);
57        FileOut.append(“.out”);  
58        Fout2.open(FileOut.c_str());
59        while(!Fin.eof()  &  &  !Fin.fail()   &  &  !Found)
60        {
61           getline(Fin,Value);
62           if(!Fin.eof()  &  &  !Fin.fail()   &  &  !Found){
63              if(magicCode(Value)){
64                 Found = true;
65              }
66           }
67        }
68        Fin.close();
69        Fout2.close();
70     }
71     return(NULL);
72  }
73
74
75
76
77
78  int main(int argc, char *argv[])
79  {
80

(continued)

c04.indd   81c04.indd   81 7/31/08   2:48:44 PM7/31/08   2:48:44 PM



Chapter 4: The Operating System’s Role

82

Listing 4  - 2 (continued)

81     pthread_t ThreadA, ThreadB;
82     pthread_create( & ThreadA,NULL,task1,NULL);
83     pthread_create( & ThreadB,NULL,task2,NULL);
84     pthread_join(ThreadA,NULL);
85     pthread_join(ThreadB,NULL);
86     return(0);
87
88  }   

 The  pthread_create()  functions on Lines 82 and 83 are used to create the threads for  task1  and  task2 . 
(We take a closer look at the POSIX pthread functionality in Chapter  6 .) The program in Listing  4 - 2  is for 
expositional purposes only. It does not contain any synchronization, exception handling, signal handling, 
or the like. We include it here so that you have a clear picture of the anatomy the  guess _ it  program that 
we introduced in Example  4 - 1 . Notice that  task1  Line 19, and  task2  Line 47 are normal C++ functions. 
They just happen to be used as the main routine for  ThreadA  and  ThreadB . Also notice on Lines 24 and 
53 that each thread accesses a  PosixQueue . This is a user - defined object, and it contains the name of a 
different file that each thread will search. 

 So, the program in Listing  4 - 1  spawns two child processes. Each process executes  find_code , which in 
turn creates two threads. This gives a total of four threads. Each thread reads a filename from the 
 PosixQueue  object. So, rather than having a one big file of 4,496,388 possibilities, you now have four 
smaller files containing a little more than one million possibilities. Now you use a simple brute - force 
search by each thread. One of the threads will find the  MagicCode  I was thinking about. Because of the 
 Found  variable declared on Line 9 in Listing  4 - 2 , the file scope or global scope for  ThreadA  and  ThreadB  
can be used as a control variable that causes both threads to stop. But what about the other two threads 
in the second process? You used the  PosixQueue  to communicate the filenames to both processes and all 
four threads. Is there a way that you can use a queue to let the three processes and four threads know 
that it is time to stop once one of the threads finds the  MagicCode ?   

  Program Profile 4 - 2   
Program Name: 

  find_code.cc  (Listing  4 - 2 )    

Description: 
 The program  find_code  creates two threads called  Task1  and  Task2 . Each thread accesses a 
 PosixQueue . This is a user - defined object, and it contains the name of a different file that each thread 
will search for the code.

    Libraries Required:   
pthread

c04.indd   82c04.indd   82 7/31/08   2:48:44 PM7/31/08   2:48:44 PM



Chapter 4: The Operating System’s Role

83

     User - Defined Headers Required:   
posix_queue.h

     Compile and Link Instructions:   
c++ -o find_code  find_code.cc posix_queue.cc -lpthread -lrt

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

Notes: 
 None     

  Decomposition and the Operating 
System ’ s Role 

 Decomposition is a theme that we revisit many times in this book for two reasons: 

  The fundamental activity of software design is breaking down the problem and the solution in a 
way that allows the solution (and sometimes the problem) to be implemented in software.  

  Parallel programming, multithreading, and multiprocessing all require that software be broken 
down into execution units that can be scheduled by the operating system for concurrent 
processing.    

 This makes decomposition front and center for multicore programming. Notice that, in the classic game 
example used in the preceding section, there is no mention of parallel programming, multithreading, 
operating systems, or so on. There is just a simple statement of a problem. Guess what six - character code 
I ’ m thinking of in 5 minutes or less. We started with a simple plain English description of a problem, and 
somehow we ended up with a multiprocessing, multithreaded program that required Interprocess 
Communication and operating system intervention and assistance. One of the primary links between the 
simple plain English description and the simultaneously executing operating system threads is the 
process of decomposition. Consider the example from the point of view a logical breakdown and a 
physical breakdown. Figure  4 - 3  contains a functional (logical) breakdown of the operating system 
components from the  guess_it  program taken from Listing  4 - 1  and Listing  4 - 2 .   

❑

❑

c04.indd   83c04.indd   83 7/31/08   2:48:44 PM7/31/08   2:48:44 PM



Chapter 4: The Operating System’s Role

84

 As you can see in Figure  4 - 3 , we had six units of execution that the operating system was responsible for, 
two processes and four threads. Recall from Example  4 - 1  that we started out initially with a single 
program that searched a file. We used the OS API to spawn two instances of the program so that we 
could search two files simultaneously. Notice in Figure  4 - 3  that the  find_code  is then divided into two 
threads. So, the actual work components are easily visible in Figure  4 - 3 . Missing from Figure  4 - 3  is the 
decomposition of the single data file containing the over four million possibilities into four smaller files 
containing one million+ possibilities. Each of the threads in Figure  4 - 3  worked on its own unique file. So, 
we had a data decomposition in addition to our work decomposition. The decomposition of our  guess_
it  program is an example of the Single Instruction Multiple Data (SIMD) concurrency model. Recall that 
in this concurrency model multiple tasks execute the same sequence of instructions over different 
datasets. We had four threads each executing the same code (single instruction) on four different sets of 
data. Even if we had the benefit of the tools like STAPL or TBB, we would ultimately need to interface 
with the operating system to actually implement this SIMD model. This type of decomposition and OS 
interface is the kind of programming shown at level 1 and 2 in Figure  4 - 1 . Although developers working 
at level 3 and 4 (as shown in Figure  4 - 1 ) are generally free from this level of interaction, the operating 
system ’ s role should be clear. 

B

CHILD PROCESS 2   find_codeCHILD PROCESS 1   find_code

T1 T2 T3 T4

MULTICORE (CMP)

SCHEDULER

POSIX API OPERATING SYSTEM INTERFACE

guess_it program
with search function

Guess my 6-character code
in 5 minutes. The only hint you
have is it can contain the characters
a–z, 0–9.

THREAD A

task1
SEARCH

THREAD B

task2
SEARCH

THREAD A

task1
SEARCH

THREAD B

task2
SEARCH

CORE 0 CORE 1 CORE 2 CORE 3

Figure 4-3

c04.indd   84c04.indd   84 7/31/08   2:48:44 PM7/31/08   2:48:44 PM



Chapter 4: The Operating System’s Role

85

 In addition to a breakdown of the logical units that involve the OS, you also have physical units. Figure 
 4 - 4  shows a UML deployment diagram for the programs in Listing  4 - 1  and  4 - 2 .   

guess_it.cc find_code.cc

message_queue

Figure 4-4

 This diagram shows the physical pieces of the simple  guess_it  program. We have two primary 
executables: 

   guess_it  (Listing  4 - 1 )  

   find_code  (Listing  4 - 2 )    

 There are four files that contain the possible choices and several source files containing our simple brute -
 force solution to our guess my code game and a message queue. The path to all binary files must be 
known to the operating system at runtime. If the  posix_spawn()  calls on Lines 15 and 16 in Listing  4 - 1  
can ’ t locate the  find_code  programs, the  guess_it  program in Listing  4 - 2  will not work. The operating 
system ’ s role of finding and loading code to be executed is one of the roles that is often overlooked and 
resurfaces in the form of  “ gotchas ”  when deploying multiprocessing and parallel processing 
applications. You can use deployment diagrams to help keep an audit trail of the physical decomposition 
of applications. Considering the decompositions in Figure  4 - 3  and Figure  4 - 4  along with the original 
statement of the problem and the first try at its solution, you can begin to see how the SDLC plays a 
major role in multicore application design and implementation. From the initial problem statement of 
 “ Guess what six - character code I ’ m thinking of in 5 minutes, ”  we devised a solution that involved 
searching a list of possibilities. But since the list was sufficiently large and we were under a time 
constraint, we came up with a strategy that required dividing the list of possibilities up into smaller lists 
with the notion of searching the smaller lists simultaneously for the  MagicCode . 

 This strategy is an example of the design activity that is part of the SDLC. The original statement of the 
problem is an example of requirements definitions that is part of SDLC. The implementation of the 
strategy using  posix_spawn() ,  pthread_create() , and  PosixQueue  is part of the coding activity 
from the SDLC. While the operating system is not necessarily a consideration during the requirements or 
design activities of the SDLC, it is present for the coding, deployment, and maintenance activities of the 
SDLC. Our goal here is to make its function clear in terms of where it fits for applications that need to 
exploit multicore CMPs. In Chapters  5  and  6 , we take a much closer look at processes and threads as 
units of execution that can be scheduled to execute simultaneously by the operating system.  

❑

❑

c04.indd   85c04.indd   85 7/31/08   2:48:45 PM7/31/08   2:48:45 PM



Chapter 4: The Operating System’s Role

86

  Hiding the Operating System ’ s Role 
 The real goal is to understand the part the operating system plays in executing multithreaded and 
multiprocessing programs without having your software designs bogged down with the details of thread 
and process implementation. One of the primary reasons that you ultimately want to get away from the 
details of thread and process implementation is because the trend is that CMPs are moving toward more 
cores on a single chip with the ultimate goal of massive parallelism (100s or 1000s ) of cores on a single 
chip. It will be important to know the operating system ’ s role, but you will not want to expose it in your 
designs. This was the case with the solution in Listings  4 - 1  and  4 - 2 . As the trend moves toward more 
cores and more parallelism, you need to pursue two important objectives for software development: 

  1.   Taking advantage of the operating system while making it transparent to software designs  

  2.   Moving from procedural paradigms of parallel programming to declarative paradigms    

  Taking Advantage of C++ Power of 
Abstraction and Encapsulation 

 Fortunately C++ ’ s support for Object Orientation, genericity, predicates, and multiparadigm 
programming give a bridge to and a way to see the future of software design and development. Object -
 Oriented Programming (OOP) is part of the declarative paradigms of software development [Meyer, 
1988] and [Stroustrup, 1997]. As you will see in the next section, the notions of encapsulation supported 
by C++ aid in making the operating system level transparent to software designs. Templates can be used 
to implement genericity techniques found in higher - order declarative approaches to parallel 
programming, and ideas of classes, predicates, and assertions in C++ can be used to move toward 
declarative programming techniques that support massive and complex parallel programming 
techniques. Class and template libraries such as STAPL and the TBB are the initial components that 
support the move to massive parallelism on CMPs. The idea is to build classes that encapsulate lower -
 level procedural - driven functionality of the operating system APIs while providing higher - level 
declarative interfaces. C++ interface classes are ideal for providing wrappers for low - level OS APIs, 
synchronization mechanisms, and communication components [Stroustrup, 1997]. Also, you want to use 
C++ templates to capture patterns of parallelization, implementing the details while the user accesses a 
higher, more functional interface. You then want to build from the C++ components application 
frameworks that capture architectures that support parallelism. Using higher - level components, 
frameworks, and architectures, you can then directly implement the models that produced in the design 
and specification activities of the SDLC.  

  Interface Classes for the  POSIX API s 
 The easiest approach to making the POSIX APIs transparent is to provide C++  interface classes . Interface 
classes are classes that provide a wrapper for functions, data, or other classes. The interface class acts as a 
kind of costume that allows something to appear differently than it does normally. An interface class 
puts a different face on a function, piece of data, or another class. Interface classes are also called adaptor 
classes. The new interface provided by an interface class is designed to make the class easier to use, more 
functional, safer, or semantically correct. Take, for example, the POSIX thread functions shown in Lines 
81 – 85 in Listing  4 - 2 . We want the main line of this program to not expose operating system calls and 
want to add a more C++ Object - Oriented flavor to the  guess_it  program. Listing  4 - 3  contains a new 
format for the  find_code  program from Listing  4 - 2 .

c04.indd   86c04.indd   86 7/31/08   2:48:45 PM7/31/08   2:48:45 PM



Chapter 4: The Operating System’s Role

87

   Listing 4  - 3   

//Listing 4-3   A more object-oriented find_code:  ofind_code.
                
 1  #include “thread_object.h”
 2
 3
 4  int main(int argc, char *argv[])
 5  {
 6
 7
 8
 9     user_thread Thread[2];
10     Thread[0].name(“ThreadA”);
11     Thread[1].name(“ThreadB”);
12     for(int N = 0; N  <  2;N++)
13     {
14        Thread[N].run();
15        Thread[N].join();
16     }
17     return(0);
18
19  }   

 The code in Listing  4 - 3  replaces Lines 78 – 88 in Listing  4 - 2 . While we haven ’ t really saved any lines of 
code, we have changed the interface of the thread creation and execution process. We now have a  user_
thread  class that encapsulates the  pthread_t  thread id and some other pthread functions. Now we ’ re 
declaring objects and invoking methods as opposed to calling POSIX API functions. The program in 
Listing  4 - 3  creates and executes two threads. It then joins with the threads prior to exiting. While we can 
see a little easier what the thread was supposed to do in Listing  4 - 2 , it is not apparent in Listing  4 - 3  what 
the thread is executing. In Listing  4 - 2  Lines 82 and 83 call  pthread_create  and pass it the names of the 
functions  task1  and  task2  that will be executed by  ThreadA  and  ThreadB . In Listing  4 - 3 , because of 
encapsulation, its not apparent that  ThreadA  and  ThreadB  will execute. We can see only that the  run()  
method has been invoked. To get a better picture of how Listing  4 - 3  replaces Listing  4 - 2 , take a look at 
the declarations in  thread_object.h  from Line 1 of Listing  4 - 3 .  thread_object.h  contains an abstract 
class named  thread_object . We know this class is abstract because of the abstract virtual method 
declared on Line 14 in Listing  4 - 4 . 

  Program Profile 4 - 3   
Program Name: 

  ofind_code.cc  (Listing  4 - 3 )    

Description: 
 The program in Listing  4 - 3  creates and executes two threads. It then joins with the threads prior to 
exiting. The  run()  method invokes the tasks to execute. Listing  4 - 3  replaces Listing  4 - 2 ; look at the 
declarations in  thread_object.h .    

Libraries Required: 
  rt ,  pthread     

c04.indd   87c04.indd   87 7/31/08   2:48:45 PM7/31/08   2:48:45 PM



Chapter 4: The Operating System’s Role

88

Additional Source Files Needed: 
  thread_object2.cc  (Listing  4 - 5 ),  user_thread.cc  (Listing 4 - 6)    

User - Defined Headers Required: 
  thread_object.h  (Listing  4 - 4 ),  posix_queue.h

     Compile and Link Instructions:   
c++ -o ofind_code ofind_code.cc user_thread.cc thread_object.cc posix_queue.cc 
-lrt -lpthread

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

Notes: 
 None

   Listing 4  - 4   

//Listing 4-4  A declaration of a simple thread_object.
                
                
 1  #ifndef __THREAD_OBJECT_H
 2  #define __THREAD_OBJECT_H
 3
 4  using namespace std;
 5  #include  < iostream > 
 6  #include  < pthread.h > 
 7  #include  < string > 
 8  #include “posix_queue.h”
 9
10  class thread_object{
11     pthread_t Tid;
12     string Name;
13  protected:
14     virtual void do_something(void) = 0;
15  public:
16     thread_object(void);
17     ~thread_object(void);
18     void name(string X);

c04.indd   88c04.indd   88 7/31/08   2:48:46 PM7/31/08   2:48:46 PM



Chapter 4: The Operating System’s Role

89

19     string name(void);
20     void run(void);
21     void join(void);
22     friend void *thread(void *X);
23  };
24
25
26
27  class user_thread : public thread_object{
28     private:
29     posix_queue *PosixQueue;
30  protected:
31     virtual void do_something(void);
32  public:
33     user_thread(void);
34     ~user_thread(void);
35  };
36
37
38  #endif   

 The  do_something() = 0  method prevents the user from simply declaring an object of the  
thread_object . Instead, to use the  thread_object  class, the user has to supply functionality for 
 do_something()  by using inheritance with  thread_object  and supplying an implementation 
for  do_something() . In the context of the program of Listing  4 - 2 , the  do_something  method will have 
equivalent functionality to  task1  and  task2  from Lines 19 and 47 in Listing  4 - 2 . The  do_something  
method searches a file looking for the  MagicCode . Also notice Line 22 in Listing  4 - 4 ; the  friend  function 
is also used in conjunction with the  do_something()  method to provide a wrapper for the  pthread_
create()  functionality. The class  user_thread  inherits the  thread_object  class and provides a 
definition for the  do_something()  method. Notice in Listing  4 - 4  that the  user_thread  class also has 
 posix_queue  data member. This was the  PosixQueue  that was used in Listing  4 - 2  on Lines 25 and 53. 
This simple example of a  thread_object  demonstrates a slight but real Object - Oriented departure from 
the procedural only approach in Listing  4 - 2 . 

 Figure  4 - 5  shows a UML class relationship diagram for the  user_thread  class.   

user_thread

thread_object

pthread_t

Figure 4-5

c04.indd   89c04.indd   89 7/31/08   2:48:46 PM7/31/08   2:48:46 PM



Chapter 4: The Operating System’s Role

90

 The  thread_object  class is just a simple skeleton class so far. We will fill this class ’ s definition in as we 
go along. The  thread_object  class is an interface class. Its purpose is to encapsulate the POSIX thread 
interface and to supply Object - Oriented semantics and components so that we can implement the 
models we produce in the SDLC more easily. Compare the logical breakdown of the components in 
Figure  4 - 3  and Figure  4 - 5 . The focus in Figure  4 - 5  is obviously different because we are doing an Object -
 Oriented decomposition of the  find_code  program. The user_object defines the find_code function 
that inherits the thread_object. The Object - Oriented approach hides the implementation details shown 
in Figure  4 - 3 . Listing  4 - 5  contains some of the implementation for the simple  thread_object  class.

   Listing 4 - 5   

// Listing 4-5 A definition of a simple thread_object.
                
 1  #include “thread_object.h”
 2
 3
 4  thread_object::thread_object(void)
 5  {
 6
 7
 8
 9  }
10  thread_object::~thread_object(void)
11  {
12     pthread_join(Tid,NULL);
13  }
14
15
16  void thread_object::run(void)
17  {
18     pthread_create( & Tid,NULL,thread,this);
19  }
20
21  void thread_object::join(void)
22  {
23     pthread_join(Tid,NULL);
24  }
25
26
27  void thread_object::name(string X)
28  {
29     Name = X;
30  }
31
32  string thread_object::name(void)
33  {
34     return(Name);
35  }
36
37
38  void *  thread (void * X)
39  {
40
41     thread_object *Thread;

c04.indd   90c04.indd   90 7/31/08   2:48:46 PM7/31/08   2:48:46 PM



Chapter 4: The Operating System’s Role

91

42     Thread = static_cast < thread_object * > (X);
43     Thread- > do_something();
44     return(NULL);
45
46
47  }   

 Now you can see how the  run()  and  thread()  methods together can begin to provide the functionality 
of the  pthread_create()  calls. This is just a start; we can do better. Notice that there is no 
implementation for the  do_something()  method declared in the  thread_object  class. This is the 
method that will be supplied by the user when the  thread_object  class is subclassed. The  Thread -
  > do_something()  on Line 43 in Listing  4 - 5  calls the method that will be provided by a descendant 
class. In our case, this is defined by the definitions in Listing  4 - 6 .

   Listing 4  - 6   

//Listing 4-6  The definition for the user_thread class.
                
 1  #include “thread_object.h”
 2  #include  < iostream > 
 3  #include  < fstream > 
 4
 5  bool Found = false;
 6
 7
 8  user_thread::user_thread(void)
 9  {
10
11     PosixQueue = new posix_queue(“queue_name”);
12     PosixQueue- > queueFlags(O_RDONLY);
13     PosixQueue- > messageSize(14);
14     PosixQueue- > maxMessages(4);
15
16  }
17
18
19  user_thread::~user_thread(void)
20  {
21
22     delete PosixQueue;
23
24  }
25
26
27  void user_thread::do_something(void)
28  {
29     ofstream Fout;
30     string FileName;
31     string Value;
32
33     if(PosixQueue- > open()){
34        PosixQueue- > receive(FileName);
35        ifstream Fin(FileName.c_str());

(continued)

c04.indd   91c04.indd   91 7/31/08   2:48:46 PM7/31/08   2:48:46 PM



Chapter 4: The Operating System’s Role

92

Listing 4 - 6 (continued)

36        string FileOut(FileName);
37        FileOut.append(“.out”);
38        Fout.open(FileOut.c_str());
39
40        while(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found)
41        {
42           getline(Fin,Value);
43           if(!Fin.eof()  &  &  !Fin.fail()  &  &  !Found){
44              if(Value == MagicCode){
45
46                 Found = true;
47
48              }
49
50           }
51        }
52        Fin.close();
53        Fout.close();
54     }
55
56  }   

 The main work in the  user_thread  class is performed by the  do_something()  method. By overriding 
the  do_something()  method, we can use this  user_thread  class to do any kind of work that can be 
done with the  pthread_create  functionality. In this case, the  do_something()  method performs the 
file search. The  run()  methods from the threads invoked by the  user_thread  object in Listing  4 - 3  
ultimately execute the  do_something()  method. Since the  Found  variable defined on Line 5 is global 
and has file scope, we can use it to stop the threads from searching once the value is located.   

  Program Profile 4 - 4   
Program Name:   

user_thread.cc (Listing 4-6)

     Description: 
 The  user_thread  class is performed by the  do_something()  method that does any kind of work that 
can be done with the  pthread_create  functionality. The  do_something()  method performs the file 
search. The  run()  methods from the threads invoked by the  user_thread  object execute the  do_
something()  method. Since the  Found  variable is global and has file scope, it can stop the threads from 
searching once the value is located.    

Libraries Required:   
pthread

     Additional Source Files Needed: 
  thread_object2.cc  (Listing  4 - 6 )    

c04.indd   92c04.indd   92 7/31/08   2:48:47 PM7/31/08   2:48:47 PM



Chapter 4: The Operating System’s Role

93

User - Defined Headers Required: 
  thread_object.h  (Listing  4 - 4 )    

Compile Instructions:   
cc++ -c  user_thread.cc

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor  

  Notes: 
 None 

 Using interface classes in conjunction with POSIX can allow you to build cross - platform components 
that can help with the implementation of cross - platform multithreaded or multiprocessing applications. 
Certainly, the  thread_object  interface class declared in Listing  4 - 4  has to be fleshed out considerably 
before it can be used in production environments, but you can see the point we are making. The C++ 
interface class is heavily used in high - level component libraries and application frameworks like STAPL 
and TBB. If you understand how interface classes are used in conjunction with operating system APIs, 
the relationship between TBB, STAPL, and the operating system APIs will be more apparent. Interface 
classes can be used to add your own building blocks to TBB, STAPL, and other high - level libraries used 
for parallel processing and multithreading.     

  Summary 
 Both application developers and system developers need to have a clear understanding of the role that 
the operating system plays in regard to multiprocessor systems. Ideally, application programmers will 
not have to work directly with operating system primitives. But they still should have a grasp of the 
fundamentals because of the challenges that rise during testing, debugging, and software deployment. 
This chapter discussed the operating system ’ s role in multicore programming. Some key points 
addressed include: 

  The operating system is the gatekeeper of the CMP. Any software that wants to take advantage 
of multiple processors has to negotiate with the operating system. Since the C++ standard does 
not have direct support for process or thread management, you can use the POSIX API to access 
operating system services related to process and thread management.  

  The operating system ’ s role can be divided into two primary functions:  

❑    Software interface : Providing a consistent and well - defined interface to the hardware re-
sources of the computer  

❑

❑

c04.indd   93c04.indd   93 7/31/08   2:48:47 PM7/31/08   2:48:47 PM



Chapter 4: The Operating System’s Role

94

❑    Resource management : Managing the hardware resources and other executing software 
applications, jobs, and programs    

  Instead of forcing the programmer to use particular device - specific instructions, the operating 
system provides the programmer with a couple of layers of software (the API and SPI) between 
the developer ’ s program and the hardware resources connected to the computer.  

  The operating system ’ s core services can be divided into:  

  Process management  

  Memory management  

  Filesystem management  

  I/O management  

  Interprocess Communication Manager    

  The goal of a framework like STAPL is to allow the developer to provide parallelism in a 
software application while not having to worry about all of the specific implementation related 
issues that are involved with parallel programming. A library like the TBB is a set of high - level 
generic components that also encapsulates much of the detail of multiprocessing and 
multithreading.  

  Once the software design process determines that the application is best divided into two or 
more concurrently executing tasks, the transparency of the operating system becomes an issue. 
The idea is to build classes that encapsulate lower - level procedural - driven functionality of the 
operating system APIs, while providing a higher - level declarative interface to the application 
developer.  

  As you move toward more cores and more parallelism, you need to pursue two important steps 
to make software development for massive parallel CMPs practical:  

  Take advantage of the operating system, while making it transparent to software designs  

  Move from procedural paradigms of parallel programming to declarative paradigms    

  Encapsulate operating system process and thread management services in C++ components. 
Then, from the C++ components, build application frameworks that capture architectures that 
support parallelism.    

 Ultimately, the multithreading or multiprocessing functionality contained in class libraries, high - level 
function libraries, or application frameworks still needs to pass through operating system APIs or SPIs. 
In the next two chapters, we go into more detail on the use of processes and threads in multicore 
programming.                           

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd   94c04.indd   94 7/31/08   2:48:47 PM7/31/08   2:48:47 PM



                                                                                Processes, C++ Interface 
Classes, and Predicates              

  As long as I held the Divine Spear, I had to accept debugging as my primary duty.   

   —  Tatsuya Hamazaki,  .hack//AI Buster 2     

 In Chapter  4 , we looked at the operating system ’ s role as a development tool for applications that 
required parallel programming. We provided a brief overview of the part that the operating 
system plays in process management and thread management. We introduced the reader to the 
notion of operating system Application Program Interfaces (APIs) and System Program Interfaces 
(SPIs), and in particular we introduced the POSIX API. In this chapter we are going to take a closer 
look at: 

  Where the process fits in with C++ programming and multicore computers  

  The POSIX API for process management  

  Process scheduling and priorities  

  Building C++ interface components that can be used to simplify part of the POSIX API for 
process management    

 Basically, a program can be divided into processes and/or threads in order to achieve concurrency 
and take advantage of multicore processors. In this chapter, we cover how the operating system 
identifies processes and how an application can utilize multiple processes.  

❑

❑

❑

❑

c05.indd   95c05.indd   95 7/31/08   2:50:24 PM7/31/08   2:50:24 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

96

  We Say  Multicore , We Mean  Multiprocessor  
 Keep in mind that the name  multicore  is a popular substitution for  single chip multiprocessor  or  CMP . 
Multiprocessors are computers that have more than two or more CPUs or processors. Although 
multiprocessor computers have been around for some time now, the wide availability and low cost of the 
CMP has brought multiprocessor capabilities within the reach of virtually all software developers. This 
raises a series of questions: How do single applications take advantage of CMPs? How do single user 
versus multiple user applications take advantage of CMPs? Using C++ how do you take advantage of 
the operating system ’ s multiprocessing and multiprogramming capabilities? Once you have a software 
design that includes a requirement for some tasks to execute concurrently, how do you map those tasks 
to the multiple processors available in your multicore computers? 

 Recall from Chapter  4  that the operating system schedules execution units that it can understand. If your 
software design consists of some tasks that can be executed in parallel, you will have to find a way to 
relate those tasks to execution units the operating system can understand. Association of your tasks with 
operating system execution units is part of a four - stage process involving three transformations. 

 Each transformation in Figure  5 - 1  changes the view of the model, but the meaning of the model should 
remain intact. That is, the implementation of the application frameworks, class libraries, and templates 
as processes and threads should not change the meaning or semantics of what those components are 
doing. The execution units in stage four are what the operating system deals with directly. The execution 
units shown in stage four of Figure  5 - 1  are the only things that can be assigned directly to the cores. 
From the operating system ’ s viewpoint your application is a collection of one or more processes. 
Concurrency in a C++ application is ultimately accomplished by factoring your program into either 
multiple processes or multiple threads. While there are variations on how the logic for a C++ program 
can be organized (for example, within objects, predicates, functions, or generic templates), the options 
for parallelization (with the exception of instruction level) are accounted for through the use of multiple 
processes and threads.   

General statement of some problem, service, or system

Solution model or system model that might contain a
requirement for concurrently executing tasks

C++ application frameworks, templates, class libraries,
algorithms

Operating system execution units (process, LWPs,
kernel threads)

ST
AG

E 
3 

ST
AG

E 
4 

ST
AG

E 
2 

ST
AG

E 
1 

TRANSFORMATION #1

TRANSFORMATION #2

TRANSFORMATION #3

Models at this stage will contain
concurrency requirements if there are any.

If parallelism is introduced here that is not present
in stage 2, then this parallelism is not allowed to
change the semantics of the models from stage 2.
Otherwise, the models have to be reworked.
This will be necessary for software maintenance
and change management.

 Figure 5 - 1   

c05.indd   96c05.indd   96 7/31/08   2:50:25 PM7/31/08   2:50:25 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

97

 This chapter focuses on the notion of a process and how C++ applications and programs can be divided 
into multiple processes using the POSIX API process management services.  

  What Is a Process? 
 A  process  is a unit of work created by the operating system. It is important to note that processes and 
programs are not necessarily equivalent. A program may consist of multiple tasks, and each task can be 
associated with one or more processes. Processes are artifacts of the operating system, and programs are 
artifacts of the developer. Current operating systems are capable of managing hundreds even thousands 
of concurrently loaded processes. In order for a unit of work to be called a process, it must have an 
address space assigned to it by the operating system. It must have a process id. It must have a state and 
an entry in the process table. According to the POSIX standard, it must have one or more flows of 
controls executing within that address space and the required system resources for those flows of 
control. A process has a set of executing instructions that resides in the address space of that process. 
Space is allocated for the instructions, any data that belongs to the process, and stacks for functions calls 
and local variables. One of the important differences between a process and a thread is the fact that each 
process has its own address space, whereas threads share the address space of the processes that created 
them. A program can be broken down into one or more processes.  

  Why Processes and Not Threads? 
 When you are mapping C++ tasks to execution units that the operating system can understand, threads 
turn out to be easier to program. This is because threads share the same address space. This makes 
communication and synchronization between threads much easier. It takes the operating system less 
work to create a thread or to terminate a thread than it takes for processes. In general, you can create 
more threads within the context of a single computer than processes. The starting and stopping of 
threads is typically faster than processes. 

 So why use processes at all? First, processes have their own address space. This is important because 
separate address spaces provide a certain amount security and isolation from rogue or poorly designed 
processes. Second, the number of open files that threads may use is limited to how many open files a 
single process can have. Dividing your C++ application up into multiple processes instead of or in 
conjunction with multithreading provides access to more open file resources. For multiuser applications, 
you want each user ’ s process to be isolated. If one user ’ s process fails, the other users can continue to 
perform work. If you use some threading approach for multiuser applications, a single errant thread can 
disrupt all the users. Operating system resources are assigned primarily to processes and then shared by 
threads. So, in general, threads are limited to the number of resources that a single process can have. 
Thus, when isolation security, address space isolation, and maximum number of resources that 
concurrently executing tasks may have are major concerns, it is better to use processes than threads. 
Communication between processes and startup time are the primary tradeoffs. 

 The functions listed in Table  5 - 1  are declared in  spawn.h . This header contains the POSIX functions used 
to spawn and manage processes.    

c05.indd   97c05.indd   97 7/31/08   2:50:25 PM7/31/08   2:50:25 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

98

  Using posix_spawn() 
 Similarly to the  fork - exec()  and  system()  methods of process creation, the  posix_spawn()  
functions create new child processes from specified process images. But the  posix_spawn()  functions 
create child processes with more fine - grained control during creation. While the POSIX API also 
supports the  fork - exec()  class of functions, we focus on the  posix_spawn  functions for process 
creation to achieve greater cross - platform compatibility. Some platforms may have trouble implementing 
 fork() , so the  posix_spawn()  functions can be used as substitution. These functions control the 
attributes that the child process inherits from the parent process, including: 

  File descriptors  

  Scheduling policy  

  Process group id  

  User and group id  

  Signal mask    

❑

❑

❑

❑

❑

Table 5-1

Types of POSIX Functions POSIX Functions

Creating processes posix_spawn()
posix_spawnp()

Initializing attributes posix_spawnattr_init()

Destroying attributes posix_spawnattr_destroy()

Setting and retrieving attribute 
values

posix_spawnattr_setsigdefault()
posix_spawnattr_getsigdefault()
posix_spawnattr_setsigmask()
posix_spawnattr_getsigmask()
posix_spawnattr_setflags()
posix_spawnattr_getflags()
posix_spawnattr_setpgroup()
posix_spawnattr_getpgroup()

Process scheduling posix_spawnattr_setschedparam()
posix_spawnattr_setschedpolicy()
posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()
sched_setscheduler()
sched_setparm()

Adding file actions posix_spawn_file_actions_addclose()
posix_spawn_file_actions_adddup2()
posix_spawn_file_actions_addopen()
posix_spawn_file_actions_destroy()
posix_spawn_file_actions_init()

c05.indd   98c05.indd   98 7/31/08   2:50:26 PM7/31/08   2:50:26 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

99

 They also control whether signals ignored by the parent are ignored by the child or reset to some default 
action. Controlling file descriptors allow the child process independent access to the data stream opened 
by the parent. Being able to set the child ’ s process group id affects how the child ’ s job control relates to 
that of the parent. The child ’ s scheduling policy can be set to be different from the scheduling policy of 
the parent.

  Synopsis  
#include  < spawn.h > 
                 
int posix_spawn(pid_t *restrict pid, const char *restrict path,
                const posix_spawn_file_actions_t *file_actions,
                const posix_spawnattr_t *restrict attrp,
                char *const argv[restrict],
                char *const envp[restrict]);
int posix_spawnp(pid_t *restrict pid, const char *restrict file,
                 const posix_spawn_file_actions_t *file_actions,
                 const posix_spawnattr_t *restrict attrp,
                 char *const argv[restrict],
                 char *const envp[restrict]);   

 The difference between these two functions is that  posix_spawn()  has a  path  parameter and  
posix_spawnp()  has a  file  parameter. The  path  parameter in the  posix_spawn()  function is the 
absolute or relative pathname to the executable program file.  file  in  posix_spawnp()  is the name of 
the executable program. If the parameter contains a slash, then  file  is used as a pathname. If not, the 
path to the executable is determined by  PATH  environment variable. 

  The file_actions Parameter 
 The  file_actions  parameter is a pointer to a  posix_spawn_file_actions_t  structure: 

struct posix_spawn_file_actions_t{
{
   int __allocated;
   int __used;
   struct __spawn_action *actions;
   int __pad[16];
};  

  posix_spawn_file_actions_t  is a data structure that contains information about the actions to be 
performed in the new process with respect to file descriptors.  file_actions  is used to modify the 
parent ’ s set of open file descriptors to a set file descriptors for the spawned child process. This structure 
can contain several file action operations to be performed in the sequence in which they were added to 
the spawn file action object. These file action operations are performed on the open file descriptors of 
the parent process. These operations can duplicate, duplicate and reset, add, delete, or close a specified 
file descriptor on behalf of the child process even before it ’ s spawned. If  file_actions  is a null 
pointer, then the file descriptors opened by the parent process remain open for the child process 
without any modifications. Table  5 - 2  lists the functions used to add file actions to the  
posix_spawn_file_actions  object.    

c05.indd   99c05.indd   99 7/31/08   2:50:26 PM7/31/08   2:50:26 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

100

Table 5-2

File Action Attribute Functions Descriptions

int 
posix_spawn_file_actions_addclose
 (posix_spawn_file_actions_t
  *file_actions, int fildes);

Adds a close() action to a spawn file action object 
specified by file_actions. This causes the file 
descriptor fildes to be closed when the new process is 
spawned using this file action object.

int 
posix_spawn_file_actions_addopen
(posix_spawn_file_actions_t
 *file_actions, int fildes, 
 const char *restrict path, 
 int oflag, mode_t mode);

Adds an open() action to a spawn file action object 
specified by file_actions. This causes the file named 
path with the returned file descriptor fildes to be 
opened when the new process is spawned using this 
file action object.

int 
posix_spawn_file_actions_adddup2
 (posix_spawn_file_actions_t
 *file_actions, int fildes,
int newfildes);

Adds a dup2() action to a spawn file action object 
specified by file_actions. This causes the file 
descriptor fildes to be duplicated with the file 
descriptor newfildes when the new process is 
spawned using this file action object.

int 
posix_spawn_file_actions_destroy
 (posix_spawn_file_actions_t
  *file_actions);

Destroys the specified file_actions object. This 
causes the object to be uninitialized. The object can then 
be reinitialized using posix_spawn_file_actions_
init().

int 
posix_spawn_file_actions_init
 (posix_spawn_file_actions_t
  *file_actions);

Initializes the specified file_actions object. Once 
initialized, it contains no file actions to be performed.

  The attrp Parameter 
 The  attrp  parameter points to a  posix_spawnattr_t  structure: 

struct posix_spawnattr_t
{
   short int __flags;
   pid_t __pgrp;
   sigset_t __sd;
   sigset_t __ss;
   struct sched_param __sp;
   int __policy;
   int __pad[16];
}  

 This structure contains information about the scheduling policy, process group, signals, and flags for the 
new process. The description of individual attributes is as follows: 

c05.indd   100c05.indd   100 7/31/08   2:50:26 PM7/31/08   2:50:26 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

101

Table 5-3

Spawn Process Attributes Functions Descriptions

int posix_spawnattr_getflags
(const posix_spawnattr_t *restrict 
attr, short *restrict flags);

              
int posix_spawnattr_setflags
(posix_spawnattr_t *attr, 
 short flags);

Returns the value of the __flags attribute stored 
in the specified attr object.

Sets the value of the __flags attribute stored in the 
specified attr object to flags.

int posix_spawnattr_getpgroup
(const posix_spawnattr_t *restrict
 attr, pid_t *restrict pgroup);

              
int posix_spawnattr_setpgroup
(posix_spawnattr_t *attr, 
 pid_t pgroup);

Returns the value of the __pgroup attribute stored 
in the specified attr object and stores it in pgroup.

Sets the value of the __pgroup attribute stored in 
the specified attr object to pgroup if POSIX_
SPAWN_SETPGROUP is set in the __flags attribute.

   __flags : Used to indicate which process attributes are to be modified in the spawned process. 
They are bitwise - inclusive OR of 0 or more of the following:  

   POSIX_SPAWN_RESETIDS   

   POSIX_SPAWN_SETPGROUP   

   POSIX_SPAWN_SETSIGDEF   

   POSIX_SPAWN_SETSIGMASK   

   POSIX_SPAWN_SETSCHEDPARAM   

   POSIX_SPAWN_SETSCHEDULER   

     __pgrp : The id of the process group to be joined by the new process.  

   __sd : Represents the set of signals to be forced to use default signal handling by the new 
process.  

   __ss : Represents the signal mask to be used by the new process.  

   __sp : Represents the scheduling parameter to be assigned to the new process.  

   __policy : Represents the scheduling policy to be used by the new process.    

 Table  5 - 3  lists the functions used to set and retrieve the individual attributes contained in the 
 posix_spawnattr_t  structure.    

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Table continued on following page

c05.indd   101c05.indd   101 7/31/08   2:50:27 PM7/31/08   2:50:27 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

102

Spawn Process Attributes Functions Descriptions

int posix_spawnattr_getschedparam
(const posix_spawnattr_t 
*restrict attr, struct sched_param 
*restrict schedparam);

              
int posix_spawnattr_setschedparam
(posix_spawnattr_t *attr, 
 const struct sched_param *restrict 
 schedparam);

Returns the value of the __sp attribute stored in the 
specified attr object and stores it in schedparam.

Sets the value of the __sp attribute stored in the 
specified attr object to schedparam if POSIX_
SPAWN_SETSCHEDPARAM is set in the __flags 
attribute.

int posix_spawnattr_getpschedpolicy
(const posix_spawnattr_t *restrict
 attr, int *restrict schedpolicy);

              
int posix_spawnattr_setpschedpolicy
(posix_spawnattr_t *attr, 
 int schedpolicy);

Returns the value of the __policy attribute stored 
in the specified attr object and stores it in 
schedpolicy.

Sets the value of the __policy attribute stored in 
the specified attr object to schedpolicy if 
POSIX_SPAWN_SETSCHEDULER is set in the __
flags attribute.

int posix_spawnattr_getsigdefault
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict 
 sigdefault);

              
int posix_spawnattr_setsigdefault
(posix_spawnattr_t *attr, 
 const sigset_t *restrict 
 sigdefault);

Returns the value of the __sd attribute stored in the 
specified attr object and stores it in sigdefault.

Sets the value of the __sd attribute stored in the 
specified attr object to sigdefault if POSIX_
SPAWN_SETSIGDEF is set in the __flags attribute.

int posix_spawnattr_getsigmask
(const posix_spawnattr_t *restrict
 attr, sigset_t *restrict sigmask);

              
int posix_spawnattr_setsigmask
(posix_spawnattr_t *restrict attr,
 const sigset_t *restrict sigmask);

Returns the value of the __ss attribute stored in the 
specified attr object and stores it in sigmask.

Sets the value of the __ss attribute stored in the 
specified attr object to sigmask if POSIX_SPAWN_
SETSIGMASK is set in the __flags attribute.

int posix_spawnattr_destroy
(posix_spawnattr_t *attr);

Destroys the specified attr object. The object can 
then become reinitialized using posix_
spawnattr_init().

int posix_spawnattr_init
(posix_spawnattr_t *attr);

Initializes the specified attr object with default 
values for all of the attributes contained in the 
structure.

c05.indd   102c05.indd   102 7/31/08   2:50:27 PM7/31/08   2:50:27 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

103

  A Simple posix_spawn() Example 
 Example  5 - 1  shows how the  posix_spawn()  function can be used to create a process.

   Example 5 - 1   

// Example 5-1 Spawns a process, using the posix_spawn()
// function that calls the ps utility.
                 
#include  < spawn.h > 
#include  < stdio.h > 
#include  < errno.h > 
#include  < iostream > 
{
   //...
   posix_spawnattr_t X;
   posix_spawn_file_actions_t Y;
   pid_t Pid;
   char * argv[] = {“/bin/ps”,”-lf”,NULL};
   char * envp[] = {“PROCESSES=2”};
   posix_spawnattr_init( & X);
   posix_spawn_file_actions_init( & Y);
   posix_spawn( & Pid,”/bin/ps”, & Y, & X,argv,envp);
   perror(“posix_spawn”);
   cout  <  <  “spawned PID: “  <  <  Pid  <  <  endl;
   //...
   return(0);
                 
}   

 In Example  5 - 1 ,  posix_spawnattr_t  and  posix_spawn_file_actions_t  objects are initialized. 
 posix_spawn()  is called with the arguments PID; path; Y; X;  argv , which contains the command as the 
first element and the argument as the second; and  envp , the environment list. If  posix_spawn()  is 
successful, then the value stored in  Pid  will be the PID of the spawned process.  perror  displayed: 

posix_spawn: Success  

 and the  Pid  is sent to output. The spawned process, in this case, executes: 

/bin/ps -lf  

 These functions return the process id of the child process to the parent process in the  pid  parameter and 
return 0 as the return value. If the function is unsuccessful, no child process is created; thus, no  pid  is 
returned, and an error value is returned as the return value of the function. Errors can occur on three 
levels when using the spawn functions.   

c05.indd   103c05.indd   103 7/31/08   2:50:28 PM7/31/08   2:50:28 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

104

  An error can occur if the  file_actions  or  attr  objects are invalid. If this occurs after the 
function has successfully returned (the child process was spawned), then the child process may 
have an exit status of 127.  

  If the spawn attribute functions cause an error, then the error produced for that particular 
function (listed in Tables  5 - 2  and  5 - 3 ) is returned. If the spawn function has already successfully 
returned, then the child process may have an exit status of 127.  

  Errors can also occur when you are attempting to spawn the child process. These errors would 
be the same errors produced by  fork()  or  exec()  functions. If they occur, they will be the 
return values for the spawn functions.    

 If the child process produces an error, it is not returned to the parent process. For the parent process to be 
aware that the child has produced an error, you have to use other mechanisms since the error will not be 
stored in the child ’ s exit status. You can use Interprocess Communication, or the child can set some flag 
visible to the parent.  

  The guess_it Program Using posix_spawn 
 Listing  5 - 1  recalls the  “ guess the mystery code ”  program from Chapter  4 , Listing  4 - 1 , that spawned two 
child processes.

   Listing 5 - 1   

// Listing 5-1  Program used to launch ofind_code.
                 
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < string > 
 4  #include  < spawn.h > 
 5  #include  < sys/wait.h > 
 6
 7  int main(int argc,char *argv[],char *envp[])
 8  {
 9
10     pid_t ChildProcess;
11     pid_t ChildProcess2;
12     int RetCode1;
13     int RetCode2;
14     int Value;
15     RetCode1 = posix_spawn( & ChildProcess,”find_code”,NULL,
16                              NULL,argv,envp);
17     RetCode2 = posix_spawn( & ChildProcess2,”find_code”,NULL,
18                              NULL,argv,envp);
19     wait( & Value);
20     wait( & Value);
21     return(0);
22  }   

❑

❑

❑

c05.indd   104c05.indd   104 7/31/08   2:50:28 PM7/31/08   2:50:28 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

105

 In Example  5 - 1 , we used  posix_spawn  to launch the  ps  shell utility. Here in Listing  5 - 1 , we use  posix_
spawn  to launch the  ofind_code  program. This illustrates an important feature of  posix_spawn() ; it is 
used to launch programs external to the calling program. Any programs that are located on the local 
computer can be easily launched with  posix_spawn() . The  posix_spawn()  calls in Listing  5 - 1 , lines 15 
and16 have a terse interface. In Chapter  4 , we introduced the notion of interface classes, which can start 
you on the road to a more declarative style multicore programming. Interface classes are easy to 
implement. Listing  5 - 2  shows a simple interface class that you can use to encapsulate the basics of the 
 posix_spawn()  functions.

   Listing 5 - 2   

//Listing 5-2  An initial interface class for a posix process.
                 
 1  #ifndef __POSIX_PROCESS_H
 2  #define __POSIX_PROCESS_H
 3  using namespace std;
 4
 5  #include  < spawn.h > 
 6  #include  < errno.h > 
 7  #include  < iostream > 
 8  #include  < string > 
 9
10
11  class posix_process{
12  protected:
13     pid_t  Pid;
14     posix_spawnattr_t   SpawnAttr;
15     posix_spawn_file_actions_t   FileActions;
16     char **argv;
17     char **envp;
18     string ProgramPath;
19  public:
20     posix_process(string Path,char **av,char **env);
21     posix_process(string Path,char **av,char **env, posix_spawnattr_t X,
                     posix_spawn_file_actions_t Y);
22     void run(void);
23     void pwait(int  & X);
24  };
25
26
27  #endif
28   

 This simple interface class can be used to add a more object - oriented approach to process management. 
It makes it easier to move from models shown in Stage 2 in Figure  5 - 1  to the execution units in Stage 4. 
It also makes the OS API calls transparent to the user. For example, the  guess_it  program shown in 
Listing  5 - 1  can be restated as shown in Listing  5 - 3 .

c05.indd   105c05.indd   105 7/31/08   2:50:29 PM7/31/08   2:50:29 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

106

   Listing 5 - 3   

//Listing 5-3  Our guess_it program using an interface class for the posix_spawn 
capability.
                 
                 
 1  #include “posix_process.h”
 2
 3  int main(int argc,char *argv[],char *envp[])
 4  {
 5     int Value;
 6     posix_process  Child1(“ofind_code”,argv,envp);
 7     posix_process  Child2(“ofind_code”,argv,envp);
 8     Child1.run();
 9     Child2.run();
10     Child1.pwait( & Value);
11     Child2.pwait( & Value);
12     return(0);
13  }
14   

 Recall from Chapter  4  that the  guess_it  program spawns two child processes. Each child process in 
turn spawns two threads. The resulting four threads are used to search files. The value of the interface 
class as a tool for converting procedural paradigms into Object - Oriented declarative approaches cannot 
be overstated. Once you have a  posix_process  class, it can be used like a datatype with the container 
classes. This means that you can have: 

vector < posix_process > 
list < posix_process > 
multiset < posix_process > 
etc...  

 thinking about processes and threads as objects as opposed to sequences of actions, which is a big step in 
the direction of the declarative models of parallel programming. Listing  5 - 4  shows the initial method 
definitions for the  posix_process  interface class.

   Listing 5 - 4   

// Listing 5-4 The initial method definitions for the posix_process interface class.
                 
 1  #include “posix_process.h”
 2  #include  < sys/wait.h > 
 3
 4
 5  posix_process::posix_process(string Path,char **av,char **env)
 6  {
 7
 8     argv = av;
 9     envp = env;
10     ProgramPath = Path;
11     posix_spawnattr_init( & SpawnAttr);
12     posix_spawn_file_actions_init( & FileActions);
13
14

c05.indd   106c05.indd   106 7/31/08   2:50:29 PM7/31/08   2:50:29 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

107

15  }
16
17  posix_process::posix_process(string Path,char **av,char **env,
                   posix_spawnattr_t  X, posix_spawn_file_actions_t Y)
18  {
19     argv = av;
20     envp = env;
21     ProgramPath = Path;
22     SpawnAttr = X;
23     FileActions = Y;
24     posix_spawnattr_init( & SpawnAttr);
25     posix_spawn_file_actions_init( & FileActions);
26
27
28
29  }
30
31  void posix_process::run(void)
32  {
33
34     posix_spawn( & Pid,ProgramPath.c_str(), & FileActions,
                    & SpawnAttr,argv,envp);
35
36
37  }
38
39  void posix_process::pwait(int  & X)
40  {
41
42     wait( & X);
43  }   

 The  run()  method defined on Line 31 in Listing  5 - 4  adapts the interface to the  posix_spawn()  
function. You can build on these declarations by adding methods that adapt the interface of all of the 
functions listed in Table  5 - 2  and Table  5 - 3 . Once completed, you can add process building blocks to your 
object -o riented toolkit.   

  Who Is the Parent? Who Is the Child? 
 There are two functions that return the process id (PID) of the process and parent process: 

   getpid()  returns the process id of the calling process.  

   getppid()  returns the parent id of the calling process.    

 These functions are always successful; therefore no errors are defined.

  Synopsis  
#include  < unistd.h > 
                 
pid_t getpid(void);
pid_t getppid(void);    

❑

❑

c05.indd   107c05.indd   107 7/31/08   2:50:29 PM7/31/08   2:50:29 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

108

  Processes: A Closer Look 
 When a process executes, the operating system assigns the process to a processor. The process executes 
its instructions for a quantum. The process is preempted, so another process can be assigned the 
processor. The operating system scheduler switches between the code of one process, user, or system to 
the code of another process, giving each process a chance to execute its instructions. There are system 
and user processes.   

  Processes that execute system code are called  system processes , also sometimes referred to as 
 kernel processes . System processes administer the whole system. They perform housekeeping 
tasks such as allocating memory, swapping pages of memory between internal and secondary 
storage, checking devices, and so on. They also perform tasks on behalf of the user processes 
such as filling I/O requests, allocating memory, and so forth.  

   User processes  execute their own code, and sometimes they make system function calls. When a 
user process executes its own code, it is in  user mode . In user mode, the process cannot execute 
certain privileged machine instructions. When a user process makes a system function call 
(for example,  read() ,  write() , or  open() ), it is executing operating system instructions. What 
occurs is the user process is put on hold until the system call has completed. The processor is 
given to the kernel to complete the system call. At that time the user process is said to be in 
 kernel mode  and cannot be preempted by any user processes.    

  Process Control Block 
 Processes have characteristics that identify them and determine their behavior during execution. The 
kernel maintains data structures and provides system functions that allow the user to have access to this 
information. Some information is stored in the  process control block (PCB) . The information stored in the 
PCB describes the process to the operating system. This PCB is part of the heavy weight of the process. 
This information is needed for the operating system to manage each process. When the operating system 
switches between a process utilizing the CPU to another process, it saves the current state of the 
executing process and its context to the PCB save area in order to restart the process the next time it is 
assigned to the CPU. The PCB is read and changed by various modules of the operating system. 
Modules concerned with the monitoring the operating system ’ s performance, scheduling, allocation of 
resources, and interrupt processing all will access and/or modify the PCB. The PCB is what makes the 
process visible to the operating system and entities like user threads invisible to the operating system. 

 PCB information includes: 

  Current state and priority of the process  

  Process, parent, and child identifiers  

  Pointers to allocated resources  

  Pointers to location of the process ’ s memory  

  Pointer to the process ’ s parent and child processes  

  Processor utilized by process  

  Control and status registers  

  Stack pointers    

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd   108c05.indd   108 7/31/08   2:50:29 PM7/31/08   2:50:29 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

109

 The information stored in the PCB can be organized as follows: 

  Information concerned with  process control , such as the current state and priority of the 
process, pointers to parent/child PCB ’ s, allocated resources, and memory. This also includes any 
scheduling related information, process privileges, flags, messages, and signals that have to do 
with communication between processes (IPC  —  Interprocess Communication). The process 
control information is required by the operating system in order to coordinate the concurrently 
active processes.  

  The content of user, control, and status registers and stack pointers are all types of information 
concerned with the  state of the processor . When a process is running, information is placed in 
the registers of the CPU. Once the operating system decides to switch to another process, all the 
information in those registers has to be saved. When the process gains the use of the CPU again, 
this information can be restored.  

  Other information has to do with  process identification . This is the process id, PID, and the 
parent process id, PPID. These identification numbers are unique for each process. They are 
positive, nonzero integers.     

  Anatomy of a Process 
 The address space of a process is divided into three logical segments:  text  (program code),  data , and  stack  
segments. Figure  5 - 2  shows the logical layout of a process. The text segment is at the bottom of the 
address space. The text segment contains the instructions to be executed called the  program code . The data 
segment above it contains the initialized global, external, and static variables for the process. The 
stack segment contains locally allocated variables and parameters passed to functions. Because a process 
can make system function calls as well as user - defined function calls, two stacks are maintained in the 
stack segment, the  user stack  and the  kernel stack . When a function call is made, a stack - frame is 
constructed and pushed onto either the user or kernel stack, depending on whether the process is in user 
or kernel mode. The stack segment grows downward toward the data segment. The stack frame is 
popped from the stack when the function returns. The text, data, and stack segments and the process 
control block are part of what forms the  process image .   

❑

❑

❑

DATA SEGMENT
• initialized global variables
• external variables
• static variables

TEXT SEGMENT
• program code

KERNEL STACK

USER STACK

STACK SEGMENT

PROCESS IDENTIFICATION

PROCESS STATE INFO.

PROCESS CONTROL INFO.

PCB

PROCESS
IMAGE

Figure 5-2

c05.indd   109c05.indd   109 7/31/08   2:50:30 PM7/31/08   2:50:30 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

110

 The address space of a process is  virtual . Virtual storage dissociates the addresses referenced in an 
executing process from the addresses actually available in internal memory. This allows the addressing 
of storage space much larger than what is available. The segments of the process ’ s virtual address space 
are contiguous blocks of memory. Each segment and physical address space are broken up into chunks 
called  pages . Each page has a unique  page frame number . The virtual page frame number (VPFN) is used 
as an index into the process ’ s page tables. The  page tables  entries contain a physical page frame number 
(PFN), thus mapping the virtual page frames to physical page frames. This is depicted in Figure  5 - 3 . As 
illustrated, virtual address space is contiguous but it is mapped to physical pages in any order.   

PFN 5

VPFN 8

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

VPFN 8

VPFN 7

VPFN 6

VPFN 5

VPFN 4

VPFN 3

VPFN 2

VPFN 1

VPFN 0

PHYSICAL MEMORY

PROCESS A’S
VIRTUAL ADDRESS
SPACE

PROCESS A’S
PAGE TABLES

PROCESS B’S
PAGE TABLES

PROCESS B’S
VIRTUAL ADDRESS
SPACE

... ...PFN 3 PFN 9PFN 4 PFN 6 PFN 7 PFN 8

PFN 5

PFN 11

PFN 13

PFN 18

PFN 35

TEXT SEGMENT

DATA SEGMENT

STACK SEGMENT

PFN 26

PFN 1

PFN 3

PFN 16

PFN 5 

Figure 5-3

c05.indd   110c05.indd   110 7/31/08   2:50:30 PM7/31/08   2:50:30 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

111

 Even though the virtual address space of each process is protected to prevent another process from 
accessing it, the text segment of a process can be shared among several processes. Figure  5 - 3  also shows 
how two processes can share the same program code. The same physical page frame number is stored in 
the page table entries of both processes ’  page tables. As illustrated in Figure  5 - 3 , process A ’ s virtual page 
frame 0 is mapped to physical page frame 5, as is process B ’ s virtual page frame 2. 

 For the operating system to manage all the processes stored in internal memory, it creates and maintains 
 process tables . Actually, the operating system has a table for all of the entities that it manages. Keep in 
mind that the operating system manages not only processes but all the resources of the computer 
including devices, memory, and files. Some of the memory, devices, and files are managed on the behalf 
of the user processes. This information is referenced in the PCB as resources allocated to the process. The 
process table has an entry for each process image in memory. This is depicted in Figure  5 - 4 . Each entry 
contains the process and parent process id; the real and effective user id and group id; a list of pending 
signals; the location of the text, data, and stack segments; and the current state of the process. When 
the operating system needs to access a process, the process is looked up in the process table, and then the 
process image is located in memory.    

PID PPID STAT

...

19

45 90

42

12

6

9

15

30

R

S

D

S

S30

free entry

MEMORY

FILES

DEVICES

PROCESSES

MEMORY TABLES

I/O TABLES

FILE TABLES

.

.

.

PROCESS TABLES

PID 19’s
image

PID 45’s
image

PID 42’s
image

Figure 5-4

  Process States 
 During a process ’ s execution, it changes its state. The  state  of the process is the current condition or 
status of the process. In a POSIX - compliant environment, a process can be in the following states: 

  Running  

  Runnable (ready)  

  Zombied  

❑

❑

❑

c05.indd   111c05.indd   111 7/31/08   2:50:31 PM7/31/08   2:50:31 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

112

  Waiting (blocked)  

  Stopped    

 The current condition of the process depends upon the circumstances created by the process or by the 
operating system. When certain circumstances exist, the process will change its state.  State transition  is 
the circumstance that causes the process to change its state. Figure  5 - 5  is the state diagram for the 
processes. The state diagram has nodes and directed edges between the nodes. Each node represents the 
state of the process. The directed edges between the nodes are state transitions. Table  5 - 4  lists the state 
transitions with a brief description. As Figure  5 - 5  and Table  5 - 4  show, only certain transitions are allowed 
between states. For example, there is a transition, an edge, between ready and running, but there is no 
transition, no edge, between sleeping and running. Meaning, there are circumstances that causes a 
process to move from the ready state to the running state, but there are no circumstances that cause 
a process to move from the sleeping state to a running state.     

❑

❑

READY 
(runnable)

STOPPED

RUNNING

SLEEPING ZOMBIED

signaledsignaled

preempt

dispatch

timer runout

event occurs 
or I/O complete

wait on event 
or I/O terminated

exit 
system

exit
system

enters 
system

Figure 5-5

Table 5-4

State Transitions Descriptions

READY->RUNNING 
(dispatch)

The process is assigned to the processor.

RUNNING->
READY(timer 
runout)

RUNNING->
READY(preempt)

The time slice the process assigned to the processor has run out. The 
process is placed back in the ready queue.

The process has been preempted before the time slice ran out. This can 
occur if a process with a higher priority is runnable. The process is placed 
back in the ready queue.

c05.indd   112c05.indd   112 7/31/08   2:50:31 PM7/31/08   2:50:31 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

113

State Transitions Descriptions

RUNNING->
SLEEPING (block)

The process gives up the processor before the time slice has run out. The 
process may need to wait for an event or has made a system call, for 
example, a request for I/O. The process is placed in a queue with other 
sleeping processes.

SLEEPING->READY 
(unblock)

The event the process was waiting for has occurred, or the system call 
has completed. For example, the I/O request is filled. The process is 
placed back in the ready queue.

RUNNING->
STOPPED

The process gives up the processor because it has received a signal to 
stop.

STOPPED->READY The process has received the signal to continue and is placed back in the 
ready queue.

RUNNING->
ZOMBIED

The process has been terminated and awaits the parent to retrieve its exit 
status from the process table.

ZOMBIED->EXIT The parent process has retrieved the exit status, and the process exits the 
system.

RUNNING->EXIT The process has terminated, the parent has retrieved the exit status, and 
the process exits the system.

 When a process is created, it is ready to execute its instructions but must first wait until the processor is 
available. Each process is allowed to use the processor only for a discrete interval called a  time slice . 
Processes waiting to use the processor are placed in ready queues. Only processes in the ready queues 
are selected (by the scheduler) to use the processor. Processes in the ready queues are  runnable . When the 
processor is available, a runnable process is assigned the processor by the dispatcher. When the time 
slice has expired, the process is removed from the processor, whether it has finished executing all its 
instructions or not. The process is placed back in the ready queue to wait for its next turn to use the 
processor. A new process is selected from a ready queue and is given its time slice to execute. System 
processes are not preempted. When they are given the processor, they run until completion. If the time 
slice has not expired, a process may voluntarily give up the processor if it cannot continue to execute 
because it must wait for an event to occur. The process may have made a request to access an I/O device 
by making a system call, or it may need to wait on a synchronization variable to be released. Processes 
that cannot continue to execute because they are waiting for an event to occur are in a  sleeping state . They 
are placed in a queue with other sleeping processes. They are removed from that queue and placed back 
in the ready queue when the event has occurred. The processor may be taken away from a process before 
its time slice has run out. This may occur if a process with a higher priority, like a system process, is 
runnable. The preempted process is still runnable and, therefore, is placed back in the ready queue. 

 A running process can receive a signal to stop. The  stopped state  is different from a sleeping state. The 
process ’ s time slice has not expired nor has the process made any request of the system. The process may 
receive a signal to stop because it is being debugged or some situation has occurred in the system. The 
process has made a transition from running to stopped state. Later the process may be awakened, or it 
may be destroyed. 

c05.indd   113c05.indd   113 7/31/08   2:50:32 PM7/31/08   2:50:32 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

114

 When a process has executed all its instructions, it exits the system. The process is removed from the 
process table, the PCB is destroyed, and all of its resources are deallocated and returned to the system 
pool of available resources. A process that is unable to continue executing but cannot exit the system is in 
a  zombied state . A zombied process does not use any system resources, but it still maintains an entry in 
the process table. When the process table contains too many zombied processes, this can affect the 
performance of the system, possibly causing the system to reboot.  

  How Are Processes Scheduled? 
 When a ready queue contains several processes, the scheduler must determine which process should be 
assigned to a processor first. The scheduler maintains data structures that allow it to schedule the 
processes in an efficient manner. Each process is given a priority class and placed in a priority queue 
with other runnable processes with the same priority class. There are multiple priority queues, each 
representing a different priority class used by the system. These priority queues are stratified and placed 
in a dispatch array called the  multilevel priority queue . Figure  5 - 6  depicts the multilevel priority queue. 
Each element in the array points to a priority queue. The scheduler assigns the process at the head of the 
nonempty highest priority queue to the processor.   

3

2

1

6

5

4

PID 12 PID 17

PID 50PID 90 PID 10PID 43

PID 71 PID 35 PID 63

CORE 0

PID 71

running

CORE 1

PID 35

running

SCHEDULER

DISPATCHER

...

...

Figure 5-6

 Priorities can be  dynamic  or  static . Once a static priority of a process is set, it cannot be changed. Dynamic 
priorities can be changed. Processes with the highest priority can monopolize the use of the processor. If 
the priority of a process is dynamic, the initial priority can be adjusted to a more appropriate value. The 
process is placed in a priority queue that has a higher priority. A process monopolizing the processor can 
also be given a lower priority, or other processes can be given a higher priority than that process has. 
When you are assigning priority to a user process, consider what the process spends most of its time 
doing. Some processes are CPU - intensive. CPU - intensive processes use the processor for the whole time 
slice. Some processes spend most of its time waiting for I/O or some other event to occur. When such a 
process is ready to use the processor, it should be given the processor immediately so it can make its next 

c05.indd   114c05.indd   114 7/31/08   2:50:32 PM7/31/08   2:50:32 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

115

request for I/O. Processes that are interactive may require a high priority to assure good response time. 
System processes have a higher priority than user processes. 

 The processes are placed in a priority queue according to a scheduling policy. Two of the primary 
scheduling policies used in the POSIX API are the First - In, First - Out (FIFO) and round robin (RR) 
policies.   

  Figure  5 - 7  (a) shows the  FIFO scheduling policy . With a FIFO scheduling policy, processes are 
assigned the processor according to the arrival time in the queue. When a running process time 
slice has expired, it is placed at the head of its priority queue. When a sleeping process becomes 
runnable, the process is placed at the end of its priority queue. A process can make a system call 
and give up the processor to another process with the same priority level. The process is then 
placed at the end of its priority queue.  

  In  round robin scheduling policy , all processes are considered equal. Figure  5 - 7  (b) depicts the 
RR scheduling policy. RR scheduling is the same as FIFO scheduling with one exception: When 
the time slice expires, the process is placed at the back of the queue and the next process in the 
queue is assigned the processor.      

❑

❑

CORE 0

PID 71

running

CORE 1

PID 35

running

PID 50PID 90 PID 10PID 43

PID 71 PID 35 PID 63 PID 50

1st to arrive
assigned
CPU

exit
system

last to arrive

I/O request I/O complete

SLEEPING PROCESSES IN A QUEUE

timer runout

READY QUEUE

(a) FIFO SCHEDULING

CORE 0

PID 71

running

CORE 1

PID 35

running

PID 50PID 90 PID 10PID 43

PID 71 PID 35 PID 63 PID 50

1st to arrive
assigned
CPU

exit
system

last to arrive

I/O request I/O complete

SLEEPING PROCESSES IN A QUEUE

timer runout

READY QUEUE

(b) RR SCHEDULING

Figure 5-7

c05.indd   115c05.indd   115 7/31/08   2:50:32 PM7/31/08   2:50:32 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

116

 Figure  5 - 7  shows the behavior of the FIFO and RR scheduling policies. The FIFO scheduling policy 
assigns processes to the processor according to its arrival time in the queue. The process runs until 
completion. RR scheduling policy assigns processes using FIFO scheduling, but when the time slice runs 
out, the process is placed at the back of the ready queue.   

  Monitoring Processes with the ps Utility 
 The  ps  utility generates a report that summarizes execution statistics for the current processes. This 
information can be used to monitor the status of current processes. Table  5 - 5  lists the common headers 
and the meaning of the output for the  ps  utility for the Solaris/Linux environments.   

Table 5-5

Headers Description Headers Description

USER, UID Username of process owner TT, TTY Process’s controlling terminal

PID
PPID

Process ID
Parent process ID

S, STAT Current state of the process

PGID
SID

ID of process group leader
ID of session leader

TIME Total CPU time used by the 
process (HH:MM:SS)

%CPU Percentage of CPU time used by 
the process in the last minute

STIME, 
START

Time or date the process 
started

RSS Amount of real RAM currently 
used by the process in k

NI Nice value of the process

%MEM Percentage of real RAM used by 
the process in the last minute

PRI Priority of the process

SZ Size of virtual memory of the 
process’s data and stack in k or 
pages

C, CP Short term CPU-use factor 
used by scheduler to compute 
PRI

WCHAN Address of an event for which a 
process is sleeping

ADDR Memory address of a process

COMMAND 
CMD

Command name and arguments LWP
NLWP

ID of the lwp (thread)
The number of lwps

 In a multiprocessor environment, the  ps  utility is useful to monitor the state, CPU and memory usage, 
processor utilized, priority, and start time of the current processes executing. Command options control 
which processes are listed and what information is displayed about each process. In the Solaris 

c05.indd   116c05.indd   116 7/31/08   2:50:33 PM7/31/08   2:50:33 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

117

environment, by default (meaning no command options are used), information about processes with 
the same effective user id and controlling terminal of the calling invoker is displayed. In the 
Linux environment, by default, the processes with the same user id as the invoker are displayed. In both 
environments, the only information that is displayed is  PID ,  TTY ,  TIME , and  COMMAND . These are some of 
the options that control which processes are displayed: 

    - t term : List the processes associated with the terminal specified by  term   

    - e : All current processes  

    - a : (Linux) All processes with tty terminal except the session leaders  

  (Solaris) Most frequently requested processes except group leaders and processes not associated 
with a terminal  

    - d : All current processes except session leaders  

   T : (Linux) All processes in this terminal  

   a : (Linux) All processes including those of other users  

   r : (Linux) Only running processes  

   Synopsis  
(Linux)
ps -[Unix98 options]
   [BSD-style options]
   --[GNU-style long options
                 
(Solaris)
ps [-aAdeflcjLPy][-o format][-t termlist][-u userlist]
   [-G grouplist][-p proclist][-g pgrplist][-s sidlist]   

 The following lists some of the command options used to control the information displayed about the 
processes: 

    - f : Full listings  

    - l : Long format  

    - j : Jobs format    

 This is an example of using the  ps  utility in Solaris/Linux environments: 

ps -f  

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd   117c05.indd   117 7/31/08   2:50:33 PM7/31/08   2:50:33 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

118

 The   - l  command option shows the additional headers F, S, PRI, NI, ADDR, SZ, and WCHAN. 

 The  P  command option displays the PSR header. Under this header is the number of the processor to 
which the process is assigned or bound. 

 Figure  5 - 9  shows the output of the  ps  utility using the  Tux  command options in the Linux environment.   

 The  %CPU ,  %MEM , and  STAT  information is displayed for the processes. In a multiprocessor environment, 
this information can be used to monitor which processes are dominating CPU and memory usage. The 
 STAT  header shows the state or status of the process. Table  5 - 6  lists how the status is encoded and their 
meanings.   

 This displays information about the default processes in each environment. Figure  5 - 8  shows the output 
in the Solaris environment. The command options can also be used in tandem. Figure  5 - 8  also shows the 
output of using   - l  and   - f  together in the Solaris environment: 

ps -lf    

//SOLARIS

$ ps -f
     UID   PID  PPID  C    STIME    TTY   TIME CMD
 cameron  2214  2212  0 21:03:35 pts/12   0:00 -ksh
 cameron  2396  2214  2 11:55:49 pts/12   0:01 nedit

$ ps -lf
F S     UID   PID  PPID  C PRI NI     ADDR  SZ    WCHAN    STIME    TTY TIME   CMD
8 S cameron  2214  2212  0  51 20 70e80f00 230 70e80f6c 21:03:35 pts/12 0:00  -ksh
8 S cameron  2396  2214  1  53 24 70d747b8 843 70152aba 11:55:49 pts/12 0:01 nedit

Figure 5-8

[tdhughes@colony]$ ps Tux
USER       PID %CPU %MEM   VSZ  RSS   TTY  STAT    START   TIME COMMAND
tdhughes 19259  0.0  0.1  2448 1356  pts/4    S    20:29   0:00 -bash
tdhughes 19334  0.0  0.0  1732  860  pts/4    S    20:33   0:00 /home/tdhughes/pv
tdhughes 19336  0.0  0.0  1928  780  pts/4    S    20:33   0:00 /home/tdhughes/pv
tdhughes 19337 18.0  2.4 26872 24856 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19338 18.0  2.3 26872 24696 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19341 17.9  2.3 26872 24556 pts/4    R    20:33   0:47 /home/tdhughes/pv
tdhughes 19400  0.0  0.0  2544  692  pts/4    R    20:38   0:00 ps Tux
tdhughes 19401  0.0  0.1  2448 1356  pts/4    R    20:38   0:00 -bash          

//Linux

Figure 5-9

c05.indd   118c05.indd   118 7/31/08   2:50:33 PM7/31/08   2:50:33 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

119

 The  STAT  header can reveal additional information about the status of the process: 

   D : (BSD) Disk wait  

   P : (BSD) Page wait  

   X : (System V) Growing: waiting for memory  

   W : (BSD) Swapped out  

   K : (AIX) Available kernel process  

   N : (BSD) Niced: execution priority lowered  

    >  : (BSD) Niced: execution priority artificially raised  

    <  : (Linux) High - priority process  

   L : (Linux) Pages are locked in memory    

 These codes precede the status codes. If an  N  precedes the status, this means that the process is running 
at a lower priority level. If a process has a status S < W, this means the process is sleeping, swapped out, 
and has a high priority level.  

  Setting and Getting Process Priorities 
 The priority level of a process can be changed by using the  nice()  function. Each process has a nice 
value that is used to calculate the priority level of the calling process. A process inherits the priority of 
the process that created it. But the priority of a process can be lowered by raising its nice value. Only 
superuser and kernel processes can raise priority levels.

  Synopsis  
#include  < unistd.h > 
                 
int nice(int incr);   

❑

❑

❑

❑

❑

❑

❑

❑

❑

Table 5-6

Status of Process Description

D Uninterruptible sleep (usually I/O)

R Running or runnable (on run queue)

S Interruptible sleep (waiting for an event to complete)

T Stopped either by a job control signal or because it is being traced

Z “Zombie” process, terminated with no parent

c05.indd   119c05.indd   119 7/31/08   2:50:34 PM7/31/08   2:50:34 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

120

 A low nice value raises the priority level of the process. The  incr  parameter is the value added to the 
current nice value of the calling process. The  incr  can be negative or positive. The nice value is a non -
 negative number. A positive  incr  value raises the nice value, thus lowering the priority level. A negative 
 incr  value lowers the nice value, thus raising the priority level. If the  incr  value raises the  nice  value 
above or below its limits, the  nice  value of the process is set to the highest or lowest limit accordingly. If 
successful, the  nice()  function returns the new nice value of the process. If unsuccessful, the function 
returns  - 1, and the nice value is not changed.

  Synopsis  
#include  < sys/resource.h > 
                 
int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);   

  setpriority()  sets the nice value for a process, process group, or user.  getpriority()  returns the 
priority of a process, process group, or user. Example  5 - 2  shows the syntax for the functions 
 setpriority()  and  getpriority()  to set and return the nice value of the current process.

   Example 5 - 2   

//Example 5-2 shows how setpriority() and getpriority() can be used.
                 
#include  < sys/resource.h > 
                 
//...
id_t pid = 0;
int which  = PRIO_PROCESS;
int value = 10;
int nice_value;
int ret;
                 
nice_value = getpriority(which,pid);
if(nice_value  <  value){
   ret = setpriority(which,pid,value);
}
//...   

 In Example  5 - 2 , the priority of the calling process is being returned and set. If the calling process ’ s nice 
value is  <  10, the nice value of the process is set to 10. The target process is determined by the values 
stored in the  which  and  who  parameters. The  which  parameter can specify a process, process group, or a 
user. It can have the following values: 

   PRIO_PROCESS : Indicates a process  

   PRIO_PGRP : Indicates a process group  

   PRIO_USER : Indicates a user    

 Depending on the value of  which , the  who  parameter is the id number of a process, process group, or 
effective user. In Example  5 - 2 ,  which  is assigned  PRIO_PROCESS . A 0 value for  who  indicates the current 
process, process group, or user. In Example  5 - 2 ,  who  is set to 0, indicating that the current process value 
for  setpriority()  will be the new nice value for the specified process, process group, or user. 

❑

❑

❑

c05.indd   120c05.indd   120 7/31/08   2:50:34 PM7/31/08   2:50:34 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

121

 The range of nice value in the Linux environment is  - 20 to 19. In Example  5 - 2 , the value of nice is set to 10 if 
the current nice value is less than 10. In contrast to how things worked with the function  nice() , the value 
passed to  setpriority()  is the actual value of nice, not an offset to be added to the current nice value. In 
a process with multiple threads, the modification of the priority affects the priority of all the threads in that 
process. If successful,  getpriority()  returns the nice value of the specified process. If successful, 
 setpriority()  returns 0. If unsuccessful, both functions return  - 1. The return value  - 1 is a legitimate 
nice value for a process. To determine if an error has occurred, check the external variable  errno .  

  What Is a Context Switch? 
 A  context switch  occurs when the use of the processor is switched from one process to another process. 
When a context switch occurs, the system saves the context of the current running process and restores 
the context of the next process selected to use the processor. The PCB of the preempted process is 
updated. The process state field is changed from the running to the appropriate state (runnable, blocked, 
zombied, or so forth). The contents of the processor ’ s registers, state of the stack, user and process 
identification and privileges, and scheduling and accounting information are saved and updated. 

 The system must keep track of the status of the process ’ s I/O and other resources, and any memory 
management data structures. The preempted process is placed in the appropriate queue. 

 A context switch occurs when a: 

  Process is preempted  

  Process voluntarily gives up the processor  

  Process makes an I/O request or needs to wait for an event  

  Process switches from user mode to kernel mode    

 When the preempted process is selected to use the processor again, its context is restored, and execution 
continues where it left off.  

  The Activities in Process Creation 
 To run any program, the operating system must first create a process. When a new process is created, a 
new entry is placed in the main process table. A new PCB is created and initialized. The process 
identification portion of the PCB contains a unique process id number and the parent process id. The 
program counter is set to point to the program entry point, and the system stack pointers are set to 
define the stack boundaries for the process. The process is initialized with any of the attributes 
requested. If the process is not given a priority value, it is given the lowest - priority value by default. The 
process initially does not own any resources unless there is an explicit request for resources or they have 
been inherited from the creator process. The state of the process is runnable, and it is placed in the 
runnable or ready queue. Address space is allocated for the process. How much space to be set aside can 
be determined by default, based on the type of process. The size can also be set as a request by the 
creator of the process. The creator process can pass the size of the address space to the system at the time 
the process is created. 

❑

❑

❑

❑

c05.indd   121c05.indd   121 7/31/08   2:50:34 PM7/31/08   2:50:34 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

122

  Using the fork() Function Call 
 In addition to  posix_spawn() , for creating processes the POSIX API also supports the  fork / exec  
functions. These functions are available in all Unix/Linux derivatives. The  fork()  call creates a new 
process that is a duplication of the calling process, the parent. The  fork()  returns two values if it 
succeeds, one to the parent and one to the child process. It returns 0 to the child process and returns the 
PID of the child to the parent process. The parent and child processes continue to execute from the 
instruction immediately following the  fork()  call. If not successful, meaning that no child process was 
created,  - 1 is returned to the parent process.

  Synopsis  
#include  < unistd.h > 
                 
pid_t fork(void);   

 The  fork()  fails if the system does not have the resources to create another process. If there is a limit to 
the number of child processes the parent can spawn or the number of systemwide executing processes 
and that limit has been exceeded, the  fork()  fails. In that case,  errno  is set to indicate the error.  

  Using the exec() Family of System Calls 
 The  exec  family of functions replaces the calling process image with a new process image. The  fork()  
call creates a new process that is a duplication of the parent process, whereas the  exec  function replaces 
the duplicate process image with a new one. The new process image is a regular executable file and is 
immediately executed. The executable can be specified as a path or a filename. These functions can pass 
command - line arguments to the new process. Environment variables can also be specified. There is no 
return value if the function is not successful, because the process image that contained the call to the 
 exec  is overwritten. If the function is unsuccessful,  - 1 is returned to the calling process. 

 All of the  exec()  functions can fail under these conditions: 

   Permissions are denied.   

  Search permission is denied for the executable ’ s file directory.  

  Execution permission is denied for the executable file.  

     Files do not exist.   

  Executable file does not exist.  

  Directory does not exist.    

   File is not executable.   

  File is not executable because it is open for writing by another process.  

  File is not an executable file.    

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd   122c05.indd   122 7/31/08   2:50:35 PM7/31/08   2:50:35 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

123

   Problems with symbolic links.   

  Loop exists when symbolic links are encountered while resolving the pathname to the 
executable.  

  Symbolic links cause the pathname to the executable to be too long.

       The  exec  functions are used with the  fork() . The  fork()  creates and initializes the child process with 
the duplicate of the parent. The child process then replaces its process image by calling an  exec() . 
Example  5 - 3  shows an example of the  fork - exec  usage.

   Example 5 - 3   

// Example 5-3 Using the fork-exec system calls.
                 
//...
RtValue = fork();
if(RtValue == 0){
   execl(“/home/user/direct”,”direct”,”.”);
}   

 In Example  5 - 3 , the  fork()  function is called and the return value is stored in  RtValue . If  RtValue  is 0, 
then it is the child process. The  execl()  function is called. The first parameter is the path to the 
executable module, the second parameter is the execution statement, and the third parameter is the 
argument.  direct  is a utility that lists all the directories and subdirectories from a given directory, 
which, in this case, is the current directory. There are six versions of the  exec  functions, each having 
different calling conventions and uses; those are discussed in the next sections. 

  The execl() Functions 
 The  execl() ,  execle() , and  execlp()  functions pass the command - line arguments as a list. The 
number of command - line arguments should be known at compile time in order for these functions 
to be useful.   

   int execl(const char *path,const char *arg0,.../*,(char *)0 */);  

  The  path  parameter is the pathname to the program executable. It can be specified as an 
absolute pathname or a relative pathname from the current directory. The next arguments are 
the list of command - line arguments, from  arg0  to  argn . There can be  n  number of arguments. 
The list is to be followed by a NULL pointer.  

   int execle(const char *path,const char *arg0,.../*,(char *)0 *, char *const 
envp[]*/);  

  This function is identical to  execl()  except that it has an additional parameter,  envp[] . This 
parameter contains the new environment for the new process.  envp[]  is a pointer to a null - ter-
minated array of null - terminated strings. Each string has the form:   

name=value  

  where  name  is the name of the environment variable, and value is the string to be stored. 
 envp[]  can be assigned in this manner:   

char *const envp[] = {“PATH=/opt/kde5:/sbin”, “HOME=/home”,NULL};  

❑

❑

❑

❑

❑

c05.indd   123c05.indd   123 7/31/08   2:50:35 PM7/31/08   2:50:35 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

124

   PATH  and  HOME  are the environment variables in this case.  

   int execlp(const char *file,const char *arg0,.../*,(char *)0 */);  

   file  is the name of the program executable. It uses the  PATH  environment variable to locate the 
executables. The remaining arguments are the list of command - line arguments as explained for 
 execl()  function.    

 These are examples of the syntax of the  execl()  functions using these arguments: 

char *const args[] = {“direct”,”.”,NULL};
char *const envp[] = {“files=50”,NULL};
                 
execl(“/home/tracey/direct”,”direct”,”.”,NULL);
execle(“/home/tracey/direct”,”direct”,”.”,NULL,envp);
execlp(“direct”,”direct”,”.”,NULL);  

 Each shows the syntax of how the  execl()  function creates a process that executes the direct program.

  Synopsis  
#include  < unistd.h > 
                 
int execl(const char *path,const char *arg0,.../*,(char *)0 */);
int execle(const char *path,const char *arg0,.../*,
          (char *)0 *,char *const envp[]*/);
int execv(const char *path,char *const arg[]);
int execlp(const char *file,const char *arg0,.../*,(char *)0 */);
int execve(const char *path,char *const arg[],
           char *const envp[]);
int execvp(const char *file,char *const arg[]);    

  The execv() Functions 
 The  execv() ,  execve() , and  execvp()  functions pass the command - line arguments in a vector of 
pointers to null - terminated strings. The number of command - line arguments should be known at 
compile time in order for these functions to be useful.  argv[0]  is usually the execution statement.   

   int execv(const char *path,char *const arg[]);  

  The  path  parameter is the pathname to the program executable. It can be specified as an 
absolute pathname or relative pathname to the current directory. The next argument is the 
null - terminated vector that contains the command - line arguments as null - terminated strings. 
There can be  n  number of arguments. The vector is to be followed by a NULL pointer. 

   arg[]  can be assigned in this manner:   

char *const arg[] = {“traverse”,”.”, “ > ”,”1000”,NULL};  

❑

❑

c05.indd   124c05.indd   124 7/31/08   2:50:35 PM7/31/08   2:50:35 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

125

  This is an example of a function call:   

execv(“traverse”,arg);  

  In this case, the  traverse  utility lists all files in the current directory larger than 1000 bytes.  

   int execve(const char *path,char *const arg[],char *const envp[]);  

  This function is identical to  execv()  except that it has the additional parameter  envp[]  
described earlier.  

   int execvp(const char *file,char *const arg[]);  

   file  is the name of the program executable. The next argument is the null - terminated vector 
that contains the command - line arguments as null - terminated strings. There can be  n  number of 
arguments. The vector is to be followed by a NULL pointer.    

 These are examples of the syntax of the  execv()  functions using these arguments: 

char *const arg[] = {“traverse”,”.”, “ > ”,”1000”,NULL};
char *const envp[] = {“files=50”,NULL};
                 
execv(“/home/tracey/traverse”,arg);
execve(“/home/tracey/traverse”,arg,envp);
execvp(“traverse”,arg);  

 Each shows the syntax of how each  execv()  function creates a process that executes the  traverse  
program.  

  Determining the Restrictions of exec() Functions 
 There is a limit on the size that  argv[]  and  envp[]  can be when passed to the  exec()  functions. The 
 sysconf()  can be used to determine the maximum size of the command - line arguments plus the size of 
environment variables for the functions that accept  envp[] , which can be passed to the  exec()  
functions. To return the size,  name  should have the value  _SC_ARG_MAX .

  Synopsis  
#include  < unistd.h > 
                 
long sysconf(int name);   

 Another restriction when you are using  exec()  and the other functions used to create processes is the 
maximum number of simultaneous processes allowed per user id. To return this number,  name  should 
have the value  _SC_CHILD_MAX .    

❑

❑

c05.indd   125c05.indd   125 7/31/08   2:50:36 PM7/31/08   2:50:36 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

126

  Working with Process Environment 
Variables 

 Environment variables are null - terminated strings that store system - dependent information such as 
paths to directories that contain commands, libraries, functions, and procedures used by a process. They 
can also be used to transmit any useful user - defined information between the parent and the child 
processes. They are a mechanism for providing specific information to a process without having it 
hardcoded in the program code. System environment variables are predefined and common to all shells 
and processes in that system. The variables are initialized by startup files. These are the common system 
variables: 

   $HOME : The absolute pathname of your home directory  

   $PATH : A list of directories to search for commands  

   $MAIL : The absolute pathname of your mailbox  

   $USER : Your user id  

   $SHELL : The absolute pathname of your login shell  

   $TERM : Your terminal type    

 They can be stored in a file or in an environment list. The environment list contains pointers to null -
 terminated strings. The variable: 

extern char **environ  

 points to the environment list when the process begins to execute. These strings have the form: 

name=value  

 as explained earlier. Processes initialized with the functions  execl() ,  execlp() ,  execv() , and 
 execvp()  inherit the environment of the parent process. Processes initialized with the functions 
 execve()  and  execle()  set the environment for the new process. 

 There are functions and utilities that can be called to examine, add, or modify environment variables. 
 getenv()  is used to determine whether a specific variable has been set. The parameter name is the 
environment variable in question. The function returns NULL if the specified variable has not been set. 
If the variable has been set, the function returns a pointer to a string containing the value.

  Synopsis  
#include  < stdlib.h > 
                 
char *getenv(const char *name);
int setenv(const char *name, const char *value, int overwrite);
void unsetenv(const char *name);   

❑

❑

❑

❑

❑

❑

c05.indd   126c05.indd   126 7/31/08   2:50:36 PM7/31/08   2:50:36 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

127

 For example: 

string Path;
                 
Path = getenv(“PATH”);  

 the string  Path  is assigned the value contained in the predefined environment  PATH . 

  setenv() is used to change or add an environment variable. The parameter  name  contains the name 
of the environment variable added with the value stored in  value . If the  name  variable already exists, 
then the value is changed to  value  if the  overwrite  parameter is non - zero. If  overwrite  is 0, the 
content of the specified environment variable is not modified.  setenv()  returns 0 if it is successful 
and  - 1 if it is unsuccessful. The  unsetenv()  removes the environment variable specified by  name .  

  Using system() to Spawn Processes 
  system()  is another function that is used to execute a command or executable program.  system()  
causes the execution of  fork() ,  exec() , and a shell. The  system()  function executes a  fork() , and the 
child process calls an  exec()  with a shell that executes the given command or program.

  Synopsis  
#include  < stdlib.h > 
                 
int system(const char *string);   

 The  string  parameter can be a system command or the name of an executable file. If successful, the 
function returns the termination status of the command or return value (if any) of the program. Errors 
can happen at several levels; the  fork()  or  exec()  may fail, or the shell may not be able to execute the 
command or program. 

 The function returns a value to the parent process. The function returns 127 if the  exec()  fails and  - 1 if 
some other error occurs. The return code of the command is returned if the function succeeds. This 
function does not affect the wait status of any of the child processes.  

  Killing a Process 
 When a process is terminated, the PCB is erased, and the address space and resources used by the 
terminated process are deallocated. An exit code is placed in its entry in the main process table. The 
entry is removed once the parent has accepted the exit code. The termination of the process can occur 
under several conditions: 

  All instructions have executed. The process makes an explicit return or makes a system call that 
terminates the process. The child processes may automatically terminate when the parent has 
terminated.  

  The parent sends a signal to terminate its child processes.    

❑

❑

c05.indd   127c05.indd   127 7/31/08   2:50:36 PM7/31/08   2:50:36 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

128

 Abnormal termination of a process can occur when the process itself does something that it shouldn ’ t: 

  The process requires more memory than the system can provide it.  

  The process attempts to access resources it is not allowed to access. The process attempts to 
perform an invalid instruction or a prohibited computation.    

 The termination of a process can also be initiated by a user when the process is interactive. 

 The parent process is responsible for the termination/deallocation of its children. The parent process 
should wait until all its child processes have terminated. When a parent process retrieves a child 
process ’ s exit code, the child process exits the system normally. The process is in a zombied state until 
the parent accepts the signal. If the parent never accepts the signal because it has already terminated and 
exited the system or because it is not waiting for the child process, the child remains in the zombied state 
until the  init  process (the original system process) accepts its exit code. Many zombied processes can 
negatively affect the performance of the system. 

  The exit(), and abort() Calls 
 There are two functions a process can call for self - termination,  exit()  and  abort() . The  exit()  
function causes a normal termination of the calling process. All open file descriptors associated with the 
process will be closed. The function flushes all open streams that contain unwritten buffered data then 
the open streams are closed. The  status  parameter is the process ’ s exit status. It is returned to the 
waiting parent process that is then restarted. The value of status may be 0,  EXIT_FAILURE , or  EXIT_
SUCCESS . The 0 value means that the process has terminated successfully. The waiting parent process 
only has access to the lower 8 bits of status. If the parent process is not waiting for the process to 
terminate, the zombied process is adopted by the  init  process. The  abort()  function causes an 
abnormal termination of the calling process. An abnormal termination of the process causes the same 
effect as  fclose()  on all open streams. A waiting parent process receives a signal that the child process 
aborted. A process should only abort when it encounters an error that it cannot deal with 
programmatically.

  Synopsis  
#include  < stdlib.h > 
                 
void exit(int status);
void abort(void);    

  The kill() Function 
 The  kill()  function can be used to cause the termination of another process. The  kill()  function 
sends a signal to the process or processes specified or indicated by the parameter  pid . The parameter 
 sig  is the signal to be sent to the specified process. The signals are listed in the header   < signal.h > .  
To kill a process,  sig  has the value  SIGKILL . The calling process must have the appropriate privileges to 
send a signal to the process, or it has to have a real or an effective user id that matches the real or saved 
 set - user - ID  of the process that receives the signal. The calling process may have permission to send 
only certain signals to processes and not others. If the function successfully sends the signal, 0 is 
returned to the calling process. If it fails,  − 1 is returned. 

❑

❑

c05.indd   128c05.indd   128 7/31/08   2:50:36 PM7/31/08   2:50:36 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

129

 The calling process can send the signal to one or several processes under these conditions: 

   pid   >  0: The signal is sent to the process whose PID is equal to the  pid .  

   pid  = 0: The signal is sent to all the processes whose process group id is the same as the calling 
process.  

   pid  =  − 1: The signal is sent to all processes for which the calling process has permission to send 
that signal.  

   pid   <     − 1: The signal is sent to all processes whose process id group is equal to the absolute 
value of  pid  and for which the calling process has permission to send that signal.  

   Synopsis  
#include  < signal.h > 
                 
int kill(pid_t pid, int sig);     

  Process Resources 
 In order for a process to perform whatever task it is instructed to perform, it may need to write data to a 
file, send data to a printer, or display data to the screen. A process may need input from the user via the 
keyboard or input from a file. Processes can also use other processes such as a subroutine as a resource. 
Subroutines, files, semaphores, mutexes, keyboards, and display screens are all examples of resources 
that can be utilized by a process. A  resource  is anything used by the process at any given time as a source 
of data, as a means to process or compute, or as the means by which the data or information is displayed. 

 For a process to access a resource, it must first make a request to the operating system. If the resource is 
available, the operating system allows the process to use the resource. The process uses the resource then 
releases it so that it will be available to other processes. If the resource is not available, the request is 
denied, and the process must wait. When the resource becomes available, the process is awakened. This 
is the basic format of resource allocation. Figure  5 - 10  shows a resource allocation graph. The resource 
allocation graph shows which processes hold resources and which processes are requesting resources. 
In Figure  5 - 10 , Process B makes a request for resource 2, which is held by Process C. Process C makes a 
request for resource 3, which is held by Process D.   

❑

❑

❑

❑

R1

R2 R3

Pa Pb Pc Pd

Figure 5-10

c05.indd   129c05.indd   129 7/31/08   2:50:37 PM7/31/08   2:50:37 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

130

 When more than one request to access a resource is granted, the resource is  sharable . This is shown in 
Figure  5 - 10  as well. Process A shares resource 1 with Process D. A resource may allow many processes 
concurrent access or may allow one process only limited time before allowing another process access. 
An example of this type of shared resource is the processor. A process is assigned a processor for a short 
interval and then another process is assigned the processor. When only one request to access a 
resource is granted at a time and that occurs after the resource has been released by another process, 
the resource is  unshared , and the process has  exclusive access  to the resource. In a multiprocessor 
environment, it is important to know whether a shared resource can be accessed simultaneously or only 
by one process at a time, in order to avoid some of the pitfalls inherent in concurrency. 

 Some resources can be changed or modified by a process. Other resources do not allow a process to change 
it. The behavior of shared modifiable or unmodifiable resources is determined by the resource type. 

