"If you build it, they will come."

And so we built them. Multiprocessor workstations, massively parallel supercomputers, a cluster in
every department ... and they haven't come. Programmers haven't come to program these wonderful
machines. Oh, a few programmers in love with the challenge have shown that most types of problems
can be force-fit onto parallel computers, but general programmers, especially professional
programmers who "have lives", ignore parallel computers.

And they do so at their own peril. Parallel computers are going mainstream. Multithreaded
microprocessors, multicore CPUs, multiprocessor PCs, clusters, parallel game consoles ... parallel
computers are taking over the world of computing. The computer industry is ready to flood the market
with hardware that will only run at full speed with parallel programs. But who will write these
programs?

This 1s an old problem. Even in the early 1980s, when the "killer micros" started their assault on
traditional vector supercomputers, we worried endlessly about how to attract normal programmers.
We tried everything we could think of: high-level hardware abstractions, implicitly parallel
programming languages, parallel language extensions, and portable message-passing libraries. But
after many years of hard work, the fact of the matter is that "they" didn't come. The overwhelming
majority of programmers will not invest the effort to write parallel software.

A common view is that you can't teach old programmers new tricks, so the problem will not be solved
until the old programmers fade away and a new generation takes over.

But we don't buy into that defeatist attitude. Programmers have shown a remarkable ability to adopt
new software technologies over the years. Look at how many old Fortran programmers are now
writing elegant Java programs with sophisticated object-oriented designs. The problem isn't with old
programmers. The problem is with old parallel computing experts and the way they've tried to create a
pool of capable parallel programmers.

And that's where this book comes in. We want to capture the essence of how expert parallel
programmers think about parallel algorithms and communicate that essential understanding in a way
professional programmers can readily master. The technology we've adopted to accomplish this task is
a pattern language. We made this choice not because we started the project as devotees of design
patterns looking for a new field to conquer, but because patterns have been shown to work in ways that
would be applicable in parallel programming. For example, patterns have been very effective in the
field of object-oriented design. They have provided a common language experts can use to talk about
the elements of design and have been extremely effective at helping programmers master object-
oriented design.



This book contains our pattem language for parallel programming. The book opens with a couple of
chapters to introduce the key concepts in parallel computing. These chapters focus on the parallel
computing concepts and jargon used in the pattern language as opposed to being an exhaustive
introduction to the field.

The pattern language itself is presented in four parts corresponding to the four phases of creating a
parallel program:

Finding Concurrency. The programmer works in the problem domain to identify the available
concurrency and expose it for use in the algorithm design.

*

Algorithm Structure. The programmer works with high-level structures for organizing a parallel
algorithm.

*k

Supporting Structures. We shift from algorithms to source code and consider how the parallel
program will be organized and the techniques used to manage shared data.

*

Implementation Mechanisms. The final step is to look at specific software constructs for
implementing a parallel program.

The patterns making up these four design spaces are tightly linked. You start at the top (Finding
Concurrency), work through the patterns, and by the time you get to the bottom (Implementation
Mechanisms), you will have a detailed design for your parallel program.

If the goal is a parallel program, however, you need more than just a parallel algorithm. You also need
a programming environment and a notation for expressing the concurrency within the program's
source code. Programmers used to be confronted by a large and confusing array of parallel
programming environments. Fortunately, over the years the parallel programming community has
converged around three programming environments.



OpenMP. A simple language extension to C, C++, or Fortran to write parallel programs for
shared-memory computers.

*

MPI. A message-passing library used on clusters and other distributed-memory computers.

*

Java. An object-oriented programming language with language features supporting parallel
programming on shared-memory computers and standard class libraries supporting distributed
computing.

Many readers will already be familiar with one or more of these programming notations, but for
readers completely new to parallel computing, we've included a discussion of these programming
environments in the appendixes.

In closing, we have been working for many years on this pattern language. Presenting it as a book so
people can start using it is an exciting development for us. But we don't see this as the end of this
effort. We expect that others will have their own ideas about new and better patterns for parallel
programming. We've assuredly missed some important features that really belong in this pattern
language. We embrace change and look forward to engaging with the larger parallel computing
community to iterate on this language. Over time, we'll update and improve the pattern language until
it truly represents the consensus view of the parallel programming community. Then our real work
will begin—using the pattern language to guide the creation of better parallel programming
environments and helping people to use these technologies to write parallel software. We won't rest
until the day sequential software is rare.
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A Pattern Language for Parallel Programming > INTRODUCTION

Chapter 1. A Pattern Language for Parallel
Programming

1.1 INTRODUCTION

1.2 PARALLEL PROGRAMMING

1.3 DESIGN PATTERNS AND PATTERN LANGUAGES

14 A PATTERN LANGUAGE FOR PARALLEL PROGRAMMING

1.1. INTRODUCTION

Computers are used to model physical systems in many fields of science, medicine, and engineering.
Modelers, whether trying to predict the weather or render a scene in the next blockbuster movie, can
usually use whatever computing power is available to make ever more detailed simulations. Vast
amounts of data, whether customer shopping patterns, telemetry data from space, or DNA sequences,
require analysis. To deliver the required power, computer designers combine multiple processing
elements into a single larger system. These so-called parallel canputers run multiple tasks
simultaneously and solve bigger problems in less time.

Traditionally, parallel computers were rare and available for only the most critical problems. Since the
mid-1990s, however, the availability of parallel computers has changed dramatically. With
multithreading support built into the latest microprocessors and the emergence of multiple processor
cores on a single silicon die, parallel computers are becoming ubiquitous. Now, almost every
university computer science department has at least one parallel computer. Virtually all oil companies,
automobile manufacturers, drug development companies, and special effects studios use parallel
computing.

For example, in computer animation, rendering is the step where information from the animation files,
such as lighting, textures, and shading, is applied to 3D models to generate the 2D image that makes
up a frame of the film. Parallel computing is essential to generate the needed number of frames (24
per second) for a feature-length film. Toy Story, the first completely computer-generated feature-
length film, released by Pixar in 1995, was processed on a "renderfarm" consisting of 100 dual-
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processor machines [PS00]. By 1999, for Toy Story 2, Pixar was using a 1,400-processor system with
the improvement in processing power fully reflected in the improved details in textures, clothing, and
atmospheric effects. Monsters, Inc. (2001) used a system of 250 enterprise servers each containing 14
processors for a total of 3,500 processors. It is interesting that the amount of time required to generate
a frame has remained relatively constant—as computing power (both the number of processors and
the speed of each processor) has increased, it has been exploited to improve the quality of the
animation.

The biological sciences have taken dramatic leaps forward with the availability of DNA sequence
information from a variety of organisms, including humans. One approach to sequencing, championed
and used with success by Celera Corp., is called the whole genome shotgun algorithm. The idea s to
break the genome into small segments, experimentally determine the DNA sequences of the segments,
and then use a computer to construct the entire sequence from the segments by finding overlapping
areas. The computing facilities used by Celera to sequence the human genome included 150 four-way
servers plus a server with 16 processors and 64GB of memory. The calculation involved 500 million
trillion base-to-base comparisons [Ein00].

The SETI@home project [SET, ACK*02] provides a fascinating example of the power of parallel

computing. The project seeks evidence of extraterrestrial intelligence by scanning the sky with the
world's largest radio telescope, the Arecibo Telescope in Puerto Rico. The collected data is then
analyzed for candidate signals that might indicate an intelligent source. The computational task is
beyond even the largest supercomputer, and certainly beyond the capabilities of the facilities available
to the SETI@home project. The problem is solved with public resource computing, which turns PCs
around the world into a huge parallel computer connected by the Internet. Data is broken up into work
units and distributed over the Internet to client computers whose owners donate spare conputing time
to support the project. Each client periodically connects with the SETI@home server, downloads the
data to analyze, and then sends the results back to the server. The client program is typically
implemented as a screen saver so that it will devote CPU cycles to the SETI problem only when the
computer is otherwise idle. A work unit currently requires an average of between seven and eight
hours of CPU time on a client. More than 205,000,000 work units have been processed since the start
of the project. More recently, similar technology to that demonstrated by SETI@home hasbeen used
for a variety of public resource computing projects as well as internal projects within large companies
utilizing their idle PCs to solve problems ranging from drug screening to chip design validation.

Although computing in less time is beneficial, and may enable problems to be solved that couldn't be
otherwise, it comes at a cost. Writing software to run on parallel computers can be difficult. Only a
small minority of programmers have experience with parallel programming. If all these computers
designed to exploit parallelism are going to achieve their potential, more programmers need to learn
how to write parallel programs.

This book addresses this need by showing competent programmers of sequential machines how to
design programs that can run on parallel computers. Although many excellent books show how to use
particular parallel programming environments, this book is unique in that it focuses on how to think
about and design parallel algorthms. To accomplish this goal, we will be using the concept of a
pattern language. This highly structured representation of expert design experience has been heavily
used in the object-oriented design community.
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The book opens with two introductory chapters. The first gives an overview of the parallel computing
landscape and background needed to understand and use the pattern language. This is followed by a
more detailed chapter in which we lay out the basic concepts and jargon used by parallel
programmers. The book then moves into the pattern language itself.

1.2. PARALLEL PROGRAMMING

The key to parallel computing is exploitable concurrency. Concurrency exists in a computational
problem when the problem can be decomposed into subproblems that can safely execute at the same
time. To be of any use, however, it must be possible to structure the code to expose and later exploit
the concurrency and permit the subproblems to actually run concurrently; that is, the concurrency
must be exploitable.

Most large computational problems contain exploitable concurrency. A programmer works with
exploitable concurrency by creating a parallel algorithm and implementing the algorithm using a
parallel programming environment. When the resulting parallel program is run on a system with
multiple processors, the amount of time we have to wait for the results of the computation is reduced.
In addition, multiple processors may allow larger problems to be solved than could be done on a
single-processor system.

As a simple example, suppose part of a computation involves computing the summation of a large set
of values. If multiple processors are available, instead of adding the values together sequentially, the
set can be partitioned and the summations of the subsets computed simultaneously, each on a different
processor. The partial sums are then combined to get the final answer. Thus, using multiple processors
to compute in parallel may allow us to obtain a solution sooner. Also, if each processor has its own
memory, partitioning the data between the processors may allow larger problems to be handled than
could be handled on a single processor.

This simple example shows the essence of parallel computing. The goal is to use multiple processors
to solve problems in less time and/or to solve bigger problems than would be possible on a single
processor. The programmer's task is to identify the concurrency in the problem, structure the
algorithm so that this concurrency can be exploited, and then implement the solution using a suitable
programming environment. The final step is to solve the problem by executing the code on a parallel
system.

Parallel programming presents unique challenges. Often, the concurrent tasks making up the problem
include dependencies that must be identified and correctly managed. The order in which the tasks
execute may change the answers of the computations in nondeterministic ways. For example, in the
parallel summation described earlier, a partial sum cannot be combined with others until its own
computation has completed. The algorithm imposes a partial order on the tasks (that is, they must
complete before the sums can be combined). More subtly, the numerical value of the summations may
change slightly depending on the order of the operations within the sums because floating-point



arithmetic is nonassociative. A good parallel programmer must take care to ensure that
nondeterministic issues such as these do not affect the quality of the final answer. Creating safe
parallel programs can take considerable effort from the programmer.

Even when a parallel program is "correct", it may fail to deliver the anticipated performance
improvement from exploiting concurrency. Care must be taken to ensure that the overhead incurred by
managing the concurrency does not overwhelm the program runtime. Also, partitioning the work
among the processors in a balanced way is often not as easy as the summation example suggests. The
effectiveness of a parallel algorithm depends on how well it maps onto the underlying parallel
computer, so a parallel algonithm could be very effective on one parallel architecture and a disaster on
another.

We will revisit these issues and provide a more quantitative view of parallel computation in the next
chapter.

1.3. DESIGN PATTERNS AND PATTERN LANGUAGES

A design pattern describes a good solution to a recurring problem in a particular context. The pattemn
follows a prescribed format that includes the pattern name, a description of the context, the forces
(goals and constraints), and the solution. The ideais to record the experience of experts in a way that
can be used by others facing a similar problem. In addition to the solution itself, the name of the
pattern is important and can form the basis for a domain-specific vocabulary that can significantly
enhance communication between designers in the same area.