  Types of Resources 
 There are three basic types of resources: 

  Hardware  

  Data  

  Software    

  Hardware resources  are physical devices connected to the computer. Examples of hardware resources are 
processors, main memory, and all other I/O devices including printers; hard disk, tape, and zip drives; 
monitors; keyboards; sound, network, and graphic cards; and modems. All these devices can be shared 
by several processes. 

 Some hardware resources are preempted to allow different processes access. For example, a processor is 
preempted to allow different processes time to run. RAM is another example of a shared preemptible 
resource. When a process is not in use, some of the physical page frames it occupies may be swapped out 
to secondary storage in order for another process to be swapped in to occupy those now available page 
frames. A range of memory can be occupied only by the page frames of one process at any given time. 
An example of a nonpreemptible shared resource is a printer. When a printer is shared, the jobs sent to 
the printer by each process are stored in a queue. Each job is printed to completion before another job 
starts. The printer is not preempted by any waiting printer jobs unless the current job is canceled. 

  Data resources  such as objects; system data such as environment variables, files, and handles; globally 
defined variables such as semaphores; and mutexes are all resources shared and modified by processes. 
Regular files and files associated with physical devices such as the printer can be opened, restricting the 
type of access processes has to that file. Processes may be granted only read or write access, or read/
write access. For processes with parent - child relationships, the child process inherits the parent process ’ s 
resources and access rights to those resources existing at the time of the child ’ s creation. The child 
process can advance the file pointer or close, modify, or overwrite the contents of a file opened by the 
parent. Shared memory and files with write permission require their access to be synchronized. Shared 
data such as semaphores or mutexes can be used to synchronize access to other shared data resources. 

  Shared libraries  are examples of  software resources . Shared libraries provide a common set of services or 
functions to processes. Processes can also share applications, programs, and utilities. In such a case, only one 
copy of the program(s) code is brought into memory. However, there are separate copies of the data, one for 
each user (process). Program code that is not changed (also called  reentrant ) can be accessed by several 
processes simultaneously.  

❑

❑

❑

c05.indd   130c05.indd   130 7/31/08   2:50:37 PM7/31/08   2:50:37 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

131

   POSIX  Functions to Set Resource Limits 
 POSIX defines functions that restrict a process ’ s ability to use certain resources. The operating system 
sets limitations on a process ’ s ability to utilize system resources. These resource limits affect the 
following: 

  Size of the process ’ s stack  

  Size of file and core file creation  

  Amount of CPU usage (size of time slice)  

  Amount of memory usage  

  Number of open file descriptors    

 The operating system sets a hard limit on resource usage by a process. The process can set or change the 
soft limit of its resources. Its value should not exceed the hard limit set by the operating system. A 
process can lower its hard limit. This value should be greater than or equal to the soft limit. When 
a process lowers its hard limit, it is irreversible. Only processes with special privileges can raise their 
hard limit.

  Synopsis  
#include  < sys/resource.h > 
                 
int setrlimit(int resource, const struct rlimit *rlp);
int getrlimit(int resource, struct rlimit *rlp);
int getrusage(int who, struct rusage *r_usage);   

 The  setrlimit()  function is used to set limits on the consumption of specified resources. This function 
can set both hard and soft limits. The parameter  resource  represents the resource type. Table  5 - 7  lists 
the values for  resource  with a brief description. The soft and hard limits of the specified resource are 
represented by the  rlp  paramater. The  rlp  parameter points to a  struct     rlimit  that contains two 
objects of type  rlim_t : 

struct rlimit
{
    rlim_t rlim_cur;
    rlim_t rlim_max;
}  

  rlim_t  is an unsigned integer type.  rlim_cur  contains the current or soft limit.  rlim_max  contains the 
maximum or hard limit.  rlim_cur  and  rlim_max  can be assigned any value. They can also be assigned 
these symbolic constants defined in the header   < sys/resource.h >  : 

   RLIM_INFINITY : Indicates no limit  

   RLIM_SAVED_MAX : Indicates an unrepresentable saved hard limit  

   RLIM_SAVED_CUR : Indicates an unrepresentable saved soft limit    

 The soft or hard limit can be set to  RLIM_INFINITY , which means that the resource is unlimited.   

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd   131c05.indd   131 7/31/08   2:50:37 PM7/31/08   2:50:37 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

132

Table 5-7

Resource Definitions Descriptions

RLIMIT_CORE Maximum size of a core file in bytes that may be created by a process

RLIMIT_CPU Maximum amount of CPU time in seconds that may be used by a process

RLIMIT_DATA Maximum size of a process’s data segment in bytes

RLIMIT_FSIZE Maximum size of a file in bytes that may be created by a process

RLIMIT_NOFILE A number one greater than the maximum value that the system may 
assign to newly created file descriptor

RLIMIT_STACK Maximum size of a process’s stack in bytes

RLIMIT_AS Maximum size of a process’s total available memory in bytes

 The  getrlimit()  returns the soft and hard limit of the specified resource in the  rlp  object. Both the 
 getrlimit()  and  setrlimit()  functions return 0 if successful and  - 1 if unsuccessful. Example  5 - 4  
contains an example of a process setting the soft limit for file size in bytes.

   Example 5 - 4   

//Example 5-4 Using setrlimit() to set the soft limit for file size.
                 
#include  < sys/resource.h > 
                 
//...
struct rlimit R_limit;
struct rlimit R_limit_values;
                 
//...
                 
R_limit.rlim_cur = 2000;
R_limit.rlim_max = RLIM_SAVED_MAX;
setrlimit(RLIMIT_FSIZE, & R_limit);
getrlimit(RLIMIT_FSIZE, & R_limit_values);
cout  <  <  “file size soft limit: “  <  <  R_limit_values.rlim_cur  <  <  endl;
                 
//...   

 In Example  5 - 4 , the file size soft limit is set to 2000 bytes, and the hard limit is set to hard limit 
maximum.  R_limit  and  RLIMIT_FSIZE  are passed to  setrlimit() .  getrlimit()  is passed  
RLIMIT_FSIZE  and  R_limit_values . The soft value is sent to  cout . 

  getrusage()  returns information about the measures of resources used by the calling process. It also 
returns information about the terminated child process the calling process is waiting for. The parameter 
 who  can have these values: 

   RUSAGE_SELF   

   RUSAGE_CHILDREN     

❑

❑

c05.indd   132c05.indd   132 7/31/08   2:50:38 PM7/31/08   2:50:38 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

133

 If the value for  who  is  RUSAGE_SELF , then the information returned pertains to the calling process. If the 
value for  who  is  RUSAGE_CHILDREN , then the information returned is pertaining to the calling process ’ s 
children. If the calling process did not wait for its children, then the information pertaining to 
the children processes is discarded. The information is returned in  r_usage .  r_usage  points to a  struct   
  rusage  that contains information listed and described in Table  5 - 8 . If the function is successful, it returns 
0; if unsuccessful, it returns −  1.     

Table 5-8

struct rusage Attributes Description

struct timeval ru_utime 
struct timeval ru_sutime

User time used
System time used

long ru_maxrss
long ru_maxixrss
long ru_maxidrss
long ru_maxisrss

Maximum resident set size
Shared memory size
Unshared data size
Unshared stack size

long ru_minflt
long ru_majflt

Number of page claims
Number of page faults

long ru_nswap Number of page swaps

long ru_inblock
long ru_oublock

Block input operations
Block output operations

long ru_msgsnd
long ru_msgrcv

Number of messages sent
Number of messages received

long ru_nsignals Number of signals received

long ru_nvcsw
long ru_nivcsw

Number of voluntary context switches
Number of involuntary context 
switches

  What Are Asynchronous and 
Synchronous Processes 

  Asynchronous  processes execute independent of each other. Process A runs until completion without any 
regard to process B. Asynchronous processes may or may not have a parent - child relationship. If process 
A creates process B, they can both execute independently, but at some point the parent retrieves the exit 
status of the child. If the processes do not have a parent - child relationship, they may share the same 
parent. 

 Asynchronous processes may execute serially or simultaneously or their execution may overlap. These 
scenarios are depicted in Figure  5 - 11 . 

 In Case 1, process A runs until completion, then process B runs until completion, and then process C 
runs until completion. This is serial execution of these processes. 

c05.indd   133c05.indd   133 7/31/08   2:50:38 PM7/31/08   2:50:38 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

134

 Case 2 depicts simultaneous execution of processes. Process A and B are active processes. While process 
A is running, process B is sleeping. At some point both processes are sleeping. Process B awakens before 
process A. Then process A awakens, and now both processes are running at the same time. This shows 
that asynchronous processes may execute simultaneously only during certain intervals of their 
execution. 

 In Case 3, the execution of process A and the execution of process B overlap.   

ASYNCHRONOUS PROCESSES

PROCESS C 

running

running

running

PROCESS A 

PROCESS A 

PROCESS B 

PROCESS B 

PROCESS A 

PROCESS A 

PROCESS B 

PROCESS B 

SYNCHRONOUS PROCESSES

Case 1:

Case 2:

Case 3:

running

runningsleeping

running sleeping

runningsleeping

running

sleeping

return exit code

running

running

fork()

running

Case 4:

Figure 5-11

c05.indd   134c05.indd   134 7/31/08   2:50:38 PM7/31/08   2:50:38 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

135

 Asynchronous processes may share resources like a file or memory. This may or may not require 
synchronization or cooperation of the use of the resource. If the processes are executing serially (Case 1), 
then they will not require any synchronization. For example, all three processes, A, B, and C, may share a 
global variable. Process A writes to the variable before it terminates. Then, when process B runs, it reads 
the data stored in the variable, and before it terminates it writes to the variable. When Process C runs, it 
reads data from the variable. But in Case 2 and 3, the processes may attempt to modify the variable at the 
same time, thus requiring synchronization of its use. 

 For our purposes, we define  synchronous  processes as processes with interleaved execution; one process 
suspends its execution until another process finishes. For example, process A, the parent process, 
executes and creates process B, the child process. Process A suspends its execution until process B runs to 
completion. When process B terminates, its exit code is placed in the process table. Process A is informed 
process B has terminated. Process A can resume additional processing and then terminate, or it can 
immediately terminate. Process A and process B are synchronous processes. Figure  5 - 11  contrasts 
synchronous and asynchronous execution of processes A and B. 

  Synchronous vs. Asynchronous Processes for fork(), 
posix_spawn(), system(), and exec() 

 Processes created by the  fork() ,  fork - exec() , and p osix_spawn()  functions create 
asynchronous processes. When you are using  fork() , the parent process image is duplicated. Once 
the child process has been created, the function returns to the parent both the child ’ s PID and a return 
value of 0, indicating process creation was successful. The parent does not suspend execution; both 
processes continue to execute independently from the statement immediately preceding the  fork() . 

 Child processes created using the  fork - exec()  combination initialize the child ’ s process image with a 
new process image. The  exec()  functions do not return to the parent process unless the initialization 
was not successful. 

 The  posix_spawn()  functions create the child process image and initialize it within one function call. 
The PID is returned to the  posix_spawn()  as well as a return value, indicating if the process was 
spawned successfully. After  posix_spawn()  returns, both processes are executing at the same time. 

 Processes created by the  system()  function create synchronous processes. A shell is created that 
executes the system command or executable file. The parent process is suspended until the child process 
terminates and the  system()  call returns.   

  The wait() Function Call 
 Asynchronous processes can suspend execution until a child process terminates by executing  wait()  
system call. After the child process terminates, a waiting parent process collects the child ’ s exit status 
that prevents zombied processes. The  wait()  function obtains the exit status from the process table. 
The status parameter points to a location that contains the exit status of the child process. If the parent 
process has more than one child process and several of them have terminated, the  wait()  function 
retrieves the exit status for only one child process from the process table. If the status information is 
available before the execution of the  wait()  function, the function returns immediately. If the parent 
process does not have any children, the function returns with an error code. The  wait()  function can 

c05.indd   135c05.indd   135 7/31/08   2:50:38 PM7/31/08   2:50:38 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

136

also be called when the calling process is to wait until a signal is delivered and then perform some 
signal - handling action.

  Synopsis  
#include  < sys/wait.h > 
                 
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);   

 The  waitpid()  function is the same as  wait() , except that it takes an additional parameter,  pid . The 
 pid  parameter specifies a set of child processes for which the exit status is retrieved. Which processes are 
in the set is determined by the value of  pid : 

   pid   >  0: A single child process  

   pid  = 0: Any child process whose group id is the same as the calling process  

   pid   <   −   1: Any child processes whose group id is equal to the absolute value of  pid   

   pid  = −  1: Any child processes    

 The  options  parameter determines how the wait should behave and can have the value of the following 
constants defined in the header   < sys/wait.h >  : 

   WCONTINUED : Reports the exit status of any continued child process (specified by  pid ) whose 
status has not been reported since it continued.  

   WUNTRACED : Reports the exit status of any child process (specified by  pid ) that has stopped 
whose status has not been reported since it stopped.  

   WNOHANG : The calling process is not suspended if the exit status for the specified child process is 
not available.    

 These constants can be logically ORRED and passed as the  options  parameter (for example: 
 WCONTINUED | WUNTRACED ). 

 Both the  wait()  and  waitpid()  functions return the PID of the child process whose exit status was 
obtained. If the value stored in status is 0, then the child process has terminated under these conditions: 

  The process returned 0 from the function  main() .  

  The process called some version of  exit()  with a 0 argument.  

  The process was terminated because the last thread of the process terminated.    

 Table  5 - 9  lists the macros in which the value of the exit status can be evaluated.    

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c05.indd   136c05.indd   136 7/31/08   2:50:39 PM7/31/08   2:50:39 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

137

  Predicates, Processes, and 
Interface Classes 

 Recall that a predicate in C++ is a function object that returns a bool [Stroustrup, 1997]. One thing that ’ s 
often overlooked in this definition is the word  object  . A predicate is not simply a function. It has object 
semantics. Predicates give a declarative interpretation to a sequence of actions. A predicate is a statement 
that can be evaluated to true or false. In a shift toward a more declarative approach to parallelism, you 
will find that is sometimes convenient to encapsulate a process or a thread as a C++ predicate. 
Enapsulating the process or thread within a predicate allows you to thread them as objects for use with 
containers and algorithms. This subtle use of the notion of a predicate in C++ allows you to take a big 
step away from the procedural approach to parallelism and toward a declarative approach. 

 Take, for example, the  guess_it  program from Listing  5 - 3  earlier in the chapter. Although we used an 
interface class to provide a more declarative interface for the  posix_spawn  function, we can do better. In 
other words, Listing  5 - 3  is a more declarative version of the  guess_it  program from Chapter  4 , and 
now Listing  5 - 5  is a more declarative form of the program in Listing  5 - 3 .

Table 5-9

Macros for 
Evaluating status Description

WIFEXITED Evaluates to nonzero if status was returned by a normally terminated 
child process.

WEXITSTATUS If WIFEXITED is nonzero, this evaluates to the low-order 8 bits of the 
status argument the terminated child process passed to _exit(), 
exit(), or the value returned from main().

WIFSIGNALED Evaluates to nonzero if status was returned from a child process that 
terminated because it was sent a signal that was not caught.

WTERMSIG If WIFSIGNALED is nonzero, this evaluates to the number of the signal 
that caused the child to terminate.

WIFSTOPPED Evaluates to nonzero if status was returned from a child process that 
currently stopped.

WSTOPSIG If WIFSTOPPED is nonzero, this evaluates to the number of the signal 
that caused the child process to stop.

WIFCONTINUED Evaluates to nonzero if status was returned from a child process that 
has continued from a job control stop.

c05.indd   137c05.indd   137 7/31/08   2:50:39 PM7/31/08   2:50:39 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

138

   Listing 5 - 5   

// Listing 5-5  A restatement of the guess_it program from Chapter 4.
                 
 1  #include “posix_process.h”
 2  #include “posix_queue.h”
 3  #include “valid_code.h”
 4
 5
 6  char **av;
 7  char **env;
 8
 9
10  int main(int argc,char *argv[],char *envp[])
11  {
12
13     valid_code  ValidCode;
14     ValidCode.determination(“ofind_code”);
15     cout  <  <   (ValidCode() ? “you win” : “you lose”);
16     return(0);
17  }   

 Here, we have decided to model the code from our game as a C++ class named  valid_code . We have 
decided to encapsulate the invocation of the  posix_process.run()  method within a C++ predicate. 
Line 15 of Listing  5 - 5  contains the  ValidCode()  predicate. If the predicate  ValidCode()  is true, then 
the user has guessed the right six - character code within the 5 - minute time constraint. The program in 
Listing  5 - 5  spawns two processes using the  posix_process  class and four threads using the  user_
thread  class from Chapter  4 . Both the  posix_process  class and the  user_thread  class are interface 
classes that adapt the interface to  posix_spawn()  and  pthread_create() . 

  Program Profile 5 - 1 
  Program Name: 

  oguess_it.cc  (Listing  5 - 5 )  

  Description: 
 The program  oguess_it  is a more declarative form of the program in Listing  5 - 3 . The invocation of 
 posix_process.run()  method is encapsulated within a C++ predicate. If the predicate  ValidCode()  
is true, then the user has guessed the right six - character code within the 5 - minute time constraint. The 
program spawns two processes using the  posix_process  class and four threads using the 
 user_thread .  

  Libraries Required: 
  pthread ,  rt   

  Additional Source Files Needed: 
  oguess_it.cc  (Listing  5 - 5 ),  posix_process.cc  (Listing  5 - 4 )  

c05.indd   138c05.indd   138 7/31/08   2:50:39 PM7/31/08   2:50:39 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

139

  User - Defined Headers Required: 
  posix_process.h  (Listing  5 - 2 )  

  Compile and Link Instructions:   
c++ -o oguess_it oguess_it.cc posix_process.cc -lrt   

  Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6  

  Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor  

  Notes: 
 None 

 We take the declarative interpretation further by encapsulating the  Process.run()  invocation as a C++ 
predicate. Listing  5 - 6  is a declaration of the  valid_code  predicate class.

   Listing 5 - 6   

//Listing 5-6  Declaration of our valid_code predicate class.
                 
 1  #ifndef __VALID_CODE_H
 2  #define __VALID_CODE_H
 3  using namespace std;
 4
 5  #include  < string > 
 6  class valid_code{
 7  private:
 8     string Code;
 9     float  TimeFrame;
10     string Determination;
11     bool InTime;
12  public:
13     bool operator()(void);
14     void determination(string X);
15  };
16
17  #endif   

 We designate this as a predicate class because we have overloaded the  operator()  on Line 13. Notice 
that  operator()  returns a  bool . This is what distinguishes the predicate from the function object. 
Because  valid_code  is a class, it has the declarative semantics that we need to build on. Because 
 valid_code  is a class, it can be used with container classes and algorithms. This use of the predicate 
notion for processes and threads opens up new ways of thinking about parallel programming. 
Listing  5 - 7  contains the definitions for the  valid_code  class.

c05.indd   139c05.indd   139 7/31/08   2:50:40 PM7/31/08   2:50:40 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

140

   Listing 5 - 7   

//Listing 5-7  Definition of our valid_code predicate class.
                 
 1  #include “valid_code.h”
 2  #include “posix_process.h”
 3  #include “posix_queue.h”
 4
 5  extern char **av;
 6  extern char **env;
 7
 8
 9  bool valid_code::operator()(void)
10  {
11     int Status;
12     int N;
13     string Result;
14     posix_process Child[2];
15     for(N = 0; N  <  2; N++)
16     {
17        Child[N].binary(Determination);
18        Child[N].arguments(av);
19        Child[N].environment(env);
20        Child[N].run();
21        Child[N].pwait(Status);
22     }
23     posix_queue PosixQueue(“queue_name”);
24     PosixQueue.receive(Result);
25     if((Result == Code)  &  &  InTime){
26        return(true);
27     }
28     return(false);
29  }
30
31
32  void valid_code::determination(string X)
33  {
34     Determination = X;
35  }
36   

 The definition of the predicate defined by the  operator()  begins on Line 9 of Listing  5 - 7 . Notice on 
Line 25 that if the  Result  is correct and  Intime , then this predicate returns  true ; otherwise, it returns 
 false . Lines 16 – 21 cause two processes to be spawned. Line 14 from Listing  5 - 5  has the determination 
that is the name of the binary ( ofind_code ) that is associated with the two processes that have been 
spawned. In this case, each instance of  ofind_code  creates two threads to perform the search, causing 
us to have a total of four threads. But all of this talk of processes and threads is totally transparent to the 
program in Listing  5 - 5 . The program in Listing  5 - 5  is concerned with something called  ValidCode  and 
only concerned whether the  ValidCode()  predicate is  true  or  false . 

 You can extend the number of processes and threads without changing the declarative interpretation of 
the parallelism. We stress declarative semantics here because as you scale to more cores on a CMP, it gets 
increasingly challenging to think procedurally. You can use declarative models to help you cope with the 

c05.indd   140c05.indd   140 7/31/08   2:50:40 PM7/31/08   2:50:40 PM



Chapter 5: Processes, C++ Interface Classes, and Predicates

141

complexity of parallel programming. Using C++ interface classes in conjunction with C++ predicates to 
encapsulate processes, threads, and POSIX APIs is a step in the right direction.    

  Summary 
 The bulk of this chapter has dealt with processes and how you can leverage them to aid your multicore 
programming. Some of the key points covered include: 

  Concurrency in a C++ program is accomplished by factoring your program into either multiple 
processes or multiple threads. When isolation, security, address space, and maximum number of 
resources that concurrently executing tasks may have are major concerns, it is better to use 
processes than threads. Communication between processes and startup time are two of the 
primary tradeoffs when you decide to use processes rather than threads.  

  The primary characteristics and attributes of a process are stored in the process control block 
(PCB) used by the operating system to identify the process. This information is needed by the 
operating system to manage each process. The PCB is one of the structures that makes processes 
heavier or more expense to use than threads.  

  Processes that create other processes have a parent - child relationship with the created process. 
The creator of the process is the parent, and the created process is the child process. Child 
processes inherit many attributes from the parent. The parent ’ s key responsibility is to wait for 
the child process so the parent can exit the system.  

  There are several system calls that can be used to create processes:  fork() ,  fork - exec() , 
 system() , and  posix_spawn() . The  fork() ,  fork - exec() , and  posix_spawn()  functions 
create processes that are asynchronous to the parent process, whereas  system()  creates a child 
process that is synchronous to the parent process. Some platforms may have trouble 
implementing  fork() , so the  posix_spawn()  functions can be used instead.  

  Use interface classes, such as the  posix_process  class from this chapter, to build declarative 
interfaces for POSIX API functions that are used for processes management. If you build 
interface classes for processes as well as threads, then you can begin to implement your current 
tasks from the Object - Oriented point of view rather than the procedural viewpoint.  

  In the shift toward a more declarative approach to parallelism, you can also find it sometimes 
useful to encapsulate a process or a thread as a C++ predicate. Encapsulating the process or 
thread within a predicate allows you to thread them as objects for use with containers and 
algorithms. This subtle use of the notion of a predicate in C++ allows you to take a big step 
away from the procedural approach to parallelism and toward a declarative approach.    

 In the next chapter, we discuss multithreading. A thread is a sequence of executable code within a 
process that is scheduled for execution by the operating system on a processor or core. The use of 
threads for parallel programming on multicore processors has a number of advantages over multiple 
processes. In the next chapter, we discuss those advantages and some of the pitfalls. We discuss POSIX 
APIs functions for creating and managing threads and show how that functionality can be encapsulated 
in a thread class first introduced in Chapter  4 .                    

❑

❑

❑

❑

❑

❑

c05.indd   141c05.indd   141 7/31/08   2:50:40 PM7/31/08   2:50:40 PM



c05.indd   142c05.indd   142 7/31/08   2:50:40 PM7/31/08   2:50:40 PM



                                                                                                                                Multithreading           

   They come from a much older version of the matrix, but like so many back then, they 
caused more problems than they solved.  

  — Persephone,  Matrix Reloaded    

 In Chapter  5 , we examined how concurrency in a C++ program can be accomplished by 
decomposing your program into either multiple processes or multiple threads. We discussed a 
process, which is a unit of work created by the operating system. We explained the POSIX API 
for process management and the several system calls that can be used to create processes:  fork() , 
 fork - exec() ,  system() , and  posix_spawn() . We showed you how to build C++ interface 
components, interface classes, and declarative interfaces that can be used to simplify part of the 
POSIX API for process management. In the chapter we cover: 

  What is a thread?  

  The pthread API for thread management  

  Thread scheduling and priorities  

  Thread contention scope  

  Extending the  thread_object  to encapsulate thread attribute functionality     

  What Is a Thread? 
 A thread is a sequence or stream of executable code within a process that is scheduled for 
execution by the operating system on a processor or core. All processes have a primary thread. 
The  primary thread  is a process ’ s flow of control or thread of execution. A process with multiple 
threads has as many flows of controls as there are threads. Each thread executes independently 
and concurrently with its own sequence of instructions. A process with multiple threads is 

❑

❑

❑

❑

❑

c06.indd   143c06.indd   143 7/31/08   2:55:18 PM7/31/08   2:55:18 PM



Chapter 6: Multithreading

144

 multithreaded.  There are user - level threads and kernel - level threads. Kernel - level threads are a lighter 
burden to create, maintain, and manage on the operating system as compared to a process because very 
little information is associated with a thread. A kernel thread is called a  lightweight process  because it has 
less overhead than a process. 

 Threads execute independent concurrent tasks of a program. Threads can be used to simplify the 
program structure of an application with inherent concurrency in the same way that functions and 
procedures make an application ’ s structure simpler by encapsulating functionality. Threads can 
encapsulate concurrent functionality. Threads use minimal resources shared in the address space of a 
single process as compared to an application, which uses multiple processes. This contributes to an 
overall simpler program structure being seen by the operating system. Threads can improve the 
throughput and performance of the application if used correctly, by utilizing multicore processors 
concurrently. Each thread is assigned a subtask for which it is responsible, and the thread independently 
manages the execution of the subtask. Each thread can be assigned a priority reflecting the importance of 
the subtask it is executing. 

  User -  and Kernel - Level Threads 
 There are three implementation models for threads: 

  User -  or application - level threads  

  Kernel - level threads  

  Hybrid of user -  and kernel - level threads    

 Figure  6 - 1  shows a diagram of the three thread implementation models. Figure  6 - 1  (a) shows user - level 
threads, Figure  6 - 1  (b) shows kernel - level threads, and Figure  6 - 1  (c) shows the hybrid of user and 
kernel threads.   

❑

❑

❑

USER
THREAD 1

PROCESS A 

PROCESS B 

PROCESS C 

LIBRARY
SCHEDULER

CORE 0

KT1

running

CORE 1

running

KT2

(A) USER-LEVEL THREADS
USER SPACE

KERNEL SPACE

OS
SCHEDULER

USER
THREAD 2

USER
THREAD 3

USER
THREAD 4

USER
THREAD 5

USER
THREAD 6

KERNEL
THREAD 1

KERNEL
THREAD 2

KERNEL
THREAD 3

Figure 6-1 (a)

c06.indd   144c06.indd   144 7/31/08   2:55:19 PM7/31/08   2:55:19 PM



Chapter 6: Multithreading

145

CORE 0

KT2

running

CORE 1

running

USER
THREAD 1

PROCESS A 

PROCESS B 

PROCESS C 

LIBRARY

KT3

(B) KERNEL-LEVEL THREADS
USER SPACE

KERNEL SPACE

OS
SCHEDULER

KERNEL
THREAD 1

USER
THREAD 2

USER
THREAD 3

USER
THREAD 4

USER
THREAD 5

USER
THREAD 6

KERNEL
THREAD 2

KERNEL
THREAD 3

KERNEL
THREAD 4

KERNEL
THREAD 5

KERNEL
THREAD 6

CORE 0

KT2

running

CORE 1

running

USER
THREAD 1

PROCESS A

PROCESS B

LIBRARY
SCHEDULER

KT4

(C) HYBRID THREADS
USER SPACE

OS
SCHEDULER

THREAD POOL

USER
THREAD 2

USER
THREAD 3

USER
THREAD 1

USER
THREAD 2

USER
THREAD 3

USER
THREAD 4

USER
THREAD 5

KERNEL
THREAD 1

KERNEL
THREAD 2

KERNEL
THREAD 3

KERNEL
THREAD 4

KERNEL
THREAD 5

Figure 6-1 (b & c)

c06.indd   145c06.indd   145 7/31/08   2:55:20 PM7/31/08   2:55:20 PM



Chapter 6: Multithreading

146

 One of the big differences between these implementations is the mode they exist in and the ability of the 
threads to be assigned to a processor. These threads run in user or kernel space or mode. 

  In  user mode , a process or thread is executing instructions in the program or linked library. 
They are not making any calls to the operating system kernel.  

  In  kernel mode , the process or thread is making system calls such as accessing resources or 
throwing exceptions. Also, in kernel mode, the process or thread can access objects that are 
defined in kernel space.    

 User - level threads reside in user space or mode. The runtime library, also in user space, manages these 
threads. They are not visible to the operating system and, therefore, cannot be scheduled to a processor 
core. Each thread does not have its own thread context. So, as far as simultaneous execution of threads, 
there is only one thread per process that will be running at any given time and only a single processor 
core allocated to that process. There may be thousands or tens of thousands user - level threads for a 
single process, but they have no impact on the system resources. The runtime library schedules and 
dispatches these threads. As you can see in Figure  6 - 1  (a), the library scheduler chooses a thread from the 
multiple threads of a process, and that thread is associated with the one kernel thread allowed for that 
process. That kernel thread will be assigned to a processor core by the operating system scheduler. User -
 level threads are considered a  “ many - to - one ”  thread mapping. 

 Kernel - level threads reside in kernel space and are kernel objects. With kernel threads, each user thread 
is mapped to or  bound  to a kernel thread. The user thread is bound to that kernel thread for the life of the 
user thread. Once the user thread terminates, both threads leave the system. This is called a  “ one - to - one ”  
thread mapping and is depicted in Figure  6 - 1  (b). The operating system scheduler manages, schedules, 
and dispatches these threads. The runtime library requests a kernel - level thread for each of the user - level 
threads. The operating system ’ s memory management and scheduling subsystem must be considered 
for very large numbers of user - level threads. You have to know what the allowable number of threads 
per process is. The operating system creates a context for each thread. The context for a thread is 
discussed in the next section of this chapter. Each of the threads from a process can be assigned to a 
processor core as the resources become available. 

 A hybrid thread implementation is a cross between user and kernel threads and allows both the library 
and the operating system to manage the threads. User threads are managed by the runtime library 
scheduler, and the kernel threads are managed by the operating system scheduler. With this 
implementation, a process has its own pool of kernel threads. The user threads that are runnable are 
dispatched by the runtime library and are marked as available threads ready for execution. The 
operating system selects a user thread and maps it to one of the available kernel threads in the pool. 
More than one user thread may be assigned to the same kernel thread. In Figure  6 - 1  (c) process A has 
two kernel threads in its pool, whereas process B has three. Process A ’ s user threads 2 and 3 are mapped 
to kernel thread 2. Process B has five threads; user threads 1 and 2 are mapped to a single kernel thread 
(3), and user threads 4 and 5 are mapped to a single kernel thread (5). When a new user thread is created, 
it is simply mapped to one of the existing kernel threads in the pool. This implementation uses a  “ many -
 to - many ”  thread mapping. A many - to - one mapping is suggested by some for this approach. Many user 
threads would be mapped to one kernel thread, as you saw in the preceding example. So, the requests 
for kernel threads would be less than the number of user threads. 

❑

❑

c06.indd   146c06.indd   146 7/31/08   2:55:20 PM7/31/08   2:55:20 PM



Chapter 6: Multithreading

147

 The pool of kernel threads is not destroyed and re - created. These threads are always in the system. They 
are allocated to different user - level threads when necessary as opposed to creating a new kernel thread 
whenever a new user - level thread is created, as it is with pure kernel - level threads. A context is created 
only for each of the threads in the pool. With the kernel and hybrid threads, the operating system 
allocates a group of processor cores that the process ’ s threads are allowed to run on. The threads can 
execute only on those processor cores assigned to their process. 

 User -  and kernel - level threads also become important when determining a thread ’ s scheduling model 
and contention scope. Contention scope determines which threads a given thread contends with for 
processor usage, and it also becomes very important in relation to the operating system ’ s memory 
management for large numbers of threads.  

  Thread Context 
 The operating system manages the execution of many processes. Some of the processes are single 
processes that come from various programs, systems, and application programs, and some of the 
processes come from a single application or program that has been decomposed into many processes. 
When one process is removed from a core and another process becomes active, a context switch takes 
place between those processes. The operating system must keep track of all the information that is 
needed to restart that process and start the new process in order for it to become active. This information 
is called the  context  and describes the present state of the process. When the process becomes active, it 
can continue execution right where it was preempted. The information or context of the process includes: 

  Process id  

  Pointer to executable  

  The stack  

  Memory for static and dynamically allocated variables  

  Processor registers    

 Most of the information for the context of a process has to do with describing the address space. The 
context of a process uses many system resources, and it takes some time to switch from the context of 
one process to that of another. Threads also have a context. Table  6 - 1  contrasts the process context, as 
discussed in Chapter  5 , with the thread context. When a thread is preempted, a context switch between 
threads takes place. If the threads belong to the same process, they share the same address space because 
the threads are contained in the address of the process to which they belong. So, most of the information 
needed to reinstate a process is not needed for a thread. Although the process shares much with its 
threads, most importantly its address space and resources, some information is local or unique to 
the thread, while other aspects of the thread are contained within the various segments of the process.   

❑

❑

❑

❑

❑

c06.indd   147c06.indd   147 7/31/08   2:55:20 PM7/31/08   2:55:20 PM



Chapter 6: Multithreading

148

Table 6-1

Content of Context Process Thread

Pointer to executable x

Stack x x

Memory (data segment and heap) x

State x x

Priority x x

Status of program I/O x

Granted privileges x

Scheduling information x

Accounting information x

Information pertaining to resources

• File descriptors

• Read/write pointers

x

Information pertaining to events and signals x

Register set

• Stack pointer

• Instruction counter

• And so on

x x

 The information unique or local to a thread comprises the thread id, processor registers (what the state of 
registers is when the thread is executing, including the program counter and stack pointer), the state and 
priority of the thread, and thread - specific data (TSD). The thread id is assigned to the thread when it is 
created. Threads have access to the data segment of their process; therefore, threads can read or write to 
the globally declared data of their process. Any modification by one thread in the process is accessible by 
all threads in that process as well as by the main thread. In most cases, this requires some type of 
synchronization in order to prevent inadvertent updates. A thread ’ s locally declared variables should not 
be accessed by any of its peer threads. They are placed in the stack of the thread, and when the thread 
has completed, they are removed from the stack.   

 Synchronization between threads is discussed in Chapter  7 .   

c06.indd   148c06.indd   148 7/31/08   2:55:21 PM7/31/08   2:55:21 PM



Chapter 6: Multithreading

149

 The TSD is a structure that contains data and information private to a thread. TSD can contain private 
copies of a process ’ s global data. It can also contain signal masks for a thread. Signal masks are used to 
identify signals of a specific type that will not be received by the thread when sent to its process. 
Otherwise, if a process is sent a signal by the operating system, all threads in its address space also 
receive that signal. The thread receives all signal types that are not masked. 

 A thread shares text and stack segment with its process. Its instruction pointer points to some location 
within the process ’ s text segment to the next executable thread instruction, and the stack pointer points 
to the location in the process stack where the top of the thread ’ s stack begins. Threads can also access any 
environment variables. All of the resources of the process, such as file descriptors, are shared with its 
threads.  

  Hardware Threads and Software Threads 
 Threads can be implemented in hardware as well as software. Chip manufacturers implement cores that 
have multiple hardware threads that serve as  logical cores . Cores with multiple hardware threads are 
called simultaneous multithreaded (SMT) cores. SMT brings to hardware the concept of multithreading, 
in similar way to software threads. SMT - enabled processors execute many software threads or processes 
simultaneously within the processor cores. Having software threads executing simultaneously within a 
single processor core increases a core ’ s efficiency because wait time from elements such as I/O latencies 
is minimized. The logical cores are treated as unique processor cores by the operating system. They 
require some duplicate hardware that stores information for the context of the thread such as instruction 
counters and register sets. Other hardware or structures are duplicated or are shared among the threads ’  
contexts, depending on the processor core. 

 Sun ’ s UltraSparc T1, IBM ’ s Cell Broadband Engine CBE, and various Intel multicore processors utilize 
SMT or chip - level multithreading (CMT), implementing from two to eight threads per core. 
Hyperthreading is Intel ’ s implementation of SMT in which its primary purpose is to improve support for 
multithreaded code. Hyperthreading or SMT technology provides an efficient use of CPU resources 
under certain workloads by executing threads in parallel on a single processor core.  

  Thread Resources 
 Threads share most of their resources with other threads of the same process. Threads own resources 
that define their context. Threads must share other resources such as processors, memory, and file 
descriptors. File descriptors are allocated to each process separately, and threads of the same process 
compete for access to these descriptors. A thread can allocate additional resources such as files or 
mutexes, but they are accessible to all the threads of the process. 

 There are limits on the resources that can be consumed by a single process. Therefore, all the resources of 
peer threads in combination must not exceed the resource limit of the process. If a thread attempts to 
consume more resources than the soft resource limit defines, it is sent a signal that the process ’ s resource 
limit has been reached. 

c06.indd   149c06.indd   149 7/31/08   2:55:21 PM7/31/08   2:55:21 PM



Chapter 6: Multithreading

150

 When threads are utilizing their resources, they must be careful not to leave them in an unstable 
state when they are canceled. A terminated thread that has left a file open may cause damage to the file 
or cause data loss once the application has terminated. Before it terminates, a thread should perform 
some cleanup, preventing these unwanted situations from occurring.   

  Comparing Threads to Processes 
 Both threads and processes can provide concurrent program execution. The use of system resources 
needed for context switching, throughput, communication between entities, and program simplification 
is an issue that you need to consider when deciding whether to use multiple processes or threads. 

  Context Switching 
 When you are creating a process, the main thread may be the only thread needed to carry out the 
function of the process. In a process with many concurrent subtasks, multiple threads can provide 
asynchronous execution of the subtasks with less overhead for context switching. With low processor 
availability or a single core, however, concurrently executing processes involve heavy overhead because 
of the context switching required. Under the same condition using threads, a process context switch 
would occur only when a thread from a different process was the next thread to be assigned the 
processor. Less overhead means fewer system resources used and less time taken for context switching. 
Of course, if there are enough processors to go around, then context switching is not an issue.  

  Throughput 
 The throughput of an application can increase with multiple threads. With one thread, an I/O request 
would halt the entire process. With multiple threads, as one thread waits for an I/O request, the 
application continues to execute. As one thread is blocked, another can execute. The entire application 
does not wait for each I/O request to be filled; other tasks can be performed that do not depend on the 
blocked thread.  

  Communicating between Entities 
 Threads also do not require special mechanisms for communication with other threads of the process 
called  peer  threads. Threads can directly pass and receive data from other peer threads. This saves system 
resources that would have to be used in the setup and maintenance of special communication 
mechanisms if multiple processes were used. Threads communicate by using the memory shared within 
the address space of the process. For example, if a queue is globally declared by a process, Thread A 
of the process can store the name of a file that peer thread Thread B is to process. Thread B can read the 
name from the queue and process the data. 

c06.indd   150c06.indd   150 7/31/08   2:55:21 PM7/31/08   2:55:21 PM



Chapter 6: Multithreading

151

 Processes can also communicate by shared memory, but processes have separate address spaces and, 
therefore, the shared memory exists outside the address space of both processes. If you have a process 
that also wants to communicate the names of files it has processed to other processes, you can use a 
message queue. It is set up outside the address space of the processes involved and generally requires a 
lot of setup to work properly. This increases the time and space used to maintain and access the shared 
memory.  

  Corrupting Process Data 
 Threads can easily corrupt the data of a process. Without synchronization, threads ’  write access to the 
same piece of data can cause data race. This is not so with processes. Each process has its own data, and 
other processes don ’ t have access unless special communication is set up. The separate address spaces of 
processes protect the data from possible inadvertent corruption by other processes. The fact that threads 
share the same address space exposes the data to corruption if synchronization is not used. For example, 
assume that a process has three threads: Thread A, Thread B, and Thread C. Threads A and B update a 
counter, and Thread C is to read each update and then use that value in a calculation. Thread A and B 
both attempt to write to the memory location concurrently. Thread B overwrites the data written by 
Thread A before Thread C reads it. Synchronization should have been used to ensure that the counter is 
not updated until Thread C has read the data.   

 The issues of synchronization between threads and processes will be discussed in Chapter  7 .    

  Killing the Entire Process 
 If a thread causes a fatal access violation, this may result in the termination of the entire process. The 
access violation is not isolated to the thread because it occurs in the address space of the process. Errors 
caused by a thread are more costly than errors caused by processes. Threads can create data errors that 
affect the entire memory space of all the threads. Threads are not isolated, whereas processes are 
isolated. A process can have an access violation that causes the process to terminate, but all of the 
other processes continue executing if the violation isn ’ t too bad. Data errors can be restricted to a single 
process. Processes can protect resources from indiscriminate access by other processes. Threads share 
resources with all the other threads in the process. A thread that damages a resource affects the whole 
process or program.  

  Reuse by Other Programs 
 Threads are dependent and cannot be separated from their process. Processes are more independent 
than threads. An application can divide tasks among many processes, and those processes can be 
packaged as modules that can be used in other applications. Threads cannot exist outside the process 
that created them and, therefore, are not reusable.  

c06.indd   151c06.indd   151 7/31/08   2:55:21 PM7/31/08   2:55:21 PM



Chapter 6: Multithreading

152

  Key Similarities and Differences between 
Threads and Processes 

 There are many similarities and significant differences between threads and processes. Threads and 
processes have an id, a set of registers, a state, and a priority, and both adhere to a scheduling policy. 
Like a process, threads have an environment that describes the entity to the operating system — the 
process or thread context. This context is used to reconstruct the preempted process or thread. Although 
the information needed for the process is much more than that needed for the thread, they serve the 
same purpose. 

 Threads and child processes share the resources of their parent process without requiring additional 
initialization or preparation. The resources opened by the process are immediately accessible to the threads 
or child processes of the parent process. As kernel entities, threads and child processes compete for processor 
usage. The parent process has some control over the child process or thread. The parent process can: 

  Cancel  

  Suspend  

  Resume  

  Change the priority    

 of the child process or thread. A thread or process can alter its attributes and create new resources, but it 
cannot access the resources belonging to other processes. 

 As we have indicated, the most significant difference between threads and processes is that each process 
has its own address space, and threads are contained in the address space of their process. This is why 
threads share resources so easily, and Interthread Communication is so simple. Child processes have 
their own address space and a copy of the data segment of its parent, so when a child modifies its data, it 
does not affect the data of its parent. A shared memory area has to be created in order for parent and 
child processes to share data. Shared memory is a type of  Interprocess Communication (IPC) mechanism , 
which includes such things as pipes and First - In, First - Out (FIFO) scheduling policies. They are used to 
communicate or pass data between processes.   

 Interprocess Communication is discussed in Chapter  7 .   

 Whereas processes can exercise control over other processes with which they have a parent - child 
relationship, peer threads are on an equal level regardless of who created them. Any thread that has 
access to the thread id of another peer thread can cancel, suspend, resume, or change the priority of that 
thread. In fact, any thread within a process can kill the process by canceling the primary thread, 
terminating all the threads of the process. Any changes to the main thread may affect all the threads 
of the process. If the priority of the main thread is changed, all the threads within the process that 
inherited that priority are also altered. 

 Table  6 - 2  summarizes the key similarities and differences between threads and processes.     

❑

❑

❑

❑

c06.indd   152c06.indd   152 7/31/08   2:55:22 PM7/31/08   2:55:22 PM



Chapter 6: Multithreading

153

Table 6-2

Similarities between Threads and Processes Differences between Threads and Processes

Both have an id, set of registers, state, priority, 
and scheduling policy.

Threads share the address space of the process 
that created it; processes have their own address.

Both have attributes that describe the entity to 
the OS.

Threads have direct access to the data segment 
of their process; processes have their own copy of 
the data segment of the parent process.

Both have an information block. Threads can directly communicate with 
other threads of their process; processes must use 
Interprocess Communication to communicate 
with sibling processes.

Both share resources with the parent process. Threads have almost no overhead; processes 
have considerable overhead.

Both function as independent entities from the 
parent process.

New threads are easily created; new processes 
require duplication of the parent process.

The creator can exercise some control over the 
thread or process.

Threads can exercise considerable control over 
threads of the same process; processes can 
exercise control only over child processes.

Both can change their attributes. Changes to the main thread (cancellation, priority 
change, and so on) may affect the behavior of the 
other threads of the process; changes to the 
parent process do not affect child processes.

Both can create new resources.

Neither can access the resources of another 
process.

  Setting Thread Attributes 
 There is information about the thread used to determine the context of the thread. This information is 
used to reconstruct the thread ’ s environment. What makes peer threads unique from one another is the 
id, the set of registers that defines the state of the thread, its priority, and its stack. These attributes are 
what give each thread its identity. 

c06.indd   153c06.indd   153 7/31/08   2:55:22 PM7/31/08   2:55:22 PM



Chapter 6: Multithreading

154

 The POSIX thread library defines a thread  attribute object  that encapsulates a subset of the properties 
of the thread. These attributes are accessible and modifiable by the creator of the thread. These are the 
thread attributes that are modifiable: 

  Contention scope  

  Stack size  

  Stack address  

  Detached state  

  Priority  

  Scheduling policy and parameters    

 A thread attribute object can be associated with one or multiple threads. An attribute object is a profile 
that defines the behavior of a thread or group of threads. Once the object is created and initialized, it can 
be referenced repeatedly in calls to the thread creation function. If used repeatedly, a group of threads 
with the same attributes are created. All the threads that use the attribute object inherit all the property 
values. Once a thread has been created using a thread attribute object, most attributes cannot be changed 
while the thread is in use. 

 The scope attribute describes which threads a particular thread competes with for resources. Threads 
contend for resources within two contention scopes: 

  Process scope  

  System scope    

 Threads compete with other threads for processor usage according to the contention scope and the 
allocation domains (the set of processors to which it is assigned). Threads with process scope compete 
with threads within the same process, while threads with systemwide contention scope compete for 
resources with threads of other processes allocated across the system. A thread that has system scope is 
prioritized and scheduled with respect to all of the systemwide threads. 

 The thread ’ s stack size and location are set when the thread is created. If the size and location of the 
thread ’ s stack are not specified during creation, a default stack size and location are assigned by the 
system. The default size is system dependent and is determined by the maximum number of threads 
allowed for a process, the allotted size of a process ’ s address space, and the space used by system 
resources. The thread ’ s stack size must be large enough for any function calls; for any code external to 
the process, such as library code, called by the thread; and for local variable storage. A process with 
multiple threads should have a stack segment large enough for all of its thread ’ s stacks. The address 
space allocated to the process limits the stack size, thus limiting the size of each of the thread ’ s stacks. 
The thread ’ s stack address may be of some importance to an application that accesses memory areas that 
have diverse properties. The important things to remember when you specify the location of a stack is 
how much space the thread requires and to ensure that the location does not overlap other peer 
threads ’  stacks. 

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd   154c06.indd   154 7/31/08   2:55:22 PM7/31/08   2:55:22 PM



Chapter 6: Multithreading

155

 Detached threads are threads that have become detached from their creator. They are not synchronized 
with other peer threads or the primary thread when it terminates or exits. They still share the address 
space with their process, but because they are detached, the process or thread that created them 
relinquishes any control over them. When a thread terminates, the id and the status of the terminated 
thread are saved by the system. By default, once the thread is terminated, the creator is notified. 
The thread id and the status are returned to the creator. If the thread is detached, once the thread is 
terminated, no resources are used to save the status or thread id. These resources are immediately 
available for reuse by the system. If it is not necessary for the creator of the thread to wait until a thread 
terminates before continuing processing or if a thread does not require any type of synchronization with 
other peer threads once terminated, that thread may be a detached thread. 

 The threads inherit scheduling attributes from the process. Threads have a priority, and the thread 
with the highest priority is executed before threads with lower priority. By prioritizing threads, tasks that 
require immediate execution or response from the system are allotted the processor for a time slice. 
Executing threads are preempted if a thread of higher priority is available. A thread ’ s priority can be 
lowered or raised. The scheduling policy also determines when a thread is assigned the processor. FIFO, 
round robin (RR), and other scheduling policies are available. In general, it is not necessary to change the 
scheduling attributes of the thread during process execution. It may be necessary to make changes 
to scheduling if changes in the process environment occur that change the time constraints, causing you to 
need to improve the process ’ s performance. But take into consideration that changing the scheduling 
attributes of specific processes within an application can have a negative impact on the overall 
performance of the application.  

  The Architecture of a Thread 
 We have discussed the process and the thread ’ s relationship with its process. Figure  6 - 2  shows the 
architecture of a process that contains multiple threads. Both have context and attributes that make a 
process unique from other processes in the system and attributes that makes a thread unique from its 
peer threads. A process has a text (code), data, and stack segment. The threads share their text and stack 
segment with the process. A process ’ s stack normally starts in high memory and works its way down. 
The thread ’ s stack is bounded by the start of the next thread ’ s stack. As you can see, the thread ’ s stack 
contains its local variables. The process ’ s global variables are located in the data segment. The context for 
Threads A and B has thread ids, state, priority, the processor registers, and so on. The program counter 
(PC) points to the next executable instruction in function  task1  and  task2  in the code segment. The 
stack pointer (SP) points to the top of their respective stacks. The thread attribute object is associated 
with a thread or group of threads. In this case, both threads use the same thread attribute.   

c06.indd   155c06.indd   155 7/31/08   2:55:23 PM7/31/08   2:55:23 PM



Chapter 6: Multithreading

156

Registers

SP
PC
...

Attributes

priority = 2
size ...

Thread ID
457

ThreadB

Registers

SP
PC
...

Attributes

priority = 2
size ...

Thread ID
345

ThreadA
task2()
Count A

main()
...

X
Y

ThreadA’s stack

DATA SEGMENT

TEXT SEGMENT

ThreadB’s stack

task1()
CountB

scope = process
stack size = 1000
priority = 2
detach = joinable

//...

PROCESS’S ADDRESS SPACE

//...

int X, Y;

main()
{
   //...
   pthread_attr_t Attr;
   pthread_t ThreadA, ThreadB;

   pthread_attr_init(&AttrObj);
   pthread_create(&ThreadA,&Attr,task1,NULL);
   pthread_create(&ThreadB,&Attr,task2,NULL);
   //...
   pthread_join(ThreadA,NULL);
   pthread_join(ThreadB,NULL);

}

void task1(...)
{
   //...
    CountA = 10;
   //...
}

void task2(...)
{
   //...
   CountB = 100;
   //...
}

PROCESS CONTROL BLOCK

Attr

STACK SEGMENT

Figure 6-2

  Thread States 
 The thread is the unit of execution when a process is scheduled to be executed. If the process has only 
one thread, it is the primary thread that is assigned to a processor core. If a process has multiple threads 
and there are multiple processors available to the process, all of the threads are assigned to processors. 

c06.indd   156c06.indd   156 7/31/08   2:55:23 PM7/31/08   2:55:23 PM



Chapter 6: Multithreading

157

 When a thread is scheduled to execute on a processor core, it changes its state. A thread state is the mode 
or condition that a thread is in at any given time. Threads have the same states and transitions 
mentioned in Chapter  5  for processes. There are four commonly implemented states: 

  Runnable  

  Running (active)  

  Stopped  

  Sleeping (blocked)    

 There are several transitions: 

  Preempt  

  Signaled  

  Dispatch  

  Timer runout    

 The primary thread can determine the state of an entire process. The state of the primary thread is that 
same as the state of the process, if it ’ s the only thread. If the primary thread is sleeping, the process is 
sleeping. If the primary thread is running, the process is running. For a process that has multiple threads, 
all threads of the process have to be in a sleeping or stopped state in order for the whole process to be 
considered sleeping or stopped. On the other hand, if one thread is active (runnable or running), then the 
process is considered active.  

  Scheduling and Thread Contention Scope 
 There are two types of contention scopes for threads: 

  Process contention  

  System contention    

 Threads with process contention scope contend with threads of the same process. These are hybrid threads 
(user -  and kernel - level threads), whereby the system creates a pool of kernel - level threads, and user - level 
threads are mapped to them. These kernel - level threads are  unbound  and can be mapped to one thread or 
mapped to many threads. The kernel then schedules the kernel threads onto processors according to their 
scheduling attributes. 

 Threads with system contention scope contend with threads of processes systemwide. This model consists of 
one user - level thread per kernel - level thread. The user thread is bound to a kernel - level thread throughout 
the lifetime of the thread. The kernel threads are solely responsible for scheduling thread execution on one or 
more processors. This model schedules all threads against all other threads in the system, using the 
scheduling attributes of the thread. The default contention scope of a thread is implementation defined. For 
example, for Solaris 10, the default contention scope is process, but for SuSe Linux 2.6.13, the default is 
system scope. As a matter of fact for SuSe Linux 2.6.13, process contention scope is not supported at all. 

 Figure  6 - 3  shows the differences between process and system thread contention scopes. There are two 
processes in a multicore environment of eight cores. Process A has four threads, and process B has two 
threads. Process A has three threads that have process scope and one thread with system scope. Process 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd   157c06.indd   157 7/31/08   2:55:23 PM7/31/08   2:55:23 PM



Chapter 6: Multithreading

158

B has two threads, one with process scope and one thread with system scope. Process A ’ s threads 
with process scope compete for core 0 and core 1, and process B ’ s thread with process scope will utilize 
core 2. Process A and B ’ s threads with system scope compete for cores 4 and 5. The threads with process 
scope are mapped to a pool of threads. Process A has a pool of three kernel - level threads and process B 
has a pool of two kernel - level threads.   

USER
THREAD 1

USER
THREAD 2

USER
THREAD 3

USER
THREAD 4

PROCESS A

CORE 0

KT1

running

CORE 1

running

KT2

KERNEL
THREAD 3

.

.

.

 1

5

4

3

KERNEL
THREAD 1

KERNEL
THREAD 2

KERNEL
THREAD 4

KERNEL
THREAD 5

.

.

.

USER
THREAD 5

PROCESS B

 0

 1

 2

.

.

.

USER
THREAD 6

KERNEL 
THREAD 6

KERNEL 
THREAD 7

KT1

KT2KT3

KT4KT5

KT7

CORE 4

KT4

running

CORE 5

running

KT5

.

.

.

CORE 2

KT7

running

CORE 3

CORE 5 CORE 6

EIGHT CORE PROCESSOR

PROCESS SCOPE

PROCESS SCOPE

SYSTEM SCOPE

Figure 6-3

c06.indd   158c06.indd   158 7/31/08   2:55:23 PM7/31/08   2:55:23 PM



Chapter 6: Multithreading

159

 Contention scope can potentially impact on the performance of your application. The process scheduling 
model potentially provides lower overhead for making scheduling decisions, since there are only threads 
of a single process that need to be scheduled.  

  Scheduling Policy and Priority 
 The scheduling policy and priority of the process belong to the primary thread. Each thread can have its 
own scheduling policy and priority separate from the primary thread. The priority value is an integer 
that has a maximum and minimum value. When threads are prioritized, tasks that require immediate 
execution or response from the system are favored. In a preemptive operating system, executing threads 
are preempted if a thread of higher priority (the lower the number, the higher the priority) and the same 
contention scope is available. 

 For example, in Figure  6 - 3 , process A has two threads (2, 3) with priority 3 and one thread (1) with priority 
4. They are assigned to processor cores 0 and 1. The threads with priority 4 and 3 are runnable, and each is 
assigned to a processor. Once thread 3 with priority 3 becomes active, thread 1 is preempted and thread 3 
is assigned the processor. In process B, there is one thread with process scope, and it has a priority 1. 
There is only one available processor for process B. The threads with system scope are not preempted by 
any of the threads of process A or B with process scope. They compete for processor usage only with other 
threads that have system scope. 

 The ready queues are organized as sorted lists in which each element is a priority level. This was 
discussed in Chapter  5  as well. In Chapter  5 , Figure  5 - 6  shows ready queues. Each priority level in the 
list is a queue of threads with the same priority level. All threads of the same priority level are assigned 
to the processor using a scheduling policy: FIFO, RR, or another. 

  A  round - robin scheduling policy  considers all threads to be of equal priority, and each thread 
is given the processor for only a time slice. Task executions are interweaved. For example, a 
program that filters characters from a text file is divided into three threads. Thread 1, the 
primary thread, reads in each line from the file and writes each to a vector as a string. Then 
the primary thread creates three more threads and waits for the threads to return. Each thread has 
its own set of characters that it is to remove from the strings. Each thread utilizes two queues, 
and one queue contains the strings that have been previously filtered by another thread. Once 
the thread has filtered a string, it is written to the second queue. The queues are global data. The 
primary thread is in a ready queue running preemptively until it creates the other threads; then 
it sleeps until all its threads return. The other threads have equal priority using a round - robin 
scheduling policy. A thread cannot filter a string that has not been written to a queue, so 
synchronized access to the source queue is required. The thread tests the mutex. If the mutex is 
locked, then there are no strings available, or the source queue is in use. The thread has to wait 
until the mutex is unlocked. If the mutex is available, then there are strings in the source queue, 
and the source queue is not in use. A string is read from the queue; the thread filters the 
string and then writes it to the output queue. The output queue serves as the source queue for 
another thread. At some point, Thread 2 is assigned the processor. Its source is the vector that 
contains all the strings to be filtered. The thread has to filter the string and then write the filtered 
string to its output queue so that thread 2 has something to process, then thread 3, and so on. 
The RR scheduling affects the execution of the threads with two processor cores. This scheduling 
policy inhibits the proper execution of this program. We discuss using the correct concurrency 
models later in this chapter.  

❑

c06.indd   159c06.indd   159 7/31/08   2:55:24 PM7/31/08   2:55:24 PM



Chapter 6: Multithreading

160

  With  FIFO scheduling  and a high priority, there is no interweaving of the execution of these 
tasks. A thread assigned to a processor dominates the processor until it completes execution. 
This scheduling policy can be used for applications where a set of threads needs to complete as 
soon as possible.  

  The  “  other  ”    scheduling policy can be a customization of a scheduling policy. For example, a 
FIFO scheduling policy can be customized to allow random unblocking of threads, or you can 
use a policy with the appropriate scheduling that advances thread execution.     

  Scheduling Allocation Domains 
 The FIFO and RR scheduling policies take on different characteristics on a multiple processors. The 
scheduling allocation domain determines the set of processors on which the threads of a process or 
application may run. Scheduling policies can be affected by the number of processor cores and the 
number of threads in a process. As with the example of threads filtering characters from a string, if there 
are the same number of cores as threads, using an RR scheduling policy may result in better throughput. 
But it is not always possible to have same number of threads as cores. There may be more threads than 
cores. In general, relying on the number of cores to significantly impact the performance of your 
application is not the best approach.   

  A Simple Threaded Program 
 Here is an example of a simple threaded program. This simple multithreaded program has a main thread 
and the functions that the threads will execute. The concurrency model determines the manner in which 
the threads are created and managed. We will discuss concurrency models in the next chapter. Threads 
can be created all at once or under certain conditions. In Example  6 - 1  the delegation model is used to 
show the simple multithreaded program.

   Example 6 - 1   

// Example 6-1 Using the delegation model in a simple threaded program.
              
using namspace std;
#include  < iostream > 
#include  < pthread.h > 
              
void *task1(void *X) //define task to be executed by ThreadA
{
   cout  <  <  “Thread A complete”  <  <  endl;
   return (NULL);
}
              
void *task2(void *X) //define task to be executed by ThreadB
              
{
   cout  <  <  “Thread B complete”  <  <  endl;
   return (NULL);
}
              
int main(int argc, char *argv[])

❑

❑

c06.indd   160c06.indd   160 7/31/08   2:55:24 PM7/31/08   2:55:24 PM



Chapter 6: Multithreading

161

{
   pthread_t ThreadA,ThreadB; // declare threads
              
   pthread_create( & ThreadA,NULL,task1,NULL); // create threads
   pthread_create( & ThreadB,NULL,task2,NULL);
   // additional processing
   pthread_join(ThreadA,NULL); // wait for threads
   pthread_join(ThreadB,NULL);
   return (0);
}   

 In Example  6 - 1 , the primary thread is the boss thread. The boss thread declares two threads,  ThreadA  
and  ThreadB .  pthread_create()  creates the threads and associates them with the tasks they are to 
execute. The two tasks,  task1  and  task2 , each send a message to the standard  out .  pthread_create()  
causes the threads to immediately execute their assigned tasks. The  pthread_join  function works the 
same way as  wait()  does for processes. The primary thread waits until both threads return. Figure  6 - 4  
contains the sequence diagram showing the flow of control for Example  6 - 1 . In Figure  6 - 4 ,  pthread_
create()  causes a fork in the flow of control in the primary thread. Two additional flows of control, 
 ThreadA  and  ThreadB ,   execute concurrently.  pthread_create()  returns immediately after the threads 
are created because it is an asynchronous function. As each thread executes its set of instructions, 
 pthread_join()  causes the primary thread to wait until the thread terminates and rejoins the main 
flow of control.   

<< create >>

Main Thread

ThreadA

ThreadB
<< create >>

<< join >>

<< join >>

flow of control

waiting to join

exits

Figure 6-4

c06.indd   161c06.indd   161 7/31/08   2:55:24 PM7/31/08   2:55:24 PM



Chapter 6: Multithreading

162

  Compiling and Linking Threaded Programs 
 All multithreaded programs using the POSIX thread library must include this header: 

 < pthread.h >   

 In order to compile and link multithreaded applications in the Unix or Linux environments using the 
 g++  or  gcc  command line compilers, be sure to link the pthread library to your application using the   - l  
compiler switch. This switch is immediately followed by the name of the library: 

-lpthread  

 This causes your application to link to the library that is compliant with the multithreading interface 
defined by POSIX 1003.1c standard. The pthread library,  libpthread.so , should be located in the directory 
where the system stores its standard library, usually  /usr/lib . If it is located in that standard directory, 
then your compile line would look like this: 

g++ -o a.out test_thread.cpp -lpthread  

 If it is not located in a standard location, use the   - L  option to make the compiler look in a particular 
directory before searching the standard locations: 

g++ -o a.out   -L /src/local/lib  test_thread.cpp -lpthread  

 This tells the compiler to look in the  /src/local/lib  directory for the pthread library before searching 
in the standard locations.   

 As you will see later in this chapter, the complete programs in this book are accompanied by a program 
profile. The program profile contains implementation specifics such as headers and libraries required and 
compile and link instructions. The profile also includes a note section that contains any special consider-
ations that need to be followed when executing the program. There are no program profiles for examples.     

  Creating Threads 
 The pthreads library can be used to create, maintain, and manage the threads of multithreaded programs 
and applications. When you are creating a multithreaded program, threads can be created any time 
during the execution of a process because they are dynamic.  pthread_create()  creates a new thread in 
the address space of a process.

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr,
             void *(*start_routine)(void*), void *restrict arg);   

c06.indd   162c06.indd   162 7/31/08   2:55:25 PM7/31/08   2:55:25 PM



Chapter 6: Multithreading

163

 The  thread  parameter points to a thread handle or thread id of the thread to be created. The new thread 
has the attributes specified by the attribute object  attr . The  thread  parameter immediately executes the 
instructions in  start_routine  with the arguments specified by  arg . If the function successfully creates 
the thread, it returns the thread id and stores the value in  thread . The  restrict  keyword is added for 
alignment with a previous IEEE standard. Here is the call to  pthread_create()  from Example  6 - 1 : 

pthread_create( & ThreadA,NULL,task1,NULL);  

 Here,  attr  is  NULL ; the default thread attributes will be used by the new thread  ThreadA . There are no 
specified arguments. For new attributes for the thread, a  pthread_attr_t  object is created and 
initialized and then passed to the  pthread_create() . The new thread then takes on the attributes of 
 attr  when it is created. If  attr  is changed after the thread has been created, it does not affect any of the 
thread ’ s attributes. If  start_routine  returns, the thread returns as if  pthread_exit()  was called 
using the return value of  start_routine  as its exit status. 

 If successful, the function returns 0. If the function is not successful, no new thread is created, and the 
function returns an error number. If the system does not have the resources to create the thread or if the 
thread limit for the process has been reached, the function fails. The function also fails if the thread 
attribute is invalid or if the caller thread does not have permission to set the necessary thread attributes. 

  Passing Arguments to a Thread 
 Listing  6 - 1  shows a primary thread passing an argument from the command line to the functions executed 
by the threads. The command - line argument is also used to determine the number of threads to be created.

   Listing 6 - 1   

//Listing 6-1 Passing arguments to a thread from the command line.
              
1  using namespace std;
2
3  #include  < iostream > 
4  #include  < pthread.h > 
5
6
7  void *task1(void *X)
8  {
9      int *Temp;
10     Temp = static_cast < int * > (X);
11
12     for(int Count = 0;Count  <  *Temp;Count++)
13     {
14         cout  <  <  “work from thread: “  <  <  Count  <  <  endl;
15     }
16     cout  <  <  “Thread complete”  <  <  endl;
17     return (NULL);
18  }
19
20
21
22  int main(int argc, char *argv[])

(continued)

c06.indd   163c06.indd   163 7/31/08   2:55:25 PM7/31/08   2:55:25 PM



Chapter 6: Multithreading

164

23  {
24     int N;
25
26     pthread_t MyThreads[10];
27
28     if(argc != 2){
29         cout  <  <  “error”  <  <  endl;
30          exit (1);
31     }
32
33     N = atoi(argv[1]);
34
35     if(N  >  10){
36         N = 10;
37     }
38
39     for(int Count = 0;Count  <  N;Count++)
40     {
41         pthread_create( & MyThreads[Count],NULL,task1, & N);
42
43     }
44
45
46     for(int Count = 0;Count  <  N;Count++)
47     {
48         pthread_join(MyThreads[Count],NULL);
49
50     }
51     return(0);
52
53
54   }
55
56
                 

 At Line 27, an array of 10  pthread_t MyThread  types is declared.  N  holds the command - line argument. At 
Line 43,  N MyThreads  types are created. Each thread is passed  N  as an argument as a  void * . In the 
function  task1 , the argument is cast from a  void *  to an  int *  , as follows: 

10     Temp = static_cast < int * > (X);  

 The function executes a loop that is iterated the number of times indicated by the value passed to the 
function. The function sends its message to standard  out . Each thread created executes this function. The 
instructions for compiling and executing Listing  6 - 1  are contained in Program Profile 6 - 1, which follows 
shortly. 

 This is an example of passing a command - line argument to the thread function and using the command -
 line argument to determine the number of threads to create. If it is necessary to pass multiple arguments 
to the thread function, you can create a  struct  or container with all the required arguments and pass a 
pointer to that structure to the thread function. But we show an easier way to achieve this by creating a 
thread object later in this chapter.  

 Listing 6 - 1  (continued)

c06.indd   164c06.indd   164 7/31/08   2:55:25 PM7/31/08   2:55:25 PM



Chapter 6: Multithreading

165

  Program Profile 6 - 1 
  Program Name:   

program6-1.cc    (Listing 6-1)

  Description: 
 Accepts an integer from the command line and passes the value to the thread function. The thread 
function executes a loop that then sends a message to standard  out . The argument is used as the 
stopping case for the loop invariant. The argument also determines the number of threads to be created. 
Each thread executes the same function.  

  Libraries Required:   
libpthread   

  Headers Required:   
 < pthread.h >     < iostream >    

  Compile and Link Instructions:   
c++ -o program6-1 program6-1.cc -lpthread   

  Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6  

  Processors: 
 Opteron, UltraSparc T1  

  Execution Instructions:   
./program6-1 5   

  Notes: 
 This program requires a command - line argument.   

  Joining Threads 
  pthread_join()  is used to join or rejoin flows of control in a process.  pthread_join()  causes the 
calling thread to suspend its execution until the target thread has terminated. It is similar to the  wait()  
function used by processes. This function is called by the creator of a thread who waits for the new 
thread to terminate and return, thus rejoining the calling thread ’ s flow of control. The  pthread_join()  
can also be called by peer threads if the thread handle is global. This allows any thread to join flows of 
control with any other thread in the process. If the calling thread is canceled before the target thread 
returns, this causes the target thread to become zombied. Detached threads are discussed later in the 
chapter. Behavior is undefined if different peer threads simultaneously call the  pthread_join()  
function on the same thread.

c06.indd   165c06.indd   165 7/31/08   2:55:26 PM7/31/08   2:55:26 PM



Chapter 6: Multithreading

166

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_join(pthread_t thread, void **value_ptr);
                 

 The  thread  parameter is the target thread the calling thread is waiting on. If the target thread returns 
successfully, its exit status is stored in  value_ptr . The function fails if the target thread is not a joinable 
thread or, in other words, if it is created as a detached thread. The function also fails if the specified thread 
 thread  does not exist. 

 There should be a  pthread_join()  function called for all joinable threads. Once the thread is joined, this 
allows the operating system to reclaim storage used by the thread. If a joinable thread is not joined to any 
thread or if the thread that calls the join function is canceled, then the target thread continues to utilize 
storage. This is a state similar to that of a zombied process when the parent process has not accepted the 
exit status of a child process. The child process continues to occupy an entry in the process table.  

  Getting the Thread Id 
 As mentioned earlier in this chapter, the process shares its resources with the threads in its address 
space. Threads have very few of their own resources, but the thread id is one of the resources unique to a 
thread. The  pthread_self()  function returns the thread id of the calling thread.

  Synopsis  
              
#include  < pthread.h > 
              
pthread_t pthread_self(void);
                 

 When a thread is created, the thread id is returned to the calling thread. Once the thread has its own id, it 
can be passed to other threads in the process. This function returns the thread id with no errors defined. 

 Here is an example of calling this function: 

pthread_t  ThreadId;
ThreadId = pthread_self();  

 A thread calls this function, and the function returns the thread id assigned to the variable  ThreadId  of 
type  pthread_t . 

 The thread id is also returned to the calling thread of  pthread_create() . If the thread is successfully 
created, the thread id is stored in  pthread_t . 

  Comparing Thread Ids 
 You can treat thread ids as opaque types. Thread ids can be compared but not by using the normal 
comparison operators. You can determine whether two thread ids are equivalent by calling 
pthread_equal():

c06.indd   166c06.indd   166 7/31/08   2:55:26 PM7/31/08   2:55:26 PM



Chapter 6: Multithreading

167

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_equal(pthread_t tid1, pthread_t tid2);
                 

  pthread_equal()  returns a nonzero value if the two thread ids reference the same thread. If they 
reference different threads, it returns zero.   

  Using the Pthread Attribute Object 
 Threads have a set of attributes that can be specified at the time that the thread is created. The set of 
attributes is encapsulated in an object, and the object can be used to set the attributes of a thread or 
group of threads. The thread attribute object is of type  pthread_attr_t . This structure can be used to 
set these thread attributes: 

  Size of the thread ’ s stack  

  Location of the thread ’ s stack  

  Scheduling inheritance, policy, and parameters  

  Whether the thread is detached or joinable  

  Scope of the thread    

 The  pthread_attr_t  has several methods to set and retrieve these attributes. Table  6 - 3  lists the 
methods used to set the attributes.   

❑

❑

❑

❑

❑

Table 6-3

Types of Attribute Functions pthread Attribute Functions

Initialization pthread_attr_init()
pthread_attr_destroy()

Stack management pthread_attr_setstacksize()
pthread_attr_getstacksize()
pthread_attr_setguardsize()
pthread_attr_getguardsize()
pthread_attr_setstack()
pthread_attr_getstack()
pthread_attr_setstackaddr()
pthread_attr_getstackaddr()

Detach state pthread_attr_setdetachstate()
pthread_attr_getdetachstate()

Table continued on following page

c06.indd   167c06.indd   167 7/31/08   2:55:26 PM7/31/08   2:55:26 PM



Chapter 6: Multithreading

168

Types of Attribute Functions pthread Attribute Functions

Contention scope pthread_attr_setscope()
pthread_attr_getscope()

Scheduling inheritance pthread_attr_setinheritsched()
pthread_attr_getinheritsched()

Scheduling policy pthread_attr_setschedpolicy()
pthread_attr_getschedpolicy()

Scheduling parameters pthread_attr_setschedparam()
pthread_attr_getschedparam()

 The  pthread_attr_init()  and  pthread_attr_destroy()  functions are used to initialize and 
destroy thread attribute objects.

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
                 

  pthread_attr_init()  initializes a thread attribute object with the default values for all the attributes. 
 attr  is a pointer to a  pthread_attr_t  object. Once  attr  has been initialized, its attribute values can be 
changed by using the  pthread_attr_set  functions listed in Table  6 - 3 . Once the attributes have been 
appropriately modified,  attr  can be used as a parameter in any call to the  pthread_create()  function. 
If this is successful, the function returns  0 . If it is not successful, the function returns an error number. 
The  pthread_attr_init()  function fails if there is not enough memory to create the object. 

 The  pthread_attr_destroy()  function can be used to destroy a  pthread_attr_t  object specified by 
 attr . A call to this function deletes any hidden storage associated with the thread attribute object. If it is 
successful, the function returns  0 . If it is not successful, the function returns an error number. 

  Default Values for the Attribute Object 
 The attribute object is first initialized with the default values for all of the individual attributes used by a 
given implementation. Some implementations do not support the possible values for an attribute. Upon 
successful completion,  pthread_attr_init()  returns a value of  0 . If an error number is returned, this 
may indicate that the value is not supported. For example, for the contention scope,  PTHREAD_SCOPE_
PROCESS  is not supported by the Linux environment. Calling: 

int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);  

 returns an error code. Table  6 - 4  lists the default values for Linux and Solaris environment.    

c06.indd   168c06.indd   168 7/31/08   2:55:27 PM7/31/08   2:55:27 PM



Chapter 6: Multithreading

169

Table 6-4

pthread Attribute Functions
SuSE Linux 2.6.13 Default 
Values Solaris 10 Default Values

pthread_attr_
setdetachstate()

PTHREAD_CREATE_JOINABLE PTHREAD_CREATE_JOINABLE

pthread_attr_setscope() PTHREAD_SCOPE_SYSTEM
(PTHREAD_SCOPE_PROCESS 
is not supported)

PTHREAD_SCOPE_PROCESS

pthread_attr_
setinheritsched()

PTHREAD_EXPLICIT_SCHED PTHREAD_EXPLICIT_SCHED

pthread_attr_
setschedpolicy()

SCHED_OTHER SCHED_OTHER

pthread_attr_setschedparam() sched_priority = 0 sched_priority = 0

pthread_attr_setstacksize() not specified NULL
allocated by system

pthread_attr_setstackaddr() not specified NULL
1–2 MB

pthread_attr_setguardsize() not specified PAGESIZE

  Creating Detached Threads Using the Pthread Attribute Object 
 By default, when a thread exits, the thread system stores the thread ’ s completion status and thread id 
when the thread is joined with another thread. If an exiting thread is not joined with another thread, 
the exiting thread is said to be  detached . The completion status and thread id are not stored in this case. 
A  pthread_join()  cannot be used on a detached thread. If it is used,  pthread_join()  returns an error.

  Synopsis  
 
#include  < pthread.h > 
              
int pthread_attr_setdetachstate(pthread_attr_t *attr,
                                int *detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,
                                int *detachstate);   

 The  pthread_attr_setdetachstate()  function can be used to set the  detachstate  attribute of the 
attribute object. The  detachstate  parameter describes the thread as detached or joinable. The 
 detachstate  can have one of these values: 

   PTHREAD_CREATE_DETACHED   

   PTHREAD_CREATE_JOINABLE     

❑

❑

c06.indd   169c06.indd   169 7/31/08   2:55:27 PM7/31/08   2:55:27 PM



Chapter 6: Multithreading

170

 The  PTHREAD_CREATE_DETACHED  value causes all the threads that use this attribute object to be created 
as detached threads. The  PTHREAD_CREATE_JOINABLE  value causes all the threads that use this attribute 
object to be joinable. The default value of  detachstate  is  PTHREAD_CREATE_JOINABLE . If it is 
successful, the function returns  0 . If it is not successful, the function returns an error number. The 
 pthread_attr_setdetachstate()  function fails if the value of  detachstate  is not valid. 

 The  pthread_attr_getdetachstate()  function returns the  detachstate  of the attribute object. If it 
is successful, the function returns the value of  detachstate  to the  detachstate  parameter and  0  as the 
return value. If it is not successful, the function returns an error number. 

 Threads that are already running can become detached. For example, a thread may no longer be 
interested in the results of the target thread. The thread may detach to allow its resources to be reclaimed 
once the thread exits.

  Synopsis  
              
int pthread_detach(pthread_t tid);
                 

 In Example  6 - 2 , the  ThreadA  is created as a detached thread using an attribute object.  ThreadB  is 
detached after it has been created.

   Example 6 - 2   

// Example 6-2 Using an attribute object to create a detached thread and changing
// a joinable thread to a detached thread.
              
//...
              
int main(int argc, char *argv[])
{
              
   pthread_t ThreadA,ThreadB;
   pthread_attr_t DetachedAttr;
              
   pthread_attr_init( & DetachedAttr);
   pthread_attr_setdetachstate( & DetachedAttr,PTHREAD_CREATE_DETACHED);

    pthread_create( & ThreadA, & DetachedAttr,task1,NULL); 

   pthread_create( & ThreadB,NULL,task2,NULL);
              
   //...
              

    pthread_detach(pthread_t ThreadB); 

   //pthread_join(ThreadB,NULL); cannot call once detached
   return (0);
}
                 

c06.indd   170c06.indd   170 7/31/08   2:55:27 PM7/31/08   2:55:27 PM



Chapter 6: Multithreading

171

 Example  6 - 2  declares an attribute object  DetachedAttr . The  pthread_attr_init()  function is used to 
initialize the attribute object.  ThreadA  is created with the  DetachedAttr  attribute object. This attribute 
object has set  detachstate  to  PTHREAD_CREATE_DETACHED .  ThreadB  is created with the default value 
for  detachstate ,  PTHREAD_CREATE_JOINABLE . Once it is created,  pthread_detach()  is called. Now 
that  ThreadB  is detached,  pthread_join()  cannot be called for this thread.    

  Managing Threads 
 So far we have talked about creating threads, using thread attribute objects, creating joinable and 
detached threads, and returning thread ids. Now we discuss managing the threads. When you create 
applications with multiple threads, there are several ways to control how threads behave and how they 
use and compete for resources. Part of managing threads is setting the scheduling policy, the priority of 
the threads, and so on. This contributes to the performance of the threads and, therefore, to the 
performance of the application. Thread performance is also determined by how the threads compete for 
resources, either on a process or system scope. The scheduling, priority, and scope of the thread can be 
set by using a thread attribute object. Because threads share resources, access to resources has to be 
synchronized. Thread synchronization also includes when and how threads are terminated and canceled. 

  Terminating Threads 
 A thread terminates when it comes to the end of the instructions of its routine. When the thread 
terminates, the pthread library reclaims the system resources the thread was using and stores its exit 
status. A thread can also be terminated by another peer thread prematurely before it has executed all its 
instructions. The thread may have corrupted some process data and may have to be terminated. 

 A thread ’ s execution can be discontinued by several means: 

  By returning from the execution of its assigned task with or without an exit status or 
return value  

  By explicitly terminating itself and supplying an exit status  

  By being canceled by another thread in the same address space.    

  Self - Termination 
 A thread can self - terminate by calling  pthread_exit() .

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_exit(void *value_ptr);
                 

 When a joinable thread function has completed executing, it returns to the thread calling  pthread_join()  
for which it was the target thread. When the terminating thread calls  pthread_exit() , it is passed the exit 
status in  value_ptr . The exit status is returned to  pthread_join() . Cancellation cleanup handler tasks 
that have not executed execute along with the destructors for any thread - specific data. 

❑

❑

❑

c06.indd   171c06.indd   171 7/31/08   2:55:27 PM7/31/08   2:55:27 PM



Chapter 6: Multithreading

172

 When this function is called, no resources used by the thread are released. No application visible process 
resources, including mutexes and file descriptors, are released. No process - level cleanup actions are 
performed. When the last thread of a process exits, the process has terminated with an exit status of  0 . 
This function cannot return to the calling thread, and there are no errors defined for it.  

  Terminating Peer Threads 
 It may be necessary for one thread to terminate a peer thread.  pthread_cancel()  is used to terminate 
peer threads. The  thread  parameter is the thread to be canceled. The function returns  0  if successful and 
an error if not successful. The  pthread_cancel()  function fails if the  thread  parameter does not 
correspond to an existing thread.

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_cancel(pthread_t thread);
                 

 An application may have a thread that monitors the work of other threads. If a thread performs poorly 
or is no longer needed, in order to save system resources it may be necessary to terminate that thread. A 
user may desire to cancel an executing operation. Multiple threads may be used to solve a problem, but 
once the solution is obtained by a thread, all of the other threads can be canceled by the monitor or the 
thread that obtained the solution. 

 A call to  pthread_cancel()  is a request to cancel a peer thread. The request can be granted 
immediately, granted at a later time, or even ignored. The target thread may terminate immediately or 
defer termination until a logical point in its execution. The thread may have to perform some cleanup 
tasks before it terminates. The thread also has the option to refuse termination.  

  Understanding the Cancellation Process 
 There is a cancellation process that occurs asynchronously to the returning of the  pthread_
cancel() when a request to cancel a peer thread is granted. The cancel type and cancel state of the target 
thread determines when cancellation actually takes place. The  cancelability state  describes the cancel 
condition of a thread as being  cancelable  or  uncancelable . A thread ’ s  cancelability type  determines the 
thread ’ s ability to continue after a cancel request. The cancelability state and type are dynamically set by 
the thread itself. 

  pthread_setcancelstate()  and  pthread_setcanceltype()  are used to set the cancelability state 
and type of the calling thread.  pthread_setcancelstate()  sets the calling thread to the cancelability 
state specified by  state  and returns the previous state in  oldstate .  pthread_setcanceltype()  sets 
the calling thread to the cancelability type specified by  type  and returns the previous state in  oldtype .

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
                 

c06.indd   172c06.indd   172 7/31/08   2:55:28 PM7/31/08   2:55:28 PM



Chapter 6: Multithreading

173

 The values for  state  and  oldstate  for setting the cancel state of a thread are: 

   PTHREAD_CANCEL_DISABLE   

   PTHREAD_CANCEL_ENABLE     

  PTHREAD_CANCEL_DISABLE  causes the thread to ignore a cancel request.  PTHREAD_CANCEL_ENABLE  
causes the thread to concede to a cancel request. This is the default state of any newly created thread. If 
successful, the function returns  0 . If not successful, the function returns an error number. The  pthread_
setcancelstate()  may fail if not passed a valid  state  value. 

  pthread_setcanceltype()  sets the calling thread to the cancelability type specified by  type  and 
returns the previous state in  oldtype . The values for  type  and  oldtype  are: 

   PTHREAD_CANCEL_DEFFERED   

   PTHREAD_CANCEL_ASYNCHRONOUS     

  PTHREAD_CANCEL_DEFFERED  causes the thread to put off termination until it reaches its cancellation 
point. This is the default cancelability type for any newly created threads.  PTHREAD_CANCEL_
ASYNCHRONOUS  causes the thread to terminate immediately. If successful, the function returns  0 . If not 
successful, the function returns an error number. The  pthread_setcanceltype()  may fail if not passed 
a valid  type  value. 

 The  pthread_setcancelstate()  and  pthread_setcanceltype()  are used together to establish the 
cancelability of a thread. Table  6 - 5  list combinations of state and type and a description of what occurs 
for each combination.   

❑

❑

❑

❑

Table 6-5

Cancelability State Cancelability Type Description

PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_DEFERRED Deferred cancellation. The 
default cancellation state and 
type of a thread. Thread 
cancellation takes places when 
it enters a cancellation point or 
when the programmer defines 
a cancellation point with a call 
to pthread_testcancel().

PTHREAD_CANCEL_ENABLE PTHREAD_CANCEL_ASYNCHRONOUS Asynchronous cancellation. 
Thread cancellation takes place 
immediately.

PTHREAD_CANCEL_DISABLE Ignored Disabled cancellation. Thread 
cancellation does not take 
place.

c06.indd   173c06.indd   173 7/31/08   2:55:28 PM7/31/08   2:55:28 PM



Chapter 6: Multithreading

174

 Take a look at the Example  6 - 3 .

   Example 6  - 3   

// Example 6-3 task3 thread sets its cancelability state to allow thread
// to be canceled immediately.
              
void *task3(void *X)
{
   int OldState,OldType;
              
   // enable immediate cancelability
              
   pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, & OldState);
   pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, & OldType);
              
   ofstream Outfile(“out3.txt”);
   for(int Count = 1;Count  <  100;Count++)
   {
      Outfile  <  <  “thread C is working: “  <  <  Count  <  <  endl;
              
   }
   Outfile.close();
   return (NULL);
}
                 

 In Example  6 - 3 , cancellation is set to take place immediately. This means that a request to cancel the 
thread can take place at any point of execution in the thread ’ s function. So, the thread can open the file 
and be canceled while it is writing to the file. 

 Cancellation of a peer thread should not be taken lightly. Some threads are of such a sensitive nature that 
they may require safeguards against untimely cancellation. Installing safeguards in a thread ’ s function 
may prevent undesirable situations. For example, consider threads that share data. Depending on the 
thread model used, one thread may be processing data that is to be passed to another thread for 
processing. While the thread is processing data, it has sole possession of the data by locking a mutex. If a 
thread is canceled before the mutex is released, this will cause deadlock. The data may be required to be 
in some state before it can be used again. If a thread is canceled before this is done, an undesirable 
condition may occur. Depending on the type of processing that a thread is performing, thread 
cancellation should be performed only when it is safe. 

 A vital thread may prevent cancellation entirely. Therefore, thread cancellation should be restricted to 
threads that are not vital, points of execution that do not have locks on resources or are in the process of 
executing vital code. Set the cancelability of the thread to the appropriate state and type. Cancellations 
should be postponed until all vital cleanups have taken place, such as releasing mutexes, closing files, 
and so on. If the thread has cancellation cleanup handler tasks, they are performed before cancellation. 
When the last handler returns, the destructors for thread - specific data, if any, are called, and the thread is 
terminated.   

c06.indd   174c06.indd   174 7/31/08   2:55:28 PM7/31/08   2:55:28 PM



Chapter 6: Multithreading

175

Using Cancellation Points 
 When a cancel request is deferred, the termination of the thread is postponed until later in the execution 
of the thread ’ s function. When it occurs, it should be  safe  to cancel the thread because it is not in the 
middle of locking a mutex, executing critical code, or leaving data in some unusable state. These safe 
locations in the code ’ s execution are good locations for  cancellation points . A cancellation point is a 
checkpoint where a thread checks if there are any cancellation requests pending and, if so, concedes to 
termination. 

 Cancellation points are marked by a call to  pthread_testcancel() . This function checks for any 
pending cancellation request. If a request is pending, it causes the cancellation process to occur at the 
location this function is called. If there are no cancellations pending, then the function continues to 
execute with no repercussions. This function call should be placed at any location in the code where it is 
considered safe to terminate the thread.

  Synopsis  
              
#include  < pthread.h > 
              
void pthread_testcancel(void);
                 

 In Example  6 - 3 , the cancelability of the thread was set for immediate cancelability. Example  6 - 4  uses a 
deferred cancelability, the default setting. A call to  pthread_testcancel()  marks where it is safe for 
the thread to be canceled, before the file is opened or after the thread has closed the file.

   Example 6 - 4   

// Example 6-4 task1 thread sets its cancelability state to be deferred.
              
              
void *task1(void *X)
{
   int OldState,OldType;
              
   //not needed default settings for cancelability
   pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, & OldState);
   pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, & OldType);
              
  pthread_testcancel(); 
              
   ofstream Outfile(“out1.txt”);
   for(int Count = 1;Count  <  1000;Count++)
   {
      Outfile  <  <  “thread 1 is working: “  <  <  Count  <  <  endl;
              
   }
   Outfile.close();

  pthread_testcancel();  return (NULL); 

}
              
                 

c06.indd   175c06.indd   175 7/31/08   2:55:29 PM7/31/08   2:55:29 PM



Chapter 6: Multithreading

176

 In Example  6 - 5 , two threads are created and then canceled.

   Example 6  - 5   

//Example 6-5 shows two threads being canceled.
              
 //...
int main(int argc, char *argv[])
{
   pthread_t Threads[2];
   void *Status;
              
   pthread_create( & (Threads[0]),NULL,task1,NULL);
   pthread_create( & (Threads[1]),NULL,task3,NULL);
              
              
    // ...
              
   pthread_cancel(Threads[0]);
   pthread_cancel(Threads[1]);
              
              
   for(int Count = 0;Count  <  2;Count++)
   {
      pthread_join(Threads[Count], & Status);
      if(Status == PTHREAD_CANCELED){
         cout  <  <  “thread”  <  <  Count  <  <  “ has been canceled”  <  <  endl;
      }
      else{
              cout  <  <  “thread”  <  <  Count  <  <  “ has survived”  <  <  endl;
      }
   }
   return (0);
}
                 

 In Example  6 - 5 , the primary thread creates two threads. Then it issues a cancellation request for each 
thread. The main thread calls the  pthread_join()  function for each thread. The  pthread_join()  
function does not fail if it attempts to join with a thread that has already been terminated. The join function 
just retrieves the exit status of the terminated thread. This is good because the thread that issues the 
cancellation request may be a different thread than the thread that calls  pthread_join() . Monitoring the 
work of all the worker threads may be the sole task of a single thread that also cancels threads. Another 
thread may examine the exit status of threads by calling the  pthread_join()  function. This type of 
information can be used to statistically evaluate which threads have the best performance. In this example, 
the main thread joins and examines each thread ’ s exit status in a loop. A canceled thread may return an 
exit status  PTHREAD_CANCELED .    

c06.indd   176c06.indd   176 7/31/08   2:55:29 PM7/31/08   2:55:29 PM



Chapter 6: Multithreading

177

Taking Advantage of Cancellation - Safe Library Functions and System Calls 
 In these examples, cancellation points marked by a call to  pthread_testcancel()  are placed in user -
 defined functions. When you are calling library functions from the thread function that uses 
asynchronous cancellation, is it safe for the thread to be canceled? 

 The pthread library defines functions that can serve as cancellation points and are considered 
asynchronous cancellation - safe functions. These functions block the calling thread, and while the calling 
thread is blocked, it is safe to cancel the thread. These are the pthread library functions that act as 
cancellation points: 

   pthread_testcanel()   

   pthread_cond_wait()   

   pthread_timedwait   

   pthread_join()     

 If a thread with a deferred cancelability state has a cancellation request pending when making a call to 
one of these pthread library functions, the cancellation process is initiated. 

 Table  6 - 6  lists some of the POSIX system calls that are required to be cancellation points. These pthread 
and POSIX functions are safe to be used as deferred cancellation points, but they may not be safe for 
asynchronous cancellation. A library call that is not asynchronously safe that is canceled during 
execution can cause library data to be left in an incompatible state. The library may have allocated 
memory on the behalf of the thread and, when the thread is canceled, may still have a hold on 
that memory. In this case, before making such library calls from a thread that has asynchronous 
cancelability, it may be necessary to change the cancelability state before the call and then change it back 
after the function returns.   

❑

❑

❑

❑

Table 6-6

POSIX System Calls (Cancellation Points)

accept() nanosleep() sem_wait()

aio_suspend() open() send()

clock_nanosleep() pause() sendmsg()

close() poll() sendto()

connect() pread() sigpause()

creat() pthread_cond_timedwait() sigsuspend()

fcntl() pthread_cond_wait() sigtimedwait()

fsync() pthread_join() sigwait()

getmsg() putmsg() sigwaitinfo()

Table continued on following page

c06.indd   177c06.indd   177 7/31/08   2:55:29 PM7/31/08   2:55:29 PM



Chapter 6: Multithreading

178

POSIX System Calls (Cancellation Points)

lockf() putpmsg() sleep()

mq_receive() pwrite() system()

mq_send() read() usleep()

mq_timedreceive() readv() wait()

mq_timedsend() recvfrom() waitpid()

msgrcv() recvmsg() write()

msgsnd() select() writev()

msync() sem_timedwait()

 For other library and systems functions that are not cancellation safe (asynchronously or deferred), it 
may be necessary to write code preventing a thread from terminating by disabling cancellation or 
deferring cancellation until after the function call has returned. 

 Example  6 - 6  is a wrapper for the library or system call. The wrapper changes the cancelability to 
deferred, makes the function or system call, and then resets cancelability to previous type. Now it would 
be safe to call  pthread_testcancel() .

   Example 6 - 6   

//Example 6-6 shows a wrapper for system functions.
              
int OldType;
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, & OldType);
system_call(); //some library of system call
pthread_setcanceltype(OldType,NULL);
pthread_testcancel();
              
//...
              

      Cleaning Up before Termination 
 We mentioned earlier that a thread may need to perform some final processing before it is terminated, 
such as closing files, resetting shared resources to a consistent state, releasing locks, or deallocating 
resources. The pthread library defines a mechanism for each thread to perform last minute tasks before 
terminating. A  cleanup stack  is associated with every thread. The cleanup stack contains pointers to 
routines that are to be executed during the cancellation process. The  pthread_cleanup_push()  
function pushes a pointer to the routine to the cleanup stack.

c06.indd   178c06.indd   178 7/31/08   2:55:30 PM7/31/08   2:55:30 PM



Chapter 6: Multithreading

179

  Synopsis  
              
#include  < pthread.h > 
              
void pthread_cleanup_push(void (*routine)(void *), void *arg);
void pthread_cleanup_pop(int execute);
                 

 The  routine  parameter is a pointer to the function to be pushed to the stack. The  arg  parameter is 
passed to the function. The function  routine  is called with the  arg  parameter when the thread exits 
under these circumstances: 

  When calling  pthread_exit()   

  When the thread concedes to a termination request  

  When the thread explicitly calls  pthread_cleanup_pop()  with a nonzero value for  execute     

 The function does not return. 

 The  pthread_cleanup_pop()  removes  routine  ’ s pointer from the top of the calling thread ’ s cleanup 
stack. The  execute  parameter can have a value of  1  or  0 . If  1 , the thread executes  routine  even if it is 
not being terminated. The thread continues execution from the point after the call to this function. If the 
value is  0 , the pointer is removed from the top of the stack without executing. 

 For each push, there needs to be a pop within the same lexical scope. For example,  task4()  requires a 
cleanup handler to be executed when the function exits or canceled. 