Design patterns were first proposed by Christopher Alexander. The domain was city planning and
architecture [AIS77]. Design patterns were originally introduced to the software engineering
community by Beck and Cunningham [BC87] and became prominent in the area of object-oriented
programming with the publication of the book by Gamma, Helm, Johnson, and Vlissides [GHIJV93],
affectionately known as the GoF (Gang of Four) book. This book gives a large collection of design
patterns for object-oriented programming. To give one example, the Visitor pattern describes a way to
structure classes so that the code implementing a heterogeneous data structure can be kept separate
from the code to traverse it. Thus, what happens in a traversal depends on both the type of each node
and the class that implements the traversal. This allows multiple functionality for data structure
traversals, and significant flexibility as new functionality can be added without having to change the
data structure class. The patterns in the GoF book have entered the lexicon of object-oriented
programming—references to its patterns are found in the academic literature, trade publications, and
system documentation. These pattems have by now become part of the expected knowledge of any
competent software engineer.

An educational nonprofit organization called the Hillside Group [Hil] was formed in 1993 to promote
the use of patterns and pattern languages and, more generally, to improve human communication
about computers "by encouraging people to codify common programming and design practice". To
develop new patterns and help pattern writers hone their skills, the Hillside Group sponsors an annual
Pattern Languages of Programs (PLoP) workshop and several spinoffs in other parts of the world,
such as ChiliPLoP (in the western United States), KoalaPLoP (Australia), EuroPLoP (Europe), and
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Mensore PLoP (Japan). The proceedings of these workshops [Pat] provide a rich source of patterns
covering a vast range of application domains in software development and have been used as a basis
for several books [CS95, VCK96, MRB97, HFR99].

In his original work on pattems, Alexander provided not only a catalog of patterns, but also a pattern
language that introduced a new approach to design. In a pattern language, the patterns are organized
into a structure that leads the user through the collection of patterns in such a way that complex
systems can be designed using the patterns. At each decision point, the designer selects anappropriate
pattern. Each pattern leads to other patterns, resulting in a final design in terms of a web of patterns.
Thus, a pattern language embodies a design methodology and provides domain-specific advice to the
application designer. (In spite of the overlapping terminology, a pattern language is not a
programming language.)

1.4. A PATTERN LANGUAGE FOR PARALLEL PROGRAMMING

This book describes a pattern language for parallel programming that provides several benefits. The
immediate benefits are a way to disseminate the experience of experts by providing a catalog of good
solutions to important problems, an expanded vocabulary, and a methodology for the design of
parallel programs. We hope to lower the barrier to parallel programming by providing guidance
through the entire process of developing a parallel program. The programmer brings to the process a
good understanding of the actual problem to be solved and then works through the pattern language,
eventually obtaining a detailed parallel design or possibly working code. In the longer term, we hope
that this pattern language can provide a basis for both a disciplined approach to the qualitative
evaluation of different programming models and the development of parallel programming tools.

The pattern language is organized into four design spaces—Finding Concurrency, Algorithm
Structure, Supporting Structures, and Implementation Mechanisms—which form a linear hierarchy,
with Finding Concurrency at the top and Implementation Mechanisms at the bottom, as shown in Fig.
L1

Figure 1.1. Overview of the pattern language

Finding Concurrency
[

1

Algorithm Structure
[

1

Supporiing Structures
[

L

Implementation Mechanisms

The Finding Concurrency design space is concemed with structuring the problem to expose
exploitable concurrency. The designer working at this level focuses on high-level algorithmic issues
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and reasons about the problem to expose potential concurrency. The Algorithm Structure design space
is concermed with structuring the algorithm to take advantage of potential concurrency. That is, the
designer working at this level reasons about how to use the concurrency exposed in working with the
Finding Concurrency patterns. The Algorithm Structure patterns describe overall strategies for
exploiting concurrency. The Supporting Structures design space represents an intermediate stage
between the Algorithm Structure and Implementation Mechanisms design spaces. Two important
groups of patterns in this space are those that represent program-structuring approaches and those that
represent commonly used shared data structures. The Implementation Mechanisms design space is
concerned with how the patterns of the higher-level spaces are mapped into particular programming
environments. We use it to provide descriptions of common mechanisms for process/thread
management (for example, creating or desroying processes/threads) and process/thread interaction
(for example, semaphores, barriers, or message passing). The items in this design space are not
presented as patterns because in many cases they map directly onto elements within particular parallel
programming environments. They are included in the pattern language anyway, however, to provide a
complete path from problem description to code.

Chapter 2. Background and Jargon of Parallel
Computing

2.1 CONCURRENCY IN PARALLEL PROGRAMS VERSUS OPERATING SYSTEMS

2.2 PARALLEL ARCHITECTURES: A BRIEF INTRODUCTION

2.3 PARALLEL PROGRAMMING ENVIRONMENTS

2.4 THE JARGON OF PARALLEL COMPUTING

2.5 A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

2.6 COMMUNICATION

2.7 SUMMARY

In this chapter, we give an overview of the parallel programming landscape, and define any
specialized parallel computing terminology that we will use in the patterns. Because many terms in
computing are overloaded, taking different meanings in different contexts, we suggest that even
readers familiar with parallel programming at least skim this chapter.

2.1. CONCURRENCY IN PARALLEL PROGRAMS VERSUS
OPERATING SYSTEMS

Concurrency was first exploited in computing to better utilize or share resources within a computer.
Modern operating systems support context switching to allow multiple tasks to appear to execute
concurrently, thereby allowing useful work to occur while the processor is stalled on one task. This
application of concurrency, for example, allows the processor to stay busy by swapping in a new task
to execute while another task is waiting for I/0. By quickly swapping tasks in and out, giving each


http://my.safaribooksonline.com/0321228111/ch02lev1sec7#ch02lev1sec7
http://my.safaribooksonline.com/0321228111/ch02lev1sec7#ch02lev1sec7
http://my.safaribooksonline.com/0321228111/ch02lev1sec7#ch02lev1sec7
http://my.safaribooksonline.com/0321228111/ch02lev1sec6#ch02lev1sec6
http://my.safaribooksonline.com/0321228111/ch02lev1sec6#ch02lev1sec6
http://my.safaribooksonline.com/0321228111/ch02lev1sec6#ch02lev1sec6
http://my.safaribooksonline.com/0321228111/ch02lev1sec5#ch02lev1sec5
http://my.safaribooksonline.com/0321228111/ch02lev1sec5#ch02lev1sec5
http://my.safaribooksonline.com/0321228111/ch02lev1sec5#ch02lev1sec5
http://my.safaribooksonline.com/0321228111/ch02lev1sec4#ch02lev1sec4
http://my.safaribooksonline.com/0321228111/ch02lev1sec4#ch02lev1sec4
http://my.safaribooksonline.com/0321228111/ch02lev1sec4#ch02lev1sec4
http://my.safaribooksonline.com/0321228111/ch02lev1sec3#ch02lev1sec3
http://my.safaribooksonline.com/0321228111/ch02lev1sec3#ch02lev1sec3
http://my.safaribooksonline.com/0321228111/ch02lev1sec3#ch02lev1sec3
http://my.safaribooksonline.com/0321228111/ch02lev1sec2#ch02lev1sec2
http://my.safaribooksonline.com/0321228111/ch02lev1sec2#ch02lev1sec2
http://my.safaribooksonline.com/0321228111/ch02lev1sec2#ch02lev1sec2
http://my.safaribooksonline.com/0321228111/ch02lev1sec1#ch02lev1sec1
http://my.safaribooksonline.com/0321228111/ch02lev1sec1#ch02lev1sec1
http://my.safaribooksonline.com/0321228111/ch02lev1sec1#ch02lev1sec1

task a "slice" of the processor time, the operating system can allow multiple users to use the system as
if each were using it alone (but with degraded performance).

Most modern operating systems can use multiple processors to increase the throughput of the system.
The UNIX shell uses concurrency along with a communication abstraction known as pipes to provide
a powerful form of modularity: Commands are written to accept a stream of bytes as input (the
consumer) and produce a stream of bytes as output (the producer). Multiple commands can be chained
together with a pipe connecting the output of one command to the input of the next, allowing complex
commands to be built from simple building blocks. Each command is executed in its own process,
with all processes executing concurrently. Because the producer blocks if buffer space in the pipe is
not available, and the consumer blocks if data is not available, the job of managing the stream of
results moving between commands is greatly simplified. More recently, with operating systems with
windows that invite users to do more than one thing at a time, and the Internet, which often introduces
I/O delays perceptible to the user, almost every program that contains a GUI incorporates
concurrency.

Although the fundamental concepts for safely handling concurrency are the same in parallel programs
and operating systems, there are some important differences. For an operating system, the problem is
not finding concurrency—the concurrency is inherent in the way the operating system functions in
managing a collection of concurrently executing processes (representing users, applications, and
background activities such as print spooling) and providing synchronization mechanisms so resources
can be safely shared. However, an operating system must support concurrency in a robust and secure
way: Processes should not be able to interfere with each other (intentionally or not), and the entire
system should not crash if something goes wrong with one process. In a parallel program, finding and
exploiting concurrency can be a challenge, while isolating processes from each other is not the critical
concern it is with an operating system. Performance goals are different as well. In an operating
system, performance goals are nomally related to throughput or response time, and it may be
acceptable to sacrifice some efficiency to maintain robustness and fairness in resource allocation. In a
parallel program, the goal is to minimize the running time of a single program.

2.2. PARALLEL ARCHITECTURES: A BRIEF INTRODUCTION

There are dozens of different parallel architectures, among them networks of workstations, clusters of
off-the-shelf PCs, massively parallel supercomputers, tightly coupled symmetric multiprocessors, and
multiprocessor workstations. In this section, we give an overview of these systems, focusing on the
characteristics relevant to the programmer.

2.2.1. Flynn's Taxonomy

By far the most common way to characterize these architectures is Flynn's taxonomy [EFly72]. He
categorizes all computers according to the number of instruction streams and data streams they have,
where a stream is a sequence of instructions or data on which a computer operates. In Flynn's
taxonomy, there are four possibilities: SISD, SIMD, MISD, and MIMD.
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Single Instruction, Single Data (SISD). In a SISD system, one stream of instructions processes a
single stream of data, as shown in Fig. 2.1. This is the common von Neumann model used in virtually
all single-processor computers.

Figure 2.1. The Single Instruction, Single Data (SISD) architecture
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Single Instruction, Multiple Data (SIMD). In a SIMD system, a single instruction stream is
concurrently broadcast to multiple processors, each with its own data stream (as shown in Fig. 2.2).
The original systems from Thinking Machines and MasPar can be classified as SIMD. The CPP DAP
Gamma II and Quadrics Apemille are more recent examples; these are typically deployed in
specialized applicatons, such as digital signal processing, that are suited to fine-grained parallelism
and require little interprocess communication. Vector processors, which operate on vector data in a
pipelined fashion, can also be categorized as SIMD. Exploiting this parallelism is usually done by the
compiler.

Figure 2.2. The Single Instruction, Multiple Data (SIMD) architecture
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Multiple Instruction, Single Data (MISD). No well-known systems fit this designation. It is mentioned
for the sake of completeness.

Multiple Instruction, Multiple Data (MIMD). In a MIMD system, each processing element has its own
stream of instructions operating on its own data. This architecture, shown in Fig. 2.3, is the most
general of the architectures in that each of the other cases can be mapped onto the MIMD architecture.
The vast majority of modern parallel systems fit into this category.

Figure 2.3. The Multiple Instruction, Multiple Data (MIMD) architecture
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2.2.2. A Further Breakdown of MMD

The MIMD category of Flynn's taxonomy is too broad to be useful on its own; this category is
typically decomposed according to memory organization.

Shared memory. In a shared-memory system, all processes share a single address space and
communicate with each other by writing and reading shared variables.

One class of shared-memory systems is called SMPs (symmetric multiprocessors). As shown in Fig.
2.4, all processors share aconnection to a common memory and access all memory locations at equal
speeds. SMP systems are arguably the easiest parallel systems to program because programmers do
not need to distribute data structures among processors. Because increasing the number of processors
increases contention for the memory, the processor/memory bandwidth is typically a limiting factor.
Thus, SMP systems do not scale well and are limited to small numbers of processors.

Figure 2.4. The Symmetric Multiprocessor (SMP) architecture
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The other main class of shared-memory systems is called NUMA (nomuniform memory access). As
shown in Fig. 2.5, the memory is shared; that is, it is uniformly addressable from all processors, but
some blocks of memory may be physically more closely associated with some processors than others.
This reduces the memory bandwidth bottleneck and allows systems with more processors; however, as
a result, the access time from a processor to a memory location can be significantly different
depending on how "close" the memory location is to the processor. To mitigate the effects of
nonuniform access, each processor has a cache, along with a protocol to keep cache entries coherent.
Hence, another name for these architectures is cache-coherent nonuniform memory access systems
(ccNUMA). Logically, programming a ccNUMA system is the same as programming an SMP, but to
obtain the best performance, the programmer will need to be more careful about locality issues and
cache effects.

Figure 2.5. An example of the nonuniform memory access (NUMA) architecture
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Distributed memory. In a distributed-memory system, each process has its own address space and
communicates with other processes by message passing (sending and receiving messages). A

schematic representation of a distributed memory computer is shown in Fig. 2.6.

Figure 2.6. The distributed-memory architecture
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Depending on the topology and technology used for the processor interconnection, communication
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speed can range from almost as fast as shared memory (in tightly integrated supercomputers) to orders
of magnitude slower (for example, in a cluster of PCs interconnected with an Ethernet network). The
programmer must explicitly program all the communication between processors and be concemed
with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP (massively parallel
processors) and clusters. In an MPP, the processors and the network infrastructure are tightly coupled
and specialized for use in a parallel computer. These systems are extremely scalable, in some cases

supporting the use of many thousands of processors in a single system [MSW96,IBM02].

Clusters are distributed-memory systems composed of off-the-shelf computers connected by an off-
the-shelf network. When the computers are PCs running the Linux operating system, these clusters are
called Beowulf clusters. As off-the-shelf networking technology improves, systems of this type are
becoming more common and much more powerful. Clusters provide an inexpensive way for an
organization to obtain parallel computing capabilities [Beo]. Preconfigured clusters are now available
from many vendors. One frugal group even reported constructing a useful parallel system by using a
cluster to harness the combined power of obsolete PCs that otherwise would have been discarded
[HHSO1].

Hybrid systems. These systems are clusters of nodes with separate address spaces in which each node
contains several processors that share memory.

According to van der Steen and Dongarra's "Overview of Recent Supercomputers" [vdSDO03], which
contains a brief description of the supercomputers currently or soon to be commercially available,
hybrid systems formed from clusters of SMPs connected by a fast network are currently the dominant
trend in high-performance computing. For example, in late 2003, four of the five fastest computers in
the world were hybrid systems [Top].

Grids. Grids are systems that use distributed, heterogeneous resources connected by LANs and/or
WANSs [FKO3]. Often the interconnection network is the Internet. Grids were originally envisioned as
a way to link multiple supercomputers to enable larger problems to be solved, and thus could be
viewed as a special type of distributed-memory or hybrid MIMD machine. More recently, the idea of
grid computing has evolved into a general way to share heterogeneous resources, such as computation
servers, storage, application servers, information services, or even scientific instruments. Grids differ
from clusters in that the various resources in the grid need not have a common point of administration.
In most cases, the resources on a grid are owned by different organizations that maintain control over
the policies governing use of the resources. This affects the way these systems are used, the
middleware created to manage them, and most importantly for this discussion, the overhead incurred
when communicating between resources within the grid.
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2.2.3. Summary

We have classified these systems according to the characteristics of the hardware. These
characteristics typically influence the native programming model used to express concurrency on a
system; however, this is not always the case. It is possible for a programming environment for a
shared-memory machine to provide the programmer with the abstraction of distributed memory and
message passing. Virtual distributed shared memory systems contain middleware to provide the
opposite: the abstraction of shared memory on a distributed-memory machine.

2.3. PARALLEL PROGRAMMING ENVIRONMENTS

Parallel programming environments provide the basic tools, language features, and application _
programming interfaces (APIs) needed to construct a parallel program. A programming environment

implies a particular abstraction of the computer system called a programming model. Traditional
sequential computers use the well known von Neumann model. Because all sequential computers use
this model, software designers candesign software to a single abstraction and reasonably expect it to
map onto most, if not all, sequential computers.

Unfortunately, there are many possible models for parallel computing, reflecting the different ways
processors can be interconnected to construct a parallel system. The most common models are based
on one of the widely deployed parallel architectures: shared memory, distributed memory with
message passing, or a hybrid combination of the two.

Programming models too closely aligned to a particular parallel system lead to programs that are not
portable between parallel computers. Because the effective lifespan of software is longer than that of
hardware, many organizations have more than one type of parallel computer, and most programmers
insist on programming environments that allow them to write portable parallel programs. Also,
explicitly managing large numbers of resources in a parallel computer is difficult, suggesting that
higher-level abstractions of the parallel computer might be useful. The result is that as of the mid-
1990s, there was a veritable glut of parallel programming environments. A partial list of these is
shown in Table 2.1. This created a great deal of confusion for application developers and hindered the
adoption of parallel computing for mainstream applications.

Table 2.1. Some Parallel Programming Environments from the Mid-1990s

"C*in C CUMULVS Java RMI P-RIO Quake
ABCPL DAGGER javaPG P3L Quark

ACE DAPPLE JAVAR P4-Linda Quick Threads
ACT++ Data Parallel C JavaSpaces Pablo Sage++
ADDAP DC++ JIDL PADE SAM

Adl DCE++ Joyce PADRE SCANDAL
Adsmith DDD Karma Panda SCHEDULE
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Fortunately, by the late 1990s, the parallel programming community converged predominantly on two
environments for parallel programming: OpenMP [OMP] for shared memory and MPI [Mesb] for
message passing.

OpenMP is a set of language extensions implemented as compiler directives. Implementations are
currently available for Fortran, C, and C++. OpenMP is frequently used to incrementally add
parallelism to sequential code. By adding a compiler directive around a loop, for example, the
compiler can be instructed to generate code to execute the iterations of the loop in parallel. The
compiler takes care of most of the details of thread creation and management. OpenMP programs tend
to work very well on SMPs, but because its underlying programming model does not include a notion
of nonuniform memory access times, it is less ideal for ccNUMA and distributed-memory machines.

MPl is a set of library routines that provide for process management, message passing, and some
collective communication operations (these are operations that involve all the processes involved in a
program, such as barrier, broadcast, and reduction). MPI programs can be difficult to write because
the programmer is responsible for data distribution and explicit interprocess communication using
messages. Because the programming model assumes distributed memory, MPI is a good choice for
MPPs and other distributed-memory machines.

Neither OpenMP nor MPI is an ideal fit for hybrid architectures that combine multiprocessor nodes,
each with multiple processes and a shared memory, into a larger system with separate address spaces
for each node: The OpenMP model does not recognize nonuniform memory access times, so its data
allocation can lead to poor performance on machines that are not SMPs, while MPI does not include
constructs to manage data structures residing in a shared memory. One solution is a hybrid model in
which OpenMP is used on each shared-memory node and MPI is used between the nodes. This works
well, but it requires the programmer to work with two different programming models within a single
program. Another option is to use MPI on both the shared-memory and distributed-memory portions
of the algorithm and give up the advantages of a shared-memory programming model, even when the
hardware directly supports it.

New high-level programming environments that simplify portable parallel programming and more
accurately reflect the underlying parallel architectures are topics of current research [Cen]. Another
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approach more popular in the commercial sector is to extend MPI and OpenMP. In the mid-1990s, the
MPI Forum defined an extended MPI called MPI 2.0, although implementations are not widely
available at the time this was written. It is a large complex extension to MPI that includes dynamic
process creation, parallel I/O, and many other features. Of particular interest to programmers of
modern hybrid architectures is the inclusion of one-sided communication. One-sided communication
mimics some of the features of a shared-memory system by letting one process write into or read from
the memory regions of other processes. The term "one-sided" refers to the fact that the read or write is
launched by the initiating process without the explicit involvement of the other participating process.
A more sophisticated abstraction of one-sided communication is available as part of the Global Arrays

[NHL96, NHK"02, Gloa] package. Global Arrays works together with MPI to help a programmer
manage distributed array data. After the programmer defines the array and how it is laid out in

memory, the program executes "puts" or "gets" into the array without needing to explicitly manage
which MPI process "owns" the particular section of the array. In essence, the global array provides an
abstraction of a globally shared array. This only works for arrays, but these are such common data
structures in parallel computing that this package, although limited, can be very useful.

Just as MPI has been extended to mimic some of the benefits of a shared-memory environment,
OpenMP has been extended to run in distributed-memory environments. The annual WOMPAT
(Workshop on OpenMP Applications and Tools) workshops contain many papers discussing various
approaches and experiences with OpenMP in clusters and ccNUMA environments.

MPI is implemented as a library of routines to be called from programs written in a sequential
programming language, whereas OpenMPis a set of extensions to sequential programming languages.
They represent two of the possible categories of parallel programming environments (libraries and
language extensions), and these two particular environments account for the overwhelming majority
of parallel computing being done today. There is, however, one more category of parallel
programming environments, namely languages with built-in features to support parallel programming.
Java is such a language. Rather than being designed to support high-performance computing, Java is
an object-oriented, general-purpose programming environment with features for explicitly specifying
concurrent processing with shared memory. In addition, the standard I/O and network packages
provide classes that make it easy for Java to perform interprocess communication between machines,
thus making it possible to write programs based on both the shared-memory and the distributed-
memory models. The newer java.nio packages support I/O in a way that is less convenient for the
programmer, but gives significantly better performance, and Java 2 1.5 includes new support for
concurrent programming, most significantly in the java.util.concurrent.* packages. Additional
packages that support different approaches to parallel computing are widely available.

Although there have been other general-purpose languages, both prior to Java and more recent (for
example, C#), that contained constructs for specifying concurrency, Java is the first to become widely
used. As a result, it may be the first exposure for many programmers to concurrent and parallel
programming. Although Java provides software engineering benefits, currently the performance of
parallel Java programs cannot compete with OpenMP or MPI programs for typical scientific
computing applications. The Java design has also been criticized for several deficiencies that matter in
this domain (for example, a floating-point model that emphasizes portability and more-reproducible
results over exploiting the available floating-point hardware to the fullest, inefficient handling of
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arrays, and lack of a lightweight mechanism to handle complex numbers). The performance difference
between Java and other alternatives can be expected to decrease, especially for symbolic or other
nonnumeric problems, as compiler technology for Java improves and as new packages and language
extensions become available. The Titanium project [Tita] is an example of a Java dialect designed for
high-performance computing in a ccNUMA environment.

For the purposes of this book, we have chosen OpenMP, MPI, and Java as the three environments we
will use in our examples—OpenMP and MPI for their popularity and Java because it is likely to be
many programmers' first exposure to concurrent programming. A brief overview of each can be found
in the appendixes.

2.4. THE JARGON OF PARALLEL COMPUTING

In this section, we define some terms that are frequently used throughout the pattern language.
Additional definitions can be found in the glossary.

Task. The first step in designing a parallel program is to break the problem up into tasks. A task is a
sequence of instructions that operate together as a group. This group corresponds to some logical part
of an algorithm or program. For example, consider the multiplication of two order-N matrices.
Depending on how we construct the algorithm, the tasks could be (1) the multiplication of subblocks
of the matrices, (2) inner products between rows and columns of the matrices, or (3) individual
iterations of the loops involved in the matrix multiplication. These are all legitimate ways to define
tasks for matrix multiplication; that is, the task definition follows from the way the algorithm designer
thinks about the problem.