 In Example  6 - 7 ,  task4()  pushes the cleanup handler  cleanup_task4()  to the cleanup stack by calling 
the  pthread_cleanup_push()  function. The  pthread_cleanup_pop()  function is required for each 
call to the  pthread_cleanup_push()  function. The pop function is passed  0 , which means the handler 
is removed from the cleanup stack but is not executed at this point. The handler is executed if the thread 
that executes  task4()  is canceled.

   Example 6 - 7   

//Example 6-7 task4 () pushes cleanup handler cleanup_task4 () onto cleanup stack.
              
void *task4(void *X)
{
   int *Tid;
   Tid = new int;
   // do some work
   //...
   pthread_cleanup_push(cleanup_task4,Tid);
   // do some more work
   //...
   pthread_cleanup_pop(0);
}
                 

❑

❑

❑

c06.indd   179c06.indd   179 7/31/08   2:55:30 PM7/31/08   2:55:30 PM



Chapter 6: Multithreading

180

 In Example  6 - 8 ,  task5()  pushes cleanup handler  cleanup_task5()  onto the cleanup stack. The 
difference in this case is  pthread_cleanup_pop()  is passed  1 , which means that the handler is 
removed from the cleanup stack but executes at this point. The handler is executed regardless of whether 
the thread that executes  task5()  is canceled or not. The cleanup handlers,  cleanup_task4()  and 
 cleanup_task5() are regular functions that can be used to close files, release resources, unlock mutexes, 
and so forth.

   Example 6 - 8   

//Example 6-8 task5 () pushes cleanup handler cleanup_task5 () onto cleanup stack.
              
void *task5(void *X)
{
   int *Tid;
   Tid = new int;
   // do some work
   //...
   pthread_cleanup_push(cleanup_task5,Tid);
   // do some more work
   //...
   pthread_cleanup_pop(1);
}      

  Managing the Thread ’ s Stack 
 Managing the thread ’ s stack includes setting the size of the stack and determining its location. The 
thread ’ s stack is usually automatically managed by the system. But you should be aware of the system -
 specific limitations that are imposed by the default stack management system. They might be too 
restrictive, and that ’ s when it may be necessary to do some stack management. If your application has a 
large number of threads, you may have to increase the upper limit of the stack established by the default 
stack size. If an application utilizes recursion or calls to several functions, many stack frames are 
required. Some applications require exact control over the address space. For example, an application 
that has garbage collection must keep track of allocation of memory. 

 The address space of a process is divided into the text and static data segments, free store, and the stack 
segment. The location and size of the thread ’ s stacks are carved out of the stack segment of its process. 
A thread ’ s stack stores a stack frame for each routine it has called but that has not exited. The stack frame 
contains temporary variables, local variables, return addresses, and any other additional information the 
thread needs to finds its way back to previously executing routines. Once the routine has exited, the 
stack frame for that routine is removed from the stack. Figure  6 - 5  shows how stack frames are generated 
and placed onto a stack.   

c06.indd   180c06.indd   180 7/31/08   2:55:30 PM7/31/08   2:55:30 PM



Chapter 6: Multithreading

181

STACK SEGMENT

PROCESS’S ADDRESS SPACE

task2()
A
B

task1()
X 
Y

.

.

.

ThreadA’s stack

task1()
{
     int X, Y;
     //... 
     task2();
}

task2()
{
     int A, B;
     //... 
     task3();
}

task3()
{

     //... 

}

Figure 6-5

 In Figure  6 - 5 ,  ThreadA  executes  task1 .  task1  creates some local variables, does some processing, and 
then calls  task2 . A stack frame is created for  task1  and placed on the stack.  task2  creates local 
variables, and then calls  task3 . A stack frame for  task2  is placed on the stack. After task3() has been 
completed, flow of control returns to task2(), which is popped from the stack. After task2() has 
executed, flow of control is returned to task1(), which is popped from the stack. Each stack must be 
large enough to accommodate the execution of all peer threads ’  functions along with the chain of 
routines that will be called. The size and location of a thread ’ s stack can be set or examined by several 
methods defined by the attribute object. 

  Setting the Size of the Stack 
 There are two attribute methods concerned with the size of the thread ’ s stack.

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
                               size_t *restrict stacksize);
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t *stacksize);
                 

c06.indd   181c06.indd   181 7/31/08   2:55:30 PM7/31/08   2:55:30 PM



Chapter 6: Multithreading

182

 The  pthread_attr_getstacksize()  returns the default stack size minimum. The  attr  is the thread 
attribute object from which the default stack size is extracted. When the function returns, the default 
stack size in bytes is stored in  stacksize  and the return value is 0. If not successful, the function returns 
an error number. 

 The  pthread_attr_setstacksize()  sets the stack size minimum. The  attr  is the thread attribute 
object for which the stack size is set. The  stacksize  is the minimum size of the stack in bytes. If the 
function is successful, the return value is  0 . If not successful, the function returns an error number. 
The function fails if  stacksize  is less than  PTHREAD_MIN_STACK  or exceeds the system minimum. The 
 PTHREAD_STACK_MIN  will probably be a lower minimum than the default stack minimum returned 
by  pthread_attr_getstacksize() . Consider the value returned by the  pthread_attr_
getstacksize()  before raising the minimum size of a thread ’ s stack. 

 In Example  6 - 9 , the stack size of a thread is changed by using a thread attribute object. It retrieves the 
default size from the attribute object and then determines whether the default size is less than 
the minimum stack size desired. If so, the offset is added to the default stack size. This becomes the 
new minimum stack size for this thread.

   Example 6 - 9   

// Example 6-9 Changing the stack size of a thread using an offset.
              
#include  < limits.h > 
//...
              
pthread_attr_getstacksize( & SchedAttr, & DefaultSize);
if(DefaultSize  <  PTHREAD_STACK_MIN){
   SizeOffset = PTHREAD_STACK_MIN - DefaultSize;
   NewSize = DefaultSize + SizeOffset;
   pthread_attr_setstacksize( & Attr1,(size_t)NewSize);
}   

 There is a tradeoff in setting the size. The stack size is fixed. A large stack means there is less of a 
probability there will be stack overflow. But on the other hand a large stack means more expense in 
terms of swap space and real memory for the stack.   

 Setting the stack size and stack location may make your program unportable. The stack size and location 
you set for your program on one platform may not match the stack size and location of another platform.    

  Setting the Location of the Thread ’ s Stack 
 Once you decide to manage the thread ’ s stack, you can retrieve and then set the location of the stack by 
using these attribute object methods:

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
int pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,
                               void **restrict stackaddr);
                 

c06.indd   182c06.indd   182 7/31/08   2:55:31 PM7/31/08   2:55:31 PM



Chapter 6: Multithreading

183

 The  pthread_attr_setstackaddr()  sets the base location of the stack to the address specified by 
 stackattr  for the thread created with the thread attribute object  attr . This address  addr  should be 
within the virtual address space of the process. The size of the stack will be at least equal to the 
minimum stack size specified by  PTHREAD_STACK_MIN . If successful, the function returns  0 . If not 
successful, the function returns an error number. 

  pthread_attr_getstackaddr()  retrieves the base location of the stack address for the thread created 
with the thread attribute object specified by the  attr . The address is returned and stored in the 
 stackaddr . If it is successful, the function returns  0 . If not successful, the function returns an error 
number.  

  Setting Stack Size and Location with One Function 
 The stack attributes (size and location) can be set by using a single function.

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
                          size_t stacksize);
int pthread_attr_getstack(const pthread_attr_t *restrict attr,
                          void **restrict stackaddr, size_t *restrict stacksize);
                 

  pthread_attr_setstack()  sets both the stack size and location of a thread created using the specified 
attribute object  attr . The base location of the stack is set to the  stackaddr , and the size of the stack is 
set to the  stacksize .  pthread_attr_getstack()  retrieves the stack size and location of a thread 
created using the specified attribute object  attr . If this is successful, the stack location is stored in 
 stackaddr , and the stack size is stored in  stacksize . If successful, these functions return  0 . If not 
successful, an error number is returned. The  pthread_setstack()  fails if the  stacksize  is less than 
 PTHREAD_STACK_MIN  or exceeds some implementation - defined limit.   

  Setting Thread Scheduling and Priorities 
 Threads execute independently. They are assigned to a processor core and execute the task they have 
been given. Each thread is given a scheduling policy and priority that dictates how and when it is 
assigned to a processor. The scheduling policy of a thread or group of threads can be set by an attribute 
object using these functions:

  Synopsis  
              
#include  < pthread.h > 
#include  < sched.h > 
              
int pthread_attr_setinheritsched(pthread_attr_t *attr, int inheritsched);
void pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
                         const struct sched_param *restrict param);
                 

c06.indd   183c06.indd   183 7/31/08   2:55:31 PM7/31/08   2:55:31 PM



Chapter 6: Multithreading

184

  pthread_attr_setinheritsched()  is used to determine how the thread ’ s scheduling attributes are 
set, by inheriting the scheduling attributes either from the creator thread or from an attribute object. 
 inheritsched  can have one of these values: 

   PTHREAD_INHERIT_SCHED : Thread scheduling attributes are inherited from the creator thread, 
and any scheduling attributes of the attr are ignored.  

   PTHREAD_EXPLICIT_SCHED :Thread scheduling attributes are set to the scheduling attributes of 
the attribute object attr.    

 If  inheritsched  value is  PTHREAD_EXPLICIT_SCHED , then  pthread_attr_setschedpolicy()  is 
used to set the scheduling policy and  pthread_attr_setschedparam()  is used to set the priority. 

 The  pthread_attr_setschedpolicy()  sets the scheduling policy of the thread attribute object  attr 
.  policy  values can be one of the following defined in the   < sched.h >   header: 

   SCHED_FIFO : First - In, First - Out scheduling policy whereby the executing thread runs to 
completion.  

   SCHED_RR : Round robin scheduling policy whereby each thread is assigned to processor only for 
a time slice.  

   SCHED_OTHER : Another scheduling policy (implementation - defined). By default, this is the 
scheduling policy of any newly created thread.    

 Use  pthread_attr_setschedparam()  to set the scheduling parameters of the attribute object  attr  
used by the scheduling policy.  param  is a structure that contains the parameters. The  sched_param  
structure has at least this data member defined: 

struct sched_param {
   int sched_priority;
   //...
};  

 It may also have additional data members, along with several functions that return and set the priority 
minimum, maximum, scheduler, parameters, and so on. If the scheduling policy is either  SCHED_FIFO  or 
 SCHED_RR , then the only member required to have a value is  sched_priority . 

 Use  sched_get_priority_max()  and  sched_get_priority_max() , as follows, to obtain the 
maximum and minimum priority values.

  Synopsis  
              
#include  < sched.h > 
              
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
              
                 

❑

❑

❑

❑

❑

c06.indd   184c06.indd   184 7/31/08   2:55:31 PM7/31/08   2:55:31 PM



Chapter 6: Multithreading

185

 Both functions are passed the scheduling policy  policy  for which the priority values are requested, and 
both return either the maximum or minimum priority values for the scheduling policy. 

 Example  6 - 10  shows how to set the scheduling policy and priority of a thread by using the thread 
attribute object.

   Example 6 - 10   

// Example 6-10 Using the thread attribute object to set scheduling
// policy and priority of a thread.
              
#include  < pthread.h > 
#include  < sched.h > 
              
//...
              
pthread_t ThreadA;
pthread_attr_t SchedAttr;
sched_param SchedParam;
int MidPriority,MaxPriority,MinPriority;
              
int main(int argc, char *argv[])
{
   //...
              
   // Step 1: initialize attribute object
   pthread_attr_init( & SchedAttr);
              
   // Step 2: retrieve min and max priority values for scheduling policy
   MinPriority = sched_get_priority_max(SCHED_RR);
   MaxPriority = sched_get_priority_min(SCHED_RR);
              
   // Step 3: calculate priority value
   MidPriority = (MaxPriority + MinPriority)/2;
              
   // Step 4: assign priority value to sched_param structure
   SchedParam.sched_priority = MidPriority;
              
   // Step 5: set attribute object with scheduling parameter
   pthread_attr_setschedparam( & SchedAttr, & SchedParam);
              
   // Step 6: set scheduling attributes to be determined by attribute object
   pthread_attr_setinheritsched( & SchedAttr,PTHREAD_EXPLICIT_SCHED);
              
   // Step 7: set scheduling policy
   pthread_attr_setschedpolicy( & SchedAttr,SCHED_RR);
              
   // Step 8: create thread with scheduling attribute object
   pthread_create( & ThreadA, & SchedAttr,task1,NULL);
              
   //...
}
                 

c06.indd   185c06.indd   185 7/31/08   2:55:32 PM7/31/08   2:55:32 PM



Chapter 6: Multithreading

186

 In Example  6 - 10 , the scheduling policy and priority of  ThreadA  is set using the thread attribute object 
 SchedAttr . This is done in eight steps: 

  1.   Initialize attribute object.  

  2.   Retrieve min and max priority values for scheduling policy.  

  3.   Calculate priority value.  

  4.   Assign priority value to the  sched_param  structure.  

  5.   Set the attribute object with a scheduling parameter.  

  6.   Set scheduling attributes to be determined by attribute object.  

  7.   Set the scheduling policy.  

  8.   Create a thread with the scheduling attribute object.    

 In Example  6 - 10 , we set the priority to be an average value. But the priority can be set to be any value 
between the maximum and minimum priority values allowed by the scheduling policy for the thread. 
With these methods, the scheduling policy and priority are set in the thread attribute object before the 
thread is created or running. To dynamically change the scheduling policy and priority, use  pthread_
setschedparam()  and  pthread_setschedprio() .

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_setschedparam(pthread_t thread, int policy,
                          const struct sched_param *param);
int pthread_getschedparam(pthread_t thread, int *restrict policy,
                          struct sched_param *restrict param);
int pthread_setschedprio(pthread_t thread, int prio);
                 

  pthread_setschedparam()  sets both the scheduling policy and priority of a thread directly without 
the use of an attribute object.  thread  is the id of the thread,  policy  is the new scheduling policy, and 
 param  contains the scheduling priority. The  pthread_getschedparam() returns the scheduling policy 
and scheduling parameters and stores their values in  policy  and  param  parameters, respectively, if 
successful. If successful, both functions return  0 . If not successful, both functions return an error number. 
Table  6 - 7  lists the conditions in which these functions may fail. 

 The  pthread_setschedprio()  is used to set the scheduling priority of an executing thread whose 
thread id is specified by the  thread .  prio  specifies the new scheduling priority of the thread. If the 
function fails, the priority of the thread is not changed, and an error number is returned. If it is 
successful, the function returns  0 . The conditions under which this function fails are listed in Table  6 - 7 .       

c06.indd   186c06.indd   186 7/31/08   2:55:32 PM7/31/08   2:55:32 PM



Chapter 6: Multithreading

187

Table 6-7

pthread Scheduling and Priority 
Functions Failure Conditions

int pthread_getschedparam
    (pthread_t thread,
    int *restrict policy,
    struct sched_param
    *restrict param);

The thread parameter does not refer to an existing thread.

int pthread_setschedparam
    (pthread_t thread,
    int *policy,
    const struct
    sched_param *param);

The policy parameter or one of the scheduling 
parameters associated with policy parameter is invalid.

The policy parameter or one of the scheduling 
parameters has a value that is not supported.

The calling thread does not have the appropriate 
permission to set the scheduling parameters or policy 
of the specified thread.

The thread parameter does not refer to an existing thread.

The implementation does not allow the application to 
change one of the parameters to the specified value.

int pthread_setschedprio
(pthread_t thread,
int prio);

The prio parameter is invalid for the scheduling policy 
of the specified thread.

The prio parameter has a value that is not supported.

The calling thread does not have the appropriate 
permission to set the scheduling priority of the specified 
thread.

The thread parameter does not refer to an existing thread.

The implementation does not allow the application to 
change the priority to the specified value.

 Remember to carefully consider why it is necessary to change the scheduling policy or priority of a 
running thread. This may diversely affect the overall performance of your application. Threads with 
higher priority preempt running threads with lower priority. This may lead to starvation, a thread 
constantly being preempted and, therefore, not able to complete execution.    

  Setting Contention Scope of a Thread 
 The contention scope of the thread determines which set of threads a thread competes with for processor 
usage. The contention scope of a thread is set by the thread attribute object.

c06.indd   187c06.indd   187 7/31/08   2:55:32 PM7/31/08   2:55:32 PM



Chapter 6: Multithreading

188

  Synopsis  
              
#include  < pthread.h > 
              
int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_t *restrict attr,
                         int *restrict contentionscope);
                 

 The  pthread_attr_setscope()  sets the contention scope property of the thread attribute object 
specified by  attr . The contention scope of the thread attribute object will be set to the value stored in 
the  contentionscope .  contentionscope  can have these values: 

   PTHREAD_SCOPE_SYSTEM : System scheduling contention scope  

   PTHREAD_SCOPE_PROCESS : Process scheduling contention scope    

 System contention scope means the thread contends with others threads of other processes systemwide. 
 pthread_attr_getscope()  returns the contention scope attribute from the thread attribute object 
specified by the  attr . If it is successful, the contention scope of the thread attribute object is returned 
and stored in the  contentionscope . Both functions return  0  if successful and an error number 
otherwise.  

  Using sysconf() 
 Knowing the thread resource limits of your system is a key to having your application appropriately 
manage them. Examples of utilizing the system resources have been discussed in previous section. When 
setting the stack size of a thread,  PTHREAD_MIN_STACK  is the lower minimum. The stack size should not 
be below the value of the default stack minimum returned by  pthread_attr_getstacksize() . The 
maximum number of threads per process places an upper bound on the number of worker threads that 
can be created for a process.  sysconf()  is used to return the current value of configurable system limits 
or options. Your system defines several variables and constant counterparts concerned with threads, 
processes, and semaphores. In Table  6 - 8 , we list some of them to give you an idea to what is available.   

❑

❑

Table 6-8

Variable Name Value Description

_SC_THREADS _POSIX_THREADS Supports threads

_SC_THREAD_ATTR_
STACKADDR

_POSIX_THREAD_ATTR_
STACKADDR

Supports thread stack address 
attribute

_SC_THREAD_ATTR_
STACKSIZE

_POSIX_THREAD_ATTR_
STACKSIZE

Supports thread stack size 
attribute

_SC_THREAD_STACK_MIN PTHREAD_STACK_MIN Minimum size of thread stack 
storage in bytes

_SC_THREAD_THREADS_MAX PTHREAD_THREADS_MAX Maximum number of threads 
per process

c06.indd   188c06.indd   188 7/31/08   2:55:33 PM7/31/08   2:55:33 PM



Chapter 6: Multithreading

189

Variable Name Value Description

_SC_THREAD_KEYS_MAX PTHREAD_KEYS_MAX Maximum number of keys per 
process

_SC_THREAD_PRIO_INHERIT _POSIX_THREAD_PRIO_
INHERIT

Supports priority inheritance 
option

_SC_THREAD_PRIO _POSIX_THREAD_PRIO_ Supports thread priority 
option

_SC_THREAD_PRIORITY_
SCHEDULING

_POSIX_THREAD_PRIORITY_
SCHEDULING

Supports thread priority 
scheduling option

_SC_THREAD_PROCESS_
SHARED

_POSIX_THREAD_PROCESS_
SHARED

Supports process-shared 
synchronization

_SC_THREAD_SAFE_
FUNCTIONS

_POSIX_THREAD_SAFE_
FUNCTIONS

Supports thread safe functions

_SC_THREAD_DESTRUCTOR_
ITERATIONS

_PTHREAD_THREAD_
DESTRUCTOR_ITERATIONS

Determines the number of 
attempts made to destroy 
thread-specific data on thread 
exit

_SC_CHILD_MAX CHILD_MAX Maximum number of 
processes allowed to a UID

_SC_PRIORITY_SCHEDULING _POSIX_PRIORITY_
SCHEDULING

Supports process scheduling

_SC_REALTIME_SIGNALS _POSIX_REALTIME_SIGNALS Supports real-time signals

_SC_XOPEN_REALTIME_
THREADS

_XOPEN_REALTIME_THREADS Supports X/Open POSIX real-
time threads feature group

_SC_STREAM_MAX STREAM_MAX Determines the number of 
streams one process can have 
open at a time

_SC_SEMAPHORES _POSIX_SEMAPHORES Supports semaphores

_SC_SEM_NSEMS_MAX SEM_NSEMS_MAX Determines the maximum 
number of semaphores a 
process may have

     _SC_SEM_VALUE_MAX      SEM_VALUE_MAX     Determines the maximum 
value a semaphore may have  

     _SC_SHARED_MEMORY_
OBJECTS   

   _POSIX_SHARED_MEMORY_
OBJECTS   

  Supports shared memory 
objects  

c06.indd   189c06.indd   189 7/31/08   2:55:33 PM7/31/08   2:55:33 PM



Chapter 6: Multithreading

190

 Here is an example of a call to  sysconf() : 

if(PTHREAD_STACK_MIN == (sysconf(_SC_THREAD_STACK_MIN))){
   //...
}  

 The constant value of  PTHREAD_STACK_MIN  is compared to the  _SC_THREAD_STACK_MIN  value returned 
by the  sysconf() .  

  Thread Safety and Libraries 
 A library is thread safe or reentrant when its functions may be called by more than one thread at a time 
without requiring any other action on the caller ’ s part. When designing a multithread application, you 
must be careful to ensure that concurrently executing functions are thread safe. We have already 
discussed making user - defined functions thread safe, but an application often calls functions defined by 
the system or a third - party supplied library. We have discussed system functions that are safe as 
cancellation points, but some of these functions and/or libraries are thread safe, while others are not. If 
the functions are not thread safe, then this means the functions: 

  Contain static variables  

  Access global data  

  Are not reentrant    

 If the function contains static variables, then those variables maintain their values between invocations 
of the function. The function requires the value of the static variable in order to operate correctly. When 
concurrent multiple threads invoke this function, a race condition occurs. 

 If the function modifies a global variable, then multiple threads invoking that function may each attempt 
to modify that global variable. If concurrent multiple accesses to the global variable are not 
synchronized, then a race condition can occur here as well. Consider concurrent multiple threads 
executing functions that set  errno . With some of the threads, the function fails, and  errno  is set to an 
error message. Meanwhile, other threads execute successfully. Depending on the compiler 
implementation,  errno  is thread safe, but if it ’ s not, when a thread checks the state of  errno , which 
message does it report? 

  Reentrant  code is a block of code that cannot be changed while it is in use. Reentrant code avoids race 
conditions by removing references to global variables and modifiable static data. The code can be shared 
by multiple concurrent threads or processes without a race condition occurring. The POSIX standard 
defines several functions as reentrant. They are easily identified by a  _r  attached to the function name of 
the nonreentrant counterpart. Some are: 

   getgrgid_r()   

   getgrnam_r()   

   getpwuid_r()   

   sterror_r()   

   strtok_r()   

❑

❑

❑

❑

❑

❑

❑

❑

c06.indd   190c06.indd   190 7/31/08   2:55:33 PM7/31/08   2:55:33 PM



Chapter 6: Multithreading

191

   readdir_r()   

   rand_r()   

   ttyname_r()     

 If the function accesses unprotected global variables, contains static modifiable variables, or is not 
reentrant, then the function is considered  thread unsafe . 

  Using Multithreaded Versions of Libraries and Functions 
 System -  and third - party - supplied libraries may have two different versions of their standard libraries, 
one version for single - threaded applications and the other version for multithreaded applications. 
Whenever a multithreaded environment is anticipated, link to the multithreaded versions of the library. 
Other environments do not require multithreaded applications to be linked to the multithreaded version 
of the library but only require macros to be defined for reentrant versions of functions to be declared. 
The application can then be compiled as thread safe. 

 It is not always possible to use multithreaded versions of functions. In some instances, multithreaded 
versions of particular functions are not available for a given compiler or environment. Some functions ’  
interfaces cannot be made thread safe simply. In addition, you may be faced with adding threads to an 
environment that uses functions that were only meant to be used in a single - threaded environment. 
Under these conditions, mutexes can be used to wrap all such functions within the program. 

 For example, a program has three concurrently executing threads. Two of the threads,  ThreadA  and 
 ThreadB , both concurrently execute  task1() , which is not thread safe. The third thread,  ThreadC , 
executes  task2() . To solve the problem of  task1() , the solution may be to simply wrap access to 
 task1()  by  ThreadA  and  ThreadB  with a mutex: 

ThreadA
{
   lock()
   task1()
   unlock()
}
              
ThreadB
{
   lock()
   task1()
   unlock()
}
              
ThreadC
{
   task2()
}  

 If this is done, then only one thread accesses  task1()  at a time. But what if  task1()  and  task2()  both 
modify the same global or static variable? Although  ThreadA  and  ThreadB  are using mutexes with 
 task1() ,  ThreadC  executes  task2()  concurrently with either of these threads. In this situation, a race 
condition occurs. Avoiding race conditions requires synchronized access to the global data. We discuss 
this topic in Chapter  7 .  

❑

❑

❑

c06.indd   191c06.indd   191 7/31/08   2:55:33 PM7/31/08   2:55:33 PM



Chapter 6: Multithreading

192

  Thread Safe Standard Out 
 To illustrate another type of race condition when dealing with  iostream  library, say that you have two 
threads,  Thread A  and  Thread B , sending output to the standard output stream,  cout .  cout  is an 
object of type  ostream . Using inserters (  >  >  ) and extractors (  <  <  ) invokes the methods of the  cout  object. 
Are these methods thread safe? If  ThreadA  is sending the message: 

  Global warming is a real problem.  

 to  stdout  and  Thread B  is sending the message: 

  Global warming is not a real problem.  

 will the output be interleaved and produce the following message? 

  Global warming is a Global warming is not a real problem real problem.  

 In some cases, thread - safe functions are implemented as atomic functions.  Atomic  functions are functions 
that cannot be interrupted once they begin to execute. In the case of  cout , if the inserter operation is 
implemented as atomic, then this interweaving cannot take place. When you have multiple calls to the 
inserter operation, they are executed as if they were in serial order.  ThreadA  ’ s message will be displayed, 
then  ThreadB  ’ s, or vice versa. This is an example of serializing a function or operation in order to make 
it thread safe. 

 This may not be the only way to make a function thread safe. A function may interweave operations if it 
has no adverse effect. For example, if a method adds or removes elements to or from a structure that is 
not sorted and two different threads invoke that method, interweaving their operations will not have an 
adverse effect. 

 If it is not known which functions from a library are thread safe and which are not, you have three 
choices: 

  Restrict use of all thread - unsafe functions to a single thread  

  Do not use any of the thread unsafe functions  

  Wrap all potential thread unsafe functions within a single set of synchronization mechanisms    

 To extend the last option, you can create interface classes for all thread unsafe functions that will be used 
in a multithreaded application. The idea of a wrapper was illustrated when making a cancellation point 
for system calls earlier in this chapter. The unsafe functions are encapsulated within an interface class. 
That class can be combined with the appropriate synchronization objects and can be used by the host 
class through inheritance or composition. This approach reduces the possibility of race conditions and is 
discussed in Chapter  7 . However, first we want to discuss the  thread_object  interface class introduced 
in Chapter  4  and extend it to encapsulate the thread attribute object.    

❑

❑

❑

c06.indd   192c06.indd   192 7/31/08   2:55:34 PM7/31/08   2:55:34 PM



Chapter 6: Multithreading

193

  Extending the Thread Interface Class 
 A thread interface class was introduced in Chapter  4 . The interface class acts as a wrapper that allows 
something to appear differently than it does normally. The new interface provided by an interface class 
is designed to make the class easier to use, more functional, safer, or more semantically correct. In this 
chapter, we have introduced a number of pthread functions used to manage a thread, including the 
creation and usage of the thread attribute object. The  thread_object  class was a simple skeleton class. 
Its purpose was to encapsulate the pthread thread interface and to supply object - oriented semantics and 
components so that you can implement the models you produce in the SDLC more easily. Now it ’ s time 
to expand the  thread_object  class to encapsulate some of the functionality of the thread attribute 
object. Listing  6 - 2  shows the declaration of the new  thread_object  and  user_thread  classes.

   Listing 6 - 2   

//Listing 6-2 Declaration of the new thread_object and user_thread.
              
1   #ifndef __THREAD_OBJECT_H
2   #define __THREAD_OBJECT_H
3
4   using namespace std;
5   #include  < iostream > 
6   #include  < pthread.h > 
7   #include  < string > 
8
9   class thread_object{
10        pthread_t Tid;
11
12  protected:
13       virtual void do_something(void) = 0;
14       pthread_attr_t SchedAttr;
15       struct sched_param SchedParam;
16       string Name;
17       int NewPolicy;
18       int NewState;
19       int NewScope;
20  public:
21       thread_object(void);
22       ~thread_object(void);
23       void setPriority(int Priority);
24       void setSchedPolicy(int Policy);
25       void setContentionScope(int Scope);
26       void setDetached(void);
27       void setJoinable(void);
28
29       void name(string X);
30       void run(void);
31       void join(void);
32       friend void *thread(void *X);
33  };
34
35
36  class filter_thread : public thread_object{

(continued)

c06.indd   193c06.indd   193 7/31/08   2:55:34 PM7/31/08   2:55:34 PM



Chapter 6: Multithreading

194

37  protected:
38       void do_something(void);
39  public:
40       filter_thread(void);
41       ~filter_thread(void);
42  };
43
44  #endif
45
46
                 

 For the  thread_object  we have included methods that set: 

  scheduling policies  

  priority  

  state  

  contention scope    

 of the  thread_object . Instead of a  user_thread , we are defining a  filter_thread  that defines the 
 do_something()  method. This class is used in the next chapter on synchronization. 

 Listing  6 - 3  is the class definition of the new  thread_object  class.

   Listing 6 - 3   

//Listing 6-3  A definition of the new thread_object class.
              
1   #include “thread_object.h”
2
3   thread_object::thread_object(void)
4   {
5      pthread_attr_init( & SchedAttr);
6      pthread_attr_setinheritsched( & SchedAttr,PTHREAD_EXPLICIT_SCHED);
7      NewState = PTHREAD_CREATE_JOINABLE;
8      NewScope = PTHREAD_SCOPE_PROCESS;
9      NewPolicy = SCHED_OTHER;
10  }
11
12  thread_object::~thread_object(void)
13  {
14
15  }
16
17  void thread_object::join(void)
18  {
19     if(NewState == PTHREAD_CREATE_JOINABLE){
20        pthread_join(Tid,NULL);
21     }
22  }

❑

❑

❑

❑

 Listing 6 -2   (continued)

c06.indd   194c06.indd   194 7/31/08   2:55:34 PM7/31/08   2:55:34 PM



Chapter 6: Multithreading

195

23
24  void thread_object::setPriority(int Priority)
25  {
26     int Policy;
27     struct sched_param Param;
28
29     Param.sched_priority = Priority;
30     pthread_attr_setschedparam( & SchedAttr, & Param);
31  }
32
33
34  void thread_object::setSchedPolicy(int Policy)
35  {
36     if(Policy == 1){
37        pthread_attr_setschedpolicy( & SchedAttr,SCHED_RR);
38        pthread_attr_getschedpolicy( & SchedAttr, & NewPolicy);
39     }
40
41     if(Policy == 2){
42        pthread_attr_setschedpolicy( & SchedAttr,SCHED_FIFO);
43        pthread_attr_getschedpolicy( & SchedAttr, & NewPolicy);
44     }
45  }
46
47
48  void thread_object::setContentionScope(int Scope)
49  {
50     if(Scope == 1){
51        pthread_attr_setscope( & SchedAttr,PTHREAD_SCOPE_SYSTEM);
52        pthread_attr_getscope( & SchedAttr, & NewScope);
53     }
54
55     if(Scope == 2){
56        pthread_attr_setscope( & SchedAttr,PTHREAD_SCOPE_PROCESS);
57        pthread_attr_getscope( & SchedAttr, & NewScope);
58     }
59  }
60
61
62  void thread_object::setDetached(void)
63  {
64     pthread_attr_setdetachstate( & SchedAttr,PTHREAD_CREATE_DETACHED);
65     pthread_attr_getdetachstate( & SchedAttr, & NewState);
66
67  }
68
69  void thread_object::setJoinable(void)
70  {
71     pthread_attr_setdetachstate( & SchedAttr,PTHREAD_CREATE_JOINABLE);
72     pthread_attr_getdetachstate( & SchedAttr, & NewState);
73  }
74
75

(continued)

c06.indd   195c06.indd   195 7/31/08   2:55:35 PM7/31/08   2:55:35 PM



Chapter 6: Multithreading

196

76  void thread_object::run(void)
77  {
78     pthread_create( & Tid, & SchedAttr,thread,this);
79  }
80
81
82  void thread_object::name(string X)
83  {
84     Name = X;
85  }
86
87
88  void *  thread (void * X)
89  {
90     thread_object *Thread;
91     Thread = static_cast < thread_object * > (X);
92     Thread- > do_something();
93     return(NULL);
94  }
                 

 In Listing  6 - 3 , the constructor defined at Lines 3 – 10 initializes a thread attribute object for this class 
 SchedAttr . It sets the  inheritsched  attribute to  PTHREAD_EXPLICIT_SCHED  so that the thread that is 
created uses the attribute ’ s object to define its scheduling and priorities instead of inheriting them from 
its creator thread. By default, the thread ’ s state is  JOINABLE . The other methods are self - explanatory: 

setPriority(int Priority)
setSchedPolicy(int Policy)
setContentionscope(int Scope)
setDetached()
setJoinable()  

 The  join()  checks to see if the thread is joinable before it calls  pthread_join()  in Line 20. Now when 
the thread is created in Line 78, the  pthread_create()  uses the  SchedAttr  object: 

pthread_create( & Tid, & SchedAttr,thread,this);  

 Listing  6 - 4  shows the definition for the  filter_thread .

   Listing 6 - 4   

//Listing 6-4  A definition of the filter_thread class.
              
1   #include “thread_object.h”
2
3
4   filter_thread::filter_thread(void)
5   {
6      pthread_attr_init( & SchedAttr);
7
8
9   }
10

 Listing 6 -3   (continued)

c06.indd   196c06.indd   196 7/31/08   2:55:35 PM7/31/08   2:55:35 PM



Chapter 6: Multithreading

197

11
12  filter_thread::~filter_thread(void)
13  {
14
15  }
16
17  void filter_thread::do_something(void)
18  {
19     struct sched_param Param;
20     int Policy;
21     pthread_t thread_id = pthread_self();
22     string Schedule;
23     string State;
24     string Scope;
25
26     pthread_getschedparam(thread_id, & Policy, & Param);
27     if(NewPolicy == SCHED_RR){Schedule.assign(“RR”);}
28     if(NewPolicy == SCHED_FIFO){Schedule.assign(“FIFO”);}
29     if(NewPolicy == SCHED_OTHER){Schedule.assign(“OTHER”);}
30     if(NewState == PTHREAD_CREATE_DETACHED){State.assign(“DETACHED”);}
31     if(NewState == PTHREAD_CREATE_JOINABLE){State.assign(“JOINABLE”);}
32     if(NewScope == PTHREAD_SCOPE_PROCESS){Scope.assign(“PROCESS”);}
33     if(NewScope == PTHREAD_SCOPE_SYSTEM){Scope.assign(“SYSTEM”);}
34     cout  <  <  Name  <  <  “:”  <  <  thread_id  <  <  endl
35           <  <  “----------------------”  <  <  endl
36           <  <  “ priority: “ <  <  Param.sched_priority    <  <  endl
37           <  <  “ policy:   “ <  <  Schedule                <  <  endl
38           <  <  “ state:    “ <  <  State                   <  <  endl
39           <  <  “ scope:    “ <  <  Scope                   <  <  endl  <  <  endl;
40
41  }
42   

 In Listing  6 - 4 , the  filter_thread  constructor in Lines 4 – 9 initializes with the thread attribute object 
 SchedAttr . The  do_something()  method is defined. In  filter_thread , this method simply sends to 
 cout  thread information: 

  Name of the thread  

  Thread id  

  Priority  

  Scheduling policy  

  State  

  Scope    

 Some values may not be initialized because they were not set in the attribute object. This method will be 
redefined in the next chapter. 

 Now, multiple  filter_thread  objects can be created, and each can set the attributes of the thread. 
Listing  6 - 5  shows how multiple  filter_thread  objects are created.

❑

❑

❑

❑

❑

❑

c06.indd   197c06.indd   197 7/31/08   2:55:35 PM7/31/08   2:55:35 PM



Chapter 6: Multithreading

198

   Listing 6 - 5   

//Listing 6-5 is main line to create multiple filter_thread objects.
              
 1  #include “thread_object.h”
 2  #include  < unistd.h > 
 3
 4
 5  int main(int argc,char *argv[])
 6  {
 7     filter_thread  MyThread[4];
 8
 9     MyThread[0].name(“Proteus”);
10     MyThread[0].setSchedPolicy(2);
11     MyThread[0].setPriority(7);
12     MyThread[0].setDetached();
13
14     MyThread[1].name(“Stand Alone Complex”);
15     MyThread[1].setContentionScope(1);
16     MyThread[1].setPriority(5);
17     MyThread[1].setSchedPolicy(2);
18
19     MyThread[2].name(“Krell Space”);
20     MyThread[2].setPriority(3);
21
22     MyThread[3].name(“Cylon Space”);
23     MyThread[3].setPriority(2);
24     MyThread[3].setSchedPolicy(2);
25
26     for(int N = 0;N  <  4;N++)
27     {
28        MyThread[N].run();
29        MyThread[N].join();
30     }
31     return (0);
32  }   

 In Listing  6 - 5 , four  filter_threads  were created. This is the output for Listing  6 - 5 : 

Proteus:Stand Alone Complex:32
              
----------------------
 priority:  7
----------------------
 policy:    FIFO priority:5
 state:      policy:    DETACHEDFIFO
              
 scope:      state:     PROCESSJOINABLE
              
              
 scope:     SYSTEM
              

c06.indd   198c06.indd   198 7/31/08   2:55:35 PM7/31/08   2:55:35 PM



Chapter 6: Multithreading

199

Krell Space:4
----------------------
 priority:  3
 policy:    OTHER
 state:     JOINABLE
 scope:     PROCESS
              
Cylon Space:5
----------------------
 priority:  2
 policy:    FIFO
 state:     JOINABLE
 scope:     PROCESS  

 The main thread does not wait for a detached thread ( Proteus ), and the output is a little messed up. 
 Proteus  starts its output, and then it is interrupted with output from  Stand Alone Complex . As 
mentioned earlier, standard cout is not thread safe. If all the threads are joinable, then the output would 
be as you would expect: 

Proteus:2
----------------------
 priority:  7
 policy:    FIFO
 state:     JOINABLE
 scope:     PROCESS
              
Stand Alone Complex:3
----------------------
 priority:  5
 policy:    FIFO
 state:     JOINABLE
 scope:     SYSTEM
              
Krell Space:4
----------------------
 priority:  3
 policy:    OTHER
 state:     JOINABLE
 scope:     PROCESS
              
Cylon Space:5
----------------------
 priority:  2
 policy:    FIFO
 state:     JOINABLE
 scope:     PROCESS
                

c06.indd   199c06.indd   199 7/31/08   2:55:36 PM7/31/08   2:55:36 PM



Chapter 6: Multithreading

200

  Program Profile 6 - 2 
  Program Name:   

program6-2.cc   

  Description: 
 Demonstrates the use of  filter_thread  class. Four threads are created; each is assigned a name. Each 
invokes the methods that modify some of the attributes of the thread that will be created.  

  Libraries Required:   
libpthread   

  Headers Required:   
thread_object.h   

  Compile  &  Link Instructions:   
c++ -o program6-2 program6-2.cc thread_object.cc filter_thread.cc -lpthread   

  Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6  

  Processors: 
 AMD Opteron, UltraSparc T1  

  Execution Instructions:   
./program6-2  

 The  thread_object  class encapsulates some of the functionality of the thread attribute object. The 
filter_thread is the user thread. It inherits the thread_object and defines the do_something(), the 
function that is executed by the thread. The functionality of this class will be extended again to form the 
assertion class that is used as part of a pipeline model executed in Chapter  7 .    

  Summary 
 A thread is a sequence or stream of executable code within a process that is scheduled for execution by 
the operating system on a processor or core. This chapter has been all about dealing with multithreading. 
The key things you can take away from this discussion of multithreading are as follows: 

  All processes have a  primary thread  that is the  p rocess ’ s flow of control. A process with multiple 
threads has as many flows of controls in which each executes independently and concurrently. 
A process with multiple threads is  multithreaded.   

  Kernel - level threads or lightweight processes are a lighter burden on the operating system as 
compared to a process to create, maintain, and manage because very little information is 
associated with a thread. Kernel threads are executed on the processor. They are created and 
managed by the system. User - level threads are created and managed by a runtime library.  

❑

❑

c06.indd   200c06.indd   200 7/31/08   2:55:36 PM7/31/08   2:55:36 PM



Chapter 6: Multithreading

201

  Threads can be used to simplify the program ’ s structure, model the inherent concurrency using 
minimal resources, or execute independent concurrent tasks of a program. Threads can improve 
the throughput and performance of the application.  

  Threads and processes both have an id, a set of registers, a state, and a priority, and both adhere 
to a scheduling policy. Both have a context used to reconstruct the preempted process or thread. 
Threads and child processes share the resources of their parent process and compete for 
processor usage. The parent process has some control over the child process or thread. A thread 
or process can alter its attributes and create new resources, but cannot access the resources 
belonging to other processes. The most significant difference between threads and processes is 
each process has its own address space and threads are contained in the address space of its 
process.  

  The POSIX thread library defines a thread  attribute object  that encapsulates a subset of the 
properties of the thread. These attributes are accessible and modifiable. The thread attribute is of 
type  pthread_attr_t. pthread_attr_init()  initializes a thread attribute object with the 
default values. Once the attributes have been appropriately modified, the attribute object can be 
used as a parameter in any call to the  pthread_create()  function.  

  The  thread_object  interface class acts as a wrapper that allows something to appear 
differently than it does normally. The new interface is designed to make the class easier to use, 
more functional, safer, or more semantically correct. The  thread_object  can be extended to 
encapsulate the attribute object.    

 In Chapter  7 , we will discuss communication and synchronization between processes and threads. 
Concurrent tasks may be required to communicate between them to synchronize work or access to 
shared global data.          130+   Very superior   about 2% of the population  

  120 – 129   Superior   about 7% of the population  

  110 – 119   High average   about 16% of the population  

  90 – 109   Average   about 50% of the population  

  80 – 89   Low average   about 16% of the population  

  70 – 79   Borderline   about 7% of the population  

  Below 69   Mentally retarded   about 2% of the population   

❑

❑

❑

❑

c06.indd   201c06.indd   201 7/31/08   2:55:36 PM7/31/08   2:55:36 PM



c06.indd   202c06.indd   202 7/31/08   2:55:36 PM7/31/08   2:55:36 PM



                                                                                                                                                Communication and 
Synchronization of 

Concurrent Tasks           

   There is only one constant, one universal. It is the only real truth; causality. Action, 
reaction. Cause and effect.  

  —  Merovingian, Matrix Reloaded   

 In Chapter  6 , we discussed the similarities and differences between processes and threads. The 
most significant difference between threads and processes is that each process has its own address 
space and threads are contained in the address space of their process. We discussed how threads 
and processes have an id, a set of registers, a state, and a priority, and adhere to a scheduling 
policy. We explained how threads are created and managed. We also created a thread class. 

 In this chapter, we take the next step and discuss communication and cooperation between threads 
and processes. We cover among other topics: 

  Communication and cooperation dependencies.  

  Interprocess and Interthread Communication.  

  The PRAM model and concurrency models.  

❑

❑

❑

c07.indd   203c07.indd   203 7/31/08   3:00:37 PM7/31/08   3:00:37 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

204

  Order of execution models  .

  Object - oriented message queues and mutexes  .

  A simple agent model for a pipeline     .

  Communication and Synchronization 
 In Chapter  3 , we discussed the challenges of coordinating the execution of concurrent tasks. The example 
used was software - automated painters who were to paint the house before guests arrived for the 
holidays. A number of issues were outlined while decomposing of the problem and solution for the 
purpose of determining what would be the best approach to painting the house. Some of those issues 
had to deal with communication and the synchronization resource usage. 

  Did the painters have to communicate with each other?  

  Should the painters communicate when they had completed a task or when they required some 
resource like a brush or paint?  

  Should painters communicate directly with each other or should there be a central painter 
through which all communications are routed?  

  Would it be better if only painters in one room communicated or if painters of different rooms 
communicated?  

  As far as sharing resources, can multiple painters share a resource or will usage have to be 
serialized?    

 These issues are concerned with coordinating communication and synchronization between these 
concurrent tasks. If communication between dependent tasks is not appropriately designed, then data 
race conditions can occur. Determining the proper coordination of communication and synchronization 
between tasks requires matching the appropriate concurrency models during problem and solution 
decomposition. Concurrency models dictate how and when communication occurs and the manner in 
which work is executed. For example, for our software - automated painters a boss - worker model (which 
we discuss later in this chapter) could be used. A single boss painter can delegate work or direct painters 
as to which rooms to paint at a particular time. The boss painter can also manage the use of resources. 
All painters then communicate what resources they need in order to complete their tasks to the boss who 
then determines when resources are delegated to painters. Dependency relationships can be used to 
examine which tasks are dependent on other tasks for communication or cooperation. 

❑

❑

❑

❑

❑

❑

❑

❑

c07.indd   204c07.indd   204 7/31/08   3:00:38 PM7/31/08   3:00:38 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

205

  Dependency Relationships 
 When processes or threads require communication or cooperation among each other to accomplish a 
common goal, they have a  dependency relationship . Task A depends on Task B to supply a value for a 
calculation, to give the name of the file to be processed, or to release a resource. Task A may depend on 
Task B, but Task B may not have a dependency on Task A. Given any two tasks, there are exactly four 
dependency relationships that can exist between them: 

   A  →  B : Task A depends on Task B.  

   A  ←  B : Task B depends on Task A.  

   A  ↔  B : Task A depends on Task B, and Task B depends on Task A.  

   A NULL B : There are no dependencies between Task A and Task B.    

 In the first and second cases the dependency is a one - way unidirectional dependency. In the third case, 
there is a two - way bidirectional dependency; A and B are mutually dependent on each other. In the 
fourth case, there is a NULL dependency between Task A and B; no dependency exists. 

  Communication Dependencies 
 When Task A requires data from Task B in order for it to execute its work, then there is a dependency 
relationship between Task A and Task B. A software - automated painter can be designated to fill all 
buckets running low on paint with paint at the behest of the boss painter. That would mean all painters 
(that are actually painting) would have to communicate with the boss painter that they were low on 
paint. The boss painter would then inform the refill painter that there were buckets of paint to be filled. 
This would mean that the worker painters have a communication dependency with the boss painter. The 
refill painter also had a communication dependency with the boss painter. 

 In Chapter  5 , a  posix_queue  object was used to communicate between processes. The  posix_queue  is 
an interface to the POSIX message queue, a linked list of strings. The  posix_queue  object contains the 
names of the files that the worker processes are to search to find the code. A worker process can read 
the name of the file from  posix_queue .  posix_queue  is a data structure that resides outside the address 
space of all processes. On the other hand, threads can also communicate with other threads within the 
address space of their process by using global variables and data structures. If two threads wanted to 
pass data between them, thread A would write the name of the file to a global variable, and thread B 
would simply read that variable. These are examples of unidirectional communication dependencies 
where only one task depends on another task. Figure  7 - 1  shows two examples of unidirectional 
communication dependencies: the  posix_queue  used by processes and the global variables used to hold 
the name of a file for threads A and B.   

❑

❑

❑

❑

c07.indd   205c07.indd   205 7/31/08   3:00:39 PM7/31/08   3:00:39 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

206

 An example of a bidirectional dependency is two First - In, First - Out (FIFO) pipes. A pipe is a data 
structure that forms a communication channel between two processes. Process A will use pipe 1 ’ s input 
end to send the name of the file that process B has to process. Process B will read the name of the file 
from the output end of pipe 1. After it has processed the contents of the file, the result is written to a new 
file. The name of the new file will be written to the input end of pipe 2. Process A will read the name of 
the file from the output end of pipe 2. This is bidirectional communication dependency. Process B 
depends on process A to communicate the name of the file, and process A depends on process B to 
communicate the name of the new file. Thread A and thread B can use two global data structures like 
queues; one would contain the names of source files, and the other would be used to contain the names 
of resultant files. Figure  7 - 2  shows two examples of bidirectional communication dependencies between 
processes A and B and threads A and B.    

DATA SEGMENT

PROCESS A’s ADDRESS SPACE

PosixQueue.push ("in.txt")

...

.

.

.

threadA()

Filename = "in2.txt";
...

threadB()

Infile.open(Filename,...); 
...

DATA SEGMENT

PROCESS B’s ADDRESS SPACE

Filename = PosixQueue.front()

...

.

.

.

TEXT SEGMENT

Filename

"in2.txt"

PosixQueue

[0]   in.txt
[1]
[2]
...

Figure 7-1

c07.indd   206c07.indd   206 7/31/08   3:00:39 PM7/31/08   3:00:39 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

207

  Cooperation Dependencies 
 When Task A requires a resource that Task B owns and Task B must release the resource before Task A 
can use it, this is a  cooperation dependency . When two tasks are executing concurrently, and both are 
attempting to utilize the same resource, cooperation is required before either can successfully use the 
resource. Assume that there are multiple software - automated painters in a single room, and they are 
sharing a single paint bucket. They all try to access the paint bucket at the same time. Considering that 
the bucket cannot be accessed simultaneously by painters (it ’ s not thread safe to do so), access has to be 
synchronized, and this requires cooperation. 

 Another example of cooperation dependency is write access to the  posix_queue . If multiple processes 
were to write the names of the files where the code was located to the  posix_queue , this would require 
that only one process at a time be able write to the  posix_queue . Write access would have to be 
synchronized.   

DATA SEGMENT

PROCESS A’s ADDRESS SPACE

write (Pipe1,"out.txt",...)

...

Filename = read(Pipe2)

.

.

.

threadA()

InputQueue.push("in.txt")
...

Outfile = OutputQueue.front()

InputQueue

[0]   in.txt
[1]
[2]
...

OutputQueue

[0]   out.txt
[1]
[2]
...

threadB()

Infile = InputQueue.front()
...

OutputQueue.push("out.txt")

Pipe1

Pipe2

DATA SEGMENT

PROCESS B’s ADDRESS SPACE

Filename = read(Pipe1) 

...

write(Pipe2, Filename)

.

.

.

TEXT SEGMENT

Figure 7-2

c07.indd   207c07.indd   207 7/31/08   3:00:39 PM7/31/08   3:00:39 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

208

  Counting Tasks Dependencies 
 You can understand the overall task relationships between the threads or processes in an application by 
enumerating the number of possible dependencies that exist. Once you have enumerated the possible 
dependencies and then their relationships, you can determine which threads you must code for 
communication and synchronization. This is similar to truth tables used to determine possible branches 
of decision in a program or application. Once the dependency relationships among threads are 
enumerated, the overall thread structure of the process is available. 

 For example, if there are three threads A, B, and C (three threads from one process or one thread from 
three processes), you can examine the possible dependencies that exist among the threads. If there are 
two threads involved in a dependency, use combination to calculate the possible threads involved in the 
dependency from the three threads: C( n , k ) where  n  is the number of threads and  k  is the number of 
threads involved in the dependency. So, for the example C(3,2), the answer is 3; there are three possible 
combinations of threads: A and B, A and C, B and C. 

 Now if you consider each combination as a graph (with two nodes and one edge between them), a 
simple graph, meaning that there are no self - loops and no parallel edges (no two edges will have the 
same endpoints), then the number of edges in a graph is  n ( n  –  1)/2. So, for the two - node simple graph, 
there are 2(2  –  1)/2, which is 1. There is one edge for each graph. Now each edge can have a possible 
four possible dependency relationships as discussed earlier: 

   A  →  B : Task A depends on Task B.  

   A  ←  B : Task B depends on Task A.  

   A  ↔  B : Task A depends on Task B, and Task B depends on Task A.  

   A NULL B : There are no dependencies between Task A and Task B.    

 So, each individual graph has four possible relationships. If you count the number of possible 
dependency relationships among three threads in which two are involved in the relationship, there are 
12 possible relationships. 

 An adjacency matrix can be used to enumerate the actual dependency relationships for two - thread 
combinations. An adjacency matrix is a graph  G  = ( V , E ) in which  V  is the set of vertices or nodes of the 
graph and  E  is the set of edges such that: 

  A( i , j ) = 1 if ( i , j ) is an element of  E   
            = 0 otherwise  
  A( i , j )  <     >  A( j , i )    

 where  i  denotes a row and  j  denotes a column. The size of the matrix is  n  x  n , where  n  is the total number 
of threads. Figure  7 - 3 (A) shows the adjacency matrix for three threads. The 0 indicates that there is no 
dependency, and the 1 indicates that there is a dependency. An adjacency matrix can be used to 
demarcate all of the dependency relationships between any two threads. On a diagonal, there are all 0s 
because there are no self - dependencies. 

❑

❑

❑

❑

c07.indd   208c07.indd   208 7/31/08   3:00:39 PM7/31/08   3:00:39 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

209

  A(1,2) = 1 means for A →     B, A depends on B.  

  A(1,3) = 0 means for A   →   C, A does not depend on C.  

  A(2,1) = 0 means for B   →   A, B does not depend on A.  

  A(2,3) = 1 means for B →     C, B depends on C.  

  A(3,1) = 1 means for C   →   A, C depends on A.  

  A(3,2) = 0 means for C   →   B, C does not depends on B.      

❑

❑

❑

❑

❑

❑

A

B

C

A

0

0

1

B

1

0

0

C

0

1

0

A

B

C

A

S,C

B

S,Co

C

S,C

B) DEPENDENCY MATRIX

A) ADJACENCY MATRIX

Figure 7-3

 A dependency graph is useful for documenting the type of dependency relationship, for example,  C  for 
communication or  Co  for cooperation.  S  is for synchronization if the communication or cooperation 
dependency requires synchronization. The dependency graph can be used during the design or testing 
phase of the Software Development Life Cycle (SDLC). To construct the dependency graph, the 
adjacency matrix is used. Where there is a 1 in a row column position, it is replaced by the type of 
relationship. Figure  7 - 3 (B) shows the dependency graph for the three threads. The 0s and 1s have been 
replaced by C or Co. Where there was a 0, no relationship exists; the space is left blank. For A(1,2), A 
depends on B for synchronized cooperation, A(2,3) B depends on C for synchronized communication, 
and A(3,2) C depends on A for synchronized communication. Bidirectional relationships like A  ↔  B can 
also be represented, but there are none in this example. So, as you can see, all of the relationships can be 
represented in the matrix. For a NULL relationship a 0 is used in the adjacency matrix, and in the 
dependency matrix that position will be left blank. Figure  7 - 4  shows the Unified Modeling Language 
(UML) dependency for these three threads.   

c07.indd   209c07.indd   209 7/31/08   3:00:40 PM7/31/08   3:00:40 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

210

 These tools and approaches are very useful. Knowing the number of possible relationships and 
identifying what those relationships are helps in establishing the overall thread structure of processes 
and the application. We have used them for small numbers of threads. The matrix is only useful when 
two threads are involved in the dependency. For large numbers of threads, the matrix approach cannot 
be used (unless it is multidimensional.) But having to enumerate each relationship for even a moderate 
number of threads would be unwieldy. This is why the declarative approach is very useful.  

  What Is Interprocess Communication? 
 Processes have their own address space. Data that is declared in one process is not available in 
another process. Events that happen in one process are not known to another process. If process A and 
process B are working together to perform a task such as filtering out special characters in a file or 
searching files for a code, there must be methods for communicating and coordinating events between 
the two processes. In Chapter  5 , the layout of a process was described. A process has a text, data, and 
stack segment. Processes may also have other memory allocated in the free store. The data that the 
process owns is generally in the stack and data segments or is dynamically allocated in memory 
protected from other processes. For one process to be made aware of another process ’ s data or events, 
you use operating system Application Program Interfaces (APIs) to create a means of communication. 
When a process sends data to another process or makes another process aware of an event by means of 
operating system APIs, this is called  Interprocess Communication (IPC) . IPC deals with the techniques and 
mechanisms that facilitate communication between processes. The operating system ’ s kernel acts as the 
communication channel between the processes. The  posix_queue  is an example of IPC. Files can also be 
used to communicate between related or unrelated processes. 

 The process resides in user mode or space. IPC mechanisms can reside in kernel or user space. Files used 
for communication reside in the filesystem outside of both user and kernel space. Processes sharing 
information by utilizing files have to go through the kernel using system calls such as  read ,  write , and 
 lseek  or by using iostreams. Some type of synchronization is required when the file is being updated by 
two processes simultaneously. Shared information between processes resides in kernel space. The 

TASK C

TASK B

<<depends>>
<<depends>>

<<depends>>
TASK A

Figure 7-4

c07.indd   210c07.indd   210 7/31/08   3:00:40 PM7/31/08   3:00:40 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

211

operations used to access the shared information will involve a system call into the kernel. An IPC 
mechanism that does reside in user space is shared memory. Shared memory is a region of memory that 
each process can reference. With shared memory, processes can access the data in this shared region 
without making calls to the kernel. This also requires synchronization. 

  Persistence of IPC 
 The  persistence  of an object refers to the existence of an object during or beyond the execution of the 
program, process, or thread that created it. A storage class specifies how long an object exists during the 
execution of a program. An object can have a declared storage class of automatic, static, or dynamic. 

   Automatic  objects exist during the invocation of a block of code. The space and values an object 
is given exist only within the block. When the flow of control leaves the block, the object goes 
out of existence and cannot be referred to without an error.  

  A  static  object exists and retains values throughout the execution of the program.  

  An object that was  dynamically  allocated can have no more than static storage but can have less 
than automatic storage. Programmers determine when an object is dynamically declared during 
runtime, and that object will exist for the entire execution of the program.    

 Persistence of an object is not necessarily synonymous with the storage of the object on a storage device. 
For example, automatic or static objects may be stored in external storage that is used as virtual memory 
during program execution, but the object will be destroyed after the program is over. 

 IPC entities reside in the filesystem, in kernel space, or in user space, and persistence is also defined the 
same way: filesystem, kernel, and process persistence. 

  An IPC object with  filesystem persistence  exists until the object is deleted explicitly. If the 
kernel is rebooted, the object will keep its value.  

   Kernel persistence  defines IPC objects that remain in existence until the kernel is rebooted or 
the object is deleted explicitly.  

  An IPC object with  process persistence  exists until the process that created the object closes it.    

 There are several types of IPCs, and they are listed in Table  7 - 1 . Most of the IPCs work with related 
processes  —  child and parent processes. For processes that are not related and require Interprocess 
Communication, the IPC object has a name associated with it so that the server process that created it 
and the client processes can refer to the same object. Pipes are not named; therefore, they are used only 
between related processes. FIFO or named pipes can be used between unrelated processes. A pathname 
in the filesystem is used as the identifier for a FIFO IPC mechanism. A name space is the set of all 
possible names for a specified type of IPC mechanism. For IPCs that require a POSIX IPC name, that 
name must begin with a slash and contain no other slashes. To create the IPC, one must have write 
permissions for the directory.   

❑

❑

❑

❑

❑

❑

c07.indd   211c07.indd   211 7/31/08   3:00:40 PM7/31/08   3:00:40 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

212

 Table  7 - 1  also shows that each type of IPC (FIFO and pipes) has process persistence. Message queues and 
shared memory mst have kernel persistence, but may also use filesystem persistence. When message 
queues and shared memory utilize filesystem persistence, they are implemented by using a mapping a 
file to internal memory. This is called mapped files or memory mapped files. Once the file is mapped to 
memory that is shared between processes, the contents of the files are modified and read by using a 
memory location.  

  Environment Variables and Command - Line Arguments 
 Parent processes share their resources with child processes. By using  posix_spawn , or the  exec  
functions, the parent process can create the child process with exact copies of its environment variables 
or initialize them with new values. Environment variables store system - dependent information such as 
paths to directories that contain commands, libraries, functions, and procedures used by a process. They 
can be used to transmit useful user - defined information between the parent and the child processes. 
They provide a mechanism to pass specific information to a related process without having it hardcoded 
in the program code. System environment variables are common and predefined to all shells and 
processes in that system. The variables are initialized by startup files.   

 The common environment variables are listed in Chapter  5 .   

 Environment variables and command - line argument can also be passed to newly initialized processes. 

                
int posix_spawn(pid_t *restrict pid, const char *restrict path,
                const posix_spawn_file_actions_t *file_actions,
                const posix_spawnattr_t *restrict attrp,
                char *const argv[restrict], char *const envp[restrict]);
                  

Table 7-1

Type of IPC Name space Persistence Process

Pipe unnamed process Related

FIFO pathname process Both

Mutex unnamed process Related

Condition variable unnamed process Related

Read-write locks unnamed process Related

Message queue Posix IPC name kernel Both

Semaphore (memory-based) unnamed process Related

Semaphore (named) Posix IPC name kernel Both

Shared memory Posix IPC name kernel Both

c07.indd   212c07.indd   212 7/31/08   3:00:41 PM7/31/08   3:00:41 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

213

  argv[]  and  envp[]  are used to pass a list of command - line argument and environment variables to the 
new process. This is one - way, one - time communication. Once the child process has been created, any 
changes to those variables by the child will not be reflected in the parent ’ s data, and the parent cannot 
make any changes to the variables that are seen by its child processes.  

  Files 
 Using files to transfer data between processes is one of the simplest and most flexible means of 
transferring or sharing data. Files can be used to transfer data between processes that are related or 
unrelated. They can allow processes that were not designed to work together to do so. Of course, files 
have filesystem persistence; in this case, the persistence can survive a system reboot. 

 When you use files to communicate between processes, you follow seven basic steps in the file -
 transferring process: 

  1.   The name of the file has to be communicated.  

  2.   You must verify the existence of the file.  

  3.   Be sure that the correct permission are granted to access to the file.  

  4.   Open the file.  

  5.   Synchronize access to the file.  

  6.   While reading/writing to the file, check to see if the stream is good and that it ’ s not at the end of 
the file.  

  7.   Close the file.    

 First, the name of the file has to be communicated between the processes. You might recall from 
Chapters  4  and  5  that files stored the work that had to be processed by the workers. Each file contained 
over a million strings. The  posix_queue  contained the names of the files. Filenames can also be passed 
to child processes by means of other IPC - like pipes. 

 When the process is accessing the file, if more than one process can also access the same file, you need 
synchronization. You might recall in Chapter  4  in Listing  4 - 2 , that a file was broken up into smaller files, 
and each process had exclusive access to the file. However, if there was just one file, the access to the file 
would have to be synchronized. One process at a time would have exclusive read capability and would 
read a string from the file, advancing the read pointer. We discuss read/write locks and other types of 
synchronization later in the chapter. 

 Leaving the file open can lead to data corruption and can prevent other processes from accessing the file. 
The processes that read or write to or from the file should know the file ’ s file format in order to correctly 
process the file. The file ’ s format refers to the file type and the file ’ s organization. The file ’ s type also 
implies the type of data in the file. Is it a text file or a binary file? The processes should also know the file 
layout or how the data is organized in the file.  

  File Descriptors 
 File descriptors are unsigned integers used by a process to identify an open file. They are shared between 
parent and child processes. They are indexes to the file descriptor table, a block maintained by the kernel 
for each process. When a child process is created, the descriptor table is copied for the child process, 

c07.indd   213c07.indd   213 7/31/08   3:00:41 PM7/31/08   3:00:41 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

214

which allows the child process to have equal access to the files used by the parent. The number of file 
descriptors that can be allocated to a process is governed by a resource limit. The limit can be changed 
by  setrlimit() . The file descriptor is returned by the  open() . File descriptors are frequently used by 
other IPCs.  

  Shared Memory 
 A block of shared memory can be used to transfer information between processes. The block of memory 
does not belong to any of the processes that are sharing the memory. Each process has its own address 
space; the block of memory is separate from the address space of the processes. A process gains access 
to the shared memory by temporarily connecting the shared memory block to its own memory block. 
Once the piece of memory is attached, it can be used like any other pointer to a block of memory. Like 
other data transfer mechanisms, shared memory is also set up with the appropriate access permission. 
It is almost as flexible as using a file to transfer data. If Processes A, B, and C were using a shared 
memory block, any modifications by any of the processes are visible to all the other processes. 
This is not a one - time, one - way communication mechanism. 

 Pipes require that at least two processes be connected before they can be used; shared memory can be 
written to and read by a single process and held open by that process. Other processes can attach to and 
detach from the shared memory as needed. This allows much larger blocks of data to be transferred 
faster than when you use pipes and FIFOs. However, it is important to consider how much memory to 
allocate to the shared region. 

 When you are accessing the data contained in the shared memory, synchronization is required. In the 
same way that file locking is necessary for multiple processes to attempt read/write access for the same 
file at the same time, access to shared memory must be regulated. Semaphores are the standard 
technique used for controlling access to shared memory. Controlled access is necessary because a data 
race can occur when two processes attempt to update the same piece of memory (or file for that matter) 
at the same time.  

  Using POSIX Shared Memory 
 The shared memory maps: 

  a file  

  internal memory    

 to the shared memory region:

  Synopsis  
                
#include  < sys/mman.h > 
                
void  *mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
int mumap(void *addr, size_t len);
                   

 The function maps  len  bytes starting at offset  offset  from the file or other object specified by the file 
descriptor  fd  into memory, preferably at address  addr , which is usually specified as 0. The actual place 
where the object is mapped in memory is returned and is never 0. It is a  void * .  prot  describes the 
desired memory protection. It must not conflict with the open mode of the file.  flags  specifies the type 

❑

❑

c07.indd   214c07.indd   214 7/31/08   3:00:41 PM7/31/08   3:00:41 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

215

of mapped object. It can also specify mapping options and whether modifications made to the mapped 
copy of the page are private to the process or are to be shared with other references. Table  7 - 2  shows the 
possible values for  prot  and  flags  with a brief description. To remove the memory mapping from the 
address space of a process, use  mumap() .   

Table 7-2

Flag Arguments for mmap Description

prot Describes the protection of the memory-based region.

PROT_READ Data can be read.

PROT_WRITE Data can be written.

PROT_EXEC Data can be executed.

PROT_NONE Data is inaccessible.

flags Describes how the data can be used.

MAP_SHARED Changes are shared.

MAP_PRIVATE Changes are private.

MAP_FIXED addr is interpreted exactly.

 To create a shared memory, open a file and store the file descriptor; then call  mmap()  with the 
appropriate arguments and store the returning  void * . Use a semaphore when accessing the variable. 
The  void *  may have to be type cast. depending on the data you are trying to manipulate: 

fd = open( file_name ,O_RDWR);
ptr =  casting  <  type  > (mmap(NULL,sizeof( type ),PROT_READ,MAP_SHARED,fd,0));  

 This is an example of memory mapping with a file. When using shared memory with internal memory, a 
function that creates a shared memory object is used instead of a function that opens a file:

  Synopsis  
#include  < sys/mman.h > 
 
int shm_open(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);   

 The  shm_open()  creates and opens a new or opens an existing POSIX shared memory object. The 
function is very similar to  open() .  name  specifies the shared memory object created and/or opened. To 
ensure the portability of  name  use an initial slash (/) and don ’ t use embedded slashes.  oflag  is a bit mask 
created by ORing together one of these flags:  O_RDONLY  or  O_RDWR  and any of the other flags listed in 
Table  7 - 3 , along with the possible values for  mode  with a brief description.  shm_open()  returns a new file 
descriptor referring to the shared memory object. The file descriptor is used in the function call to  mmap() . 

fd = sh_open(memory _name ,O_RDWR, MODE);
ptr =  casting  <  type  > (mmap(NULL,sizeof( type ),PROT_READ,MAP_SHARED,fd,0));  

c07.indd   215c07.indd   215 7/31/08   3:00:42 PM7/31/08   3:00:42 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

216

 Now  ptr  can be used like any other pointer to data. Be sure to use semaphores between processes: 

sem_wait(sem);
... *ptr;
sem_post(sem);     

Table 7-3

Shared Memory Arguments Description

oflag Describes how the shared memory will be opened.

O_RDWR Opens the object for read or write access.

O_RDONLY Opens the object for read-only access.

O_CREAT Creates the shared memory if it does not exist.

O_EXCL Checks for the existence and creation of the object. If O_CREAT is 
specified and the object exists with the specified name, then returns 
an error.

O_TRUNC If the shared memory object exists, then truncates it to zero bytes.

mode Specifies the permission.

S_IRUSR User has read permission.

S_IWUSR User has write permission.

S_IRGRP Group has read permission.

S_IWGRP Group has write permission.

S_IROTH Others have read permission.

S_IWOTH Others have write permission.

  Pipes 
 Pipes are communication channels used to transfer data between processes. Whereas data transfer using 
files generally does not require the sending and receiving of data to be active at the same time, data 
transfer using pipes includes processes that are active at the same time. Although there are exceptions, 
the general rule is that pipes are used between two or more active processes. One process (the writer) 
opens or creates the pipe and then blocks until another process (the reader) opens the same pipe for 
reading and writing. 

 There are two kinds of pipes: 

  Anonymous  

  Named (also called FIFO)    

❑

❑

c07.indd   216c07.indd   216 7/31/08   3:00:42 PM7/31/08   3:00:42 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

217

 Anonymous pipes are used to transfer data between related processes (child and parent). Named pipes 
are used for communication between related or unrelated processes. Related processes created using 
 fork()  can use the anonymous pipes. Processes created using  posix_spawn()  use named pipes. 
Unrelated processes are created separately by programs. Unrelated processes can be logically related and 
work together to perform some task, but they are still unrelated. Named pipes are used by unrelated 
processes and related processes that refer to the pipe by the name associated with it. Named pipes are 
kernel objects. So, they reside in kernel space with kernel persistence (as far as the data), but the file 
structure has filesystem persistence until it is explicitly removed from the filesystem. 

 Pipes are created from one process, but they are rarely used in a single process. A pipe is a communication 
channel to a different process that is related or unrelated. Pipes create a flow of data from one end in one 
process (input end) to the other end that is in another process (output end). The data becomes a stream 
of bytes that flows in one direction through the pipe. Two pipes can be used to create bidirectional flow of 
communication between the processes. Figure  7 - 5  shows the various uses of pipes from a single process, 
from to two processes using a single pipe with a one direction flow of data from Process A to Process B, 
and then with a bidirectional flow of data between two processes that use two pipes.   

PROCESS B

close (Pipe[0])

write (Pipe[1])

PIPE

[1]      write     [1]

[0]      read      [0]

PROCESS A

close (Pipe[1])

read (Pipe[0])

PIPE

[1]      write     [1]

[0]      read      [0]

PROCESS A

write (Pipe[1])

read (Pipe[0])

PROCESS B

write (Pipe1[1])

read (Pipe2[0])

PROCESS A

write (Pipe2[1])

read (Pipe1[0])

PIPE2

[0]      read      [0]

PIPE1

[1]      write     [1]

[0]      read      [0]

[1]      write     [1]

A) UNIDIRECTIONAL DATA FLOW (ONE PROCESS ONE PIPE) 

B) UNIDIRECTIONAL DATA FLOW (TWO PROCESSES ONE PIPE)

B) BIDIRECTIONAL DATA FLOW (TWO PROCESSES TWO PIPES) 

Figure 7-5

c07.indd   217c07.indd   217 7/31/08   3:00:42 PM7/31/08   3:00:42 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

218

 Two pipes are used to create a bidirectional flow of data because of the way that pipes are set up. Each 
pipe has two ends, and each pipe has a one - way flow of data. So, one process uses the pipe as an input 
end (write data to pipe), and the other process uses the same pipe but uses the output end (read data 
from the pipe). Each process closes the end of the process it does not access, as shown in Figure  7 - 5 . 

 Anonymous pipes are temporary and exist only while the process that created them has not terminated. 
Named pipes are special types of files and exist in the filesystem. They can remain after the process that 
created it has terminated unless the process explicitly removes them from the filesystem. A program 
that creates a named pipe can finish executing and leave the named pipe in the filesystem, but the 
data that was placed in the pipe will not be present. Future programs and processes can then access the 
named pipe later, writing new data to the pipe. In this way, a named pipe can be set up as a kind of 
permanent channel of communication. Named pipes have file permission settings associated with them, 
and anonymous pipes do not.   

Using Named Pipes (FIFO) 
 Names pipes are created with  mkfifo() :

  Synposis  
#include  < sys/types.h > 
#include  < sys/stat.h > 
 
int mkfifo(const char *pathname, mode_t mode);
int unlink(const char *pathname);
                   

  mkfifo() creates a named pipe using  pathname  as the name of the FIFO with permission specified by 
 mode .  mode  comprises the file permission bits. They are as listed previously in Table  7 - 3 . 

  mkfifo()  is created with  O_CREAT | O_EXCL  flags, which means it creates a new named pipe with the 
name specified if it does not exist. If is does exist, an error  EEXIST  is returned. So, if you want to open an 
already existing named pipe, call the function, and check for this error. If the error occurs then use 
 open()  instead of  mkfifo() . 

 The  unlink()  removes the filename  pathname  from the filesystem. The program in Listing  7 - 1  creates a 
named pipe with  mkfifo . 

 Listings  7 - 1  and  7 - 2  are listings of programs that demonstrate how a named pipe can be used the transfer 
data from one process to another unrelated process. Listing  7 - 1  contains the program of the writer, and 
Listing  7 - 2  contains the program for the reader.

   Listing 7 - 1   

// Listing 7-1 A program that creates a named pipe with mkfifo().
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < fstream > 
 4  #include  < sys/wait.h > 
 5  #include  < sys/types.h > 
 6  #include  < sys/stat.h > 
 7

c07.indd   218c07.indd   218 7/31/08   3:00:43 PM7/31/08   3:00:43 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

219

 8  int main(int argc,char *argv[],char *envp[])
 9  {
10
11     fstream Pipe;
12
13     if(mkfifo(“Channel-one”,S_IRUSR | S_IWUSR
14                                     | S_IRGRP
15                                     | S_IWGRP) == -1){
16        cerr  <  <  “could not make fifo”  <  <  endl;
17     }
18
19     Pipe.open(“Channel-one”,ios::out);
20     if(Pipe.bad()){
21        cerr  <  <  “could not open fifo”  <  <  endl;
22     }
23     else{
24            Pipe  <  <  “2 3 4 5 6 7 “  <  <  endl;
25
26     }
27
28     return(0);
29  }
                   

 The program in Listing  7 - 1  creates a named pipe with the  mkfifo()  system call. The program then 
opens the pipe with an  fstream  object called  Pipe  in Line 19. Notice that  Pipe  has been opened for 
output using the  ios::out  flag. If the  Pipe  is not in a  bad()  state after the call to open, then the  Pipe  is 
ready for writing data to  Channel - one . Although  Pipe  is ready for input, it blocks (waits) until another 
process has opened  Channel - one  for reading. When using the iostreams with pipes, it is important to 
remember that either the writer or reader must be opened for both input and output using  ios::in | 
ios::out . Opening either the reader or the writer in this manner will prevent deadlock. In this case, we 
open the reader (Listing  7 - 2 ) for both. The program in this listing is called a  reader  because it reads the 
information from the pipe. The writer then writes a line of input to  Pipe .

   Listing 7 - 2   

// Listing 7-2 A program that reads from a named pipe.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < fstream > 
 4  #include  < string > 
 5  #include  < sys/wait.h > 
 6  #include  < sys/types.h > 
 7  #include  < sys/stat.h > 
 8
 9
10  int main(int argc, char *argv[])
11  {
12     int type;
13     fstream NamedPipe;
14     string Input;
15
16     NamedPipe.open(“Channel-one”,ios::in | ios::out);

(continued)

c07.indd   219c07.indd   219 7/31/08   3:00:43 PM7/31/08   3:00:43 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

220

 Listing 7-2 (continued) 

17
18     if(NamedPipe.bad()){
19        cerr  <  <  “could not open Channel-one”  <  <  endl;
20     }
21
22     while(!NamedPipe.eof()  &  &  NamedPipe.good()){
23
24        getline(NamedPipe,Input);
25        cout  <  <  Input  <  <  endl;
26     }
27     NamedPipe.close();
28     unlink(“Channel-one”);
29     return(0);
30
31  }   

 The program in Listing  7 - 1  uses the   <  <   operator to write data into the pipe. Here the reader also has to 
open the pipe by using an fstream  open , using the name of the named pipe  Channel - one , and opening 
the pipe for input and output in Line 16. If the  NamedPipe  is not in a bad state after opening, then the 
data is read from the  NamedPipe  while  NamedPipe  is not  eof()  and is still good. The data is read from 
the pipe and stored in a string  Input  that is sent to  cout .  NamedPiped  is then closed and the pipe is 
unlinked. These are unrelated processes. To run, each is launched separately. 

 Here is Program Profile 7 - 1 for Listings  7 - 1  and  7 - 2 .   

  Program Profile 7 - 1   
Program Name:   

program7-1.cc (Listing  7 - 1)  
program7-2.cc (Listing  7 - 2 )

     Description: 
 Listing  7 - 1  creates a pipe and opens the pipe with a  fstream  object. Before it writes a string to the pipe, it 
waits until another process opens the pipe for reading (Listing  7 - 2 ). Once the reader process opens the pipe 
for reading, the writer program writes a string to the pipe, closes the pipe, and then exits. The reader pipe 
reads the string from the pipe and displays the string to standard out. Run the reader and then the writer.    

Libraries Required: 
 None    

Headers Required:   
 < iostream >     < fstream >   < string >     < sys/stat.h > 

     Compile and Link Instructions:   
c++ -o program7-1 program7-1.cc program7-2.cc

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6    

c07.indd   220c07.indd   220 7/31/08   3:00:43 PM7/31/08   3:00:43 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

221

Processors: 
 Opteron, UltraSparc T1   

 Execution Instructions:   
./program7-1
./program7-2

     Notes: 
 Run each program in separate terminals. 

 The use of  fstream  simplifies the IPC making the named pipe easier to access. All of the functionality of 
streams comes into play for this example: 

mkfifo(“Channel-one”,...);
vector < int >  X( 2,3,4,5,6,7);
ofstream OPipe(“Channel-one”,ios::out);
ostream_iterator < int >  Optr(OPipe,”\n”);
copy(X.begin(),X.end(),Optr);
                  

 Here a vector is used to hold all the data. An  ofstream  object is used this time instead of an  fstream  
object to open the named pipe. An  ostream  iterator is declared and points to the named pipe ( Channel -
 one ). Now instead of successive insertion in a loop, the  copy  algorithm can copy all the data to the pipe. 
This is a convenience if have hundreds, thousands, or even more numbers to write to the pipe.    

FIFO Interface Class 
 Besides simplifying the use of IPC mechanisms by using iostreams, iterators, and algorithm, you can also 
simplify use by encapsulating the FIFO into an FIFO interface class. Remember that in doing so you are 
modeling a FIFO structure. The FIFO class is a model for the communication between two or more 
processes. It transmits some form of information between them. The information is translated into a 
sequence of data, inserted into the pipe, and then retrieved by a process on the other side of the pipe. 
The data is then reassembled by the retrieving process. There must be somewhere for the data to be 
stored while it is in transit from process A to process B. This storage area for the data is called a buffer. 
Insertion and extraction operations are used to place the data into or extract the data from this buffer. 
Before performing insertions or extractions into or from the data buffer, the data buffer must exist. Once 
communication has been completed, the data buffer is no longer needed. So, your model must be able to 
remove the data buffer when it is no longer necessary. As indicated, a pipe has two ends, one end for 
inserting data and the other end for extracting data, and these ends can be accessed from different 
processes. Therefore the model should also include an input port and an output port that can be 
connected to separate processes. Here are the basic components of the FIFO model: 

  Input/output port  

  Insertion and extraction operation  

  Creation/initialization operation  

  Buffer creation, insertion, extraction, destruction    

❑

❑

❑

❑

c07.indd   221c07.indd   221 7/31/08   3:00:44 PM7/31/08   3:00:44 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

222

 For this example, there are only two processes involved in communication. But if there are multiple 
processes that can read/write to/ from the named pipe stream, synchronization is required. So, this class 
also requires a mutex object. Example  7 - 1  shows the beginnings of the FIFO class:

   Example 7 - 1   

// Example 7-1 Declaration of fifo class.
                
 class fifo{
    mutex Mutex;
    //...
 protected:
    string  Name;
 public:
    fifo  & operator <  < (fifo  & In, int X);
    fifo  & operator <  < (fifo  & In, char X);
    fifo  & operator >  > (fifo  & Out, float X);
    //...
};
                   

 Using this technique, you can easily create  fifo s in the constructor. You can pass them easily as 
parameters and return values. You can use them in conjunction with the standard container classes and 
so on. The construction of such a component greatly reduces the amount of code needed to use FIFOs, 
provides opportunities for type safety, and generally allows the programmer to work at a higher level.   

  Message Queue 
 A message queue is a linked list of strings or messages. This IPC mechanism allows processes with the 
adequate permissions to the queue to write or remove messages. The sender of the message assigns a 
priority to it. Message queues do not require more than one process to be used. With a FIFO, the writer 
process blocks and cannot write to the pipe until there is a process that opens it for reading. With a 
message queue, a writer process can write to the message queue and then terminate. The data is retained 
in the queue. Some other process later can read or write to it. The message queue has kernel persistence. 
When reading a message from the queue, the oldest message with the highest priority is returned. Each 
message in the queue has these attributes: 

  A priority  

  The length of the message  

  The message or data    

 With a linked list the head of the list has the maximum number of messages allowed in the queue and 
the maximum size allowed for a message.   

Using a Message Queue 
 The message queue is created with  mq_open() :

❑

❑

❑

c07.indd   222c07.indd   222 7/31/08   3:00:46 PM7/31/08   3:00:46 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

223

  Synopsis  
                
#include  < mqueue.h > 
                
mqd_t mq_open(const char *name, int oflag,mode_t mode,
              struct mq_attr *attr);
int mq_close(mqd_t mqdes);
int mq_unlink(const char *name);
                   

  mq_open()  creates a message queue with the specified  name . The message queue uses  oflag  with these 
possible values to specify the access modes: 

   O_RDONLY : Open to receive messages  

   O_WRONLY : Open to send messages  

   O_RDWR : Open to send or received messages    

 These flags can be ORred with the following: 

   O_CREAT : Create a message queue.  

   O_EXCL : If ORred with previous flag, function fails if the pathname already exists.  

   O_NONBLOCK : Determines if queue waits for resources or messages that are not currently 
available.    

 The function returns a message queue descriptor of type  mq_dt . 

 The last parameter is a  struct mq_attr *attr . This is an attribute structure that describes the 
properties of the message queue: 

struct mq_attr {
   long mq_flags;       //flags
   long mq_maxmsg;      //maximum number of messages allowed
   long mq_msgsize;     //maximum size of message
   long mq_curmsgs;     //number of messages currently in queue
}  

  mq_close() closes the message queue, but the message queue still exists in the kernel. However, the 
calling function can no longer use the descriptor. If the process terminates, all message queues associated 
with the process also close. The data is still retained in the queue. 

  unlink()  removes the message queue specified by  name  from the system. The number of references to 
the message queue is tracked, but the queue name can still be removed from the system even if the count 
is greater than 0. The queue is not destroyed until all processes that utilized the queue have closed or 
called  mq_close() . 

❑

❑

❑

❑

❑

❑

c07.indd   223c07.indd   223 7/31/08   3:00:47 PM7/31/08   3:00:47 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

224

 There are two functions to set and return the attribute object, as shown in the following code synopsis:

  Synopsis  
                
#include  < mqueue.h > 
                
int mq_getattr(mqd_t mqdes,struct mq_attr *attr);
int mq_setattr(mqd_t mqdes,struct mq_attr *attr,struct mq_attr *oattr);
                   

 When you are setting the attribute with  mq_setattr , only the  mq_flags  are set in the  attr  structure. 
Other attributes are not affected.  mq_maxmsg  and  mq_msgsize  are set when the message queue is 
created.  mq_curmsg  can be returned and not set.  oattr  contains the previous values for the attributes. 

 To send or write a message to the queue, use these functions:

  Synopsis  
                
#include  < mqueue.h > 
                
int mq_send(mqd_t mqdes, const char *ptr, size_t len,
            unsigned int prio);
ssize_t mq_receive(mqd_t mqdes, const char *ptr, size_t len,
            unsigned int priop);
                   

 For  mq_receive() , the  len  must be at least the maximum size of the message. The returned message is 
stored in  *ptr .

    posix_queue: The Message Queue Interface Class 
  posix_queue  is a simple class that models some of the functionality of a message queue. It encapsulates 
the basic functions and the message queue attributes. Listing  7 - 3  shows the declaration of the  posix_
queue  class.

   Listing 7 - 3   

// Listing 7-3 Declaration of the posix_queue class.
                
 1  #ifndef __POSIX_QUEUE
 2  #define __POSIX_QUEUE
 3  using namespace std;
 4  #include  < string > 
 5  #include  < mqueue.h > 
 6  #include  < errno.h > 
 7  #include  < iostream > 
 8  #include  < sstream > 

c07.indd   224c07.indd   224 7/31/08   3:00:47 PM7/31/08   3:00:47 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

225

 9  #include  < sys/stat.h > 
10
11
12  class posix_queue{
13  protected:
14     mqd_t  PosixQueue;
15     mode_t  OMode;
16     int   QueueFlags;
17     string QueueName;
18     struct mq_attr  QueueAttr;
19     int  QueuePriority;
20     int MaximumNoMessages;
21     int MessageSize;
22     int ReceivedBytes;
23     void setQueueAttr(void);
24  public:
25     posix_queue(void);
26     posix_queue(string QName);
27     posix_queue(string QName,int MaxMsg, int MsgSize);
28     ~posix_queue(void);
29
30     mode_t  openMode(void);
31     void openMode(mode_t OPmode);
32
33     int queueFlags(void);
34     void queueFlags(int X);
35
36     int queuePriority(void);
37     void queuePriority(int X);
38
39     int maxMessages(void);
40     void maxMessages(int X);
41     int messageSize(void);
42     void messageSize(int X);
43
44     void queueName(string X);
45     string queueName(void);
46
47     bool open(void);
48     int send(string Msg);
49     int receive(string  & Msg);
50     int remove(void);
51     int close(void);
52
53
54  };
55
                
                
#endif   

c07.indd   225c07.indd   225 7/31/08   3:00:48 PM7/31/08   3:00:48 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

226

 The basic functions performed by a message queue are encapsulated in the  posix_queue  class: 

47     bool open(void);
48     int send(string Msg);
49     int receive(string  & Msg);
50     int remove(void);
51     int close(void);
                
                  

 We have discussed what each these functions does already. Examples  7 - 2  through  7 - 6  show the 
definitions of these methods. Example  7 - 2  is the definition of  open() :

   Example 7 - 2   

// Example 7-2 The definition of open().
                
122  bool posix_queue::open(void)
123  {
124     bool Success = true;
125     int RetCode;

 126     PosixQueue = mq_open(QueueName.c_str(),QueueFlags,OMode, & QueueAttr); 

127     if(errno == EACCES){
128        cerr   <  <  “Permission denied to created “  <  <  QueueName  <  <  endl;
129        Success = false;
130     }

 131     RetCode = mq_getattr(PosixQueue, & QueueAttr); 

132     if(errno == EBADF){
133        cerr  <  <  “PosixQueue is not a valid message descriptor”  <  <  endl;
134        Success = false;
135        close();
136
137     }
138     if(RetCode == -1){
139        cerr  <  <  “unknown error in mq_getattr() “  <  <  endl;
140        Success = false;
141        close();
142     }
143     return(Success);
144  }
                   

 After the call to  mq_open()  is made in Line #126,  errno  is checked to see if message queue failed to 
open because a message queue by the name  QueueName.c_str()  already exists. If it does, then the call 
is not successful.  bool Success  is returned with a value of  false . 

 In Line 131, the queue attribute structure is returned by  mq_getattr() . To ensure that the message 
queue was opened and successfully initialized its attribute,  errno  is checked again in Line 132.  EBADF  
means the descriptor was not a valid message queue descriptor. The return code is checked in Line 138. 

 Example  7 - 3  is the definition of  send() .

c07.indd   226c07.indd   226 7/31/08   3:00:48 PM7/31/08   3:00:48 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

227

   Example 7 - 3   

// Example 7-3 The definition of send().
                
146  int posix_queue::send(string Msg)
147  {
148
149    int StatusCode = 0;

 150    if(Msg.size()  >  QueueAttr.mq_msgsize){ 

151       cerr  <  <  “message to be sent is larger than max queue
                   message size “  <  <  endl;
152       StatusCode = -1;
153    }

 154    StatusCode = mq_send(PosixQueue,Msg.c_str(),Msg.size(),0); 

155    if(errno == EAGAIN){
156       StatusCode = errno;
157       cerr  <  <  “O_NONBLOCK not set and the queue is full “  <  <  endl;
158    }
159    if(errno == EBADF){
160       StatusCode = errno;
161       cerr  <  <  “PosixQueue is not a valid descriptor open for
                   writing”  <  <  endl;
162    }
163    if(errno == EINVAL){
164       StatusCode = errno;
165       cerr  <  <  “msgprio is out side of the priority range for the
                   message queue or “  <  <  endl;
166       cerr  <  <  “Thread my block causing a timing conflict with
                   time out”  <  <  endl;
167    }
168
169    if(errno == EMSGSIZE){
170       StatusCode = errno;
171       cerr  <  <  “message size exceeds maximum size of message
                   parameter on message queue”  <  <  endl;
172
173    }
174    if(errno == ETIMEDOUT){
175       StatusCode = errno;
176       cerr  <  <  “The O_NONBlock flag was not set, but the time expired
                   before the  message “  <  <  endl;
177       cerr  <  <  “could be added to the queue “  <  <  endl;
178    }
179    if(StatusCode == -1){
180       cerr  <  <  “unknown error in mq_send() “  <  <  endl;
181    }
182    return(StatusCode);
183
184  }
                   

 In Line 150, the message is checked to ensure that its size does not exceed the allowable size for a 
message. In Line 154 the call to  mq_send()  is made. All other code checks for errors. 

 Example  7 - 4  is the definition of  receive() .

c07.indd   227c07.indd   227 7/31/08   3:00:48 PM7/31/08   3:00:48 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

228

   Example 7 - 4   

//Example 7-4 The definition of receive().
                
187  int posix_queue::receive(string  & Msg)
188  {
189
190     int StatusCode = 0;

 191     char QueueBuffer[QueueAttr.mq_msgsize];  
192     ReceivedBytes = mq_receive(PosixQueue,QueueBuffer,  
                                   QueueAttr.mq_msgsize,NULL); 

193     if(errno == EAGAIN){
194        StatusCode = errno;
195        cerr  <  <  “O_NONBLOCK not set and the queue is full “  <  <  endl;
196
197     }
198     if(errno == EBADF){
199        StatusCode = errno;
200        cerr  <  <  “PosixQueue is not a valid descriptor open for writing”
                 <  <  endl;
201     }
202     if(errno == EINVAL){
203        StatusCode = errno;
204        cerr  <  <  “msgprio is out side of the priority range for the message
                    queue or “  <  <  endl;
205        cerr  <  <  “Thread my block causing a timing conflict with time out”
                 <  <  endl;
206     }
207     if(errno == EMSGSIZE){
208        StatusCode = errno;
209        cerr  <  <  “message size exceeds maximum size of message parameter on
                    message queue”  <  <  endl;
210     }
211     if (errno == ETIMEDOUT){
212        StatusCode = errno;
213        cerr  <  <  “The O_NONBlock flag was not set, but the time expired
                    before the message “  <  <  endl;
214        cerr  <  <  “could be added to the queue “  <  <  endl;
215     }

 216     string XMessage(QueueBuffer,QueueAttr.mq_msgsize);  
217     Msg = XMessage; 

218     return(StatusCode);
219
220  }
                   

 In Line 191, a buffer  QueueBuffer  with the maximum size of a message is created.  mq_receive()  is 
called. The message returned is stored in  QueueBuffer , and the number of bytes is returned and 
stored in  ReceivedBytes . In Line 216, the message is extracted from  QueueBuffer  and assigned 
to the string in Line 217. 

 In Example  7 - 5  is the definition for  remove() .

c07.indd   228c07.indd   228 7/31/08   3:00:48 PM7/31/08   3:00:48 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

229

   Example 7 - 5   

//Example 7-5 The definition for remove().
                
221  int  posix_queue::remove(void)
222  {
223     int StatusCode = 0;

 224     StatusCode = mq_unlink(QueueName.c_str()); 

225     if(StatusCode != 0){
226        cerr  <  <  “Did not unlink “  <  <  QueueName  <  <  endl;
227     }
228     return(StatusCode);
229  }
230
                   

 In Line 224,  mq_unlink()  is called to remove the message queue from the system. 

 Example  7 - 6  provides the definition for  close() .

   Example 7 - 6   

//Example 7-6 The definition for close().
                
231  int posix_queue::close(void)
232 {
233
234     int StatusCode = 0;

 235     StatusCode = mq_close(PosixQueue); 

236     if(errno == EBADF){
237        StatusCode = errno;
238        cerr  <  <  “PosixQueue is not a valid descriptor open for
                    writing”  <  <  endl;
239     }
240    if(StatusCode == -1){
241        cerr  <  <  “unknown error in mq_close() “  <  <  endl;
242    }
243    return(StatusCode);
244
245  }
                   

 In Line 235,  mq_close()  is called to close the message queue. 

 Return briefly to Listing  7 - 3 , notice that the bolded methods from Examples  7 - 2  through  7 - 6  encapsulate 
the message queue ’ s attributes to set and return the properties of the message queue: 

                
33  int queueFlags(void);
34  void queueFlags(int X);
35
36  int queuePriority(void);
37  void queuePriority(int X);
38

(continued)

c07.indd   229c07.indd   229 7/31/08   3:00:49 PM7/31/08   3:00:49 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

230

39  int maxMessages(void);
40  void maxMessages(int X);
41  int messageSize(void);
42  void messageSize(int X);  

 Some of these attributes are can also be set in the constructor. There are three constructors in Listing  7 - 3 : 

25  posix_queue(void);
26  posix_queue(string QName);
27  posix_queue(string QName,int MaxMsg, int MsgSize);
                  

 At Line 25 is the default constructor. Example  7 - 7  shows the definition.

   Example 7 - 7   

// Example 7-7 The definition of the default constructor.
                