Unit of execution (UE). To be executed, a task needs to be mapped to a UE such as a process or
thread. A process is a collection of resources that enables the execution of program instructions.
These resources can include virtual memory, I/O descriptors, a runtime stack, signal handlers, user
and group IDs, and access control tokens. A more high-level view is that a process is a "heavyweight"
unit of execution with its own address space. A thread is the fundamental UE in modern operating
systems. A thread is associated with a process and shares the process's environment. This makes
threads lightweight (that is, a context switch between threads takes only a small amount of time). A
more high-level view is that a thread is a "lightweight" UE that shares an address space with other
threads.

We will use unit of execution or UE as a generic term for one of a collection of possibly concurrently

executing entities, usually either processes or threads. This is convenient in the early stages of
program design when the distinctions between processes and threads are less important.

Processing element (PE). We use the term processing element (PE) as a generic term for a hardware
element that executes a stream of instructions. The unit of hardware considered to be a PE depends on
the context. For example, some programming environments view each workstation in a cluster of SMP
workstations as executing a single instruction stream; in this situation, the PE would be the
workstation. A different programming environment running on the same hardware, however, might
view each processor of each workstation as executing an individual instruction stream; in this case, the
PE is the individual processor, and each workstation contains several PEs.
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Load balance and load balancing. To execute a parallel program, the tasks must be mapped to UEs,
and the UEs to PEs. How the mappings are done can have a significant impact on the overall
performance of a parallel algorithm. It is crucial to avoid the situation in which a subset of the PEs is
doing most of the work while others are idle. Load balance refers to how well the work is distributed
among PEs. Load balancing is the process of allocating work to PEs, either statically or dynamically,

so that the work is distributed as evenly as possible.

Synchronization. In a parallel program, due to the nondeterminism of task scheduling and other
factors, events in the computation might not always occur in the same order. For example, in one run,
a task might read variable x before another task reads variable y; in the next run with the same input,
the events might occur in the opposite order. In many cases, the order in which two events occur does
not matter. In other situations, the order does matter, and to ensure that the program is correct, the
programmer must introduce synchronization to enforce the necessary ordering constraints. The
primitives provided for this purpose in our selected environments are discussed in the Implementation
Mechanisms design space (Section 6.3).

Synchronous versus asynchronous. We use these two terms to qualitatively refer to how tightly
coupled in time two events are. If two events must happen at the same time, they are synchronous;
otherwise they are asynchronous. For example, message passing (that is, communication between UEs
by sending and receiving messages) is synchronous if a message sent must be received before the
sender can continue. Message passing is asynchronous if the sender can continue its computation
regardless of what happens atthe receiver, or if the receiver can continue computations while waiting
for a receive to complete.

Race conditions. A race condition is a kind of error peculiar to parallel programs. It occurs when the
outcome of a program changes as the relative scheduling of UEs varies. Because the operating system
and not the programmer controls the scheduling of the UEs, race conditions result in programs that
potentially give different answers even when run on the same system with the same data. Race
conditions are particularly difficult errors to debug because by their nature they cannot be reliably
reproduced. Testing helps, but is not as effective as with sequential programs: A program may run
correctly the first thousand times and then fail catastrophically on the thousand-and-first execution—
and then run again correctly when the programmer attempts to reproduce the error as the first step in
debugging.

Race conditions result from errors in synchronization. If multiple UEs read and write shared
variables, the programmer must protect access to these shared variables so the reads and writes occur
in a valid order regardless of how the tasks are interleaved. When many variables are shared or when
they are accessed through multiple levels of indirection, verifying by inspection that no race
conditions exist can be very difficult. Tools are available that help detect and fix race conditions, such
as ThreadChecker from Intel Corporation, and the problem remains an area of active and important
research [NM92].

Deadlocks. Deadlocks are another type of error peculiar to parallel programs. A deadlock occurs
when there is a cycle of tasks in which each task is blocked waiting for another to proceed. Because
all are waiting for another task to do something, they will all be blocked forever. As a simple example,
consider two tasks in a message-passing environment. Task A attempts to receive a message from task
B, after which A will reply by sending a message of its own to task B. Meanwhile, task B attempts to
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receive a message from task A, after which B will send a message to A. Because each task is waiting
for the other to send it a message first, both tasks will be blocked forever. Fortunately, deadlocks are
not difficult to discover, as the tasks will stop at the point of the deadlock.

2.5. A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

The two main reasons for implementing a parallel program are to obtain better performance and to
solve larger problems. Performance can be both modeled and measured, so in this section we will take
a another look at parallel conputations by giving some simple analytical models that illustrate some
of the factors that influence the performance of a parallel program.

Consider a computation consisting of three parts: a setup section, a computation section, and a
finalization section. Thetotal running time of this program on one PEis then given as the sum of the
times for the three parts.

Equation 2.1
?I-.Fl.-rrrl'“} = T;u-fu,u + :flf'muplm: + :f_lfz'nn.'f:.-ahurr

What happens when we run this computation on a parallel computer with multiple PEs? Suppose that
the setup and finalization sections cannot be carried out concurrently with any other activities, but
that the computation section could be divided into tasks that would run independently on as many PEs
as are available, with the same total number of computation steps as in the original computation. The
time for the full computation on P PEs can therefore be given by Of course, Eq. 2.2 describes a very
idealized situation. However, the idea that computations have a serial part (for which additional PEs
are useless) and a parallelizable part (for which more PEs decrease the running time) is realistic. Thus,
this simple model captures an important relationship.

Equation 2.2

rav—. fre -I:'r.u'rr JTJ..rr:{l} N IS B
IF(}?{N{P:I = I.-w'ruja + I}—J T Ijirm.!f;rzfmu

An important measure of how much additional PEs help is the relative speedup S, which describes
how much faster a problem runs in a way that normalizes away the actual running time.

Equation 2.3
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A related measure is the efficiency E, which is the speedup normalized by the number of PEs.

Equation 2.4
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S(P)

E(P) =

Equation 2.5
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Ideally, we would want the speedup to be equal to P, the number of PEs. This is sometimes called
perfect linear speedup. Unfortunately, this is an ideal that can rarely be achieved because times for
setup and finalization are not improved by adding more PEs, limiting the speedup. The terms that
cannot be run concurrently are called the serial terms. Their running times represent some fraction of
the total, called the serial fraction, denoted y.

Equation 2.6
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The fraction of time spent in the parallelizable part of the program is then (1 — y). We can thus
rewrite the expression for total computation time with P PEs as

Equation 2.7
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Now, rewriting S in terms of the new expression for Ttotal(P)’ we obtain the famous Amdahl's law:

Equation 2.8
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Equation 2.9

Thus, in anideal parallel algorithm with no overhead in the parallel part, the speedup should follow
Eq. 2.9. What happens to the speedup if we take our ideal parallel algorithm and use a very large
number of processors? Taking the limit as P goes to infinity in our expression for S yields
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Equation 2.10

Eq. 2.10 thus gives an upper bound on the speedup obtainable in an algorithm whose seral part
represents Y of the total computation.

These concepts are vital to the parallel algorithm designer. In designing a parallel algonithm, it is
important to understand the value of the serial fraction so that realistic expectations can be set for
performance. It may not make sense to implement a complex, arbitrarily scalable parallel algorithm if
10% or more of the algorithm is serial—and 10% is fairly common.

Of course, Amdahl's law is based on assumptions that may or may not be true in practice. In real life,
a number of factors may make the actual running time longer than this formula implies. For example,
creating additional parallel tasks may increase overhead and the chances of contention for shared
resources. On the other hand, if the original serial computation is limited by resources other than the
availability of CPU cycles, the actual performance could be much better than Amdahl's law would
predict. For example, a large parallel machine may allow bigger problems to be held in memory, thus
reducing virtual memory paging, or multiple processors each with its own cache may allow much
more of the problem to remain in the cache. Amdahl's law also rests on the assumption that for any
given input, the parallel and serial implementations perform exactly the same number of
computational steps. If the serial algorithm being used in the formula is not the best possible
algorithm for the problem, then a clever parallel algorithm that structures the computation differently
can reduce the total number of computational steps.

It has also been observed [Gus88] that the exercise underlying Amdahl's law, namely running exactly
the same problem with varying numbers of processors, is artificial in some circumstances. If, say, the
parallel application were a weather simulation, then when new processors were added, one would
most likely increase the problem size by adding more details to the model while keeping the total
execution time constant. If this is the case, then Amdahl's law, or fixed-size speedup, gives a
pessimistic view of the benefits of additional processors.

To see this, we can reformulate the equation to give the speedup in terms of performance on a P-

processor system. Earlier in Eq. 2.2, we obtained the execution time for T processors (P), from

’ Ttotal
the execution time of the serial terms and the execution time of the parallelizable part when executed
on one processor. Here, we do the opposite and obtain LI tal(1) from the serial and parallel terms

when executed on P processors.

Equation 2.11
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Now, we define the so-called scaled serial fraction, denoted Ycated’ 33
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Equation 2.12
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and then

Equation 2.13
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Rewriting the equation for speedup (Eq. 2.3) and simplifying, we obtain the scaled (or fixed-time)
speedup.[1]

(] This equation, sometimes known as Gustafson's law, was attributed in [Gus88] to E.

Barsis.

Equation 2.14
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This gives exactly the same speedup as Amdahl's law, but allows a different question to be asked when
the number of processors is increased. Since Ycaled depends on P, the result of taking the limit isn't

immediately obvious, but would give the same result as the limit in Amdahl's law. However, suppose

we take the limit in P while holding T, moute and thus VY aleq CONSLANt. The interpretation is that we

mput
are increasing the size of the problem so that the total running time remains constant when more
processors are added. (This contains the implicit assumption that the execution time of the serial
terms does not change as the problem size grows.) In this case, the speedup is linear in P. Thus, while
adding more processors to solve a fixed problem may hit the speedup limits of Amdahl's law with a
relatively small number of processors, if the problem grows as more processors are added, Amdahl's
law will be pessimistic. These two models of speedup, along with a fixed-memory version of speedup,
are discussed in [SN90].

2.6. COMMUNICATION

2.6.1. Latency and Bandwidth

A simple but useful model characterizes the total time for message transfer as the sum of a fixed cost
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plus a variable cost that depends on the length of the message.

Equation 2.15

T B l

message—transfer — & 3
The fixed cost « is called latency and is essentially the time it takes to send an empty message over
the communication medium, from the time the send routine is called to the time the data is received
by the recipient. Latency (given in some appropriate time unit) includes overhead due to software and
network hardware plus the time it takes for the message to traverse the communication medium. The
bandwidth B (given in some measure of bytes per time unit) is a measure of the capacity of the
communication medium. N is the length of the message.

The latency and bandwidth can vary significantly between systems depending on both the hardware
used and the quality of the software implementing the communication protocols. Because these values
can be measured with fairly simple benchmarks [DD97], it is sometimes worthwhile to measure
values for o and B, as these can help guide optimizations to improve communication performance.
For example, in a system in which « is relatively large, it might be worthwhile to try to restructure a
program that sends many small messages to aggregate the communication into a few large messages

instead. Data for several recent systems has been presented in [BBC"03].

2.6.2. Overlapping Communication and Computation and Latency Hiding

If we look more closely at the computation time within a single task on a single processor, it can
roughly be decomposed into computation time, communication time, and idle time. The
communication time is the time spent sending and receiving messages (and thus only applies to
distributed-memory machines), whereas the idle time is time that no work is being done because the
task is waiting for an event, such as the release of a resource held by another task.

A common situation in which a task may be idle is when it is waiting for a message to be transmitted
through the system. This can occur when sending a message (as the UE waits for a reply before
proceeding) or when receiving a message. Sometimes it is possible to eliminate this wait by
restructuring the task to send the message and/or post the receive (that is, indicate that it wants to
receive a message) and then continue the computation. This allows the programmer to overlap
communication and computation. We show an example of this technique in Fig. 2.7. This style of
message passing is more complicated for the programmer, because the programmer must take care to
wait for the receive to complete after any work that can be overlapped with communication is
completed.
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Figure 2.7. Communication without (left) and with (right) support for overlapping
communication and computation. Although UE 0 in the computation on the right still
has some idle time waiting for the reply from UE 1, the idle time is reduced and the

computation requires less total time because of UE 1 's earlier start.
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Another technique used on many parallel computers is to assign multiple UEs to each PE, so that
when one UE is waiting for communication, it will be possible to context-switch to another UE and
keep the processor busy. This is an example of latency hiding. It is increasingly being used on modern
high-performance computing systems, the most famous example being the MTA system from Cray

Research [ACC90].

2.7. SUMMARY

This chapter has given a brief overview of some of the concepts and vocabulary used in parallel
computing. Additional terms are defined in the glossary. We also discussed the major programming
environments in use for parallel computing: OpenMP, MPI, and Java. Throughout the book, we will
use these three programming environments for our examples. More details about OpenMP, MPI, and
Java and how to use them to write parallel programs are provided in the appendixes.

Chapter 3. The Finding Concurrency Design
Space

3.1 ABOUT THE DESIGN SPACE

3.2 THE TASK DECOMPOSITION PATTERN


http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev1sec1
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev1sec1
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev1sec1
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry03

HE DATA DECOMPOSITION PATTERN
HE GROUP TASKS PATTERN
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SUMMARY

3.1. ABOUT THE DESIGN SPACE

The software designer works in a number of domains. The design process starts in the problem
domain with design elements directly relevant to the problem being solved (for example, fluid flows,
decision trees, atoms, etc.). The ultimate aim of the design is software, so at some point, the design
elements change into ones relevant to a program (for example, data structures and software modules).
We call this the program domain. Although it is often tempting to move into the program domain as
soon as possible, a designer who moves out of the problem domain too soon may miss valuable design
options.

This is particularly relevant in parallel programming. Parallel programs attempt to solve bigger
problems in less time by simultaneously solving different parts of the problem on different processing
elements. This can only work, however, if the problem contains exploitable concurrency, that is,
multiple activities or tasks that can execute at the same time. After a problem has been mapped onto
the program domain, however, it can be difficult to see opportunities to exploit concurrency.

Hence, programmers should start their design of a parallel solution by analyzing the problem within
the problem domain to expose exploitable concurrency. We call the design space in which this
analysis is carried out the Finding Concurrency design space. The patterns in this design space will
help identify and analyze the exploitable concurrency in a problem. After this is done, one or more
patterns from the Algorithm Structure space can be chosen to help design the appropriate algorithm
structure to exploit the identified concurrency.

An overview of this design space and its place in the pattern language is shown in Fig. 3.1.

Figure 3.1. Overview of the Finding Concurrency design space and its place in the
pattern language
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Experienced designers working in a familiar domain may see the exploitable concurrency
immediately and could move directly to the patterns in the Algorithm Structure design space.

3.1.1. Overview

Before starting to work with the patterns in this design space, the algorithm designer must first
consider the problem to be solved and make sure the effort to create a parallel program will be
justified: Is the problem large enough and the results significant enough to justify expending effort to
solve it faster? If so, the next step is to make sure the key features and data elements within the
problem are well understood. Finally, the designer needs to understand which parts of the problem are
most computationally intensive, because the effort to parallelize the problem should be focused on
those parts.

After this analysis is complete, the patterns in the Finding Concurrency design spacecan be used to
start designing a parallel algorithm. The pattems in this design space can be organized into three
groups.

+ Decomposition Patterns. The two decomposition patterns, Task Decomposition and Data

Decomposition, are used to decompose the problem into pieces that can execute concumrently.

« Dependency Analysis Patterns. This group contains three patterns that help group the tasks
and analyze the dependencies among them: Group Tasks, Order Tasks, and Data Sharing.
Nominally, the patterns are applied in this order. In practice, however, it is often necessary to
work back and forth between them, or possibly even revisit the decomposition patterns.

« Design Evaluation Pattern. The final pattern in this space guides the algorithm designer
through an analysis of what has been done so far before moving on to the patterns in the
Algorithm Structure design space. This pattern is important because it often happens that the
best design is not found on the first attempt, and the earlier design flaws are identified, the
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easier they are to correct. In general, working through the patterns in this space is an iterative
process.

3.1.2. Using the Decomposition Patterns

The first step in designing a parallel algorithm is to decompose the problem into elements that can
execute concurrently. We can think of this decomposition as occurring in two dimensions.

+ The task-decomposition dimension views the problem as a stream of instructions that can be
broken into sequences called tasks that can execute simultaneously. For the computation to be
efficient, the operations that make up the task should be largely independent of the operations
taking place inside other tasks.

+ The data-decomposition dimension focuses on the data required by the tasks and how it can be
decomposed into distinct chunks. The computation associated with the data chunks will only
be efficient if the data chunks can be operated upon relatively independently.

Viewing the problem decomposition in terms of two distinct dimensions is somewhat artificial. A task
decomposition implies a data decomposition and vice versa; hence, the two decompositions are really
different facets of the same fundamental decomposition. We divide them into separate dimensions,
however, because a problem decomposition usually proceeds most naturally by emphasizing one
dimension of the decomposition over the other. By making them distinct, we make this design
emphasis explicit and easier for the designer to understand.

3.1.3. Background for Examples

In this section, we give background information on some of the examples that are used in several
patterns. It can be skipped for the time being and revisited later when reading a pattern that refers to
one of the examples.

Medical imaging

PET (Positron Emission Tomography) scans provide an important diagnostic tool by allowing
physicians to observe how a radioactive substance propagates through a patient's body. Unfortunately,
the images formed from the distribution of emitted radiation are of low resolution, due in part to the
scattering of the radiation as it passes through the body. It is also difficult to reason from the absolute
radiation intensities, because different pathways through the body attenuate the radiation differently.

To solve this problem, models of how radiation propagates through the body are used to correct the
images. A common approach is to build a Monte Carlo model, as described by Ljungberg and King
[LK98]. Randomly selected points within the body are assumed to emit radiation (usualy a gamma
ray), and the trajectory of each ray is followed. As a particle (ray) passes through the body, it is
attenuated by the different organs it traverses, continuing until the particle leaves the body and hits a
camera model, thereby defining a full trajectory. To create a statistically significant simulation,
thousands, if not millions, of trajectories are followed.

This problem can be parallelized in two ways. Because each trajectory is independent, it is passible to
parallelize the application by associating each trajectory with a task. This approach is discussed in the
Examples section of the Task Decomposition pattern. Another approach would be to partition the
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body into sections and assign different sections to different processing elements. This approach is
discussed in the Examples section of the Data Decomposition pattern.

Linear algebra

Linear algebra is an important tool in applied mathematics: It provides the machinery required to
analyze solutions of large systems of linear equations. The classic linear algebra problem asks, for
matrix A and vector b, what values for x will solve the equation

Equation 3.1

Arax=5b

The matrix A in Eq. 3.1 takes on a central role in linear algebra. Many problems are expressed in
terms of transformations of this matrix. These transformations are applied by means of a matrix
multiplication

Equation 3.2

If T, A, and C are square matrices of order N, matrix multiplication is defined such that each element
of the resulting matrix C is

Equation 3.3

N-1
Cij = Z L s Ap
k

=1
where the subscripts denote particular elements of the matrices. In other words, the element of the
product matrix C in row 1 and column j is the dot product of the i-th row of T and the j-th column of

A. Hence, computing each of the N? elements of C requires N multiplications and N - 1 additions,
making the overall complexity of matrix multiplication O(N3).

There are many ways to parallelize a matrix multiplication operation. It can be parallelized using
either a task-based decomposition (as discussed in the Examples section of the Task Decomposition

pattern) or a data-based decomposition (as discussed in the Examples section of the Data
Decomposition pattern).

Molecular dynamics

Molecular dynamics is used to simulate the motions of a large molecular system. For example,
molecular dynamics simulations show how a large protein moves around and how differently shaped
drugs might interact with the protein. Not surprisingly, molecular dynamics is extremely important in
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the pharmaceutical industry. It is also a useful test problem for computer scientists working on parallel
computing: It is straightforward to understand, relevant to science at large, and difficult to parallelize
effectively. As aresult, it has been the subject of much research [Mat94, PH9S5, Pli935].

The basic idea is to treat a molecule as a large collection of balls connected by springs. The balls
represent the atoms in the molecule, while the springs represent the chemical bonds between the
atoms. The molecular dynamics simulation itself is an explicit time-stepping process. At each time
step, the force on each atom is computed and then standard classical mechanics techniques are used to
compute how the force moves the atoms. This process is carried out repeatedly to step through time
and compute a trajectory for the molecular system.

The forces due to the chemical bonds (the "springs") are relatively simple to compute. These
correspond to the vibrations and rotations of the chemical bonds themselves. These are short-range
forces that can be computed with knowledge of the handful of atoms that share chemical bonds. The
major difficulty arises because the atoms have partial electrical charges. Hence, while atoms only
interact with a small neighborhood of atoms through their chemical bonds, the electrical charges
cause every atom to apply a force on every other atom.

This is the famous N-body problem. On the order of N? terms must be computed to find these
nonbonded forces. Because N is large (tens or hundreds of thousands) and the number of time steps in
a simulation is huge (tens of thousands), the time required to compute these nonbonded forces
dominates the computation. Several ways have been proposed to reduce the effort required to solve the
N-body problem. We are only going to discuss the simplest one: the cutoff method.

The idea is simple. Even though each atom exerts a force on every other atom, this force decreases
with the square of the distance between the atoms. Hence, it should be possible to pick a distance
beyond which the force contribution is so small that it can be ignored. By ignoring the atoms that
exceed this cutoff, the problem is reduced © one that scales as O(N x n), where n is the number of
atoms within the cutoff volume, usually hundreds. The computation is still huge, and it dominates the
overall runtime for the simulation, but at leag the problem is tractable.

There are a host of details, but the basic simulation can be summarized as in Fig. 3.2.

The primary data structures hold the atomic positions (atoms), the velocities of each atom
(velocity), the forces exerted on each atom (forces), and lists of atoms within the cutoff
distance of each atoms (neighbors). The program itself is a time-stepping loop, in which each
iteration computes the short-range force terms, updates the neighbor lists, and then finds the
nonbonded forces. After the force on each atom has been computed, a simple ordinary differential
equation is solved to update the positions and velocities. Physical properties based on atomic motions
are then updated, and we go to the next time step.

There are many ways to parallelize the molecular dynamics problem. We consider the most common
approach, starting with the task decomposition (discussed in the Task Decomposition pattern) and

following with the associated data decomposition (discussed in the Data Decomposition pattern). This

example shows how the two decompositions fit together to guide the design of the parallel algorithm.
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Figure 3.2. Pseudocode for the molecular dynamics example

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps
vibrational forces (N, atoms, forces)
rotational forces (N, atoms, forces)
neighbor list (N, atoms, neighbors)
non bonded forces (N, atoms, neighbors, forces)
update atom positions and velocities(
N, atoms, velocities, forces)
physical properties ( ... Lots of stuff ... )
end loop

3.2. THE TASK DECOMPOSITION PATTERN

Problem

How can a problem be decomposed into tasks that can execute concurrently?

Context

Every parallel algorithm design starts from the same point, namely a good understanding of the
problem being solved. The programmer must understand which are the computationally intensive
parts of the problem, the key data structures, and how the data is used as the problem's solution
unfolds.

The next step is to define the tasks that make up the problem and the data decomposition implied by
the tasks. Fundamentally, every parallel algonthm involves a collection of tasks that can execute
concurrently. The challenge is to find these tasks and craft an algorithm that lets them run
concurrently.

In some cases, the problem will naturally break down into a collection of independent (or nearly
independent) tasks, and it is easiest to start with a task-based decomposition. In other cases, the tasks
are difficult to isolate and the decomposition of the data (as discussed in the Data Decomposition

pattern) is a better starting point. It is not always clear which approach is best, and often the algorithm

designer needs to consider both.