 4  posix_queue::posix_queue(void)
 5  {
 6
 7
 8     QueueFlags = O_RDWR | O_CREAT | O_EXCL;
 9     OMode = S_IRUSR | S_IWUSR;
10     QueueName.assign(“none”);
11     QueuePriority = 0;
12     MaximumNoMessages = 10;
13     MessageSize = 8192;
14     ReceivedBytes = 0;
15     setQueueAttr();
16
17
18  }
                   

 This  posix_queue  class is a simple model of the message queue. All functionality has not been included 
here, but you can see a message queue class makes the message queue easier to use. The  posix_queue  
class performs error checking for all of the major functions of the IPC mechanism. What should be added 
is the  mq_notify  function. With notification signaling, a process is signaled when the empty message 
queue has a message. This class does not have synchronization capabilities. If multiple processes want to 
use the  posix_queue  to write to it, a built - in mutex should be implemented and used when messages 
are sent or received.    

  What Are Interthread Communications? 
 We have discussed the different mechanisms defined by POSIX to perform communication between 
processes, related and unrelated. We have discussed where those IPC reside and their persistence. 
Because threads reside in the address space of their process, it is safe and logical to assume that 
communication between threads would not be difficult or require the use of special mechanisms 
just for communication. That is true. The most important issue that has to be dealt with when peer 
threads require communication with each other is synchronization. Data races and indefinite 
postponement are likely when performing Interthread Communication (ITC). 

(continued)

c07.indd   230c07.indd   230 7/31/08   3:00:49 PM7/31/08   3:00:49 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

231

 Communication between threads is used to: 

  Share data  

  Send a message    

 Multiple threads share data in order to streamline processing performed concurrently. Each thread can 
perform different processing or the same processing on data streams. The data can be modified, or new 
data can be created as a result, which in turn is shared. Messages can also be communicated. For 
example, if an event happens in one thread, this could trigger another event in another thread. Threads 
may communicate a signal to other peer threads, or the main thread may signal the worker threads. 

 When two processes need to communicate, they use a structure that is external to both processes. When 
two threads communicate, they typically use structures that are part of the same process to which they 
both or all belong. Threads cannot communicate with threads outside their process unless you are 
referring to primary threads of processes. In that case, you refer to them as two processes. Threads 
within a process can pass values from the data segment of the process or stack segments of each thread. 

 In most cases, the cost of Interprocess Communication is higher than Interthread Communication. The 
external structures that must be created by the operating system during IPC require more system 
processing than the structures involved in ITC. The efficiency of ITC mechanisms makes threads a more 
attractive alternative in many, but not all programming scenarios that require concurrency.   

 We discussed some of the issues and drawbacks of using threads as compared to processes in Chapter  5 .   

 Table  7 - 4  lists the basic Interthread Communications with a brief description.   

❑

❑

Table 7-4

Types of ITC Description

Global data, variables, and data 
structures

Declared outside of the main function or have global scope. Any 
modifications to the data are instantly accessible to all peer 
threads.

Parameters Parameters passed to threads during creation. The generic 
pointer can be converted any data type.

File handles Files shared between threads. These threads share the same read-
write pointer and offset of the file.

  Global Data, Variables, and Data Structures 
 An important advantage that threads have over processes is that threads can share global data, variables, 
and data structures. All threads in the process can access them equally. If any thread changes the data, 
the change is instantly available to all peer threads. For example, take three threads,  ThreadA ,  ThreadB,  
and  ThreadC.     ThreadA  makes a calculation and stores the results in a global variable  Answer .  ThreadB  
reads  Answer , performs its calculation on it, and then stores its results in  Answer . Then  Thread C  does 
the same thing. The final answer is to be displayed by the main thread. This example is shown in 
Listings  7 - 4 ,  7 - 5 , and  7 - 6 .

c07.indd   231c07.indd   231 7/31/08   3:00:49 PM7/31/08   3:00:49 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

232

   Listing 7 - 4   

// Listing 7-4 thread_tasks.h.
                
 1
 2  void *task1(void *X);
 3  void *task2(void *X);
 4  void *task3(void *X);
 5
                

     Listing 7 - 5   

// Listing 7-5 thread_tasks.cc.
                
 1  extern int Answer;
 2
 3  void *task1(void *X)
 4  {
 5     Answer = Answer * 32;
 6  }
 7
 8  void *task2(void *X)
 9  {
10     Answer = Answer / 2;
11  }
12
13  void *task3(void *X)
14  {
15     Answer = Answer + 5;
16  }
                

     Listing 7 - 6   

// Listing 7-6 main thread.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < pthread.h > 
 4  #include “thread_tasks.h”
 5
 6  int Answer = 10;
 7
 8
 9  int main(int argc, char *argv[])
10  {
11
12     pthread_t ThreadA, ThreadB, ThreadC;
13
14     cout  <  <  “Answer = “  <  <  Answer  <  <  endl;
15
16     pthread_create( & ThreadA,NULL,task1,NULL);
17     pthread_create( & ThreadB,NULL,task2,NULL);
18     pthread_create( & ThreadC,NULL,task3,NULL);
19

c07.indd   232c07.indd   232 7/31/08   3:00:50 PM7/31/08   3:00:50 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

233

20     pthread_join(ThreadA,NULL);
21     pthread_join(ThreadB,NULL);
22     pthread_join(ThreadC,NULL);
23
24     cout  <  <  “Answer = “  <  <  Answer  <  <  endl;
25
26     return(0);
27
28  }
                   

 In these listings, the tasks that the threads will execute are defined in a separate file.  Answer  is the global 
data declared in the main line in the file  program7 - 6.cc . It is out of scope for use by the tasks that are in 
defined in  thread_tasks.cc . It is declared as  extern , so it can have global scope. If the threads are to 
process the data in the way described earlier  —   ThreadA ,  ThreadB , and then  ThreadC  perform their 
calculations  —  it requires synchronization. It is not guaranteed that the correct answer, 165, will be 
returned if  ThreadA  and  ThreadB  have other work they have to do first. The threads are transferring 
data from one thread to another. With, say, two multicores,  ThreadA  and  ThreadB  can be executing. 
 ThreadA  works for a time slice, and then  ThreadC  is given the processor. When  ThreadA  is preempted, 
it may still not execute its calculation on  Answer . If  ThreadC  finished when it was preempted, the value 
of  Answer  would be 15. Then  ThreadB  finishes; the  Answer  is 7. Then  ThreadA  does its calculation; 
 Answer  is 224 not 165. Although a pipeline model of data communication is what was desired, there is 
no synchronization in place for it to be executed. 

 Threads can also share data structures in the same way that the variable was used. IPC supports only a 
limited set of data structures that can be used (for example, a message queue); in contrast, any type of 
global set, map, or so forth or any other collection or container class can be used to accomplish ITC. For 
example, threads can share a set. With a set, membership, intersection, union, and so forth, operations 
can be performed by different threads using Multiple Instruction Single Data (MISD) or Single 
Instruction Single Data (SISD) memory access models. The coding that it would take to implement a set 
container that could be used as an IPC mechanism is prohibitive. 

 Here is Program Profile 7 - 2 for Listings  7 - 4 ,  7 - 5 , and  7 - 6 .  

  Program Profile 7 - 2
   Program Name:   

program7-6.cc (Listing 7-6)

     Description: 
 For this program, there is a global variable  Answer  declared in the main line in the file  program7 - 6.cc . 
It is declared as  extern , so it can have global scope in  thread_tasks.cc .  Answer  is to be  processed by 
 ThreadA ,  ThreadB , and then  ThreadC . They are to perform their calculations, which requires 
synchronization. The correct answer is 165. Although a pipeline model of data communication is what 
was desired, there is no synchronization in place for it to be executed.    

Libraries Required:   
libpthread

c07.indd   233c07.indd   233 7/31/08   3:00:50 PM7/31/08   3:00:50 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

234

     Headers Required:   
 < iostream >     < pthread.h >  “thread_tasks.h”

     Compile and Link Instructions:   
c++ -o program7-6 program7-6.cc thread_tasks.cc -lpthread

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6

    Processors: 
 Opteron, UltraSparc T1

    Execution Instructions:   
./program7-6

     Notes: 
 None   

  Parameters for Interthread Communication 
 Parameters to threads can be used for communication between threads or between the primary thread 
and peer threads. The thread creation API supports thread parameters. The parameter is in the form of a 
void pointer: 

int pthread_create(pthread_t *threadID,const pthread_attr_t *attr,
                   void *(*start_routine)(void*),
                   void *restrict parameter);
                  

 The void pointer in C++ is a generic pointer and can be used to point to any data type. The value of 
 parameter  passes values as simple as a  char *  or a complex as a pointer to a container or user - defined 
object. In the program in Listing  7 - 7  and Listing  7 - 8 , we use two queues of strings as global data 
structures. One thread uses the queue as an output queue, and another thread uses that same queue as a 
data stream for input and then writes to the second global queue of strings.

   Listing 7 - 7   

// Listing 7-7 Thread tasks that use two global data structures.
                
 1  using namespace std;
 2  #include  < queue > 
 3  #include  < string > 
 4  #include  < iostream > 
 5
 6  extern queue < string >  SourceText;
 7  extern queue < string >  FilteredText;
 8
 9  void *task1(void *X)

c07.indd   234c07.indd   234 7/31/08   3:00:50 PM7/31/08   3:00:50 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

235

10  {
11     char Token = ‘?’;
12
13     queue < string >  *Input;
14
15
16     Input = static_cast < queue < string >  * > (X);
17     string Str;
18     string FilteredString;
19     string::iterator NewEnd;
20
21     for(int Count = 0;Count  <  16;Count++)
22     {
23        Str = Input- > front();
24        Input- > pop();
25        NewEnd = remove(Str.begin(),Str.end(),Token);
26        FilteredString.assign(Str.begin(),NewEnd);
27        SourceText.push(FilteredString);
28
29     }
30
31
32  }
33
34
35  void *task2(void *X)
36  {
37     char Token = ‘.’;
38
39     string Str;
40     string FilteredString;
41     string::iterator NewEnd;
42
43     for(int Count = 0;Count  <  16;Count++)
44     {
45        Str = SourceText.front();
46        SourceText.pop();
47        NewEnd = remove(Str.begin(),Str.end(),Token);
48        FilteredString.assign(Str.begin(),NewEnd);
49        FilteredText.push(FilteredString);
50
51
52     }
53
54  }
                   

 These tasks filter a string of text.  task1  removes the ( ? ) from a string and  task2  removes a ( . ) from a 
string.  task1  accepts a queue that serves as the container of strings to be filtered. The  void *  is type 
cast to a pointer to a queue of strings in Line #16.  task2  does not require a queue for input. It uses the 
global queue  SourceText  that is populated by  task1 . Inside their loops, a string is removed from the 
queue, the token is removed, and the new string is pushed onto the global queues. For  task1  the queue 
string is  SourceText  and for  task2 , the queue string is  FilteredText . Both queues are declared 
 extern  in Lines 6 and 7.

c07.indd   235c07.indd   235 7/31/08   3:00:50 PM7/31/08   3:00:50 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

236

   Listing 7 - 8   

// Listing 7-8 Main thread declares two global data structures.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < pthread.h > 
 4  #include “thread_tasks.h”
 5  #include  < queue > 
 6  #include  < fstream > 
 7  #include  < string > 
 8
 9
10
11
12  queue < string >  FilteredText;
13  queue < string >  SourceText;
14
15  int main(int argc, char *argv[])
16  {
17
18     ifstream Infile;
19     queue < string >  QText;
20     string Str;
21     int Size = 0;
22
23
24     pthread_t ThreadA, ThreadB;
25
26     Infile.open(“book_text.txt”);
27     for(int Count = 0;Count  <  16;Count++)
28     {
29        getline(Infile,Str);
30        QText.push(Str);
31
32     }
33
34     pthread_create( & ThreadA,NULL,task1, & QText);
35     pthread_join(ThreadA,NULL);
36
37     pthread_create( & ThreadB,NULL,task2,NULL);
38     pthread_join(ThreadB,NULL);
39
40     Size = FilteredText.size();
41
42     for(int Count = 0;Count  <  Size ;Count++)
43     {
44        cout  <  <  FilteredText.front()  <  <  endl;
45        FilteredText.pop();
46
47     }
48
49     Infile.close();

c07.indd   236c07.indd   236 7/31/08   3:00:51 PM7/31/08   3:00:51 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

237

50
51     return(0);
52
53  }
                   

 The program in Listing  7 - 8  shows the code for the main thread. It declares the two global queues on Line 
12 and Line 13. The strings are read in from a file into string queue  QText . This is the data source queue 
for  ThreadA  in Line 34. The main thread then calls a join on  ThreadA  and waits for it to return. When 
 ThreadA  returns,  ThreadB  uses the global queue  SourceText  just populated by  task1 . When  ThreadB  
returns, the strings in the global queue  FilteredText  are sent to  cout  by the main thread. By the main 
thread calling join in this way these threads are not executed concurrently. The main thread does not 
create  ThreadB  until  ThreadA  returns. If the threads were created one after the other, they would be 
executed concurrently. The threat of a core dump looms. If  ThreadB  starts its execution before  ThreadA  
populates its source queue, then  ThreadB  attempts to pop an empty queue. The size of the queue could 
be checked before attempting to read it. But you want to take advantage of the multicore in doing this 
processing. Here you have a few strings in a queue and all you want to do is remove a single token. But 
if you scale this problem to thousands of string and many tokens to be removed, you realize that another 
approach has to exist. Again, you do not want to go to a serial solution. Access to the queue can be 
synchronized but filtering all the strings at once can also be parallelized. We will revisit the problem and 
present a better solution later in this chapter. 

 Here is Program Profile 7 - 3 for Listings  7 - 7  and  7 - 8 .  

  Program Profile 7 - 3   
Program Name:   

program7-8.cc (Listing 7-8)

     Description: 
 The program in Listing  7 - 8  shows the code for the main thread. It declares the two global queues used 
for input and output. The strings are read in from a file into string queue  QText , the data source 
queue for  ThreadA . The main thread then calls a join on  ThreadA  and waits for it to return. When 
 ThreadA  returns,  ThreadB  uses the global queue  SourceText  just populated by  ThreadA . 
When  ThreadB  returns, the strings in the global queue  FilteredText  are sent to  cout  
by the main thread.    

Libraries Required:   
libpthread

     Headers Required:   
 < iostream >     < pthread.h >   < fstream >     < queue >   < string >  “thread_tasks.h”

     Compile and Link Instructions:   
c++ -o program7-8 program7-8.cc thread_tasks.cc -lpthread

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6    

c07.indd   237c07.indd   237 7/31/08   3:00:51 PM7/31/08   3:00:51 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

238

Processors: 
 Opteron, UltraSparc T1    

Execution Instructions:   
./program7-8

     Notes: 
 None 

 With processes, command - line arguments are passed by using the  exec  family of functions or  posix_
spawn , as discussed in Chapter  5 . The command - line arguments are restricted to simple data types such 
as numbers and characters. The parameters passed to processes are one - way communication. The child 
process simply copies the parameter values. Any modifications made to the data will not be reflected in 
the parent. With threads, the parameter is not a copy but an address to some data location. Any 
modification made by the thread to that data can be seen by any thread that uses it. 

 But this type of transparency may not be what you desire. A thread can keep its own copy of data passed 
to it. It can copy it to its stack, but what ’ s on its stack will come and go. A thread can be called several 
times performing the same task over and over again. By using thread - specific data, data can be 
associated with a thread and made private and persistent.   

  File Handles for Interthread Communication 
 Sharing files between multiple threads as a form of ITC requires the same caution as using global 
variables. If Thread A moves the file pointer, then Thread B accesses the file at that location. What if one 
thread closes the files and another thread attempts to write to the file  —  what happens? Can a thread 
read from the file while another thread writes to it? Can multiple threads write to the file? Care must be 
taken to serialize or synchronize access to files within a multithreaded environment. Since threads can 
share actual read - write pointers, cooperation techniques must be used.    

  Synchronizing Concurrency 
 In any computer system, the resources are limited. There is only so much memory, and there are only so 
many I/O devices and ports, hardware interrupts, and, yes, even processors cores to go around. The 
number of I/O devices is usually restricted by the number of I/O ports and the hardware interrupts that 
a system has. In an environment of limited hardware resources, an application consisting of multiple 
processes and threads must compete for memory locations, peripheral devices, and processor time. Some 
threads and processes will be working together intimately using the system ’ s limited sharable resources 
to perform a task and achieve a goal while other threads and processes work asynchronously and 
independently competing for those same sharable resources. It is the operating system ’ s job to determine 
when the process or thread utilizes system resources and for how long. With preemptive scheduling, the 
operating system can interrupt the process or thread in order to accommodate all the processes and 
threads competing for the system resources. There are software resources and hardware resources. An 
example of software resources is a shared library that provides a common set of services or functions to 
processes and threads. Other sharable software resources are: 

c07.indd   238c07.indd   238 7/31/08   3:00:51 PM7/31/08   3:00:51 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

239

  Applications  

  Programs  

  Utilities    

 To share software resources requires only one copy of the program(s) code to be brought into memory. 
Data resources are objects, system data files (for example, environment variables), globally defined 
variables, and data structures. In the last section, we discussed data resources that are used for data 
communication. It is possible for processes and threads to have their own copy of shared data resources. 
In other cases, it is desirable, and maybe necessary, that data is shared. Sharing data can be tricky and 
may lead to race conditions (modifying data simultaneously) or data not being where it should when it 
is needed. Even attempting to synchronize access to resources can cause problems if this is not properly 
executed or if the wrong IPC or ITC mechanism is used. This can cause indefinite postponement or 
deadlock. Synchronization allows multiple threads and processes to be active at the same time while 
sharing resources without interfering with each other ’ s operation. The synchronization process 
temporarily serializes (in some cases) execution of the multiple tasks to prevent problems. Serialization 
occurs if one - at - a - time access has to be granted to hardware or software resources. But too much 
serialization defeats the advantages of concurrency and parallelism. Then cores sit idle. Serialization is 
used as the last approach if nothing else can be done. Coordination is the key. 

  Types of Synchronization 
 We talked about the resources of the system that are shared, hardware and software resources. These are 
the entities in a system that require synchronization. What also should be included are tasks, which 
should also be synchronized. You saw evidence of this in the program in Listing  7 - 7  and  7 - 8 .  task1  had 
to execute and complete before  task2  could begin. Therefore, there are three major categories of 
synchronization: 

  Data  

  Hardware  

  Task    

 Table  7 - 5  summarizes each type of synchronization.    

❑

❑

❑

❑

❑

❑

Table 7-5

Types of 
 synchronization Description

Data Necessary to prevent race conditions. It allows concurrent threads/
processes to access a block of memory safely.

Hardware Necessary when several hardware devices are needed to perform a task 
or group of tasks. It requires communication between tasks and tight 
control over real-time performance and priority settings.

Task Necessary to prevent race conditions. It enforces preconditions and 
postconditions of logical processes.

c07.indd   239c07.indd   239 7/31/08   3:00:51 PM7/31/08   3:00:51 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

240

  Synchronizing Access to Data 
 In this chapter thus far, we have discussed IPC and ITC. As we have discussed, the difference between 
data shared between processes and data shared between threads is that threads share the same address 
space and processes have separate address spaces. IPC exists outside the address space of the processes 
involved in the communication, in the kernel space or in the filesystem. Shared memory maps 
a structure to a block of memory that is accessible to the processes. ITC are global variables and data 
structures. It is the IPC and ITC mechanisms that require synchronization. Figure  7 - 6  shows where the 
IPC and ITC mechanisms exist in the layout of a process.   

LOCAL VARIABLES
GLOBAL VARIABLES

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

IPC MECHANISMS 

global data structures
global variables
constants
static variables

global data structures
global variables
constants
static variables

shared
memory filesmessages

PROCESS B’S ADDRESS SPACE

PROCESS A’S ADDRESS SPACE

local variables
global variableslocal variables

local variables

thread A’s stack thread A’s code

thread B’s stack thread B’s code

local variables
global variables

• trees

• graphs

• queues

• stacks

ITC MECHANISMS

FIFOs/pipes

Figure 7-6

 Data synchronization is needed in order to control race conditions and allow concurrent threads or 
processes to safely access a block of memory. Data synchronization controls when a block of memory can 
be read or modified. Concurrent access to shared memory, global variables, and files must be 
synchronized in a multithreaded environment. Data synchronization is needed at the location in a task ’ s 
code when it attempts to access the block of memory, global variable, or file shared with other 
concurrently executing processes or threads. This is called the  critical section . The critical section can be 
any block of code that changes the writes or reads to/from a file, closes a file, reads or writes global 
variables or data structures. 

c07.indd   240c07.indd   240 7/31/08   3:00:52 PM7/31/08   3:00:52 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

241

  Critical Sections 
 Critical sections are an area or block of code that accesses a shared resource that must be controlled 
because the resource is being shared by multiple concurrent tasks. Critical sections are marked by an 
entry point and an exit point. The actual code in the critical section can be one line of code where the 
thread/process is reading or writing to memory or a file. It can also be several lines of code where 
processing and calls to other methods involve the shared data. The entry point marks your entering the 
critical section and an exit point marks your leaving the critical section. 

 entry point  (synchronization starts here)

                
-------critical section-------
                
                
                

 access file, variable or other resource 

                
                
                
-------critical section-------
                
 exit point  (synchronization ends here)  

 In order to solve the problems caused by multiple concurrent tasks sharing a resource, three conditions 
should be met: 

  1.   If a task is in its critical section, other tasks sharing the resource cannot be executing in their 
critical section. They are blocked. This is called  mutual exclusion .  

  2.   If no tasks are in their critical section, then any blocked tasks can now enter their critical section. 
This is called  progress .  

  3.   There should be a  bounded wait  as to the number of times that a task is allowed to reenter its criti-
cal sections. A task that keeps entering its critical sections may prevent other tasks from attempt-
ing to enter theirs. A task cannot reenter its critical sections if other tasks are waiting in a queue.    

 These synchronization techniques are what are used to manage critical sections. It is important to 
determine the how these concurrently executing tasks are using the shared data. Are they writing to the 
data while others are reading? Are all reading from it? Are all writing to it? How they are sharing the 
shared data helps determine what type of synchronization is needed and how it should be implemented. 
Remember applying synchronization incorrectly can also cause problems like deadlock, data race 
conditions, and so forth.  

c07.indd   241c07.indd   241 7/31/08   3:00:52 PM7/31/08   3:00:52 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

242

  PRAM Model 
 The Parallel Random - Access Machine (PRAM) is a simplified theoretical model in which there are  N  
processors labeled P1, P2, P3,  . . .  P N  that share one global memory. All the processors have simultaneous 
read and write access to shared global memory. Each of these theoretical processors can access the global 
shared memory in one  uninterruptible  unit of time. The PRAM model has four algorithms that can be 
used to access the shared global memory, concurrent read and write algorithms, and exclusive read and 
write algorithms that work like this: 

  1.   Concurrent read algorithms are allowed to read the same piece of memory simultaneously with 
no data corruption.  

  2.   Concurrent write algorithms allow multiple processors to write to the shared memory.  

  3.   Exclusive read algorithms are used to ensure that no two processors ever read the same memory 
location at the same time.  

  4.   Exclusive write ensures that no two processors write to the same memory at the same time.    

 Now this PRAM model can be used to characterize concurrent access to shared memory by multiple 
tasks.   

Concurrent and Exclusive Memory Access 
 The concurrent and exclusive read - write algorithms can be combined into the following types of 
algorithm combinations that are possible for read - write access: 

  Exclusive Read and Exclusive Write (EREW)  

  Concurrent Read and Exclusive Write (CREW)  

  Exclusive Read and Concurrent Write (ERCW)  

  Concurrent Read and Concurrent Write (CRCW)    

 These algorithms can be viewed as access policies implemented by the tasks sharing the data. Figure  7 - 7  
shows these access policies. EREW means access to the shared memory is serialized where only one task 
at a time is given access to the shared memory whether it is access to write or to read. An example of 
EREW access policy is the producer - consumer. The program in Chapter  5  in Listing  5 - 7  has an EREW 
access policy with the shared  posix_queue  between processes. One process writes the name of a file 
another process is to search for the code in. Access to the queue that contained the filenames was 
restricted to exclusive write by the producer and exclusive read by the consumer. Only one task was 
allowed access to the queue at any given time. 

 CREW access policy allows multiple reads of the shared memory and exclusive writes. There are no 
restrictions on how many tasks can read the shared memory concurrently, but only one task can write to 
the shared memory. Concurrent reads can occur while an exclusive write is taking place. With this access 
policy, each reading task may read a different value while other task is writing. The next task that reads 
the shared memory will see different data than some other task. This may be intended, but it also may 
not. ERCW access policy is direct reverse of CREW. Only one task can read the shared data, but 
concurrent writes are allowed. CRCW access policy allows concurrent reads and concurrent writes.   

❑

❑

❑

❑

c07.indd   242c07.indd   242 7/31/08   3:00:52 PM7/31/08   3:00:52 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

243

read

shared
memory

shared
memory

Thread B

Thread D

write readThread A

shared
memory

Thread A

Thread C

Thread A

Thread B

Thread B

write

write read

write read

blocks
EREW   Exclusive Read Exclusive Write

ERCW   Exclusive Read Concurrent Write

CREW   Concurrent Read Exclusive Write

CRCW   Concurrent Read Concurrent Write

shared
memory

Thread DThread C

Thread A Thread B
write read

write read

shared
memory

Thread DThread C

Thread A Thread B
write read

write read

Figure 7-7

 Each of these four algorithm types requires different levels and types of synchronization. They can be 
analyzed on a continuum with the access policy that requires the least amount of synchronization to 
implement on one end and the access policy that requires the most amount of synchronization at the 
other end. EREW is the policy that is the simplest to implement because EREW essentially forces 
sequential processing. You may think that CRCW is the simplest, but it presents the most challenges. It 
may appear that memory can be accessed without restriction. But this is the most difficult to implement 
and requires the most synchronization in order to meet the goal to implement a synchronization process 
that maintains data integrity and satisfactory system performance.    

c07.indd   243c07.indd   243 7/31/08   3:00:53 PM7/31/08   3:00:53 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

244

Concurrent Tasks: Coordinating Order of Execution 
 Synchronization is also needed to coordinate the order of execution of concurrent tasks. Order of 
execution was important in the program in Listings  7 - 5  and  7 - 6 . If the tasks were executed out of order, 
the final value for  Answer  would be wrong. In the program in Listings  7 - 7  and  7 - 8 , if  task1  did not 
complete,  task2  would attempt to read from an empty queue. Synchronization is required to coordinate 
these tasks so that work can progress or so that the correct results can be produced. Data synchronization 
( access synchronization ) and task synchronization ( sequence synchronization ) are two types of 
synchronization required when executing multiple concurrent tasks. Task synchronization enforces 
preconditions and postconditions of logical processes.    

Relationships between Cooperating Tasks 
 There are four basic synchronization relationships between any two tasks in a single process or between 
any two processes within a single application: 

  Start - to - start (SS)  

  Finish - to - start (FS)  

  Start - to - finish (SF)  

  Finish - to - finish (FF)    

 These four basic relationships characterize the coordination of work between threads and processes. 
Figure  7 - 8  shows activity diagrams for each synchronization relationship.     

❑

❑

❑

❑

<< signal >>

Thread A Thread B

<< signal >>

Thread A Thread B

Thread A Thread B Thread A Thread B

<< signal >>
ThreadA blocks

<< signal >>

START-TO-START FINISH-TO-FINISH

FINISH-TO-START START-TO-FINISH

ThreadB blocks

ThreadB blocks
ThreadA blocks

Thread B

Figure 7-8

c07.indd   244c07.indd   244 7/31/08   3:00:53 PM7/31/08   3:00:53 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

245

Start - to - Start (SS) Relationship 

 In a  start - to - start  synchronization, one task cannot start until another task starts. One task may start 
before the other but never after. For example, say that you have a program that implements an 
Embedded Conversational Agent (ECA). The ECA is a computer - generated talking head, which provides 
a kind of personality for software. The program that implements the ECA has several threads. Here, the 
focus is on the threads that controls the animation of the eyes (ECA does not have a mouth, the eyes 
animate) and the thread that controls the sound or voice. You want to give the illusion that the sound 
and eyes animation are synchronized. Ideally, they should execute at precisely the same moment. With 
multiple processor cores, both threads may start simultaneously. The threads have a start - to - start 
relationship. Because of timing conditions, the thread that produces the audio (Thread A) is allowed to 
start slightly before the thread that starts the animation (Thread B), but not much before for the illusion ’ s 
sake. It takes a little longer for the audio to initialize, so it can start a bit early. Graphics load much faster. 
Figure  7 - 9  shows images of our ECA.      

1) ECA IMAGE 1 2) ECA IMAGE 2

3) ECA IMAGE 3 4) ECA IMAGE 4

Figure 7-9

Finish - to - Start (FS) Relationship 

 In a  finish - to - start  synchronization, Task A cannot finish until Task B starts. This type of relationship is 
common with parent - child processes. The parent process cannot complete execution of some operation 
until it spawns a child process or it receives a communication from the child process that it has started its 

c07.indd   245c07.indd   245 7/31/08   3:00:53 PM7/31/08   3:00:53 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

246

operation. The child process continues to execute once it has signaled the parent or supplied the needed 
information. The parent process is then free to complete its operation.    

Start - to - Finish Relationship 

 A  start - to - finish  synchronization relationship is the reverse of the finish - to - start relationship. In a start - to -
 finish synchronization relationship, one task cannot start until another task finishes. Task A cannot start 
execution until Task B finishes executing or completes a certain operation. The program in Listing  7 - 7  
and  7 - 8  had a start - to - finish synchronization.  task2  could not start until  task1  completed. The main 
thread used a join for synchronization. The main thread blocked until  task1  returned then it created 
a thread that executed  task2 . 

 If process A is reading from a pipe connected to process B, process B must first write to the pipe before 
process A reads from it. Process B must complete at least one operation  —  write a single element to the 
pipe  —  before process A starts. With the pipe, there is limited synchronization built in by using blocking. 
But if there are multiple readers and writers, then more elaborate synchronization is required.

    Finish - to - Finish Relationship 

 A  finish - to - finish  synchronization relationship means one task cannot finish until another task finishes. 
Task A cannot finish until Task B finishes. This again can describe the relationship between parent and 
child processes. The parent process must wait until all its child processes have terminated before it is 
allowed to terminate. If the parent process terminates before its child processes, those terminated child 
processes become zombied. The parent process calls a  wait()  for each of its child processes (like  join  
for threads) or waits for a mutex or condition variable that is broadcast by child threads. 

 Another example of a finish - to - finish relationship is the boss - worker concurrency model. It is the boss ’ s 
job to delegate work to the workers. It would be undesirable for the boss to terminate before the worker. 
New requests to the system would not be processed, existing threads would have no work to perform, 
and no new threads would be created. If the boss were a primary thread and it terminated, the process 
would terminate along with all the worker threads. In a peer - to - peer model, if thread A dynamically 
allocates an object passed to thread B and thread A terminates, the object is destroyed along with thread 
A. If this is done before thread B has a chance to use it, a segmentation fault or data access violation 
occurs. In order to prevent these kinds of errors with threads, termination of threads is synchronized by 
using the  pthread_join() . This creates a finish - to - finish synchronization.     

  Synchronization Mechanisms 
 The synchronization mechanisms we discuss in this section cover mechanisms for both processes 
and threads. These mechanisms can be used to prevent race conditions and deadlocks between multiple 
tasks by implementing the synchronization access policies we have mentioned and managing critical 
sections of tasks. In this section, we introduce: 

  Semaphores and mutexes  

  Read - write locks  

  Condition variables    

❑

❑

❑

c07.indd   246c07.indd   246 7/31/08   3:00:54 PM7/31/08   3:00:54 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

247

  Semaphores 
 A  semaphore  is a synchronization mechanism that is used to manage synchronization relationships and 
implement access policies. A semaphore is a special kind of variable that can be accessed only by very 
specific operations. It helps threads and processes synchronize access to shared modifiable memory or 
manage access to a device or other resource. The semaphore is like a key that grants access the resource. 
This key can be owned by only one process or thread at a time. Whichever task owns the key or 
semaphore locks the resource for its exclusive use. Locking the resource causes any other task that 
wishes to access the resource to wait until the resource has been unlocked. When the semaphore is 
unlocked, the next task waiting in the queue for the semaphore is given it, thus accessing the resource. 
The  next task  is determined by the scheduling policy used by the thread or process. Figure  7 - 10  shows the 
basic concept of a semaphore as described.     

semaphore

TASK B
lock

lock

SHARED MEMORY

BLOCKED

TASK A
ACCESS

TASK A

SHARED
MEMORY

Figure 7-10

Basic Semaphore Operations 
 A semaphore can be accessed only by specific operations. There are two operations that can be 
performed on a semaphore:  P()  and  V()  operations. The  P()  operation decrements the semaphore and 
the  V()  operation increments the semaphore: 

 P(Mutex) 

if(Mutex  >  0){
  Mutex--;
}
else {
    Block on Mutex;
}
                
 V(Mutex) 

if(Blocked on Mutex N processes){
  pass on Mutex;
}
else{
    Mutex++;
}  

 Here  Mutex  is the semaphore. The actual implementation will be system dependent. These operations 
are indivisible. This means that once the operation is in progress, it cannot be preempted. If several tasks 
attempt to make a call to the  P()  operation, only one task is allowed to proceed. If  Mutex  has already 

c07.indd   247c07.indd   247 7/31/08   3:00:54 PM7/31/08   3:00:54 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

248

been decremented, then the task blocks and is placed in a queue. The  V()  operation is called by the task 
that owns  Mutex . If there are other tasks waiting on  Mutex , it is given to the next task in the queue 
according the scheduling policy. If no tasks are waiting, then  Mutex  is incremented. 

 Semaphore operations can go by other names such as: 

 P() operation 

lock()
wait()
own()
                
                
 V() operation 

unlock()
post()
unown()  

 The value of the semaphore depends on the type of semaphore it is. There are several types of 
semaphores. For example: 

  A  binary semaphore  has the value 0 or 1. The semaphore is available when its value is 1 and not 
available when it is 0. When a process or thread obtains the binary semaphore, the value is 
decremented to 0. So, if another process or thread tests its value, it will not be available. Once 
the process or thread is done, the semaphore is incremented.  

  A  counting semaphore  has some non - negative integer value. Its initial value represents the 
number of resources available.    

 The POSIX standard defines several types of semaphores. Some of these semaphores are used by threads 
only, and others can be used by processes or threads. Any operating system that is compliant with the 
Single Unix Specification or POSIX standard can supply an implementation of these semaphores. They 
are apart of the  libpthread  library, and the functions are declared in the  pthread.h  header.    

Posix Semaphores 
 The POSIX semaphore defines a named binary semaphore. The name corresponds to a pathname in the 
filesystem. Table  7 - 6  lists the basic functions for using a semaphore along with a brief description.   

❑

❑

Table 7-6

Basic Semaphore 
Operations Description

Initialization Allocates memory required to hold the semaphore and give memory initial 
values. Also determines whether the semaphore is private, sharable, owned, 
or unowned.

Request ownership Makes a request to own the semaphore. If the semaphore is owned by a 
thread, then the thread blocks.

c07.indd   248c07.indd   248 7/31/08   3:00:54 PM7/31/08   3:00:54 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

249

 Listing  7 - 9  shows how semaphores can be used between multiple processes.

   Listing 7 - 9   

// Listing 7-9 A process using a semaphore on an output file.
                
 1  using namespace std;
 2  #include  < semaphore.h > 
 3  #include  < iostream > 
 4  #include  < fstream > 
 5
 6
 7  int main(int argc, char *argv[])
 8  {
 9
10     int Loop, PN;
11     sem_t *Sem;
12     const char *Name;
13     ofstream Outfile(“out_text.txt”,ios::app);
14
15     PN = atoi(argv[1]);
16     Loop = atoi(argv[2]);
17     Name = argv[3];
18
19     Sem = sem_open(Name,O_CREAT,O_RDWR,1);
20     sem_unlink(Name);
21
22
23     for (int Count = 1; Count  <  Loop; ++Count) {
24        sem_wait(Sem);
25        Outfile  <  <  “Process:”  <  <  PN  <  <  “ counting “  <  <  Count  <  <  endl;
26        sem_post(Sem);
27
28     }
29     Outfile.close();
30
31     exit(0);
32
33
34
35  }
                   

Basic Semaphore 
Operations Description

Release ownership Releases the semaphore so it is accessible to blocked threads.

Try ownership Tests the ownership of the semaphore. If the semaphore is owned, the 
requester does not block but continues executing. Can wait for a period of 
time before continuing.

Destruction Frees the memory associated with the mutex. The memory cannot be 
destroyed or closed if it is owned or others are still waiting.

c07.indd   249c07.indd   249 7/31/08   3:00:55 PM7/31/08   3:00:55 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

250

 The program in Listing  7 - 9  opens a semaphore of type  sem_t  in Line 11. The named semaphore  Sem  is 
opened with  Name  typed in as the third argument on the command line.  O_CREATE  and  O_RDWR  are flags 
that specify how the semaphore is opened. In this case, the semaphore is opened only if is does not exist. 
With the  O_RDWR  flag set, the semaphore is opened with read and write permissions.  Sem  is initialized 
with a value of 1. The  sem_wait  and  sem_post  operations encapsulate the access to  Outfile . During 
the execution of Line 25, no other processes should access the file. All processes that use this file for input 
or output should use the same semaphore. In Listing  7 - 10 , a process that reads the file also uses the 
semaphore.

   Listing 7 - 10   

// Listing 7-10 A process using a semaphore on an input file.
                
 1  using namespace std;
 2  #include  < semaphore.h > 
 3  #include  < iostream > 
 4  #include  < fstream > 
 5  #include  < string > 
 6
 7
 8  int main(int argc, char *argv[])
 9  {
10
11     string Str;
12     const char *Name;
13     sem_t *Sem;
14     ifstream Infile(“out_text.txt”);
15
16     if(Infile.is_open()){
17        Name = argv[1];
18        Sem = sem_open(Name,O_CREAT,O_RDWR,1);
19        sem_unlink(Name);
20
21        while(!Infile.eof()  &  &  Infile.good()){
22           sem_wait(Sem);
23           getline(Infile,Str);
24           cout  <  <  Str  <  <  endl;
25           sem_post(Sem);
26
27        }
28        cout  <  <  “--------------------------------”  <  <  endl;
29
30        Infile.close();
31
32     }
33
34     exit(0);
35
36
37
38  }
                   

c07.indd   250c07.indd   250 7/31/08   3:00:55 PM7/31/08   3:00:55 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

251

 The program in Listing  7 - 10  the named semaphore  Sem  is opened with  Name  typed in as the first 
argument on the command line.  O_CREATE  and  O_RDWR  are flags that specify how the semaphore is 
opened, as in Listing  7 - 9 . The  sem_wait  and  sem_post  operations encapsulate the access to  Infile . 
During the execution of Line 23, the process in Listing  7 - 9  cannot write to the file. 

 Here is Program Profile 7 - 4 for Listings  7 - 9  and  7 - 10 .   

  Program Profile 7 - 4   
Program Name:   

program7-9.cc (Listing 7-9)
program7-10.cc (Listing 7-10)

     Description: 
 The  program7 - 9  in Listing  7 - 9  opens a semaphore of type  sem_t  named semaphore  Sem.  It is opened 
with  Name  typed in as the third argument on the command line.  Sem  is initialized with a value of 1. The 
 sem_wait  and  sem_post  operations encapsulate the access to  Outfile . During the execution no other 
processes should access the file. All processes that use this file for input or output should use the same 
semaphore. In Listing  7 - 10 , a process that reads the file also uses the semaphore. From the command line 
the program looks for the process number, a loop invariant, and the name of the semaphore. The 
program writes process, process number, and the loop iteration number to the file. 

 In  program7 - 10  in Listing  7 - 10  the named semaphore  Sem  is opened with  Name  typed in as the first 
argument on the command line. It should have the same name as the semaphore in  program7 - 9  in order 
to coordinate access to  out_text.txt . The  sem_wait  and  sem_post  operations encapsulate the access 
to  Infile . During the execution  program7 - 9  cannot write to the file. The program requires the name of 
the semaphore as a command - line argument. It uses the named semaphore. It opens the file  out_text.
txt  and writes its contents to  stout .    

Libraries Required:   
librt

     Headers Required:   

 < semaphore.h >     < iostream >   < fstream >     < string >   < fcntl.h > 

     Compile and Link Instructions:   
c++ -o program7-9 program7-9.cc -lrt
c++ -o program7-10 program7-10.cc -lrt

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6    

c07.indd   251c07.indd   251 7/31/08   3:00:55 PM7/31/08   3:00:55 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

252

Processors: 
 Opteron, UltraSparc T1    

Execution Instructions: 
 These programs require command - line arguments. For  program7 - 9 , the first argument is the process 
number, the second argument is the loop invariant, and the third argument is the name of the 
semaphore.  program7 - 10  requires the name of the semaphore. 

   ./program7-9 3 4 /sugi  &  ./program7-10 /sugi

     Notes: 
 Make sure that the name of the semaphore contains a  “ / ” . These programs are to execute at the same 
time.

    Mutex Semaphores 
 The POSIX standard defines a mutex semaphore of type  pthread_mutex_t  that can be used by threads 
and processes. Mutex means  mutual exclusion . A mutex is a type semaphore, but there is a difference 
between them. A mutex must always be unlocked by the thread that locked it. With a semaphore, a post 
(or unlock) can be performed by a thread other than the thread that performed the wait (or unlock). So, 
one thread or process can call  wait()  and another process/thread can call  post()  on the same 
semaphore. 

  pthread_mutex_t  provides the basic operations necessary to make it a practical synchronization 
mechanism: 

  Initialization  

  Request ownership  

  Release ownership  

  Try ownership  

  Destruction    

 Table  7 - 7  lists the  pthread_mutex_t  functions that are used to perform these basic operations. The 
 initialization  allocates memory required to hold the mutex semaphore and to give the memory some 
initial values. A binary semaphore has an initial value of 0 or 1. A counting semaphore has a value that 
represents the number of resources the semaphore is to track. It can represent the request limit a program 
is capable of processing in a single session. In contrast to regular variables, there is no guarantee that the 
initialization operation of a mutex will occur. Be sure to take precautions to ensure that the mutex was 
initialized by checking the return value or checking the  errno  value. The system fails to create the 
mutex if the space set aside for mutexes has been used, the number of allowable semaphores has been 
exceeded, the named semaphore already exists, or there is some other memory allocation problem.   

❑

❑

❑

❑

❑

c07.indd   252c07.indd   252 7/31/08   3:00:55 PM7/31/08   3:00:55 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

253

 The pthread mutex has an attribute object that encapsulates all the attributes of the mutex. This attribute 
object is used similarly to the attribute object for a thread. This difference is that whereas the attribute 
object of a thread is set, the attribute for a mutex has no set group of properties associated with it. We 
will discuss this later in the chapter. What is important to understand for now is that the attribute object 
can be passed to the initialization function creating a mutex with attributes of those set in the object. If no 
attribute object is used, the mutex is initialized with default values. The  pthread_mutex_t  is initially 
unlocked and private. A  private  mutex is shared between threads of the same process, whereas a  shared  
mutex is shared between threads of multiple processes. If default attributes are to be used, the mutex can 
be initialized statically by using the macro: 

pthread_mutext Mutex = PTHREAD_MUTEX_INITIALIZER;  

 This creates a statically allocated mutex object. This method uses less overhead but performs no error 
checking. 

 The  request ownership  operation grants ownership of the mutex to the calling process or thread. The 
mutex is either owned or unowned. Once owned, the thread or process owning it has exclusive access to 
the resource. If there is any attempt to own the mutex (by calling this operation) by any other processes 
or threads, they are blocked until the mutex is made available. When the mutex is released, this causes 
the next process or thread that has blocked to unblock and obtain ownership of the mutex. With the 
 pthread_mutex_lock()  the thread granted ownership of a given mutex is the only thread that can 
release the mutex. 

 The  try  ownership operation tests the mutex to see if it is already owned. The function returns some 
value if it is owned. The advantage of this operation is the thread or process does not block. It can 
continue executing code. If the mutex is not owned, then ownership is granted. 

 The  destruction  operation frees the memory associated with the mutex. The memory cannot be destroyed 
or closed if it is owned or a thread or process is waiting for the mutex.    

Table 7-7

Mutex Operations Function Prototypes/Macros #include <pthread.h>

Initialization int pthread_mutex_init(pthread_mutex_t *restrict
mutex, const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Request ownership <time.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_timedlock(pthread_mutex_t *restrict 
mutex, const struct timespec *restrict abs_timeout);

Release ownership int pthread_mutex_unlock (pthread_mutex_t *mutex);

Try ownership int pthread_mutex_trylock(pthread_mutex_t *mutex);

Destruction int pthread_mutex_destroy(pthread_mutex_t *mutex);

c07.indd   253c07.indd   253 7/31/08   3:00:56 PM7/31/08   3:00:56 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

254

Using the Mutex Attribute Object 
 The  pthread_mutex_t  has an attribute object used in a similar way as the thread attribute. As 
previously indicated, the attribute object encapsulates the attributes of a mutex object. Once initialized, it 
can be used by multiple mutex objects when passed to  pthread_mutex_init() . Also, as previously 
indicated, in contrast to the thread attribute function, there are no mandatory attributes associated with 
the object. The functions that can be used to set the mutex attributes have to do with the following: 

  Priority ceiling  

  Protocol  

  Shared  

  Type    

 These functions are listed in Table  7 - 8  with a brief description.   

❑

❑

❑

❑

Table 7-8

pthread_mutex_t Attribute Object 
Function Prototypes
#include <pthread.h> Description

Creation/Destruction

int pthread_mutexattr_
init(pthread_mutexattr_t * 
attr);

Initializes a mutex attribute object specified by the 
parameter attr with default values for all of the 
attributes defined by the implementation.

int pthread_mutexattr_
destroy(pthread_mutexattr_t * 
attr);

Destroys a mutex attribute object specified by the attr, 
which causes the mutex attribute object to become 
uninitialized. Can be reinitialized by calling the 
pthread_mutexattr_init() function.

Priority Ceiling Defines the minimum priority level of the mutex.

int 
pthread_mutexattr_
setprioceiling(pthread_
mutexattr_t * attr,int 
prioceiling);

int 
pthread_mutexattr_
getprioceiling(const pthread_
mutexattr_t*restrict attr,int 
*restrict prioceiling);

Sets and returns the priority ceiling attribute of the mutex 
specified by attr. prioceiling contains the priority 
ceiling of the mutex. The values are within the maximum 
range of priorities defined by SCHED_FIFO.

Protocol Defines how the scheduling and priority of the mutex is 
utilized.

c07.indd   254c07.indd   254 7/31/08   3:00:56 PM7/31/08   3:00:56 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

255

pthread_mutex_t Attribute Object 
Function Prototypes
#include <pthread.h> Description

int 
pthread_mutexattr_
setprotocol(pthread_
mutexattr_t * attr,int 
protocol);

int 
pthread_mutexattr_
getprotocol(const pthread_
mutexattr_t *restrict attr, 
int *restrict protocol);

Sets and returns the protocol of the mutex attrbute 
specified by the attr. protocol contains the value of the 
protocol attribute:

PTHREAD_PRIO_NONE

The priority and scheduling of the thread is not affected 
by the ownership of the mutex.

PTHREAD_PRIO_INHERIT

Thread blocking other threads of higher priority due to 
ownership of such a mutex execute at the highest 
priority of any of the threads waiting on any of the 
mutexes owned by this thread with such a protocol.

PTHREAD_PRIO_PROTECT

Threads owning such a mutex execute at the highest 
priority ceilings of all mutexes owned by this thread with 
such a protocol regardless of whether other threads are 
blocked on any of these mutexes.

Shared Determines whether the mutex is for processes.

int pthread_mutexattr_
setpshared(pthread_mutexattr_
t * attr,int pshared);

int pthread_mutexattr_
getpshared(const pthread_
mutexattr_t *restrict 
attr,int *restrict pshared);

Sets or returns the shared attribute of the mutex attribute 
object specified by the attr. pshared contains a value:

PTHREAD_PROCESS_SHARED

Permits a mutex to be shared by any threads that have 
access to the allocated memory of the mutex even if the 
threads are in different processes.

PTHREAD_PROCESS_PRIVATE

Mutex is shared between threads of the same process as 
the initialized mutex.

Type Describes the behavior of the mutexes; determines 
whether deadlock is determined, error checking 
performed, and so on.

int pthread_mutexattr_
settype(pthread_mutexattr_t * 
attr,int type);

int pthread_mutexattr_
gettype(const pthread_
mutexattr_t *restrict 
attr,int *restrict type);

Sets and returns the type mutex attribute specified by the 
attr. type contains a value:

PTHREAD_MUTEX_DEFAULT

PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_NORMAL

c07.indd   255c07.indd   255 7/31/08   3:00:56 PM7/31/08   3:00:56 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

256

 To use a phtread mutex between threads of different processes requires the shared attribute. This 
attribute determines if the mutex is private or shared. Private mutexes are shared only among threads of 
the same process. They can be declared as global or a handle can be passed between threads. Shared 
mutexes, however, are used by any thread that has access to the mutex memory, and this includes 
threads of different processes. To do this, use  pthread_mutexattr_setshared()  and set the attribute 
to  PTHREAD_PROCESS_SHARED  as follows: 

pthread_mutexattr_setpshared( & MutexAttr,PTHREAD_PROCESS_SHARED);  

 This allows  Mutex  to be shared by threads of different processes. 

 Figure  7 - 11  contrasts the idea of private and shared mutexes. If threads of different processes are to share 
a mutex, that mutex must be allocated in memory shared between processes. We discussed shared 
memory earlier in this chapter. Mutexes between processes can be used to protect critical sections that 
access files, pipes, shared memory, and devices.      

shared
mutex

Thread CThread C

Thread A Thread A
write read

read

PROCESS A’S
ADDRESS SPACE

PROCESS B’S
ADDRESS SPACE

write

shared
private
mutex

Thread C

Thread A write

PROCESS A’S ADDRESS SPACE

write

Figure 7-11

c07.indd   256c07.indd   256 7/31/08   3:00:56 PM7/31/08   3:00:56 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

257

Using Mutex Semaphores to Manage Critical Sections 
 Mutexes can be used to manage critical sections of processes and threads in order to control race 
conditions. Mutexes avoid race conditions by serializing access to the critical section. Example  7 - 8  shows 
code for the new tasks defined in Listing  7 - 5 . Mutexes are used to protect their critical sections.

   Example 7 - 8   

// Example 7-8 New code for tasks in Listing 7-5.
                
 3  void *task1(void *X)
 4  {
 5     pthread_mutex_lock( & Mutex);
 6     Answer = Answer * 32; //critical section
 7     pthread_mutex_unlock( & Mutex);
 8     cout  <  <  “thread A Answer = “  <  <  Answer  <  <  endl;
 9
10  }
                   

 In Example  7 - 8 ,  task1  now uses a mutex when it modifies the global variable  Answer . In Line 8 the task 
sends the new value of  Answer  to  cout . This is the critical section for the task. Now you can have each 
task execute the same code except each task sends to  stout  its thread name. So, now this is the output: 

Before threads Answer = 10
thread 1 Answer = 320
thread 2 Answer = 160
thread 3 Answer = 165
After threads Answer = 165    

  Read - Write Locks 
 Mutex semaphores serialize the critical section. Only threads or processes that use the shared data are 
permitted to enter the critical section. With  read - write locks , multiple threads are allowed to enter the 
critical section if they are to read the shared memory only. Therefore, any number of threads can own a 
read - write lock for reading, but if multiple threads are to write or modify the shared memory, only one 
thread is given access. No other threads are allowed to enter the critical section if one thread is given 
write access to the shared memory. If the application has multiple threads, mutex exclusion can be 
extreme. The performance of the application can benefit by allowing multiple reads. The POSIX standard 
defines a read - write lock of type  pthread_rwlock_t . Similar to mutex semaphores, the read - write locks 
have the same operations. Table  7 - 9  lists the read - write lock operations.   

c07.indd   257c07.indd   257 7/31/08   3:00:57 PM7/31/08   3:00:57 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

258

 The difference between regular mutexes and read - write mutexes is their locking request operations. 
Instead of one locking operation there are two: 

pthread_rwlock_rdlock()
pthread_rwlock_wrlock()  

  pthread_rwlock_rdlock()  obtains a read - lock and  pthread_rwlock_wrlock()  obtains a write lock. 
If a thread requests a read - lock, it is granted the lock as long as there are no threads that hold a write 
lock. If so, the calling thread is blocked. If a thread requests a write lock, it is granted as long as there are 
no threads that hold a read lock or a write lock. If so, the calling thread is blocked. 

 The read - write lock is of type  pthread_rwlock_t . This type also has an attribute object that 
encapsulates its attributes. The attribute functions are listed in Table  7 - 10 .   

Table 7-9

Read-Write Lock 
Operations

Function Prototypes #include <pthread.h>

Initialization int pthread_rwlock_init(pthread_rwlock_t *restrictrwlock, 
const pthread_rwlockattr_t *restrict attr);

Request ownership #include <time.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict 
rwlock, const struct timespec *restrict abs_timeout);

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict 
rwlock, const struct timespec *restrict abs_timeout);

Release ownership int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

Try ownership int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

Destruction int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

c07.indd   258c07.indd   258 7/31/08   3:00:57 PM7/31/08   3:00:57 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

259

 The  pthread_rwlock_t  can be private between threads or shared between threads of different 
processes.   

Using Read - Write Locks to Implement Access Policy 
 Read - write locks can be used to implement a CREW access policy. Several tasks can be granted 
concurrent reads, but only one task is granted write access. Using read - write locks can keep concurrent 
reads from occurring with the exclusive write. Example  7 - 9  contains tasks using read - write locks to 
protect critical sections.

   Example 7 - 9   

// Example 7-9 Threads using read-write locks.
//...
                
pthread_t ThreadA,ThreadB,ThreadC,ThreadD;
pthread_rwlock_t RWLock;
                
void producer1(void *X)
{
   pthread_rwlock_wrlock( & RWLock);

Table 7-10

pthread_rwlock_t Attribute Object Function 
Prototypes #include <pthread.h>

Description

int pthread_rwlockattr_init(pthread_
rwlockattr_t * attr); 

Initializes a read-write lock attribute object 
specified by attr with default values for all of 
the attributes defined by the implementation.

int 
pthread_rwlockattr_destroy(pthread_
rwlockattr_t * attr);

Destroys a read-write lock attribute object 
specified by attr. Can be reinitialized by calling 
pthread_rwlockattr_init().

int pthread_rwlockattr_setpshared
(pthread_rwlockattr_t * attr,
int pshared);

int pthread_rwlockattr_getpshared(const 
pthread_rwlockattr_t *

restrict attr,int *restrict pshared);

Sets or returns the process shared attribute of the 
read-write lock attribute object specified by attr. 
The pshared parameter contains a value:

PTHREAD_PROCESS_SHARED

Permits a read-write lock to be shared by any 
threads that have access to the allocated memory 
of the read-write lock even if the threads are in 
different processes.

PTHREAD_PROCESS_PRIVATE

The read-write lock is shared between threads 
of the same process as the initialized rwlock.

(continued)

c07.indd   259c07.indd   259 7/31/08   3:00:57 PM7/31/08   3:00:57 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

260

Example 7 - 9  (continued) 

  //critical section 

   pthread_rwlock_unlock( & RWLock);
}
                
void producer2(void *X)
{
   pthread_rwlock_wrlock( & RWLock);

  //critical section 

   pthread_rwlock_unlock( & RWLock);
}
                
void consumer1(void *X)
{
   pthread_rwlock_rdlock( & RWLock);

  //critical section 

   pthread_rwlock_unlock( & RWLock);
}
                
void consumer2(void *X)
{
   pthread_rwlock_rdlock( & RWLock);

  //critical section 

   pthread_rwlock_unlock( & RWLock);
}
                
int main(void)
{
                
   pthread_rwlock_init( & RWLock,NULL);
   //set mutex attributes
   pthread_create( & ThreadA,NULL,producer1,NULL);
   pthread_create( & ThreadB,NULL,consumer1,NULL);
   pthread_create( & ThreadC,NULL,producer2,NULL);
   pthread_create( & ThreadD,NULL,consumer2,NULL);
   //...
   return(0);
}
                   

 In Example  7 - 9  four threads are created. Two threads are producers,  ThreadA  and  ThreadC , and two 
threads are consumers,  ThreadB  and  ThreadD . All the threads have a critical section protected by the 
read - write lock,  RWLock .  ThreadB  and  ThreadD  can enter their critical sections concurrently or serially, 
but neither thread can enter its critical section if either  ThreadA  or  ThreadC  is in its.  ThreadA  and 
 ThreadC  cannot enter their critical sections concurrently. Table  7 - 11  shows part of the decision table for 
this program.      

c07.indd   260c07.indd   260 7/31/08   3:00:57 PM7/31/08   3:00:57 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

261

Object - Oriented Mutex Class 
 Listing  7 - 11  is the declaration of an object - oriented mutex class.

   Listing 7 - 11   

// Listing 7-11 Declaration of an object-oriented mutex class.
                
                
 1  #ifndef _PERMIT_H
 2  #define_PERMIT_H
 3  #include  < pthread.h > 
 4  #include  < time.h > 
 5  class permit{
 6  protected:
 7     pthread_mutex_t Permit;
 8     pthread_mutexattr_t PermitAttr;
 9  public:
10     permit(void);
11     bool available(void);
12     bool not_in_use(void);
13     bool checkAvailability(void);
14     bool  availableFor(int secs,int nanosecs);
15  };
16
17
18  #endif/* _PERMIT_H */
                   

 The  permit  class provides the basic operations for a mutex class. Listing  7 - 12  contains the definition 
of the  permit  class.

Table 7-11

Thread A (writer) ThreadB (reader) ThreadC (writer) ThreadD (reader)

N N N Y

N N Y N

N Y N N

N Y N Y

Y N N N

c07.indd   261c07.indd   261 7/31/08   3:00:58 PM7/31/08   3:00:58 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

262

   Listing 7 - 12   

// Listing 7-12 Definition of the permit class.
                
 1  #include “permit.h”
 2
 3
 4  permit:: permit(void)
 5  {
 6     int AValue,MValue;
 7     AValue = pthread_mutexattr_init( & PermitAttr);
 8     MValue = pthread_mutex_init( & Permit, & PermitAttr);
 9  }
10  bool permit::available(void)
11  {
12     int RC;
13     RC = pthread_mutex_lock( & Permit);
14     return(true);
15
16  }
17  bool permit::not_in_use(void)
18  {
19     int RC;
20     RC = pthread_mutex_unlock( & Permit);
21     return(true);
22
23  }
24  bool permit::checkAvailability(void)
25  {
26     int RC;
27     RC = pthread_mutex_trylock( & Permit);
28     return(true);
29  }
30  bool permit::availableFor(int secs,int nanosecs)
31  {
32     //...
33     struct timespec Time;
34     return(true);
35
36  }
                   

 Listing  7 - 12  shows only the basic operations. For the class to be a fully viable mutex class, error checking 
would have to be added, as was the case in the  posix_queue  class in Example  7 - 3  earlier in the chapter. 

 Here is Program Profile 7 - 5 for Listings  7 - 11  and  7 - 12 .   

  Program Profile 7 - 5   
Program Name:   

permit.h (Listing 7-11) 
permit.cc (Listing 7-12)

c07.indd   262c07.indd   262 7/31/08   3:00:58 PM7/31/08   3:00:58 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

263

     Description: 
 Listing  7 - 11  contains the header for  permit.h , and Listing  7 - 12  contains  permit.cc .    

Libraries Required:   
libpthread

     Headers Required:   
  < pthread.h >     < time.h >  “permit.h”

     Compile and Link Instructions:   
c++ -c permit.cc

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6    

Processors: 
 Opteron, UltraSparc T1    

Execution Instructions: 
 N/A    

Notes: 
 None   

  Condition Variables 
 A mutex allows tasks to synchronize by controlling access to the shared data. A  condition variable  allows 
tasks to synchronize on the value of the data. Condition variables are semaphores that signal when an 
event has occurred. There can be multiple processes or threads waiting for the signal once the event has 
taken place. Condition variables are typically used to synchronize the sequence of operations. 

 The condition variable is of type  pthread_cond_t . These are the types of operations it can perform: 

  Initialize  

  Destroy  

  Wait  

  Timed wait  

  Signal  

  Broadcast    

 The initialize and destroy operations work in a similar manner to the other mutexes. The wait and timed 
wait operations suspend the caller until another process/thread signals on the condition variable. The 

❑

❑

❑

❑

❑

❑

c07.indd   263c07.indd   263 7/31/08   3:00:58 PM7/31/08   3:00:58 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

264

timed wait allows you to specify a period of time the thread waits. If the condition is not signaled within 
the specified time, the thread is released. Condition variables are used with mutexes. If a thread or 
process attempts to lock a mutex, you know that it blocks until the mutex is released. Once unblocked, it 
obtains the mutex and then continues. If a condition variable is used, it must be associated with a mutex. 
A task waits for the signal, and another task signals or broadcasts that the signal has happened. Table  7 - 12  
lists the basic operations defined for a condition variable.   

Table 7-12

Condition Variables 
Operations Function Prototypes/Macros#include <pthread.h>

Initialization int pthread_cond_init(pthread_cond_t 
*restrictcond, 
const pthread_condattr_t *restrict attr);

pthread_cond_t cond = 
PTHREAD_COND_INITIALIZER;

Signaling int pthread_cond_signal(pthread_cond_t 
*cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Destruction int pthread_cond_destroy(pthread_cond_t *cond);

 A task attempts to lock a mutex. If the mutex is already locked, then the task blocks. Once unblocked, the 
task releases the mutex while it waits on the signal for the condition variable. If the mutex is not locked, 
it releases the mutex and waits, indefinitely. With a timed wait, the task waits only for a specified period 
of time. If the time expires before the task is signaled, the function returns an error. It then acquires the 
mutex. 

 The signaling operation causes a task to signal to another thread or process that an event has occurred. If 
a task is waiting for a condition variable, it is unblocked and given the mutex. If there are several tasks 
waiting for the condition variable, only one is unblocked. The tasks wait in a queue and unblock 
according to the scheduling policy. The broadcast operation signals all the tasks waiting for the condition 
variable. If multiple tasks are unblocked, the tasks compete for the ownership of the mutex according to 
a scheduling policy. In contrast to the waiting operation, the signaling task is not required to own the 
mutex, although it is recommended. 

 The condition variable also has an attribute object. Table  7 - 13  lists the functions of the attribute object 
with a brief description.

c07.indd   264c07.indd   264 7/31/08   3:00:58 PM7/31/08   3:00:58 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

265

Table 7-13

pthread_cond_t Attribute 
ObjectFunction Prototypes #include 
<pthread.h> Description

int pthread_condattr_
init(pthread_condattr_t * attr);

Initializes a condition variable attribute object 
specified by attr with default values for all of the 
attributes defined by the implementation.

int pthread_condattr_
destroy(pthread_condattr_t * 
attr);

Destroys a condition variable attribute object 
specified by attr. Can be reinitialized by calling the 
pthread_condattr_init().

int 
pthread_condattr_
setpshared(pthread_condattr_t * 
attr,int pshared);

int 
pthread_condattr_
getpshared(const pthread_
condattr_t * restrict attr,int 
*restrict pshared);

Sets or returns the process shared attribute of the 
condition variable attribute object specified by attr
. pshared contains a value:

PTHREAD_PROCESS_SHARED

Permits a read-write lock to be shared by any threads 
that have access to the allocated memory of the 
condition variable even if the threads are in different 
processes.

PTHREAD_PROCESS_PRIVATE

The condition variable is shared between threads of 
the same process as the initialized cond.

int 
pthread_condattr_
setclock(pthread_condattr_t * 
attr,clockid_t clock_id);

int 
pthread_condattr_getclock(const 
pthread_condattr_t * restrict 
attr,clockid_t *restrict clock_
id);

Sets and returns the clock attribute for the condition 
variable attribute object specified by attr. clock is the 
clock id of the clock used to measure the timeout 
service of the pthread_cond_timedwait() function. 
The default value of clock is the system clock.

     Using Condition Variables to Manage Synchronization Relationships 
 The condition variable and the mutex can be used to implement the synchronization relationships 
mentioned earlier in the chapter: 

  Start - to - start (SS)  

  Finish - to - start (FS)  

  Start - to - finish (SF)  

  Finish - to - finish (FF)    

❑

❑

❑

❑

c07.indd   265c07.indd   265 7/31/08   3:00:59 PM7/31/08   3:00:59 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

266

 These relationships can exist between threads of the same processes or different processes. Listing  7 - 13  
contains a program demonstrating how to implement SF synchronization relationship. There are two 
mutexes used in each example. One mutex is used to synchronize access to the shared data, and the 
other mutex is used with the condition variable.

   Listing 7 - 13   

// Listing 7-13 SF synchronization relationship implemented with
// condition variables and mutexes.
                
 1  using namespace std;
 2  #include  < iostream > 
 3  #include  < pthread.h > 
 4
 5  int Number;
 6  pthread_t ThreadA,ThreadB;
 7  pthread_mutex_t Mutex,EventMutex;
 8  pthread_cond_t Event;
 9
10  void *worker1(void *X)
11  {
12     for(int Count = 1;Count  <  10;Count++){
13        pthread_mutex_lock( & Mutex);
14        Number++;
15        pthread_mutex_unlock( & Mutex);
16        cout  <  <  “worker1: Number = “  <  <  Number  <  <  endl;
17        if(Number == 7){
18           pthread_cond_signal( & Event);
19        }
20     }
21
22     return(0);
23  }
24
25  void *worker2(void *X)
26  {
27     pthread_mutex_lock( & EventMutex);
28     pthread_cond_wait( & Event, & EventMutex);
29     pthread_mutex_unlock( & EventMutex);
30     for(int Count = 1;Count  <  10;Count++){
31        pthread_mutex_lock( & Mutex);
32        Number = Number + 20;
33        cout  <  <  “worker2: Number = “  <  <  Number  <  <  endl;
34        pthread_mutex_unlock( & Mutex);
35
36     }
37
38     return(0);
39  }
40
41
42  int main(int argc, char *argv[])
43  {
44     pthread_mutex_init( & Mutex,NULL);

c07.indd   266c07.indd   266 7/31/08   3:00:59 PM7/31/08   3:00:59 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

267

45     pthread_mutex_init( & EventMutex,NULL);
46     pthread_cond_init( & Event,NULL);
47     pthread_create( & ThreadA,NULL,worker1,NULL);
48     pthread_create( & ThreadB,NULL,worker2,NULL);
49
50     pthread_join(ThreadA,NULL);
51     pthread_join(ThreadB,NULL);
52
53     return (0);
54  }
                   

 In Listing  7 - 13 , the SF synchronization relationship is implemented.  ThreadB  cannot start until  ThreadA  
finishes.  ThreadA  signals to  ThreadB  once  Number  has a value of  7 . It can then continue execution 
until finished.  ThreadB  cannot start its computation until it gets a signal from  ThreadA . Both use the 
 EventMutex  with the condition variable  Event .  Mutex  is used to synchronize write access to the shared 
data  Number . A task can use several mutexes to synchronize different critical sections and synchronize 
different events. These techniques can easily be used to synchronize order of execution between 
processes. 

 Here is Program Profile 7 - 6 for Listing  7 - 13 .   

  Program Profile 7 - 6   
Program Name:   

program7-13.cc. (Listing 7-13)

     Description: 
  program7 - 13.cc  (Listing  7 - 13 ) has a SF synchronization relationship.  ThreadB  cannot start until 
 ThreadA  finishes.  ThreadA  signals to  ThreadB  once  Number  has a value of  7 . It can then continue 
execution until finished.  ThreadB  cannot start its computation until it gets a signal from  ThreadA . Both 
use the  EventMutex  with the condition variable  Event .  Mutex  is used to synchronize write access to the 
shared data  Number . ThreadA and ThreadB send Number to stout. ThreadA adds 1 to the value of 
Number and ThreadB adds 20 to Number at each iteration through the loop.    

Libraries Required:   
libpthread

     Headers Required:   
 < iostream >     < pthread.h > 

     Compile and Link Instructions:   
c++ -o program7-13 program7-13.cc -lpthread

     Test Environment: 
 Solaris 10, gcc 3.4.3 and 3.4.6    

c07.indd   267c07.indd   267 7/31/08   3:00:59 PM7/31/08   3:00:59 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

268

Processors: 
 Opteron, UltraSparc T1    

Execution Instructions:   
./program7-13

     Notes: 
 None   

  Thread - Safe Data Structures 
 With the synchronization primitives discussed in this chapter, it is possible to build complex data 
structures that are safe for concurrent use by multiple threads. A data structure can contain a mutex class 
used to protect access to the internal data.    

  Thread Strategy Approaches 
 The thread strategies determine the approach that can be employed when threading your 
application. The approach determines how the threaded application delegates its works to the 
tasks and how communication is performed. A strategy supplies a structure and approach 
to threading and helps in determining the access policies. 

 The purpose of a thread is to perform work on behalf of the process. If a process has multiple threads, 
each thread performs some subtask as part of what the application is to do. Threads are given work 
according to a specific strategy or approach. If the application models some procedure or entity, then the 
approach selected should reflect that model. 

 The common models are as follows: 

  Delegation (boss - worker)  

  Peer - to - peer  

  Pipeline  

  Producer - consumer    

 Each model has its own Work Breakdown Structure (WBS). WBS determines which piece of software 
does what, for example, who is responsible for thread creation and under what conditions threads are 
created.   

 WBS is discussed in more detail in Chapter  3 .   

 With a centralized approach there is a single process/thread that creates other processes/threads and 
delegates work to each. An assembly line approach performs work at different stages on the same data. 
Once these processes/threads are created, they can perform the same task on different data sets, different 
tasks on the same data set, or different tasks on different data sets. Threads can be categorized to 

❑

❑

❑

❑

c07.indd   268c07.indd   268 7/31/08   3:00:59 PM7/31/08   3:00:59 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

269

perform only certain types of tasks. There can be a group of threads that only perform computations 
while others perform process input or produce output. 

 It is also important to remember that what is to be modeled may not be homogeneous throughout the 
application or the process. Therefore, it may be necessary to mix models. One model may be embedded 
in another model. With the pipeline model, a thread or process may create other threads or processes 
and utilize a delegation model locally in order to process the data at that stage. 

  Delegation Model 
 In the  delegation  model, a single thread (boss) creates other threads (workers) and assigns each a task. It 
may be necessary for the boss thread to wait until each worker thread completes its task before it can 
continue its executing its code. Its code may be based on the results of the worker thread. The boss 
thread delegates the task each worker thread is to perform by specifying a function. As each worker is 
assigned its task, it is the responsibility of each worker thread to perform that task and produce output 
or synchronize with the boss or other thread to produce output. 

 The boss thread can create threads as a result of requests made to the system. The processing of each 
type of request can be delegated to a thread worker. The boss thread executes an event loop. As events 
occur, thread workers are created and assigned their duties. A new thread is created for every new 
request that enters the system. Using this approach may cause the process to exceed its resources or 
thread limits. A different approach is to have a boss thread create a pool of threads that are reassigned 
new requests. The boss thread creates a number of threads during initialization, and then each thread is 
suspended until a request is added to their queue. As requests are placed in the queue, the boss thread 
signals a worker thread to process the request. When the thread completes, it dequeues the next request. 
If none are available, the thread suspends itself until the boss signals to the thread more work is available 
in the queue. If all the worker threads are to share a single queue, then the threads process only certain 
types of request. The results from each thread are placed in another queue. The primary purpose of the 
boss thread is to: 

  1.   Create all the threads  

  2.   Place work in the queue  

  3.   Awaken worker threads when work is available    

 The worker threads: 

  1.   Check the request in the queue  

  2.   Perform the assigned task  

  3.   Suspend itself if no work is available    

 All the workers and the boss are executing concurrently. Example  7 - 10  contains pseudocode for the event 
loop for the delegation model for this approach.

c07.indd   269c07.indd   269 7/31/08   3:01:00 PM7/31/08   3:01:00 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

270

   Example 7 - 10   

// Example 7-10 Skeleton program for delegation model where boss creates a
// pool of threads.
                
pthread_t Thread[N]
                
// boss thread
{
                
    pthread_create( & (Thread[1]...taskX...);
    pthread_create( & (Thread[2]...taskY...);
    pthread_create( & (Thread[3]...taskZ...);
    //...
    pthread_create( & (Thread[N]...?...);
                
    loop while(Request Queue is not empty
       get request
       classify request
       switch(request type)
       {
           case X :
                    enqueue request to XQueue
                    broadcast to thread XQueue request available
                
           case Y :
                    enqueue request to YQueue
                    broadcast to thread YQueue request available
                
           case Z :
                    enqueue request to ZQueue
                    broadcast to thread ZQueue request available
            //...
        }
                
    end loop
}
                
void *taskX(void *X)
{
   loop
       waiting for signal
       when signaled
       loop while XQueue is not empty
          lock mutex
          dequeue request
    release mutex
          process request
          set mutex
          enqueue results
          release queue
       end loop
   until done
}

c07.indd   270c07.indd   270 7/31/08   3:01:00 PM7/31/08   3:01:00 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

271

                
void *taskY(void *X)
{
   loop
       waiting for signal
       when signaled
       loop while YQueue is not empty
          lock mutex
          dequeue request
    release mutex
          process request
          set mutex
          enqueue results
          release queue
       end loop
   until done
}
                
void *taskZ(void *X)
{
   loop
       waiting for signal
       when signaled
       loop while ZQueue is not empty
          lock mutex
          dequeue request
   release mutex
          process request
          set mutex
          enqueue results
          release queue
       end loop
   until done
}
                
//...
                   

 In Example  7 - 10 , the boss thread creates    N    number of threads. Each task is associated with processing a 
request type denoted by  taskX ,  taskY , and  taskZ . In the event loop, the boss thread dequeues a request 
from the request queue, determines the request type, and then enqueues the request to the appropriate 
request queue. It broadcasts to the threads a request is available in a particular queue. The functions also 
contain an event loop. The thread is suspended until it receives a signal from the boss that there is a 
request in its queue. Once awakened, in the inner loop, the thread processes all the requests in the queue 
until it is empty. It removes a request from the queue, processes it, and then places the results in the 
result queue. A mutex is used for the input and output queues.  

  Peer - to - Peer Model 
 Whereas the delegation model has a boss thread that delegates tasks to worker threads, in the  peer - to - peer  
model all the threads have an equal working status. There is a single thread that initially creates all the 
threads needed to perform all the tasks, but that thread is still considered a worker thread. It does no 

c07.indd   271c07.indd   271 7/31/08   3:01:00 PM7/31/08   3:01:00 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

272

delegation of work. The worker (peers) threads have more local responsibility. The peer threads can 
process requests from a single input stream shared by all the threads, or each thread may have its own 
input stream for which it is responsible. The input can also be stored in a file or database. The peer 
threads may have to communicate and share resources. Example  7 - 11  contains the pseudocode for the 
peer - to - peer model.

   Example 7 - 11   

// Example 7-11  Skeleton program using the peer-to-peer model.
//...
pthread_t Thread[N]
                
// initial thread
{
                
    pthread_create( & (Thread[1]...taskX...);
    pthread_create( & (Thread[2]...taskY...);
    pthread_create( & (Thread[3]...taskZ...);
    //...
    pthread_create( & (Thread[N]...?...);
  }
                
void *taskX(void *X)
{
    loop while (Type XRequests are available)
          set mutex
          extract Request
          unlock mutex
          process request
          lock mutex
          enqueue results
          unlock mutex
    end loop
    return(NULL)
}
                
//...
                    

  Producer - Consumer Model 
 In the  producer - consumer  model, there is a producer thread that  produces  data to be  consumed  by the consumer 
thread .  The data is stored in a block of memory shared between the producer and consumer threads. The 
producer thread must produce data; then the consumer threads retrieve it. If the producer thread deposits 
data at a much faster rate than the consumer thread consumes it, then the producer thread may at several 
times overwrite previous results before the consumer thread retrieves it. On the other hand, if the consumer 
thread retrieves data at a much faster rate than the producer deposits data then the consumer thread may 
retrieve identical data or attempt to retrieve data not yet deposited. This process, like the others, requires 
synchronization. We discussed read - write locks earlier in this chapter and included an example of producers 
that write and consumers that read. Example  7 - 12  contains the pseudocode for the producer - consumer 
model. The producer - consumer model is also called the client - server model for large - scale programs and 
applications.

c07.indd   272c07.indd   272 7/31/08   3:01:00 PM7/31/08   3:01:00 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

273

   Example 7 - 12   

// Example 7-12 Skeleton program using the producer-consumer model.
                
/...
                
// initial thread
{
    pthread_create( & (Thread[1]...producer...);
    pthread_create( & (Thread[2]...consumer...);
    //...
  }
                
                
void *producer(void *X)
{
   loop
      perform work
        lock mutex
         enqueue data
        unlock mutex
         signal consumer
      //...
   until done
}
                
void *consumer(void *X)
{
   loop
      suspend until signaled
      loop while(Data Queue not empty)
          lock mutex
           dequeue data
          unlock mutex
           perform work
          lock mutex
          enqueue results
          unlock mutex
      end loop
   until done
}    

  Pipeline Model 
 The  pipeline  model is characterized by an assembly - line approach in which a stream of items is processed 
in stages. At each stage, work is performed on a unit of input by a thread. When the unit has been 
through all the stages in the pipeline, then the processing of the input has been completed and exits the 
system. This approach allows multiple inputs to be processed simultaneously. Once data has been 
processed at a certain stage, it is ready to process the next data in the stream. Each thread is responsible 
for producing its interim results or output and making them available to the next stage in the pipeline. 
The last stage or thread produces the result of the pipeline. 

c07.indd   273c07.indd   273 7/31/08   3:01:01 PM7/31/08   3:01:01 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

274

 As the input moves down the pipeline, it may be necessary to buffer units of input at certain stages as 
threads process previous input. This may cause a slowdown in the pipeline if a particular stage ’ s 
processing is slower than other stages. This may cause a backlog. To prevent backlog, it may be 
necessary for that stage to create additional threads to process incoming input. This is a case of mixed 
models. At this stage in the pipeline, the thread may create a delegation model to process its input and 
prevent backlogs. 

 The stages of work in a pipeline should be balanced so that one stage does not take more time than the 
other stages. Work should be evenly distributed throughout the pipeline. More stages and therefore 
more threads may also be added to the pipeline. This also prevents backlog. Example  7 - 13  contains the 
pseudocode for the pipeline model.

   Example 7 - 13   

// Example 7-13 Skeleton program using the pipeline model.
//...
                
pthread_t Thread[N]
Queues[N]
                
// initial thread
{
    place all input into stage1’s queue
    pthread_create( & (Thread[1]...stage1...);
    pthread_create( & (Thread[2]...stage2...);
    pthread_create( & (Thread[3]...stage3...);
    //...
  }
                
void *stageX(void *X)
{
      loop
      suspend until input unit is in queue
      loop while XQueue is not empty
          lock mutex
          dequeue input unit
          unlock mutex
          perform stage X processing
          enqueue input unit into next stage’s queue
       end loop
    until done
    return(NULL)
}
                
//...
                    

  SPMD and MPMD for Threads 
 In concurrency models, the threads may be performing the same task over and over again on different 
data sets or may be assigned different tasks to be performed on different data sets. Figure  7 - 12  shows the 
different models of parallelism. Concurrency models utilize  Single Instruction Multiple Data (SIMD)  or 
 Multiple Programs Multiple Data (MPMD) . These are two models of parallelism that classify programs by 

c07.indd   274c07.indd   274 7/31/08   3:01:01 PM7/31/08   3:01:01 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

275

instruction and data streams. They can be used to describe the type of work that the thread models are 
implementing in parallel. For purposes of this discussion, MPMD is better defined as  Multiple Threads 
Multiple Data (MTMD) . This model describes a system that executes different threads processing 
different sets of data or data streams. In Figure  7 - 12  (a) you can see that thread 1 processes dataset 1, and 
thread 2 processes dataset 2. Likewise, SIMD (also known as  Single Program Multiple Data or SIMD ) for 
purposes of this discussion is better redefined as  Single Thread Multiple Data (STMD) . This model 
describes a system that executes a single thread that processes different sets of data or data streams. In 
Figure  7 - 12  (b), thread 1 executes routine A and processes dataset 1 and thread 2 also executes routine A 
but processes dataset 2. This means several identical threads executing the same routine are given 
different sets of data to process.  Multiple Threads Single Data (MTSD)  describes a system where different 
instructions are applied to the same dataset. In Figure  7 - 12  (c), thread 1, which executes routine A, and 
thread 2, which executes routine B, both process the same dataset, dataset 1.  Single Instruction Single Data 
(SISD)  describes a system in which a single instruction processes a single dataset. In Figure  7 - 12  (d), 
thread 1 executes routine A, which sequentially processes datasets.   

Dataset 1

executes
Routine A

THREAD 1

Dataset 2

executes
Routine B

THREAD 2
COMMUNICATE

MTMD (a)

Dataset 1

executes
Routine A

THREAD 1

Dataset 2

executes
Routine A

THREAD 2
COMMUNICATE

STMD (b)

Dataset 1

executes
Routine A

THREAD 1

executes
Routine B

THREAD 2
COMMUNICATE

MTSD (c)

Dataset 2

executes
Routine A
processes datasets
sequentially

THREAD 1

Dataset 1

SISD (d)

Figure 7-12

 The delegation and peer - to - peer models can both use STMD or MTMD models of parallelism. As 
described, the pool of threads can execute different routines processing different sets of data. This 
approach utilizes the MTMD model. The pool of threads can also be given the same routine to execute. 
The requests or jobs submitted to the system could be different sets of data instead of different tasks. In 
this case, there would be a set of threads implementing the same instructions but on different sets of 
data, thus utilizing STMD. The peer - to - peer model can be threads executing the same or different tasks. 
Each thread can have its own data stream or several files of data that each thread is to process. The 
pipeline model uses the MTMD model of parallelism. At each stage, different processing is performed, 
so multiple input units are at different stages of completion. The pipeline metaphor would be useless if 
at each stage the same processing was performed.   

c07.indd   275c07.indd   275 7/31/08   3:01:01 PM7/31/08   3:01:01 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

276

  Decomposition and Encapsulation of Work 
 Now we have discussed communication and cooperation between concurrently executing tasks, whether 
they are processes or threads. We have discussed communication relationships and the mechanisms of 
communication with IPC and ITC. We have also covered task cooperation, memory access models, and 
synchronization relationships. Data and communication synchronization was also covered along with 
the many techniques that can be used to avoid race conditions. Concurrency models can be used to 
layout an approach for communication and delegation of work. Now we want to use these techniques 
and models to do some work. 

  Problem Statement 
 We have a multitude of text files that requires filtering. The text files have to be filtered in order to be 
used in our Natural Language Processing (NLP) system. We want to remove a specified group of tokens 
or characters from multiple text files, characters such as [, . ? ! ], and we want this done in real time. 

 The objects that can be immediately identified are: 

  Text files  

  The characters to be removed  

  The resulting filtered files     

  Strategy 
 We have over 70 files to process. Each file can contains hundreds or thousands of lines of text. To 
simplify this, we have a set of characters we want to remove. We want to be able specify the name of the 
file, have the program filter out all the unwanted characters, have it create the new filtered file, and then 
be able to give the program the next file. With the  guess_it  example we used earlier in the book, an 
approach to break down the problem into smaller tasks was used. The task was to search a file for a 
code. The file was very large with over four million codes to search. So the file was broken down into 
smaller files and the search was performed on the smaller files. Since there was a time constraint, the 
searches had to be performed in parallel. 

 Here with this problem the filtered files have to be the same as the original files with the unwanted 
characters removed. The text cannot be altered in anyway. Although deconstructing the files into smaller 
files can be done, reconstructing them is not something we want to do. So what approach should we 
take? Keep in mind these are the goals: 

  1.   Removing all the unwanted characters has to be performed  

  2.   Having the work done in real - time  

  3.   Keeping the integrity of the contents of each file    

 We can remove characters from the whole file or remove characters from each line at a time. Here are the 
possibilities: 

❑

❑

❑

c07.indd   276c07.indd   276 7/31/08   3:01:01 PM7/31/08   3:01:01 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

277

   Approach 1 : Search the file for a character. When it is, found remove it, and then search for the 
next occurrence of the character. When all of those characters have been removed, search the file 
again for the next unwanted character. Repeat this for each file. The postcondition is met 
because we are working on the original file and removing the unwanted characters from it.  

   Approach 2 : Remove all occurrences of a single character from each file then repeat this process 
for each unwanted character. The postcondition is met in the same way as in Approach 1.  

   Approach 3 : Read in a single line of text, remove an unwanted character. Go through the same 
line of text and remove the next unwanted character, and so on. When all characters have been 
removed from the line of text, write the filtered line of text to the new file. This is done for each 
file. The postcondition is met because we are restructuring a new file as we go. As a line is 
processed, it is written to the new file.  

   Approach 4 : Same as Approach 3, but we remove only a single unwanted character from a line 
of text and then write it to a file or container. Once the whole file has been processed, it is 
reprocessed for the next character. When the last character has been removed, the file has been 
filtered. If the text is in a container, it can now be written to a file. This is repeated for each file. 
The container becomes important in restructuring the file.     

  Observation 
 When considering each approach, we see there are a number of passes through a file or through a single 
line of text. This is what has to be looked at to see how it affects performance. This filtering has to be 
done in real time. For Approaches 1 and 2, the file is reentered for every occurrence of the character. 
There is a pass through the file for each unwanted character. There are four unwanted characters. An 
interim result is a whole file in which a single character has been removed, then two, and so on. With 
Approaches 3 and 4, a single line of text is filtered. So, the interim results are a single line of text. 
In Approach 3, a single line of text can be completed quickly. Depending of what type of processing 
is to be performed, a single line of text may be useful or it may not be. Waiting for a whole file is a longer 
wait. What is also obvious in each approach is that, whether it is a file or a single line of text you are 
dealing with, they are not dependent tasks; a file can be processed independently from other files. This is 
also true for a single line of text. But with a single line of text (remembering that the integrity of the file 
has to be maintained), it has to be performed in the order in which the line appears in the file. So, the 
lines of text have to be filtered in order: line 1, line 2, line 3, and so forth.  

  Problem and Solution 
 We will use Approach 3. Based on the observations stated, we have concluded that this approach will give 
us results more quickly, even for large sets of data, and produce interim results. Now we can consider the 
concurrency model. The model helps determine the communication and type of cooperation to be used to 
solve this problem. A single line should start being processed before another line is attempted. This 
suggests a pipeline model. At each stage, the same single line of text and a single unwanted character are 
to be removed. At the end of the stages, a single line of text is completely filtered. It can then be written to 
a file. This is to be done very quickly, and the file keeps its integrity. Queues should be used because they 
have First - In, First - Out access. This ensures that the lines of text stay in order. 

 Each stage has an input queue and an output queue. The input queue is the output queue of the previous 
stage. Once the text has been processed, it is written to a queue, and the next stage retrieves the line of text 
from the queue. Of course, this requires synchronization. A task retrieves the text from the queue after the 
previous stage has placed the text in the queue. Since there are only two tasks involved in sharing any queue, 
a mutex (mutual exclusion) works fine. We can use the  permit  class from Listing  7 - 10  and Listing  7 - 11 . 

❑

❑

❑

❑

c07.indd   277c07.indd   277 7/31/08   3:01:02 PM7/31/08   3:01:02 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

278

 What are the communication and cooperation requirements in this solution: 

  Queues require synchronization.  

  EREW access policy is needed.  

  Main agent populates the first queue and then creates the threads (one for each stage).  

  The input and output queues and a mutex are passed to the stages.     

  Simple Agent Model Example of a Pipeline 
 We can discuss the solution of this problem as an agent model. Each stage is going to be managed by an 
agent. The queues are lists that contain lines of text from a file. For each list, the agent is given a permit 
to access the list. The new objects in this solution are now agents, lists, and permits. Figure  7 - 13  shows 
the class relationship diagram for this solution.   

❑

❑

❑

❑

RemovedCharacter : char
StringToken : string

char_assertion( )
char_assertion(char C)
~char_assertion( )
assert( ) : bool
setTokenString(string X) : void
getTokenString(string X) : void
setUnWantedChar(char C) : void
getInList(queue<string> &List, permit &Permit) : void
getOutList(queue<string> &List, permit &Permit) : votid 

char_assertion
queue<string>

Responsibilites
- provides the functionality for the agent
- defines assert that performs the work for the agent

TextString : string
TextFile: string
UnWantedChars: string

cleartext(string InputStrng, string RemChar
clear_text(string TFile)
getTextString(string &X)
changedSaved(void):void
operator( ) ( ) : bool

clear_text

permit

char_assertion

queue<string>

pthread_t

Responsibilites
- manages the pipeline
- creates the agents
- sends queues and permits to agents
- saves results in a file

Name : string
Sound : bool

assertion( )
~assertion( )
name(string X) : void
name( ) : string {isQuery}
operator( ) : bool
wait ( ) : void
sound( ) : bool
some_assertion( void *) : void 

assertion

Responsibilites
- provides the thread and its basic
  functionality

permit( )
~permit( )
available( ) : bool
not_in_use( ) :  bool
checkAvailable( ) : bool
availableFor(int secs, int nanosecs) : bool 

permit

Responsibilites
- provides the mutex functionality

permit

pthread_mutex_t

pthread_
mutexattr_t

Figure 7-13

c07.indd   278c07.indd   278 7/31/08   3:01:02 PM7/31/08   3:01:02 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

279

 Example  7 - 14  is the main line for the simple agent solution.

   Example 7 - 14   

//Example 7-14 The main line for character removal agent.
                
 1  #include “clear_text.h”
 2  #include  < iostream > 
 3
 4
 5  int main(int argc, char** argv) {
 6
 7     if(argc != 2){
 8        cerr  <  <  “usage:  characters_removed FileName:”  <  <  endl;
 9        exit(0);
10     }
11     clear_text  CharactersRemoved(argv[1]);
12     if(CharactersRemoved()){
13        CharactersRemoved.changesSaved();
14        return (1);
15     }
16     return(0);
17  }
18
                   

 The  CharactersRemoved  object of type  clear_text  is the main agent. It manages the pipeline. The name of 
the file to be filtered is the second command - line argument.  CharactersRemoved()  executes the pipeline. If 
it returns false, this means that one of the agents failed, and the unwanted character that was to be removed 
by the agent may not have been removed from the file or some of the lines of text.  changesSaved()  gets the 
results from the last lists (which contains all the filtered lines of text) and writes them to a file. 

 Example  7 - 15  contains the  operator()  method.

   Example 7 - 15   

//Example 7-15 The pipeline method for the clear_text object.
                
 1  bool clear_text::operator()(void)
 2  {
 3     bool Sound = true;
 4     char_assertion  CharacterRemoved[4];
 5     CharacterRemoved[0].setUnWantedChar(‘,’);
 6     CharacterRemoved[1].setUnWantedChar(‘.’);
 7     CharacterRemoved[2].setUnWantedChar(‘?’);
 8     CharacterRemoved[3].setUnWantedChar(‘\’’);
 9
10     for(int N = 0; N  <  3;N++)
11     {
12        CharacterRemoved[N].getInList(TextQ[N],Permit[N]);
13        CharacterRemoved[N].getOutList(TextQ[N+1],Permit[N+1]);
14     }
15

(continued)

c07.indd   279c07.indd   279 7/31/08   3:01:02 PM7/31/08   3:01:02 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

280

Example 7 - 15 (continued)

16     for(int N = 0; N  <  4; N++)
17     {
18        CharacterRemoved[N]();
19     }
20
21     CharacterRemoved[3].wait();
22     CharacterRemoved[0].wait();
23     CharacterRemoved[1].wait();
24     CharacterRemoved[2].wait();
25
26     for(int N = 0; N  <  4;N++)
27     {
28        Sound = Sound * CharacterRemoved[N].sound();
29     }
30     return(Sound);
31
32  }
                   

 In Example  7 - 15 , in Line #4 four  char_assertion  agents are declared. Each is passed the unwanted 
character it is to remove from the file. In Lines 10 – 14, the  for  loop passes to each agent the source list and its 
 permit  and the output list with its  permit . The  for  loop in Lines 16 – 19 actually starts the agents working. 

  operator()  is defined in the base class  assertion  as well as  wait() and  sound() . Example  7 - 16  
contains  operator() ,  wait() , and  sound()  as defined in the  assertion  class.

   Example 7 - 16   

//Example 7-16 The methods defined in the base class assertion.
                
 1  bool assertion::operator()(void)
 2  {
 3     pthread_create( & Tid,NULL,some_assertion,this);
 4     return(Sound);
 5  }
 6
 7  void assertion::wait(void)
 8  {
 9     pthread_join(Tid,NULL);
10  }
11
12
13  bool assertion::sound(void)
14  {
15     return(Sound);
16  }
                   

 In Example  7 - 16 , you see that the  assertion  class creates the threads for the  char_assertion  agents in 
Line 3. The threads/agents are to execute the  some_assertion  function. The assertion class is an improved 
version of the  user_thread  class in Chapter  6  and  some_assertion  is the  do_something  method. 

 Example  7 - 17  contains the  some_assertion  method from the  assertion  class and Example  7 - 18  
contains the  assert  method from the  char_assertion  class.

c07.indd   280c07.indd   280 7/31/08   3:01:02 PM7/31/08   3:01:02 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

281

   Example 7 - 17   

//Example 7-17 The some_assertion method defined in the base class assertion.
                
 1  void *  some_assertion (void * X)
 2  {
 3
 4     assertion *Assertion;
 5     Assertion = static_cast < assertion * > (X);
 6     if(Assertion- > assert()){
 7        Assertion- > Sound = true;
 8     }
 9     else{
10            Assertion- > Sound = false;
11     }
12     return(NULL);
13
14
15  }
                

     Example 7 - 18   

//Example 7-18 The assert method defined in the class char_assertion.
                
 1  bool char_assertion::assert(void)
 2  {
 3
 4
 5     if(PermitIn.available()){
 6        TokenString = ListIn.front();
 7        ListIn.pop();
 8        remove(TokenString.begin(),TokenString.end(),RemovedCharacter);
 9        PermitIn.not_in_use();
10      }
11     if(PermitOut.available()){
12        ListOut.push(TokenString);
13        PermitOut.not_in_use();
14     }
15
16     return(true);
17  }
                   

 In Example  7 - 17 , on Line 6,  assert()  is called. This method is where the agent does the work of its 
stage in the pipeline. Example  7 - 18  contains the definition for  assert() , the work of the agent. If 
 PermitIn  is available for  ListIn  list, which is the source of strings of text, the string is popped, the 
unwanted character is removed in Line 8, and  PermitIn  is released. Now the new string is to be pushed 
on  ListOut  if  PermitOut  is available. 