Regardless of whether the starting point is a task-based or a data-based decomposition, however, a
parallel algonthm ultimately needs tasks that will execute concurrently, so these tasks must be
identified.
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Forces
The main forces influencing the design at this point are flexibility, efficiency, and simplicity.

« Flexibility. Flexibility in the design will allow it to be adapted o different implementation
requirements. For example, it is usually not a good idea to narrow the options to a single
computer system or style of programming at this stage of the design.

- Efficiency. A parallel program is only useful if it scales efficiently with the size of the parallel
computer (in terms of reduced runtime and/or memory utilization). For a task decomposition,
this means we need enough tasks to keep all the PEs busy, with enough work per task to
compensate for overhead incurred to manage dependencies. However, the drive for efficiency
can lead to complex decompositions that lack flexibility.

+ Simplicity. The task decomposition needs to be complex enough to get the job done, but
simple enough to let the program be debugged and maintained with reasonable effort.

Solution

The key to an effective task decomposition is to ensure that the tasks are sufficiently independent so
that managing dependencies takes only a small fraction of the program's overall execution time. It is
also important to ensure that the execution of the tasks can be evenly distributed among the ensemble
of PEs (the load-balancing problem).

In an ideal world, the compiler would find the tasks for the programmer. Unfortunately, this almost
never happens. Instead, it must usually be done by hand based on knowledge of the problem and the
code required to solve it. In some cases, it might be necessary to completely recast the problem into a
form that exposes relatively independent tasks.

In a task-based decomposition, we look at the problem as a collection of distinct tasks, paying
particular attention to

+ The actions that are carried out to solve the problem. (Are there enough of them to keep the
processing elements on the target machines busy?)

«  Whether these actions are distinct and relatively independent.

As a first pass, we try to identify as many tasks as possible; it is much easier to start with too many
tasks and merge them later on than to start with too few tasks and later try to split them.

Tasks can be found in many different places.

+ In some cases, each task corresponds to a distinct call to a function. Defining a task for each
function call leads to what is sometimes called a functional decomposition.

«+ Another place to find tasks is in distinct iterations of the loops within an algorithm. If the
iterations are independert and there are enough of them, then it might work well to base a task
decomposition on mapping each iteration onto a task. This style of task-based decomposition
leads to what are sometimes called loop-splitting algorithms.

« Tasks also play a key role in data-driven decompositions. In this case, a large data structure is
decomposed and multiple units of execution concurrently update different chunks of the data
structure. In this case, the tasks are those updates on individual chunks.



Also keep in mind the forces given in the Forces section:

- Flexibility. The design needs © be flexible in the number of tasks generated. Usually this is
done by parameterizing the number and size of tasks on some appropriate dimension. This
will let the design be adapted b a wide range of parallel computers with different numbers of
processors.

- Efficiency. There are two major efficiency issues to consider in the task decomposition. First,
each task must include enough work to compensate for the overhead incurred by creating the
tasks and managing their dependencies. Second, the number of tasks should be large enough
so that all the units of execution are busy with useful work throughout the computation.

 Simplicity. Tasks should be defined in a way that makes debugging and maintenance simple.
When possible, tasks should be defined so they reuse code from existing sequential programs
that solve related problems.

After the tasks have been identified, the next step is to look at the data decomposition implied by the
tasks. The Data Decomposition pattern may help with this analysis.

Examples

Medical imaging

Consider the medical imaging problem described in Sec. 3.1.3. In this application, a point inside a
model of the body is selected randonly, a radioactive decay is allowed to occur at this point, and the
trajectory of the emitted particle is followed. To create a statistically significant simulation, thousands,
if not millions, of trajectories are followed.

It is natural to associate a task with each trajectory. These tasks are particularly simple to manage
concurrently because they are completely independent. Furthermore, there are large numbers of
trajectories, so there will be many tasks, making this decomposition suitable for a large range of
computer systems, from a shared-memory system with a small number of processing elements to a
large cluster with hundreds of processing elements.

With the basic tasks defined, we now consider the corresponding data decomposition—that is, we
define the data associated with each task. Each task needs to hold the information defining the
trajectory. But that is not all: The tasks need access to the model of the body as well. Although it
might not be apparent from our description of the problem, the body model can be extremely large.
Because it is a read-only model, this is no problem if there is an effective shared-memory system;
each task can read data as needed. If the target platform is based on a distributed-memory
architecture, however, the body model will need to be replicated on each PE. This can be very time-
consuming and can waste a great deal of memory. For systems with small memories per PE and/or
with slow networks between PEs, a decomposition of the problem based on the body model might be
more effective.

This is a common situation in parallel pogramming: Many problems can be decomposed primarily in
terms of data or primarily in terms of tasks. If a task-based decomposition avoids the need to break up
and distribute complex data structures, it will be a much simpler program to write and debug. On the

other hand, if memory and/or network bandwidth is a limiting factor, a decomposition that focuses on
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the data might be more effective. It is not so much a matter of one approach being "better" than
another as a matter of balancing the needs of the machine with the needs of the programmer. We
discuss this in more detail in the Data Decomposition pattern.

Matrix multiplication

Consider the multiplication of two matrices (C = A ¢ B), as described in Sec. 3.1.3. We can produce a
task-based decomposition of this problem by considering the calculation of each element of the
product matrix as a separate task. Each task needs access to one row of A and one column of B. This
decomposition has the advantage that all the tasks are independent, and because all the data that is
shared among tasks (A and B) is read-only, it will be straightforward to implement in a shared-
memory environment.

The performance of this algorithm, however, would be poor. Consider the case where the three
matrices are square and of order N. For each element of C, N elements from A and N elements flom B
would be required, resulting in 2N memory references for N multiply/add operations. Memory access
time is slow compared to floating-point arithmetic, so the bandwidth of the memory subsystem would
limit the performance.

A better approach would be to design an algorithm that maximizes reuse of data loaded into a
processor's caches. We can arrive at this algorithm in two different ways. First, we could group
together the elementwise tasks we defined earlier so the tasks that use similar elements of the A and B
matrices run on the same UE (see the Group Tasks pattern). Alternatively, we could start with the data

decomposition and design the algorithm from the beginning around the way the matrices fit into the
caches. We discuss this example further in the Examples section of the Data Decomposition pattern.

Molecular dynamics

Consider the molecular dynamics problem described in Sec. 3.1.3. Pseudocode for this example is
shown again in Fig. 3.3.

Before performing the task decomposition, we need to better understand some details of the problem.
First, the neighbor 1ist () computation is time-consuming. The gist of the computation is a
loop over each atom, inside of which every other atom is checked to determine whether it falls within
the indicated cutoff volume. Fortunately, the time steps are very small, and the atoms don't move very
much in any given time step. Hence, this time-consuming computation is only carried out every 10 to
100 steps.

Figure 3.3. Pseudocode for the molecular dynamics example

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps
vibrational forces (N, atoms, forces)
rotational forces (N, atoms, forces)
neighbor list (N, atoms, neighbors)
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non _bonded forces (N, atoms, neighbors, forces)
update atom positions and velocities(
N, atoms, velocities, forces)
physical properties ( ... Lots of stuff ... )
end loop

Second, the physical properties() function computes energies, correlation coefficients, and
a host of interesting physical properties. These computations, however, are simple and do not
significantly affect the program's overall runtime, so we will ignore them in this discussion.

Because the bulk of the computation time will be innon_bonded forces (), we must pick a
problem decomposition that makes that computation run efficiently in parallel. The problem is made
easier by the fact that each of the functions inside the time loop has a similar structure: In the
sequential version, each function includes a loop over atoms to compute contributions to the force
vector. Thus, a natural task definition is the update required by each atom, which corresponds to a
loop iteration in the sequential version. After performing the task decomposition, therefore, we obtain
the following tasks.

« Tasks that find the vibrational forces on an atom

« Tasks that find the rotational forces on an atom

« Tasks that find the nonbonded forces on an atom

+ Tasks that update the position and velocity of an atom

A task to update the neighbor list for all the atoms (which we will leave sequential)

With our collection of tasks in hand, we can consider the accompanying data decomposition. The key
data structures are the neighbor list, the atomic coordinates, the atomic velocities, and the force vector.
Every iteration that updates the force vector needs the coordinates of a neighborhood of atoms. The
computation of nonbonded forces, however, potentially needs the coordinates of all the atoms, because
the molecule being simulated might fold back on itself in unpredictable ways. We will use this
information to carry out the data decomposition (in the Data Decomposition pattern) and the data-
sharing analysis (in the Data Sharing pattern).

Known uses

Task-based decompositions are extremely common in parallel computing. For example, the distance
geometry code DGEOM [Mat96] uses a task-based decomposition, as does the parallel WESDYN
molecular dynamics program [MR93].

3.3. THE DATA DECOMPOSITION PATTERN


http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry112
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry112
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry112

Problem

How can a problem's data be decomposed into units that can be operated on relatively independently?

Context

The parallel algorithm designer must have a detailed understanding of the problem being solved. In
addition, the designer should identify the most computationally intensive parts of the problem, the key
data structures required to solve the problem, and how data is used as the problem's solution unfolds.

After the basic problem is understood, the parallel algonthm designer should consider the tasks that
make up the problem and the data decomposition implied by the tasks. Both the task and data
decompositions need to be addressed to create a parallel algorithm. The question is not which
decomposition to do. The question is which one to start with. A data-based decomposition is a good
starting point if the following is true.

The most computationally intensive part of the problem is organized around the manipulation
of a large data structure.

Similar operations are being applied b different parts of the data structure, in such a way that
the different parts can be operated on relatively independently.

For example, many linear algebra problems update large matrices, applying a similar set of operations
to each element of the matrix. In these cases, it is straightforward to drive the parallel algorithm
design by looking at how the matrix can be broken up into blocks that are updated concurrently. The
task definitions then follow from how the blocks are defined and mapped onto the processing
elements of the parallel computer.

Forces
The main forces influencing the design at this point are flexibility, efficiency, and simplicity.

Flexibility. Flexibility will allow the design to be adapted to different implementation
requirements. For example, it is usually not a good idea to narrow the options to a single
computer system or style of programming at this stage of the design.

Efficiency. A parallel program is only useful if it scales efficiently with the size of the parallel
computer (in terms of reduced runtime and/or memory utilization).

Simplicity. The decomposition needs to be complex enough to get the job done, but simple
enough to let the program be debugged and maintained with reasonable effort.

Solution

In shared-memory programming environments such as OpenMP, the data decomposition will
frequently be implied by the task decomposition. In most cases, however, the decomposition will need
to be done by hand, because the memory is physically distributed, because data dependencies are ©o
complex without explicitly decomposing the data, or to achieve acceptable efficiency ona NUMA
computer.

If a task-based decomposition has already been done, the data decomposition is driven by the needs of
each task. If well-defined and distinct data can be associated with each task, the decomposition should



be simple.

When starting with a data decomposition, however, we need to look not at the tasks, but at the central
data structures defining the problem and consider whether they can they be broken down into chunks
that can be operated on concurrently. A few common examples include the following.

+ Array-based computations. Concurrency can be defined in terms of updates of different
segments of the array. If the array is multidimensional, it can be decomposed in a variety of
ways (rows, columns, or blocks of varying shapes).

+ Recursive data structures. We can think of, for example, decomposing the parallel update of a
large tree data structure by decomposing the data structure into subtrees that can be updated
concurrently.

Regardless of the nature of the underlying data structure, if the data decomposition is the primary
factor driving the solution to the problem, it serves as the organizing principle of the parallel
algorithm.

When considering how to decompose the problem's data structures, keep in mind the competing
forces.

+ Flexibility. The size and number of data chunks should be flexible to support the widest range
of parallel systems. One approach is to define chunks whose size and number are controlled by
a small number of parameters. These parameters define granularity knobs that can be varied to
modify the size of the data chunks to match the needs of the underlying hardware. (Note,
however, that many designs are not infinitely adaptable with respect to granularity.)