 This example shows the use of a concurrency model (namely a pipeline) utilizing a MTSD. A single 
string of text is processed at each stage of the pipeline where a single unwanted character is removed 
from the string. Each thread at a stage can be assigned to its own processor core. This is a simple process, 
removing a single character from a string, but the process described (from determining the problem, 

c07.indd   281c07.indd   281 7/31/08   3:01:03 PM7/31/08   3:01:03 PM



Chapter 7: Communication and Synchronization of Concurrent Tasks

282

decomposition of the problem, and determining an approach) can be used to solve problems on a larger 
scale. But we can do better. Here we have described a task - oriented software decomposition to multicore 
programming. In Chapter  8 , we discuss a declarative and predicate - oriented decomposition for 
problems on a larger scale with massive cores to manage.   

  Summary 
 In this chapter, we discussed managing synchronized communication between concurrent tasks as well 
as synchronizing access to global data, resources, and task execution. We also discussed concurrency 
models that can be used to delegate the work and communication between concurrently executing tasks 
running on multiple processor cores. This chapter discussed the following points: 

  Dependency relationships can be used to examine which tasks are dependent on other tasks 
for communication or cooperation. Dependency relationships are concerned with coordinating 
communication and synchronization between these concurrent tasks. If communication between 
dependent tasks is not appropriately designed, then data race conditions can occur.  

  Interprocess Communications (IPC) are techniques and mechanisms that facilitate 
communication between processes. When a process sends data to another process or makes 
another process aware of an event by means of operating system APIs, it requires IPC. The 
POSIX queue, shared memory, pipes, mutexes/semaphores, and condition variables are 
examples of IPC.  

  Interthread Communications (ITC) are techniques that facilitate communication between 
threads that reside in the same address space of their process, The most important issues that 
have to be dealt with concerning ITC are data races and indefinite postponement.  

  You can synchronize access to data and resources and task execution. Task synchronization is 
required when a thread is in its critical sections. Critical sections can be managed by PRAM 
models such as EREW and CREW. There are four basic synchronization relationships between 
any two tasks in a single process or between any two processes within a single application.  

  Synchronization mechanisms are used for both processes and threads. These mechanisms can be 
used to prevent race conditions and deadlocks between multiple tasks by implementing the 
synchronization access policies using semaphores and mutexes, read - write locks, and condition 
variables.  

  The thread strategies determine the approach that can be employed when threading your 
application. The approach determines how the threaded application delegates its work to the 
tasks and how communication is performed. A strategy supplies a structure and approach to 
threading and helps in determining the access policies.    

 In the next chapter, we discuss the Parallel Application Design Layers (PADL). PADL is a five - layer 
analysis model used in the design of software that requires some parallel programming. It is used to help 
organize the software decomposition effort. PADL is meant to be used during the requirements analysis 
and software design activities of the Software Development Life Cycle (SDLC), which is also covered in 
Chapter  8 .     

❑

❑

❑

❑

❑

❑

c07.indd   282c07.indd   282 7/31/08   3:01:03 PM7/31/08   3:01:03 PM



                                                                                                                                                                                                        PADL and PBS: Approaches 
to Application Design              

  Even if parallel processing is done on a project, there really isn ’ t much change in 
actual processing efficiency  —  there ’ s just a diversity of output.     

  — Shirow Masamune,  Ghost in the Shell: Man - Machine Interface   

 Chapter  4  illustrated the role the operating system plays for applications that have a requirement 
for parallelism or multicore support. In it, we explained how the processes and kernel threads are 
the only execution units that the operating system schedules for processor execution. In Chapters  5  
and  6 , we explained how processes and threads are created and are used to gain access to Chip 
Multiprocessors (CMPs), but processes and threads are relatively low - level constructs. The 
question remains,  “ How do you approach application design when there is a concurrency 
requirement or when the design model has components that can operate in parallel? ”  In Chapter  7 , 
we explored mechanisms that support Interprocess Communication (IPC): mutexes, semaphores, 
and synchronization. These are also low - level constructs that require intimate knowledge of 
operating - system - level Application Program Interfaces (APIs) and System Program Interfaces 
(SPIs) in order to program correctly. 

 So far we have discussed only scenarios that involved dual or quad core processors. But the trend 
in CMP production will soon replace dual and quad core processors. The UltraSparc T1, which we 
introduced in Chapter  2 , has eight cores on a single chip with four hardware threads for each core. 
This makes it possible to have 32 processes or threads executing concurrently. Currently dual and 
quad core CMPs are the most commonly found configurations. However, dual and quad core 
configurations will soon be replaced by octa - core CMPs like the UltraSparc T1. So, how do you 
think about application design when 32 hardware threads are available? What if there are 64, 128, 
or 256 processors on a single CMP? How do you think about software decomposition as the 

c08.indd   283c08.indd   283 7/31/08   3:06:53 PM7/31/08   3:06:53 PM



Chapter 8: PADL and PBS: Approaches to Application Design

284

numbers of available hardware threads approach the hundreds? This chapter turns to those questions by 
discussing: 

  A design approach for applications to run on multiple processor cores  

  The PADL and PBS approach to application design  

  Task - oriented software decompositions and declarative and predicate - oriented decompositions  

  Knowledge sources and multiagent architectures  

  Intel Thread Building Blocks (TBB) and the new C++ standard that supports concurrency     

  Designing Applications for Massive 
Multicore Processors 

 So, how do you approach process management or IPC in application design if you can have 100s or 1000s 
of concurrently executing processes or threads? Considerations of large numbers of concurrently executing 
tasks during application design can be daunting. And we use the term  application design  here loosely. It is a 
loaded term that means different things to different types and levels of software developers. It means one 
thing for system - level programmers and another for application - level programmers. Further, there are all 
sorts of classifications for software and computer applications. Consider a small excerpt taken from The 
Association of Computing Machinery (ACM) Computing Classification System (CCS) in Table  8 - 1    

❑

❑

❑

❑

❑

Table 8-1

ACM 
Classification # Software Multiuser Single User

H.4.1 Office automation Groupware

Project management

Time management

Word processing

Spreadsheets

H.4.3 Communication 
applications

Teleconferencing

Videoconferencing

Computer conferencing

Electronic mail

Information browser

D.2.2

D.2.3

D.2.4

Software 
development tools

Coding tools and 
techniques

Software reliability 
verification

Software libraries

Source code maintenance

Editors

Compilers

Linkers

I.3.3

I.3.4

I.3.5

Picture/image 
generation

Graphics utilities

3D graphics

Advance visualization

Virtual environments

Virtual reality systems

Digitizing and scanning

Graphics packages

Animation

3D rendering

c08.indd   284c08.indd   284 7/31/08   3:06:54 PM7/31/08   3:06:54 PM



Chapter 8: PADL and PBS: Approaches to Application Design

285

 This classification breakdown looks at software categories from Sections H and D from the ACM ’ s CCS. 
These categories are then further grouped by multiuser and single user. In multiuser applications, two or 
more users can access some feature(s) of a software application simultaneously. As can be seen from 
Table  8 - 1 , multiuser applications come in all shapes and sizes ranging from intranet videoconferencing to 
Internet - based source code management applications. Many database servers, web servers, e - mail 
servers, and so on are good examples of multiuser applications. Further, while a single - user application 
doesn ’ t have to worry about multiple users accessing some feature, the single - user application might be 
required to perform multiple tasks concurrently. Single - user multimedia applications that require 
synchronization of audio and video are good examples. 

 Also, look at the diversity of the applications in Table  8 - 1 . Software developers in each of these domains 
may approach application design differently. One thing that most of the application classifications in 
Table  8 - 1  will definitely have in common in the future is that they will be running on medium -  to 
large - scale CMPs. The classification in Table  8 - 1  is a small excerpt from a large taxonomy that the ACM 
has on software and computing classifications. In addition to being only a small excerpt, it is only a 
single view from the multiple views that can be found in the ACM CCS. Table  8 - 2  contains the CCS 
breakdown of computer applications by area. This breakdown is taken from Section J of the CCS.   

Table 8-2

(J.1) Administrative Data Processing (J.2) Physical Sciences and Engineering

1. Business

2. Education

3. Financial

4. Government

5. Law

6. Manufacturing

7. Marketing

8. Military

1. Aerospace

2. Archaeology

3. Astronomy

4. Chemistry

5. Earth and atmospheric sciences

6. Electronics

7. Engineering

8. Mathematics and statistics

9. Physics

(J.3) Life and Medical Sciences (J.4) Social and Behavioral Sciences

1. Biology and genetics

2. Health

3. Medical information systems

1. Economics

2. Psychology

3. Sociology

(Continued)

c08.indd   285c08.indd   285 7/31/08   3:06:54 PM7/31/08   3:06:54 PM



Chapter 8: PADL and PBS: Approaches to Application Design

286

(J.5) Arts and Humanities (J.6) Computer-Aided Engineering

1. Architecture

2. Arts, fine and performing

3. Fine arts

4. Language translation

5. Linguistics

6. Literature

7. Music

8. Performing arts

1. Computer-aided design

2. Computer-aided manufacturing

 As you consider software development approaches from the various areas shown in Table  8 - 2 , it is clear 
that the phrase  application design  summons very different notions for different groups. If you add to the 
discussion multiprocessor computers and parallel programming techniques, then you have clarified at 
least the problem of which approach to take toward application design. 

 So, as you look at the applications in Table  8 - 1 , it might be easier to visualize how to break up multiuser 
applications than it is to decompose single - user applications. However, decomposition complexity and 
task management are still issues once the number of available cores passes a certain threshold. 
Procedural bottom - up approaches to threading and multiprocessing become increasingly difficult as the 
number of available cores increases. As a developer, you will soon have cheap and widely available 
CMPs that can support any level of parallelism that you may need. But the question remains,  “ How do 
you approach multicore application design without getting overwhelmed by the available parallelism? ”  

 It should be clear from the excerpt of classifications shown in Table  8 - 1  and the diversity of computer 
applications shown in Table  8 - 2  that there is no single tool, library, vendor solution, product, or 
cookbook recipe that will serve as the answer to that question. Instead, we share with you some of the 
approaches that we use as working software engineers. While our approaches are not meant to be 
one - size - fit - all, they are generic enough to be applied to many of the areas shown in Tables  8 - 1  and  8 - 2 . 
They are for the most part platform -  and vendor - neutral, or at the very least they assume ISO standard 
C++ implementations and POSIX - compliant operating environments. The techniques given in this 
chapter are not product or vendor driven. One reason for this is that no single vendor or product has 
produced a  magic bullet  solution, allowing all applications to exploit single chip multiprocessors. 

 Instead, as you have noticed, we focus on a paradigm shift for parallel programming that involves 
movement away from imperative task - oriented software decompositions to declarative and predicate -
 oriented decompositions. Our advice to you comes from a combination of our experience as software 
engineers and from many basic notions found in Object - Oriented software engineering and logic 
programming. You might be interested to know that the techniques, models, and approaches that we 
present in this chapter rely on the foundations of modal logic, its extensions and on situational calculus 

c08.indd   286c08.indd   286 7/31/08   3:06:54 PM7/31/08   3:06:54 PM



Chapter 8: PADL and PBS: Approaches to Application Design

287

[Fagin et al., 1995]. Chapters  5 ,  6 , and  7  include a discussion of low - level operating system primitives 
and POSIX APIs that are primarily used in conjunction with imperative approaches to parallel 
programming. Our intention is to show that these same low - level primitives can (and ultimately must) 
be used with declarative approaches to parallel programming. 

 Now, in this chapter, we explain how to approach the process of application design when there is a 
concurrency requirement in the original software development request or when parallelism is explicitly 
called for or implied by the solution decomposition. We introduce Parallel Application Design Layers 
(PADL). PADL is a five - layer analysis model that we use at CTEST Laboratories during the requirements 
analysis, software design, and decomposition activities of the Software Development Life Cycle (SDLC). 
We use PADL to place concurrency and parallelism considerations in the proper context. PADL is used 
during the initial problem and solution decomposition. We also use the PADL model to circumvent 
much of the complexity that results from bottom - up approaches to parallel programming. In this 
chapter, we present an  architectural approach  to parallelism rather than a task - oriented procedural 
approach. Although concurrently executing tasks represent the basic unit of work in applications that 
take advantage of CMPs, we place those tasks within declarative architectures and predicate - based 
software models. In this chapter, we approach application design with the fundamentals of the SDLC 
front and center. 

 We also briefly introduce Predicate Breakdown Structure (PBS) decomposition. The PBS of a software 
design presents a view of the software as a collection of assertions, propositions, and logical predicates. 
The PBS gives the declarative or predicate - based view of a software design. At CTEST Laboratories we 
use PADL and PBS as fundamental tools for application design when multithreading, multiprocessing, 
or parallel programming will be used. PADL and PBS are departures from procedural and bottom - up 
task - oriented methods, but they are tools that can be used in conjunction with interface classes, 
application frameworks, predicates, and algorithm templates to move the process of application design 
in a direction that will be able to exploit the availability of medium -  and large - scale single chip 
multiprocessors.  

  What Is PADL? 
 As already noted, Parallel Application Design Layers (PADL) is a five - layer analysis model used in the 
design of software that requires some parallel programming. PADL is used to help organize the software 
decomposition effort. The PADL model is a refinement model. Starting with the top layer, each lower 
layer contains more detail and is one step closer to operating system and compiler primitives. PADL is 
meant to be used during the requirements analysis and software design activities of the SDLC. The 
industry standard description for an SDLC is contained in the IEEE Std 1074,  Guide for Developing 
Software Life Cycle Processes . IEEE Std 1074 helps clarify what the minimum set of activities are.     

 Table  3 - 1  in Chapter  3  shows some of the common activities found in the SDLC, but it is not exhaustive.   

c08.indd   287c08.indd   287 7/31/08   3:06:55 PM7/31/08   3:06:55 PM



Chapter 8: PADL and PBS: Approaches to Application Design

288

OPERATING SYSTEM  (system calls, IPCs, etc.)

APPLICATION FRAMEWORKS
(class libraries, pattern classes, algorithm templates,
and predicates),

POSIX APIs (spawn, mutexes, threads, etc.)

LE
VE

L 
2

LE
VE

L 
1

LE
VE

L 
3

LE
VE

L 
4

LE
VE

L 
5

PADL (PARALLEL APPLICATION DESIGN LAYERS)

CONCURRENCY MODELS
(pipeline, delegation, peer-to-peer, etc.)

APPLICATION MODELS (blackboards, agents, etc.)

Figure 8-1

 The PADL model is used to help design or decompose  patterns of work  before the software is written. 
That ’ s why we place an emphasis on its use during design and analysis activities of the SDLC. Figure  8 - 1  
shows the five layers of PADL     .

  Layer 5 deals with application architecture selection. Selection of the application architecture is 
one of the most critical decisions because everything else follows the architecture, and once it is 
in place, it is expensive to change. The architecture allows certain functionality and features 
while preventing others. The architecture provides the basic infrastructure of the application.  

  Layer 4 in Figure  8 - 1  identifies concurrency models that will be used for the application. The 
architecture should be flexible enough to use the concurrency models that are needed, and the 
concurrency models should be flexible enough to support the architecture selected. Table  8 - 3  
reviews the basic concurrency models and their definitions.      

❑

❑

c08.indd   288c08.indd   288 7/31/08   3:06:55 PM7/31/08   3:06:55 PM



Chapter 8: PADL and PBS: Approaches to Application Design

289

Table 8-3

Thread Models Description

Boss-worker model A central process/thread (boss) creates the processes/threads 
(workers) and assigns each worker a task. The boss may wait until 
each worker completes its task.

Peer-to-peer model All the processes/threads have an equal working status; there are no 
leaders. A peer creates all the workers needed to perform the tasks 
but performs no delegation responsibilities. The peer can process 
requests from a single input stream shared by all the threads, or each 
thread may have its own input stream.

Pipeline An assembly line approach to processing a stream of input in stages. 
Each stage is a thread that performs work on a unit of input. When 
the unit of input has been through all the stages, then the processing 
of the input has been completed.

Producer-consumer model A producer produces data to be consumed by the consumer thread. 
The data is stored in a block of memory shared by the producer and 
consumer threads.

 The pattern of work is initially expressed within the context of the architecture chosen in Layer 5. We 
discuss this shortly. The architecture is then fleshed out by one or more concurrency models in Layer 4.     

 It is important to note that Layer 4 and Layer 5 in Figure  8 - 1  are strictly conceptual models. Their 
primary purpose is to help describe and identify the concurrency structure a software application will have.     

  Layer 3 of the PADL starts to identify application frameworks, pattern class hierarchies, 
component/predicate libraries, and algorithm templates that are used to implement the 
concurrency models identified at Layer 4 of the analysis. Layer 3 introduces tangible software 
into the PADL model. Software libraries such at the Thread Building Blocks (TBB) library or 
STAPL would be identified in Layer 3.  

  Layer 2 represents the application ’ s program interface to operating system. The components in 
Layer 3 ultimately talk to and cooperate with the OS API. In our case the POSIX API is used for 
the greatest cross - platform compatibility. Many of the components in Layer 3 are interface 
classes or wrappers for functionality found in Layer 2.  

  Finally, Layer 1 is the lowest level of detail that the software application can be decomposed 
into. At Layer 1 you are dealing with kernel execution units, signals, device drivers, and so on. 
The software at Layer 1 performs the actual work of the application interfaces presented in 
Layer 2. Layer 1 decomposition also encompasses compiler and linker switches.    

 Layers 4 and 5 are considered design layers. Layers 1 – 3 are the implementation layers. Layer 3 is usually 
reserved for application - level software development. Layers 1 and 2 are usually reserved system - level 
software development. Obviously, the barrier between Layer 2 and 3 can be (and often is) easily crossed. 
Once a PADL model analysis has been performed, the picture of the concurrency structure of an 

❑

❑

❑

c08.indd   289c08.indd   289 7/31/08   3:06:55 PM7/31/08   3:06:55 PM



Chapter 8: PADL and PBS: Approaches to Application Design

290

application is clear to all of those involved in the software development effort. The PADL analysis of 
an application provides the framework for the testing activities of the SDLC. The PADL analysis provides 
the necessary implementation and deployment targets of the SDLC for the application. At the top layers 
of the PADL are design concepts and models. At the lowest level of the PADL are operating system 
primitives. So, you have a complete picture of the concurrency of an application through the PADL 
model. The PADL model is meant to drive a  declarative decomposition  of the application because you 
proceed from architectures to operating system primitives  not  from the primitives to the architectures! 
But in order for PADL to ensure a declarative decomposition, it must restrict the architectures to software 
blueprints that have declarative, goal - oriented, or predicate - based semantics. The next sections take a 
closer look at how the PADL model moves you toward declarative approaches to parallel programming. 

  Layer 5: Application Architecture Selection 
 Consideration of the numbers of cores, threads, and processes is not part of the analysis in Layer 5. In 
fact, computers are not even visible at Layer 5. The application architectures considered in Layer 5 
represent conceptual or logical structures that are platform, operating system, and computer 
independent. The value of these architectures is that they are known to support certain patterns of work. 
In the PADL model, we use two primary architectures: 

  Multiagent architectures  

  Blackboard architectures    

 It is important to note that here we are referring to the problem - solving structures and patterns of work 
as opposed to any specific tools or vendor products that are based on some of the ideas of multiagents 
and Blackboards. Our use of the terms  agent  and  Blackboard  is not to be confused with the many 
gimmicks that claim agent or Blackboard functionality. We use agents and Blackboards in their more 
formal sense. Multiagent architectures are classified in section I.2.11 of the ACM CCS, and Blackboard 
architectures are classified in D.2.11 of the ACM CCS. Both architectures are able to support a wide 
variety of concurrency models. They are well defined and well understood. Both architectures support 
the notion of PBS. We have chosen to use multiagent architectures to capture goal - oriented patterns of 
work and Blackboard architectures to capture state - oriented patterns of work. Although goals and states 
are sometimes used interchangeably and sometimes the goal is to reach a certain state, we differentiate 
between the two when using concurrency models. Goal - based decompositions and state transitions can 
help you in the direction of declarative models of parallel programming, and declarative models of 
parallel programming can help you cope with the transition to massively parallel chip multiprocessors. 
Multiagent architectures and Blackboard architectures can be understood using declarative semantics. 

  What Are Agents? 
 There was a lot of controversy over what constituted an object when object programming was initially 
introduced. There is a similar controversy over exactly what constitutes an agent. Many proponents 
define agents as autonomous continuously executing programs that act on behalf of a user. However, 
this definition can be applied to some Unix daemons or even some device drivers. Others add the 
requirements that the agent must have special knowledge of the user, must execute in an environment 
inhabited by other agents, and must function only within the specified environment. These requirements 
would exclude other programs considered to be agents by some. For instance, many e - mail agents act 
alone and may function in multiple environments. In addition to agent requirements, various groups in 
the agent community have introduced terms like  softbot ,  knowbot,     software broker , and  smart objec t to describe 
agents. One commonly found definition defines an agent as  “ an entity that functions continuously and 
autonomously in an environment in which other processes take place and other agents exist. ”  

❑

❑

c08.indd   290c08.indd   290 7/31/08   3:06:55 PM7/31/08   3:06:55 PM



Chapter 8: PADL and PBS: Approaches to Application Design

291

 Although it is tempting to accept this definition and move on, we cannot because it too easily describes 
other kinds of software constructions. A more formal source, the Foundation for Intelligent Physical 
Agents (FIFA) specification, defines the term agent as follows:  “ An Agent is the fundamental actor in a 
domain. It combines one or more service capabilities into a unified and integrated execution model 
which can include access to external software, human users and communication facilities. ”  

 While this definition has a more structured feel, it also needs further clarification because many servers 
(some Object - Oriented and some that are not) fit this definition. This definition as is would include too 
many types of programs and software constructs to be useful. In our PADL model we use the five - part 
definition of agents as stated by [Luger, 2002]: 

  1.    Agents are autonomous or semi - autonomous.  That is, each agent has certain responsibilities in 
problem solving with little or no knowledge either what other agents do or how they do it. Each 
agent does its own independent piece of the problem solving and either produces a result itself 
(does something) or reports its result back to others in the community of agents.  

  2.    Agents are situated.  Each agent is sensitive to its own surrounding environment and (usually) 
has no knowledge of the full domain of all agents.  

  3.    Agents are interactional.  That is, they form a collection of individuals that cooperate on a 
particular task. In this sense, they may be seen as a  “ society. ”   

  4.    The society of agents is structured.  In most views of agent - oriented problem solving, each 
individual, although having its own unique environment and skill set, will coordinate with 
other agents in the overall problem solving. Thus, a final solution will not only be seen as 
collective but also cooperative.  

  5.    Although individual agents are seen as possessing sets of skills responsibilities, the overall 
cooperative result of the society of agents can be viewed as greater than the sum of its 
individual contributors.      

  What Is a Multiagent Architecture? 
 We use the term  multiagent architecture  when referring to an agent - based architecture that consists of two 
or more agents that can execute concurrently if necessary. It should be clear from Luger ’ s definition of 
agents that multiagent architecture can be used as an extremely flexible approach to patterns of work 
that require or can benefit from concurrency. Notice in this definition of agents that there is no mention 
of particular computer capabilities, numbers of processors, thread management, or so forth. There is also 
no limit on the number of agents involved. There are no complexity constraints on the patterns of work 
that a collection of agents can perform. If you begin with the blueprint that is consistent with a 
multiagent architecture, you should be able to handle concurrency of any size.  

  From Problem Statements to Multiagent Architectures 
 Decomposition is one of the primary challenges in software development. It is more of a challenge when 
the software development requires parallel programming. Our approach to this challenge is to find 
an appropriate model of the problem and appropriate solution model. Using PADL analysis, we select an 
application architecture based on the solution model. To see how this works, consider again the guess -
 what - code - I ’ m - thinking problem from Chapter  4 . 

c08.indd   291c08.indd   291 7/31/08   3:06:56 PM7/31/08   3:06:56 PM



Chapter 8: PADL and PBS: Approaches to Application Design

292

 Recall the game scenario from Chapter  4  goes as follows: I ’ m thinking of a six - character code. My code 
can contain any character more than once. However, my code can only contain any characters from the 
numbers 0 – 9 or characters a – z. Your job is to guess what code I have in mind. In the game the buzzer is 
set to go off after 5 minutes. If you guess what I ’ m thinking in 5 minutes you win. In that chapter, we 
determined that you have 4,496,388 possible codes to choose from. 

 Now, in this simple example, we want to make the game a little more challenging. You now have only 2 
minutes to guess. In addition to this, instead of making up a code, I am handed the initial code by my 
trusted assistant. If my assistant determines that you have made more than  N  incorrect guesses within a 
15 - second interval, my assistant hands me a new code, and the new code is guaranteed to be among the 
guesses that you have already made.   

The Strategy 
 Recall from Chapter  4  that you happened to have a file that contained all of the possible six - character 
codes. The total number of codes is determined by samples of size  r  that can be selected out of  n  objects. 
The formula that calculates the possibilities is as follows: 

( n  -1 +  r )! / ( n -1)! r !  

 In this case  n  is 36 counting (0 - 9, a - z) and  r  = 6. The original strategy was to the divide the file into four 
parts and have the parts searched in parallel. The thinking was that the longest search would be only the 
length of the time it took to search one - quarter of the file. But because you are given a new time 
constraint of 2 minutes, you now have to modify your strategy to divide the original file into eight parts 
and have the parts searched concurrently. Therefore, you should be able to guess correctly in the time 
that it takes to search one - eighth of the file. But you also make one other provision. If you are able to 
search all eight files, and still do not guess correctly and are not out of time, you divide the files into 64 
and try again. If you fail and still have time, you divide the file into 128 and try again and so on. 

   An Observation 
 If you carefully look at the code to be guessed, you see that if the assistant determines that some unusual 
number of guesses are being made within a 15 - second interval, then the assistant changes the code to 
one that has already been guessed. It is not specified what the unusual number. So, your strategy is to try 
to make more guesses in a shorter period of time because the time constraint is tighter. Further, if you are 
able to go through all of the possibilities and still do not have the correct code, you assume that the code 
is being changed during the 2 - minute interval, and, therefore, you attempt to increase the guesses at a 
rate faster than that at which the code can be changed.    

Problem and Solution Model as Multiagents 
 You can easily see from the statement of the problem that you are initially dealing with three agents. 
If you recast the game in terms of agents you have the following: Agent A gives the code to Agent B. 
Agent C tries to guess Agent B ’ s code. If Agent C comes up with too many guesses in a 15 - second 
interval, Agent A will give Agent B a new code that is guaranteed to be a code that Agent C has already 
presented. If Agent C is able to go through all of the possibilities and is still not declared the winner and 
if Agent C has more time left, that agent will make the same guesses only faster. Agent C realizes that in 
order to generate enough guesses to guarantee success within the given time limit will require help. 
So, Agent C recruits a team of agents to help him come up with guesses. For each pass through the total 
possibilities, Agent C recruits a bigger team of agents to help with the guesses. 

c08.indd   292c08.indd   292 7/31/08   3:06:56 PM7/31/08   3:06:56 PM



Chapter 8: PADL and PBS: Approaches to Application Design

293

 Obviously, you could now start thinking in terms of agents mapped to either threads or processes. But 
we will resist this temptation. You do not want to think in terms of threads and processes at this level. In 
the PADL model approach, you work out a complete and correct logical statement of the application in 
Layers 5 and 4. So, before proceeding to Layer 4, if you are applying the PADL model to the game 
scenario, you refine the relationships and interactions of all of the agents involved. The assumption and 
conditions that the agents operated under would all be made clear. A complete picture of the multiagent 
interaction would be given. Figure  8 - 2  is a UML activity diagram that captures the interaction of the 
micro - multiagent society.     

Agent A Agent B Agent C

[guessed code]

[did not guess code]

[time is up]

[time is not up]

[more guesses]

[no more guesses]

create more agents

[time is not up]

[time is up]

A B

C C

B

[15 sec interval up]

game over declared winner

[made too many
 guesses] 

get codegive Agent B
the code

give Agent B
the new code

Figure 8-2

  Blackboard Architectures 
 The Blackboard model is an approach to collaborative problem solving. The Blackboard is used to 
record, coordinate, and communicate the efforts of two or more software - based problem solvers. There 
are two primary types of components in the Blackboard model.   

  The Blackboard  

  The problem solvers    

 The  Blackboard  is a centralized object that each of the problem solvers has access to. The problem solvers 
may read the Blackboard and change the contents of the Blackboard. The contents of the Blackboard at 
any given time will vary. The initial content of the Blackboard will include the problem to be solved. 

❑

❑

c08.indd   293c08.indd   293 7/31/08   3:06:56 PM7/31/08   3:06:56 PM



Chapter 8: PADL and PBS: Approaches to Application Design

294

In addition to the problem to be solved, other information representing the initial state of the problem, 
problem constraints, goals, and objectives may be contained on the Blackboard. As the problem solvers 
are working toward the solution, intermediate results, hypotheses, and conclusions are recorded on the 
Blackboard. The intermediate results written by one problem solver on the Blackboard may act as 
catalyst for other problem solvers reading the Blackboard. Tentative solutions are posted to the 
Blackboard. If the solutions are determined not to be sufficient, these solutions are erased, and other 
solutions are pursued. The problem solvers use the Blackboard as opposed to direct communication to 
pass partial results and findings to each other. In some configurations, the Blackboard acts as a referee, 
informing the problem solvers when a solution has been reached or when to start work or stop work. 
The Blackboard is an active object, not simply a storage location. In some cases, the Blackboard 
determines which problem solvers to involve and what content to accept or reject. The Blackboard may 
also organize the incremental or intermediate results of the problem solvers. The Blackboard may 
translate or interpret the work from one set of problem solvers so that it can be used by another set of 
problem solvers. 

 The  problem solver  is a piece of software that typically has specialized knowledge or processing 
capabilities within some area or problem domain. The problem solver can be as simple a routine that 
converts from Celsius to Fahrenheit or as complex as a smart agent that handles medical diagnosis. In 
the Blackboard model, these problem solvers are called  knowledge sources  (KS). To solve a problem using 
Blackboards, you need two or more knowledge sources, and each knowledge source usually has a 
specific area of focus or specialty. The Blackboard is a natural fit for problems that can be divided into 
separate tasks that can be solved independently or semi - independently. In the basic Blackboard 
configuration each problem solver tackles a different part of the problem. Each problem solver only sees 
the part of the problem that it is familiar with. If the solutions to any parts of the problem are dependent 
on the solutions or partial solutions to other parts of the problem, then the Blackboard is used to 
coordinate the problem solvers and the integration of the partial solutions. 

 A Blackboard ’ s problem solvers need not be homogeneous. Each problem solver may be implemented 
using different techniques. For instance, some problem solvers might be implemented using Object -
 Oriented techniques, while other solvers might be implemented as functions. Further the problem 
solvers may employ completely different problem - solving paradigms. For example, solver  A  might use a 
backward chaining approach to solving its problem, while solver  B  might use a counterpropagation 
approach. There is no requirement that the Blackboard ’ s problem solvers be implemented using the 
same programming language. 

 The Blackboard model does not specify any particular structure or layout for the Blackboard. Neither 
does it suggest how the knowledge sources should be structured. In practice, the structure of a 
Blackboard is problem dependent. The implementation of the knowledge sources is also specific to the 
problem being solved. The Blackboard framework is a conceptual model describing relationships 
without describing the structures of the Blackboard and knowledge sources. The Blackboard model does 
not dictate the number or purpose of the knowledge sources. The Blackboard may be a single global 
object or a distributed object with components on multiple computers. Blackboard systems may even 
consist of multiple Blackboards, with each Blackboard dedicated to a part of the original problem. This 
makes the Blackboard an extremely flexible model for problem solving. The Blackboard model supports 
parallel programming and many of the concurrency models. The Blackboard can be segmented into 
separate parts, allowing concurrent access by multiple knowledge sources. The Blackboard easily 
supports Concurrent Read Exclusive Write (CREW), Exclusive Read Exclusive Write (EREW), and 
Multiple Instruction, Multiple Data (MIMD). The knowledge sources may execute simultaneously with 
each knowledge source working on its part of the problem. 

c08.indd   294c08.indd   294 7/31/08   3:06:56 PM7/31/08   3:06:56 PM



Chapter 8: PADL and PBS: Approaches to Application Design

295

 Figure  8 - 3  shows two memory configurations for the Blackboard.   

<< process >>
KS1

<< process >>
KS2

<< process >>
KS3

blackboard

BLACKBOARD MEMORY CONFIGURATION 2:
Knowledge sources share the same address space.

BLACKBOARD MEMORY CONFIGURATION 1:
Knowledge sources are in different address spaces.

Address Space

PROCESS 1 

<< global object >>
blackboard

<< thread >>
KS1

<< thread >>
KS2

<< thread >>
KS3

Figure 8-3

 In both the cases in Figure  8 - 3 , all knowledge sources have access to the Blackboard. This configuration 
provides for an extremely flexible model of problem solving.  

  Approaches to Structuring the Blackboard 
 As we have indicated, there is no one way to structure a Blackboard. However, most Blackboards have 
certain characteristics and attributes in common. The original contents of the Blackboard typically 
contain some kind of partitioning of the solution space for the problem that is to be solved. The solution 
space contains all the partial solutions and full solutions to a problem.   

c08.indd   295c08.indd   295 7/31/08   3:06:57 PM7/31/08   3:06:57 PM



Chapter 8: PADL and PBS: Approaches to Application Design

296

A  “ Question and Answer Browser ”  Blackboard Example 
 Say that you need a domain - specific information browser, that is, one that allows the user to search for 
information only on a narrow topic or range of specified topics (for example, anime, robots, YouTube, or so 
on). The user should be able to browse through the available information using a graphical interface or 
choose advanced search features. The advance search features should allow the user to simply type a 
question (as long as it pertains to the topic), and the browser should return a complete answer based on the 
information it has access to. It is assumed that most users will prefer the advanced search because it ’ s faster.   

Where ’ s the Parallelism? Where ’ s the Blackboard? 

 In the innocent browser request above you see no mention made of multiple cores, concurrency threads, 
or processes. There is simply the assumption that the browser will have what the user perceives as an 
acceptable performance. You are immediately faced with, among other things, one of the primary 
challenges of software development (especially challenging for CMP deployments):  decomposition . 
Decomposition begins with understanding the problem and then devising a solution that addresses the 
problem. In this case, browsing information using a graphical user interface is fairly well understood. On 
the other hand, allowing the user to type in a question and having software that can understand the 
user ’ s question, search through information, find an appropriate answer, and then present it in a form 
that is acceptable is another challenge altogether. This problem involves determining what language 
the question is being asked in (perhaps, you can assume the local language). So, a quick run through 
of the problem yields the following challenges: 

  Is the question in a language that is known to the software?  

  Is the question concerning a topic that is available in the software ’ s information?  

  Is the question clear and unambiguously stated?  

  Are there any unknown or misspelled words in the question? (How can it answer if so?)  

  How will the software deal with meaning in the question?  

  What about language grammar (syntax, semantics, morphology, pragmatics)?    

 After a moment of internal deliberation, you realize that to accept, understand, and appropriately 
respond in a timely manner (in a second or so) to a random question typed into an information browser 
is a challenging problem! With a little research you find out that natural language processing techniques 
are required. You stumble across partial solutions in computational linguistics and computational 
semantics. You now have a rough but somewhat complete picture of the problem.

    Components of the Solution 

 To provide a solution to the problem, you realize that you need software components that include 
parsers, word experts, grammar analysis for syntax, semantics, pragmatics, and so on. As it turns out, 
the user ’ s original question can be analyzed at several levels simultaneously. Determination of what 
language the question is asked in can be done at the same time as identification of unknown words or 
misspelled words. The syntax analysis that breaks down the question into its parts of speech can also be 
done at the same time. You also determine that once part of the syntax is figured out, the semantic 
analysis process can start. Likewise, once part of the question ’ s semantics has been identified, 
identification of the pragmatics (context and meaning) can begin. You have now identified the parts. 
While there are some partial dependencies (for example, between syntax and semantics, and semantics 
and pragmatics), you can do most of the analysis of the user ’ s question concurrently. 

❑

❑

❑

❑

❑

❑

c08.indd   296c08.indd   296 7/31/08   3:06:57 PM7/31/08   3:06:57 PM



Chapter 8: PADL and PBS: Approaches to Application Design

297

 Looking at the PADL analysis model at Layer 5, it is clear that you can use both the multiagent and 
Blackboard architecture for the solution model. You choose the Blackboard architecture here because the 
semantic and pragmatic analysis can begin work with only partial solutions, and the Blackboard 
architecture is a good fit for incremental problem solving.    

Knowledge Sources for the Browser Program 

 So, you place the original user ’ s question on the Blackboard, and each of your knowledge sources has its 
specialties: 

  Checking a dictionary for unknown or misspelled words  

  Breaking down the question into parts of speech (nouns, verbs, interrogatives, and so on)  

  Understanding the morphology, that is, word forms (plural, present, past)  

  Semantic understanding of the meaning and use of words  

  Pragmatic analysis (the use of words in context)    

 The knowledge source that simply checks the question for unknown or misspelled words places its 
candidates on the Blackboard. As they arrive, the morphology knowledge sources make any corrections 
that could be due to plural forms, past tense, or abbreviations. They then place corrected words back on 
the Blackboard. While this is happening the syntax knowledge sources are breaking down the question 
with the corrected words into parts of speech and are placing phrases back up on the Blackboard as it 
goes. As soon as there is something that the semantics and pragmatics knowledge sources can work 
with, they read the Blackboard as well and begin to put up a potential meaning of the user ’ s original 
question in a form that the search engine can use. 

 This is a cooperative kind of concurrent processing because the partial solutions can be used and 
interpreted on many levels by different knowledge sources. Each knowledge source writes a tentative 
hypothesis for what it is currently dealing with on the Blackboard. Something that the semantic 
knowledge source uncovers may help the syntax parser refine its work. Something that the syntax parser 
refines may clarify something for the pragmatics knowledge source and so on. The Blackboard 
represents a solution space that is divided into a hierarchy of partial solutions with proper forms of 
questions and answers at the highest level and parts of speech and word forms at the lowest level. If 
some part of the solution space matches something in the rules of grammar or usage of language, that 
piece of the solution is written to another part of the Blackboard as a partial solution. One KS might put 
a verb phrase on the Blackboard. Another may put a choice of contexts on the Blackboard. Once these 
two pieces of information have been put on the Blackboard, another KS may uses this information to 
aide in identifying the real subject or object of the question. All of this has to take place within the space 
of a few seconds.    

Is a Blackboard a Good Fit? 

 From the original na ï ve statement of the question and answer browser request that did not really hint at 
concurrency, you have now produced a solution that needs to use parallel models of work in order to 
meet the assumed speed requirements. The Blackboard solution is well suited to concurrency with 
knowledge sources working with incomplete or staged information. Again, it is important to note that at 
this level you are not concerned with threads, numbers of cores, or processes.     

❑

❑

❑

❑

❑

c08.indd   297c08.indd   297 7/31/08   3:06:57 PM7/31/08   3:06:57 PM



Chapter 8: PADL and PBS: Approaches to Application Design

298

The Blackboard as an Iterative Shared Solution Space 
 The solution space is sometimes organized in a hierarchy. In the case of the question and answer 
processing example, valid question classifications would be at the top of the hierarchy, and the next level 
might consist of various views of the classifications. For example, with different forms for who, what, 
where, and when questions, each level describes a smaller perhaps less obvious aspect of a question 
classification (for example, is the verb transitive?). The knowledge sources may work on multiple levels 
within the hierarchy simultaneously. The solution space may also be organized as a graph where each 
node represents some part of the solution, and each edge represents the relationships between two 
partial solutions. The solution space may be represented as one or more matrices with each element of 
the matrix or matrices containing a solution or partial solution. The solution space representation is an 
important component of the Blackboard architecture. The nature of the problem will often determine 
how the solution space should be partitioned. This feature is critical in the PADL model because we use 
Layer 5 to describe the application architecture and the application architecture has to be flexible enough 
to map to the solution model. The structure of the Blackboard supports this flexibility. 

 In addition to a solution space component, Blackboards typically have one or more rule (heuristic) 
components. The rule component is used to determine which knowledge sources to deploy, and what 
solutions to accept or reject. The rule component can also be used to translate partial solutions from one 
level in the solution space hierarchy to another level. The rule component may also be used to prioritize 
the knowledge source approaches. The rule component supports concurrently among knowledge 
sources. This is the level where concurrency needs to be dealt with by using a declarative interpretation 
of parallel processing. Some knowledge sources might be going down blind alleys. The Blackboard 
deselects one set of knowledge sources in favor of another set. The Blackboard may use the rule 
component to suggest to the knowledge sources a more appropriate potential hypothesis based on the 
partial hypothesis already generated. 

 In addition to the solution space and rule component, the Blackboard often contains initial values, 
constraints values, and ancillary goals. In some cases, the Blackboard contains one or more event queues 
that are used to capture input from either the problem space or the knowledge sources. Figure  8 - 4  shows 
a logical layout for a basic Blackboard architecture.   

conditions

actions

<< process/thread >>

knowledge source

• directives
• goals
• objectives

• inference methods
• search methods
• problem-solving strategies

• search space
• knowledge base

BASIC BLACKBOARD ARCHITECTURE

Figure 8-4

c08.indd   298c08.indd   298 7/31/08   3:06:57 PM7/31/08   3:06:57 PM



Chapter 8: PADL and PBS: Approaches to Application Design

299

 Figure  8 - 4  shows that the Blackboard has a number of segments. Each segment in Figure  8 - 4  has a 
variety of implementations. This suggests that Blackboards are more than global pieces of memory or 
traditional databases. While Figure  8 - 4  shows the common core components that most Blackboards have, 
the Blackboard architecture is not limited to these components. Other useful components for Blackboards 
include context models of the problem and domain models that can be used to aid the problem solvers 
(KS) with navigation through the solution space. The support that C++ has for Object - Oriented Design 
and Programming fits nicely with the flexibility requirements of the Blackboard model. Most Blackboard 
architectures can be modeled using classes in C++. Recall that classes can be used to model some person, 
place, thing, or idea. Blackboards are used to solve problems that involve persons, places, things, or 
ideas. So, using C++ classes to model the objects that Blackboards contain or the actual Blackboards is a 
natural fit. We take advantage of C++ container classes and the standard algorithms in our 
implementations of the Blackboard model.   

  The Anatomy of a Knowledge Source 
 Knowledge sources are represented as objects, procedures, sets of rules, logic assertions, and in some 
cases entire programs. Knowledge sources have a condition part and an action part. When the 
Blackboard contains some information that satisfies the condition part of some knowledge source, 
the action part of the knowledge source is activated. Robert Englemore and Tony Morgan clearly state the 
responsibilities of a knowledge source in their work  Blackboard Systems :   

 Each knowledge source is responsible for knowing the conditions under which it can contribute to a 
solution. Each knowledge source has preconditions that indicate the condition on the Blackboard that 
must exist before the body of the knowledge source is activated. One can view a knowledge source as 
a large rule. The major difference between a rule and a knowledge source is the grain size of the 
knowledge each holds. The condition part of this large rule is called the knowledge source 
precondition, and the action part is called the knowledge source body. [Englemore, Morgan, 1998]   

 Here, Englemore and Morgan don ’ t specify any of the details of the condition part or the action part of a 
knowledge source. They are logical constructs. The condition part could be as simple as the value of 
some boolean flag on the Blackboard or as complex as a specific sequence of events arriving in an event 
queue within a certain period of time. Likewise, the action part of a knowledge source can be a simple as 
a single statement performing an expression assignment or as involved as forward chain in an expert 
system. Again, this is a statement of how flexible the Blackboard model can be. The C++ class construct 
and the notion of an object are sufficient for our purposes. Each knowledge source will be an object (for 
sophisticated uses an object hierarchy). The action part of the knowledge source will be implemented by 
the object ’ s methods. The condition part of the knowledge source will be captured as data members 
of the object. Once the object is in a certain state then the action parts of that object will be activated. 

 An important attribute of the knowledge source is its autonomy. Each knowledge source is a specialist 
and is largely independent from the other problem solvers. This presents one of the desired qualities 
for a parallel program. Ideally the tasks in a parallel program can operate concurrently without much 
interaction with other tasks. This is exactly the case in the Blackboard model. The knowledge sources act 
independently, and any major interaction is through the Blackboard. So, from the knowledge source ’ s 
point of view, it is acting alone, getting additional information from the Blackboard, and recording its 
findings on the Blackboard. The activities of the other knowledge sources, their strategies, and structures 
are unknown. In the Blackboard model, the problem is partitioned into a number of autonomous or 
semi - autonomous program solvers. This is the advantage of the Blackboard model over other 
concurrency models. In the most flexible configuration, the knowledge sources are  rational agents , 

c08.indd   299c08.indd   299 7/31/08   3:06:58 PM7/31/08   3:06:58 PM



Chapter 8: PADL and PBS: Approaches to Application Design

300

meaning the agent is completely self - sufficient and able to act on its own with minimum interaction with 
the Blackboard. Rational agents in conjunction with Blackboards present the greatest opportunity for 
large scale parallelism or massively parallel CMPs. This use of rational agents as knowledge sources 
combines the two primary architectures from Layer 5 of PADL: multiagent architectures and Blackboard 
architectures. A full discussion of rational agents takes us beyond the scope of this book. However, we 
can say that rational agents fit into the category of agents that we discussed earlier in the chapter in the 
section  “ What Are Agents? ”  When knowledge sources are implemented as rational agents in large - scale 
systems, the rule and action components of the knowledge sources are learned using Inductive Logic 
Programming (ILP) techniques [Bergadano, Gunetti, 1996]. The ILP techniques provide a gateway to 
bottom - up declarative programming. 

 We move away from bottom - up  procedural  programming techniques and toward PADL in order to cope 
with complexity as the scale of available cores on CMP increases. However, bottom - up  declarative  
programming using ILP or evolutionary programming techniques [Goertzel, Pennachin, 2007] is a 
legitimate part of the PADL analysis model. These approaches are used in Layer 3 where we are 
concerned with the availability and implementation of application frameworks, class libraries, algorithm 
templates, and so on.  

  Concurrency Flexibility of the Application Architecture 
 Although there are many different types of software architectures that support parallelism, we use 
multiagent and Blackboard architectures in Layer 5 of PADL because of their general purpose nature and 
the range of concurrency models they support. Many different types of solutions that require 
concurrency can be expressed using multiagent or Blackboard architectures. Multiagent architectures 
and Blackboards are domain independent. They can be used in many different areas. Further, these 
architectures can be used for solutions of all sizes from small programs to large - scale, enterprise - wide 
solutions. While these architectures might be new to developers who are in the process of learning 
parallel or multithreaded programming techniques, they are well defined, and many useful resources 
that introduce the basic ideas of agents and Blackboards are available, see [Russell, Norvig, 2003], 
[Englemore, Morgan, 1988], [Goertzel, Pennachin, 2007], and [Fagin et al., 1996]. You will see that 
the selection of the architecture impacts software maintenance, testing, and debugging. Most successful 
software undergoes constant change. If that software has components that require concurrency and 
synchronization, then the natural evolution of the software can be extremely challenging if an 
appropriate application architecture was not selected from the start. The PADL analysis model presents 
two well - known and well - understood architectures that perform well under the conditions of software 
evolution. Ultimately, the concurrency of an application is going to be implemented by low - level 
operating system primitives like threads and processes. If the application architecture is clean, modular, 
scalable, and well understood, then the translation into manageable operating system primitives has a 
chance to succeed. On the other hand, selection of the wrong or a poor application architecture leads to 
brittle, error - prone software that cannot be readily changed, maintained, or evolved. While this is true of 
any kind of computer application, it is magnified when that software involves parallel programming, 
multithreading, or multiprocessing.   

  Layer 4: Concurrency Models in PADL 
 The applications architectures selected in Layer 5 have to flexible enough to support concurrency models 
selected in Layer 4. There can be more than one concurrency model needed in the application, so the 
architecture chosen should be able to accommodate multiple models. Layer 4 is also a design layer. 
We are not necessarily thinking in terms of threads or processes when we select concurrency models in 
Layer 4. 

c08.indd   300c08.indd   300 7/31/08   3:06:58 PM7/31/08   3:06:58 PM



Chapter 8: PADL and PBS: Approaches to Application Design

301

 Whereas the architecture focuses on the language and concepts in the application domain, the 
concurrency model layer is concerned with picking known models of parallelism that will work. In the 
browser example used in the chapter so far, we have several highly specialized knowledge sources that 
are concurrently working on different parts of the user ’ s question. This particular example uses a 
variation of the MIMD model of parallelism in combination with a peer - to - peer model. In this case, the 
peers communicated and cooperated through a shared Blackboard. Since each knowledge source has its 
own specialty and works on a different aspect of the question, we select the Multiple Instruction, 
Multiple Data (MIMD) concurrency model. In Chapter  7 , we explained the Parallel Random - Access 
Machine (PRAM) and the Exclusive Read Exclusive Write (EREW), Concurrent Read Exclusive Write 
(CREW), Exclusive Read Concurrent Write (ERCW), and Concurrent Read Concurrent Write (CRCW) 
models for memory or critical section access. It is clear that in the example of the question and answer 
browser that you have either a CREW or CRCW requirement for the Blackboard. 

 The identification or selection of a MIMD/peer - to - peer model in conjunction with CREW/CRCW critical 
section access is important at this stage because it shapes and molds the use of threads and processes in 
Layers 2 and 3. This emphasizes the fact that the parallelism in the implementation model should 
naturally follow the concurrency in the solution model. If you allow implementation model and the 
solution model to drift or diverge too much, then you will not be able to guarantee that the software is 
correct. The simple game example discussed earlier in this chapter uses a multiagent application 
architecture. It uses the classic boss - worker concurrency model with a Single Instruction Multiple Data 
(SIMD) PRAM architecture and EREW access for the critical section. In the case of the game, the critical 
section is a shared queue that all of the agents used to get the names of the partial files to search. 
A shared queue was also used by the agents to report back to the main agent when a correct code was 
found. Table  8 - 4  shows the PADL analysis as it applies at this point to the two examples.   

Table 8-4

Architecture
Concurrency 
Model PRAM Model SIMD/MIMD

Guess-My-Code 
Agents

Multiagent Peer-to-peer CRCW or CREW MIMD

Question and 
Answer Browser

Blackboard Boss-worker EREW SIMD

 While Table  8 - 4  does present a simplification of concurrency design choices for the two examples, it 
nevertheless gives a high - level evaluation of the concurrency infrastructure of the software. Once you ’ ve 
identified the concurrency models, you can plan for their strengths and weaknesses. For example, if you 
know that you are dealing with SIMD model, then vector optimization, loop unrolling, and pipelining all 
become serious contenders for implementation. You can take advantage of their strengths and plan for 
their weaknesses. On the other hand, if you know you ’ re dealing with EREW critical sections, then you 
know ahead of time that you have potential bottleneck issues or indefinite postponement issues. One of 
the advantages of selecting well - known models is that you know what you ’ re getting into before you 
start implementing the applications. Figure  8 - 5  shows a block diagram of the concurrency infrastructure 
of the two examples.   

c08.indd   301c08.indd   301 7/31/08   3:06:58 PM7/31/08   3:06:58 PM



Chapter 8: PADL and PBS: Approaches to Application Design

302

partial solutions

BLACKBOARD

software model of
solution

KS monitor
& control

initial
values

Includes:
problem constraints,
heuristics, metaknowledge
about the knowledge
sources

<< process/thread >>

SYNTAX
AGENT

control
unit 1

control
unit 2

Question 1

SYNTAX:

LAYER 2

<< process/thread >>

MORPHOLOGY
AGENT

<< process/thread >>

SEMANTICS
AGENT

LAYER 3

...

 

FILE 1

FILE 2

FILE 1 FILE 1

FILE 2

FILE 3

FILE 1

FILE 2

FILE 3

FILE 4

Q & A BROWSER BLACKBOARD

guess_my_code SIMD

Question 1

SEMANTICS:

Question 1

MORPHOLOGY:

<< process/thread >>

AGENT A
find_code

<< process/thread >>

AGENT B
find_code

<< process/thread >>

AGENT C
find_code

<< process/thread >>

AGENT D
find_code

Figure 8-5

c08.indd   302c08.indd   302 7/31/08   3:06:59 PM7/31/08   3:06:59 PM



Chapter 8: PADL and PBS: Approaches to Application Design

303

 Figure  8 - 5  clarifies where the concurrency is in the applications. One of the major benefits of using a PADL 
model analysis is to identify the nature and location of concurrency in an application. Again, it is important 
to note that Layer 4 and 5 are conceptual design layers. We are not really concerned with threads, or 
processes in these layers. These layers function as a blueprint that specifies the concurrency architecture 
and infrastructure of the application. Layers 4 and 5 identify the primary agents, objects, components, and 
processes that will be involved in concurrency and where in the application the concurrency takes place. 
Layers 4 and 5 specify how the agents, objects, components, and processes are related in terms of 
concurrency models such as boss - worker, pipeline, SIMD, MIMD, and so on. After you have done the 
decomposition in Layers 4 and 5, you can begin to think about the implementation models in Layer 3. 
Figure  8 - 6  contains a general overview of how the PADL analysis is applied during decomposition.   

Requirements gathering activities,
prototyping, etc.

Analysis activities

Design activities of SDLC

SDLC EXCERPTS

Problem/service analysis.

Generate solution/service models.

Map solution models to application architecture.

Map application architectures to known concurrency models.

Select application frameworks, class libraries, template algorithms,
predicates to implement the agents, objects, components, and processes
from Step 3 using the relationships from Step 4.

Fill in gaps left in Step 5 with POSIX API integration.

Compiler and operating system optimizations.

STEP 1

STEP 2

STEP 3 

STEP 4 

STEP 5 

STEP 6 

STEP 7 

7 steps using PADL model for designing software with concurrency requirements

OPERATING SYSTEM

POSIX API

APPLICATION FRAMEWORKS

CONCURRENCY MODELS

APPLICATION MODELS

Implementation
model

PADL MODEL

Design layer

Implementation
layer

Steps 2 & 3  include generating PBS (Predicate Breakdown Structure)
of assumptions, assertions, rules, and constraints of application.

Figure 8-6

 The concurrency infrastructure is identified from steps 1 through 4, as shown in the figure. Notice again 
that Layers 4 and 5 are design layers and that Layer 3 contains the implementation model for your 
application. Layer 3 plays a dual role because it is part of the design layer and the implementation layer. 
This is because application frameworks, pattern classes, class hierarchies, and template algorithms are 
useful during the design and are directly deployed at implementation. Once Layer 3 analysis is done, the 
application ’ s concurrency infrastructure has a specific set of classes and template algorithms. We turn 
our attention to Layer 3 next.  

c08.indd   303c08.indd   303 7/31/08   3:06:59 PM7/31/08   3:06:59 PM



Chapter 8: PADL and PBS: Approaches to Application Design

304

  Layer 3: The Implementation Model of PADL 
 Layer 3 analysis consists of selecting the application frameworks, pattern classes, class libraries, class 
hierarchies, algorithm templates, predicates, and container classes that are necessary to implement the 
agents, objects, components, predicates, and processes identified during the solution model 
decomposition, the application architecture selection and the concurrency model(s) identification. 
During Layer 3 analysis all of the primary design artifacts from Layers 4 and 5 are associated with 
specific Object - Oriented components, algorithms, and predicates. Once Layer 3 analysis is done, we have 
the clearest picture of the concurrency infrastructure and the concurrency implementation model of the 
application. Notice in Figure  8 - 6  that the items in Layer 3 are traceable back to the original statement of 
the problem. Since the entire PADL analysis takes place in the context of a well structured SDLC, the 
application that you deliver will be sound, scalable and maintainable by a software development group. 

 We mention development group here because the software development enterprise is a group effort. 
Useful software evolves over time and is changed and maintained by different individuals. Ad hoc 
approaches to parallel programming or multithreading hacks are virtually impossible to maintain in the 
long run. The work accomplished in Layers 3, 4, and 5 of the PADL analysis is the difference between 
software that has concurrency, allowing developers to actually manage and cope with the complexity, 
and software that just grows more complex and unmanageable and is finally decommissioned as the 
development group and the end users collapse under the strain. 

  C++ Components to the Rescue 
 Fortunately, the C++ environment has an impressive set of features, libraries, and techniques that can be 
deployed for  model  implementation. We emphasize the word  model  here because parallelism and 
concurrency are best managed in the context of models. The seven steps shown in Figure  8 - 6  move from 
models of the problem to models of the solution and finally to implementation models. If you use 
declarative models in your solutions, then you can reliably develop software that takes advantage of 
medium -  to large - scale CMPs or massively parallel multicores. Although C++ does not have concurrency 
constructs, C++ does have excellent support for many categories of library. So, you can add support for 
parallel programming and multithreading to C++ through the use of libraries. There are three very 
important C++ component libraries that support parallel programming that we introduce in this chapter: 
the Parallel STL Library (STAPL), Intel Thread Building Blocks (TBB), and the new C++0x standard. 
Although there are many different efforts that have generated concurrency support using C++, we 
introduce these three because they will be soon be the most widely available and easily accessible C++ 
components that support concurrency, parallel programming, and multithreading.   

The C++0x or C++09 Standard 
 As of this writing the new, standard for C++0x is on the verge of being adopted. The standard will 
probably be adopted in 2009, and the C++0x designation will become The C++09 Standard. C++03 
adopted in 2003 is the current C++ standard. The C++0x standard includes some exciting updates to the 
language. Most of the improvements come in the form of new classes and libraries. The new C++ 
standard will have more support for parallel programming and multithreading through the addition of a 
concurrent programming library. This is very good news for C++ developers because prior to the 
new standard there was no guaranteed parallel programming facility in every C++ environment. 
The new standard will change this. Table  8 - 5  lists some of the new libraries that C++0x (C++09) will 
support.   

c08.indd   304c08.indd   304 7/31/08   3:06:59 PM7/31/08   3:06:59 PM



Chapter 8: PADL and PBS: Approaches to Application Design

305

Table 8-5

New Class 
Libraries in C++0x Standard Description

MPI Message Passing Interface (MPI) library for use in distributed-
memory and parallel application programming.

Interprocess Includes interprocess mechanisms such as shared memory, 
memory mapped files, process shared mutexes, and condition 
variables. Also includes containers and allocators for processes.

-asio A portable networking library that includes sockets, timers, and 
hostname resolution socket iostreams.

 The libraries in Table  8 - 5  contain some of the functionality that we discussed in Chapters  4 ,  5 ,  6 , and  7 , 
including threads, mutexes, condition variables, and Interprocess Communication (IPC) capabilities. The 
class libraries are essentially interface classes that wrap operating system APIs. They will be compatible 
with the POSIX thread management and process management facilities. Whereas the new standard 
provides an interface to most of the features in POSIX API, the holes can be filled by using other 
libraries, or providing your own interface classes to the POSIX API. Listing  8 - 1  shows a small part of the 
Boost C++ Libraries implementation of the new standard C++ thread class and some of the services that 
it offers developers. Boost has provided free peer - reviewed portable C++ source libraries that are 
compliant to the C++ Standard Library. Currently 10 of their libraries have been included in the C++ 
Standards Committee ’ s Library Technical Report (TR1) and will become a part of future C++ Standards. 

   Listing 8 - 1  

//Listing 8-1 An implementation of the new C++0x thread class.
              
              
  1  #ifndef BOOST_THREAD_THREAD_PTHREAD_HPP
  2  #define BOOST_THREAD_THREAD_PTHREAD_HPP
  3  // Copyright (C) 2001-2003
  4  // William E. Kempf
  5  // Copyright (C) 2007 Anthony Williams
  6  //
  7  //  Distributed under the Boost Software License,
     //  Version 1.0. (See accompanying
  8  //  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  9
 10  #include  < boost/thread/detail/config.hpp > 
 11
 12  #include  < boost/utility.hpp > 
 13  #include  < boost/function.hpp > 
 14  #include  < boost/thread/mutex.hpp > 
 15  #include  < boost/thread/condition_variable.hpp > 
 16  #include  < list > 
 17  #include  < memory > 
 18

(continued)

c08.indd   305c08.indd   305 7/31/08   3:06:59 PM7/31/08   3:06:59 PM



Chapter 8: PADL and PBS: Approaches to Application Design

306

 19  #include  < pthread.h > 
 20  #include  < boost/optional.hpp > 
 21  #include  < boost/thread/detail/move.hpp > 
 22  #include  < boost/shared_ptr.hpp > 
 23  #include “thread_data.hpp”
 24  #include  < stdlib.h > 
 25
 26  #ifdef BOOST_MSVC
 27  #pragma warning(push)
 28  #pragma warning(disable:4251)
 29  #endif
 30
 31  namespace boost
 32  {
 33    class thread;
 34
 35    namespace detail
 36    {
 37        class thread_id;
 38    }
 39
 40    namespace this_thread
 41    {
 42        BOOST_THREAD_DECL detail::thread_id get_id();
 43    }
 44
 45    namespace detail
 46    {
 47        class thread_id
 48        {
 49        private:
 50            detail::thread_data_ptr thread_data;
 51
 52            thread_id(detail::thread_data_ptr thread_data_):
 53                thread_data(thread_data_)
 54            {}
 55            friend class boost::thread;
 56            friend thread_id this_thread::get_id();
 57        public:
 58            thread_id():
 59                thread_data()
 60            {}
 61
 62            bool operator==(const thread_id &  y) const
 63            {
 64                return thread_data==y.thread_data;
 65            }
 66
 67            bool operator!=(const thread_id &  y) const

Listing 8-1 (continued)

c08.indd   306c08.indd   306 7/31/08   3:07:00 PM7/31/08   3:07:00 PM



Chapter 8: PADL and PBS: Approaches to Application Design

307

 68            {
 69                return thread_data!=y.thread_data;
 70            }
 71
 72            bool operator < (const thread_id &  y) const
 73            {
 74                return thread_data < y.thread_data;
 75            }
 76
 77            bool operator > (const thread_id &  y) const
 78            {
 79                return y.thread_data < thread_data;
 80            }
 81
 82            bool operator < =(const thread_id &  y) const
 83            {
 84                return !(y.thread_data < thread_data);
 85            }
 86
 87            bool operator > =(const thread_id &  y) const
 88            {
 89                return !(thread_data < y.thread_data);
 90            }
 91
 92            template < class charT, class traits > 
 93            friend std::basic_ostream < charT, traits >  & 
 94            operator <  < (std::basic_ostream < charT, traits >  &  os,
                          const thread_id &  x)
 95            {
 96                if(x.thread_data)
 97                {
 98                    return os <  < x.thread_data;
 99                }
100                else
101                {
102                    return os <  < ”{Not-any-thread}”;
103                }
104            }
105        };
106    }
107
108    struct xtime;
109    class BOOST_THREAD_DECL thread
110    {
111    private:
112        thread(thread & );
113        thread &  operator=(thread & );
114
115        template < typename F > 
116        struct thread_data:
117            detail::thread_data_base
118        {
119            F f;
120

(continued)

c08.indd   307c08.indd   307 7/31/08   3:07:00 PM7/31/08   3:07:00 PM



Chapter 8: PADL and PBS: Approaches to Application Design

308

121            thread_data(F f_):
122                f(f_)
123            {}
124            thread_data(detail::thread_move_t < F >  f_):
125                f(f_)
126            {}
127
128            void run()
129            {
130                f();
131            }
132        };
133
134        mutable boost::mutex thread_info_mutex;
135        detail::thread_data_ptr thread_info;
136
137        void start_thread();
138
139        explicit thread(detail::thread_data_ptr data);
140
141        detail::thread_data_ptr get_thread_info() const;
142
143    public:
144        thread();
145        ~thread();
146
147        template  < class F > 
148        explicit thread(F f):
149            thread_info(new thread_data < F > (f))
150        {
151            start_thread();
152        }
153        template  < class F > 
154        thread(detail::thread_move_t < F >  f):
155            thread_info(new thread_data < F > (f))
156        {
157            start_thread();
158        }
159
160        thread(detail::thread_move_t < thread >  x);
161        thread &  operator=(detail::thread_move_t < thread >  x);
162        operator detail::thread_move_t < thread > ();
163        detail::thread_move_t < thread >  move();
164
165        void swap(thread &  x);
166
167        typedef detail::thread_id id;
168
169        id get_id() const;
170
171        bool joinable() const;
172        void join();
173        bool timed_join(const system_time &  wait_until);

Listing 8-1 (continued)

c08.indd   308c08.indd   308 7/31/08   3:07:00 PM7/31/08   3:07:00 PM



Chapter 8: PADL and PBS: Approaches to Application Design

309

174
175        template < typename TimeDuration > 
176        inline bool timed_join(TimeDuration const &  rel_time)
177        {
178            return timed_join(get_system_time()+rel_time);
179        }
180        void detach();
181
182        static unsigned hardware_concurrency();
183
184        // backwards compatibility
185        bool operator==(const thread &  other) const;
186        bool operator!=(const thread &  other) const;
187
188        static void sleep(const system_time &  xt);
189        static void yield();
190
191        // extensions
192        void interrupt();
193        bool interruption_requested() const;
194    };
195
196    inline detail::thread_move_t < thread >  move(thread &  x)
197    {
198        return x.move();
199    }
200
201    inline detail::thread_move_t < thread > 
       move(detail::thread_move_t < thread >  x)
202    {
203        return x;
204    }
205
206
207    template < typename F > 
208    struct thread::thread_data < boost::reference_wrapper < F >     > :
209        detail::thread_data_base
210    {
211        F &  f;
212
213        thread_data(boost::reference_wrapper < F >  f_):
214            f(f_)
215        {}
216
217        void run()
218        {
219            f();
220        }
221    };
222
223    namespace this_thread
224    {
225        class BOOST_THREAD_DECL disable_interruption

(continued)

c08.indd   309c08.indd   309 7/31/08   3:07:00 PM7/31/08   3:07:00 PM



Chapter 8: PADL and PBS: Approaches to Application Design

310

226        {
227            disable_interruption(const disable_interruption & );
228            disable_interruption &  operator=(const disable_interruption & );
229
230            bool interruption_was_enabled;
231            friend class restore_interruption;
232        public:
233            disable_interruption();
234            ~disable_interruption();
235        };
236
237        class BOOST_THREAD_DECL restore_interruption
238        {
239            restore_interruption(const restore_interruption & );
240            restore_interruption &  operator=(const restore_interruption & );
241        public:
242            explicit restore_interruption(disable_interruption &  d);
243            ~restore_interruption();
244        };
245
246        BOOST_THREAD_DECL thread::id get_id();
247
248        BOOST_THREAD_DECL void interruption_point();
249        BOOST_THREAD_DECL bool interruption_enabled();
250        BOOST_THREAD_DECL bool interruption_requested();
251
252        inline void yield()
253        {
254            thread::yield();
255        }
256
257        template < typename TimeDuration > 
258        inline void sleep(TimeDuration const &  rel_time)
259        {
260            thread::sleep(get_system_time()+rel_time);
261        }
262    }
263
264    namespace detail
265    {
266        struct thread_exit_function_base
267        {
268            virtual ~thread_exit_function_base()
269            {}
270            virtual void operator()() const=0;
271        };
272
273        template < typename F > 
274        struct thread_exit_function:
275            thread_exit_function_base
276        {
277            F f;

Listing 8-1 (continued)

c08.indd   310c08.indd   310 7/31/08   3:07:00 PM7/31/08   3:07:00 PM



Chapter 8: PADL and PBS: Approaches to Application Design

311

278
279            thread_exit_function(F f_):
280                f(f_)
281            {}
282
283            void operator()() const
284            {
285                f();
286            }
287        };
288
289        BOOST_THREAD_DECL void
           add_thread_exit_function(thread_exit_function_base*);
290    }
291
292    namespace this_thread
293    {
294        template < typename F > 
295        inline void at_thread_exit(F f)
296        {
297            detail::thread_exit_function_base*
               const thread_exit_func=new detail::thread_exit_function < F > (f);
298            detail::add_thread_exit_function(thread_exit_func);
299        }
300    }
301

 302    class BOOST_THREAD_DECL thread_group
  303    {  
304    public:  
305        thread_group();  
306        ~thread_group();  
307  
308        thread* create_thread(const function0 < void >  &  threadfunc);  
309        void add_thread(thread* thrd);  
310        void remove_thread(thread* thrd);  
311        void join_all();  
312        void interrupt_all();  
313        size_t size() const;  
314  
315    private:  
316        thread_group(thread_group & );  
317        void operator=(thread_group & );  
318  
319        std::list < thread* >  m_threads;  
320        mutex m_mutex;  
321    };
  322  } // namespace boost 

323
324  #ifdef BOOST_MSVC
325  #pragma warning(pop)
326  #endif
327
328
329  #endif
                 

c08.indd   311c08.indd   311 7/31/08   3:07:01 PM7/31/08   3:07:01 PM



Chapter 8: PADL and PBS: Approaches to Application Design

312

 Notice on Line 302 of Listing  8 - 1  that the new thread class also supports thread groups. This provides 
much of the functionality of the POSIX pthread API. Notice on Line 19 that this implementation includes 
 pthread.h . We covered the role of the operating system in Chapter  4  and explained that the operating 
system is the gatekeeper of the hardware and the multicores. Any class hierarchies, application 
frameworks, or pattern classes that present multithreading or multiprocessing capabilities are essentially 
providing interface classes to the operating system API. So, this is a welcome interface class because 
with standard C++ classes like the thread class shown in Listing  8 - 1  you get to move one step closer 
to declarative interpretations of parallel programming. These kinds of interface classes not only add 
declarative or Object - Oriented flavor to low - level operating system primitives, but they also simplify the 
interface. Consider Lines 308 – 311 and their POSIX API pthread counterparts. These methods replace 
direct calls to pthread calls such as  pthread_create() ,  pthread_join() , using the attribute object to 
detach threads, thread cancellation functions, and so on. Interface classes as implemented in this type of 
library allow developers to maintain their Object - Oriented or declarative approach to application 
development.    

A C++0x (C++09) Mutex Interface Class 
 In addition to thread interface classes, the C++0x standard will include mutex interface classes. 

 We explained the POSIX  pthread_mutex()  and its use in dealing with one of the primary 
synchronization challenges of multithreading. But  pthread_mutex()  is in Layer 2 of the PADL analysis. 
Ideally, you do not want to do most of the synchronization at Layer 2, and the important reason that you 
don ’ t want to do the majority of your synchronization at Layer 2 is because the POSIX API has 
procedural semantics. To take advantage of the POSIX API services, you would have to provide interface 
classes. The new C++ standard comes to the rescue here by providing standard mutex classes. Listing  8 - 2  
is Anthony William ’ s implementation of the standard C++ mutex class. As you can see, the basic pthread 
mutex functionality of lock, unlock, destroy, timed lock, and so forth is encapsulated in the mutex class. 
Also, a timed mutex class is defined that encapsulates some of the functionality of a condition variable. 

   Listing 8 - 2  

//Listing 8-2 An implementation of the new standard C++0x mutex class.
              
  1  #ifndef BOOST_THREAD_PTHREAD_MUTEX_HPP
  2  #define BOOST_THREAD_PTHREAD_MUTEX_HPP
  3  // (C) Copyright 2007 Anthony Williams
  4  // Distributed under the Boost Software License, Version 1.0. (See
  5  // accompanying file LICENSE_1_0.txt or copy at
  6  // http://www.boost.org/LICENSE_1_0.txt)
  7
  8  #include  < pthread.h > 
  9  #include  < boost/utility.hpp > 
 10  #include  < boost/thread/exceptions.hpp > 
 11  #include  < boost/thread/locks.hpp > 
 12  #include  < boost/thread/thread_time.hpp > 
 13  #include  < boost/assert.hpp > 
 14  #ifndef WIN32
 15  #include  < unistd.h > 
 16  #endif
 17  #include  < errno.h > 
 18  #include “timespec.hpp”
 19  #include “pthread_mutex_scoped_lock.hpp”

c08.indd   312c08.indd   312 7/31/08   3:07:01 PM7/31/08   3:07:01 PM



Chapter 8: PADL and PBS: Approaches to Application Design

313

 20
 21  #ifdef _POSIX_TIMEOUTS
 22  #if _POSIX_TIMEOUTS  > = 0
 23  #define BOOST_PTHREAD_HAS_TIMEDLOCK
 24  #endif
 25  #endif
 26
 27  namespace boost
 28  {

  29    class mutex:  
 30        boost::noncopyable  31    { 
  32    private:  
 33        pthread_mutex_t m;
   34    public:  
 35        mutex()  
 36        {  
 37            int const res=pthread_mutex_init( & m,NULL); 
  38            if(res)  
 39            {  
 40                throw thread_resource_error();  
 41            }  
 42        }  
 43        ~mutex()  
 44        {
   45            BOOST_VERIFY(!pthread_mutex_destroy( & m));  
 46        }
   47 
  48        void lock()
   49        {
   50            BOOST_VERIFY(!pthread_mutex_lock( & m));
   51        } 
  52  
 53        void unlock()  
 54        {  
 55            BOOST_VERIFY(!pthread_mutex_unlock( & m));  
 56        } 
  57  
 58        bool try_lock() 
  59        { 
  60            int const res=pthread_mutex_trylock( & m);
   61            BOOST_ASSERT(!res || res==EBUSY);
   62            return !res;  
 63        }
   64  
 65        typedef pthread_mutex_t* native_handle_type; 
  66        native_handle_type native_handle()  
 67        { 
  68            return  & m;
   69        }
   70
   71        typedef unique_lock < mutex >  scoped_lock;  
 72        typedef scoped_lock scoped_try_lock; 
  73    }; 

(continued)

c08.indd   313c08.indd   313 7/31/08   3:07:01 PM7/31/08   3:07:01 PM



Chapter 8: PADL and PBS: Approaches to Application Design

314

 74
 75    typedef mutex try_mutex;
 76
 77    class timed_mutex:
 78        boost::noncopyable
 79    {
 80    private:
 81        pthread_mutex_t m;
 82  #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
 83        pthread_cond_t cond;
 84        bool is_locked;
 85  #endif
 86    public:
 87        timed_mutex()
 88        {
 89            int const res=pthread_mutex_init( & m,NULL);
 90            if(res)
 91            {
 92                throw thread_resource_error();
 93            }
 94  #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
 95            int const res2=pthread_cond_init( & cond,NULL);
 96            if(res2)
 97            {
 98                BOOST_VERIFY(!pthread_mutex_destroy( & m));
 99                throw thread_resource_error();
100            }
101            is_locked=false;
102  #endif
103        }
104        ~timed_mutex()
105        {
106            BOOST_VERIFY(!pthread_mutex_destroy( & m));
107  #ifndef BOOST_PTHREAD_HAS_TIMEDLOCK
108            BOOST_VERIFY(!pthread_cond_destroy( & cond));
109  #endif
110        }
111
112        template < typename TimeDuration > 
113        bool timed_lock(TimeDuration const  &  relative_time)
114        {
115            return timed_lock(get_system_time()+relative_time);
116        }
117
118  #ifdef BOOST_PTHREAD_HAS_TIMEDLOCK
119        void lock()
120        {
121            BOOST_VERIFY(!pthread_mutex_lock( & m));
122        }
123

Listing 8-2 (continued)

c08.indd   314c08.indd   314 7/31/08   3:07:01 PM7/31/08   3:07:01 PM



Chapter 8: PADL and PBS: Approaches to Application Design

315

124        void unlock()
125        {
126            BOOST_VERIFY(!pthread_mutex_unlock( & m));
127        }
128
129        bool try_lock()
130        {
131            int const res=pthread_mutex_trylock( & m);
132            BOOST_ASSERT(!res || res==EBUSY);
133            return !res;
134        }
135        bool timed_lock(system_time const  &  abs_time)
136        {
137            struct timespec const timeout=detail::get_timespec(abs_time);
138            int const res=pthread_mutex_timedlock( & m, & timeout);
139            BOOST_ASSERT(!res || res==EBUSY);
140            return !res;
141        }
142  #else
143        void lock()
144        {
145            boost::pthread::pthread_mutex_scoped_lock const local_lock( & m);
146            while(is_locked)
147            {
148                BOOST_VERIFY(!pthread_cond_wait( & cond, & m));
149            }
150            is_locked=true;
151        }
152
153        void unlock()
154        {
155            boost::pthread::pthread_mutex_scoped_lock const local_lock( & m);
156            is_locked=false;
157            BOOST_VERIFY(!pthread_cond_signal( & cond));
158        }
159
160        bool try_lock()
161        {
162            boost::pthread::pthread_mutex_scoped_lock const local_lock( & m);
163            if(is_locked)
164            {
165                return false;
166            }
167            is_locked=true;
168            return true;
169        }
170
171        bool timed_lock(system_time const  &  abs_time)
172        {
173            struct timespec const timeout=detail::get_timespec(abs_time);
174            boost::pthread::pthread_mutex_scoped_lock const local_lock( & m);
175            while(is_locked)

(continued)

c08.indd   315c08.indd   315 7/31/08   3:07:02 PM7/31/08   3:07:02 PM



Chapter 8: PADL and PBS: Approaches to Application Design

316

176            {
177                int const cond_res=pthread_cond_timedwait( & cond, & m, & timeout);
178                if(cond_res==ETIMEDOUT)
179                {
180                    return false;
181                }
182                BOOST_ASSERT(!cond_res);
183            }
184            is_locked=true;
185            return true;
186        }
187  #endif
188
189        typedef unique_lock < timed_mutex >  scoped_timed_lock;
190        typedef scoped_timed_lock scoped_try_lock;
191        typedef scoped_timed_lock scoped_lock;
192    };
193
194  }
195
196
197  #endif
                 

 If you look at Lines 77 – 110, you can see how the services that POSIX API functions such as  pthread_
mutex_init() ,  pthread_cond_init() ,  pthread_cond_destroy() , and  pthread_mutex_
destroy()  are adapted in a  timed_mutex  interface class. We explained in Chapter  4  the importance of 
understanding the operating system ’ s role even though the goal is to program at higher level. This 
implementation of a mutex class that will be available in the new C++ standard can serve to illustrate 
that point. This class does not perform all of the functionality that you might want in a mutex class. 
Further, this mutex class might be used in conjunction with other thread libraries such as the TBB. 
If there are any problems at runtime, you have to have some idea of where these classes intersect with 
the operating system. Both the C++ thread class and the TBB threading facilities may use the POSIX 
pthreads differently in subtle ways. So, you deploy higher - level classes in Layer 3 of the PADL model, 
but you must keep in mind that those classes are ultimately mapped to operating system APIs, in our 
case, the POSIX API.    

Obtaining Early Implementations of the C++0x Concurrent Programming Libraries 
 The thread class in Listing  8 - 1  and the mutex class in Listing  8 - 2  are taken from the Boost C++ libraries 
found at  www.boost.org . Boost provides free peer - reviewed portable C++ source libraries. The Boost 
group emphasizes libraries that work well with the C++ standard Library. Boost libraries are intended to 
be widely usable across a broad spectrum of applications. The Boost group aims to establish  “ existing 
practice ”  and provide reference implementations so that Boost libraries are suitable for eventual 
standardization. The concurrent programming libraries that we introduced in this chapter have Boost 
reference implementations and can be freely downloaded.   

Listing 8-2 (continued)

c08.indd   316c08.indd   316 7/31/08   3:07:02 PM7/31/08   3:07:02 PM



Chapter 8: PADL and PBS: Approaches to Application Design

317

  The Intel Threading Building Blocks 
 Another important component that can be used in level 3 PADL analysis is the Intel Threading Building 
Blocks (TBB). The TBB is a set of C++ components consisting of generic algorithm templates, container 
classes, and Object - Oriented synchronization components, as well as other miscellaneous components 
that are very useful in multithreaded programming. The TBB is a runtime - based parallel programming 
model for C++ code that uses threads. It is designed primary to write scalable applications that: 

  Specify tasks instead of threads  

  Emphasize data parallel programming  

  Take advantage of concurrent collections    

 Table  8 - 6  lists some of the primary template algorithms and containers that are available in the TBB 
library.   

❑

❑

❑

Table 8-6

TBB Generic Parallel Algorithms TBB Containers with Concurrency Support

parallel_for
parallel_scan
parallel_reduce
parallel_while
pipeline
parallel_sort

concurrent_queue
concurrent_vector
concurrent_hash_map

 While the TBB intersects in a few areas (for example, mutexes), with the new concurrent programming 
library in the new C++ standard, it is largely complementary and provides a set of tools that can be used 
in the implementation Layer of PADL. Recall the seven steps from Figure  8 - 6 . In Layer 4, we identified 
concurrency models. Layer 4 does not determine whether those concurrency models will be 
implemented by threads or processes. In fact, the concurrency models in Layer 4 can be implemented by 
clusters or other distributed computing models. The question and answer example that uses the 
Blackboard architecture does not indicate whether the knowledge sources should be implemented as 
threads or as processes. It also may be the case that one knowledge source may be implemented by a 
multiple threads or processes or even a combination of threads and processes. This can be necessary in 
order to meet the logical requirements of the knowledge source. To see how you might get to Layer 3 
in the Blackboard example, you can take a closer look at the control strategies in the Blackboard 
architecture.  

 Blackboard: A Critical Section 
 There are several layers of control in a Blackboard implementation where the knowledge sources may be 
activated concurrently. At the lowest layer, there are synchronization schemes that must protect the 
integrity of the Blackboard. Although the Blackboard is an application architecture from Layer 5 of PADL 
and the discussion at that level is conceptual, you can state that the Blackboard is a critical section 
because ultimately it is a shared modifiable resource. In fact Table  8 - 4  shows that CRCW or CREW 

c08.indd   317c08.indd   317 7/31/08   3:07:02 PM7/31/08   3:07:02 PM



Chapter 8: PADL and PBS: Approaches to Application Design

318

concurrency models are called for in the use of the Blackboard applied to knowledge sources. In a 
parallel environment, the knowledge sources ’  read and write access must be coordinated and 
synchronized. This coordination and synchronization can involve file locking, semaphores, mutexes, 
and so on. This layer of control is not directly involved in the solution that the knowledge sources are 
working toward. This is a utility layer of control and should be independent of the problem to be solved 
by the Blackboard. In the architectural approach for this chapter ’ s example, this layer of control will be 
implemented by interface classes like the mutex and semaphore classes that we introduced in Chapter  7 . 
You can also take advantage of the concurrent containers that the TBB has to offer to partially meet your 
needs for CRCW or CREW. Parts of the Blackboard could be implemented using the  concurrent_
vector  class from the TBB. The  concurrent_vector  allows safe simultaneous access, and it is easy to 
use and easily works with components from the standard C++ library. Listing  8 - 3  is an excerpt from the 
question and answer Blackboard example. 

   Listing 8 - 3  

//Listing 8-3  A Program that uses concurrent_vector and parallel_for from TBB.
              
  1  using namespace std;
  2  #include  < iostream > 
  3  #include  < vector > 
  4  #include  < stdlib.h > 
  5  #include  < ctype.h > 
  6  #include  < algorithm > 
  7  #include  < iterator > 
  8  #include  < string > 
  9  #include “tbb/blocked_range.h”
 10  #include “tbb/parallel_for.h”
 11  #include “tbb/task_scheduler_init.h”
 12  #include “tbb/concurrent_vector.h”
 13  #include  < sstream > 
 14  #include  < fstream > 
 15
 16  using namespace tbb;
 17  concurrent_vector < string >   Terms;
 18  concurrent_vector < string >   Question;
 19
 20
 21  class lower_case{
 22
 23  public:
 24     char operator()(char X){
 25
 26        return(tolower(X));
 27     }
 28
 29  };
 30
 31
 32
 33  void changeIt(string  & X)
 34  {
 35     transform(X.begin(),X.end(),X.begin(),lower_case());
 36  }

c08.indd   318c08.indd   318 7/31/08   3:07:02 PM7/31/08   3:07:02 PM



Chapter 8: PADL and PBS: Approaches to Application Design

319

 37
 38
 39
 40  void tokenize(string  & X)
 41  {
 42     stringstream Sin(X);
 43     string Token;
 44     while(!Sin.fail()  &  &  Sin.good())
 45     {
 46        Sin  >  >  Token;
 47        Terms.push_back(Token);
 48     }
 49  }
 50
 51
 52  class parallel_lower_case{
 53
 54  public:
 55
 56     void operator() (const blocked_range < int >     & X) const
 57     {
 58        for(int I = X.begin(); I != X.end(); I++)
 59        {
 60
 61           changeIt(Terms[I]);
 62
 63         }
 64
 65     }
 66
 67  };
 68
 69  class valid_tokens{
 70  public:
 71     void operator() (const blocked_range < int >     & X) const
 72     {
 73        for(int I = X.begin(); I != X.end(); I++)
 74        {
 75           tokenize(Question[I]);
 76
 77        }
 78
 79     }
 80
 81  };
 82
 83
 84
 85
 86  int main(int argc,char *argv[])
 87  {
 88
 89    task_scheduler_init Init;
 90    ifstream Fin(“question.txt”);

(continued)

c08.indd   319c08.indd   319 7/31/08   3:07:02 PM7/31/08   3:07:02 PM



Chapter 8: PADL and PBS: Approaches to Application Design

320

 91    istream_iterator < string >  Ftr(Fin);
 92    istream_iterator < string >  Eof;
 93    copy(Ftr,Eof,back_inserter(Question));
 94    Fin.close();
 95    parallel_lower_case Lower;
 96    valid_tokens  Token;
 97    parallel_for(blocked_range < int > (0,Question.size(),
                                      (Question.size() /2)) ,Token);
 98    parallel_for(blocked_range < int > (0,Terms.size(),
                                      (Terms.size() /2)),Lower);
 99    ostream_iterator < string >  Out(cout,”\n”);
100    copy(Terms.begin(),Terms.end(),Out);
101
102
103  }
                 

 Part of the processing of our knowledge sources required that the individual words in a question be 
tagged with their part of speech or flagged as unknown, misspelled, or so forth. The program in 
Listing  8 - 3  is for exposition only. We include it here to demonstrate how TBB components can be easily 
mapped from Layers 4 and 5 of the PADL. The  Terms  component declared on Line 17 is a TBB 
 concurrent_vector < T >  . This vector permits concurrent read access by multiple knowledge sources. 
This satisfies part of the CREW concurrency model. Likewise, part of the processing requires that the 
questions be broken up into individual words or tokens and that the tokens be converted to lowercase. 
The call to the TBB  parallel_for  algorithm on Line 97 breaks up each  Question  that is stored in the 
 Question  vector into individual tokens. This is done on Lines 40 – 49. The  parallel_for()  algorithm 
on Line 97 takes  Token  as a C++ function object. The  parallel_for()  on Line 98 converts the tokens in 
the  Terms  vector to lowercase. The  parallel_for  algorithm does a high - level loop unrolling. It can 
execute components of its function object in parallel. In this example, the function calls on Lines 61 and 
75 are executed in parallel. Notice on Lines 93 and 100 that the TBB  concurrent_vector < T >   is used 
with  ostream_iterator < string >  ,  istream_iterator < string >  , and the standard C++  copy()  
algorithm. 

 Here is Program Profile 8 - 1 for Listing  8 - 3 .   

  Program Profile 8 - 1   
Program Name: 

  convert_it.cc  (Listing  8 - 3 )    

Description: 
 The program in Listing  8 - 3  demonstrates how TBB components can be mapped from Layers 4 and 5 
of the PADL. The  Terms  component is a TBB  concurrent_vector < T >  . This vector permits concurrent 
read access by multiple knowledge sources. The TBB  parallel_for  algorithm is used to break up each 
 Question  stored in the  Question  vector into individual tokens, takes  Token  as a C++ function object, 
and converts the tokens in the  Terms  vector to lowercase. The TBB  concurrent_vector < T >   is used 
with  ostream_iterator < string >  ,  istream_iterator < string >  , and the standard C++  copy()  
algorithm.    

Listing 8-3 (continued)

c08.indd   320c08.indd   320 7/31/08   3:07:03 PM7/31/08   3:07:03 PM



Chapter 8: PADL and PBS: Approaches to Application Design

321

Libraries Required: 
  tbb  (Intel Thread Building Blocks)    

Additional Source Files Needed: 
None     

User - Defined Headers Required: 
 None    

Compile and Link Instructions:   

c++ -o  convert_it -I TBBIncludePath convert_it.cc -L TBBLibraryPath  -ltbb

     Test Environment: 
 Linux Kernel 2.6    

Processors: 
 Core 2 Duo 

    Notes: 
 None    

Obtaining the TBB library 
 The TBB library is open source and can be obtained from  www.threadingbuildingblocks.org . It is 
available for the Intel platforms and Intel - based Macs. As of this writing, it has not been ported to 
Solaris, HP - UX, or AIX. It does work in Linux environments.   

  The Parallel STL Library 
 As noted, concurrent programming library facilities will appear in the new C++ standard, including a 
long awaited thread library and synchronization components. However, another important set of C++ 
components that will support parallel programming is the Standard Template Adaptive Parallel Library 
(STAPL). Whereas TBB and the upcoming concurrent programming library in C++ are designed to work 
with multicore and parallel computers, STAPL is designed to work on both shared and distributed 
memory parallel computers. The STAPL library design goals are consistent with our PADL analysis 
approach to designing parallel programs. STAPL is designed to allow developers to work at a high level 
of abstraction. It provides interface classes and interface algorithms that hide many of the details specific 
to parallel programming. Throughout this book, we have made a distinction between application - level 
developers and system - level developers. System - level development tends to work closer to the operating 
system APIs and SPIs. STAPL users are divided into three groups: 

   Users : These are the application developers who primarily use the STAPL components without 
having to do much extending or redefining.  

   Developers : These developers extend the toolset of STAPL usually within the context of specific 
domains or applications through adding new data structures and algorithms for the users.  

   Specialists : This group provides the users and the developers with additional programming 
frameworks for developing algorithms and applications.    

❑

❑

❑

c08.indd   321c08.indd   321 7/31/08   3:07:03 PM7/31/08   3:07:03 PM



Chapter 8: PADL and PBS: Approaches to Application Design

322

 Bjarne Stroustrup, the inventor of C++, is involved with the development of STAPL. This means that you 
can count on STAPL to be consistent with the philosophy of the C++ standard. STAPL consists of these 
primary components: 

   pContainers : Containers that support concurrency.  

   Views : Support the notion of iteration and object visitation for the pContainers.  

   pAlgorithms : Standard Template Library (STL) algorithms that support parallelism.  

   pRange : The pAlgorithms are executed over a range. The pRange allows for the Work 
Breakdown Structure (WBS) of the algorithm to be stated in a Task Dependency Graph.  

   Runtime : Runtime system that provides performance monitoring, communication primitives, 
scheduling for the subviews or tasks of the pRanges, and so on.    

 Figure  8 - 7  shows a block diagram of the structure of the STAPL library.   

❑

❑

❑

❑

❑

pAlgorithms

Runtime System

ARMI Communication
Library

Scheduler Executor Performance
Monitor

Views
pContainers

User Application Code

pRange Adaptive
Frameworks

Adaptive
Frameworks

pthreads, OpenMp, MPI,
Native ...

Figure 8-7

 The standard C++ concurrent programming library will be complementary and compatible with STAPL. 

 The TBB is in part inspired by design concepts in STAPL, but STAPL is a higher - level framework that 
extends both the STL and TBB. Also notice in Figure  8 - 7  that the Runtime system can and will interface 
with the POSIX pthread API as well as with other operating thread and process APIs. You can see from 

c08.indd   322c08.indd   322 7/31/08   3:07:03 PM7/31/08   3:07:03 PM



Chapter 8: PADL and PBS: Approaches to Application Design

323

looking at the structures of the new concurrent programming class library that will be part of C++0x, 
TBB, and STAPL that using interface classes and components that wrap lower - level operating system 
primitives is the most practical way to provide concurrency support to the C++ developer. Notice in 
Figure  8 - 7  that the user application code is at least two layers above the POSIX threads. If you look back 
at Figure  4 - 1  in Chapter  4 , it shows the relationships for the developer ’ s view of the operating system 
and frameworks such as STAPL. The complexity and special challenges of parallel programming as 
discussed in Chapter  3  require that the software developer have a clear understanding of the integration 
between class libraries, application frameworks, pattern classes, algorithm templates, and the 
concurrency and synchronization services that the operating system provides. PADL and PBS analysis 
(which is discussed later in the chapter) are performed in the context of a solid understanding of the 
relationships of all of the pieces involved.     

 More information about the STAPL library can be found at  http://parasol.tamu.edu/stapl .   

 The new standard C++ concurrent programming class libraries, TBB, and STAPL provide the bulk of the 
implementation domain independent components that you need in Layer 3 of the PADL analysis. Keep 
in mind that Layer 3 components consist of domain - specific application frameworks, class libraries, and 
so forth as well as domain - independent components.  

  The  “ Implementation Layer ”  Mapping 
 If you look at the Blackboard example, the segmentation of the Blackboard into parts determines 
whether CREW or CRCW concurrency (determined in Layer 2 of PADL) is appropriate. The most 
flexible model of critical section access is CRCW. CRCW can be achieved depending on the structure of 
the Blackboard. For instance, if 16 knowledge sources are involved in a collaborative effort and each 
knowledge source accesses its own segment of the Blackboard, then these knowledge sources can 
concurrently read and write the Blackboard without data race problems. Looking at the communication 
model can also help determine what Layer 3 components will be used. Obviously, containers that 
support concurrency such as the TBB  concurrent_vector < T >   or  concurrent_queue < T >   or 
 pContainers  from STAPL can be used to implement some portions of the Blackboard that require 
CREW. With a little planning, these structures can also support CRCW.  

  PADL: Layer 3 Type Control Strategies 
 One of the major reasons that we choose multiagent architectures and Blackboard architectures as our 
two fundamental application architectures for Layer 5 in PADL is that the patterns of work that can be 
captured by these architectures are extremely flexible and well understood. Here is an important point. 

 Before putting effort into the coordination and synchronization of concurrent threads or processes in your 
application, it is better to have a solid handle on the pattern of work at the domain and application level. 

 STAPL supports work at a higher level. The TBB is best used when the developer thinks in terms of tasks 
not threads. Here, we go a step further; think about the  “ story ”  of your application, how the actors and 
objects naturally interface. Work out the pattern of work at the model level in Layers 4 and 5. 
Understand the parallelism or concurrency in terms of a well - known architecture that supports 
concurrency (for example, Blackboards, multiagents). 

c08.indd   323c08.indd   323 7/31/08   3:07:03 PM7/31/08   3:07:03 PM



Chapter 8: PADL and PBS: Approaches to Application Design

324

 To examine this further, take a closer look closer at the Blackboard control strategy for the example used 
in this chapter. 

 The layer of control in a Blackboard involves the selection of which knowledge sources to involve in the 
search for the solution and which aspects of the problem to focus on. This is a  focus  or  attention layer . This 
layer of control focuses on a certain area of the problem and selects knowledge sources accordingly. 
Major issues to tackle in any kind of problem solving are where to start and what kind of information is 
needed to solve the problem. The focus/attention layer evaluates the initial conditions of the problem 
and then  controls  which knowledge sources to use and where they start. The available knowledge sources 
are known to the Blackboard, and typically the knowledge source accepts messages or parameters that 
dictate how it should proceed or where in the solution space it should begin the search. For parallel 
implementations, this layer determines the basic concurrency model for Layer 4 in PADL. Usually for 
Blackboards, this is the Multiple Programs Multiple Data (MPMD  —  a.k.a. MIMD) model because each 
knowledge source/problem solver has its own area of specialty. However, the nature of the problem 
might warrant the popular Single Program Multiple Data (SPMD or SIMD) model. If this model is used, 
the control layer spawns  N  number of the same knowledge source but pass different parameters to each. 

 The next layer of control involves determining what to do with the solution or partial solutions that are 
written to the Blackboard. This layer of control will determine whether the knowledge sources can stop 
work or whether the solution that was generated is acceptable, unacceptable, partially acceptable, and so 
on. This layer of control has complete visibility of the Blackboard and all the partial or tentative 
solutions. It  guides  the overall problem - solving strategies of the collective. As with the layout of the 
Blackboard and the structure of the knowledge sources, the Blackboard model suggests the existence of a 
control component but does not specify how it should be structured. Sometimes the control component 
is part of the Blackboard. Sometimes the control component is implemented by the knowledge sources. 
In some cases, the control component is implemented by modules external to the Blackboard. The 
control component can also be implemented by any combination of these. The knowledge sources 
collectively search for  a solution  to some problem. We want to emphasize  a solution  because many 
problems have more than one solution. Some of the solutions may be deeper in the search space than 
others. Some solutions may cost more to find than others. Some solutions may be deemed not good 
enough. The control component helps to manage the collective search strategies of the knowledge 
sources. The control component monitors the tentative or partial solutions to make sure that the 
knowledge sources are not pursuing an impractical search strategy. The control component looks out for 
any infinite loops, blind alleys, or recursive regression. Further, the control component is involved in 
selecting the best or the most appropriate knowledge sources for the problem. As the knowledge sources 
make progress toward a solution, the control component may relieve some knowledge sources while 
assigning others. The control strategy will be closely related to the search strategies used by the 
knowledge sources. It is important to remember that the knowledge sources may each use different 
search strategies and problem - solving techniques. Although they work with a common Blackboard, the 
knowledge sources or problem solvers are essentially autonomous and self - contained. Therefore, this 
layer of control has a two - way communication with the knowledge sources. Figure  8 - 8  shows possible 
control configurations and their layers in a Blackboard architecture.   

c08.indd   324c08.indd   324 7/31/08   3:07:04 PM7/31/08   3:07:04 PM



Chapter 8: PADL and PBS: Approaches to Application Design

325

LAYER 2

partial solutions

LAYER 3

BLACKBOARD

control
unit 1

software model of
solution

Includes:
problem constraints
heuristics, metaknowledge
about the knowledge sources

KS monitor
& control

initial
values .

.

.

KS monitor
& control

initial
values

software
model of
solution

partial solutions

BLACKBOARD

.

.

.

initial
values

software
model of
solution

partial solutions

BLACKBOARD

CASE 1:
Control component is part of the blackboard.

CASE 2:
Control component is part of the blackboard and the knowledge sources.

CASE 3:
Control component is external to both the blackboard and the knowledge sources.

communication

...

control
component

control component

<< process/thread >>
KS1

<< process/thread >>
KSn

<< process/thread >>
KS1

<< process/thread >>
KSn

<< process/thread >>
KSn

control component

<< process/thread >>
KS1

control
unit 2

Figure 8-8

c08.indd   325c08.indd   325 7/31/08   3:07:04 PM7/31/08   3:07:04 PM



Chapter 8: PADL and PBS: Approaches to Application Design

326

 Notice the relationships between the Blackboard and the knowledge sources in Figure  8 - 8 . If this 
interface is properly and completely worked out at the design level, then mapping knowledge sources or 
agents to tasks, threads, or processes is easier. It is not practical to attempt to optimize threads or 
processes and coordinate communication or synchronization at the implementation level if things are 
murky at the design and domain level. On the other hand, if all of the relationships are completely clear 
at the design level, if the patterns of work are well understood, and if the details of actor/object 
interaction have been worked out, then mapping to threads or processes is straightforward. 

 The chances for a successful software deployment are greatly increased. The  “ story ”  of the application, 
that is, its beginning, middle, and ending, has to be clear to all the developers involved. This 
understanding starts with a PADL analysis and PBS of your software application.    

  The Predicate Breakdown Structure (PBS) 
 A predicate is statement that is either true or false. A predicate makes a statement about some 
relationship between some person, place, thing, or idea. The Predicate Breakdown Structure (PBS) of an 
application breaks the application down into a set of statements that describe assertions and patterns of 
work of an application. The PBS of an application contains the rules, constraints, assertions, predicates, 
propositions, and axioms that apply to the agents, actors, and objects and their relationships within an 
application. The PBS captures the most declarative structure of an application or piece of software. This 
declarative structure is critical for software that has parallel programming or concurrency requirements. 
When it comes to parallel programming the old adage  “ Make it work, then make it fast ”  is a requirement 
for survival. The PBS helps you to understand what it truly means when you say the application works 
or that it ’ s correct. 

 Throughout this book we ’ ve explained why if you think of multithreaded or multiprocessing programs 
from the bottom up as sequences of parallel instructions or parallel procedures, you will soon reach a 
limit because of the complexity of interactions between the instructions and procedures and the sheer 
number of cores that will eventually become available (that is, massively parallel CMPS). We have 
suggested that you need to begin the move away from thinking about parallel programming 
procedurally and move toward declarative programming techniques. There are many reasons why 
declarative interpretations of parallelism are beneficial. Today ’ s systems are growing larger, more 
complex, and more integrated. Now adding to this mix are multicore capabilities of computers at the 
client side and server side. Imperative programming techniques buckle under this level of complexity. 
On the other hand, declarative techniques are scalable and have models that are designed to deal with 
complexity (for example, First - Order Logic analysis, model checking, Boolean algebra, and so on). 
Declarative interpretations describe what software systems are and what they mean as opposed to what 
they do and how it is done. Once you start thinking about hundreds or thousands of concurrently 
executing threads or processes, it is difficult to keep in mind what is going on in the system. This can 
make maintenance, testing, and debugging treacherous. Declarative interpretations make you consider 
what is true about the relationships between agents, actors, and objects in the system at any given time. 
Imperative approaches focus on what to do and when to do it. Declarative approaches focus on what is 
true or false and what conditions are necessary to cause some statement or predicate in the application to 
be true or false at any instant. 

c08.indd   326c08.indd   326 7/31/08   3:07:04 PM7/31/08   3:07:04 PM



Chapter 8: PADL and PBS: Approaches to Application Design

327

 The PBS structure helps you capture the  “ meaning ”  of an application or piece of software. The meaning 
of a piece of software is important because if you understand the software, then you  know how it can be 
scaled and evolved while at the same time keeping it reliable and correct. If you do not understand the 
software ’ s meaning, then software maintenance and software evolution is hopeless. This is especially 
true for software that involves parallel programming. PADL analysis and PBS can be used to help make 
the shift away from imperative and sequential models of programming and toward declarative semantic 
design models. 

  An Example: PBS for the  “ Guess - My - Code ”  Game 
 You were able to write a guess - it application that used concurrently executing processes that were then 
broken down into currently executing threads in order to take enough guesses in the time limit to win 
the game. You could think about how many parallel threads or processes you would need to plow 
through 4 million codes in 2 minutes. You could also focus on what action the threads or processes 
would have to take. However, this would be more of an empirical approach to the problem. A PBS 
breakdown of the guess - what - code - I ’ m - thinking - of game would have a more goal look - and - feel. 
Example 8 - 1 is one PBS breakdown of the game.   

   Example 8 - 1: A PBS Breakdown of the Guess - What - Code Game      
   Breakdown 1: You ’ ve won the game if your guess is correct and in time.  

   Breakdown 2: Your guess is correct if it consists of a six - character code that contains only combi-
nations of the characters (a – z, 0 – 9), considering duplication is allowed, and that code is the one 
my agent has handed me.  

   Breakdown 3: Your guess is in time if it is correct and it occurs within 2 minutes.  

   Breakdown 4: A brute force search through the codes will be successful if there are enough 
agents searching.  

   Breakdown 5:  N  agents are enough find the correct code from a sample of 4 million codes in 2 
minutes.  

   Breakdown 6: 4 times  N  agents are required to find the correct code from a sample of 4 million 
codes in 2 minutes if the code is being changed every 15 seconds.         

 The PBS in Example 8 - 1 consists of the rules, statements, or predicates that make up the application. 

 These statements are either true or false. If you design code that correctly represents these statements, 
then the application will be correct and will work if the original statements are correct. On the other 
hand, if one or more of the statements are false, then the underlying code will also be in error. For 
example, Breakdown 5 states that  N  agents are enough. How do you know that  N  agents are enough? 
If you do your homework at this level, then later translations into concurrently executing instructions or 
threads are more productive and correct. How big should  N  be is the kind of information you want to 
discover during PADL analysis and the design activities of the SDLC. It should not be part of some trial -
 and - error process handled at the thread management level. Although the PBS presented in Example 8 - 1 
is a simplification, it serves as a complete example of what we mean by PBS. Notice that Breakdown 6 
deals with dynamically changing code and resubmission of the entire guess data set.  

c08.indd   327c08.indd   327 7/31/08   3:07:04 PM7/31/08   3:07:04 PM



Chapter 8: PADL and PBS: Approaches to Application Design

328

  Connecting PBS, PADL, and the SDLC 
 Once the PBS is complete and the development group is satisfied with the PBS of the application, then 
the PBS is used to help with the application architecture selection that is done in Layer 5 and the 
concurrency model identification that is done in Layer 4 of the PADL. In terms of the SDLC, the PBS is 
done during the requirements gathering, analysis, and design activities. Ideally, it is done before Layer 5 
in PADL, but sometimes it is performed concurrently with Layer 5 analysis. In an actual PBS breakdown, 
the statements are refined and clarified until there is no ambiguity left in the statement of the 
applications solution or services. Further, because the PBS consists of propositions, predicates, and 
statements, theorem - proving approaches and model - checking techniques can be used to determine the 
correctness of the application prior to any code that is developed. This ability to check for correctness, 
meaning, and declarative semantics prior to code implementation becomes more critical as you move 
toward more complex systems and massively parallel multicore computers.  

  Coding the PBS 
 Domain components, that is, the agents, actors, and objects of the application domain, should be 
associated with C++ application frameworks, class hierarchies, domain classes, and so on at Layer 3 in 
the PADL model. 

 For every person, place, thing, or idea mentioned in the PBS, there should be a corresponding 
C++ component(s) that implements the concept and the relationships between the concepts. These 
components will be the domain components, and they will be directly visible in the application 
architecture. That ’ s because the application architecture is primarily chosen because of its fit with the 
PBS. The correctness and completeness of the application can be seen and proved at this level. Once the 
domain classes are provided, they can be supported by components from the TBB, the C++ concurrent 
programming library, or frameworks such as STAPL. Using PADL and PBS helps produce applications 
that are correct, that can evolve and that can be maintained in an efficient manner.   

  Summary 
 In this chapter, we explained how to approach the process of application design when there is a 
concurrency requirement in the original software development request or when parallelism is explicitly 
called for or implied by the solution decomposition. We discussed two main approaches: 

  First, we introduced Parallel Application Design Layers (PADL), a five - layer analysis model that 
we use at CTEST Laboratories during the requirements analysis, software design, and 
decomposition activities of SDLC. We also use the PADL model to circumvent much of the 
complexity that results from bottom up approaches to parallel programming. Also in this 
chapter we presented a top - down architectural approach to parallelism rather than a bottom - up, 
task - oriented imperative approach. We also presented multiagent architectures and Blackboard 
architectures as two of the main and well understood paradigms for parallel programming at 
the application level. Most successful software undergoes constant change. If that software has 
components that require concurrency and synchronization, then the natural evolution of the 
software can be extremely challenging if an appropriate application architecture is not selected 
from the start. The PADL analysis model identifies multiagent and Blackboard architectures as 
two well-known and well-understood architectures that perform well under the conditions of 

❑

c08.indd   328c08.indd   328 7/31/08   3:07:05 PM7/31/08   3:07:05 PM



Chapter 8: PADL and PBS: Approaches to Application Design

329

software evolution. Ultimately, the concurrency of an application is going to be implemented by 
low - level operating system primitives like threads and processes. If the application architecture 
is clean, modular, scalable, and well understood, then the translation into manageable operating 
system primitives has a chance to succeed. On the other hand, selection of the wrong or a poor 
application architecture can lead to brittle, error - prone software that cannot be readily changed, 
maintained, or evolved. While this is true of any kind of computer application, it is magnified 
when that software involves parallel programming, multithreading, or multiprocessing.  

  We also introduced the notion of a Predicate Breakdown Structure (PBS) of an application idea. 
The PBS of an application breaks the application down into a set of statements that describe 
assertions and patterns of work of an application. The PBS of an application contains the rules, 
constraints, assertions, predicates, propositions, and axioms that apply to the agents, actors, and 
objects and their relationships within an application. The PBS captures the most declarative 
structure of an application or piece of software. This declarative structure is critical for software 
that has parallel programming or concurrency requirements. The PBS structure helps capture 
the  “ meaning ”  of an application or piece of software. The meaning of a piece of software is 
important because if you understand the software, then you know how it can be scaled and 
evolved, while at the same time keeping it reliable and correct. If you do not understand the 
software ’ s meaning, then software maintenance and software evolution are impossible.    

 Today ’ s systems are growing larger and more complex and more integrated. We are now adding to this 
mix multicore capabilities of computers at the client side and server side. Imperative programming 
techniques buckle under this level of complexity. On the other hand, declarative techniques are scalable 
and have models that are designed to deal with complexity Declarative interpretations describe what 
software systems are and what they mean as opposed to what they do and how it is done. They make 
you consider what is true about the relationships between agents, actors, and objects in the system at any 
given time. It is not practical to attempt to optimize thread or processes and coordinate communication 
or synchronization at the implementation level if things are murky at the design and domain level. On 
the other hand, if all of the relationships are completely clear at the design level and the patterns of work 
are well understood at the design level and the details of actor/object interaction has been worked out, 
then mapping to threads or processes will be straightforward. The chances for a successful software 
deployment are greatly increased. The story of the application has to be clear to all the developers 
involved. This understanding starts with a PADL analysis and PBS of your software application. 

 In the next chapter, we discuss modeling and documenting applications using UML notation for 
concurrent behavior. We have used UML class, sequence, and activity diagrams in the book so far. In the 
next chapter, we discuss some basic UML diagramming techniques for modeling classes, gradually 
covering concurrent notation and behavior between classes and ultimately the architecture of systems 
with parallelism.               

❑

c08.indd   329c08.indd   329 7/31/08   3:07:05 PM7/31/08   3:07:05 PM



c08.indd   330c08.indd   330 7/31/08   3:07:05 PM7/31/08   3:07:05 PM



      Modeling Software Systems 
That Require Concurrency              

  The topology of perceived interconnected cyberspaces need not have any direct 
 connection to that of the array of support computers, since the cyberspaces are 
 perceived, not actual spaces.     

   —  Marcus Novak,  Liquid Architectures in Cyberspaces   

 A model of a system is the body of information gathered for the purpose of studying the system so 
that it can be better understood by the developers and maintainers of the system. When a system is 
modeled, the boundaries and identification of the entities, attributes, and activities performed by 
the system can be determined. Modeling is an important tool in the design process of any system. 
It is essential that developers fully understand the system they are developing. Modeling can 
reveal the hidden concurrency and opportunities where parallelism can be exploited. 

 In this chapter, we show you how to visualize and model your concurrent system using the UML. 
We will discuss diagraming techniques used to visualize and model concurrent systems from three 
perspectives: 

  The structural perspective  

  The behavioral perspective  

  The architectural perspective        

 The classes, objects, processes, threads, and systems used as examples in this chapter are used for 
exposition purposes and may or may not necessarily reflect actual classes, objects, or structures 
used in an actual system. This chapter should not be considered a primer for UML but rather an 
introduction to the diagrams used in this book focused on the UML notation used to design and 
document systems that utilize concurrency.    

❑

❑

❑

c09.indd   331c09.indd   331 7/31/08   3:08:19 PM7/31/08   3:08:19 PM



Chapter 9: Modeling Software Systems That Require Concurrency

332

  What Is UML? 
 Unified Modeling Language (UML) is a graphical language used for modeling, visualizing, designing 
and documenting the artifacts of a system. It is the standardized specification language used to 
communicate and model different system paradigms such as Object - Oriented, agent - oriented, and event -
 driven systems. It uses symbols and notations to represent the components from different views and 
perspectives of the system. 

 The UML is called  “ unified ”  because it brought three of the most prominent modeling languages (Grady 
Booch ’ s Approach, Ivar Jacobson ’ s Object - Oriented Software Engineering (OOSE), and James 
Rumbaugh ’ s Object Modeling Technique(OMT)). Although each was a complete systems, each had a 
particular focus. Each also had a weakness  —  they were not able to be a general - purpose modeling 
language for complex systems. Table  9 - 1  gives a brief definition of each of these modeling approaches 
and what their main contribution was to the UML standard. The purpose of the UML was to unify these 
methods into a definition that would provide to users a modeling system that was capable of capturing: 

  Conceptual to executable components of a software system utilizing object - oriented techniques  

  Simple to complicated mission - critical systems    

 This was true whether those users were people or machines. The first draft of the UML was released in 
early 1995, and a new version was released later that year. In 1997, the Object Management Group 
(OMG), an international consortium of companies active in the development of the Object - Oriented 
paradigm, made a request for proposal for a standard modeling language, and UML 1.0 was offered. 
Since then UML has become the de facto international standard modeling language revised and 
extended by OMG. Many interests over the years have contributed to the standard, and it has now been 
adopted for modeling not only Object - Oriented (OO) software systems but concurrent and distributed 
systems, engineering problems, and business structures and processes. OMG released version 2.0 
in 2007.   

❑

❑

Table 9-1

UML Language 
Primitives Types Description

Things Structural

• class

• interface

• collaborations

• use cases

• active class

• component

• node

Nouns of the model

The static parts of the model representing 
elements that are conceptual or physical.

Behavioral

• interaction

• state

Verbs of the model

Dynamic parts of the model representing 
behavior over time.

c09.indd   332c09.indd   332 7/31/08   3:08:20 PM7/31/08   3:08:20 PM



Chapter 9: Modeling Software Systems That Require Concurrency

333

UML Language 
Primitives Types Description

Grouping

• package

Organizations parts of the model

These are highest level of the model 
where decomposition can occur.

Annotational Explanatory parts of the model

Used for comments that describe element 
in the model.

Relationships Dependency Change to one element may affect the 
other.

Association A structural connection between 
elements (whole-part).

Generalization The child element is a specialization of 
the parent element.

Realization One element fulfills the contract of 
another element.

Diagrams • class

• object

• use case

• sequence

• collaboration

• statechart

• activity

• component

• deployment

 The UML grammar is based on three language primitives: 

   Things : The most basic components in a model  

   Relationships : Relate things with other things  

   Diagrams : Define a collection of things and their relationships    

 Table  9 - 1  shows how each of the three language primitives is broken down into its various components 
and types. As you can see, UML is a comprehensive language with many ways for representing a 
system. What we focus on in this chapter are the notations and diagrams of the language that you utilize 
when modeling a system with concurrent behavior.  

❑

❑

❑

c09.indd   333c09.indd   333 7/31/08   3:08:20 PM7/31/08   3:08:20 PM



Chapter 9: Modeling Software Systems That Require Concurrency

334

  Modeling the Structure of a System 
 When you are modeling the structure of a system, the focus will be on the static parts of a system such as 
objects, classes, and their attributes, services, organization, and composition, along with relationships 
those parts of the system will have with other entities in the system. 

  The Class Model 
 The  class  is the basic software component of an Object - Oriented system. A class is a model of a 
construct that includes its attributes and behaviors. It serves as a definition of a group or set of things 
that all share the same attributes and behaviors. A class can model something conceptual, a real - world 
physical entity, or a software construct.   

  A class modeling something  conceptual  is a scaled representation of a process, concept, or an 
idea for the purpose of analysis or experimentation. It is a scaled representation because a full 
model would be too difficult to create or not desirable. The nature of the analysis may be 
focused in a specific area, and therefore, a full - scale model is not necessary. An example of a 
class is a model of a molecule. The structure of a molecule and the distances and angles of 
chemical bonds are attributes of the class, and the chemical reactions and processes are the 
behaviors of the model. This molecule class simulates the characteristics of the real - world 
counterpart for the purpose of predicting and analyzing its behavior.  

  A class can model a  real - world physical entity , process, task, or idea for the purpose of 
replacing it. In this, the model is not a scaled representation but duplicates all the functionality 
of the existing entity. This type of class models the real - world counterpart because the software 
model may be more efficient, accessible, or effective. For example, a class can model an 
accounting system or a calculator. A calcular class would have a display, a calculation, and an 
input mechanism for attributes. The calculator class would have to be able to parse the input, 
validate the input, perform the desired arithmetic operations, and then display the results.  

  A class can model  software constructs . In this case, the model only has meaning within a 
software system. An example of modeling a software construct is a bitmapped image class. 
A bitmapped image class would have a header, number of bit planes, size, and vector of bits that 
represents each pixel of the image. The class would have to be able to display, read, and resize 
the image. Other software constructs that are modeled are datatypes. Datatypes such as floats, 
integers, and booleans have both attributes and a set of operations. These software constructs 
are used as utility and support classes for modeling a larger system such as an accounting 
system or a simple calculator. They can be used in any system regardless of the domain.    

 So, as you can see, classes can be used to model various types of entities in a software system. When you 
are modeling, it is important to be able to identify the constructs based on the structural, behavioral, or 
architectural view of the system. It is even necessary to model types of classes based on how they are 
used in the system. Some classes are useful when used as a blueprint that provides an interface policy 
for other classes, whereas other classes are useful as a base or ancestor class or a class just for a particular 
domain. Table  9 - 2  lists commonly found class types.   

❑

❑

❑

c09.indd   334c09.indd   334 7/31/08   3:08:20 PM7/31/08   3:08:20 PM



Chapter 9: Modeling Software Systems That Require Concurrency

335

 For instance, say that you are modeling a subsystem that identifies unrecognized words in a text file. The 
subsystem extracts words from a text file, determines if a word cannot be recognized, and then stores 
that word in a global container. Some classes in this subsystem are: 

   Word expert : Determines if a word is recognized, if not writes the word to a container  

   Unrecognized words list : Removes a given set of characters from a file  

   Dictionary lexicon : Contains all the recognized words  

   Text file : Contains the words to be recognized  

   Main agent : Creates word experts  

   Unrecognized word container : Contains all the unrecognized words  

   Misspelled and morphology agents : Agents that filter misspelled or word forms from the 
unrecognized words list    

 Each of these classes can be identified as a type of class: 

   Utility and support classes : Filtering agents, text file  

   Domain classes : Dictionary lexicon, word expert  

   Container classes : Unrecognized word container     

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Table 9-2

Class Description

Abstract A base class that defines the blueprint for all its descendants; an object 
cannot be declared of this type.

Concrete A standalone class that represents the end of an ancestor-descendant 
lineage.

Interface A class that modifies or enhances the interface of another class or set of 
classes.

Node A class that supplies the foundation for inheritance and polymorphism 
and contains no pure virtual functions.

Domain A class created to simulate reality or some entity within a domain.

Support/Utility Useful programs for applications regardless of domain.

Collection and Containers Generic holder of a set of objects with a defined set of operations to 
access them.

Template A class in which the type is parameterized with a defined set of 
operations to access and manipulate the objects.

Datatypes A type and its operations.

c09.indd   335c09.indd   335 7/31/08   3:08:20 PM7/31/08   3:08:20 PM



Chapter 9: Modeling Software Systems That Require Concurrency

336

  Visualizing Classes 
 The UML provides a graphical representation of a class. The representation of the class, or  class icon , can 
show the attributes, services, and semantics of the class .  The UML also provides a representation of types 
of classes such as datatypes, interface, template, and node classes. The simplest representation of a class 
is a rectangular box containing the name of the class. The  simple name  is the name of the class alone; a 
pathname is the name of the class with the name of the package where the class is contained prefixed to 
the name. The class name is text containing any number of letters and numbers. Punctuation can be used 
except for a colon that is used to separate the package from the class name. Class names are usually 
nouns or noun phrases taken from the vocabulary of the system that is being modeled. Class name 
should have the first letter of every word capitalized: 

   DictionaryLexicon   

   WordExpertAgent   

   Filter::MorphologyAgent     

  Visualizing Class Attributes, Services, and Responsibilities 
 The class icon can be divided into three horizontal compartments. The top compartment contains the 
class name. The next two contain the attributes and services provided to the user of the class. An 
additional compartment at the bottom can describe the  responsibility of the class . The responsibilities of the 
class are the obligations of the class stated in a few short sentences. For example, here are the basic 
responsibilities of the  WordExpertAgent ,  UnrecognizedWords , and  DictionaryLexicon  classes: 

   WordExpertAgent   

❑   Determines if a word is recognized  

❑   Writes the unrecognized words to a global container    

   UnrecognizedWords   

❑   Determines if unrecognized words are word forms or misspellings of recognized words by 
using  MorphologyAgent  and  MisspelledAgent     

   DictionaryLexicon   

  ❑ Contains all the recognized words  

❑   Contains the part of speech, synonyms, and word forms for each word  

❑   When given a word, returns  TRUE  if the word is in the lexicon      

❑

❑

❑

❑

❑

❑

c09.indd   336c09.indd   336 7/31/08   3:08:21 PM7/31/08   3:08:21 PM



Chapter 9: Modeling Software Systems That Require Concurrency

337

 The attributes, services, and responsibilities compartments can be labeled  attributes ,  services , and 
 responsibilities , respectively, to identify each compartment. If the attributes or services are not shown, 
then the compartment is displayed as empty. Figure  9 - 2  shows the various ways that a class can be 
represented, using the  DictionaryLexicon  class as an example.   

DictionaryLexicon

ATTRIBUTES
recognizedWords
synonyms
partOfSpeech
plurals
wordForms
lexicon

SERVICES
recognizedWords()
synonyms()
plurals()
wordForms()
validateWord()

DictionaryLexicon

     contains all the recognized words
contains synonyms, parts of speech, and
word forms for each word 
when given a word, will return TRUE if the word
is in the lexicon

DictionaryLexicon

ATTRIBUTES
recognizedWords: list<string>
synonyms: list<string>
partOfSpeech: string
plurals: list<string>
wordForms: list <string>
lexicon: map < string, vector <WordInfo> >

SERVICES
recognizedWords(): list <string>
synonyms(Word: string) : list <string>

plurals(Word: string): list <string >
wordForms(Word: string): list  <string >
validateWord(Word: string): Boolean

recognizedWords(Word: string) : list <string>
synonyms(Word: string):  list <string>

 Figure 9 - 1   

 These responsibilities can be transformed into the attributes and services of the class. The attributes are 
the named properties of the class, and the services or operations describe the behaviors of the class. 
Figure  9 - 1  shows how the responsibilities of the  DictionaryLexicon  were used to create some of the 
attributes and services of the class. The attributes are then transformed into datatypes and data 
structures, and services are transformed into methods. Attributes and service names use a lowercase for 
the first letter of the first word and uppercase for the first letter of any additional words.   

c09.indd   337c09.indd   337 7/31/08   3:08:21 PM7/31/08   3:08:21 PM



Chapter 9: Modeling Software Systems That Require Concurrency

338

 In Figure  9 - 2 : 

  (a) shows the class in its simplest representation.  

  (b) shows the class name and its attributes and services.  

  (c) shows the class name and its services; the attributes compartment is empty to show that there 
are attributes but not shown.  

  (d) lists the responsibilities of the class.    

❑

❑

❑

❑

DictionaryLexicon

(a) Simplest class representation (b) Class representation showing
      attributes and services. 

ATTRIBUTES

recognizedWords: list<string>
synonyms: list<string>
partOfSpeech: string
plurals: list<string>
wordForms: list <string>
lexicon: map < string, vector<WordInfo> >

SERVICES

recognizedWords(): list <string>
synonyms(Word: string) : list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list  <string >
validateWord(Word: string): Boolean
addWord(WordInfo: struct)
removeWord(Word: string)
checkWord(Word: string): Boolean

DictionaryLexicon

Responsibilities
--  contains the recognized words

--  contains the part of speech, synonyms,
    and word forms for each word

--  when given a word, will return TRUE if
    word is a recognized word

DictionaryLexicon

(d) Class representation showing
      empty attributes and services
      compartment and responsibilities.

SERVICES

recognizedWords(): list <string>
synonyms(Word: string) : list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list  <string >
validateWord(Word: string): Boolean
addWord(WordInfo: struct)
removeWord(Word: string)
checkWord(Word: string): Boolean

DictionaryLexicon

(c) Class representation showing
      empty attributes compartment and
     services.

 Figure 9 - 2   

c09.indd   338c09.indd   338 7/31/08   3:08:21 PM7/31/08   3:08:21 PM



Chapter 9: Modeling Software Systems That Require Concurrency

339

 The attributes compartment can specify the datatype and/or default value (if there is one) of the 
attributes for objects: 

word : string
Word : string = “Car”  

 The datatypes and data structures for the attributes of the  WordExpertAgent  and  DictionaryLexicon  
classes can be displayed: 

synonyms : map  < string,vector < string >     > 
synonymIterator :  map  < string,vector < string >     > ::iterator  

 Methods can be shown with parameters and return type: 

synonym( & X : map  < string,vector < string >     > ) : void
partOfSpeech(string  & X) : string  

 The  synonym()  method returns the synonyms of the word.  DictionaryLexicon  is a class that models a 
dictionary for a single domain. The synonyms for each word are stored in a  vector . The  map  container 
maps a  string  (recognized word) with the  vector  of synonyms. The  synonym()  method returns  void , 
whereas the  partOfSpeech()  method returns the part of speech of a word as a  string .  

  Using Attribute and Operation Properties 
 You can use properties to describe attributes and methods. These properties help describe how an 
attribute or method can be used. Properties for attributes can be constant or modifiable: 

   changeable   

   addOnly   

   frozen     

 There are four properties used to defined methods: 

   isQuery   

   sequential   

   guarded   

   concurrent     

 These properties are listed in Table  9 - 3 , along with a brief description of each.   

❑

❑

❑

❑

❑

❑

❑

c09.indd   339c09.indd   339 7/31/08   3:08:21 PM7/31/08   3:08:21 PM



Chapter 9: Modeling Software Systems That Require Concurrency

340

 The  sequential ,  guarded , and  concurrent  properties are concerned with methods involved with 
concurrency. For example, multiple  WordExpertAgent  objects can be created then passed individually 
to threads. Each  WordExpertAgent  object ’ s method writes the unrecognized words to a shared 
container. The method that writes to the shared container has a critical section.  Critical sections  are 
regions of code where the code is accessing a shared modifiable object. When one method is in its critical 
section, other methods accessing that same object should not be in theirs. These properties ( sequential , 
 guarded , and  concurrent ) mark and manage methods that have or are critical sections by delineating 
whose responsible for synchronization.   

  The  sequential  property describes concurrent access where synchronization is the 
responsibility of the callers of the method. To synchronize access to the shared object, the mutex 
is tested by the calling objects. If the mutex is in use, then the calling object must wait until it is 
available. Once it is available, the mutex is set, and the operation that modifies the object can be 
performed. Once the operation is completed, the mutex is reset. The sequential operations do 
not guarantee the integrity of the object.  

  The  guarded  property describes a concurrent access where synchronization is built into the 
shared object; access is sequential.  

  The  concurrent  property describes a method that permits simultaneous use.    

 Methods that are  guarded  and  concurrent  guarantee the integrity of the shared modifiable object or 
data. Figure  9 - 3  shows where the synchronization occurs for  sequential ,  guarded , and  concurrent  
methods.   

❑

❑

❑

Table 9-3

Properties for Attributes Description

{changeable} No restrictions on modifying the values of this type of attribute.

{addOnly} For attributes with multiplicity > 1, additional values can be added; 
once created a value cannot be removed or changed.

{frozen} Attribute’s value cannot be changed once the object has been initialized.

Properties for Services Description

{isQuery} Execution leaves the state of the object unchanged; returns a value.

{sequential} Uses synchronization to ensure sequential access to this method; 
multiple concurrent access to this method jeopardizes the integrity of 
the object.

{guarded} Synchronized sequential access to this method is built into the object; 
integrity of the object is guaranteed.

{concurrent} Multiple concurrent access is permitted; integrity of the object is 
guaranteed.

c09.indd   340c09.indd   340 7/31/08   3:08:22 PM7/31/08   3:08:22 PM



Chapter 9: Modeling Software Systems That Require Concurrency

341

test mutex
set mutex

reset mutex

test mutex
set mutex

reset mutex

mutex

void WordSearchAgent::addWord(string W)
{

}

X.addWord(W)

CALLING OBJECT 1: GUARDED METHOD

void WordSearchAgent::addWord(string W)
{

}

CALLING OBJECT 2: GUARDED METHOD

bool UnrecognizedWords::addWord(string X)
{

    ...

}

wordList.push_back(W)

SHARED MODIFIABLE OBJECT X

test mutex
set mutex

reset mutex

mutex

must wait

not allowed

CRITICAL
SECTIONS

void WordSearchAgent::addWord(string W)
{

}

X.addWord(W)

CALLING OBJECT 1: SEQUENTIAL METHOD

void WordSearchAgent::addWord(string W)
{

}

X.addWord(W)

CALLING OBJECT 2: SEQUENTIAL METHOD

bool UnrecognizedWords::addWord(string X)
{

    ...

}

wordList.push_back(W)

SHARED MODIFIABLE OBJECT X

X.addWord(W)

 Figure 9 - 3    (Continued )

c09.indd   341c09.indd   341 7/31/08   3:08:22 PM7/31/08   3:08:22 PM



Chapter 9: Modeling Software Systems That Require Concurrency

342

 Here are examples of attributes and methods labeled with properties:

  attributes  
wordList : vector < string >  {changeable}
                 

   operations  
addWord(word : string) : boolean {guarded}
nextWord(void) : string {isQuery, concurrent}   

 The attributes and operations in this example are defined by the  UnrecognizedWords  class that contains 
all the unrecognizable words.  WordSearchAgent  objects pass a word to  addWord() , which adds the 
word to the list and returns  TRUE .  addWord()  changes the state of the object.  UnrecognizedWords  
objects are shared between all the  WordSearchAgent  objects. So, the  addWord()  is  guarded . 
Synchronization is built into the object by using mutexes.  nextWord() , on the other hand, returns 
the next word in the list. Calling this method does not change the state of the object; thus, it can use the 
 isQuery, concurrent  properties because this operation does not change the state of the object. 

void WordSearchAgent::addWord(string W)
{

 

    

}

CALLING OBJECT 1: CONCURRENT METHOD

void WordSearchAgent::addWord(string W)
{

 

    

}

CALLING OBJECT 2: CONCURRENT METHOD

string UnrecognizedWords::nextWord(void)
{
 

    ...

}

wordList.pop_back()

SHARED MODIFIABLE OBJECT X
allowed

allowed

W = X.nextWord()

W = X.nextWord()

 Figure 9 - 3   

c09.indd   342c09.indd   342 7/31/08   3:08:22 PM7/31/08   3:08:22 PM



Chapter 9: Modeling Software Systems That Require Concurrency

343

 The symbol is prepended to the service, method, or attribute name.   

  Ordering the Attributes and Services 
 Some classes have many attributes and operations, so it may be best to organize them within their 
compartments. Ordering helps identify and navigate through the attributes and operations. The 
organization can be: 

  By access  

  By category    

 Ordering by  access  can be very useful to users. It communicates which attributes and operations are 
publicly accessible. Knowing which members are protected assists users who need to extend or 
specialize the class through inheritance. Visibility symbols or access specifiers can be used to organize 
attributes and services/methods by access. 

 Ordering attributes and operations based on the  category  helps in the modeling of the class. Organizing 
by category helps you determine what the basic operations of the class will be. Are you modeling a nice 
class? A  nice class  provides regular functionality to the class. This is the functionality that should be 
defined for a nice class: 

  Default constructor  

  Copy constructor  

  Assignment operator  

  Equality operator  

  Destructor    

❑

❑

❑

❑

❑

❑

❑

Table 9-4

Access Specifiers Visibility Symbols

public (+) Anyone has access.

protected (#) The class itself and its descendants have access.

private (-) Only the class itself has access.

 Another important property you can show is the  visibility  of attributes and operations. The visibility 
property describes who can access the attribute or invoke the operation. A character or symbol is used to 
represent the level of visibility. Visibility maps to the access specifiers of C++ and other languages. 
Access specifiers and visibility symbols are listed in Table  9 - 4 .   

c09.indd   343c09.indd   343 7/31/08   3:08:23 PM7/31/08   3:08:23 PM



Chapter 9: Modeling Software Systems That Require Concurrency

344

 The copy constructor, assignment operator, and destructor can be generated by the compiler for classes 
that need them, but do not define them. Some software designers believe that classes that are not nice 
classes have severely restricted behavior. Reusuable classes should have a nice interface when possible. 
The  minimal standard interface  defines categories that not only have the nice interface but also have these 
additional operations: 

  Input and output  

  Hash function  

  Query  

  Shallow and deep copy operations    

 Still, an argument can be made against a  “ minimal standard interface ”  or even a nice class. For example, 
a class may model an object that does not require any input or output operations. 

 Attributes and services can be categorized according to the language of the domain. If you are modeling 
a class, the attributes and services are dictated by what is being modeled. For example, the 
 DictionaryLexicon  class might have categories based on services concerned with vocabulary, word 
forms, synonyms, and so on. Using these categories is very useful when you are starting to determine 
what attributes and operations a class requires. Other categories may be based on other properties of the 
methods or attributes such as:

  attributes  
static
const
              

    operations  
virtual
pure virtual
friend
query
concurrent
guarded   

 To show category names, you place them within left and right double angle brackets, (  <  < ... >  >  ). 

 Figure  9 - 4  shows examples of the different ways operations can be organized for the 
 DictionaryLexicon  class using the visibility symbols for the attributes and minimal standard interface, 
or domain categories for operations/services. In 9 - 4 (a) services are categorized by the function they 
fulfill for the class. In 9 - 4(b) services are categorized by the domain language of the class. All attributes 
have private visibility.    

❑

❑

❑

❑

c09.indd   344c09.indd   344 7/31/08   3:08:23 PM7/31/08   3:08:23 PM



Chapter 9: Modeling Software Systems That Require Concurrency

345

  Visualizing Instances of a Class 
 An  object  is an instantiation of a class. The object has an identity and gives values to attributes; this can 
be depicted using UML notation. The simplest representation of an object, an instance of a class, is a 
rectangle containing the name of the object underlined. This is called a  named instance  of a class. A named 
instance of a class can be shown with or without its class name:

     myWordSearch     Named instance  

     myWordSearch:WordSearchAgent     Named instance with class name  

ATTRIBUTES

-  recognizedWords: list<string> {changeable}
-  synonyms: list<string> {changeable}
-  partOfSpeech: string {changeable}
-  plurals: list<string> {changeable}
-  wordForms: list <string> {changeable}
-  lexicon: map < string, vector<WordInfo> > {changeable} 

<<constructor>>
dictionaryLexicon()
dictionaryLexicon(lexicon: map <string, vector<Wordinfo> >

<<query>>
synonyms(Word: string) : list <string>
plurals(Word: string): list <string >
wordForms(Word: string): list  <string >
recognizedWords(): list <string>
partOfSpeech(Word: string): string

<<assignment>>
addWord(WordInfo: struct)
synonyms(Word: string, s: list <string>)
plurals(Word: string, p: list <string>
partofSpeech(Word: string, p: string)
...

<<validation>>
validateWord(Word: string): Boolean
checkWord(Word: string): Boolean

(a) Attributes categorized by visibility and services
     categorized functionality. 

DictionaryLexicon

ATTRIBUTES

-  recognizedWords: list<string> {changeable}
-  synonyms: list<string> {changeable}
-  partOfSpeech: string {changeable}
-  plurals: list<string> {changeable}
-  wordForms: list <string> {changeable}
-  lexicon: map < string, vector<WordInfo> > {changeable} 

<<constructor>>
dictionaryLexicon()
dictionaryLexicon(lexicon: map <string, vector<Wordinfo> >

<<vocabulary>>
recognizedWords(): list <string>
addWord(WordInfo: struct)
validateWord(Word: string): Boolean
checkWord(Word: string) Boolean

<<word forms>>
synonyms(Word: string, s: list <string>)
synonyms(Word: string): list <string>
plurals(Word: string, p: list <string>
wordForms(Word: string): list <string>

<<part of speech>>
partOfSpeech(Word: string): string
partOfSpeech(Word: string, p: string)

(b) Attributes categorized by visibility and services
     categorized by domain language.

DictionaryLexicon

Figure 9-4

c09.indd   345c09.indd   345 7/31/08   3:08:23 PM7/31/08   3:08:23 PM



Chapter 9: Modeling Software Systems That Require Concurrency

346

 Since the actual name of the object may be known only to the program that declares it, you may want to 
represent  anonymous instances  of classes in your system documentation, with or without the pathnames. 
An  orphan instance  does not show the class name:

     :WordSearchAgent     Anonymous instance  

     myWordSearch:     Orphan instance  

 Instances of a class may also show their current state, the static properties, and the dynamic ones in their 
own compartments. When the object changes dynamically, the object displays the new value of its 
properties. For example, Figure  9 - 5  shows the  myWordSearch:WordSearchAgent  object ’ s attributes 
changing. To show the active or current object, a heavier line is used. More specifically, Figure  9 - 5  shows 
several versions of the  myWordSearch  object: 

  (a) shows the various notations for an instance.  

  (b) shows the instance ’ s attributes changing but only one is the active object.  

  (c) denotes a collection of unintialized instances of the class called  multiobjects .      

❑

❑

❑

myWordSearch: WordSearchAgent myWordSearch

:WordSearchAgent myWordSearch:

(a) Notations for instances of a class.

 Named instance with class name  Named instance

 Anonymous instance  Orphan instance

(b) Instance's attributes change and an active object.

myWordSearch

currentWord = "comon"
unrecognizedWord = FALSE

myWordSearch

currentWord = "execute"
unrecognizedWord = TRUE

myWordSearch

currentWord = "problem"
unrecognizedWord = TRUE

Dynamic attributes of the Instance Active Instance 

(c) Multiobjects.

myWordSearch

Figure 9-5

c09.indd   346c09.indd   346 7/31/08   3:08:23 PM7/31/08   3:08:23 PM



Chapter 9: Modeling Software Systems That Require Concurrency

347

 Multiobjects are a way to show multiple instances of a class exist. Depending upon the nature of 
the class or the relationship between two classes, you may want to restrict the number of instances of a 
class. Multiplicity is a specification that shows the allowable range of possible instances of a class. The 
multiplicity of a class can be noted on the class icon or an object. The multiplicity is placed in the upper -
 right corner of the icon. A class may have zero to an infinite number of instances. For example, a class 
with 0 instances is a  pure abstract class . It cannot have any objects explicitly declared of its type. The 
number of instances may have an upper or lower bound. This may also be expressed in the diagram of a 
class. Figure  9 - 6  shows how multiplicity of a class can be represented (and how it can be represented 
between associated classes as well).   

Multiplicity of classes.

WordSearchAgent

1..n

DictionaryLexicon

1

WordSearchAgentDictionaryLexicon
1               1..n

Multiplicity between associated classes.

Figure 9-6

 In Figure  9 - 6 , the multiplicity of the  WordSearchAgent  class is  1..n , meaning that the least number 
of  WordSearchAgent  objects in a system is  1  and the most that can exist is  n  (depending on the 
amount of space available), each containing a different set of words. The  DictionaryLexicon  has a 
multiplicity of one. It is a singleton class meaning only one exists in the system. Here are more examples 
of multiplicity notation and their meanings:

     1     One instance  

     1..n     One to a specified number n  

     1..*     One to an infinite number  

     0..1     0 to 1  

     0..*     0 to an infinite number  

     *     An infinite number  

 Multiplicity can be shown between classes with association relationships. In Figure  9 - 6 , there is one 
 DictionaryLexicon  to 1 to many instances of  WordSearchAgent s. This means there can be many 
 WordSearchAgent s performing searches on a  DictionaryLexicon .  

c09.indd   347c09.indd   347 7/31/08   3:08:24 PM7/31/08   3:08:24 PM



Chapter 9: Modeling Software Systems That Require Concurrency

348

  Visualizing Template Classes 
 A  template class  is a mechanism that allows a type to be a parameter in the definition of the class. The 
template defines services that manipulate the datatype passed to it. The parameterized class is created in 
C++ by using the  template  keyword: 

template  < class Type  >  classname {...};  

 The  Type  parameter represents any type passed to the template.  Type  can be a built - in datatype or a 
user - defined class. When  Type  is declared, the template is bound by the element passed to it as the 
parameterized type. For example, the  Synonym  is a  map  container that contains  vector s of  string  
objects. The  map  and the  vector  are template classes: 

map  < string,vector < string >     >  Synonym;  

 The  map  container has  string  as a key and  vector  of strings as the value. The  vector  container 
contains string objects. The  map  container can map any datatype to any other datatype, and  vector  
containers can contain any datatype: 

map  < int, vector  < string >     >   // maps a number to a vector of strings
map  < int, string >     >           // maps a number to a string
vector  < DictionaryLexicon >    // a vector of dictionary objects
vector  < map  < int,string >     >    // a vector of maps that maps a number to
                             // string  

 Template classes are represented as rectangular boxes like any other class. There is an added notation of 
a parameterized type. It is represented as a dashed box displayed in the upper - right corner of the class 
icon. The template class can be unbound or bound to a type. The notation for representing an unbound 
template class is a dashed box displaying a capital  T  to represent the unbound parameterized type. 
A bound template class can be represented with  implicit binding , the C++ syntax for declaring and 
binding a template class. For example, the template  vector  is implicitly bound with a string object: 

vector  < string >   

 This can be displayed in the class icon or   < string >   can be placed in the dashed box as the type for 
the template. Another approach is to use the dependency stereotype  bind  and a template object. The 
stereotype specifies the source that instantiates the template class by using the actual named 
parameterized type. This is called  explicit binding . The stereotype indicator   <  < bind >  >   refines the 
template class by instantiating the parameterized type. Refinement is a general term to indicate a 
greater level of detail of something that already exists. Next to the stereotype indicator are the actual 
named parameters supplied by the template object. The template object has a dependency relationship 
with the template class. The template object can also be considered as a  refinement  of the template class. 
Figure  9 - 7  depicts the ways a template class can be represented, unbound and bound, for a  map  
container.    

c09.indd   348c09.indd   348 7/31/08   3:08:24 PM7/31/08   3:08:24 PM



Chapter 9: Modeling Software Systems That Require Concurrency

349

  Showing the Relationship between Classes and Objects 
 The UML provides three classifications of relationships between classes: 

   Dependencies : A dependency relationship between two classes means that a change to the 
independent class may affect the dependent class.  

   Generalizations : A  generalization  relationship between two classes means that one is a general 
construct of a more specific type. The general construct is considered the  parent  or  superclass , and 
the more specific construct is the  child  or  subclass . The child inherits the properties, attributes, 
and operations of the parent but may define other attributes and operations of its own. The child 
is derived from the parent and can be used as a substitute for the parent class. A  root  or  base  
class is a class with no parent.  

   Associations : An  association  is a structural relationship that specifies that objects are connected 
to other objects. Associations between objects can unidirectional or bidirectional. When objects 
have bidrectional associations, this means that object 1 is associated with object 2 and object 2 is 
associated with object 1. When objects have unidirectional associations, this means that object 1 
is associated with object 2 but object 2 is not associated with object 1. An association between 
two elements (classes and so on) is called a  binary association  where an association between  n  
elements is called an  n - ary association .    

 Table  9 - 5  shows the various stereotypes that can be used for the dependency relationships.   

❑

❑

❑

(a) unbound map (b) bound maps

Synonymsmap map

string
vector<string> >

map

string
vector<string> >

map <string, vector<string> >map

T

<<bind>> (actual parameters)

Figure 9-7

c09.indd   349c09.indd   349 7/31/08   3:08:24 PM7/31/08   3:08:24 PM



Chapter 9: Modeling Software Systems That Require Concurrency

350

Table 9-5

Dependency 
Stereotypes Description

<<bind>> The source instantiates the template target using the actual 
parameters.

<<friend>> The source has visibility into the target.

<<instanceof>> The source is an instance of the target. The dependency is used 
to define relationships between classes and objects.

<<instantiate>> The source creates instances of the target. This dependency is 
used to define relationships between classes and objects.

<<refine>> The source has a greater level of detail than the target. This 
dependency is used to define relationships between base class 
and the derived class.

<<use>> The source depends on the public interface of the target.

<<become>> The target is the same object as the source but at a later time in 
the lifetime of the source object. The target may be in a different 
state than the source.

<<call>> The source invokes method of the target.

<<copy>> The source is an exact but independent copy of the target.

<<access>> The source package is given the right to reference the elements 
of the target package.

<<extend>> The target use case extends the behavior of the source use case.

<<include>> The source use case can include the behavior of the target use 
case at a location named by the source use case.

 Many types of dependencies, generalizations, and associations exist. Each relationship classification has 
its own notation. The relationship notation is a solid or dashed line segment between the elements and 
may be accompanied with some type of arrowhead. To further define the relationship, stereotypes or 
adornments are used. 

 These  stereotypes  are labels that further describe the nature of the relationship. They are rendered as a 
named enclosed by guillemets and placed above or next to the element. For example, in Figure  9 - 8 , 
which appears shortly: 

 <  < bind >  >   

SOURCE TARGET

c09.indd   350c09.indd   350 7/31/08   3:08:25 PM7/31/08   3:08:25 PM



Chapter 9: Modeling Software Systems That Require Concurrency

351

 is placed next to the arrow depicting a dependency of the template object to the bound template class 
 list . The   <  < bind >  >   dependency means the  StrList  is a  list  type supplying the parameter to the 
template  string .  UnrecognizedWords  has a dependency with  StrList  in which it is an 
  <  < instanceOf >  >   of this type.  WordSearchAgent      <  < use >  >   the  UnrecognizedWords  as a container of 
the words that it cannot recognize. 

 Adornments are textual or graphical items added to an element ’ s basic representation. They are used to 
document details about that element ’ s specifications. For example: 

  An  association  is depicted as a solid line connecting the same or different constructs. Use an 
association relationship when one construct is structurally related to another.  

  Navigation is a type of association. To depict navigation, the line between the elements becomes 
a dashed line with an arrow pointing to one of the elements in the association.  

  Dependency is represented as dashed directed line (with an arrow) between two elements, from 
the source pointing to the element it depends on, the target. Use a dependency relationship 
when one construct uses another.  

  A generalization relationship is rendered as a solid directed line with a large open arrowhead 
pointing to the parent or superclass. Use a generalization relationship when one construct 
inherits the behaviors and attributes from another construct. The child may change or modify 
the behaviors and attributes.    

 Table  9 - 6  and Table  9 - 7  list the stereotypes, constraints, and properties that can be applied to 
generalizations and associations, respectively.   

❑

❑

❑

❑

Table 9-6

Generalization Description

stereotype

<<implementation>> Child inherits the implementation of the parent but does not make public 
nor support the interface of the parent.

constraints

{complete} All children of the parent have been named and no more additional 
children can be derived.

{incomplete} All children of the parent have not been named; additional children can 
be derived.

{disjoint} The parent’s objects may have no more than one of its children as a type.

{overlapping} The parent’s objects may have more than one of its children as a type.

c09.indd   351c09.indd   351 7/31/08   3:08:25 PM7/31/08   3:08:25 PM



Chapter 9: Modeling Software Systems That Require Concurrency

352

Table 9-7

Association Description

type

navigation

Unidirectional association where object1 is associated with object2, but 
object2 is not associated with object1. Without the arrow, the association is 
bidirectional.

aggregation

A containment (whole-part relationship) where part is not associated with 
just one whole for its lifetime.

composition

A containment (whole-part relationship) where part is associated with just 
one whole for its lifetime.

constraints

{implicit} The relationship is conceptual.

{ordered} The objects at one end of the association have an order.

property

{changeable} Describes what can be added, deleted and changed between two objects.

{addOnly} Describes new links that can be added to an object on the opposite end of 
the association.

{frozen} Describes a link that once added to an object on the opposite end of the 
association cannot be changed or deleted.

OBJECT1 OBJECT2

PART WHOLE

PART WHOLE

 Associations have another level of detail that can be applied to a general association or stereotype listed 
in Table  9 - 7 : 

   Name : An association can have a name that is used to describe the nature of the relationship. 
A directional triangle can be added to the name to assure its meaning. The triangle points in the 
direction the name is intended to be read.  

   Role:  A role is the face the class at the near end of the association presents to the class at the 
other end the association.  

   Multiplicity : Multiplicity notation can be used to state how many objects may be connected 
across an association. Multiplicity can be shown at both ends of the association.    

 Figure  9 - 8  also shows examples of association relationships between classes.  DictionaryLexicon  
and  WordSeacrchAgent  have a multiplcity association of 1 to 1 …     n . This means there is only one 
 DictionaryLexicon  to 1 or many  WordSearchAgent s. The  DictionaryLexicon  can be searched 
by many  WordSearchAgent s. The  LexicalEntry  is the name of the association between 
 DictionaryLexicon  and  Word . In this case, the named association  LexicalEntry  is also a class 
with attributes.    

❑

❑

❑

c09.indd   352c09.indd   352 7/31/08   3:08:25 PM7/31/08   3:08:25 PM



Chapter 9: Modeling Software Systems That Require Concurrency

353

Dependency relationships

WordSearchAgent

DictionaryLexicon
1                           1..n

Associated relationship

WordSearchAgent

DictionaryLexicon
1                           1..n

Word

<<use>>
UnrecognizedWords

<<instanceOf>>
StrList list

string

<<bind>>

PartOfSpeech
Synonym
Antonym

LexicalEntry

Figure 9-8

  Visualizing Interface Classes 
 The  interface  of a class defines the outside world ’ s interaction with an object through the methods and 
attributes that are exposed. Once a class has been designed, implemeted, and is in use, it may be 
necessary to change the interface of the class to accomodate a user. It may not be practical to actually 
change the existing interface of the class because it is already in use and will break existing code. An 
 interface class  is used to modify the interface of another existing class or set of classes. The modification 
makes the class easier to use, more functional, safer, or more semantically correct for a set of users. An 
example of an interface class are the container  adaptors  that are part of the Standard Template Library. 
The adaptors provide a new public interface for the  deque ,  vector , and  list  containers. Example 9 - 1 
shows the  stack  class. It is used as an interface class to modify a  vector  class. 

   Example 9 - 1  

//Example 9-1  Using the stack class as an interface class.
              
template  <  class Container  > 
class stack{
//...
public:
   typedef Container::value_type value_type;
   typedef Container::size_type size_type;

(continued)

c09.indd   353c09.indd   353 7/31/08   3:08:26 PM7/31/08   3:08:26 PM



Chapter 9: Modeling Software Systems That Require Concurrency

354

 Example 9 - 1  (continued)

protected:
   Container c;
public:
   bool empty(void) const {return c.empty();}
   size_type size(void) const {return c.size(); }
   value_type &  top(void) {return c.back(); }
   const value_type &  top const {return c.back(); }
   void push(const value_type &  x) {c.push.back(x); }
   void pop(void) {c.pop.back(); }
};   

 The  stack  is declared by specifying the  Container  type: 

stack  <  vector <  T >     >  Stack;  

 In this case, the  Container  is a  vector , but any container, such as a  deque  and  list , that defines these 
operations: 

empty()
size()
back()
push.back()
pop.back()  

 can be used as the implementation class for the  stack  interface class: 

stack  <  list <  T >     >  Stack;
stack  <  deque <  T >     >  Stack;  

 The  stack  class supplies the semantically correct interface traditionally accepted for stacks: 

push()
pop()
top()  

 Multiple notations can be used to represent an interface class, each showing various levels of detail. 
Figure  9 - 9  shows the multiple notations for interface classes: 

  (a) shows the stack as an interface class.  

  (b) shows the stereotype indicator   <  < interface >  >   displayed in the class symbol above the 
name of the class to denote that this is an interface class. This example shows the attributes and 
methods of the class. The letter I can be prepended to the name of the interface class and all of 
its operations to further distinguish it from other classes.  

  (c) shows the realization of a template class. It is read as  “ the stack class is realized by the vector 
class. ”     Realization  can be used to show the relationship between the  stack  and the class with 
which it interfaces. Realization is a semantic relationship between classes in which one specifies 
a contract (interface class) and the other class carries it out (implementation class). Here, the 

❑

❑

❑

c09.indd   354c09.indd   354 7/31/08   3:08:26 PM7/31/08   3:08:26 PM



Chapter 9: Modeling Software Systems That Require Concurrency

355

 stack  class specifies the contract, and the  vector  class carries it out. A realization relationship 
is depicted as a dashed line between the two classes with a large open arrowhead pointing to 
the interface class or the class that specifies the contract.  

  (d) showsthe relationship between the interface class and its implementer depicted with the 
interface lollipop notation.       

❑

stack

   value_type : Container::value_type
   size_type : Container::size_type
   Container

   empty(void) : bool {const}
   size(void) : size_type {const} 
   top(void) : value_type &
   top : const value_type & {const}
   push(const value_type& x) : void
   pop(void) : void

<< interface >>
stack

   value_type : Container::value_type
   size_type : Container::size_type
   Container

   empty(void) : bool {const}
   size(void) : size_type {const} 
   top(void) : value_type &
   top : const value_type & {const}
   push(const value_type& x) : void
   pop(void) : void

<< interface >>
stack

vector

vector

stackempty()
size()
back()
push.back()
pop.back()

(a) stack class as an interface class

(b) using << interface >> stereotype 

(c) stack class is realized by the vector class

(d) using interface lollipop to realize stack class

Figure 9-9

c09.indd   355c09.indd   355 7/31/08   3:08:27 PM7/31/08   3:08:27 PM



Chapter 9: Modeling Software Systems That Require Concurrency

356

  The Organization of Interactive Objects 
 As you can see, classes and interfaces can be used as building blocks to create more complex classes and 
interfaces. In a parallel system, you may have many large and complex structures collaborating with 
other structures thus creating a society of classes and interfaces working together to accomplish the goals 
of the system. The collection of elements together with their interactions form a  collaboration . These 
building blocks can include the structural and behavioral elements of the system. A request from a user 
to perform a particular task may involve many objects working together. Other tasks can be 
accomplished by those same objects working with other elements. Understanding that certainly makes 
apparent the benefits of well - defined resuable classes that can be used in different ways in the same 
system or in completely different systems. The collaboration has two parts: 

  A  structural part  that focuses on the way the collaborating elements are organized and 
constructed  

  A  behavioral part  that focuses on the interaction between the elements    

 Figure  9 - 10  shows an example of the structural part of the agent - based Lexicon system. In this 
colloboration, all of the classes used have some type of dependency relationship. For example, 
 MorphologyAgent  and  MisspelledAgent  call methods in  UnrecognizedWords ,  Lexicon  binds the 
template  map , and  UnrecognizedWords  contains a word list that binds the  list  template. The 
 WordSearchAgent  has a  1.. n   relationship with  UnrecognizedWords . The structural part of a 
collaboration consists of any combination of classes and interfaces, components and nodes. As you can 
see in Figure  9 - 10 , a system may contain many collaborations. A single collaboration is unique in the 
system, but the elements of a collaboration are not. The elements of one collaboration may be used in 
another collaboration using a different organization and performing a different functions. In this 
particular collaboration,  WordSearchAgent  is used to find unrecognized words in a list. It could also be 
used to find words of a particular domain if it were to use a different Lexicon.       

❑

❑

MorphologyAgent

MisspelledAgent

WordSearchAgent DictionaryLexicon

Lexicon

vector<WordProfile>>
map <string,

<<call>>

<<call>>

<<bind>>

<<use>>

1   1..n 1..n   1
UnrecognizedWords

WordList

<<use>>

list <string>

<<bind>>

Figure 9-10

c09.indd   356c09.indd   356 7/31/08   3:08:27 PM7/31/08   3:08:27 PM



Chapter 9: Modeling Software Systems That Require Concurrency

357

 Depicting the behavioral part of a collaboration is accomplished by using interaction diagrams such as 
sequence or activity diagrams. Those are discussed in the next section.     

  UML and Concurrent Behavior 
 The behavioral view of a system focuses on the dynamic aspects of that system. This view examines 
how the elements in the system behave as it interacts with other elements of the system. Here is where 
concurrency emerges as elements interact with other elements. The diagramming techniques discussed 
in this section are the ones used to model: 

  The lifetime of the behavior of an object  

  Behavior of objects that work together for a particular purpose  

  Flows of control focusing on an action or a sequence of actions  

  Synchronization and communication between elements    

  Collaborating Objects 
 Collaborating objects are objects involved with each other to perform some specific task. They do not 
form a permanent relationship. The same objects can be involved with other objects working together to 
perform other tasks. Collaborating objects can be represented in a  collaboration diagram . Collaboration 
diagrams have a structural part and an interactive part. The structural part has already been discussed. 
The interaction part is a graph where all of the participating objects are vertices. The connections 
between the objects are the arcs. The arcs can be adorned with messages passed between the objects, 
method invocations, and stereotype indicators that express more details about the nature of the 
connection. 

 The connection between two objects is a  link . A link is a type of association. When two objects are linked, 
actions can be performed between them. The action may result in a change of the state of one or both 
objects. The following table shows examples of the types of actions that can take place. 

     create     An object can be created.  

     destroy     An object can be destroyed.  

     call     An operation of an object can be invoked by another object or itself.  

     return     A value is returned to an object.  

     send     A signal may be sent to an object.  

 When any method is invoked, the parameters and the return value can be expressed. Other actions can 
take place if specified. 

 The following actions can take place if the receiving object is visible to the calling object. Stereotypes can 
be used to specify why the object is visible. 

❑

❑

❑

❑

c09.indd   357c09.indd   357 7/31/08   3:08:28 PM7/31/08   3:08:28 PM



Chapter 9: Modeling Software Systems That Require Concurrency

358

     association     The object is visible because an association exists (very general).  

     parameter     The object is visible because it is a parameter to the calling object.  

     local     The object is visible because it is has local scope to the calling object.  

     global     The object is visible because it has global scope to the calling object.  

     self     The object calls its own method.  

 Other stereotypes and adornments appropriate for associations can be expressed. 

 When a method is invoked, this may cause a number of other methods to be invoked by other objects. 
The sequence in which the operations are performed can be shown by using a sequence number 
combination and a colon separator prepended to the method. The sequence number combination 
expresses what sequence the method is associated with and the time order number in which the 
operation takes place. For example, Figure  9 - 11  shows a collaboration diagram that uses the sequence 
numbers.   

ObjectD

MainObject

1.1: initialize()

{self}

2.1: Value := doAction()

{parameter} 1.1.2: initializeC() {local}

1.1.1: initializeB() {local}
ObjectB

ObjectC

ObjectA

1: << create >>
2: Value := performAction
                  (ObjectD) {local}

Figure 9-11

 In Figure  9 - 11 ,  MainObject  performs two operations in sequence: 

1:  <  < create >  > 
2: Value := performAction(ObjectF)  

 In operation  1 ,  MainObject  creates  ObjectA .  ObjectA  is local to the  MainObject  by containment. This 
initiates the first sequence of operations in a nested flow of control. All operations that are a part of 
this sequence use the number  1  followed by the time order number in which the operation takes place. 
The first operation of sequence  1  is: 

1.1: initialize()  

c09.indd   358c09.indd   358 7/31/08   3:08:28 PM7/31/08   3:08:28 PM



Chapter 9: Modeling Software Systems That Require Concurrency

359

  ObjectA  invokes its own operation. This is expressed by linking the object to itself and by using the 
 {self}  stereotype indicator. The  ObjectA::initialize()  operation also causes the beginning of 
another sequence of actions: 

1.1.1: initializeB()
1.1.2: initializeC()  

 in which two other objects local to  ObjectA  initialize methods are called. The operation: 

2: performAction(ObjectD)  

 is the beginning of another nested sequence.  ObjectA  invokes  ObjectD  ’ s operation: 

2.1: doAction()  

  ObjectA  can invoke this operation because  ObjectD  is a parameter (passed by  MainObject ) as the 
stereotype  {parameter}  indicates. A value is returned to  ObjectA , and a value is returned to 
 MainObject . Besides sequence number combinations, these nested flows of controls are further 
enhanced by using a line with a solid arrowhead pointing in the direction of the flow of the sequence.  

  Multitasking and Multithreading with 
Processes and Threads 

 Concurrency within an application can be implemented by using  multitasking  or  multithreading . 
Multitasking allows more than one process to execute at the same time, whereas multithreading allows 
a single process to perform more than one task at the same time using multiple threads. When a 
process is divided into multiple tasks and each task is executed by a thread, the process is said to be 
multithreaded. The thread is a flow of control executing within the process ’ s address space. Each process 
has at least one thread, the main thread. 

  Diagramming Active Objects 
 When using the UML, each independent flow of control is considered an  active object . An active object is 
an object that owns a process or thread. Each active object can initiate control activity. An  active class  is a 
class whose objects are active. Active classes can be used to model a group of processes or threads that 
share the same data members and methods. The objects of your system may not have a one - to - one 
correlation with active objects. When dividing your program up into processes and threads along object 
lines, an object ’ s methods may execute in a separate process or execute on separate threads. Therefore, 
when modeling such an object, it may be represented by several active objects. This relationship between 
static and active objects can be represented by using an interaction diagram. Threads and processes can 
be represented directly as active objects. 

 The UML represents an active object or class the same way a static object is represented except it has a 
heavier line tracing the perimeter of the rectangle. Two stereotypes can also be used: 

  process  

  thread    

❑

❑

c09.indd   359c09.indd   359 7/31/08   3:08:28 PM7/31/08   3:08:28 PM



Chapter 9: Modeling Software Systems That Require Concurrency

360

 These stereotype indicators can be displayed to show the distinction between the two types of active 
objects. Figure  9 - 12  shows two active objects, both are threads. Each thread executes methods of 
 unrecognizedWords  and  wordSearchAgent2 .    

<<thread>>

wordSearchAgent2: WordSearchAgent

<<thread>>

unrecognizedWords: UnrecognizedWords

addWord(string) {guarded}
removeWord(string) {guarded}
...

checkValidateWord(string) {concurrent}
...

Figure 9-12

  Showing the Multiple Flows of Control and Communication 
 In a concurrent system, you have multiple flows of control. Each flow of control is based on a process or 
a thread controlling the activity. These processes and threads may be executing on a single computer 
system with multiple processors. An active object or class is used to represent each flow of control. 
When the active object is created, an independent flow of control is initiated. When the active object is 
destroyed, the flow of control is terminated. Modeling the multiple flows of control in your system helps 
you with the management, synchronization, and communication among them. 

 In a collaboration diagram, sequence numbers and solid arrows are used to identify flows of 
controls. In a collaboration diagram that consists of active objects in a concurrent system, the name 
of the active object is preprended to the sequence numbers of the operations peformed by the active 
object. Active objects can invoke methods in other objects and suspend execution until the function 
returns or can continue to execute. Arrows are used not to show just the direction of the flow of control 
but also the nature of it. A solid arrowhead is used to represent a synchronous call and a half - stick 
arrowhead is used to represent an asynchronous call. Since more than one active object can invoke the 
operation of a single object, the method properties: 

   sequential   

   guarded   

   concurrent     

 can be used to describe the synchronization property of that method. 

 Figure  9 - 13  shows a collaboration of several active objects. In this diagram, these objects are working 
together to produce a list of unknown words. The  mainAgent  is used to record and coordinate the 
preliminary work and resulting list of unknown words produced by the active object problem solvers.   

❑

❑

❑

c09.indd   360c09.indd   360 7/31/08   3:08:29 PM7/31/08   3:08:29 PM



Chapter 9: Modeling Software Systems That Require Concurrency

361

 The  myLexicon  and  unrecognizedWords  objects are accessed concurrently by two agents. Both objects 
are visible to all the agents in this collaboration. The  wordSearchAgent s invoke the methods of the 
 unrecognizedWords  object: 

wordSearchAgent1:unrecognizedWords.addWord(string word)
WordSearchAgent2:unrecognizedWords.addWord(string word)  

 The  wordSearchAgent s also invoke the methods of the myLexicon object: 

wordSearchAgent1:myLexicon.validateWord(string  & X)
WordSearchAgent2:myLexicon.validateWord(string  & X)  

 The  WordSearchAgent s are concurrently invoking  unrecognizedWords  object ’ s operation. 
 unrecognizedWords     addWord()  has a  guarded  property and, therefore, is safe to call simultaneously. 
 myLexicon.validateWord()  does not modify the object and is also safe to call simultaneously.   

  Message Sequences between Objects 
 Whereas a collaboration diagram focuses on the structural organization and interaction of objects 
working together to perform a task or operation or to realize a use case, a  sequence diagram  focuses on the 
time ordering of method invocation or procedures involved in a particular task, operation, or use case. In 
a sequence diagram, the name of each object or construct involved is displayed in its own rectangular 
box. The boxes are placed at the top along the x - axis of the diagram. You should only include the major 
players involved and the most important function calls because the diagram can quickly become too 
complicated. The objects are ordered from left to right starting from the object or procedure that initiates 
the action to the most subordinate objects or procedures. The calls are placed along the y - axis from top to 
bottom in time order. Vertical lines are placed under each box representing the lifeline of the object. Solid 
arrowhead lines are drawn from the lifeline of one object to the lifeline of another representing a function 
call or method invocation from the caller to the receiver. Stick arrowhead lines are drawn from the 
receiver back to the caller representing a return from a function or method. Each function call is labeled 

1.1: f = checkValidateWord(word)

myLexicon

                  1: << create >>
                  (Agent1) {local}

                  2: << create >>
                  (Agent2) {local}

wordSearchAgent2

unrecognizedWords

2.1: f = checkValidateWord(word)

1.2: if (! f) = TRUE addWord(word)

2.2: if (! f) = TRUE addWord(word)

mainAgent

wordSearchAgent1

<<process>>

<<thread>>

<<thread>>

Figure 9-13

c09.indd   361c09.indd   361 7/31/08   3:08:30 PM7/31/08   3:08:30 PM



Chapter 9: Modeling Software Systems That Require Concurrency

362

at the minimum with the function or method name. The arguments and control information, like the 
condition in which the method is invoked can also be displayed. For example: 

if(!Unrecognized)
checkTransposes()  

 The function or method will not be performed unless the condition is true. Methods that are to be 
invoked several times on an object, like reading values from a structure, are preceded by an  iteration 
marker  ( * ). 

 Figure  9 - 14  shows a sequence diagram of some of the objects involved in the Lexicon system. Only some 
of the objects are shown to avoid a complicated diagram. When you are using the sequence diagram for 
concurrent objects or procedures, activation symbols are used. An activation symbol is a rectangle that 
appears on the object ’ s lifeline. This indicates the object or procedure is active. These are used when an 
object makes a call to another object or procedure and does not block. This shows that the object or 
procedure is continuing to execute or be active. If an object is not active, a dashed line is used. In Figure 
 9 - 14 , the  misspelledAgent  object is always active whereas the  mainAgent  becomes inactive after it has 
created the  misspelledAgent . Once  unrecognizedWords  and  myLexicon  have been created, they do 
not become active until  misspelledAgent  invokes  nextWord()  and  removeWord() .   

mainAgent:

<< create >>

createTranspositions()

misspelledAgent

checkWord(word)

deletes itself

unrecognizedWords: myLexicon:

checkTransposes()

return bool

nextWord()

return c

removeWord(c)

return bool

...

Figure 9-14

c09.indd   362c09.indd   362 7/31/08   3:08:30 PM7/31/08   3:08:30 PM



Chapter 9: Modeling Software Systems That Require Concurrency

363

 To indicate an object has called one of its own methods, a  self - delegation  symbol is used. This is a 
combination of an activation symbol and a call arrow. An activation symbol is overlapped on the existing 
activation symbol. A line proceeds from the original activation symbol with an arrow pointing to the 
added activation symbol. In Figure  9 - 14 , self - delegation occurs for the  misspelledAgent  when it call its 
methods  createTranspositions()  and  checkTransposes() . The  checkTransposes  method passes 
a transposition of the original word to  myLexicon , which checks to see if this word is in the list of 
recognizable words. This method is called iteratively until  Unrecognized  is  FALSE , which means the 
transposed word has been identified as the correct spelling of the original word. If the transposed word 
has been recognized, the original word is removed.  

  The Activities of Objects 
 The UML can be used to model the activities performed by objects involved in a specific operation or use 
case. This is called an  activity diagram . It is a flowchart showing the sequential and concurrent actions or 
activities involved a specific task, step by step. The arrows trace the flow of the control for the activities 
represented in the diagram. Collaboration diagrams emphasize the flow of control from object to object, 
sequence diagrams emphasize the flow of control in time order, and the activity diagram emphasizes the 
flow of control from one action or activity to another. The actions or activities change the state of the 
object or return a value. The containment of the action or activity is called an  action  or  activity state . They 
represent the state of the object at a particular instant in the flow of control. 

 Actions and activities differ. 

   Actions  cannot logically be decomposed or interrupted by other actions or events. Examples of 
actions are creating or destroying an object, invoking an object ’ s method, or calling a function in 
a procedure.  

  An  activity  can be decomposed into other activities or even another activity diagram. An 
example of an activity is a program, a use case, or a procedure. Activities can be interrupted by 
an event or other activities or actions.    

 An activity diagram is a graph in which the nodes are actions or activities and the arcs are triggerless 
transitions. Triggerless transitions require no event to cause the transition to occur. The transition occurs 
when the previous action or activity has completed. The diagram comprises decision branches, starts, 
stops, and synchronization bars that join or fork several actions or activities. Both action and activity 
states are represented the same way. To represent an action or activity state, the UML uses the standard 
flowchart symbol used to show the enter and exit point of the flowchart. This symbol is used regardless 
of the type of action or activity occurring. However, we prefer to use the standard flowchart symbols 
that distinguish input/output actions (parallelogram) from processing or transformation actions 
(rectangle). The description of the action or activity as a function call, expression, phrase, use case, or 
program name is displayed in the action symbol used. An activity state may in addition show the entry 
and/or exit action. The entry action is the action that takes places when the activity state is entered. The 
exit action is the action that takes places just before exiting the activity state. They are the first and last 
actions to be executed in the activity state, respectively. 

 Once an action has completed, a transition occurs in which the next action takes place immediately. The 
transition is represented as a directed line from one state with a stick arrow pointing to the next state. 
A transition pointing to a state is inbound and a transition leading from a state is outbound. Before the 
outbound transition occurs, the exit action, if it exists, executes. After an inbound transition, the entry 
action for the state, if it exists, executes. The start of the flow of control is represented as a large solid dot. 

❑

❑

c09.indd   363c09.indd   363 7/31/08   3:08:30 PM7/31/08   3:08:30 PM



Chapter 9: Modeling Software Systems That Require Concurrency

364

The first transition leads from the solid dot to the first state in the diagram. The stopping point or stop 
state of the activity diagram is represented as a large solid dot inside a circle. 

 Activity diagrams, like flowcharts, have a decision symbol. The decision symbol is a diamond with one 
inbound transition and two or more outbound transitions. The outbound transitions are guarded 
conditions that determine the path of the flow of control. The guarded condition is a simple boolean 
expression. All of the outbound transitions should cover all of the possible paths from the branch. 
Figure  9 - 15  shows the decision symbol used in determining whether a knowledge source should be 
constructed, in determining whether a word should be added to the unrecognized word list.   

[in Lexicon]

[not in Lexicon]

add word to
unrecognized list

checkValidateWord()

DECISION
process next word
in list

Figure 9-15

 You may find that there exists more than one flow of a sequence of actions or activities occurring 
concurrently after an action or activity has completed. In contrast to a flowchart, the UML defines a 
symbol that can be used to represent the instant where multiple flows of controls occur concurrently. 
A  synchronization bar  is used to show where single path branches off or forks into parallel paths and 
where parallel paths join. It is a thick horizontal line in which there can be multiple outbound transitions 
(forking) or multiple inbound transitions (joining). Each transition represents a different path. Outbound 
transitions from a synchronization bar signify an action or activity state has caused multiple flows of 
control to occur. Inbound transitions into a synchronization bar signify the multiple flows of control 
need to be synchronized. A synchronization bar is used to show that the paths are waiting for all paths to 
meet and join into a single flow or path. 

 In Figure  9 - 16 ,  mainAgent  creates two concurrent flows of control by creating two  WordSearchAgent s. 
After these these agents have completed, they are joined again into a single flow of control, where the 
 mainAgent  then creates a  MorphologyAgent . 

 The diagram is divided into separate sections called  swimlanes . In each swimlane, the actions or activities 
of a particular object, component, or use case occur. Swimlanes are vertical lines that partition the 
diagram into sections. A swimlane for a particular object, component, or use case specifies the focus of 
activities. An action or activity can occur only in a single swimlane. Transitions and synchronization bars 
can cross one or more swimlanes. Actions or activities in the same lane or different lanes but at the same 
level are concurrent. Figure  9 - 16  shows the activity diagram with swimlanes.   

c09.indd   364c09.indd   364 7/31/08   3:08:31 PM7/31/08   3:08:31 PM



Chapter 9: Modeling Software Systems That Require Concurrency

365

 The purpose of this activity diagram is to model the sequence of actions involved in a  mainAgent  and 
other objects involved in producing the unknown word list for the agent - based Lexicon system. 
Concurrency occurs with the  WordSearchAgent s. The synchronization bar is in  WordSearchAgent  ’ s 
swimlane. When there are no more words to process, then the flow of control for these agents is 
relinquished, and the flow of control returns back to the main thread,  mainAgent .  

  State Machines 
 State machines depict the behavior of a single construct, specifying the sequence of transformations 
during its lifetime as it responds to internal and external events. The single construct can be a system, a 
use case, or an object. State machines are used to model the behavior of a single entity. An entity can 
respond to events such as procedures, functions, operations, and signals. An entity can also respond to 
elapses in time. Whenever an event takes place, the entity responds by performing some activity or 
taking some action resulting in a change of the state of the entity or the production of some artifact. The 
action or activity performed depends upon the current state of the entity. A  state  is a condition the entity 
is in during its lifetime as a result of performing some action or responding to some event. 

process the next
word

checkValidateWord()

add Word to
unrecognized Word
List 

[in Lexicon]

[not in Lexicon]

[more words]

[no more words]

process the next
word 

checkValidateWord()

[in Lexicon]

[not in Lexicon]

[more words]

[no more words]

MainAgent

create WordSearch
Agents 

WordSearchAgent MorphologyAgent

create Morphology
Agents

add Word to
unrecognized Word
List

process an unrecognized
word from List

...
Figure 9-16

c09.indd   365c09.indd   365 7/31/08   3:08:31 PM7/31/08   3:08:31 PM



Chapter 9: Modeling Software Systems That Require Concurrency

366

 A state machine can be represented in a table or directed graph called a  state diagram . Figure  9 - 17  shows a 
UML state diagram for the state machine of a process.   

READY

STOPPED

RUNNING

SLEEPING

signaled
to stop

signaled
to restart

dispatch

timer runout

wakeup
[I/O complete]

block
[wait on I/O]

exit 
[execution complete]

Figure 9-17

 Figure  9 - 17  shows the states some process progresses through while it is active in the system. The 
process can have four states: ready, running, sleeping, and stopped. There are eight events that cause the 
four states of the process. Three of the events occur only if a condition is met.   

  The  block  event occurs only if the process requests I/O or it is waiting for an event to occur. 
If the  block  event occurs, it triggers the process to transform from a running state to a 
sleeping state.  

  The  wakeup  event occurs only if the event takes place or the I/O has been completed. If the 
 wakeup  event occurs, it triggers the process to transform from a sleeping state (source state) to a 
ready state (target state).  

  The  exit  event occurs only if the process has executed all its instructions. If the  exit  event occurs, 
it triggers the process to transform from a running state to a sleeping state.    

 The remaining events are external events and not under the control of the process. They occur for some 
external reason, triggering the process to transform from a source to a target state. 

 The state diagrams are used to model the dynamic aspects of an object, use case, or system. The 
sequence, activity, interactive collaboration diagrams, and now the state diagram are used to model the 
behavior of the system or object when it is active. Structural collaboration and class diagrams are used to 
model the structural organization of an object or system. State diagrams are good to use to describe the 

❑

❑

❑

c09.indd   366c09.indd   366 7/31/08   3:08:31 PM7/31/08   3:08:31 PM



Chapter 9: Modeling Software Systems That Require Concurrency

367

behavior of an object regardless of the use case. They should not be used to describe the behavior of 
several interacting or collaborating objects. They should be used to describe the behavior of an object, 
system, or use case that goes through a number of transformations and that on which more than one 
event can cause a single transformation to occur. These are constructs that are very reactive to internal 
and externals events. 

 In the state diagram, the nodes are states, and the arcs are transitions. The states are represented as 
rounded - corner rectangles in which the name of the state is displayed. The transitions are lines 
connecting the source and target states with a stick arrow pointing to the target state. There are  initial  
and  final states .   

  The  initial state  is the default starting point for the state machine. It is represented as a solid 
black dot with a transition to the first state of the state machine.  

  The  final state  is the ending state of the state machine, indicating it has completed or the 
system, use case, or object has reached the end of its lifeline. It is represented as a solid dot 
embedded in a circle.    

  Representing the Parts of a State 
 A state has several parts. Table  9 - 8  lists the parts of a state.   

❑

❑

Table 9-8

Parts of a State Description

Name The unique name of the state that distinguishes it from other states; a state 
may have no name.

Entry/exit actions Actions executed when entering the state (entry state) or executed when 
exiting the state (exit action).

Substates A nested state; the substates are the disjoint states that can be activated 
sequentially or concurrently. The composite or superstate is the state that 
contains the substates.

Internal transitions Transitions that occur within the state that are handled without causing a 
change in the state.

Self-transitions Transitions that occur within the state that are handled without causing a 
change in the state but that cause the exit and then the entry actions to 
execute.

Deferred events A list of events that occur while the object is in that state but that is queued 
and handled when the object is in another state.

c09.indd   367c09.indd   367 7/31/08   3:08:31 PM7/31/08   3:08:31 PM



Chapter 9: Modeling Software Systems That Require Concurrency

368

 A state can be represented simply by displaying the name of the state at the center of the state symbol. 
If other actions are to be shown inside the state symbol, the name of the state should appear at the top in 
a separate compartment. The actions and activities are listed below this compartment and are displayed 
in this format: 

label [Guard] / action or activity  

 For example: 

do / validate(data)  

 The  do  is the label used for an activity to be performed while the object is in this state. The 
 validate(data)  function is called with  data  as the argument. If an action or activity is a call to a 
function or method, the arguments can be displayed. 

 The  Guard  is an expression that evaluates to true or false. If a condition evaluates to true, the action or 
activity takes place. For example: 

exit [data valid] / send(data)  

 The exit action  send(data)  is guarded. The expression  data valid  is evaluated to be true or false. 
Upon exiting the state, if the expression is true, then the  send(data)  function is called. The  Guard  is 
always optional. 

 Transitions occur when an event takes place. This causes the object, system, or use case to transform 
from one state to another state. Two transitions can occur that do not cause a change in the state of the 
object, system, or use case. They are: 

   Self - transition : With a self - transition, when a particular event occurs, this triggers the object to 
leave the current state. When exiting, it performs the exit action (if any) and then performs 
whatever action is associated with the self - transition (if any). The object reenters the state, and 
the entry action (if any) is performed.  

   Internal transition : With an internal transition, the object does not leave the state and therefore 
no entry or exit actions are performed.    

 Figure  9 - 18  shows the general structure of a state with exit and entry actions and do activity along with 
internal and self - transitions. A self - transition is represented as a directed line that points back to the 
same state.   

❑

❑

entry/action or function

do/activity

name/action or function

exit/action or function

name of state
entry action

activity

internal transition

exit action

self-transition

Figure 9-18

c09.indd   368c09.indd   368 7/31/08   3:08:32 PM7/31/08   3:08:32 PM



Chapter 9: Modeling Software Systems That Require Concurrency

369

 A transition between different states indicates that there is a relationship or path that exists between 
them. From one state an event can occur or a condition can be met that causes the object to be 
transformed from one state (source state) to another state (target state). The event triggers the transition 
of the object. A transition may have several concurrently existing source states. If so they are joined 
before the transition occurs. A transition may have several concurrently existing target states in which a 
fork has occurred. Table  9 - 9  lists the parts of a transition. A transition is rendered as a directed line from 
the source state pointing to the target state. The name of the event trigger is displayed next to the 
transition. Like actions and activities, events for transitions can also be guarded. A transition can be 
 triggerless  meaning no special event occurs that causes the transition to take place. Exiting the source 
state, the object immediately makes the transition and enters the target state.    

Table 9-9

Parts of a Transition Description

Target state The state the object enters after a transition occurs.

Source state The original state of the object; when a transition occurs, the object leaves 
the source state.

Event trigger The event that causes the transition to occur. A transition may be 
triggerless, in which the transition occurs as soon as the object has 
completed all activities in the source state.

Guard condition A boolean expression associated with an event trigger. When it evaluates to 
True, the transitions occurs.

Action An action executed by the object that takes place during a transition; it may 
be associated with an event trigger and/or guard condition.

  Diagramming Concurrent Substates 
 A substate can be used to further simplify the depiction of modeling the behavior of a concurrent 
system. A  substate  is a state contained inside another state called a  superstate  or  composite state . This 
representation means a state can be further broken down into one or more substates. These substates can 
be sequential or concurrent. With concurrent substates, each state machine represented exists in parallel 
as different but concurrently existing flows of control. Each substate is separated by a dashed line. This is 
true for the  WordSearchAgent  objects in the example used throughout this chapter. Each object is 
processing all the words in its local list. The states for these objects are in a superstate called  ”building 
the unrecognized words list”   . 

 Each substate is contained in a separate compartment. The substates are synchronized and joined before 
exiting the composite state. When one substate has reached its final state, it waits for the other state to 
reach its final state, then the substates are joined back into one flow. Figure  9 - 19  shows a state diagram 
for Lexicon agent - based system.   

c09.indd   369c09.indd   369 7/31/08   3:08:32 PM7/31/08   3:08:32 PM



Chapter 9: Modeling Software Systems That Require Concurrency

370

 In Figure  9 - 19 , there is another composite state called    ”Filtering the Unrecognized Word List”   . 
The substates in this composite state are sequential; they are not executed concurrently. First, the 
misspelled words are removed, and then the word forms of recognized words are removed.    

no

[in Lexicon]

no

[more Words]
Retrieving
next Word

Searching
Lexicon

Updating
Word List

no

[more Words]

yes

[in Lexicon]

no

[in Lexicon]

no

[more Words]

no

[more Words]

yes

[in Lexicon]

...

Building the Unrecognized Word List

Building local list

Filtering the Unrecognized Word List

Removing
misspelling

Removing
word forms

Retrieving
next Word

Searching
Lexicon

Updating
Word List

Figure 9-19

c09.indd   370c09.indd   370 7/31/08   3:08:32 PM7/31/08   3:08:32 PM



Chapter 9: Modeling Software Systems That Require Concurrency

371

  Visualizing the Whole System 
 A system is composed of many elements, including subsystems organized into a collaboration to 
accomplish some purpose. It is an aggregation of constructs joined in some regular interaction. The 
diagraming techniques discussed in this chapter allow the developer to model a single system from 
different viewpoints, from different levels, and from different flows of control to assist in the design 
and development of the system. In this section, we discuss modeling and documenting the system as 
a whole, meaning that the major components or functional elements can be depicted at the highest 
level. The diagraming techniques discussed in this section are the ones used to model the architecture of 
the system.   

 Although this is the last section in this chapter, modeling and documenting the whole system would be 
the first level of designing and developing a system.   

 When modeling and documenting the architecture of a system, the view of the system is the highest 
level. Grady Booch, James Rumbaugh, and Ivar Jacobson define  architecture  as:   

 The set of significant decisions about the organization of a software system, the selection of the 
structural elements and their interfaces by which the system is composed, together with their 
behavior as specified in the collaboration among those elements, the composition of these structural 
and behavioral elements into progressively larger subsystems, and the architectural style that guides 
this organization  —  these elements and their interfaces, their collaborations, and their composition. 
[Booch, Rumbaugh, and Jacobson, 1999]   

 Modeling and documenting the architecture captures the system ’ s logical and physical elements along 
with the structure and behavior of the system at the highest level. 

 The architecture of the system is a description of the system from a distinct view that focuses on the 
structure and organization of the system from that aspect. The views are as follows: 

   Use case : Describes the behavior of the system presented to end users  

   Process : Describes the processes and threads used in the system ’ s mechanisms of concurrency 
and synchronization  

   Design : Describes the services and functions provided to the end user  

   Implementation : Describes the components used to create the physical system  

   Deployment : Describes the software components and the nodes on which they are executing in 
the delivered system    

 As you can see these views overlap and interact with each other. Use cases can be used in the design 
view. Processes can show up as components in the implementation view. Software components are used 
in both implementation and deployment views. When designing the architecture of the system, 
diagrams that reflect each of these views should be constructed. 

 A system can be decomposed into subsystems and modules. The subsystems or modules will be further 
broken down into components, nodes, classes, objects, and interfaces. In the UML, subsystems or 
modules used at the architectural level of documentation are called  packages . A package can be used to 
organize elements into a group that describes the general purpose of those elements. A package is 

❑

❑

❑

❑

❑

c09.indd   371c09.indd   371 7/31/08   3:08:32 PM7/31/08   3:08:32 PM



Chapter 9: Modeling Software Systems That Require Concurrency

372

represented as a rectangle with a tab on the upper - left corner. The package symbol contains the name of 
the package. The packages in the system can be connected by means of composition, aggregation, 
dependency, and association relationships. Stereotype indicators can be used to distinguish one type of 
package from another. Figure  9 - 20  shows the packages involved in the Lexicon system. The system 
package uses a   <  < system >  >   indicator to distinguish it from the  List Build  and  Filter  subsystems, which 
use the   <  < subsystem >  >   indicator. Because they are subsystems, they are related to the system by an 
aggregation relationship.    

Filter

<< subsystem >> << subsystem >>

<< system >>

Lexicon Agent-based
System

List Build

WordSearchAgent

<< thread >>

MorphologyAgent

<< thread >>

MorphologyAgent

<< thread >>Unrecognized
Words

Unrecognized
Words

DictionaryLexicon
DictionaryLexicon

Figure 9-20

  Summary 
 As we noted earlier, this chapter has covered some of the basic UML diagramming and notation 
techniques used to design and document the concurrent behavior in an application, but it is only an 
introduction to a very complex topic. We covered the following key points: 

  A model of a system is the body of information gathered for the purpose of studying the system. 
Documentation is a tool used in modeling a system. The UML, Unified Modeling Language, is a 
graphical notation used to design, visualize, model, and document the artifacts of a software 
system created by Grady Booch, James Rumbaugh, and Ivar Jacobson. It is the de facto standard 
for communicating and modeling object - oriented systems. The UML can be used to model 
concurrent from the structural and behavioral perspectives.  

❑

c09.indd   372c09.indd   372 7/31/08   3:08:33 PM7/31/08   3:08:33 PM



Chapter 9: Modeling Software Systems That Require Concurrency

373

  UML diagrams can be used to model to most basic units, the object, to the whole system. 
An object is the basic unit used in many UML diagrams. Dependency, inheritance, aggregation, 
and composition are some of the relationships that can exist between objects. Interaction 
diagrams are used to show the behavior of an object and identify concurrency in the system. 
Objects can interact with other objects by communicating and invoking methods. Collaborations 
diagrams depict the interactions between objects working together to perform some particular 
task. Sequence diagrams are used to represent the interactions between object in time sequence. 
Statecharts are used to depicts the actions of a single object over its lifetime.  

  When modeling the whole system, the basic unit is a package. A package can be used to 
represent systems and subsystems. Packages can have relationships with other packages such as 
composition or some type of association.    

 For a more comprehensive treatment on these techniques, we recommend the book  Designing Concurrent, 
Distributed , and  Real - Time Applications with UML  by Hassan Gomaa (Addison - Wesley, 2000). 

 In the next chapter, we turn our attention to one last area of concern for multicore programming: testing 
and logical fault tolerance.                                   

❑

❑

c09.indd   373c09.indd   373 7/31/08   3:08:33 PM7/31/08   3:08:33 PM



c09.indd   374c09.indd   374 7/31/08   3:08:33 PM7/31/08   3:08:33 PM



                                                                                                Testing and Logical Fault 
Tolerance for Parallel 

Programs           

   Those are places that can ’ t be accessed from a Chaos Gate. If you try to enter, you 
show up, see a warning indicator, and then you ’ re warped back to town.  

  —  Miu Kawasaki,  .hack// Another Birth    

 In Chapter  8 , we introduced the Predicate Breakdown Structure (PBS) of an application and the 
Parallel Application Design Layers (PADL) analysis model. These are top - down approaches 
to producing declarative architectures for applications that have a concurrency or parallel 
programming requirements. One of the ultimate goals of PBS and PADL is to establish a chain 
of possession or audit trail for the application concurrency requirements that lead from the 
solution model to threads or processes at the operating system level. In this chapter, we connect 
the PBS and PADL analysis to application software testing and exception handling. The PBS and 
PADL tell you what you should be testing for and what constitutes an error or an exception. You 
can use exception handling to provide a kind of logical fault - tolerance for declarative architectures. 
That is, if your application for unknown and uncontrollable reasons violates statements, assertions, 
rules, predicates, or constraints from the PBS, you want to throw an exception and gracefully exit 
because once the predicates have been violated, then the correctness, reliability, and meaning of 
the application has been compromised. 