The easiest place to see the impact of granularity on the data decomposition is in the overhead
required to manage dependencies between chunks. The time required to manage dependencies
must be small compared to the overall runtime. In a good data decomposition, the
dependencies scaleat a lower dimension than the computational effort associated with each
chunk. For example, in many finite difference programs, the cells at the boundaries between
chunks, that is, the surfaces of the chunks, must be shared. The size of the set of dependent
cells scales as the surface area, while the effort required in the computation scales as the
volume of the chunk. This means that the computational effort can be scaled (based on the
chunk's volume) to offset overheads associated with data dependencies (basedon the surface
area of the chunk).

- Efficiency. It is important that the data chunks be large enough that the amount of work to
update the chunk offsets the overhead of managing dependencies. A more subtle issue to
consider is how the chunks map onto UEs. An effective parallel algonthm must balance the
load between UEs. If this isn't done well, some PEs might have a disproportionate amount of
work, and the overall scalability will suffer. This may require clever ways to break up the
problem. For example, if the problem clears the columns in a matrix from left to right, a
column mapping of the matrix will cause problems as the UEs with the leftmost columns will
finish their work before the others. A row-based block decomposition or even a block-cyclic
decomposition (in which rows are assigned cyclically to PEs) would do a much better job of
keeping all the processors fully occupied. These issues are discussed in more detail in the
Distributed Array pattern.



- Simplicity. Overly complex data decompositions can be very difficult to debug. A data
decomposition will usually require a mapping of a global index space onto a task-local index
space. Making this mapping abstract allows it to be easily isolated and tested.

After the data has been decomposed, if it has not already been done, the next step is to look at the task
decomposition implied by the tasks. The Task Decomposition pattern may help with this analysis.

Examples

Medical imaging

Consider the medical imaging problem described in Sec. 3.1.3. In this application, a point inside a
model of the body is selected randonly, a radioactive decay is allowed to occur at this point, and the
trajectory of the emitted particle is followed. To create a statistically significant simulation, thousands
if not millions of trajectories are followed.

In a data-based decomposition of this problem, the body model is the large central data structure
around which the computation can be organized. The model is broken into segments, and one or more
segments are associated with each processing element. The body segments are only read, not written,
during the trajectory computations, so there are no data dependencies created by the decomposition of
the body model.

After the data has been decomposed, we need to look at the tasks associated with each data segment.
In this case, each trajectory passing through the data segment defines a task. The trajectories are
initiated and propagated within a segment. When a segment boundary is encountered, the trajectory
must be passed between segments. It is this transfer that defines the dependencies between data
chunks.

On the other hand, in a task-based approach to this problem (as discussed in the Task Decomposition
pattern), the trajectories for each particle drive the algorithm design. Each PE potentially needs to
access the full body model to service its set of trajectories. In a shared-memory environment, this is
easy because the body model is a read-only data set. In a distributed-memory environment, however,
this would require substantial startup overhead as the body model is broadcast across the system.

This is a common situation in parallel programming: Different points of view lead to different
algorithms with potentially very different performance characteristics. The task-based algorithm is
simple, but it only works if each processing element has access to a large memory and if the overhead
incurred loading the data into memory is insignificant compared to the program's runtime. An
algorithm driven by a data decomposition, on the other hand, makes efficient use of memory and (in
distributed-memory environments) less use of network bandwidth, but it incurs more communication
overhead during the concurrent part of computation and is significantly more complex. Choosing
which is the appropriate approach can be difficult and is discussed further in the Design Evaluation

pattern.

Matrix multiplication

Consider the standard multiplication of two matrices (C = A - B), as described in Sec. 3.1.3. Several
data-based decompositions are possible for this problem. A straightforward one would be to
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decompose the product matrix C into a set of row blocks (set of adjacentrows). From the definition of
matrix multiplication, computing the elements of a row block of C requires the full A matrix, but only
the corresponding row block of B. With such a data decomposition, the basic task in the algorithm
becomes the computation of the elements in a row block of C.

An even more effective approach that does not require the replication of the full A matnx is to
decompose all three matrices into submatrices or blocks. The basic task then becomes the update of a
C block, with the A and B blocks being cycled among the tasks as the computation proceeds. This
decomposition, however, is much more complex to program; communication and computation must be
carefully coordinated during the most time-critical portions of the problem. We discuss this example
further in the Geometric Decomposition and Distributed Array patterns.

One of the features of the matrix multiplication problem is that the ratio of floating-point operations

(O(N3)) to memory references (O(Nz)) is small. This implies that it is especially important to take into
account the memory access patterns to maximize reuse of data from the cache. The most effective
approach is to use the block (submatrix) decomposition and adjust the size of the blocks so the
problems fit into cache. We could arrive at the same algorithm by carefully grouping together the
elementwise tasks that were identified in the Examples section of the Task Decomposition pattern, but

starting with a data decomposition and assigning a task to update each submatrix seems easier to
understand.

Molecular dynamics

Consider the molecular dynamics problem described in Sec. 3.1.3 and in the Examples section of the
Task Decomposition pattern. This problem naturally breaks down into a task decomposition with a

task being aniteration of the loop over atoms in each of the force computation routines.
Summarizing our problem and its task decomposition, we have the following:

+ Tasks that find the vibrational forces on an atom

« Tasks that find the rotational forces on an atom

+ Tasks that find the nonbonded forces on an atom

« Tasks that update the position and velocity of an atom

- A task to update the neighbor list for all the atoms (which we will leave sequential)
The key data structures are

+ An array of atom coordinates, one element per atom

« An array of atom velocities, one element per atom

+ An array of lists, one per atom, each defining the neighborhood of atoms within the cutoff
distance of the atom

+ An array of forces on atoms, one element per atom

An element of the velocity array is used only by the task owning the corresponding atom. This data
does not need to be shared and canremain local to the task. Every task, however, needs access to the
full array of coordinates. Thus, it will make sense to replicate this data in a distributed-memory
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environment or share it amorng UEs in a shared-memory environment.

More interesting is the array of forces. From Newton's third law, the force from atom i on atom j is the
negative of the force from atom j on atom i. We can exploit this symmetry to cut the amount of
computation in half as we accumulate the force terms. The values in the force array are not in the
computation until the last steps in which the coordinates and velocities are updated. Therefore, the
approach used is to initialize the entire force array on each PE and have the tasks accumulate partial
sums of the force terms into this array. After all the partial force terms have completed, we sum all the
PEs' arrays together to provide the final force array. We discuss this further in the Data Sharing
pattern.

Known uses

Data decompositions are very common in parallel scientific computing. The parallel linearalgebra

library ScaLAPACK [Sca, BCC"97] uses block-based decompositions. The PLAPACK environment
[vdG97] for dense linear algebra problems uses a slightly different approach to data decomposition. If,
for example, an equation of the form y = Ax appears, instead of first partitioning matrix A, the vectors
y and x are partitioned in a natural way and then the induced pattition on A is determined. The
authors report better performance and easier implementation with this approach.

The data decomposition used in our molecular dynamics example is described by Mattson and
Ravishanker [MR95]. More sophisticated data decompositions for this problem that scale better for
large numbers of nodes are discussed by Plimpton and Hendrickson [PH9S, P1i95].

3.4. THE GROUP TASKS PATTERN

Problem

How can the tasks that make up a problem be grouped to simplify the job of managing dependencies?

Context

This pattern can be applied after the corresponding task and data decompositions have been identified
as discussed in the Task Decomposition and Data Decomposition patterns.

This pattern describes the first step in analyzing dependenciesamong the tasks within a problem's
decomposition. In developing the problem's task decomposition, we thought in terms of tasks that can
execute concurrently. While we did not emphasize it during the task decomposition, it is clear that
these tasks do not constitute a flat set. For example, tasks derived from the same high-level operation
in the algorithm are naturally grouped together. Other tasks may not be related in terms of the original
problem but have similar constraints on their concurrent execution and can thus be grouped together.

In short, there is considerable sructure to the set of tasks. These structures—these groupings of tasks
—simplify a problem's dependency analysis. If a group shares a temporal constraint (for example,
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waiting on one group to finish filling a file before another group can begin reading it), we can satisfy
that constraint once for the whole group. If a group of tasks must work together on a shared data
structure, the required synchronization can be worked out once for the whole group. If a set of tasks
are independent, combining them into a single group and scheduling them for execution as a single
large group can simplify the design and increase the available concurrency (thereby letting the
solution scale to more PEs).

In each case, the idea is to define groups of tasks that share constraints and simplify the problem of
managing constraints by dealing with groups rather than individual tasks.

Solution
Constraints among tasks fall into a few major categories.

+ The easiest dependency to understand is a temporal dependency—that is, a constraint on the
order in which a collection of tasks executes. If task A depends on the results of task B, for
example, then task A must wait until task B completes before it can execute. We can usually
think of this case in terms of data flow: Task A is blocked waiting for the data to be ready
from task B; when B completes, the data flows into A. In some cases, A can begin computing
as soon as data starts to flow from B (for example, pipeline algorithms as described in the
Pipeline pattern).

+ Another type of ordering constraint occurs when a collection of tasks must run at the same
time. For example, in many data-parallel problems, the original problem domain is divided
into multiple regions that can be updated in parallel. Typically, the update of any given region
requires information about the boundaries of its neighboring regions. If all of the regions are
not processed at the same time, the parallel program could stall or deadlock as some regions
wait for data from inactive regions.

+ In some cases, tasks in a group are truly independent of each other. These tasks do not have an
ordering constraint among them. This is an important feature of a set of tasks because it means
they can execute in any order, including concurrently, and it is important to clearly note when
this holds.

The goal of this pattern is to group tasks based on these constraints, because of the following.

By grouping tasks, we simplify the establishment of partial orders between tasks, since
ordering constraints can be applied to groups rather than to individual tasks.

 Grouping tasks makes it easier to identify which tasks must execute concurrently.

For a given problem and decomposition, there may be many ways to group tasks. The goal is to pick a
grouping of tasks that simplifies the dependency analysis. To clarify this point, think of the
dependency analysis as finding and satisfying constraints on the concurrent execution of a program.
When tasks share a set of constraints, it simplifies the dependency analysis to group them together.

There is no single way to find task groups. We suggest the following approach, keeping in mind that
while one cannot think about task groups without considering the constraints themselves, at this point
in the design, it is best to do so as abstractly as possible—identify the constraints and group tasks to
help resolve them, but try not to get bogged down in the details.
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« First, look at how the original problem was decomposed. In most cases, a high-level operation
(for example, solving a matrix) or a large iterative program structure (for example, a loop)
plays a key role in defining the decomposition. This is the first place to look for grouping
tasks. The tasks that correspond to a high-level operation naturally group together.

At this point, there may be many small groups of tasks. In the next step, we will look at the
constraints shared between the tasks within a group. If the tasks share a constraint—usually in
terms of the update of a shared data structure—keep them as a distinct group. The algorithm
design will need to ensure that these tasks execute at the same time. For example, many
problems involve the coordinated update of a shared data structure by a set of tasks. If these
tasks do not run concurrently, the program could deadlack.

« Next, we ask if any other task groups share the same constraint. If so, merge the groups
together. Large task groups provide additional concurrency to keep more PEs busy and also
provide extra flexibility in scheduling the execution of the tasks, thereby making it easier to
balance the load between PEs (that is, ensure that each of the PEs spends approximately the
same amount of time working on the problem).

+ The next step is to look at constraints between groups of tasks. This is easy when groups have
a clear temporal ordering or when a distinct chain of data moves between groups. The more
complex case, however, is when otherwise independent task groups share congraints between
groups. In these cases, it can be useful to merge these into a larger group of independent tasks
—once again because large task groups usually make for more scheduling flexibility and better
scalability.

Examples

Molecular dynamics

This problem was described in Sec. 3.1.3, and we discussed its decomposition in the Task
Decomposition and Data Decomposition patterns. We identified the following tasks:

+ Tasks that find the vibrational forces on an atom

« Tasks that find the rotational forces on an atom

+ Tasks that find the nonbonded forces on an atom

+ Tasks that update the position and velocity of an atom

- A task to update the neighbor list for all the atoms (a single task because we have decided to
leave this part of the computation sequential)

Consider how these can be grouped together. As a first pass, each item in the previous list corresponds
to a high-level operation in the original problem and defines a task group. If we were to dig deeper
into the problem, however, we would see that in each case the updates implied in the force functions
are independent. The only dependency is the summation of the forces into a single force array.