 In this chapter, we also introduce the various types of testing that should be part of any Software 
Development Life Cycle (SDLC), especially ones where parallel programming will be deployed. 
We explain exception handling, the differences between error handling and exception handling, 
some of the issues for multithreading and parallel programming. We also briefly introduce the 
notion of model checking, the relevance of possible - world semantics to the declarative 
interpretation of parallel programming, and how they are used for testing and exception handling. 

c10.indd   375c10.indd   375 7/31/08   3:10:06 PM7/31/08   3:10:06 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

376

 Specifically, in this chapter we will cover the following: 

  Connecting the PBS and PADL analysis to application software testing and exception handling  

  Explaining the various types of testing that should be part of any SDLC  

  Defining exception handling and what the differences are between error handling and exception 
handling  

  Introducing to the notion of model checking and the relevance of possible - world semantics to 
the declarative interpretation of parallel programming     

  Can You Just Skip the Testing? 
 The goal of testing software is to make sure that the software does what you want and you want what is 
does. An application is often requested as a list of desired features. This list can be represented as a 
formal specification consisting of hundreds of pages or can be as simple as verbal request from an 
employer detailing a dozen or so requirements. Regardless of how the list of requirements for a piece of 
software is generated, the testing process must make sure that the software meets those requirements 
and that the requirements meet the user ’ s expectations. In many cases where parallel computers or 
multiprocessors are involved, the user ’ s expectations include performance speed up or a certain level of 
high performance throughput. The kinds of software errors increase when multithreading or 
multiprocessing is added in attempt to meet the user ’ s expectation. When the software does not perform 
according to the specifications, the software is in error, even if the specification violation is that the 
system performs too slowly. Software that requires parallel programming can be notoriously difficult to 
test and debug. Testing and debugging are among the top 10 challenges to parallel programming 
discussed in Chapter  3 . Some of the main issues that are unique to testing and debugging multithreaded 
or multiprocessing programs are: 

  Simulating minimum - to - maximum volume loads  

  Duplicating the exact flow of control during debugging  

  Duplicating race condition errors during debugging  

  Duplicating systemwide process and thread contention  

  Finding hidden unsafe thread functions  

  Testing and debugging nondeterministic algorithms  

  Proving there are no possibilities for deadlock or data race in the software  

  Simulating boundary and average workload mixes  

  Checking intermediate results when 100s or 1000s of threads and processes are in execution  

  Identifying the right number of threads or processes that will generate acceptable performance    

 The PADL and PBS analysis covered in Chapter  8  create the primary concurrency infrastructure and 
implementation models that testing phases validate and verify. Declarative and predicate - based 
approaches lend themselves to more automated forms of model checking and testing. Declarative 
designs lead to declarative implementations. Declarative implementations bring the testing complexity 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c10.indd   376c10.indd   376 7/31/08   3:10:07 PM7/31/08   3:10:07 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

377

of medium to large - scale parallel programs within reach of the software developer. Regardless of the 
complexity of the testing or debugging process, the goal is to deploy software that is error free and fault 
tolerant. The testing process must find each error and software defect and remove it.

  A Public Service Announcement on Programmer Ethics 
and Software Reliability 

 The code examples in this book contain little or no error and exception handling. This 
is because the code examples are meant for  exposition purposes only . We wanted to keep 
the code examples short, and we did not want to distract the reader from the concepts 
that were presented. However, real - world applications must be bulletproof. Because as 
software developers, we produce applications in the fields of medicine, manufacturing, 
homeland security, transportation, finance, education, scientific research, and all areas 
of business, we have an ethical and moral responsibility to produce software that is 
safe, correct, reliable, and fault tolerant. Anything less is malpractice.  

    Five Concurrency Challenges That Must Be 
Checked during Testing 

 Some of the concurrency challenges in Chapter  3  have to be checked for in the testing phase and 
accounted for in exception handlers. These challenges are: 

  1.   Incorrect/inadequate communication between two or more tasks that are executing in parallel  

  2.   Data corruption as a result of unsafe updating of data by two or more instructions or tasks  

  3.   Resource contention when there is a many - to - one ratio between tasks and a resource  

  4.   An unacceptable number of units that need to execute in parallel  

  5.   Missing/incomplete documentation for communicating a software design that contains 
multiprocessing and multithreading    

 In Chapter  7 , we discussed the mechanisms that are used to enable and synchronize communication and 
data or device access between concurrently executing threads or processes. For instance, mutexes and 
semaphores are used to control and prevent errors that would occur from Challenge 2 in the preceding 
list. Timed mutexes can be used to control and prevent errors that would result from the problems that 
could occur from Challenge 3 in the preceding list. Documentation in so many cases receives the least 
amount of attention and dedicated resources, but it is one of the most important components of a 
software deployment. As with everything else with parallel programming and multithreading, 
documentation is even more critical for these classes of application. The testing process should verify 
and validate that the design documentation and the postproduction documentation match! Table  10 - 1  
shows which mechanisms discussed in Chapter  7  can be used to prevent control and prevent some of the 
five challenges shown in the preceding list.   

c10.indd   377c10.indd   377 7/31/08   3:10:07 PM7/31/08   3:10:07 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

378

Table 10-1

Types of Semaphores Description

Mutex semaphores Mechanism used to implement mutual exclusion in a critical section 
of code.

Read-write locks Mechanism used to implement read-write access policy between 
tasks.

Condition variables Mechanism used to broadcast a signal between tasks that an event 
has taken place.

When a task locks an event mutex, it blocks until it receives the 
broadcast.

Multiple condition variable Same as an event mutex but includes multiple events or conditions.

 The mechanisms listed in Table  10 - 1  are low - level mechanisms. Fortunately, using features of higher -
 level component libraries, such as Threading Building Blocks (TBB) or the standard C++ concurrent 
programming library, can take some of tedium away during the testing process. These issues are meant 
to be dealt with in Layer 2 and 3 of the PADL analysis model discussed in Chapter  8 . 

 However, first, we need to establish some definitions. There are several words that are used in 
discussions on testing, error handling, and fault tolerance that are often used incorrectly or too loosely. 
Table  10 - 2  contains the basic definitions for the terms that we will use in this chapter.   

Table 10-2

Terms Definitions

Defect A flaw in any aspect of software or software requirements that contributes or 
may potentially contribute to the occurrence of one or more failures

Error An inappropriate decision made by a software engineer/programmer that 
leads to a defect in the software

Exception handling A mechanism for managing exceptions (unanticipated conditions during the 
execution of a program) that changes the normal flow of the execution of a 
program/software

Failure An unacceptable departure from the operation of a software element that 
occurs as a consequence of a fault

Fault A defect in the software due to human error that when executed under 
particular conditions causes failure

Fault tolerance A property that allows a piece of software to survive and recover from the 
software failures caused by faults (defects) introduced into the software as a 
result of human error

Reliability The ability of the software to perform a required function under specified 
condition for a stated period of time

c10.indd   378c10.indd   378 7/31/08   3:10:08 PM7/31/08   3:10:08 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

379

 Since some of the terms in Table  10 - 2  such as  error ,  failure , and  fault  are commonly used in many different 
ways, we have provided simple definitions for how they are used in this chapter. The extent to which 
software is able to minimize the effects of failure is a measure of its  fault tolerance . Achieving fault 
tolerant software is one of the primary goals of any software engineering effort. However, the distinction 
between fault - tolerant software and well - tested software is often misunderstood and blurred. Sometimes 
the responsibilities and activities of software verification, software validation, and exception handling 
are erroneously interchanged. To work toward the goal of using the C++ exception - handling mechanism 
to help achieve logical fault - tolerant software, you must first be clear where exception handling fits in 
the scheme of things.  

  Failure: The Result of Defects and Faults 
 Failures occur at runtime during software operation. Failures are the result of a defect in hardware, 
software, or human operation. If the software is not running, then it cannot encounter defects. Although 
this is an obvious statement it is important in understanding some of the distinctions between the 
responsibilities and activities of the testing phase versus those of the exception handler. Ideally defects in 
the software are removed during the testing stages. The same would be true for hardware. As for defects 
in human operation, we would like to remove those defects through training and experience, but this is 
easier said than done. To keep matters simple, we focus our discussion on defects in software. 

  Basic Testing Types 
 Table  10 - 3  describes the eight basic types of testing that should be performed on a piece of software prior 
to its being put into operation.   

Table 10-3

Types of Testing Description

Unit testing Requires that the software be tested one component or unit at a time. A unit 
might be a software module, a collection of modules, a function, a 
procedure, an object, an algorithm, or in some instances a computer 
program.

Stress testing Designed to push a component or a system up to and sometimes beyond its 
limits. Stress testing includes testing boundary conditions. When boundary 
conditions are tested, it helps in determining what happens at the 
boundaries the software component or system contains.

Integration testing Used to test the assembly of components. The components are combined 
into logical groups, and each group is tested as a unit. The group can be 
subjected to the same type of tests to which units are subjected. As each 
component is added to the assembly, the number of elements that must be 
tested grows combinatorially.

Regression testing Used to retest modules that have changed. Regression tests ensure that the 
changes to the component do not cause it to lose any functionality.

Table continued on following page

c10.indd   379c10.indd   379 7/31/08   3:10:08 PM7/31/08   3:10:08 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

380

 As you perform the type of tests in Table  10 - 3  on a piece of software, you find defects and remove them 
from the software. The more defects you find and remove during testing, the fewer defects your software 
encounters during runtime. Defects encountered during runtime lead to failures in the software. Failures 
in the software produce exceptional conditions for the software to operate under. The exceptional 
conditions require exception handlers. So, the balancing act is between: 

   Defect removal  during the  testing stages   

   Defect survival  during  exception handling      

  Defect Removal versus Defect Survival 
 Although you can choose to favor defect survival over defect removal, the problem is that exception -
 handling code can become so complex that it introduces defects into the software. So, instead of 
providing a mechanism to help achieve fault tolerance, the exception handler becomes a source of 
failure. Choosing defect survival over defect removal reduces the software ’ s chance to operate properly. 
Extensive and thorough testing removes defects, which reduces the strain on the exception handlers. It is 
also important to note that exception handlers do not occur as freestanding pieces of code. They occur 
within the context of the overall software architecture. The journey toward fault tolerance in our 
software begins by recognizing that: 

  No amount of exception handling can rescue a flawed or inappropriate software architecture.  

  The fault tolerance of a piece of software is directly related to the quality of its architecture.  

  The exception - handling architecture cannot replace the testing stages.    

 To make this discussion about exception handling clear and meaningful, it is important to understand 
that the exception - handling architecture occurs within the context of the software architecture as a 
whole. This means that exceptions are identified by the PBS and PADL analysis. The solution model has 
a PBS. When you have an unavoidable, uncontrollable, unexplainable deviation from the application 
architecture ’ s PBS, then you have an exception. So, the exception is defined by clearly articulated 

❑

❑

❑

❑

❑

Types of Testing Description

Operational testing Used to test the system in its full operation. This test puts the software 
component in a live environment to be tested under a complete system load. 
The tests that the component undergoes during unit, integration, and stress 
testing usually serve as operational tests as well. The operational tests also 
serve to determine how the component will behave in a totally foreign 
environment.

Specification testing Used as part of the software verification process. The component is audited 
against the original specification. This specification dictates what 
components are involved in a system and what the relationships are 
between those components.

Acceptance testing Used by the end user of the module, component, or system to determine 
performance. Acceptance testing is part of the software validation process.

c10.indd   380c10.indd   380 7/31/08   3:10:08 PM7/31/08   3:10:08 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

381

architectures. If the software architecture is inappropriate, incomplete, or poorly thought out, then any 
attempt at  after - the - fact  exception handling is highly questionable. Further, if shortcuts have been taken 
during the testing stages (that is, incomplete stress testing, incomplete integration testing, incomplete 
glass box testing, and so on), then the exception - handling code has to be perpetually added to and 
becomes increasingly complex, ultimately detracting from the software ’ s fault tolerance and the 
declarative architecture of the application. On the other hand, if the software architecture is sound and 
the exception - handling architecture is compatible and consistent with the PBS and Layers 3, 4, and 5 
of the PADL analysis, then a high degree of fault tolerance can be achieved for parallel programs. If you 
approach the goal of  context failure resilience  with an understanding of the roles that software application 
architecture and testing play, then it is obvious that you need to choose defect removal over defect 
survival. Defect removal takes place during testing.   

  How Do You Approach Defect Removal for 
Parallel Programs? 

 First, we should point out that testing should accompany every major activity in the SDLC from 
requirements gathering activities to software maintenance activities. However, programs that involve 
multithreading or multiprocessing require even more effort during the testing phase. So, you make use 
of PADL analysis and PBS breakdown during you test plan. You break up the testing goals of parallel 
programs into answering three fundamental questions: 

  1.   Do the design models and PBS correctly and completely represent the solution model (assuming 
that the solution model solves the original problem)?  

  2.   Does the implementation model map correctly to the design models (Layer 4 and 5 from PADL) 
and the PBS?  

  3.   Have all of the challenges to concurrency in the implementation model been addressed?    

 Traditionally, most of the effort in testing parallel programs goes into answering the third question. This 
is what typically happens in an imperative bottom - up approach to parallel programming. However, in a 
declarative approach you answer Question 1 first. This is the most important test. If this test fails, there is 
no reason to perform any further testing. We have presented simple versions of these models in Chapter 
 8 , but in release code these models would contain a considerable amount of detail. If the design models 
are sufficiently detailed and accurate, the PBS is complete, and they both accurately map to the original 
solution problem, then you are in good shape. Opportunities for scalability or evolution of a software 
application are determined by its application architecture and concurrency infrastructure. We test the 
quality of both during the process of answering the first question. If the answer to the second question is 
yes, then you have a solid application. So, answering Question 3, which has typically been thought of as 
the most important, becomes secondary to answering Question 1 and Question 2. Standard software 
engineering testing techniques are used to answer these questions. We simply use PADL and PBS to 
formulate the three fundamental questions. Testing will verify that our application meets PADL and PBS. 

 To get some idea how this works, you can take a look at the flow of process that precedes the standard 
testing phases. 

c10.indd   381c10.indd   381 7/31/08   3:10:08 PM7/31/08   3:10:08 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

382

  The Problem Statement 
 Recall from Chapter  8  the refinement of the game scenario: My trusted assistant has handed me a six -
 character code. The code can contain any character more than once. However, the code can only contain 
any characters from the numbers 0 – 9, or characters a – z. Your job is to guess what code the trusted 
assistant has handed me. In the game the buzzer is set to go off after 2 minutes. If you guess what I ’ m 
thinking in 2 minutes, you win. If my trusted assistant determines that you have made more than  N  
incorrect guesses within a 15 - second interval, my assistant hands me a new code guaranteed to be 
among the guesses that you have already made.  

  A Simple Strategy and Rough - Cut Solution Model 
 From the problem statement you devised the following simple strategy: You just happened to have all 
4,496,388 possible codes to choose from in a file. You could simply perform an exhaustive search on the 
file presenting each code as a guess. But since you are given a time constraint of 2 minutes, you aren ’ t 
sure if you ’ ll have enough time. So, your strategy is to find a way to search through multiple portions of 
the file simultaneously. You decide to divide the original file into eight and have it searched concurrently. 
Therefore, you should be able to guess correctly in the time that it takes to search one - eighth of the file. 
But you also make one other provision. If you are able to search all 8 files, you still did not guess 
correctly, and you are not out of time, you will divide the files into 64 and try again. If you fail and still 
have time, you will divide the file into 128, try again, and so on.  

  A Revised Solution Model Using Layer 5 from PADL 
 Since you have determined that parallelism is useful in your solution model, you now include PADL 
analysis as part of your SDLC. Layer 5 in PADL involves identifying an appropriate application 
architecture for the problem and solution model. On first take, it appears that a multiagent architecture 
best fits the solution model. So, you refine the solution model in the context of a multiagent application 
architecture. 

  Revised Agent Model 
 You can easily see from the statement of the problem that you are initially dealing with three agents. 
If you recast the game in terms of agents you have: Agent A gives the code to Agent B. Agent C tries to 
guess Agent B ’ s code. If Agent C comes up with too many guesses in a 15 - second interval, Agent A gives 
Agent B a new code that is guaranteed to be a code that Agent C has already presented. If Agent C is 
able to go through all of the possibilities and is still not declared the winner and if Agent C has more 
time left, Agent C will make the same guesses only faster. Agent C realizes that generating enough 
guesses to guarantee success within the given time limit requires help. So, Agent C recruits a team of 
agents to help come up with guesses. For each pass through the total possibilities Agent C recruits a 
bigger team of agents to help with the guesses.  

  The Concurrency Model for the Agents 
 From the revised agent model, you have identified that the concurrency models that you need to use are 
the boss - worker model, peer - to - peer, Single Program Multiple Data (SPMD), Single Instruction Multiple 
Data (SIMD), and Exclusive Read Exclusive Write (EREW). You use SPMD/SIMD here because the 
agents use the same search techniques over different data sets. EREW covers the agents ’  communication 
with the boss. The boss - worker model covers the relationship between guesser agent and its helpers. The 
peer - to - peer model covers the relationship between the code owner and the trusted assistant.   

c10.indd   382c10.indd   382 7/31/08   3:10:09 PM7/31/08   3:10:09 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

383

  The PBS of the Agent Solution Model   
   Breakdown 1: You ’ ve won the game if your guess is correct and in time.  

   Breakdown 2: Your guess is correct if it consists of a six - character code that contains only 
combinations of the characters (a – z, 0 – 9), considering that duplication is allowed and that 
code is the one my agent has handed me.  

   Breakdown 3: Your guess is in time if it is correct and it occurs within 2 minutes.  

   Breakdown 4: A brute force search through the codes will be successful if there are enough 
agents searching.  

   Breakdown 5:  N  agents are enough find the correct code from a sample of 4 million codes in 
2 minutes.  

   Breakdown 6: 4 times  N  agents are required to find the correct code from a sample of 4 million 
codes in 2 minutes if the code is being changed every 15 seconds.    

  Declarative Implementation of the PBS 
 Listing  10 - 1  follows the declarative semantics of the PBS.

   Listing 10 - 1   

// Listing 10-1   A declarative implementation of the guess_it program.
              
 1  #include “posix_process.h”
 2  #include “posix_queue.h”
 3  #include “valid_code.h”
 4
 5
 6  char **av;
 7  char **env;
 8
 9
10  int main(int argc,char *argv[],char *envp[])
11  {
12
13     valid_code  ValidCode;
14     ValidCode.determination(“ofind_code”);
15     cout  <  <   (ValidCode() ? “you win” : “you lose)”;
16  }   

 So, you have a declaration of a  ValidCode  predicate in Line 13 and 14. This predicate is used to 
represent the statement: 

This is the code the trusted agent handed you.  

 On Line 14 you test this statement by invoking the predicate  ValidCode() . The  ValidCode()  predicate 
spawns four processes which in turn create two threads each. So, in fact the  ValidCode  predicate is 
implemented using parallel programming. However, its implementation is encapsulated. Listing  10 - 2  
shows the declaration of the  valid_code  predicate class.

c10.indd   383c10.indd   383 7/31/08   3:10:09 PM7/31/08   3:10:09 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

384

   Listing 10 - 2   

//Listing 10-2  Declaration of the valid_code predicate class.
              
              
 1  #ifndef __VALID_CODE_H
 2  #define __VALID_CODE_H
 3  using namespace std;
 4
 5  #include  < string > 
 6  class valid_code{
 7  private:
 8     string Code;
 9     float  TimeFrame;
10     string Determination;
11     bool InTime;
12  public:
13     bool operator()(void);
14     void determination(string X);
15  };
16
17  #endif
                 

 In C++ predicates are classes that have an  operator()  method that returns a boolean value. You use the 
C++ predicate to approximate the notion of predicates from the PBS. Since a predicate is a C++ class, it 
can be used in conjunction with containers and algorithms. Listing  10 - 3  shows the definition of the 
predicate class.

   Listing 10 - 3   

// Listing 10-3 Definition of the valid_code predicate.
              

  1  #include “valid_code.h” 

 2  #include “posix_process.h”
 3  #include “posix_queue.h”
 4
 5  extern char **av;
 6  extern char **env;
 7
 8
 9  bool valid_code::operator()(void)
10  {
11     int Status;
12     int N;
13     string Result;
14     posix_process Child[4];
15     for(N = 0; N  <  2; N++)
16     {
17        Child[N].binary(Determination);
18        Child[N].arguments(av);
19        Child[N].environment(env);
20        Child[N].run();
21        Child[N].pwait(Status);
22     }

c10.indd   384c10.indd   384 7/31/08   3:10:09 PM7/31/08   3:10:09 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

385

23     posix_queue PosixQueue(“queue_name”);
24     PosixQueue.receive(Result);
25     if((Result == Code)  &  &  InTime){
26        return(true);
27     }
28     return(false);
29  }
30
31
32  void valid_code::determination(string X)
33  {
34     Determination = X;
35  }
                 

 Here is Program Profile 10 - 1 for Listings  10 - 1 ,  10 - 2 ,  10 - 3 , and  10 - 4 , which appears later in the chapter.  

  Program Profile 10 - 1   

Program Name: 
  pguess_it  (Listing  10 - 1 )

    Description: 
 This program is a  “ guess it ”  game. You win the game if your guess is correct in 2 minutes. Your guess is 
correct if it consists of a six - character code that contains only combinations of the characters a – z, 0 – 9, 
considering duplication is allowed. 

 The declaration of a  ValidCode  predicate is used to represent the statement: 

This is the code the trusted agent handed you.  

 This statement is tested by invoking the predicate  ValidCode() . The  ValidCode() predicate spawns 
four processes, which in turn create two threads each. Its implementation is encapsulated.    

Libraries Required: 
  rt

     Additional Source Files Needed: 
  pguess_it.cc  (Listing  10 - 1 ),  posix_process.cc  (Listing  10 - 4 ),  valid_code.cc  (Listing  10 - 3 ),  
posix_queue.cc    

 Please note that because of its length  posix_queue.cc  is not listed in its entirety in the book. 
However, you can download the full  posix_queue.cc , along with the rest of the sample code from the 
book, from  www.wrox.com .      

User - Defined Headers Required: 
  posix_process.h  (Listing  5 - 3 ),  valid_code.h  (Listing  10 - 2 ),  posix_queue.h  (Listing  7 - 3 ).    

Compile and Link Instructions:   
c++ -o pguess_it pguess_it.cc valid_code.cc posix_process.cc posix_queue.cc -lrt

c10.indd   385c10.indd   385 7/31/08   3:10:09 PM7/31/08   3:10:09 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

386

     Test Environment: 
 Linux Kernel 2.6 

 Solaris 10, gcc 3.4.3 and 3.4.6    

Processors: 
 Multicore Opteron, UltraSparc T1, Cell Processor    

Notes: 
 None   

  How Do You Know This Code Works? 
 You use standard software engineering testing techniques but within the context of PADL, PBS and those 
three fundamental questions mentioned earlier in the chapter. To answer this question, you see how far you 
can get through standard software engineering tests with the PBS as the basic measuring stick of success.    

  What Are the Standard Software 
Engineering Tests? 

 As we have previously noted, there are many types of software tests: tests done during the software 
design as well as those done during implementation phases, installation and operational tests, usability 
tests, and even acceptance tests done that determine whether a customer is satisfied with a delivered 
system. Because of the complexity of today ’ s software systems, and their economic and social value, 
software testing has become a highly specialized field. The Institute of Electrical and Electronics 
Engineers (IEEE) publishes standards for the complete set of testing activities. IEEE, a nonprofit 
organization, is the world ’ s leading professional association for the advancement of technology. Two 
important testing standards documents published by the IEEE are: 

  IEEE Std 1012, which provides guidelines for software verification and validation  

  IEEE Std 1008, which covers unit testing      

 Every software development group should have these documents readily available. If you do not have 
them, they can be downloaded from  www.standards.ieee.org .   

 This chapter provides a brief overview of some of the issues covered in Std 1008 and Std 1012. Because 
testing is one of the fundamental activities in any SDLC, Std 1008 and 1012 should be part of every SDLC. 
If they are adhered to, the guidelines and recommendations presented in these standards considerably 
enhance the quality of the software that is ultimately delivered to the user. The requirements and the 
specifications you can glean from Std 1008 and Std 1012 help you answer two questions: 

  1.   Am I building the correct software?  

  2.   Am I building the software correctly?    

 The answers to these two questions deal with issues of software verification and validation. 

❑

❑

c10.indd   386c10.indd   386 7/31/08   3:10:09 PM7/31/08   3:10:09 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

387

  Software Verification and Validation 
 Software verification and validation perform are concerned with removing defects during each of the 
types of testing mentioned in Table  10 - 3 . When you engage in software validation, you are answering the 
first question whereas verification answers the second question. Validation is an audit of the software 
features against the software specification. According to IEEE Std 1012:   

 Software verification and validation (V & V) is a technical discipline of systems engineering. The 
purpose of software V & V is to help the development organization build quality into the software 
during the software life cycle. The software V & V processes determine if development products of a 
given activity conform to the requirements of that activity, and if the software satisfies the intended 
use and user needs. The determination includes assessment, analysis, evaluation, review, inspection, 
and testing of software products and processes. The software V & V is performed in parallel with the 
software development, not at the conclusion of the software development.   

 During the requirements and analysis activities of the SDLC, software specifications are generated. For 
the purpose of the multicore application design that we are discussing in this book, the specifications 
come from the design models and implementation models of the PADL analysis and the PBS. When you 
perform software verification, you are examining whether the software meets these specifications. When 
you engage in the process of determining whether the software actually performs the work the user 
wants, you are answering the second question. Verification is implementing the  software right  and 
validation is implementing the  right software . Much of the software - testing process can be described as a 
verification or validation process. Ultimately, all of the types of testing in Table  10 - 3  have to be 
performed during the SDLC. 

 In addition to the seven types of software testing in Table  10 - 3 , there are also six important types of 
errors that you must keep in mind that relate to parallel programming. Table  10 - 4  lists the common 
parallel programming errors and their descriptions.    

Table 10-4

Common Parallel 
Programming Errors Description

Deadlock A task is waiting for an event that will not occur

Priority inversion Occurs when a lower-priority task blocks the execution of a higher-priority 
task when synchronization variables are being used or when they are 
competing for resources

Performance 
degradation

Occurs when a system’s performance lowers or degrades in terms of 
responsiveness, execution time, calculation of results, and so on

Indefinite 
postponement

Occurs when a system indefinitely delays the scheduling of tasks while 
other tasks receive the attention and the allocation of resources

Mutex exhaustion Occurs when a system has reached its maximum number of mutexes that 
can be created

Thread exhaustion Occurs when a system has reached its maximum number of threads that 
can be allocated

c10.indd   387c10.indd   387 7/31/08   3:10:10 PM7/31/08   3:10:10 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

388

  The Code Doesn ’ t Work  —  Now What? 
 For example, after performing the most basic unit tests, say you discover that the program from Listing 
 10 - 1  fails the unit tests. The program doesn ’ t work. What does it mean for the program not work? This 
program fails because it does not meet the specifications of the PBS. This means that the program causes 
one or more of the statements in the PBS to be false. Since the PBS is meant to capture the meaning of the 
concurrency infrastructure, you know that the parallelism in this program will fail at some point because 
it does not correctly implement the assertions, statements, and predicates in the PBS. In particular PBS #6 
states: 

 Breakdown 6: 4 times  N  agents are required to find the correct code from a sample of 4 million codes in 2 
minutes if the code is being changed every 15 seconds. 

 Recall the user - defined predicate  valid_code()  referenced on Lines 13 – 15 in Listing  10 - 1 . It states 
whether the search was successful or not. But in order for the search to be successful all of the assertions 
in the PBS must be maintained. If you look a little closer at the definition of the predicate  operator()  
for  valid_code  in Lines 9 – 30 in Listing  10 - 3 , you can see that it spawns four  posix_process es. Listing 
 10 - 4  shows the definition for the user - defined  process_interface  class.

   Listing 10 - 4   

// Listing 10-4   Definitions for user-defined posix_process interface class.

 1  #include “posix_process.h”
 2  #include  < sys/wait.h > 
 3
 4
 5  posix_process::posix_process(string Path,char **av,char **env)
 6  {
 7
 8     argv = av;
 9     envp = env;
10     ProgramPath = Path;
11     posix_spawnattr_init( & SpawnAttr);
12     posix_spawn_file_actions_init( & FileActions);
13
14
15  }
16
17  posix_process::posix_process(string Path,char **av,char **env,
                                 posix_spawnattr_t  X,
                                 posix_spawn_file_actions_t Y)
18  {
19     argv = av;
20     envp = env;
21     ProgramPath = Path;
22     SpawnAttr = X;
23     FileActions = Y;
24     posix_spawnattr_init( & SpawnAttr);
25     posix_spawn_file_actions_init( & FileActions);
26
27
28
29  }

c10.indd   388c10.indd   388 7/31/08   3:10:10 PM7/31/08   3:10:10 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

389

30
31  void posix_process::run(void)
32  {
33
34     posix_spawn( & Pid,ProgramPath.c_str(), & FileActions,
                    & SpawnAttr,argv,envp);
35
36
37  }
38
39  void posix_process::pwait(int  & X)
40  {
41
42     wait( & X);
43  }   

 The class in Listing  10 - 4  is an interface class that adapts the interface for the POSIX API  
posix_spawn() . The  posix_process  class is used to spawn two copies of  ofind_code .  ofind_code  
in turn spawns two threads. The problem is that you end up with only eight consecutive agents working 
(four processes * two threads). So, the PBS #6 requirement that you quadruple the number of agents if 
the code is being changed is not addressed by the  valid_code  predicate. In this case, you have a simple 
mapping of one agent per thread. You should not get past unit tests if the predicates in the application 
are not consistent with the PBS. 

 This matching of the PBS with C++ predicates is part of the fundamental shift to a declarative style of 
parallel programming. This is a subtle but very powerful idea. You apply software verification and 
validation (V & V) to the mapping of the PBS, and the C++ predicates extend the declarative style of 
parallel programming to the V & V. Some of the other important objectives of V & V are: 

  Facilitate early detection and correction of software errors  

  Enhance management insight into process and product risk  

  Support the software life cycle processes to ensure compliance with program performance, 
schedule, and budget requirements    

 If you audit the predicates against the PBS, you can find the concurrency problems early and before the 
software is deployed. In fact, one of the primary objectives of PADL and PBS is to deal with the full 
complexity of the concurrency requirements prior to writing any code. 

 One of the consequences of the PADL and PBS is that they support declarative models of testing such 
as model checking and possible - worlds analysis (which are briefly discussed later in the chapter). 
These models can be deployed early in the SDLC. The complexity and integrity of multithreaded and 
multiprocessing programs have to be managed at the beginning of the software development effort. 
The testing process must mirror this. Consider the following from IEEE Std 1012:   

 Planning the V & V process, software integrity levels are generally assigned early in the development 
process, preferably during the system requirements, analysis, and architecture design activities. 
The software integrity level can be assigned to software requirements, functions, group of functions 
or software components and subsystems. The assigned software integrity levels may vary as the 
software evolves. Design, coding, procedural, and technology implementation features selected by 
the development organization can raise or lower the software criticality and the associated software 
integrity levels assigned to the software.   

❑

❑

❑

c10.indd   389c10.indd   389 7/31/08   3:10:10 PM7/31/08   3:10:10 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

390

 The V & V at the unit test level is surprisingly effective (when used), as the example of the  ValidCode()  
predicate failing at the unit test level demonstrates. The unit testing process is composed of three phases 
that are partitioned into a total of eight basic activities: 

  1.   Perform the test planning  

  a.   Plan the general approach, resources, and schedule  

  b.   Determine features to be tested  

  c.   Refine the general plan    

  2.   Acquire the test set  

  a.   Design the set of tests  

  b.   Implement the refined plan and design    

  3.   Measure the test unit  

  a.   Execute the test procedures  

  b.   Check for termination  

  c.   Evaluate the test effort and unit      

 We suggest that you start to integrate these basic activities at end of the Layer 4 analysis from the PADL 
model and after the PBS has been done. Other common types of errors that should be located in the 
testing phase of your Layer 4 analysis are shown in Table  10 - 5 .   

Table 10-5

Categories of Errors Description

User interface errors Errors in the design, functionality, or performance of the user interface. 
The user interface may fail in the areas of communication, command 
structure, or output. The program may fail to do a task that is expected 
by the user or it performs the task awkwardly.

Boundary related errors A boundary of a program is anything that makes the program change 
its behavior. Errors may be made by incorrectly describing the 
boundary conditions or not detecting the limits of the program.

Calculation errors Errors that occur during calculations. These include errors of 
misinterpretation of formulas or lost precision. This also includes 
computational errors due to the use of incorrect algorithms.

Initial and later states Errors that occur during an initial use of a program. They occur each 
time the program is restarted.

Race conditions Errors that occur when a thread or process executes before the expected 
thread or process.

Control flow errors Errors that occur when the program performs the wrong thing next.

c10.indd   390c10.indd   390 7/31/08   3:10:10 PM7/31/08   3:10:10 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

391

Categories of Errors Description

Error handling Errors made when dealing with errors. The program may fail in 
detecting or anticipating possible errors and fail in correcting those 
errors reasonably.

Errors in handling 
or interpreting data

Errors that occur when data is misinterpreted, corrupted, or lost when 
passed back and forth between modules, programs, threads or 
processes.

Load conditions Errors that occur when the program is overloaded. The program may 
misbehave when performing a lot of work over long periods of time, or 
a lot of work all at once. The program may fail when it runs out of 
memory, or exhausts or shares its resources with other programs or 
routines. How well does the program meet its limits, and how badly 
does the program perform when its limits are surpassed?

Hardware Errors that occur when the program does not recognize or recover from 
hardware failure. The program may fail to recognize error codes that 
are returned from a device or it may try to access a device that is not 
there or is already in use. The program may also send bad data to the 
device.

Source and version control Errors that occur when the incorrect version of the program is used. An 
old version of a subroutine that contains errors may be linked to the 
latest version of the program.

Documentation Errors that occur when bad documentation is being used.

Testing errors Errors that occur during the testing of the software.

 Using the declarative architecture of the application in conjunction with mapping the PBS and PADL 
early on in the unit testing phase will deal with the most significant challenges of a parallel 
programming development effort. This technique is then supported by the application using C++ 
exception handling and what we call  logical fault tolerance .  

  What Is Logical Fault Tolerance? 
 You can use the C++ exception handling facilities and the exception classes to enforce the semantics of 
the PADL and PBS. By extending the exception and error classes through inheritance you aid the testing 
process in catching non sequiturs that occur in the C++ predicate implementation of the application PBS. 
We call this process adding logical fault tolerance to an application. 

 How the basics of the C++ exception - handling facility are used has at least two important implications 
for the software architecture: 

  The flow of control in the software architecture can be altered by the throw mechanism.  

  The exception classes used introduce new types and each type has its own semantics.    

❑

❑

c10.indd   391c10.indd   391 7/31/08   3:10:10 PM7/31/08   3:10:10 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

392

 It is the transfer of control from the problem area to someplace that knows how to bring the system into 
a consistent state and knows the semantics of the exception thrown that enables you to start to reach for 
the goal of logical fault tolerance. The semantics of the exception thrown describes what the exceptional 
condition is and suggests what should be done. The transfer of control takes you to code that 
implements your exception strategy. The exception strategy is designed to make the software resilient to 
defects and system failures. In C++, the  catch()  mechanism either implements the exception strategy 
directly or creates objects and calls functions that implement the exception strategy: 

catch(some_exception){
              
    //Execute exceptions strategy
              
}
                

  The Exception Handler 
 The  catch{}  block is called the exception handler. A C++ program can contain multiple exception 
handlers. Each exception handler is associated with one or more types (depending on the class hierarchy 
of the exception). Three of the basic functions of an exception handler are: 

  Register the type of exception(s) that it can handle  

  Record or in some way log what exception has occurred (sometimes this requires notification)  

  Execute an appropriate exception - handling strategy    

 Exception - handling strategies come in many shapes and sizes. The primary purpose of the exception -
 handling strategy in the termination model is to bring the software back to a consistent state so that the 
software can continue to function at some acceptable level. Table  10 - 6  contains some of the commonly 
used exception strategies.   

❑

❑

❑

Table 10-6

Exception Strategies Description

Resource reallocation 
and deallocation

Attempt to:

• Reallocate memory
• Close files
• Release mutexes
• Close semaphores
• Release memory
• Find files
• Shut down processes
• Change security of the offending process

Transaction or data 
rollback

Undoing steps of an incomplete transaction, rolling the data back to a check 
point where the data was valid

c10.indd   392c10.indd   392 7/31/08   3:10:11 PM7/31/08   3:10:11 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

393

Exception Strategies Description

Operation retry Retrying an operation:

• With the original resources
• With alternate resources
• After a certain interval has passed
• After additional conditions have been met

Redundancy and 
failover

Turning over processing to other threads or that are operating in parallel 
with the current process

Notification for 
outside assistance

Requesting assistance from other software agents, human users, or other 
systems

 The exception - handling strategy(ies) that are used will greatly impact the software architecture. This 
means that the exception - handling strategy has to be included in the software design phase. In the 
approach toward declarative interpretations of parallel programming, you are moving toward logical 
models. Ultimately, you want nonlogical models or irrational program behavior to be considered an 
exception. So the exception - handling strategy flows from Layer 5 of the PADL and the PBS. It is a 
fundamental part of the software architecture. If the overall software architecture is brittle, the exception -
 handling strategy is doomed. 

 The semantics of the exception thrown is tied to the exception strategy implemented. Defining and 
understanding the semantics of an exception in the context of the software architecture is as important as 
deciding where to transfer control during the exception - handling process. The C++ standard defines 
several built - in exception classes with their own semantics. Figure  10 - 1  shows the class relationship 
diagram for the C++ exception classes.   

logic_error

invalid_
argumentlength_errordomain_error out_of_range

runtime_error

underflow_error

overflow_error

range_error

exception

Figure 10-1

 These exception classes can be extended through inheritance. C++ also supports user - defined exception 
classes. 

c10.indd   393c10.indd   393 7/31/08   3:10:11 PM7/31/08   3:10:11 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

394

 The standard C++ class library has nine exception classes divided into two basic groups: the runtime 
error group and the logic error group. The runtime error group represents errors that are somewhat 
difficult to prevent, whereas the logic error group represents errors that are theoretically preventable.   

The runtime_error Classes 
 The  runtime_error  family of classes is derived from the  exception  class. Three classes are derived 
from  runtime_error :  range_error ,  overflow_error , and  underflow_error . The  runtime_error  
classes report internal computation or arithmetic errors. The  runtime_error  classes get their primary 
functionality from the exception class ancestor. The  what()  method, assignment  operator=() , and the 
constructors for the exception - handling class provide the capability of the  runtime_error  classes. The 
 runtime_error  classes provide an exception framework and architectural blueprint to build upon.    

The logic_error Classes 
 The  logic_error  family of classes is derived from the  exception  class. In fact, most of the 
functionality of the  logic_error  family of classes is also inherited from the  exception  class. The 
 exception  class contains the  what()  method, used to report to the user a description for the error being 
thrown. Each class in the  logic_error  family contains a constructor used to tailor a message specific to 
that class. 

 Like the  runtime_error  classes, these classes are really designed to be specialized. Unless the user adds 
some functionality to these classes, they cannot do anything other than report the error and the type. So, 
the nine generic exception classes provide no corrective action or error handling. Take a look at how the 
basic exception classes work with no specialization. Example  10 - 1  shows how an  exception  object and 
a  logic_error  object can be thrown.

   Example 10 - 1   

// Example 10-1  Throwing an exception object and a logic_error object.
              
try{
    exception X;
    throw(X);
}
              
catch(const exception  & X)
{
    cout  <  <  X.what()  <  <  endl;
}
              
try{
    logic_error Logic(“Logic Mistake”);
    throw(Logic);
}
              
catch(const exception  & X)
{
    cout  <  <  X.what()  <  <  endl;
}   

c10.indd   394c10.indd   394 7/31/08   3:10:11 PM7/31/08   3:10:11 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

395

 The basic exception classes have only construction, destruction, assignment, copy, and simple reporting 
capabilities. They do not contain the capability to correct a fault that has occurred. The error message 
returned by the  what()  method of the exception classes will be determined by the string passed to 
the constructor for the  logic_error  object. In Example  10 - 1 , the string  “  Logic Mistake ”   passed to the 
constructor is returned by the  what()  message in the  catch block() .    

Deriving New Exception Classes 
 The exception classes can be used as is, that is, they can be used simply to report an error message 
describing the error that has occurred. However, this is virtually useless as an exception - handling 
technique. Simply knowing what the exception was doesn ’ t do much to increase software reliability. The 
real value of the exception class hierarchy is the architectural road map that it provides for the designer 
and the developer. The exception classes provided basic error types that the developer can specialize. 
Many of the exceptions that occur in a runtime environment can be placed into either the  logic_error  
or  runtime_error  family of classes. To see how to specialize an  exception  class, you can consider the 
 runtime_error  class as an example. As already noted, the  runtime_error  class is a descendant of 
the  exception  class. You can specialize the  runtime_error  class through inheritance. For example: 

class  concurrent_ file_access_exception : public runtime_error{
protected:
   //...
   int ErrorNumber;
   string DetailedExplanation;
   string FileName;
   //...
public:
   virtual int takeCorrectiveAction(void)
   string detailedExplanation(void);
   //...
};  

 Here, the  concurrent_file_access_exception  inherits  runtime_error  and specializes it by adding 
a number of data members and member functions. Specifically, the  takeCorrectiveAction()  method 
is added. This method can be used to help the exception handler perform its recovery and correction 
work. This  file_access_exception  object knows how to identify deadlock and how to break 
deadlock. Recall that deadlock is one of the major challenges for parallel programming. It also has 
specialized logic for dealing with viruses that can damage files. It also has specialized knowledge for 
dealing with file transfers that get unexpectedly interrupted. Each of these situations can introduce 
runtime exceptions. You can use the  concurrent_file_access_exception  objects with the  throw , 
 catch , and  try  facilities of C++. For example: 

try{
    //...
    fileProcessingOperation();
    //...
}
              
catch(concurrent_file_access_exception   & E)
{
    cerr  <  <  E.what()  <  <  endl;
    cerr  <  <  E.detailedExplanation()  <  <  endl;

(continued)

c10.indd   395c10.indd   395 7/31/08   3:10:11 PM7/31/08   3:10:11 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

396

    E.takeCorrectiveAction();
    // Handler Take Additional Corrective Action
    //...
}
              

     Protecting the Exception Classes from Exceptions 
 The exception objects are thrown when some software component encounters a software or hardware 
anomaly. But note, the exception objects themselves do not throw exceptions. This has many 
implications. Special care should be taken when designing handlers in multithreaded or multiprocessing 
environments. If the processing of the exception is complex enough to potentially cause another 
exception to be generated, then the exception processing should be redesigned and simplified where 
possible. The exception - handling mechanism is unnecessarily complicated when exception - handling 
code can generate exceptions. Therefore, most of the methods in the exception classes contain the empty 
 throw()  specification. 

// Class declaration for exception class
              
class exception {
public:
   exception() throw() {}
   exception(const exception & ) throw() {}
   exception &  operator=(const exception & ) throw() {return *this;}
   virtual ~exception() throw() {}
   virtual const char* what() const throw();
};  

 Note the  throw()  declarations with empty arguments. The empty argument shows that the method 
cannot throw an exception. If the method attempts to throw an exception, a compile - time error message 
is generated. If the base class cannot throw an exception, then the corresponding method in any derived 
class cannot throw an exception.   

  A Simple Strategy for Implementing Logical Fault Tolerance 
 In its simplest form, the implementation model creates a C++ predicate for each of the predicates in the PBS 
structure of the application. At that time, a predicate exception class (possibly derived from  logic_error ) 
is created for each predicate. If for some unknown and uncontrollable reason assumptions, assertions, or 
propositions concerning a predicate are contradicted, then that predicate ’ s exception class is thrown. In 
most cases this means that the application will exit gracefully. It should exit at this point because once one 
or more of the predicates from the PBS are contradicted; therefore, the application doesn ’ t have the same 
meaning. The integrity of the concurrency infrastructure has been violated. The predicate exception class 
acts as a logic - based invariant that guards the consistency of the PBS for the application. Obviously, the 
predicate exception handler will know what to do when its exception is thrown. 

 For example, if the  guess_it  program determines that it does not have enough agents to generate 
enough guesses in time to win, should it throw a  valid_code  exception? Or is the lack of enough agents 
a normal software error, which, therefore, should be taken care of by error handling as opposed to 
exception handling? The answer is a lack of enough agents in this case is not a normal software error 
because the fundamental operation of the software is to acquire enough agents to guess the code in time. 
If it cannot acquire enough agents, then it will fail its mission. The unit testing process should expose 

(continued)

c10.indd   396c10.indd   396 7/31/08   3:10:12 PM7/31/08   3:10:12 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

397

this, and the predicate exception handlers are used to aid the quality of unit testing. So, logical fault 
tolerance serves two important roles in this example: 

  1.   It brings the application to a graceful exit (or other acceptable state). For multiagent and 
blackboard architectures this includes:  

❑   Dismissing or retiring agents and knowledge sources  

❑   Returning blackboard resources and communication lines  

❑   Releasing reservations on any shared data, synchronization, or communication 
components    

  2.   It prevents the application from carrying on in an irrational state and thereby prevents the 
application from committing further fallacies.    

 In particular, the second role logical fault tolerance plays here helps to build and enforce a declarative -
 based architecture.  

  Testing and Logical Fault Tolerance 
 Typically, the exception - handling mechanism is used to keep the program from simply crashing. The 
C++ exception - handling mechanism supports the termination model. A graceful exit is what is called for 
in the termination model. However, you usually terminate an application when something catastrophic 
has happened. Although it may be possible for a multithreaded or multiprocessing application to 
continue if the PBS is not strictly adhered to, you should classify any departure from the PBS as 
catastrophic because the logical consequence (or the meaning) of the application is the sum of is its 
predicates, propositions, axioms, and statements. These predicates form the application ’ s logical 
argument. If one of the assertions or predicates turns out to be false, then the application is irrational at 
that point. You want to discover any irrational behavior during the testing phase, and you use logical 
fault tolerance semantics to help you do this. This use of C++ predicates in conjunction with predicate 
exceptions is an important part of achieving a declarative approach to parallel programming. While the 
goal is to find all of the defects in the testing phases, it is not always possible. So, you add to the typical 
uses for the C++ exception handling that of logical fault tolerance. The goal of logical fault tolerance is to 
not allow the program to have any other consequences than the consequences that are present in the PBS.   

  Predicate Exceptions and Possible Worlds 
 You might recall from the  guess_it  game that the agent with the code would change the code only if 
the number of guesses within a certain interval had been reached. In this scenario, the agent that 
attempted to guess the code faced two possible worlds: one world in which the code had not been 
changed and one where it had. The PBS had the following breakdowns for these situations: 

   Breakdown 5:  N  agents are enough find the correct code from a sample of 4 million codes in 
2 minutes.  

   Breakdown 6: 4 times  N  agents are required to find the correct code from a sample of 4 million 
codes in 2 minutes if the code is being changed every 15 seconds.    

 The  ValidCode()  predicate failed the unit test because it did not provide for Breakdown 6. It is 
important to note that if you were in a situation where the agent luckily guessed the code before the 
15 seconds were up, it would appear that the program was in good working order. But when you are 

c10.indd   397c10.indd   397 7/31/08   3:10:12 PM7/31/08   3:10:12 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

398

evaluating the application against the PBS, you have to have a test case for each predicate in the PBS. 
Each predicate introduces one or more possible worlds. The notion of  possible worlds  is taken from field 
of logic. A possible world is used to express what is necessarily true, possibly true, or contingently true. 
The intuitive idea behind the possible - worlds model is that besides the true (or current) state of affairs, 
there are a number of other possible states of affairs, or  “ worlds ”  [Fagin et al., 1995]. Possible worlds are 
outcomes that an agent considers possible, in this case, the possibility of the code being changed 
(world 1) or not changed (world 2). The PBS of an application clearly defines what the possible worlds 
an agent or knowledge source will operate within. For every world that is possible for the agent, there is 
a set of acceptable code that the agent or knowledge source can execute. On the other hand, for worlds 
that are not possible (as far as the agent is concerned), there is no acceptable code that the agent can 
execute. Impossible worlds generate predicate exceptions! 

 The predicates in the PBS introduce what possible worlds there are for an application or its agents to live 
in. The predicate exception class represents scenarios where impossible worlds are encountered. For 
example, the world where the code is changed every 15 seconds but no new agents are added to 
accommodate that is an impossible world in the example PBS. It is exactly this problem that caused the 
 ValidCode()  predicate to fail. You can use a form of model checking during your unit tests to uncover 
these kinds of software defects in a parallel program.  

  What Is Model Checking? 
 Although a discussion of model checking is beyond the scope of this book, we introduce it here so that 
once you ’ re ready to deal with validation and verification of large and potentially complex parallel 
programs or massively multithreaded applications, you have some idea of what tools are used. In this 
book, we present a brief introduction to some of the more challenging issues with multicore and 
multithreaded programming. But this book is just an introduction. We present declarative parallel 
programming techniques that move in the direction of logical models of parallelism. Logical models will 
ultimately help developers cope with massively parallel multicore computers. Model - checking 
techniques can be used to automate some of the testing multithreaded or parallel programs that have 
declarative architectures. Model checking is a technique for verifying finite - state concurrent systems 
[Huth, Ryan, 2004]. Model checking is used to determine whether the model that is presented is the 
model that is expected. The PBS approach used as an example in this chapter presents a logical model of 
the application that can be formalized and used with model checking tools. You might be interested to 
know that Kripke Structures   are used in a formal presentation of possible worlds and model checking 
[Meyer, Van der Hoek, 2004].   

  Summary 
 The goal of testing software is to make sure that the software does what you want, and that you want 
what is does. An application is often requested as a list of desired features, and regardless to how the list 
of requirements for a piece of software is generated, the testing process must make sure that the software 
meets those requirements and that the requirements meet the user ’ s expectations. 

 In many cases where parallel computers or multiprocessors are involved, the user ’ s expectations include 
performance speedup or a certain level of high - performance throughput, and often the kinds of software 
errors you encounter increase when multithreading or multiprocessing is added in attempt to achieve 
the user ’ s expectation. When the software does not perform according to the specifications, the software 
is in error, even if the specification violation is that the system performs too slowly. 

c10.indd   398c10.indd   398 7/31/08   3:10:12 PM7/31/08   3:10:12 PM



Chapter 10: Testing and Logical Fault Tolerance for Parallel Programs

399

 In this chapter, we discussed using exception handling to provide a kind of  logical  fault tolerance for 
declarative architectures. That is, if an application for unknown and uncontrollable reasons violates 
statements, assertions, rules, predicates, or constraints from the PBS, you want to throw an exception 
and gracefully exit because once your predicates have been violated, then the correctness, reliability, and 
meaning of the application has been compromised. The journey toward fault tolerance in your software 
begins by recognizing that: 

  No amount of exception handling can rescue a flawed or an inappropriate software architecture.  

  The fault tolerance of a piece of software is directly related to the quality of its architecture.  

  The exception - handling architecture cannot replace the testing stages.    

 In this approach toward declarative interpretations of parallel programming, we are moving you more 
toward logical models. Ultimately, you want nonlogical models or irrational program behavior to be 
considered an exception. So, the exception - handling strategy needs to flow from Layer 5 of the PADL 
and the PBS and become a fundamental part of the software architecture. User - defined C++ predicates 
form the application ’ s logical argument. If one of the assertions or predicates turns out to be false, then 
the application is irrational at that point. The PBS of an application clearly defines what the possible 
worlds an agent or knowledge source will operate within. For every world that is possible for the agent, 
there is a piece of acceptable code that the agent or knowledge source can execute. 

 Software that requires parallel programming can be notoriously difficult to test and debug, which is why 
testing and debugging represent key challenges for software that has a concurrency requirement. Ideally, 
this chapter has given you a good foundation for how to approach some of those testing and debugging 
challenges in your own parallel programming, just as this book has grounded you in the everyday 
fundamentals of programming for multiprocessor and multithreaded architectures, the very kind of 
application design and development that is now a mainstream concern. We wish you the best of luck 
with your future multicore programming projects.   

 Finally, we want to leave you with a reiteration of a point we made toward the 
beginning of this chapter: As software developers, we produce applications in the 
fields of medicine, manufacturing, homeland security, transportation, finance, 
 education, scientific research, and all areas of business, we have an ethical and moral 
responsibility to produce software that is safe, correct, reliable, and fault tolerant. 
Anything less is malpractice.   

    

❑

❑

❑

c10.indd   399c10.indd   399 7/31/08   3:10:13 PM7/31/08   3:10:13 PM



c10.indd   400c10.indd   400 7/31/08   3:10:13 PM7/31/08   3:10:13 PM



      UML for Concurrent Design          

 This appendix provides a quick reference to the UML diagrams used throughout this book. The 
Unified Modeling Language (UML) is a graphical notation used to design, visualize, model, and 
document the artifacts of a software system. It is the de facto standard for communicating and 
modeling object - oriented systems. The modeling language uses symbols and notations to 
represent the artifacts of a software system from different views and with different focuses. 
Although there are other graphical notations and artifacts used in this book, this appendix 
provides a quick way the reader can become familiar with the basic UML notations and symbols 
they may require in documenting their software systems. 

 The following web sites are online resources and quick reference PDFs for UML documentation: 

   www.uml.org   

   www.acmesoffware.com/acme/default.asp   

   www.oio.de/uml - 1 - 4 - reference.htm   

   www.quantum - leaps.com/resources/UML_Reference.pdf   

     Class and Object Diagrams 
 Class and object diagrams are the most common diagrams used in modeling an object - oriented 
system. Class diagrams can be use to represent each type of class in your system including: 

  Template classes  

  Interface classes    

 Class diagrams can include the details of the class (for example, attributes and services). Class and 
object diagrams can show the data type, value of variables, and return types of functions. Object 

❑

❑

❑

❑

❑

❑

bapp01.indd   401bapp01.indd   401 7/31/08   2:29:53 PM7/31/08   2:29:53 PM



Appendix A: UML for Concurrent Design

402

diagrams can show the object name. Both types of diagrams can depict the number of classes or objects 
used in the system along with the relationships between classes and objects. 

 Figure  A - 1  illustrates the various ways to represent classes and objects, including active classes and 
objects. Class diagrams can show as much detail as needed, including attributes, services, initial values, 
return types, and visibility. Active classes or objects use a heavier line.   

 Figure  A - 3  illustrates the ways to represent bound or unbound templates or parameterized classes.   

Attributes
-  private
# protected
+ public

class name

Services
-  private
# protected
+ public

Responsibilities

REPRESENTING A CLASS

REPRESENTING AN OBJECT

class name active class name

class name

attribute: Type = initial value

service (argument list):
return type

active class name

attribute: Type = initial value

service (argument list):
return type

object name: class name active object name:
class name

Figure A-1

Attributes

-  private

+ public
# protected

class name

Services

-  private

+ public
# protected

Responsibilities

REPRESENTING MULTIPLE INSTANCES

class name

object name: class name

1..7 multiplicity notation

multiple classes

multiple objects

Figure A-2

 Figure  A - 2  shows multiple instances of classes and objects. Multiple instances can be shown graphically 
or by using multiplicity notation.   

bapp01.indd   402bapp01.indd   402 7/31/08   2:29:54 PM7/31/08   2:29:54 PM



Appendix A: UML for Concurrent Design

403

(a) unbound map (b) bound maps

template objecttemplate class template class

parameterized
types

template class

parameterized
types

template class
<parameterized types>template class

T

<<bind>> (actual parameters)

Figure A-3

 Figure  A - 4  shows the ways to represent an interface class. An interface class can be represented using a 
lollipop symbol or can be represented as a regular class displaying the   <  < interface >  >   stereotype. The 
relationship between the interface class and the realization of the class can also be depicted.   

REPRESENTING AN INTERFACE CLASS

interface class

Attributes

Services

<<interface>>
class

Attributes

Services

<<interface>>
class

realized class

Attributes

realized class

Services
interface class

(a) interface class lollipop

(b) using <<interface>> stereotype

(c) realization of an interface class

(d) realization of a class using interface lollipop

Figure A-4

bapp01.indd   403bapp01.indd   403 7/31/08   2:29:55 PM7/31/08   2:29:55 PM



Appendix A: UML for Concurrent Design

404

 Figure  A - 5  shows the ways to represent single and multiple inheritance. Two target styles can be used 
when multiple classes are involved in a relationship: shared and separate.   

  With the shared target style, multiple classes are tied to a single inheritance symbol that points 
to the target class.  

  With the separate target style, each class has its own inheritance symbol.      

❑

❑

derived classderived classderived class

base class

shared target style separate target style

base class

derived class

<<inherits>>

SINGLE INHERITANCE

<<inherits>>

base class

derived class

base class

MULTIPLE INHERITANCE

base class

derived class

Figure A-5

 Figure  A - 6  shows examples of the multiple relationships that can be depicted in a class diagram. 
Multiplicity notation can be used to show the number of instances between classes and objects.    

bapp01.indd   404bapp01.indd   404 7/31/08   2:29:55 PM7/31/08   2:29:55 PM



Appendix A: UML for Concurrent Design

405

  Interaction Diagrams 
 Interaction diagrams show the interaction between objects. They consist of a set of objects, their 
relationship, and the messages exchanged between them. Interaction diagrams include collaboration, 
sequence, and activity diagrams. 

  Collaboration Diagrams 
 Collaboration diagrams are used to show a set of objects working together to perform some work. The 
collaboration in the system is a temporary cooperation between a set of objects. Collaboration diagrams 
can depict the organization of the collaboration or can depict the structure of the collaboration. This 
involves showing all the objects in the set, their links, and the messages sent and received between them. 

 Figure  A - 7  is a collaboration diagram showing the organization of collaborations within a system and 
the structural relationship of objects within a collaboration.    

whole

whole part

class A class B

target class source class

part

class B class A 
1

class B class A 
*

class B class A 
0..1

class B class A 
m..n

Aggregation

Composition

Dependency B depends on A

Navigability

role
name

MULTIPLICY BETWEEN CLASSES

A is always associated with one B.

A is always associated with zero or more Bs.

A is always associated with zero or one B.

A is always associated with m to n Bs.

Figure A-6

bapp01.indd   405bapp01.indd   405 7/31/08   2:29:56 PM7/31/08   2:29:56 PM



Appendix A: UML for Concurrent Design

406

ORGANIZING COLLABORATIONS

Collaboration
A

Collaboration
B

Collaboration
C

class B

class D

class E

class C

class A
1..n

IclassF

STRUCTURAL ASPECTS OF A COLLABORATION

Figure A-7

  Sequence Diagrams 
 Sequence diagrams are used to emphasize the time ordering of messages received and sent by objects in 
a system. 

 In Figure  A - 8  a sequence diagram is used to emphasize the time ordering of messages passed between 
objects. The active objects are placed at the top on the x - axis of the diagram. The messages passed 
between the objects are placed on the y - axis of the diagram. The diagram can depict synchronous and 
asynchronous messaging. The time ordering of messages is demonstrated by reading the messages from 
top to bottom along the y - axis.    

:object A

<< create >>

message

return

:object B

kill

self delegation

(asynchronous)

(synchronous)

deletes itself

Figure A-8

bapp01.indd   406bapp01.indd   406 7/31/08   2:29:56 PM7/31/08   2:29:56 PM



Appendix A: UML for Concurrent Design

407

  Activity Diagrams 
 Activity diagrams show the flow of control from one activity to another. Activities are actions performed 
by objects. Actions include processing input/output, creating or destroying objects, or performing 
computations. Activity diagrams are similar to flowcharts. 

 In Figure  A - 9  the activity diagram shows the actions of objects as it flows from the focus of control of one 
object to another. It depicts the forking of multiple flows of control (concurrency) and joining of flows of 
control with a synchronization bar. Swimlanes are used to show which object is performing the action. 
Transitions may cut across swimlanes. A synchronization bar may also cut across swimlanes, indicating 
that multiple flows of controls reside in different objects performing actions concurrently.     

processing 3 

object A object B

input 2input 1

processing 2

processing 1 
[true condition]

[false condition]

DECISION

FORKING

JOINING

swimlane 1 swimlane 2

START STATE

START STATE

CONNECTOR

TRIGGERLESS 
TRANSITION

SYNCHRONIZATION
BAR

Figure A-9

bapp01.indd   407bapp01.indd   407 7/31/08   2:29:56 PM7/31/08   2:29:56 PM



Appendix A: UML for Concurrent Design

408

  State Diagrams 
 State diagrams are used to emphasize the state of objects and their transitions to those states. A state is a 
condition that an object occupies at some point in its lifetime. An object can be transformed into many 
different states in its lifetime. The object transform into a state if some condition is met, some action is 
performed, or some event has taken place. 

 The Figure  A - 10  state diagrams show the states and transitions of an object during its lifetime. A state 
diagram has an initial state and a final state. A state has several parts. States can also be a composite of 
other states or even another state diagram. Substates that execute in parallel within a single entity are 
called concurrent substates.    

state A state B 

entry/action or function

do/activity

name/action or function

exit/action or function

name of state

entry action

activity

internal transition

exit action

COMPOSITE STATE

ADVANCED STATES AND TRANSITIONS

initial state

transition
state

concurrent
substates 

state c

state B 

substate B1

substate B2

state a state b

final state

Figure A-10

bapp01.indd   408bapp01.indd   408 7/31/08   2:29:57 PM7/31/08   2:29:57 PM



Appendix A: UML for Concurrent Design

409

subsystem A

subsystem A1

<< subsystem >>

RELATIONSHIPS BETWEEN SYSTEMS

system 2 is composed of subsystem A
subsystem A contains subsystem A1

system 1 depends on subsystem A 

package

system 1
<< system >>

system
<< system >>

subsystem
<< subsystem >>

system 2
<< system >>

Figure A-11

  Package Diagrams 
 Package diagrams are used to organize entities into groups. 

 Figure  A - 11  shows how package diagrams can be used to organize elements of a system. The stereotypes 
  <  < system >  >   or   <  < subsystem >  >   can be used. The tab on the left can hold the name of the package if the 
package contains other entities.       

bapp01.indd   409bapp01.indd   409 7/31/08   2:29:57 PM7/31/08   2:29:57 PM



bapp01.indd   410bapp01.indd   410 7/31/08   2:29:58 PM7/31/08   2:29:58 PM



      Concurrency Models          

 This appendix provides a quick reference to the concurrency models used in this book. 
Concurrency models determine how concurrent tasks delegate work to the tasks and how 
communication is performed. The models can also supply a structure and approach that will assist 
you in determining the access policies. Here, we compiled the concurrency models with a short 
definition and diagram for each model.  

  Interprocess and Inter thread 
Communication 

 With  Interprocess  Communication (IPC), communication between processes is performed by 
mechanisms that exist outside both address spaces of the processes. 

 With  Interthread  Communication (ITC), communication between threads occurs within the address 
space of the process the communicating threads exist. 

 In Figure  B - 1 , you see that the IPC resides outside the address space of both processes. IPC allows 
for communication and the transference of data between related or unrelated processes. ITC 
resides within the address space of a process. As you can see, ITC mechanisms allow threads of the 
same process to access global data and variables, parameters, and file handles. 

 See Figure  B - 1  for an example of both.    

bapp02.indd   411bapp02.indd   411 7/31/08   2:33:00 PM7/31/08   2:33:00 PM



Appendix B:           Concurrency Models        

412

INTERPROCESS and INTERTHREAD COMMUNICATION:

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

main() {...}GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

PROCESS A’S ADDRESS SPACE

LOCAL VARIABLES
GLOBAL VARIABLES

LOCAL VARIABLES

IPC
MECHANISMS 

shared
memory filesmessages

PROCESS B’S ADDRESS SPACE

pipe

LOCAL VARIABLES LOCAL VARIABLES
GLOBAL VARIABLES

STACK SEGMENT FREE STORE DATA SEGMENT TEXT SEGMENT

Thread A’s
stack

...

GLOBAL DATA STRUCTURES
GLOBAL VARIABLES
CONSTANTS
STATIC VARIABLES

Thread B’s
stack

...

Main
Thread’s
stack ...

//executed by ThreadA

task1(...)  { ...} 
ITC MECHANISMS

//executed by ThreadB

task2(...)  { ... }

main() { 
   //create ThreadA
   //create ThreadB

FILE
HANDLES

GLOBAL
VARIABLES

GLOBAL DATA

PARAMETERS

Figure B-1

  Boss/Worker Approach 1 with Threads 
 The boss thread creates a new thread for each task. The threads can then execute their tasks 
simultaneously. The threads are active. Interthread Communication (ITC) is used for communicating 
between threads and synchronizing access to shared resources, data, and objects. See the top portion of 
Figure  B - 2  for an example.  

  Boss/Worker Approach 1 with Processes 
 The boss process creates a new process for each task. The processes can then execute their tasks 
simultaneously. The processes are active. Interprocess Communication (IPC) is used for communicating 
between processes and synchronizing access to shared resources, data, and objects. See the bottom 
portion of Figure  B - 2  for an example.    

bapp02.indd   412bapp02.indd   412 7/31/08   2:33:00 PM7/31/08   2:33:00 PM



Appendix B:           Concurrency Models        

413

TASK _1

TASK _2

TASK _3

TASK _N

<<Boss Thread>>

TASK_2

do

...

TASK_1

do

TASK_3

do

TASK_N

do

BOSS/WORKER APPROACH 1 with PROCESSES:

BOSS/WORKER APPROACH 1 with THREADS:

PROGRAM A

PROCESS A

<<pthread_create>>
<<uses>>

<<Thread 2>>

<<Thread 1>>

<<Thread 3>>

<<Thread N>>

SHARED
DATA/OBJECT

ITC

IPC

FILE
HANDLES

GLOBAL
VARIABLE

GLOBAL DATA

PARAMETERS

ENVIRONMENT
VARIABLES

SEMAPHORES

COMMAND-LINE
ARGUMENTS

SHARED
DATA/OBJECT 

FILE
DESCRIPTORS

SHARED
MEMORY

...

TASK _1

TASK _2

TASK _3

TASK _N

<<Boss Thread>>

TASK_2

do

...

TASK_1

do

TASK_3

do

TASK_N

do

<<pthread_create>>
<<uses>>

<<Process 2>>

<<Process 1>>

<<Process 3>>

<<Process N>>

 

...

Figure B-2

  Boss/Worker Approach 2 with Threads 
 The boss thread creates a pool of threads in which each thread has its own queue of data. For shared data 
or objects, ITC is used to synchronize access. See the top portion of Figure  B - 3  for an example.  

bapp02.indd   413bapp02.indd   413 7/31/08   2:33:01 PM7/31/08   2:33:01 PM



Appendix B:           Concurrency Models        

414

  Boss/Worker Approach 3 with Threads 
 The boss thread creates a pool of threads that processes data from a shared queue of data. Each thread 
will process a type of data. For shared data or objects, ITC (Interprocess Communication) is used to 
synchronize access. See the bottom portion of Figure  B - 3  for an example.    

TASK_2  WORK  B

do

...

TASK_1  WORK D

do

TASK_3  WORK B

do

TASK_N  WORK C

do

<<uses>>

<<Thread 2>>

<<Thread 1>>

<<Thread 3>>

<<Thread N>>

SHARED
DATA/OBJECT

ITC

FILE
HANDLES

GLOBAL
VARIABLE

GLOBAL DATA

PARAMETERS

WORK A

WORK B

WORK B

WORK C

WORK D

<<Boss Thread>>

create pool of threads

A1

B2

B3

C4

PROCESS B

...

D5

WORK A

WORK B

WORK C

WORK D

WORK D

Boss Thread

create pool of threads

PROCESS B

BOSS/WORKER  APPROACH 2 with THREADS:

BOSS/WORKER APPROACH 3 with THREADS:

A1B2C3

TASK_2  TYPE B

do

...

TASK_1 TYPE A

do

TASK_3  TYPE C

do

TASK_4

do

<<uses>>

<<Thread 2>>

<<Thread 1>>

<<Thread 3>>

<<Thread N>>

SHARED
DATA/OBJECT

ITC

FILE
HANDLES

GLOBAL
VARIABLE

GLOBAL DATA

PARAMETERS

Figure B-3

bapp02.indd   414bapp02.indd   414 7/31/08   2:33:01 PM7/31/08   2:33:01 PM



Appendix B:           Concurrency Models        

415

  Peer - to - Peer Approach 1 with Threads 
 A peer thread creates a pool of peer threads in which each thread has its own queue of data. For shared 
data or objects, ITC is used to synchronize access. See the top portion of Figure  B - 4  for an example.  

  Peer - to - Peer Approach 1 with Processes 
 A peer process spawns a pool of peer processes in which each has its own queue of data. For shared data 
or objects, IPC is used to synchronize access. See the bottom portion of Figure  B - 4  for an example.    

<<Peer Thread 2>>

TASK_1  WORK  A

do

<<Peer Thread 3>>

TASK_1

do

PROGRAM A

PEER-TO-PEER  APPROACH 1 with PROCESSES:

<<Peer Process 1>>

spawn processes

TASK_1  WORK C

do
C1D2

PROCESS B

PEER-TO-PEER  APPROACH 1 with THREADS:

<<Peer Thread 1>>

create pool of threads

TASK_1  WORK C

do

<<Peer Thread 3>>

TASK_1

do

SHARED
DATA/OBJECT

ITC

FILE
HANDLES

GLOBAL
VARIABLE

GLOBAL DATA

PARAMETERS

A1 B2

<<Peer Thread 2>>

TASK_1  WORK  A

do A1 B2

C1D2

IPC

COMMAND-LINE
ARGUMENTS

SEMAPHORES

ENVIRONMENT
VARIABLES

SHARED
DATA/OBJECT 

FILE
DESCRIPTORS

SHARED
MEMORY

 

Figure B-4

bapp02.indd   415bapp02.indd   415 7/31/08   2:33:01 PM7/31/08   2:33:01 PM



Appendix B:           Concurrency Models        

416

  Peer - to - Peer Approach 2 with Threads 
 A peer thread creates a pool of peer threads in which the threads share a queue of data. For shared data 
or objects, ITC is used to synchronize access. See the top portion of Figure  B - 5  for an example.  

  Peer - to - Peer Approach 2 with Processes 
 A peer process spawns a pool of peer processes in which the processes share a queue of data. For shared 
data or objects, IPC is used to synchronize access. See the bottom portion of Figure  B - 5  for an example.    

<<Peer Thread 2>>

TASK_1  WAIT

do

<<Peer Thread 3>>

TASK_1 WAIT

do

PROGRAM A

PEER-TO-PEER  APPROACH 2 with PROCESSES:

<<Peer Process 1>>

spawn processes

TASK_1  WORK C

do

PROCESS B

PEER-TO-PEER  APPROACH 2 with THREADS:

<<Peer Thread 1>>

create pool of threads

TASK_1  WORK C

do

<<Peer Thread 3>>

TASK_1 WAIT

do

SHARED
DATA/OBJECT

ITC

FILE
HANDLES

GLOBAL
VARIABLE

GLOBAL DATA

PARAMETERS

<<Peer Thread 2>>

TASK_1 WAIT

do

C1D2B3

IPC

COMMAND-LINE
ARGUMENTS

SEMAPHORES

ENVIRONMENT
VARIABLES

SHARED
DATA/OBJECT 

FILE
DESCRIPTORS

SHARED
MEMORY

 

SYNCHRONIZATION
REQUIRED

SHARED DATA QUEUE

C1D2B3

SYNCHRONIZATION
REQUIRED

SHARED DATA QUEUE

Figure B-5

bapp02.indd   416bapp02.indd   416 7/31/08   2:33:02 PM7/31/08   2:33:02 PM



Appendix B:           Concurrency Models        

417

  Workpile Approach 1 
 Workpile requires multiple workers to process data from the workpile (a shared data queue). The 
controller creates a pool of workers and creates a workpile. The controller manages the workpile by 
assigning work to the workers. The workers then store the results of their work in an output queue that 
requires synchronization. See the top portion of Figure  B - 6  for an example.  

  Workpile Approach 2 
 With Workpile Approach 2, threads can also produce work that can be placed in the workpile. See the 
bottom portion of Figure  B - 6  for an example.    

WORK A

WORK B

WORK C

WORK D

Workpile Controller
create pool of workers

create a workpile

PROCESS / PROGRAM

Worker 1

TASK_1    WORK A

do

Worker 2

TASK_2   WORK B

do

Worker 3

TASK_3  WORK C

do

assign work
output of workers

WORKPILE APPROACH 2

WORKPILE APPROACH 1

A1B2C3D4

WORK A

WORK B

WORK C

WORK D

Workpile Controller
create pool of workers

create a workpile

PROCESS / PROGRAM

Worker 1

TASK_1    WORK A

do

Worker 2

TASK_2   WORK B

do

Worker 3

TASK_3  WORK C

do

assign work

produce work D

output of workers

A1B2C3D

Figure B-6

bapp02.indd   417bapp02.indd   417 7/31/08   2:33:02 PM7/31/08   2:33:02 PM



Appendix B:           Concurrency Models        

418

  Pipeline Approach with Threads 
 Each thread in the pipeline performs work on input from the queue. Once a thread has performed the 
work, it is passed to the next thread in the pipeline. Each thread represents a stage in the pipeline, 
performing interim results. This allows multiple inputs to be processes simultaneously. The last thread 
produces the final result of the pipeline. A buffer can be used between threads if one thread is slower 
than the proceeding thread. See the top portion of Figure  B - 7  for an example.  

  Producer/Consumer Approach 1 
with Threads 

 A producer thread produces data to be consumed by the consumer thread. The data is stored in a block 
of memory shared between them. Storing the data in memory and retrieving the data from memory will 
require synchronization. See the bottom portion of Figure  B - 7  for an example.    

PROCESS B

D4 C3 B2 A1

Thread 1

Processing D

do

STAGE 1

Thread 2

do

STAGE 2
C

BUFFER

A 
complete

Thread 3

Processing B

do

STAGE 3

PIPELINE  APPROACH  with THREADS:

PROCESS B

PRODUCER/CONSUMER  APPROACH 1 with THREADS:

A

Producer Thread

Produce A

do

Consumer Thread

Consume A

do

REQUIRES 
SYNCHRONIZATION

BUFFER

Figure B-7

  Producer/Consumer Approach 2 
with Threads 

 Multiple producer threads produce data to be consumed by one consumer thread. The data is stored in a 
block of memory shared between them. Storing the data in memory and retrieving the data from 
memory will require synchronization. See the top portion of Figure  B - 8  for an example.  

bapp02.indd   418bapp02.indd   418 7/31/08   2:33:03 PM7/31/08   2:33:03 PM



Appendix B:           Concurrency Models        

419

  Producer/Consumer Approach 3 
with Threads 

 Multiple producer threads produce data to be consumed by multiple consumer threads. The data is 
stored in a block of memory shared between them. Storing the data in memory and retrieving the data 
from memory will require synchronization. See the bottom portion of Figure  B - 8  for an example.    

PROCESS B

Producer Thread

Produce A

do

Producer Thread

Produce B

do

Producer Thread

Produce C

do

BUFFER

A

B

C

REQUIRES 
SYNCHRONIZATION

PRODUCER/CONSUMER  APPROACH 2 with THREADS:

PROCESS B

PRODUCER/CONSUMER  APPROACH 3 with THREADS:

Consumer Thread

Produce A

do

Producer Thread

Produce A

do

Producer Thread

Produce B

do

Producer Thread

Produce C

do

BUFFER

A

B

C

REQUIRES 
SYNCHRONIZATION

Consumer Thread

Produce A

do

Consumer Thread

Produce B

do

Figure B-8

bapp02.indd   419bapp02.indd   419 7/31/08   2:33:03 PM7/31/08   2:33:03 PM



Appendix B:           Concurrency Models        

420

  Monitor Approach 
 Monitor contains both data and methods needed to synchronize access to serially reusable shared 
resources, data, or objects. The worker must enter the monitor and gain access to a condition variable in 
order to access the shared resource. See Figure  B - 9  for an example.    

WORK A

WORK B

WORK B

WORK C

WORK D

Worker

create pool of workers

SHARED 
DATA/OBJECT

MONITOR

if (resourceinuse) then 
    wait(resourceisfree)
resourceinuse � true
use resource
resourceinuse � false
signal(resourceisfree)

Worker 1
do

Worker 2

TASK_2  WORK B

do

Worker 3

TASK_3  WORK B

do

Worker N

TASK_N  WORK C

do

• • •

PROCESS / PROGRAM

...

D5

resourceinuse : bool 
resourceisfree: condition

MONITOR  APPROACH:

A1

B2

B3

C3

TASK_1  WORK A

Figure B-9

  Blackboard Approach with Threads 
 The Blackboard is a centralized object that each thread has access to. Access to the Blackboard has to be 
synchronized. Each thread can post preliminary results or data. The threads can also process those 
results or data in order to create partial solutions. See Figure  B - 10  for an example.    

bapp02.indd   420bapp02.indd   420 7/31/08   2:33:04 PM7/31/08   2:33:04 PM



Appendix B:           Concurrency Models        

421

PROCESS B

BLACKBOARD APPROACH with THREADS:

DATA A1

RESULTS C3

DATA B2

RESULTS D3

AGENT
CONTROL

SOFTWARE MODEL
OF SOLUTION

BLACKBOARD

Thread 3

Process D

do

Thread 4

Produce F

do

Thread 2

Thread 1

Produce A

do

Produce B

do

<< partial solutions >>

Figure B-10

  Data Level Parallelism: SIMD Approach 
  Single Instruction Multiple Data (SIMD)  means a single instruction is performed on different data or sets 
of data. One thread or process can perform the same task or different threads/processes can perform the 
same task. See the top portion of Figure  B - 11  for an example.  

  Data Level Parallelism: MIMD Approach 
  Multiple Instruction Multiple Data (MIMD)  means multiple instructions are performed on different data or 
sets of data. Multiple threads or processes are used to execute the different tasks. See the bottom portion 
of Figure  B - 11  for an example.    

bapp02.indd   421bapp02.indd   421 7/31/08   2:33:04 PM7/31/08   2:33:04 PM



Appendix B:           Concurrency Models        

422

SIMD

DATA-LEVEL PARALLELISM:  SIMD  (SINGLE INSTRUCTION MULTIPLE DATA)  APPROACH:

Worker 1

TASK_1  NEXT  C

doC1D2E3

DATA SET 1

Worker 2

TASK_1  NEXT  B

doB1F2

DATA SET 2

G3H4

MIMD

DATA-LEVEL PARALLELISM:  MIMD  (MULTIPLE INSTRUCTION MULTIPLE DATA)  APPROACH:

Worker 1

TASK_1  NEXT  C

doC1D2E3

DATA SET 1

Worker 2

TASK_2  NEXT  B

doB1F2

DATA SET 2

G3H4

Worker 3

TASK_3  NEXT  N

doM1N2

DATA SET 3

R3P4

Figure B-11

bapp02.indd   422bapp02.indd   422 7/31/08   2:33:04 PM7/31/08   2:33:04 PM



Appendix B:           Concurrency Models        

423

  PRAM Model 
 Parallel Random Access Machine (PRAM) is a theoretical model for multiple processors sharing one 
global memory. All the processors have simultaneous read and write access to the shared global memory. 
The PRAM model can be used for tasks that have simultaneous access to shared global memory. These 
are the four algorithms that can be used to access the shared global memory: 

  1.   Concurrent read algorithms are allowed to read the same piece of memory simultaneously with 
no data corruption.  

  2.   Concurrent write algorithms allow multiple processors to write to the shared memory.  

  3.   Exclusive read algorithms are used to ensure that no two processors ever read the same memory 
location at the same time.  

  4.   Exclusive write ensures that no two processors write to the same memory at the same time.    

 See the top portion of Figure  B - 12  for an example. 

 The PRAM model can be used to characterize concurrent access to shared memory by multiple 
tasks. The next sections explain the concurrent and exclusive read - write algorithms combinations that 
are possible for read - write access. 

  CRCW  —  Concurrent Read Concurrent Write 
 CRCW is the most difficult access policy to implement and requires the most synchronization. With this 
access policy, unrestricted access is allowed but the integrity of the data and satisfactory system 
performance still has to be maintained. See the bottom portion of Figure  B - 12 .    

bapp02.indd   423bapp02.indd   423 7/31/08   2:33:05 PM7/31/08   2:33:05 PM



Appendix B:           Concurrency Models        

424

shared 
memory

readwrite
Task A Task B

shared 
memory

readwrite
Task C Task D

CRCW Concurrent Read Concurrent Write

Task B

Task A

Task N

• • •

PRAM (PARALLEL RANDOM ACCESS MACHINE) MODEL:

Figure B-12

  EREW  —  Exclusive Read Exclusive Write 
 EREW means access to the shared memory is serialized where only one task at a time is given access to 
the shared memory, whether it is access to write or to read. An example of EREW access policy is the 
producer - consumer. This is the most restrictive access policy. See the top portion of Figure  B - 13 .  

  ERCW  —  Exclusive Read Concurrent Write 
 ERCW access policy allows multiple writes to shared memory and exclusive reads. There are no 
restrictions on how many tasks can write to the shared memory concurrently, but this policy allows only 
one task to read the shared memory. This access policy is normally not implemented. See the middle 
portion of Figure  B - 13 .  

bapp02.indd   424bapp02.indd   424 7/31/08   2:33:05 PM7/31/08   2:33:05 PM



Appendix B:           Concurrency Models        

425

  CREW  —  Concurrent Read Exclusive Write 
 CREW access policy allows multiple reads of the shared memory and exclusive writes. There are no 
restrictions on how many tasks can read the shared memory concurrently, but the policy allows only one 
task to write to the shared memory. Concurrent reads can occur while an exclusive write is taking place. 
With this access policy, each reading task may read a different value while the other task is writing. The 
next task that reads the shared memory will see different data than some other task sees. See the bottom 
portion of Figure  B - 13 .          

blocks

readwrite
Task A Task B

shared 
memory

read

read

read

read

read

write

write

write

write

write

Task C Task D

EREW Exclusive Read Exclusive Write

Task A Task B

shared 
memory

Task C Task D

ERCW Exclusive Read Concurrent Write

Task A Task B

shared 
memory

Task C Task D

CREW Concurrent Read Exclusive Write

ACCESS POLICIES:

Figure B-13

bapp02.indd   425bapp02.indd   425 7/31/08   2:33:05 PM7/31/08   2:33:05 PM



bapp02.indd   426bapp02.indd   426 7/31/08   2:33:05 PM7/31/08   2:33:05 PM



       POSIX  Standard 
for Thread Management          

 This appendix contains sections from the POSIX Standard for Thread Management. Portable 
Operating System Interface (POSIX) is the open operating system interface standard accepted 
worldwide. It is produced by IEEE and recognized by ISO and ANSI. Support of POSIX standards 
ensures code portability between systems and is increasingly mandated for commercial 
applications and government contracts. The POSIX Standard is the most widely available method 
for cross - platform multicore development. It is compatible with high - level thread libraries such as 
Solaris Threads, Intel Thread Building Block, and the new Standard C++0x. The POSIX Standard is 
voluminous, containing thousands of pages. Here, for your convenience, are sections from the 
standard on thread management. The API functions contained in these sections are either covered 
in this book or are of concern when developing multicore applications. 

 The following excerpts are reprinted with permission from  IEEE Std. 1003.1 - 2001, IEEE Standard for 
Information Technology  -  Portable Operating System Interface (POSIX) , Copyright 2001, by IEEE. The 
IEEE disclaims any responsibility or liability resulting from the placement and use in the described 
manner.             

bapp03.indd   427bapp03.indd   427 7/31/08   2:40:21 PM7/31/08   2:40:21 PM



428 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   428bapp03.indd   428 7/31/08   2:40:21 PM7/31/08   2:40:21 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 429

bapp03.indd   429bapp03.indd   429 7/31/08   2:40:23 PM7/31/08   2:40:23 PM



430 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   430bapp03.indd   430 7/31/08   2:40:24 PM7/31/08   2:40:24 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 431

bapp03.indd   431bapp03.indd   431 7/31/08   2:40:25 PM7/31/08   2:40:25 PM



432 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   432bapp03.indd   432 7/31/08   2:40:26 PM7/31/08   2:40:26 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 433

bapp03.indd   433bapp03.indd   433 7/31/08   2:40:26 PM7/31/08   2:40:26 PM



434 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   434bapp03.indd   434 7/31/08   2:40:27 PM7/31/08   2:40:27 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 435

bapp03.indd   435bapp03.indd   435 7/31/08   2:40:28 PM7/31/08   2:40:28 PM



436 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   436bapp03.indd   436 7/31/08   2:40:29 PM7/31/08   2:40:29 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 437

bapp03.indd   437bapp03.indd   437 7/31/08   2:40:29 PM7/31/08   2:40:29 PM



438 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   438bapp03.indd   438 7/31/08   2:40:31 PM7/31/08   2:40:31 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 439

bapp03.indd   439bapp03.indd   439 7/31/08   2:40:32 PM7/31/08   2:40:32 PM



440 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   440bapp03.indd   440 7/31/08   2:40:33 PM7/31/08   2:40:33 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 441

bapp03.indd   441bapp03.indd   441 7/31/08   2:40:33 PM7/31/08   2:40:33 PM



442 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   442bapp03.indd   442 7/31/08   2:40:35 PM7/31/08   2:40:35 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 443

bapp03.indd   443bapp03.indd   443 7/31/08   2:40:35 PM7/31/08   2:40:35 PM



444 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   444bapp03.indd   444 7/31/08   2:40:36 PM7/31/08   2:40:36 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 445

bapp03.indd   445bapp03.indd   445 7/31/08   2:40:37 PM7/31/08   2:40:37 PM



446 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   446bapp03.indd   446 7/31/08   2:40:38 PM7/31/08   2:40:38 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 447

bapp03.indd   447bapp03.indd   447 7/31/08   2:40:38 PM7/31/08   2:40:38 PM



448 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   448bapp03.indd   448 7/31/08   2:40:39 PM7/31/08   2:40:39 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 449

bapp03.indd   449bapp03.indd   449 7/31/08   2:40:40 PM7/31/08   2:40:40 PM



450 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   450bapp03.indd   450 7/31/08   2:40:41 PM7/31/08   2:40:41 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 451

bapp03.indd   451bapp03.indd   451 7/31/08   2:40:41 PM7/31/08   2:40:41 PM



452 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   452bapp03.indd   452 7/31/08   2:40:42 PM7/31/08   2:40:42 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 453

bapp03.indd   453bapp03.indd   453 7/31/08   2:40:42 PM7/31/08   2:40:42 PM



454 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   454bapp03.indd   454 7/31/08   2:40:43 PM7/31/08   2:40:43 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 455

bapp03.indd   455bapp03.indd   455 7/31/08   2:40:43 PM7/31/08   2:40:43 PM



456 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   456bapp03.indd   456 7/31/08   2:40:44 PM7/31/08   2:40:44 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 457

bapp03.indd   457bapp03.indd   457 7/31/08   2:40:44 PM7/31/08   2:40:44 PM



458 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   458bapp03.indd   458 7/31/08   2:40:44 PM7/31/08   2:40:44 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 459

bapp03.indd   459bapp03.indd   459 7/31/08   2:40:45 PM7/31/08   2:40:45 PM



460 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   460bapp03.indd   460 7/31/08   2:40:45 PM7/31/08   2:40:45 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 461

bapp03.indd   461bapp03.indd   461 7/31/08   2:40:46 PM7/31/08   2:40:46 PM



462 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   462bapp03.indd   462 7/31/08   2:40:47 PM7/31/08   2:40:47 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 463

bapp03.indd   463bapp03.indd   463 7/31/08   2:40:48 PM7/31/08   2:40:48 PM



464 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   464bapp03.indd   464 7/31/08   2:40:50 PM7/31/08   2:40:50 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 465

bapp03.indd   465bapp03.indd   465 7/31/08   2:40:50 PM7/31/08   2:40:50 PM



466 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   466bapp03.indd   466 7/31/08   2:40:51 PM7/31/08   2:40:51 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 467

bapp03.indd   467bapp03.indd   467 7/31/08   2:40:52 PM7/31/08   2:40:52 PM



468 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   468bapp03.indd   468 7/31/08   2:40:53 PM7/31/08   2:40:53 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 469

bapp03.indd   469bapp03.indd   469 7/31/08   2:40:53 PM7/31/08   2:40:53 PM



470 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   470bapp03.indd   470 7/31/08   2:40:54 PM7/31/08   2:40:54 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 471

bapp03.indd   471bapp03.indd   471 7/31/08   2:40:55 PM7/31/08   2:40:55 PM



472 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   472bapp03.indd   472 7/31/08   2:40:57 PM7/31/08   2:40:57 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 473

bapp03.indd   473bapp03.indd   473 7/31/08   2:40:58 PM7/31/08   2:40:58 PM



474 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   474bapp03.indd   474 7/31/08   2:40:59 PM7/31/08   2:40:59 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 475

bapp03.indd   475bapp03.indd   475 7/31/08   2:41:00 PM7/31/08   2:41:00 PM



476 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   476bapp03.indd   476 7/31/08   2:41:01 PM7/31/08   2:41:01 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 477

bapp03.indd   477bapp03.indd   477 7/31/08   2:41:02 PM7/31/08   2:41:02 PM



478 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   478bapp03.indd   478 7/31/08   2:41:02 PM7/31/08   2:41:02 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 479

bapp03.indd   479bapp03.indd   479 7/31/08   2:41:03 PM7/31/08   2:41:03 PM



480 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   480bapp03.indd   480 7/31/08   2:41:04 PM7/31/08   2:41:04 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 481

bapp03.indd   481bapp03.indd   481 7/31/08   2:41:04 PM7/31/08   2:41:04 PM



482 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   482bapp03.indd   482 7/31/08   2:41:04 PM7/31/08   2:41:04 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 483

bapp03.indd   483bapp03.indd   483 7/31/08   2:41:05 PM7/31/08   2:41:05 PM



484 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   484bapp03.indd   484 7/31/08   2:41:06 PM7/31/08   2:41:06 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 485

bapp03.indd   485bapp03.indd   485 7/31/08   2:41:07 PM7/31/08   2:41:07 PM



486 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   486bapp03.indd   486 7/31/08   2:41:08 PM7/31/08   2:41:08 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 487

bapp03.indd   487bapp03.indd   487 7/31/08   2:41:09 PM7/31/08   2:41:09 PM



488 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   488bapp03.indd   488 7/31/08   2:41:09 PM7/31/08   2:41:09 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 489

bapp03.indd   489bapp03.indd   489 7/31/08   2:41:10 PM7/31/08   2:41:10 PM



490 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   490bapp03.indd   490 7/31/08   2:41:11 PM7/31/08   2:41:11 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 491

bapp03.indd   491bapp03.indd   491 7/31/08   2:41:12 PM7/31/08   2:41:12 PM



492 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   492bapp03.indd   492 7/31/08   2:41:12 PM7/31/08   2:41:12 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 493

bapp03.indd   493bapp03.indd   493 7/31/08   2:41:13 PM7/31/08   2:41:13 PM



494 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   494bapp03.indd   494 7/31/08   2:41:14 PM7/31/08   2:41:14 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 495

bapp03.indd   495bapp03.indd   495 7/31/08   2:41:15 PM7/31/08   2:41:15 PM



496 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   496bapp03.indd   496 7/31/08   2:41:16 PM7/31/08   2:41:16 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 497

bapp03.indd   497bapp03.indd   497 7/31/08   2:41:16 PM7/31/08   2:41:16 PM



498 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   498bapp03.indd   498 7/31/08   2:41:17 PM7/31/08   2:41:17 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 499

bapp03.indd   499bapp03.indd   499 7/31/08   2:41:18 PM7/31/08   2:41:18 PM



500 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   500bapp03.indd   500 7/31/08   2:41:19 PM7/31/08   2:41:19 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 501

bapp03.indd   501bapp03.indd   501 7/31/08   2:41:20 PM7/31/08   2:41:20 PM



502 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   502bapp03.indd   502 7/31/08   2:41:20 PM7/31/08   2:41:20 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 503

bapp03.indd   503bapp03.indd   503 7/31/08   2:41:21 PM7/31/08   2:41:21 PM



504 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   504bapp03.indd   504 7/31/08   2:41:22 PM7/31/08   2:41:22 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 505

bapp03.indd   505bapp03.indd   505 7/31/08   2:41:24 PM7/31/08   2:41:24 PM



506 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   506bapp03.indd   506 7/31/08   2:41:25 PM7/31/08   2:41:25 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 507

bapp03.indd   507bapp03.indd   507 7/31/08   2:41:26 PM7/31/08   2:41:26 PM



508 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   508bapp03.indd   508 7/31/08   2:41:27 PM7/31/08   2:41:27 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 509

bapp03.indd   509bapp03.indd   509 7/31/08   2:41:28 PM7/31/08   2:41:28 PM



510 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   510bapp03.indd   510 7/31/08   2:41:28 PM7/31/08   2:41:28 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 511

bapp03.indd   511bapp03.indd   511 7/31/08   2:41:29 PM7/31/08   2:41:29 PM



512 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   512bapp03.indd   512 7/31/08   2:41:30 PM7/31/08   2:41:30 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 513

bapp03.indd   513bapp03.indd   513 7/31/08   2:41:31 PM7/31/08   2:41:31 PM



514 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   514bapp03.indd   514 7/31/08   2:41:31 PM7/31/08   2:41:31 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 515

bapp03.indd   515bapp03.indd   515 7/31/08   2:41:32 PM7/31/08   2:41:32 PM



516 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   516bapp03.indd   516 7/31/08   2:41:33 PM7/31/08   2:41:33 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 517

bapp03.indd   517bapp03.indd   517 7/31/08   2:41:33 PM7/31/08   2:41:33 PM



518 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   518bapp03.indd   518 7/31/08   2:41:34 PM7/31/08   2:41:34 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 519

bapp03.indd   519bapp03.indd   519 7/31/08   2:41:35 PM7/31/08   2:41:35 PM



520 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   520bapp03.indd   520 7/31/08   2:41:36 PM7/31/08   2:41:36 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 521

bapp03.indd   521bapp03.indd   521 7/31/08   2:41:37 PM7/31/08   2:41:37 PM



522 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   522bapp03.indd   522 7/31/08   2:41:38 PM7/31/08   2:41:38 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 523

bapp03.indd   523bapp03.indd   523 7/31/08   2:41:39 PM7/31/08   2:41:39 PM



524 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   524bapp03.indd   524 7/31/08   2:41:40 PM7/31/08   2:41:40 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 525

bapp03.indd   525bapp03.indd   525 7/31/08   2:41:40 PM7/31/08   2:41:40 PM



526 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   526bapp03.indd   526 7/31/08   2:41:41 PM7/31/08   2:41:41 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 527

bapp03.indd   527bapp03.indd   527 7/31/08   2:41:42 PM7/31/08   2:41:42 PM



528 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   528bapp03.indd   528 7/31/08   2:41:43 PM7/31/08   2:41:43 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 529

bapp03.indd   529bapp03.indd   529 7/31/08   2:41:44 PM7/31/08   2:41:44 PM



530 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   530bapp03.indd   530 7/31/08   2:41:45 PM7/31/08   2:41:45 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 531

bapp03.indd   531bapp03.indd   531 7/31/08   2:41:46 PM7/31/08   2:41:46 PM



532 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   532bapp03.indd   532 7/31/08   2:41:46 PM7/31/08   2:41:46 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 533

bapp03.indd   533bapp03.indd   533 7/31/08   2:41:46 PM7/31/08   2:41:46 PM



534 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   534bapp03.indd   534 7/31/08   2:41:47 PM7/31/08   2:41:47 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 535

bapp03.indd   535bapp03.indd   535 7/31/08   2:41:47 PM7/31/08   2:41:47 PM



536 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   536bapp03.indd   536 7/31/08   2:41:48 PM7/31/08   2:41:48 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 537

bapp03.indd   537bapp03.indd   537 7/31/08   2:41:49 PM7/31/08   2:41:49 PM



538 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   538bapp03.indd   538 7/31/08   2:41:50 PM7/31/08   2:41:50 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 539

bapp03.indd   539bapp03.indd   539 7/31/08   2:41:51 PM7/31/08   2:41:51 PM



540 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   540bapp03.indd   540 7/31/08   2:41:51 PM7/31/08   2:41:51 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 541

bapp03.indd   541bapp03.indd   541 7/31/08   2:41:52 PM7/31/08   2:41:52 PM



542 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   542bapp03.indd   542 7/31/08   2:41:53 PM7/31/08   2:41:53 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 543

bapp03.indd   543bapp03.indd   543 7/31/08   2:41:54 PM7/31/08   2:41:54 PM



544 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   544bapp03.indd   544 7/31/08   2:41:55 PM7/31/08   2:41:55 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 545

bapp03.indd   545bapp03.indd   545 7/31/08   2:41:56 PM7/31/08   2:41:56 PM



546 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   546bapp03.indd   546 7/31/08   2:41:56 PM7/31/08   2:41:56 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 547

bapp03.indd   547bapp03.indd   547 7/31/08   2:41:57 PM7/31/08   2:41:57 PM



548 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   548bapp03.indd   548 7/31/08   2:41:58 PM7/31/08   2:41:58 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 549

bapp03.indd   549bapp03.indd   549 7/31/08   2:41:58 PM7/31/08   2:41:58 PM



550 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   550bapp03.indd   550 7/31/08   2:41:59 PM7/31/08   2:41:59 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 551

bapp03.indd   551bapp03.indd   551 7/31/08   2:42:00 PM7/31/08   2:42:00 PM



552 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   552bapp03.indd   552 7/31/08   2:42:00 PM7/31/08   2:42:00 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 553

bapp03.indd   553bapp03.indd   553 7/31/08   2:42:01 PM7/31/08   2:42:01 PM



554 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   554bapp03.indd   554 7/31/08   2:42:02 PM7/31/08   2:42:02 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 555

bapp03.indd   555bapp03.indd   555 7/31/08   2:42:03 PM7/31/08   2:42:03 PM



556 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   556bapp03.indd   556 7/31/08   2:42:04 PM7/31/08   2:42:04 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 557

bapp03.indd   557bapp03.indd   557 7/31/08   2:42:04 PM7/31/08   2:42:04 PM



558 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   558bapp03.indd   558 7/31/08   2:42:04 PM7/31/08   2:42:04 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 559

bapp03.indd   559bapp03.indd   559 7/31/08   2:42:05 PM7/31/08   2:42:05 PM



560 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   560bapp03.indd   560 7/31/08   2:42:06 PM7/31/08   2:42:06 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 561

bapp03.indd   561bapp03.indd   561 7/31/08   2:42:07 PM7/31/08   2:42:07 PM



562 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   562bapp03.indd   562 7/31/08   2:42:07 PM7/31/08   2:42:07 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 563

bapp03.indd   563bapp03.indd   563 7/31/08   2:42:08 PM7/31/08   2:42:08 PM



564 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   564bapp03.indd   564 7/31/08   2:42:09 PM7/31/08   2:42:09 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 565

bapp03.indd   565bapp03.indd   565 7/31/08   2:42:09 PM7/31/08   2:42:09 PM



566 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp03.indd   566bapp03.indd   566 7/31/08   2:42:09 PM7/31/08   2:42:09 PM



       POSIX  Standard 
for Process Management          

 This appendix contains sections from the POSIX Standard for Process Management. Portable 
Operating System Interface (POSIX) is the open operating system interface standard accepted 
worldwide. It is produced by IEEE and recognized by ISO and ANSI. Support of POSIX standards 
ensures code portability between systems and is increasingly mandated for commercial 
applications and government contracts. The POSIX Standard is the most widely available 
method for cross - platform multicore development. It is compatible with high - level libraries such 
as the Standard Template Adaptive Parallel Library (STAPL) and new Standard C++0x. The 
POSIX Standard is voluminous, containing thousands of pages. Here, for your convenience, are 
selected sections from the standard on process management. The API functions contained in 
these selected sections were either covered in this book or are of concern when developing 
multicore applications. 

 The following excerpts are reprinted with permission from  IEEE Std. 1003.1 - 2001, IEEE Standard for 
Information Technology  -  Portable Operating System Interface (POSIX) , Copyright 2001, by IEEE. The 
IEEE disclaims any responsibility or liability resulting from the placement and use in the described 
manner.             

bapp04.indd   567bapp04.indd   567 7/31/08   2:39:10 PM7/31/08   2:39:10 PM



568 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   568bapp04.indd   568 7/31/08   2:39:10 PM7/31/08   2:39:10 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 569

bapp04.indd   569bapp04.indd   569 7/31/08   2:39:11 PM7/31/08   2:39:11 PM



570 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   570bapp04.indd   570 7/31/08   2:39:12 PM7/31/08   2:39:12 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 571

bapp04.indd   571bapp04.indd   571 7/31/08   2:39:13 PM7/31/08   2:39:13 PM



572 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   572bapp04.indd   572 7/31/08   2:39:15 PM7/31/08   2:39:15 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 573

bapp04.indd   573bapp04.indd   573 7/31/08   2:39:16 PM7/31/08   2:39:16 PM



574 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   574bapp04.indd   574 7/31/08   2:39:17 PM7/31/08   2:39:17 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 575

bapp04.indd   575bapp04.indd   575 7/31/08   2:39:18 PM7/31/08   2:39:18 PM



576 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   576bapp04.indd   576 7/31/08   2:39:19 PM7/31/08   2:39:19 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 577

bapp04.indd   577bapp04.indd   577 7/31/08   2:39:20 PM7/31/08   2:39:20 PM



578 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   578bapp04.indd   578 7/31/08   2:39:21 PM7/31/08   2:39:21 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 579

bapp04.indd   579bapp04.indd   579 7/31/08   2:39:22 PM7/31/08   2:39:22 PM



580 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   580bapp04.indd   580 7/31/08   2:39:23 PM7/31/08   2:39:23 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 581

bapp04.indd   581bapp04.indd   581 7/31/08   2:39:24 PM7/31/08   2:39:24 PM



582 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   582bapp04.indd   582 7/31/08   2:39:25 PM7/31/08   2:39:25 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 583

bapp04.indd   583bapp04.indd   583 7/31/08   2:39:26 PM7/31/08   2:39:26 PM



584 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   584bapp04.indd   584 7/31/08   2:39:27 PM7/31/08   2:39:27 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 585

bapp04.indd   585bapp04.indd   585 7/31/08   2:39:28 PM7/31/08   2:39:28 PM



586 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   586bapp04.indd   586 7/31/08   2:39:29 PM7/31/08   2:39:29 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 587

bapp04.indd   587bapp04.indd   587 7/31/08   2:39:29 PM7/31/08   2:39:29 PM



588 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   588bapp04.indd   588 7/31/08   2:39:30 PM7/31/08   2:39:30 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 589

bapp04.indd   589bapp04.indd   589 7/31/08   2:39:31 PM7/31/08   2:39:31 PM



590 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   590bapp04.indd   590 7/31/08   2:39:32 PM7/31/08   2:39:32 PM



System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved. 591

bapp04.indd   591bapp04.indd   591 7/31/08   2:39:32 PM7/31/08   2:39:32 PM



592 System Interfaces, Issue 6 — Copyright © 2001, IEEE and The Open Group. All rights reserved.

bapp04.indd   592bapp04.indd   592 7/31/08   2:39:34 PM7/31/08   2:39:34 PM



      Bibliography          

   Audi ,  Robert.      Action, Intention, and Reason .  Ithaca, NY :  Cornell University Press ,  1993 .   

   Axford ,  Tom  .  Concurrent Programming: Fundamental Techniques for Real - Time and Parallel Software 
Design.     Chichester :  John Wiley  &  Sons ,  1989 .   

   Baase ,  Sarah  .  Computer Algorithms: Introduction to Design and Analysis .  2nd ed.     Reading, MA : 
 Addison - Wesley ,  1988 .   

   Barfield ,  Woodrow   and   Thomas     A. Furness   III.      Virtual Environments and Advanced Interface Design . 
 New York, NY :  Oxford University Press ,  1995 .   

   Bergadano ,  Francesco   and   Daniele     Gunetti  .  Inductive Logic Programming: From Machine Learning to 
Software Engineering .  London, England :  MIT Press ,  1996 .   

   Binkley ,  Robert  ,   Richard     Bronaugh  , and   Ausonio     Marras  .  Agent, Action, and Reason.     Britain : 
 University of Toronto Press ,  1971 .   

   Booch ,  Grady  ,   James     Rumbaugh  , and   Ivar     Jacobson  .  The Unified Modeling Language User Guide . 
 Boston, MA :  Addison Wesley ,  1999 .   

   Brewka ,  Gerhard  ,   Jurgen     Dix  , and   Kurt     Konolige  .  Nonmonotonic Reasoning.     Stanford, CA :  CSLI 
Publications ,  1997 .   

   Carroll ,  Martin D.   and   Margaret     A. Ellis  .  Designing and Coding Reusable C++.     Reading, MA : 
 Addison - Wesley ,  1995 .   

   Cassell ,  Justine  ,   Joseph     Sullivan  ,   Scott     Prevost  , and   Elizabeth     Churchill  .  Embodied Conversational 
Agents.     Cambridge, MA :  The MIT Press ,  2000 .   

   Chellas ,  Brian F.      Modal Logic: An Introduction.     New York, NY :  Cambridge University Press ,  1980 .  

bbiblio.indd   593bbiblio.indd   593 7/31/08   2:38:33 PM7/31/08   2:38:33 PM



          Bibliography        

594

    Conway ,  Pat   and   Bill     Hughes  .   “ The AMD Opteron Nothrbridge Architecture. ”      IEEE Micro , March/April 
 2007     (Vol.27, No.2) , pp. 10  –  21 .   

   Coplien ,  James O.      Multi - Paradigm Design for C++.     Reading, MA :  Addison - Wesley ,  1999 .   

   Cormen ,  Thomas  ,   Charles     Leiserson  , and   Ronald     Rivest  .  Introduction to Algorithms.     Cambridge, 
MA :  The MIT Press ,  1995 .   

   Deitel ,  H.M  ,   P.J.     Deitel  , and   D.R.     Choffnes  .  Operating Systems.     3rd ed.     Upper Saddle, NJ :  Prentice Hall ,  2004 .   

   Englemore ,  Robert   and   Tony     Morgan  .  Blackboard Systems .  England :  Addison - Wesley ,  1988 .   

   Fagin ,  Ronald  ,   Joseph     Halpern  ,   Yoram     Moses  , and   Moshe     Vardi  .  Reasoning About Knowledge .  London, 
England :  MIT Press ,  1995 .   

   Geist ,  Al  ,   Adam     Beguelin  ,   Jack     Dongarra  ,   Weicheng     Jiang  ,   Robert     Manchek  , and   Vaidy     Sinderman  .  PVM: 
Parallel Virtual Machine .  London, England :  MIT Press ,  1994 .   

   Goertzel ,  Ben   and   Cassio     Pennachin  , eds.  Artificial General Intelligence .  Berlin, Heidelberg :  Springer -
 Verlag ,  2007 .   

   Goodheart ,  Berny   and   James     Cox  .  The Magic Garden Explained: The Internals of Unix System V Release 4 . 
 New York, NY :  Prentice Hall ,  1994 .   

   Gries ,  David   and   Fred B.     Schneider  .  A Logical Approach to Discrete Math .  New York, NY :  
Springer - Verlag ,  1993 .  

    Gshchwind ,  Michael  ,   David     Erb  ,   Sid     Manning  , and   Mark     Nutter  .   “ An Open Source Environment for Cell 
Broadband Engine System Software. ”      IEEE Computer , June  2007     (Vol. 40, No.6) : pp.  37  –  47 .   

   Heath ,  Michael T.      Scientific Computing: An Introductory Survey .  New York, NY :  McGraw Hill ,  2002 .   

   Hennessy ,  John L.   and   David A.     Patterson  .  Computer Architecture: A Quantitative Approach, Fourth Edition.   
  San Francisco, CA :  Morgan Kaufman ,  2007 .   

   Hennessy ,  John L.   and   David A.     Patterson  .  Computer Architecture: A Quantitative Approach ,  2nd Edition.   
  San Francisco, CA :  Morgan Kaufman ,  1996 .   

   Hintikka ,  Jaakko   and   Merrill     Hintikka  .  The Logic of Epistemology and the Epistemology of Logic.     New York, 
NY :  Springer - Verlag ,  1989 .   

   Horty ,  John F.      Agency and Deontic Logic.     New York, NY :  Oxford University Press ,  2001 .   

   Hughes ,  Cameron   and   Tracey     Hughes  .  Linux Rapid Application Development.     Foster City, CA :  M  &  T 
Books ,  2000 .   

________   .  Object - Oriented Multithreading Using C++.     New York, NY :  John Wiley  &  Sons ,  1997 .   

________   .  Mastering the Standard C++ Classes: An Essential Reference.     New York, NY :  
John Wiley  &  Sons ,  1990 .   

bbiblio.indd   594bbiblio.indd   594 7/31/08   2:38:34 PM7/31/08   2:38:34 PM



          Bibliography        

595

________   .  Parallel and Distributed Programming Using C++ .  Boston, MA :  Addison - Wesley ,  2004 .   

   Huth ,  Michael   and   Mark     Ryan  .  Logic in Computer Science: Modelling and Reasoning about Systems ,  2nd ed.   
  Cambridge, England :  Cambridge University Press ,  2004 .  

   ISO ,  Information Technology: Portable Operating System Interface.   “ System Interfaces. ”  Std 1003.1 ANSI/
IEEE.  2001 .   

   Josuttis ,  Nicolai M.      The C++ Standard.     Boston, MA :  Addison - Wesley ,  1999 .   

   Kaner ,  Cem  .  Testing Computer Software.     Blue Ridge Summit, PA :  Tab Professional and Reference Books ,  1988 .   

   Koeing ,  Andrew   and   Barbara     Moo  .  Ruminations on C++.     Reading, MA :  Addison - Wesley ,  1997 .   

   Kraus ,  Sarit  .  Strategic Negotiation in Multiagent Environments .  London :  The MIT Press ,  2001 .   

   Krishnamoorthy ,  C.S.   and   S.     Rajeev  .  Artificial Intelligence and Expert Systems for Engineers .  Boca Raton, FL : 
 CRC Press, Inc. ,  1996 .   

   Luger ,  George F.      Artificial Intelligence.     4th ed.     England :  Addison - Wesley ,  2002 .   

   Mandrioli ,  Dino   and   Carlo     Ghezzi  .  Theoretical Foundations of Computer Science.     New York, NY :  John Wiley 
 &  Sons ,  1987 .   

   Meyer ,  Bertrand  .  Object - Oriented Software Construction .  Upper Saddle River, NJ :  Prentice Hall Press ,  1988 .   

   Meyer ,  J. - J. Ch.   and   W.     van der Hoek  .  Epistemic Logic for AI and Computer Science .  Cambridge, England : 
 Cambridge University Press ,  2004 .   

   Nielsen ,  Michael A.   and   Isaac L.     Chuang  .  Quantum Computation and Quantum Information.     New York, NY : 
 Cambridge University Press ,  2000 .   

   Patel ,  Mukesh J.  ,   Vasant     Honavar  , and   Karthik     Balakrishnan  .  Advances in the Evolutionary Synthesis of 
Intelligent Agents.     Cambridge, MA :  The MIT Press ,  2001 .   

   Picard ,  Rosalind  .  Affective Computing .  England :  The MIT Press ,  1997 .   

   Reinders ,  James  .  Intel Threading Building Blocks: Outfitting C++ for Multi - core Processor Parallelism . 
 Sebastopol, CA :  O’Reilly  &  Associates ,  2007 .   

   Rescher ,  Nicholas   and   Alasdir     Urquhart  .  Temporal Logic .  New York, NY :  Springer - Verlag ,  1971 .   

   Robbins ,  Kay A.   and   Steven     Robbins  .  Practical Unix Programming.     Upper Saddle River, NJ :  Prentice 
Hall ,  1996 .   

   Russell ,  Stuart   and   Peter     Norvig  .  Artificial Intelligence: A Modern Approach ,  2nd ed.     Upper Saddle, New 
Jersey :  Prentice Hall ,  2003 .   

   Saraswat ,  Vijay A.      Concurrent Constraint Programming .  Cambridge, MA :  The MIT Press ,  1993 .   

bbiblio.indd   595bbiblio.indd   595 7/31/08   2:38:34 PM7/31/08   2:38:34 PM



          Bibliography        

596

   Schmucker ,  Kurt  ,   Ander     Weinand  , and   John M.     Vlissides  .  Object - Oriented Application Frameworks.   
  Greenwich, CT :  Manning Publications Co. ,  1995 .   

   Skillicorn ,  David  .  Foundations of Parallel Programming.     New York, NY :  Cambridge University Press ,  1994 .   

   Soukup ,  Jiri  .  Taming C++: Pattern Classes and Persistence for Large Projects .  Reading, MA : 
 Addison - Wesley ,  1994 .   

   Sterling ,  Thomas L.  ,   John     Salmon  ,   Donald J.     Becker  , and   Daniel F.     Savarese  .  How to Build a Beowulf: 
A Guide to Implementation and Application of PC Clusters .  London :  MIT Press ,  1999 .   

   Stevens ,  W. Richard  .  UNIX Network Programming: Interprocess Communications, Vol. 2 .  2nd ed.     Upper 
Saddle River, NJ :  Prentice Hall ,  1999 .   

   Stroustrup ,  Bjarne  .  The C++ Programming Language ,  3rd ed.     Addison - Wesley ,  1997 .   

   Stroustrup ,  Bjarne  .  The Design and Evolution of C++.     Reading, MA :  Addison - Wesley ,  1994 .   

   Subrahmanian ,  V.S.  ,   Piero     Bonatti  ,   Jurgen     Dix  ,   Thomas     Eiter  ,   Sarit     Kraus  ,   Fatma     Ozcan  , and   Robert     Ross  . 
 Heterogeneous Agent Systems.     Cambridge, MA :  The MIT Press ,  2000 .   

   Tel ,  Gerard  .  Introduction to Distributed Algorithms .  2nd ed.     New York, NY :  Cambridge University Press ,  2000 .   

   Thompson ,  William J.      Computing for Scientists and Engineers .  New York, NY :  John Wiley  &  Sons ,  1992 .   

   Tomas ,  Gerald   and   Christoph W.     Ueberhuber  .  Visualization of Scientific Parallel Programming.     New York, 
NY :  Springer - Verlag ,  1994 .   

   Tracy ,  Kim W.   and   Peter     Bouthoorn  .  Object - Oriented: Artificial Intelligence Using C++.     New York, NY : 
 Computer Science Press ,  1997 .   

   Weiss ,  Gerhard  .  Multiagent Systems.     Cambridge, MA :  The MIT Press ,  1999 .   

   Wooldridge ,  Michael  .  Reasoning about Rational Agents.     London, England :  The MIT Press ,  2000 .      

bbiblio.indd   596bbiblio.indd   596 7/31/08   2:38:34 PM7/31/08   2:38:34 PM



In
de

x

Index

A
AAs. See Architectural Artifacts
abort(), 128
abstract classes, 335
abstraction (C++), 86
Accelerated Graphics Port (AGP), 23, 32
acceptance testing, 380
‹‹access››, 350
access policy implementation, with read-write 

locks, 259–261
access specifiers (visibility property), 343
access synchronization, 244
ACM CCS (Association of Computing Machinery-

Computing Classification System), 284, 
285, 286, 290

actions
entry/exit, 367, 368
objects and, 357

call, 357
create, 357
destroy, 357
return, 357
send, 357

transition and, 369
active class, 359
active objects, diagramming, 359–360
activity diagrams, 62, 64, 407
adaptors, 353
[addOnly]

association property, 352
attribute property, 340

ADDR, 116
address space

processes and, 152
threads and, 152
virtual, 110, 111

adornments, 350, 351, 358
after-the-fact exception handling, 381
agent model of pipeline, 278–282. See also text 

files filtering project
agents, 290–291

autonomous/semiautonomous, 291
definitions of, 290–291

controversy in, 290

FIFA, 291
five-part, 291

interactional, 291
knowbot, 290
multiagent architectures, 291–293, 328
rational, 299–300
situated, 291
smart object, 290
society of

structured, 291
whole more than sum in, 291

softbot, 290
software broker, 290

agile model, 39
AGP (Accelerated Graphics Port), 23, 32
AMD multicore Opteron. See Opteron
anonymous instances of classes, 346
Answer (global variable), 231, 237, 244, 257
APIs (Application Programming Interfaces), 68, 

75. See also IPC
operating system, 69, 70, 74, 75, 76, 86, 93, 

94, 210, 282
POSIX, 70, 75, 76

interface classes for, 86–93
layer 2 PADL, 288, 289, 290

application architecture selection (layer 5-PADL), 
288, 290–300

concurrency flexibility of, 300
application design, 283–329

differing notions of, 284–286
for massive multicore processors, 284–287
PADL model, 287–326, 328–329. See also PADL 

model
PBS approach, 287, 326–328, 329, 375
‘story’ of, 323, 326, 329

Application Programming Interfaces. See APIs
Approach, of Grady Booch, 332
architectural approach

in modeling concurrent systems, 331, 
371–372

to parallelism, 287. See also application design
Architectural Artifacts (AAs), 41, 44, 45

declarative models and, 45
defined, 45
WBS v., 45

bindex.indd   597bindex.indd   597 7/31/08   2:33:58 PM7/31/08   2:33:58 PM



598

architectures
multicore, 2–3

CBE, 3, 17, 28–31
challenges in, 64
comparison of, 21
Core 2 Duo, 21, 31–33
designs for, 19–34
hybrid, 3–4
Opteron dual core, 21–25
software redesigning for, 1
trend in, 3, 14, 36, 45, 65, 86, 283
UltraSparc T1, 25–28

single core processor, 5–15
application development, 1
multicore programming and, 15–17

of system, 371
definition (Booch, et. al.), 371
deployment view, 371
design view, 371
implementation view, 371
process view, 371
use cases, 371

arguments, passed to threads, 163–165
asio class library, 305
assertion class, 280
assignment operator, 343, 344
association (stereotype), 358
Association of Computing Machinery-Computing 

Classification System (ACM CCS), 284, 285, 
286, 290

associations (between objects), 333, 349
bi-directional, 349
binary, 349
constraints, 352
link, 357
multiplicity in, 352
names for, 352
n-ary, 349
navigation, 351
properties, 352

[addOnly], 352
[changeable], 352
[frozen], 352

role in, 352
type, 352
unidirectional, 349, 352

asynchronous cancellation, 173
asynchronous processes, 133–135
atomic functions, 192
attention layer, 324
attribute object

condition variable, 264–265
mutex, 254–256
pthread, 167–171
pthread_cond_t, 264–265

pthread_mutex_t, 254–256
pthread_rwlock_t, 258–259
thread, 154, 155

attributes (of classes), 337. See also specific 
attributes

ordering, 343–345
by access, 343
by category, 343, 344
by category names, 344, 345

properties, 339, 340, 342
[addOnly], 340
[changeable], 340
[frozen], 340

visibility of, 343
visualizing, 336–339

attrp parameter, 100–102
Austin Common Standards Revision Group, 63. 

See also Single Unix Specification Version 3
auto parallelization option, 6, 33
automated painters. See painters
autonomous/semiautonomous agents, 291

B
Back Side Bus (BSB), 14
base class, 349
‹‹become››, 350
behavior part, of collaboration, 356
behavioral perspective (modeling concurrent 

systems), 331, 357–370
bi-directional association, 349
binary associations, 349
binary semaphores, 248
‹‹bind››, 350
binding, 348

explicit, 348
implicit, 348

Blackboard(s), 293–294
architecture, logical layout, 298–299
as critical section, 317–318
defined, 293–294
formal usage, 290
as iterative shared solution space, 298–299
memory configurations for, 295
‘question and answer browser’ program. See 

‘question and answer browser’ program
solution spaces, 295, 297, 298–299, 324
structuring approaches for, 294–299

Blackboard model, 293–300, 328
control strategies in, 324–326
problem solvers in, 293, 294, 295
with threads, 420–421

Blackboard Systems (Englemore & Morgan), 299
block event, 366

architectures

bindex.indd   598bindex.indd   598 7/31/08   2:33:59 PM7/31/08   2:33:59 PM



599

In
de

x

blocked state. See waiting state
Booch, Grady, 371, 372

Approach of, 332
Boost C++ Libraries, 316. See also C++0x standard

mutex class, implementation of (listing 8–2), 
312–316

thread class, implementation of (listing 8–1), 
305–312

boss thread, 161, 269, 271, 412, 413, 414
boss/worker approaches. See delegation model
bottom-up multicore programming, 5, 17, 21, 300

declarative, 300
imperative, 300. See also imperative programming

boundary related errors, 390
broadcast operation, condition variable and, 263
BSB. See Back Side Bus
build and fix model, 39
bus connection, 14–15

DCA and, 22
buses, 14–15

Back Side, 14
EIB, 28, 30, 31
Front Side, 14
processor-to-, configuration, 14–15

C
C++

abstraction, 86
compilers. See compilers
encapsulation, 86. See also encapsulation
interface classes. See interface classes
ISO standard and, 17, 62, 63
library approach to parallelism and, 62–64
multiparadigm programming, 5, 46, 64, 86
multiprocessing implementation in, 62–64
predicates. See predicates
Stroustrup and, 62–63, 322

C++0x (C++09) standard, 304–305
class libraries, 305

asio, 305
early implementations, 316
Interprocess, 305
MPI, 305

mutex interface class, 312
implementation of (listing 8–2), 312–316

cache, 12
compiler options, 8–9, 13
L1, 12
L2, 12–13

calculation errors, 390
calculus, situational, 286
‹‹call››, 350
call action, 357

cancelability state, 172, 173
cancelability type, 172, 173
cancelable thread, 172
cancellation, 172–180

asynchronous, 173
deferred, 173
disabled, 173
of peer thread, 174

cancellation points, 175–176
list of, 177–178

cancellation-safe
library functions, 177
system calls, 177

catch [ ] block, 392
CBE (IBM Cell Broadband Engine), 3, 17, 

28–31
comparison, 21
heterogeneous architecture, 28, 29, 30, 33
Linux and, 29
memory models, 29–30
PPE, 28, 29, 30, 31
processor overview, 28–29
SDK, 29
SPEs, 28, 29, 30, 31
SPUs, 30, 31

CCS (Computing Classification System), 284, 
285, 286, 290

Cell Broadband Engine. See CBE
challenges (concurrency), 35–65

concurrency designs, 37, 61–62, 401–409
concurrent access to data/resources by multiple 

tasks/agents, 51–56
debugging, 60–61
decomposition. See decomposition
list of, 36–37
multiprocessing implementation in C++, 62–64
processes/threads, necessary number of, 

59–60
resource contention. See resource contention
task-to-task communication, 47–51
testing and, 60–61, 377–379. See also testing

[changeable]
association property, 352
attribute property, 340

child processes, 79, 80, 82, 141, 152
chip designs

CBE, 3, 17, 28–31
Core 2 Duo, 21, 31–33
Opteron dual core, 21–25
UltraSparc T1, 25–28

chip manufacturers, 1
CMPs and, 2

chip multiprocessors. See CMPs
chip-level multithreading (CMT), 25, 29, 149. 

See also multithreading

chip-level multithreading (CMT)

bindex.indd   599bindex.indd   599 7/31/08   2:33:59 PM7/31/08   2:33:59 PM



600

chipset, 32
Northbridge, 31, 32
Southbridge, 31, 32

class(es). See also interface classes; specific 
classes

abstract, 335
active, 359
associated, multiplicity between, 347
attributes. See attributes
base, 349
collection, 335
concrete, 335
container, 335
datatypes, 335
defined, 334
domain, 335
exception. See exception classes
icon, 336, 347, 348
instances of a, 345

visualizing, 345–347
instantiation of a, 345
interface. See interface classes
logic_error, 394, 395
modeling, 334–336

concepts, 334
real-world physical entities, 334
software constructs, 334

multiplicity of, 347
name of, 336
nice, 343, 344
node, 335
objects and

relationship between, 349–353
parent, 349
pure abstract, 347
realization and, 354
responsibilities of, 336

visualizing, 336–339
root, 349
runtime_error, 394
services of. See services
simple name of, 336
singleton, 347
subclass, 349
superclass, 349
support/utility, 335
template, 335, 348

visualizing, 348–349
types, 335
visualizing, 336

class diagrams, 401–405
class libraries (C++0x standard), 305

asio, 305
Interprocess, 305
MPI, 305

cleanup stack, 178, 179
close(), 177, 229. See also mq_close()

definition for, 229
CMD, 116
CMPs (chip multiprocessors), 2, 17

chip manufacturers and, 2
cost, 4, 16, 96
gatekeeper of, operating system as, 69–71, 

93, 312
heterogeneous designs, 28, 29, 30, 33
homogeneous designs, 29, 33
massively parallel, 86, 94, 282, 284–287, 290, 

300, 304, 326, 328, 398
as multicore, 2, 96
octa-core, 2, 17, 283
parallel programming and, 4
quad core, 2, 3, 31, 73, 283
trend in, 3, 14, 36, 45, 65, 86, 283

CMT (chip-level multithreading), 25, 29, 149. See 
also multithreading

code generation (compiler option), 7, 33
code listings. See listings
code, reentrant, 130, 190
collaborating objects, 357–359
collaboration, 356

parts of, 356
behavioral, 356
structural, 356

collaboration diagrams, 62, 357–358, 405–406
collection classes, 335
COMMAND, 116
command-line arguments, 48

environment variables and, 212–213
exec family of functions and, 238

communication. See also IPC; ITC
dependencies, 205–207
flows of, multiple, 360–361
painters and, 51, 204
between processes, 47–51, 150–151
task-to-task, 47–51
between threads, 51, 150–151

comparing
multicore architectures, 21

CBE, 21
Core 2 Duo, 21
Opteron, 21

thread ids, 166–167
compilers, 7–8, 17

compilation process, 7–8
GNU C++, 8, 28, 29, 64
instruction set and, 7–9
Intel C/C++, 64
options, 6–7, 8, 9, 17, 33

cache, 8–9, 13
role of, 7–8

chipset

bindex.indd   600bindex.indd   600 7/31/08   2:34:00 PM7/31/08   2:34:00 PM



601

In
de

x

SIMD and, 6, 7, 9
Sun C/C++, 28, 64

compiling threaded programs, 162
[complete], 351
component diagrams, 61
composite state, 369
Computing Classification System (CCS), 284, 285, 

286, 290
conceptual design layers (layers 4, 5), 289, 

300, 303
concrete classes, 335
concurrency. See also multicore programming; 

parallel programming
in C++ program, 141
challenges. See challenges
defined, 37
designs, 61–62, 401–409
synchronizing, 238–268

concurrency models, 411–425
Blackboard approach

with threads, 420–421
CRCW, 242–243, 423, 424
CREW, 242–243, 282, 425
ERCW, 242–243, 424, 425
EREW, 54, 242–243, 282, 424, 425
IPC. See IPC
ITC. See ITC
MIMD, 294, 301, 303, 324, 421, 422
monitor approach, 420
in PADL (layer 4), 288, 300–303
peer-to peer

processes, 415–416
thread strategies, 271–272, 289, 415–416

pipeline model, 233, 269, 273–274, 277, 418
PRAM model, 423, 424
producer-consumer thread strategies, 272–273, 

289, 418–419
SIMD, 6, 7, 9, 29, 30, 32–33, 84, 421, 422
workpile approaches, 417

concurrent (service property), 340, 342
concurrent access to data/resources by multiple 

tasks/agents, 51–56
Concurrent Read and Concurrent Write. See CRCW
Concurrent Read and Exclusive Write. See CREW
concurrent state diagrams, 62, 64, 408
concurrent systems, model checking and, 

326, 398
concurrent_hash_map, 317
concurrent_queue, 317
concurrent_vector, 317

in listing 8–3, 318–321
condition variables, 263–268

attribute object, 264–265
multiple, testing and, 378
mutex semaphores and, 264

SF synchronization relationship (listing 7–13), 
266–267

operations, 263, 264
testing and, 378

constraints
for associations, 352
[complete], 351
declarative models and, 46
[disjoint], 351
for generalization relationships, 351
[implicit], 352
[incomplete], 351
[ordered], 352
[overlapping], 351

constructor
copy, 343, 344
default, 343, 344

consumer-producer model. See producer-consumer 
model

container adaptors, 353
container classes, 335
containers

deque, 353, 354
list, 353, 354
vector, 353, 354

contention scopes, 147, 154, 157–159
process, 154, 157, 158
pthread attr_set functions, 168
setting, 187–188
system, 157, 158

context
of process, 147
of thread, 147–149

context failure resilience, 381
context switching, 37, 60, 121, 147, 150
control flow errors, 390
control strategies (layer 3, PADL), 323–326
cooperation dependencies, 207
‹‹copy››, 350
copy constructor, 343, 344
Core 2 Duo (Intel), 31–33

comparison, 21
instruction set, 32–33
motherboard, 31–32

block diagram, 31
chipset, 32

Northbridge, 31, 32
PCI-E, 32
Southbridge, 31, 32

cores, 2. See also multicore
logical, 149
octa, 2, 17, 283
quad, 2, 3, 31, 73, 283
SMT, 149
V9, 27

cores

bindex.indd   601bindex.indd   601 7/31/08   2:34:00 PM7/31/08   2:34:00 PM



602

cost
CMPs, 4, 16, 96
parallel programming, 16, 35
Playstation 3, 29
single processor computers, 35

counting semaphore, 248
counting task dependencies, 208–210
CP, 116
%CPU, 116, 118
CPU-intensive processes, 114
CRCW (Concurrent Read and Concurrent Write), 

242–243, 423, 424
create action, 357
creation functions (pthread_mutex_t attribute 

object), 254
CREW (Concurrent Read and Exclusive Write), 

242–243, 282, 425
critical sections, 241, 340

Blackboard as, 317–318
managing, with mutex semaphores, 257

crossbar
Opteron, 23
UltraSparc T1, 27

CTEST Laboratories, 287, 328

D
data level parallelism

MIMD approach, 421, 422
SIMD approach, 421, 422

data races (race conditions), 52–54, 151, 190, 
191, 192, 204, 390

data resources, 130
data rollback, 392
data segment, 109
data structures

ITC and, 231–233
thread-safe, 268

data synchronization, 239, 240
datatypes classes, 335
DCA. See Direct Connect Architecture
deadlocks, 54–55, 64, 174, 219, 239, 241, 246, 

255, 282, 387, 395
debugging, 60–61, 376, 377, 399. See also 

testing
decision symbol, 364
declarative models, 45–46, 64, 329

AAs and, 45
concurrent constraint, 46
constraint, 46
functional, 46
languages in, 46
object-oriented, 38, 39, 40, 46, 141
procedural models v., 45, 64

decomposition, 41–47, 83, 291
AAs, 41, 44, 45
challenges, 43
defined, 41, 43
four-task application, 73–75
guess_it program, 83–85
models and, 44–46
multicore programming and, 83
and operating system’s role, 83–85
painters and, 42–44, 46–47
in text files filtering project. See text files filtering 

project
WBS, 41, 45, 268

default constructor, 343, 344
defect removal

approach for, 381–386
defect survival v., 380–381
during testing stages, 380

defect survival
defect removal v., 380–381
during exception handling, 380

defects
defined, 378

deferred cancellation, 173
deferred events, 367, 368
delegation (boss/worker) model

with processes, 412–413
thread strategy approaches, 269–271, 289, 

412–414
dependency relationships, 205–210, 282, 333, 349

communication, 205–207
cooperation, 207
stereotypes for, 349–351
task, 208–210

dependency stereotypes, 349–351
‹‹access››, 350
‹‹become››, 350
‹‹bind››, 350
‹‹call››, 350
‹‹copy››, 350
‹‹extend››, 350
‹‹friend››, 350
‹‹include››, 350
‹‹instanceof››, 350
‹‹instantiate››, 350
‹‹refine››, 350
‹‹use››, 350

deployment diagrams, 61, 62, 85
deployment view, 371
deque container, 353, 354
descendant class, 91
design layers (layers 4, 5), 289, 300, 303
design view, 371
Designing Concurrent, Distributed, and Real-Time 

Applications with UML (Gomaa), 373

cost

bindex.indd   602bindex.indd   602 7/31/08   2:34:01 PM7/31/08   2:34:01 PM



603

In
de

x

designs. See also application design; multicore 
architectures

concurrency, 61–62, 401–409
for multicore architectures, 19–34
SDLC activity, 38, 85

destroy action, 357
destruction functions (pthread_mutex_t attribute 

object), 254
destruction operation

condition variables, 264
mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258

destructor, 343, 344
detached state, 154
detached threads, 155, 169–171
development tool, operating system as. See 

operating system
diagrams (UML language primitive), 333. See 

also UML
DictionaryLexicon, 336, 337, 338, 353, 356, 372

attributes, categorization of, 344–345
multiplicity between associated classes, 347
multiplicity of classes, 347

die, 2, 21
Direct Connect Architecture (DCA), 22
disabled cancellation, 173
[disjoint], 351
distributed programming, 63, 64
distributed shared memory (DSM) architecture, 25
documentation techniques

concurrency design. See concurrency
dependency graph, 209
errors, 391
modeling. See modeling
Specifications (SDLC activity), 38
UML. See UML

domain classes, 335
do_something(), 89, 91, 92, 194, 197, 200
DSM. See distributed shared memory architecture
dual core Opteron. See Opteron
dynamic priority, 114

E
EIB (interconnect bus), 28, 30, 31
encapsulation

C++, 86
of message queue functions, 226–230
of operating system’s role, 30, 33, 34, 68, 86–93
predicates and. See predicates
in text files filtering project. See text files filtering 

project
thread_object interface class, 87–90, 93

Englemore, Robert, 299
entry/exit actions, 367, 368
environment variables, 126–127, 212–213

command-line arguments and, 212–213
list of, 126

equality operator, 343, 344
ERCW (Exclusive Read and Concurrent Write), 

242–243, 424, 425
EREW (Exclusive Read Exclusive Write), 54, 

242–243, 282, 424, 425
error handling, 391
errors

boundary related, 390
calculation, 390
control flow, 390
deadlocks, 54–55, 64, 174, 219, 239, 241, 246, 

255, 282, 387, 395
defined, 378
documentation, 391
in handling/interpreting data, 391
hardware, 391
indefinite postponement, 56, 230, 239, 282, 

301, 387
initial state, 390
later state, 390
load conditions, 391
parallel programming, 387
performance degradation, 387
priority inversion, 387
race conditions, 52–54, 151, 190, 191, 192, 

204, 390
during testing, 391
thread exhaustion, 387
user interface, 390

ethical/moral responsibility, in software 
development, 377, 399

evaluation. See testing
event

block, 366
exit, 366
wakeup, 366

event trigger, 369
evolutionary programming techniques, 300
exception classes, 394

deriving new, 395–396
extension of, 393
protecting, from exceptions, 396

exception handler, 392–396
exception handling, 380–381

after-the-fact, 381
defect survival during, 380
defined, 378
strategies, 392–393

exception object, throwing, 394–395
exclusive access, to resources, 130

exclusive access, to resources

bindex.indd   603bindex.indd   603 7/31/08   2:34:01 PM7/31/08   2:34:01 PM



604

Exclusive Read and Concurrent Write. See ERCW
Exclusive Read Exclusive Write. See EREW
exec() family of functions, 63, 122–125, 135

command-line arguments and, 238
failure conditions for, 122–123
restrictions, 125

execl() functions, 123–124
execution units, 75, 83, 96, 97. See also kernel 

threads; processes
tasks associated with (four-stage process), 96

execv() functions, 124–125
exit(), 128
exit event, 366
explicit binding, 348
‹‹extend››, 350
extreme programming model, 39

F
failover, 393
failures, 379–381
Fast option, 6
fault handling

defined, 378
fault tolerance

defined, 378, 379
exception handling, 380–381

after-the-fact, 381
defect survival during, 380
defined, 378
strategies, 392–393

logical, 391–397, 399
strategy for, 396–397

FF relationship. See finish-to-finish relationship
FIFA (Foundation for Intelligent Physical Agents) 

specification, 291
FIFO (First-In, First-Out)

interface class, 221–222
named pipes. See named pipes
scheduling policies, 115–116, 152, 160

file action attribute functions, 100
file descriptors, 48, 98, 99, 100, 128, 131, 132, 

148, 149, 213–214
file handles, for ITC, 231, 238
file_actions parameter, 99–100
files

filtering. See text files filtering project
format of, 213
with locking facilities, 48
names of, 213
open, 213
strings in, 213
transferring process, 213

filesystem management, 71

filter_thread class, 196, 197
filter_thread objects, multiple, 198–200
final state, 367
find_code program, 78, 79

multithreaded version, 80–83
object-oriented, 87–88

posix_spawn in, 104–105
finish-to-finish (FF) relationship, 57–58, 246, 265
finish-to-start (FS) relationship, 57–58, 

245–246, 265
finite-state concurrent systems, model checking 

and, 326, 398
First-In, First-Out. See FIFO
First-Order Logic analysis, 326
floating-point option, 6, 8
flows of control/communication, multiple, 360–361
focus layer, 324
fork-exec(), 98, 135, 141, 143
fork() function, 98, 104, 122, 123, 135, 141
Found variable, 82, 92
Foundation for Intelligent Physical Agents (FIFA) 

specification, 291
four-stage process, execution units and, 96
four-task application, decomposition of, 73–75
‹‹friend››, 350
Front Side Bus (FSB), 14
[frozen]

association property, 352
attribute property, 340

FS relationship. See finish-to-start relationship
FSB. See Front Side Bus
functions. See specific functions
functions (POSIX), 98

atomic, 192
multithreaded versions of, 191–192
for setting resource limits, 131–133
spawn/manage processes, 97–98

adding file actions, 98
creating processes, 98
destroying attributes, 98
initializing attributes, 98
setting/retrieving attribute values, 98

G
game scenario. See guess_it program
gatekeeper of CMP, operating system as, 69–71, 

93, 312
generalization relationships, 333, 349

constraints, 351
stereotype, 351

getenv(), 126
getpid(), 107
getppid(), 107

Exclusive Read and Concurrent Write

bindex.indd   604bindex.indd   604 7/31/08   2:34:02 PM7/31/08   2:34:02 PM



605

In
de

x

getpriority(), 120, 121
getrlimit(), 132
getting process priorities, 119–121
global (stereotype), 350
global data, ITC and, 231–233
global variable, Answer, 231, 237, 244, 257
GNU C++ compiler, 8, 28, 29, 64
Gomaa, Hassan, 373
Grady Booch’s Approach, 332
group effort, software development as, 304
group id, 98
guard condition, 369
guarded (service property), 340, 341
guess_it program, 78–85

concurrency infrastructure, block diagram of, 302
listing 4–1, 78–80
listing 4–2, 80–83
listing 5–3, 106
listing 5–5, 137–139
multiagent architectures and, 292–293
operating system components

decomposition, 83–85
PADL analysis in, 291–293, 301
PBS breakdown of, 327
physical pieces of, 85
posix_spawn and, 104–107
testing/pretest (flow of processes), 382–383

concurrency model for agents, 382
declarative implementation of PBS, 383
listing 10-1 (declarative implementation of 

guess_it), 383
listing 10-2 (valid_code predicate, declaration 

of), 384
listing 10-3 (valid_code predicate, definition of), 

384–385
PBS of agent solution model, 383
problem statement, 382
processes before, 382–383
revised agent model, 382
rough-cut solution model, 382
solution model-with layer 5 PADL, 382
strategy, 383

Guide for Developing Software Life Cycle Processes 
(IEEE std 1074), 287

H
handling data, errors in, 391
hardware errors, 391
hardware resources, 130
hardware synchronization, 239
hardware-independent interface, 20, 33, 34
hardware-specific issues, 20, 21, 33, 34
heterogeneous CMP designs, 28, 29, 30, 33

hiding. See encapsulation
$HOME, 126
homogeneous CMP designs, 29, 33
house painters. See painters
HT technology. See HyperTransport technology
hybrid multicore architectures, 3–4
hybrid threads, 144, 145
hyperthreaded processor, 3, 25
hyperthreading, 3, 31, 149
HyperTransport (HT) technology, 22, 23, 25

I
IBM Cell Broadband Engine. See CBE
icon, class, 336, 347, 348
id

PID, 107, 116
PPID, 109, 116
thread, 166–167
user, 98

IEEE (Institute of Electrical and Electronics 
Engineers), 386

POSIX standards, 63
for Process Management, 567–592
Single Unix Specification Version 3 and, 

63–64, 248
for Thread Management, 427–526

standard software engineering tests, 386–399
std 1003.1–2001, 63
std 1008, 386
std 1012, 386, 387, 389
std 1074, 287

ILP (inductive logic programming) techniques, 300
imperative programming, 46, 287, 300, 326, 327, 

328, 329, 381
‹‹implementation››, 351
implementation (SDLC activity), 38
‘implementation layer’ mapping, 323
implementation model of PADL (layer 3), 289, 

304–326
control strategies, 323–326

implementation view, 371
[implicit], 352
implicit (constraint), 352
implicit binding, 348
‹‹include››, 350
[incomplete], 351
incremental model, 39
indefinite postponement, 56, 230, 239, 282, 

301, 387
inductive logic programming (ILP) techniques, 300
infinite number (multiplicity notation), 347

one to, 347
zero to, 347

infi nite number (multiplicity notation)

bindex.indd   605bindex.indd   605 7/31/08   2:34:02 PM7/31/08   2:34:02 PM



606

inheritance, 89, 90, 98, 119, 121, 126, 130, 141
exception class extension through, 393
multiple/single, UML diagram, 404

initial state, 367
errors, 390

initialization operation
condition variables, 264
mutex semaphores, 253
POSIX semaphores, 248
read-write locks, 258

‹‹instanceof››, 350
instances of a class, 345–347

anonymous, 346
multiobjects and, 347, 348
multiple, 347
named, 345
orphan, 346
visualizing, 345–347

‹‹instantiate››, 350
instantiation of a class (object), 345
Institute of Electrical and Electronics Engineers. 

See IEEE
instruction set, 7–9

compilers and, 7–9
Core 2 Duo, 32–33

integration testing, 379
Intel C/C++ compiler, 64
Intel Core 2 Duo processor. See Core 2 Duo
Intel Threading Building Blocks library. See 

TBB library
interaction diagrams, 405–407
interactional agents, 291
interactive objects, organization of, 356
interconnect bus (EIB), 28, 30, 31
interface, 68, 93. See also APIs; POSIX; SPIs
‹‹interface››, 354
interface classes (C++), 86–93, 335, 353. See also 

posix_process interface class; thread_object 
interface class

FIFO, 221–222
message queue, 224–230
mutex (C++0x standard), 312–316
predicates, processes and, 137–141
stack class as, 354, 355
thread (C++0x standard), 305–312
visualizing, 353–355
as wrappers, 86, 192, 193

thread_object, 193, 201
internal transitions, 367, 368
International Organization for Standardization. See 

ISO standard
interpreting data, errors in, 391
Interprocess class library, 305
Interprocess Communications. See IPC
Interthread Communications. See ITC

I/O controller, 32
I/O management, 71
IPC (Interprocess Communications), 47–51, 

152, 210–230, 282, 411–412
as bridges, 49–50
challenges, 49
defined, 210, 282
diagram, 412
ITC v., 51, 231
list, 48–49
Manager, 71, 94
operating system APIs and, 210, 282
persistence of, 211–212

ISO (International Standardization) standard
C++ and, 17, 62, 63

isQuery (service property), 340
ITC (Interthread Communications), 50, 51, 

230–238, 282, 411–412
data structures and, 231–233
defined, 282
diagram, 412
file handles for, 231, 238
global data and, 231–233
IPC v., 51, 231
parameters for, 234–238
variables and, 231–233

iteration marker, 362
iterative shared solution space, Blackboard as, 

298–299

J
Jacobson, Ivar, 371, 372
joining threads, 165–166

K
kernel mode, 108, 146
kernel processes, 108
kernel stack, 109
kernel threads (lightweight processes), 51, 

73, 75, 77, 144, 200
kill() function, 128–129
killing processes, 127–129. See also 

terminating
knowbot, 290. See also agents
knowledge sources (KS), 294, 299–300

anatomy of, 299–300
for ‘question and answer browser’ 

program, 297
rational agents as, 299–300

Kripke Structures, 398
KS. See knowledge sources

inheritance

bindex.indd   606bindex.indd   606 7/31/08   2:34:03 PM7/31/08   2:34:03 PM



607

In
de

x

L
L1 cache, 12
L2 cache, 12–13

UltraSparc T1, 28
lag time, 58
language primitives, UML, 332–333
languages

in declarative models, 46
in software development methodologies, 39
Universal Modeling Language. See UML

later state, errors in, 390
layers, PADL model

1 (operating system), 288, 289
2 (POSIX APIs), 288, 289, 290
3 (implementation model of PADL), 288, 289, 

304–326
4 (concurrency models in PADL), 288, 300–303
5 (application architecture selection), 288, 

290–300
levels, software layer

1, 69–71
2, 69–71. See also APIs
3, 69–71. See also TBB library
4, 69–71. See also STAPL

Lexicon system
activity diagram with swimlanes in, 364–365
packages in, 372
sequence diagram of objects in, 362
structural part of, 356

libraries
approach, to parallelism, 62–64
Boost C++, 316

mutex class, implementation of (listing 8–2), 
312–316

thread class, implementation of (listing 8–1), 
305–312

C++0x standard, 305
asio, 305
Interprocess, 305
MPI, 305

multicore-aware, 71
multithreaded versions of, 191–192
pthread, 154, 162
shared, 130
STAPL, 69, 70, 76, 84, 86, 93, 94, 321–323, 567
TBB, 70, 71, 86, 317–321
thread safe, 71, 190–192

library functions, cancellation-safe, 177
lightweight processes (kernel threads), 51, 73, 75, 

77, 144, 200
linear-sequential model, 40
link (between objects), 357
linking threaded programs, 162
Linux, CBE and, 29

list container, 353, 354
listings (code)

2-1 (UltraSparc T1), 25, 29
4-1 (guess_it program), 78–80
4-2 (find_code, multithreaded version), 80–83
4-3 (ofind_code), 87–88
4-4 (thread_object, declaration), 88–90
4-5 (thread_object, implementation), 90–91
4-6 (user_thread class, definitions), 91–92
5-1 (ofind_code, posix_spawn and), 104–105
5-2 (posix_process interface class), 105
5-3 (guess_it , posix_process and), 106
5-4 (posix_process, method definitions for), 

106–107
5-5 (guess_it, declarative form), 137–139
5-6 (valid_code), 139
5-7 (valid_code, definitions for), 139–140
6-1 (passing arguments to thread), 163–165
6-2 (thread_object/user_thread, declaration of), 

193–194
6-3 (thread_object class, definition of), 194–196
6-4 (filter_thread class, definition of), 196–197
6-5 (filter_thread objects, multiple), 198–200
7-1 (named pipe, creation), 218–219
7-2 (named pipe, reading), 219–220
7-3 (posix_queue class, declaration of), 224–226
7-4, 7-5, 7-6 (ITC and global data/ variables/data 

structures), 231–234
7-7, 7-8 (parameters for ITC), 234–238
7-9 (semaphores, on output file), 249–250
7-10 (semaphores, on input file), 250–251
7-11 (object-oriented mutex class, 

declaration), 261
7-12 (permit class, definition of), 262
7-13 (synchronization relationship, condition 

variables/mutexes), 266–267
8-1 (C++0x thread class, implementation of ), 

305–312
8-2 (C++0x mutex class, implementation of), 

312–316
8-3 (concurrent_vector, parallel_for, from TBB), 

318–321
10-1 (declarative implementation of 

guess_it),383
10-2 (valid_code predicate, declaration of), 384
10-3 (valid_code predicate, definition of), 

384–385
10-4 (user-defined posix_process interface class, 

definitions for), 388–389
load conditions, 391
local (stereotype), 358
locality

spatial, 12
temporal, 12

locking facilities, 48

locking facilities

bindex.indd   607bindex.indd   607 7/31/08   2:34:03 PM7/31/08   2:34:03 PM



608

logic
First-Order Logic analysis, 326
ILP techniques, 300
modal, 286
possible worlds in, 398

logic programming, 39, 40, 186
logical cores, 149
logical fault tolerance, 391–397, 399. See also 

fault tolerance
logic_error classes, 394, 395
loop unrolling, 7, 33

compiler option, 7
low-level operating system primitives, 93, 287, 

290, 300, 312, 323, 329
LWP, 116

M
MagicCode, 82, 85, 89
$MAIL, 126
maintenance (SDLC activity), 38
managing processes. See process management
massively parallel CMPs, 7, 86, 94, 282, 284–287, 

290, 300, 304, 326, 328, 398
%MEM, 116, 118
memory, 9–14. See also cache; PRAM models; 

RAM; registers
hierarchy, 10–14
models, CBE, 29–30
shared, 49, 152, 214

POSIX, 214–216
sizes, 10
speeds, 10–11

memory bandwidth, 7
compiler option, 7

memory controller hub, 32
memory controllers

UltraSparc T1, 28
memory flow controller (MFC), 30, 31
memory management, 71
memory management unit (MMU), 30, 31
Message Passing Interface (MPI) class library, 305
message queues (POSIX), 49, 50, 222–230

functions
encapsulation of, 226–230
list, 74

interface class, 224–230
posix_queue class, 224–230

declaration of, 224–226
using, 222–224

message sequences, between objects, 361–363
MFC (memory flow controller), 30, 31
MIMD (Multiple Instruction Multiple Data), 294, 

301, 303, 324, 421, 422

minimal standard interface, 344
mkfifo(), 218–219
MMU (memory management unit), 

30, 31
MMX registers, 6, 33
modal logic, 286
mode

kernel, 108, 146
user, 108, 146

model checking, 326, 398
model implementation, 304
model, of system, 331, 372
modeling, 331
modeling concurrent systems, 331–373

architectural perspective (whole system), 331, 
371–372

behavioral perspective (concurrent behavior), 331, 
357–370

Designing Concurrent, Distributed, and Real-Time 
Applications with UML, 373

diagrams, 373
for active objects, 359–360
activity, 62, 64, 407
class, 89, 401–405
collaboration, 62, 357–358, 405–406
component, 61
of concurrent substates, 369–370
deployment, 61, 62, 85
interaction, 405–407
object, 401–405
package, 409
sequence, 62, 361–362, 406
state/concurrent state, 62, 64, 366–367, 408
as UML language primitive, 333

structural perspective (system structure), 331, 
334–356

classes, 334–336
UML and, 332–333. See also UML
visualizing

attributes, 336–339
classes, 336
instances of a class, 345–347
interface classes, 353–355
responsibilities, 336–339
services, 336–339
template classes, 348–349

models, 44–46
CBE memory models, 29–30
concurrency. See concurrency models
declarative, 45–46, 64

AAs and, 45
concurrent constraint, 46
constraint, 46
functional, 46
languages in, 46

logic

bindex.indd   608bindex.indd   608 7/31/08   2:34:04 PM7/31/08   2:34:04 PM



609

In
de

x

object-oriented, 46
procedural models v., 45, 64

decomposition and, 44–46
defined, 44, 331
PADL. See PADL model
procedural, 45, 64

declarative models v., 45, 64
sequential model of programming and, 45
WBS and, 45

sequential. See sequential model of 
programming

software development. See software 
development methodologies

termination, 397
monitor approach, 420
monitoring processes, with ps utility, 105, 116–119
moral/ethical responsibility, in software 

development, 377, 399
Morgan, Tony, 299
MorphologyAgent, 336, 356, 364, 

365, 372
motherboard, Intel Core 2 duo, 31–32
MPI (Message Passing Interface) class 

library, 305
MPMD (Multiple Program Multiple Data), 

274–275
mq_close(), 74, 223, 229
mq_getattr(), 74
mq_notify(), 74
mq_open(), 74
mq_receive(), 74, 178, 224, 228
mq_send(), 74
mq_setattr(), 74
MTSD (Multiple Threads Single Data), 

275, 281
multiagent architectures, 291–293, 328

guess_it program and, 292–293
multicore. See also CMPs

as CMPs, 2, 96
defined, 2
as multiprocessor, 96

multicore architectures, 2–3
CBE, 3, 17, 28–31
challenges in, 64
comparison of, 21
Core 2 Duo, 21, 31–33
designs for, 19–34
hybrid, 3–4
Opteron dual core, 21–25
software redesigning for, 1
trend in, 3, 14, 36, 45, 65, 86, 283
UltraSparc T1, 25–28

multicore programming
bottom-up, 5, 17, 21
challenges, 35–65

decomposition and, 83. See also 
decomposition

operating system’s role in. See operating 
system’s role

SDLC and, 37–41, 59, 64, 65
sequential programming v., 2, 4, 15, 36, 65
single core to, 15–17
testing for. See testing
top-down, 17

multilevel priority queue, 114
multiobjects, 347, 348
multiparadigm programming, 5, 46, 64, 86
multiple condition variables, 378
multiple filter_thread objects, 198–200
multiple flows of control/communication, 

360–361
multiple instances of classes, 347
Multiple Instruction Multiple Data. See MIMD
Multiple Program Multiple Data. See MPMD
Multiple Threads Single Data. See MTSD
multiplicity

between associated classes, 347
in associations, 352
of classes, 347
notation, 347

0 to 1, 347
0 to infinite number, 347
infinite number, 347
one instance, 347
one to infinite number, 347
one to specified number n, 347

multiprocessing, 15
implementing, in C++, 62–64

multiprocessors, 96. See also CMPs
classic, 3
defined, 15, 96
massive, application design for, 

284–287
multicore as, 96

multiprogramming, 15
multitasking, 76, 359–361
multithreaded process, 143–144, 200
multithreaded version(s)

find_code program, 80–83
of libraries/functions, 191–192

multithreading, 143–201, 359–361. See 
also threads

chip-level, 25, 29, 149
key points, 200–201

mutex attribute object, 254–256. See also 
pthread_mutex_t attribute object

mutex class, object-oriented, 261
mutex exhaustion, 387
mutex interface class (C++0x standard), 312

implementation of (listing 8–2), 312–316

mutex interface class (C++0x standard)

bindex.indd   609bindex.indd   609 7/31/08   2:34:04 PM7/31/08   2:34:04 PM



610

mutex semaphores, 252–257
condition variables and, 264

SF synchronization relationship (listing 7–13), 
266–267

critical sections and, 257
private v. shared, 256
testing and, 378

mutual exclusion, 252. See also mutex semaphores
MXCSR registers, 33

N
name(s)

for associations, 352
of class, 336
of files, 213
of state, 367

named instances of classes, 345
named pipes, 216, 218–221. See also FIFO

creation of, 218–219
reader for, 219–220

n-ary associations, 349
natural language processing (NLP) system, 276, 

296. See also text files filtering project
NI, 116
nice classes, 343, 344
nice value, 119, 120, 121
nice() function, 119, 120, 121
NLP (natural language processing) system, 276, 

296. See also text files filtering project
NLWP, 116
node classes, 335
Non-Uniform Memory Access (NUMA) architecture, 

24–25
Northbridge, 31, 32
notation, multiplicity, 347
notification, for outside assistance, 393
NUMA architecture. See Non-Uniform Memory 

Access architecture
numbers

multiplicity notation, 347
0 to 1, 347
0 to infinite number, 347
infinite number, 347
one instance, 347
one to infinite number, 347
one to specified number n, 347

O
object(s), 345

actions and, 357
call, 357
create, 357

destroy, 357
return, 357
send, 357

active, 359–360
associations, 333, 349

bi-directional, 349
binary, 349
constraints, 352
link, 357
multiplicity in, 352
names for, 352
n-ary, 349
navigation, 351
properties, 352
role in, 352
type, 352
unidirectional, 349, 352

attribute. See attribute object
classes, relationships between, 349–353
collaborating, 357–359
defined, 345
interactive, organization of, 356
link between, 357
message sequences between, 361–363
template, 348
visibility of, 357–358

object diagrams, 401–405
Object Management Group (OMG), 332
Object Modeling Technique (OMT), 332
object-oriented find_code program. See find_code 

program
object-oriented model, 38, 39, 40, 46, 141
object-oriented mutex class, 261
object-oriented programming (OOP), 38, 45, 86
Object-Oriented Software Engineering (OOSE), 

38, 332
object-oriented (OO) software systems, 332
octa-core CMPs, 2, 17, 283
ofind_code, 87–88, 104–105
OMG (Object Management Group), 332
OMT (Object Modeling Technique), 332
one instance (multiplicity notation), 347
one to infinite number (multiplicity 

notation), 347
one to specified number n (multiplicity 

notation), 347
‘one-to-one’ thread mapping, 146
OO software systems, 332
OOP (object-oriented programming), 38, 45, 86
OOSE (Object-Oriented Software Engineering), 

38, 332
open(), 214, 218

definition for, 226
Open Group Base Specifications Issue 6, 63. See 

also IEEE

mutex semaphores

bindex.indd   610bindex.indd   610 7/31/08   2:34:04 PM7/31/08   2:34:04 PM



611

In
de

x

OpenMP, 322
directives, 6
parallelization with, 6

operating system
APIs. See APIs
core services, 71–75, 94
as gatekeeper of CMP, 69–71, 93, 312
hardware-independent interface, 20, 33, 34
layer 1 (PADL), 288, 289
POSIX-compliant, 17, 26
primitives, 93, 287, 290, 300, 312, 323, 329
SPIs. See SPIs
transparency, 72, 86, 94, 105

operating system’s role (in multicore programming), 
67–94, 283, 316

decomposition and, 83–85
developer’s interaction and, 69–71
encapsulation of, 30, 33, 34, 68, 86–93
overview, 68–69
resource management, 68–69, 94
software interface, 68, 93
software layers and, 69–71

operation retry, 393
operational testing, 380
operations. See services
operator(), 139, 140, 279, 280, 384
operator

assignment, 343, 344
equality, 343, 344

Opteron (dual core, AMD), 21–25
block diagram, 22
comparison, 21
crossbar, 23
DCA, 22
HT technology, 22, 23, 25
NUMA architecture, 24–25
SRI, 23

order of execution models, 244
[ordered], 352
ordering attributes/services, 343–345

by access, 343
by category, 343, 344
by category names, 344, 345

orphan instances of classes, 346
[overlapping], 351

P
package diagrams, 409
packages, 333, 371–372, 373
PADL (Parallel Application Design Layers) model, 

287–326, 328–329
goal of, 375
guess_it program and, 291–293, 301

layer 1 (operating system), 288, 289
layer 2 (POSIX APIs), 288, 289, 290
layer 3 (implementation model of PADL), 288, 289, 

304–326
layer 4 (concurrency models in PADL), 288, 

300–303
layer 5 (application architecture selection), 288, 

290–300
overview, 287–290

page frame number, 110
page tables, 109
pages, 110
painters (example)

communication in, 51, 204
data race in, 52–54
deadlock in, 54–55
decomposition in, 42–44, 46–47
indefinite postponement in, 56
synchronization in, 204
timing considerations in, 58–59

pAlgorithms, 322
Parallel Application Design Layers. See 

PADL model
parallel design, documentation of, 61–62
parallel programming, 4, 15–16. See also 

multicore programming
CMPs and, 4
cost, 16, 35
defined, 15, 17
errors, 387
testing for. See testing
tradition and, 35

Parallel Random-Access Machine model. See 
PRAM models

parallel STL library. See STAPL
parallel_for, 317

in listing 8–3, 318–321
parallelism

architectural approach to, 287. See also 
application design

data level
MIMD approach, 421, 422
SIMD approach, 421, 422

implementation of
C++ ISO standard, 62, 63

library approach to, 62–64
massive, 7, 86, 94, 282, 284–287, 290, 300, 

304, 326, 328, 398
Stroustrup on, 62–63

parallelization with OpenMP option, 6
parallel_reduce, 317
parallel_scan, 317
parallel_sort, 317
parallel_while, 317
parameter (stereotype), 358

parameter (stereotype)

bindex.indd   611bindex.indd   611 7/31/08   2:34:05 PM7/31/08   2:34:05 PM



612

parameters
attrp, 100–102
file_actions, 99–100
for ITC, 234–238
path, 99, 123
resource, 131

parent class, 349
parent process id. See PPID
parent processes, 80, 141, 152
path parameter, 99, 123
$PATH, 126
patterns of work, 288, 290, 291, 323, 326, 329
PBS (Predicate Breakdown Structure), 287, 

326–328, 329, 375
coding, 328
goal of, 375
for guess_it program, 327
PADL, SDLC and, 328

PCB (process control block), 108–109, 141
PCI (Peripheral Component Interconnect), 14, 32
PCI-Express (PCI-E), 32
pContainers, 322
peer thread

cancellation of, 174
peer threads, 150, 153

terminating, 172
peer-to peer model

with processes, 415–416
thread strategy approach, 271–272, 289, 

415–416
performance degradation, 387
Peripheral Component Interconnect. See PCI
permit class, 261–262

definition of, 262
persistence, 211

of IPC, 211–212
PFN (physical page frame number), 110
physical page frame number (PFN), 110
PID (process id), 107, 116
pipeline (TBB generic parallel algorithm), 317
pipelines

agent model, 278–282. See also text files filtering 
project

six-stage, 27
thread model, 233, 269, 273–274, 277, 289, 418

pipes, 49, 216–222
platform-specific optimizations, 20, 21, 33, 34
Playstation 3, 29
Portable Operating System Interface. See POSIX
POSIX (Portable Operating System Interface)

APIs. See APIs
defined, 75–76
exec() functions. See exec() family of functions
functions. See functions
IPC. See IPC

message queues. See message queues
scheduling policies. See scheduling policies
semaphores, 248–252
shared memory, 214–215
standards, 17, 63, 64

for operating systems, 17, 26
for Process Management, 567–592
Single Unix Specification Version 3 and, 

63–64, 248
for Thread Management, 427–526

thread library, 154
threads. See pthreads

posix_process interface class, 105, 106, 138, 
141, 389

definitions for (listing 10–4), 388–389
listing 5–2, 105
listing 5–3, 106
listing 5–4, 106–107

PosixQueue, 82, 85, 89
posix_queue class, 224–230

declaration of, 224–226
posix_spawnattr_t structure, 100–103

spawn process attributes functions in, 101–102
posix_spawn_file_actions object, 98, 99, 100
posix_spawn() function, 63, 74, 78, 79, 80, 

98–107, 135
example, 103–104
guess_it program and, 104–107

posix_spawnp(), 98, 99
possible worlds, 398
PowerPC Processing Element. See PPE
PPE (PowerPC Processing Element), 28, 29, 30, 31
PPID (parent process id), 109, 116
PRAM (Parallel Random-Access Machine) models, 

242–243, 282, 423, 424
CRCW, 242–243, 423, 424
CREW, 242–243, 282, 425
ERCW, 242–243, 424, 425
EREW, 54, 242–243, 282, 424, 425

pRange, 322
Predicate Breakdown Structure. See PBS
predicate class

valid_code
declaration of, 384
definition of, 384–385

predicate exceptions, 397–398
predicates, 141, 384

defined, 137
interface classes, processes and, 137–141

PRI, 116, 118
primary thread, 143, 159, 200
primitives

operating system, 93, 287, 290, 300, 312, 
323, 329

UML language, 332–333

parameters

bindex.indd   612bindex.indd   612 7/31/08   2:34:05 PM7/31/08   2:34:05 PM



613

In
de

x

PRIO_PGRP, 120
PRIO_PROCESS, 120
priorities

dynamic, 114
process, setting /getting, 119–121
static, 114
of threads, 155

priority ceiling functions (pthread_mutex_t 
attribute object), 254

priority inversion, 387
priority queue, multilevel, 114
PRIO_USER, 120
private v. shared mutex semaphores, 256
problem decomposition. See decomposition
problem solvers (Blackboard), 293, 294, 295
procedural models, 45, 64. See also imperative 

programming
declarative models v., 45, 64
sequential model of programming and, 45
WBS and, 45

process (stereotype), 359
process contention scope, 154, 157, 158
process context, 147
process control, 109
process control block (PCB), 108–109, 141
process creation, 121–125
process environment variables, 126–127
process group id, 98, 99, 129
process id (PID), 107, 116
process image, 109
process lifecycle, 76–77
process management, 71, 76–83

game scenario, 77–83
POSIX functions for, 97–98

process resources. See resources
process states, 111–114
process tables, 111
process view, 371
processes, 47–48, 108–137

address space, virtual, 110, 111
anatomy, 47, 50, 109–111
asynchronous, 133–135
child, 79, 80, 82, 141, 152
communication between, 47–51
concurrency models with. See concurrency models
context of, 147
CPU-intensive, 114
creation of. See process creation
defined, 97
delegation model with, 412–413
differences, with threads, 152–153, 203
four-stage, execution units and, 96
IPC mechanisms, 47–51
kernel, 108
killing, 127–129

lightweight, 51, 73, 75, 77, 144, 200
monitoring, with ps utility, 105, 116–119
multitasking with, 76, 359–361
multithreaded, 143–144, 200
necessary number of, 59–60
parent, 80, 141, 152
peer-to-peer model with, 415–416
POSIX Standard for Process Management, 

567–592
predicates, and interface classes, 137–141
priorities, setting/getting, 119–121
programs v., 97
reuse and, 151
scheduling of, 114–116
similarities, with threads, 152–153, 201
spawn/manage, POSIX functions for, 97–98
state of, 111–114
synchronous, 133–135
system, 108
tasks to, 74
threads v., 50, 97, 150–153
user, 108
variables for, 188–189

processor architecture. See multicore 
architectures; single core processor 
architecture

processor state, 109
processor-to-bus configuration, 14–15
producer-consumer model (thread strategies), 

272–273, 289, 418–419
profilers, 61
program code, 109
program profiles, 26. See also listings
programmer ethics, 377, 399
programming. See multicore programming; parallel 

programming
programming languages. See languages
programs, 95, 97. See also processes

processes v., 97
properties. See specific properties
protocol functions (pthread_mutex_t attribute 

object), 254–255
ps utility, 105, 116–119
pthread attribute object, 167–171

default values, 168–169
Linux/Solaris environment, 169

detached threads from, 169–171
pthread attr_set functions, 167–168

contention scope, 168
detach state, 167
inheritance scheduling, 168
initialization, 167
parameter scheduling, 169
policy scheduling, 168
stack management, 167

pthread attr_set functions

bindex.indd   613bindex.indd   613 7/31/08   2:34:06 PM7/31/08   2:34:06 PM



614

pthread_attr_t, 167–168
pthread_cond_t, 263–265
pthread_create(), 80, 82, 85, 89, 91, 138, 161, 

162, 163, 166, 168, 196, 201, 312
pthread_mutex_t attribute object, 254–256

functions, 254–256
creation/destruction, 254
priority ceiling, 254
protocol, 254–255
shared, 255
type, 255

pthread_rwlock_t attribute object, 258–259
pthreads (POSIX threads), 29, 63, 82

library, 154, 162
pure abstract classes, 347

Q
quad core CMPs, 2, 3, 31, 73, 283
quantum, 76, 77, 108
‘question and answer browser’ program 

(Blackboard), 296–298
components of solution, 296–297
concurrency infrastructure, block diagram 

of, 302
KS for, 297
listing 8–3, 318–321
PADL analysis of, 301

R
race conditions (data races), 52–54, 151, 

190, 191, 192, 204, 390
RAM (system main memory), 13–14
rapid prototyping model, 40
rational agents, 299–300
reader, 219–220
read-write locks, 257–263

access policy implementation with, 259–261
testing and, 378

ready queues, 112, 113, 114, 115, 116, 159
ready state. See runnable state
realization, 333, 354

of template class, 354, 355
receive(), 228. See also mq_receive()
redundancy, 393
reentrant code, 130, 190
‹‹refine››, 350
registers, 10, 11–12

MMX, 6, 33
MXCSR, 33
XMM, 33

regression testing, 379

relationships
(UML language primitive), 333
associations, 333, 349

constraints, 352
navigation, 351
properties, 352
type, 352

between classes and objects, 349–353
dependency, 333, 349. See also dependency 

stereotypes
stereotypes for, 349–351

generalization, 333, 349
constraints, 351
stereotype, 351

synchronization. See synchronization
whole-part, 352

release ownership operation
mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258

reliability
defined, 378
programmer ethics and, 377, 399

remove(), 229
request ownership operation

mutex semaphores, 253
POSIX semaphores, 248
read-write locks, 258

resource contention, 59
resource limits, POSIX functions for, 131–133
resource management, 68–69, 94
resource parameter, 131
resource reallocation/deallocation, 392
resources

data, 130
defined, 129–133
exclusive access to, 130
hardware, 130
sharable, 130, 238–239
software, 130
thread, 149–150
types of, 131
unshared, 130

responsibilities (of class), 336
visualizing, 336–339

return action, 357
reuse

processes and, 151
threads and, 151

RLIM_INFINITY, 131
RLIMIT_AS, 132
RLIMIT_CORE, 132
RLIMIT_CPU, 132
RLIMIT_DATA, 132
RLIMIT_FSIZE, 132

pthread_attr_t

bindex.indd   614bindex.indd   614 7/31/08   2:34:06 PM7/31/08   2:34:06 PM



615

In
de

x

RLIMIT_NOFILE, 132
RLIMIT_STACK, 132
RLIM_SAVED_CUR, 131
RLIM_SAVED_MAX, 131
role (in associations), 352
root class, 349
round robin (RR) scheduling policies, 

115–116, 159
RR (round robin) scheduling policies, 

115–116, 159
RSS, 116
Rumbaugh, James, 371, 372

OMT of, 332
run() method, 87, 91, 92, 107
runnable (ready) state, 111, 112, 113, 114
running state, 111, 112, 113, 114
Runtime system (STAPL), 322
runtime_error classes, 394
RUSAGE_CHILDREN, 132, 133
RUSAGE_SELF, 132, 133

S
S (header), 116
safe

cancellation-
library functions, 177
system calls, 177

thread-
data structures, 268

SCHED_FIFO, 77
SCHED_OTHER, 77
SCHED_RR, 77
SCHED_SPORADIC, 77
scheduling allocation domains, 160
scheduling, of processes, 114–116
scheduling policies (POSIX), 76–77, 99, 100, 101, 

115, 149, 152
FIFO, 115–116, 152, 160
‘other,’ 160
round robin, 115–116, 159
thread, 155

setting, 183–187
SDLC. See Software Development Life Cycle
self (stereotype), 358
self-delegation symbol, 363
self-transitions, 367, 368
semaphores, 49, 247–257

binary, 248
counting, 248
on input file (listing 7–10), 250–251
mutex, 252–257

testing and, 378
operations, 247–248

on output file (listing 7–9), 249–250
POSIX, 248–252

operations, 248–249
variable for, 188–189

semiautonomous/autonomous agents, 291
send(), 177. See also mq_send()

definition for, 227
send action, 357
sequence diagrams, 62, 361–363, 406
sequence synchronization, 244
sequential (service property), 340, 341
sequential model of programming, 1, 35–36

defined, 36
multicore programming v., 2, 4, 15, 35–36, 65
procedural model and, 45
testing in, 60
tradition, 35

Serial Peripheral Interface (SPI), 32
services (of classes), 336–339

ordering, 343–345
by access, 343
by category, 343, 344
by category names, 344, 345

properties
concurrent, 340, 342
guarded, 340, 341
isQuery, 340
sequential, 340, 341

visibility of, 343
setenv(), 127
setpriority(), 120, 121
setrlimit() function, 131, 132
setting process priorities, 119–121
SF relationship. See start-to-finish relationship
sharable resources, 130, 238–239
shared functions (pthread_mutex_t attribute 

object), 255
shared libraries, 130
shared memory, 49, 152, 214

POSIX, 214–216
shared v. private mutex semphores, 256
$SHELL, 126
SID, 116
signal masks, 98, 101, 149
signaling operation, conditioning variable 

and, 264
SIMD (Single Instruction Multiple Data), 84, 

274–275, 421, 422
compiler and, 6, 7, 9
Core 2 Duo instruction set and, 32–33
PPE and, 30
SPEs and, 29, 30
SSE and, 6, 32–33

simple name, of class, 336
simultaneous multithreaded (SMT) cores, 149

simultaneous multithreaded (SMT) cores

bindex.indd   615bindex.indd   615 7/31/08   2:34:07 PM7/31/08   2:34:07 PM



616

single core processor architecture, 5–15
application development, 1
multicore programming and, 15–17

Single Instruction Multiple Data. See SIMD
Single Program Multiple Data. See SPMD
Single Unix Specification Version 3, 63–64, 248. 

See also IEEE
singleton class, 347
situated agents, 291
situational calculus, 286
six-character code guessing. See guess_it program
six-stage pipeline, 27
sleeping state, 113
smart object, 290. See also agents
SMP. See symmetric multiprocessor
SMT (simultaneous multithreaded) cores, 149
society, of agents

structured, 291
whole more than sum in, 291

sockets, 49
softbot, 290. See also agents
software

decomposition. See decomposition
interface, 68, 93. See also APIs; POSIX; SPIs
operating system. See operating system
programs. See programs
redesigning, for multicore processors, 1
reliability, programmer ethics and, 377, 399

software broker, 290. See also agents
software development, 37–38, 44

concurrency challenges. See challenges
defined, 44
ethical/moral responsibility in, 377, 399
as group effort, 304

software development group, 304
Software Development Life Cycle (SDLC), 37–41

activities, 38, 41
design, 38, 85
Guide for Developing Software Life Cycle 

Processes, 287
implementation, 38
maintenance, 38
multicore programming and, 37–41, 59, 64, 65
PADL and, 287. See also PADL model
PBS, PADL and, 328
specifications, 38
testing and evaluation, 38, 375

during all activities, 381
software development methodologies, 38–40

agile, 39
build and fix, 39
extreme programming, 39
incremental, 39
languages in, 39
linear-sequential model, 40

object-oriented, 38, 39, 40, 46, 141
rapid prototyping, 40
similarities in, 41
spiral, 40
structured, 40
waterfall, 40

software layers, 69–71. See also operating 
system

level 1, 69–71
level 2, 69–71
level 3, 69–71
level 4, 69–71

software resources, 130
sharing, 238–239

software system. See system
software-automated painters. See painters
solution decomposition. See decomposition
solution spaces, 295, 297, 298, 324

iterative shared, Blackboard as, 298–299
some_assertion method, 281
source state, 369
Southbridge, 21, 32
spatial locality, 12
spawn_() function. See posix_spawn() function
spawn process attributes functions, 101–102
spawn/manage processes, POSIX functions for, 

97–98
adding file actions, 98
creating processes, 98
destroying attributes, 98
initializing attributes, 98
setting/retrieving attribute values, 98

specification testing, 379
specifications (SDLC activity), 38
SPEs. See Synergistic Processor Elements
spiral model, 40
SPIs (Serial Peripheral Interfaces), 32
SPIs (System Programming Interfaces), 68, 

69, 70, 72, 94
SPMD (Single Program Multiple Data), 

274–275
SPUs. See synergistic processor units
SRI. See System Request Interface
SS relationship. See start-to-start relationship
SSE (Streaming SIMD Extensions), 6, 32–33
stack class, 353

as interface class, 354, 355
stacks

address, 154
cleanup, 178, 179
location of , setting, 182–183
managing, 180–183
segment, 109
size, 154

setting, 181–182

single core processor architecture

bindex.indd   616bindex.indd   616 7/31/08   2:34:07 PM7/31/08   2:34:07 PM



617

In
de

x

standard software engineering testing, 
386–399

Standard Template Adaptive Parallel Library. 
See STAPL

STAPL (Standard Template Adaptive Parallel 
Library), 69, 70, 76, 84, 86, 93, 94, 
321–323, 567

components of, 322
pAlgorithms, 322
pContainers, 322
pRange, 322
Runtime, 322
Views, 322

goal of, 70, 94
online information for, 323
Stroustrup and, 322
structure of (block diagram), 322–323
TBB and, 322

START, 116
start-to-finish (SF) relationship, 57–58, 246, 265

condition variables/mutexes in (listing 7–13), 
266–267

start-to-start (SS) relationship, 57–58, 245
STAT, 116, 118, 119
state(s)

cancelability, 172, 173
composite, 369
defined, 365
detached, 154
diagrams, 62, 64, 366–367, 408
final, 367
initial, 367
parts of, 367

deferred events, 367, 368
entry/exit actions, 367, 368
internal transitions, 367, 368
name, 367
self-transitions, 367, 368

of processes, 111–114
runnable (ready), 111, 112, 113, 114
running, 111, 112, 113, 114
sleeping, 113
stopped, 112, 113, 114
waiting (blocked), 112, 113, 114
zombied, 111, 112, 113, 114

of processor, 109
source, 369
substates, 369–370
superstate, 367, 369
target, 369
thread, 156–157

state machines, 365–370
state transitions, 112–113

defined, 112
list of, 112–113

static priority, 114
stereotypes, 350

association, 358
dependency, 349–351. See also dependency 

stereotypes
generalization, 351
global, 350
local, 358
parameter, 358
process, 359
self, 358
thread, 359

STIME, 116
stopped state, 112, 113, 114
‘story’ of application, 323, 326, 329
Streaming SIMD Extensions (SSE), 6, 32–33
stress testing, 379
strings, in files, 213
Stroustrup, Bjarne

C++ and, 62–63, 322
on parallelism, 62–63
STAPL and, 322

struct usage attributes, 133
structural part, of collaboration, 356
structural perspective (modeling concurrent 

systems), 331, 334–356
structured model, 40
subclass, 349
substates, 367, 369–370
Sun C/C++ compiler, 28, 64
Sun UltraSparc T1 multiprocessor. See 

UltraSparc T1
superclass, 349
superstate, 367, 369
support/utility classes, 335
swimlanes, 364, 365
symbols

decision, 364
self-delegation, 363
visibility, 343

symmetric multiprocessor (SMP), 24
synchronization

access, 244
of concurrency, 238–268
data, 239, 240
hardware, 239
mechanisms, 246–268, 282
in painters example, 204
problems, 56. See also data races; deadlocks; 

indefinite postponement
relationships, 56–58, 244–246, 282

condition variables and, 265–267
FF, 57–58, 246, 265
FS, 57–58, 245–246, 265
SF, 57–58, 246, 265

synchronization

bindex.indd   617bindex.indd   617 7/31/08   2:34:08 PM7/31/08   2:34:08 PM



618

synchronization (Continued)
SS, 57–58, 245

sequence, 244
task, 239, 282
types of, 240

synchronization bar, 364
synchronous processes, 133–135
synergistic memory flow controller, 30, 31
Synergistic Processor Elements (SPEs), 28, 

29, 30, 31
synergistic processor units (SPUs), 30, 31
sysconf() function, 26, 125, 188–190
system

architecture of, 371
deployment view, 371
design view, 371
implementation view, 371
process view, 371
use cases, 371

concurrent. See modeling concurrent 
systems

defined, 371
Booch, et al, 371

model of, 331, 372
OO, 332
structure of, modeling, 334–356
whole, visualizing, 371–372

system calls, cancellation-safe, 177. See also 
cancellation points

system contention scope, 154, 157, 158
system libraries, 63–64
system main memory. See RAM
system processes, 108
system programming, 13, 70
System Programming Interfaces. See SPIs
System Request Interface (SRI), 23
system() function, 127, 135
SZ, 116

T
target state, 369
task-oriented programming. See imperative 

programming
tasks. See also processes

dependencies, counting, 208–210
multitasking, 76, 359–361
to processes, 74
synchronization, 239, 282

task-to-task communication, 47–51
TBB (Intel Threading Building Blocks) library, 70, 

71, 86, 317–321
concurrent_hash_map, 317
concurrent_queue, 317

concurrent_vector, 317
in listing 8–3, 318–321

containers, with concurrency support, 317
generic parallel algorithms, 317
parallel_for, 317

in listing 8–3, 318–321
parallel_reduce, 317
parallel_scan, 317
parallel_sort, 317
parallel_while, 317
STAPL and, 322

template classes, 335, 348
realization of, 354, 355
visualizing, 348–349

template object, 348
temporal locality, 12
 10 challenges of concurrency. See challenges
terminating

processes, 127–129
threads, 171–180. See also cancellation

termination model, 397
$TERM, 126
testing (multicore programming), 60–61, 

375–399
acceptance, 380
concurrency challenges and, 60–61, 

377–379
condition variables and, 378
debugging and, 60–61, 376, 377, 399
definitions/terms in, 378, 379
errors during, 391
fundamental questions and, 383, 386
goals of, 376

as fundamental questions, 383
guess_it program, 382–383

concurrency model for agents, 382
declarative implementation of PBS, 383
listing 10-1 (declarative implementation of 

guess_it), 383
listing 10-2 (valid_code predicate, declaration 

of), 384
listing 10-3 (valid_code predicate, definition of), 

384–385
PBS of agent solution model, 383
problem statement, 382
processes before, 382–383
revised agent model, 382
rough-cut solution model, 382
solution model-with layer 5 PADL, 382
strategy, 383

integration, 379
issues in, 376
multiple condition variables and, 378
mutex semaphores and, 378
operational, 380

synchronization (Continued)

bindex.indd   618bindex.indd   618 7/31/08   2:34:08 PM7/31/08   2:34:08 PM



619

In
de

x

read-write locks and, 378
regression, 379
SDLC and, 38, 375, 381
in sequential programming, 60
skipping, 376–377
specification, 379
standard software engineering, 386–399

IEEE, 386–399
PADL, PBS, three fundamental questions 

in, 386
stress, 379
terms/definitions in, 378, 379
types of, 379–380
unit, 379

activities, 390
phases, 390

V&V in, 387
text files filtering project, 276–282

agent model of pipeline, 278–282
assert method, 281
assertion class, 280
class relationship diagram, 278
main line for, 279
operator(), 279–280
some_assertion method, 281

approaches, 277
communication/cooperation requirements, 278
goals of, 276
larger scale problems and, 282
observations in, 277
problem statement, 276
solution, 277–281
strategy, 276–277

text segment, 109
things (UML language primitive), 332, 333
thread(s), 143–201

anatomy, 50
attribute objects, 154, 155. See also pthread 

attribute object
attributes

pthread attribute object, 167–171
setting, 153–155

boss, 161, 269, 271, 412, 413, 414
cancelable, 172
communication between, 51, 150–151
concurrency models with. See concurrency 

models
contention scopes, 147, 154, 

157–159
process, 154, 157, 158
setting, 187–188
system, 157, 158

context, 147–149
creating, 162–163
data corruption from, 151

defined, 141, 143–144, 200
detached, 155, 169–171
differences, with processes, 152–153, 203
exhaustion, 387
hardware, 149
hybrid, 144, 145
ids

comparing, 166–167
getting, 166–167

joining, 165–166
kernel-level, 144–147
managing, 171–192
multithreading with, 143–201, 359–361

chip-level, 25, 29, 149
necessary number of, 59–60
passing arguments to, 163–165
peer, 150, 153

terminating, 172
POSIX, 29, 63, 82
POSIX Standard for Thread Management, 

427–566
primary, 143, 159, 200
priority of, 155

setting, 183–187
process termination from, 151
processes v., 50, 97, 150–153
resources, 149–150
reuse and, 151
-safe data structures, 268
safety, libraries and, 71, 190–192
scheduling policies, 155

setting, 183–187
scheduling policies and, 155
similarities, with processes, 

152–153, 201
software, 149
stacks of. See stacks
states, 157
strategies. See thread strategies
terminating, 171–180

cancellation process in, 172–180
self, 171–172

transitions and, 157
uncancelable, 172
unsafe, 191
user, 74–75
user-level, 144–147
variables for, 188–189

thread (stereotype), 359
Thread Checker tool, 7
thread checking option, 7
thread interface class (C++0x standard), 

implementation of, 305–312
thread library option, 7
thread mapping, one-to-one, 146

thread mapping, one-to-one

bindex.indd   619bindex.indd   619 7/31/08   2:34:09 PM7/31/08   2:34:09 PM



620

thread strategies, 268–274, 282
delegation (boss/worker) model, 269–271, 

289, 412–414
peer-to-peer model, 271–272, 289, 

415–416
pipeline model, 233, 269, 273–274, 277, 

289, 418
producer-consumer model, 272–273, 289, 

418–419
WBS and, 268

threaded programs
compiling/linking, 162
example, 160–162

Threading Building Blocks library. See 
TBB library

thread() method, 91
thread_object interface class, 87, 89, 90, 93

declaration, 88–90
extending, 193–200, 201
implementation, 90–91
as wrapper, 193, 201

thread-specific data (TSD), 148
throughput, 150
throwing exception object, 394–395
TIME, 116
time slices, 15, 60, 112, 113, 114
timed wait operation, condition variable and, 263
timing considerations, 58–59
top-down approaches

multicore programming, 17. See also application 
design

PADL model. See PADL model
PBS. See PBS

tradition, 35
transaction rollback, 392
transitions, 367, 368, 369

internal, 367, 368
parts of

action, 369
event trigger, 369
guard condition, 369
source state, 369
target state, 369

self-, 367, 368
state, 112–113
threads and, 157
triggerless, 363, 369

transparency, operating system, 72, 86, 94, 105
trend, in CMPs, 3, 14, 36, 45, 65, 86, 283
triggerless transitions, 363, 369
try ownership operation

mutex semaphores, 253
POSIX semaphores, 249
read-write locks, 258

TSD (thread-specific data), 148

TT, 116
TTY, 116
type, cancelability, 172, 173
type functions (pthread_mutex_t attribute 

object), 255

U
UID, 116
UltraSparc T1 (Sun), 25–28

code listing, 25
comparison, 21
compilers, 28
functional overview, 27
L2 cache, 28
listing 2–1, 25, 29
memory controllers, 28
processors available to operating system, 

25–26
V9 cores, 27

UMA architecture. See Uniform Memory Access 
architecture

UML (Universal Modeling Language), 61–62, 
372–373, 401–409

concurrent systems and, 332–333. See also 
modeling concurrent systems

creators of, 372
defined, 332–333
diagrams, 373

for active objects, 359–360
activity, 62, 64, 407
class, 89, 401–405
collaboration, 62, 357–358, 405–406
component, 61
of concurrent substates, 369–370
deployment, 61, 62, 85
interaction, 405–407
object, 401–405
package, 409
sequence, 62, 361–362, 406
state/concurrent state, 62, 64, 366–367, 408
as UML language primitive, 333

grammar, 333
language primitives, 332–333

uncancelable thread, 172
unidirectional association, 349, 352
Uniform Memory Access (UMA) architecture, 

24, 25
unit testing, 379

activities, 390
phases, 390

Universal Modeling Language. See UML
UnrecognizedWords, 336, 341, 342, 346, 351, 

353, 356, 360, 361, 362

thread strategies

bindex.indd   620bindex.indd   620 7/31/08   2:34:09 PM7/31/08   2:34:09 PM



621

In
de

x

unsafe, thread, 191
unsetenv(), 127
unshared resources, 130
‹‹use››, 350
use cases, 371
USER, 116
user id, 98
user interface errors, 390
user mode, 108, 146
user processes, 108
user stack, 109
user threads, 74–75
user-level threads, 144–147
user_thread class, 87, 89, 92

definition for (listing 4–6), 91–92
UML class relationship, 89

$USER, 126
utility/support classes, 335

V
V9 cores, 27
validation. See verification and validation
valid_code, 139–140

predicate class
declaration of, 384
definition of, 384–385

variables
ITC and, 231–233
for threads/processes/semaphores, 188–189

vector container, 353, 354
vectorization option, 6, 33
vectorizer, 6
verification and validation (V&V), 387, 389–390
Views (STAPL), 322
virtual address space, 110, 111
virtual page frame number (VPFN), 110
visibility, of objects, 357–358
visibility property

access specifiers, 343
attributes/services and, 343
symbols for, 343

visualizing
attributes, 336–339
classes, 336
instances of a class, 345–347
interface classes, 353–355
responsibilities, 336–339
services, 336–339
template classes, 348–349
whole system, 371–372

VPFN (virtual page frame number), 110
V&V (verification and validation), 387, 

389–390

W
wait operation, condition variable and, 263
wait() function call, 135–137
waiting (blocked) state, 112, 113, 114
waitpid() function, 136
wakeup event, 366
waterfall model, 40
WBS. See Work Breakdown Structure
WCHAN, 116
WEXITSTATUS, 137
whole system, visualizing, 371–372
whole-part relationships, 352
WIFCONTINUED, 137
WIFEXITED, 137
WIFSIGNALED, 137
WIFSTOPPED, 137
William, Anthony, 312
WordExpertAgent, 336, 339, 340
Work Breakdown Structure (WBS), 41, 

45, 268
AAs v., 45
defined, 45
procedural models and, 45
thread strategies and, 268

workpile approaches, 417
worlds, possible, 398
wrappers

interface classes as, 86, 192, 193
thread_object, 193, 201

for system functions, 178
WSTOPSIG, 137
WTERMSIG, 137

X
XMM registers, 33

Z
zero

multiplicity notation
0 to 1, 347
0 to infinite number, 347

zombied state, 111, 112, 113, 114

zombied state

bindex.indd   621bindex.indd   621 7/31/08   2:34:09 PM7/31/08   2:34:09 PM



Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description, 
screen capture, and code sample is available with your 
subscription to the Wrox Reference Library. For answers when 
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd   622badvert.indd   622 7/31/08   2:31:06 PM7/31/08   2:31:06 PM