We next want to see if we can merge any of these groups. Going down the list, the tasks in first two
groups are independent but share the same constraints. In both cases, coordinates for a small
neighborhood of atoms are read and local contributions are made to the force array, so we can merge
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these into a single group for bonded interactions. The other groups have distinct temporal or ordering
constraints and therefore should not be merged.

Matrix multiplication

In the Examples section of the Task Decomposition pattern we discuss decomposing the matrix
multiplication C = A - B into tasks, each corresponding to the update of one element in C. The
memory organization of most modern computers, however, favors larger-grained tasks such as
updating a block of C, as described in the Examples section of the Data Decomposition pattern.

Mathematically, this is equivalent to grouping the elementwise update tasks into groups
corresponding to blocks, and grouping the tasks this way is well suited to an optimum utilization of
system memory.

3.5. THE ORDER TASKS PATTERN

Problem

Given a way of decomposing a problem into tasks and a way of collecting these tasks into logically
related groups, how must these groups of tasks be ordered to satisfy constraints among tasks?

Context

This pattern constitutes the second step in analyzing dependencies among the tasks of a problem
decomposition. The first step, addressed in the Group Tasks pattern, is to group tasks based on
constraints among them. The next step, discussed here, is to find and correctly account for
dependencies resulting from constraints on the order of execution of a collection of tasks. Constraints
among tasks fall into a few major categories:

- Temporal dependencies, that is, constraints placed on the order in which a collection of tasks
executes.

+ Requirements that particular tasks must execute at the same time (for example, because each
requires information that will be produced by the others).

«+ Lack of constraint, that is, total independence. Although this is not strictly speaking a
constraint, it is an important feature of a set of tasks because it means they can execute in any
order, including concurrently, and it is important to clearly note when this holds.

The purpose of this pattern is to help find and correctly account for dependencies resulting from
constraints on the order of execution of a collection of tasks.

Solution

There are two goals to be met when identifying ordering constraints among tasks and defining a
partial order among task groups.
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+ The ordering must be restrictive enough to satisfy all the constraints so that the resulting
design is correct.

+ The ordering should not be more restrictive than it needs to be. Overly constraining the
solution limits design options and can impair program efficiency; the fewer the constraints, the
more flexibility you have to shift tasks around to balance the computational load among PEs.

To identify ordering constraints, consider the following ways tasks can depend on each other.

« First look at the data required by a group of tasks before they can execute. After this data has
been identified, find the task group that creates it and an ordering constraint will be apparent.
For example, if one group of tasks (call it A) builds a complex data structure and another
group (B) uses it, there is a sequential ordering constraint between these groups. When these
two groups are combined in a program, they must execute in sequence, first A and then B.

« Also consider whether external services can impose ordering constraints. For example, if a
program must write to a file in a certain order, then these file I/O operations likely impose an
ordering constraint.

- Finally, it is equally important to note when an ordering constraint does not exist. If a number
of task groups can execute independently, there is a much greater opportunity to exploit
parallelism, so we need to note when tasks are independent as well as when they are
dependent.

Regardless of the source of the constraint, we must define the constraints that restrict the order of
execution and make sure they are handled correctly in the resulting algorithm. At the same time, it is
important to note when ordering constraints are absent, since this will give valuable flexibility later in
the design.

Examples

Molecular dynamics

This problem was described in Sec. 3.1.3, and we discussed its decomposition in the Task
Decomposition and Data Decomposition patterns. In the Group Tasks pattern, we described how to

organize the tasks for this problem in the following groups:

« A group of tasks to find the "bonded forces" (vibrational forces and rotational forces) on each
atom

+ A group of tasks to find the nonbonded forces on each atom
+ A group of tasks to update the position and velocity of each atom
A task to update the neighbor list for all the atoms (which trivially constitutes a task group)

Now we are ready to consider ordering constraints between the groups. Clearly, the update of the
atomic positions cannot occur until the force computation is complete. Also, the nonbonded forces
cannot be computed until the neighbor list is updated. So in each time step, the groups must be
ordered as shown in Fig. 3.4.
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Figure 3.4. Ordering of tasks in molecular dynamics problem
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While it is too early in the design to consider in detail how these ordering constraints will be enforced,
eventually we will need to provide some sort of synchronization to ensure that they are strictly
followed.

3.6. THE DATA SHARING PATTERN

Problem

Given a data and task decomposition for a problem, how is data shared among the tasks?

Context
At a high level, every parallel algorithm consists of

+ A collection of tasks that can execute concurrently (see the Task Decomposition pattern)

A data decomposition corresponding to the collection of concurrent tasks (see the Data
Decomposition pattern)

« Dependencies among the tasks that must be managed to permit safe concurrent execution

As addressed in the Group Tasks and Order Tasks patterns, the starting point in a dependency analysis
is to group tasks based on constraints among them and then determine what ordering constraints apply
to groups of tasks. The next step, discussed here, is to analyze how data is shared among groups of
tasks, so that access to shared data can be managed correctly.

Although the analysis that led to the grouping of tasks and the ordering constraints among them
focuses primarily on the task decomposition, at this stage of the dependency analysis, the focus shifts
to the data decomposition, that is, the division of the problem's data into chunks that can be updated
independently, each associated with one or more tasks that handle the update of that chunk. This
chunk of data is sometimes called task-local data (or just local data), because it is tightly coupled to
the task(s) responsible for its update. It is rare, however, that each task can operate using only its own
local data; data may need to be shared among tasks in many ways. Two of the most common situations
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are the following.

In addition to task-local data, the problem's data decomposition might define some data that
must be shared among tasks; for example, the tasks might need to cooperatively update a large
shared data structure. Such data cannot be identified with any given task; it is inherently global
to the problem. This shared data is modified by multiple tasks and therefore serves as a source
of dependencies among he tasks.

Data dependencies can also occur when one task needs access to some portion of another
task's local data. The classic example of this type of data dependency occursin finite
difference methods parallelized using a data decomposition, where each point in the problem
space is updated using values from nearby points and therefore updates for one chunk of the
decomposition require values from the boundaries of neighboring chunks.

This pattern discusses data sharing in parallel algorithms and how to deal with typical forms of shared

data.

Forces

The goal of this pattern is to identify what data is shared among groups of tasks and determine how to

manage access to shared data in a way that is both correct and efficient.

Data sharing can have major implications for both correctness and efficiency.

If the sharing is done incorrectly, a task may get invalid data due to a race condition; this
happens often in shared-address-space environments, where a task can read from a memory
location before the write of the expected data has completed.

Guaranteeing that shared data is ready for use can lead to excessive synchronization overhead.
For example, an ordering constraint can be enforced by putting barrier operations| 1] before
reads of shared data. This can be unacceptably inefficient, however, especially in cases where
only a small subset of the UEs are actually sharing the data. A much better strategy is to use a
combination of copying into local data or restructuring tasks to minimize the number of times
shared data must be read.

U1 A barrier is a synchronization construct that defines a point in a program that a

group of UEs must all reach before any of them are allowed to proceed.

Another source of data-sharing overhead is communication. In some parallel systems, any
access to shared data implies the passing of a message between UEs. This problem can
sometimes be mitigated by overlapping communication and computation, but this isn't always
possible. Frequently, a better choice is to structure the algorithm and tasks so that the amount
of shared data to communicate is minimized. Another approach is to give each UE its own
copy of the shared data; this requires some care to be sure that the copies are kept consistent in
value but can be more efficient.

The goal, therefore, is to manage shared data enough to ensure correctness but not so much as
to interfere with efficiency.
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Solution

The first step is to identify data that is shared among tasks.

This is most obvious when the decomposition is predominantly a data-based decomposition. For

example, in a finite difference problem, the basic data is decomposed into blocks. The nature of the

decomposition dictates that the data at the edges of the blocks is shared between neighboring blocks.

In essence, the data sharing was worked out when the basic decomposition was done.

In a decomposition that is predominantly task-based, the situation is more complex. At some point in

the definition of tasks, it was determined how data is passed into or out of the task and whether any

data is updated in the body of the task. These are the sources of potential data sharing.

After the shared data has been identified, it needs to be analyzed to see how it is used. Shared data
falls into one of the following three categories.

Read-only. The data is read but not written. Because it is not modified, access to these values
does not need to be protected. On some distributed-memory systems, it is worthwhile to
replicate the read-only data so each unit of execution has its own copy.

Effectively-local. The data is partitioned into subsets, each of which is accessed (for read or
write) by only one of the tasks. (An example of this would be an array shared among tasks in
such a way that its elements are effectively partitioned into sets of task-local data.) This case
provides some options for handling the dependencies. If the subsets can be accessed
independently (as would normally be the case with, say, array elements, but not necessarily
with list elements), then it is not necessary to worry about protecting access to this data. On
distributed-memory systems, such data would usually be distributed among UEs, with each
UE having only the data needed by its tasks. If necessary, the data can be recombined into a
single data structure at the end of the computation.

Read-write. The data is both read and written and is accessed by more than one task. This is
the general case, and includes arbitranly complicated situations in which data is read from and
written to by any number of tasks. It is the most difficult to deal with, because any access to
the data (read or write) must be protected with some type of exclusive-access mechanism
(locks, semaphores, etc.), which can be very expensive.

Two special cases of read-write data are common enough to deserve special mention:

Accumulate. The data is being used to accumulate a result (for example, when computing a
reduction). For each location in the shared data, the values are updated by multiple tasks, with
the update taking place through some sort of associative accumulation operation. The most
common accumulation operations are sum, minimum, and maximum, but any associative
operation on pairs of operands canbe used. For such data, each task (or, usually, each UE) has
a separate copy; the accumulations occur into these local copies, which are then accumulated
into a single global copy as a final step at the end of the accumulation.

Multiple-read/single-write. The data is read by multiple tasks (all of which need its initial
value), but modified by only one task (which can read and write its value arbitrarily often).
Such variables occur frequently in algorithms based on data decompositions. For data of this
type, at least two copies are needed, one to preserve the initial value and one to be used by the



modifying task; the copy containing the initial value can be discarded when no longer needed.
On distributed-memory systems, typically a copy is created for each task needing access (read
or write) to the data.

Examples

Molecular dynamics

This problem was described in Sec. 3.1.3, and we discussed its decomposition in the Task
Decomposition and Data Decomposition patterns. We then identified the task groups (in the Group

Tasks pattern) and considered temporal constraints among the task groups (in the Order Tasks
pattern). We will ignore the temporal constraints for now and just focus on data sharing for the
problem's final task groups:

The group of tasks to find the "bonded forces" (vibrational forces and rotational forces) on
each atom

The group of tasks to find the nonbonded forces on each atom
The group of tasks to update the position and velocity of each atom
The task to update the neighbor list for all the atoms (which trivially constitutes a task group)

The data sharing in this problem can be complicated. We summarize the data shared between groups
in Fig. 3.5. The major shared data items are the following.

The atomic coordinates, used by each group.

These coordinates are treated as read-orly data by the bonded force group, the nonbonded
force group, and the neighbor-list update group. This data is read-write for the position update
group. Fortunately, the position update group executes alone after the other three groups are
done (based on the ordering constraints developed using the Order Tasks pattern). Hence, in
the first three groups, we can leave accesses to the position data unprotected or even replicate
it. For the position update group, the position data belongs to the read-write category, and
access to this data will need to be controlled carefully.

The force array, used by each group except for the neighbor-list update.

This array is used as read-only data by the position update group and as accumulate data for
the bonded and nonbonded force groups. Because the position update group must follow the
force computations (as determined using the Order Tasks pattern), we can put this array in the
accumulate category for the force groups and in the read-only category for the position update
group.

The standard procedure for molecular dynamics simulations [MR95] begins by initializing the
force array as a local array on each UE. Contributions to elements of the force array are then
computed by each UE, with the precise terms computed being unpredictable because of the
way the molecule folds in space. After all the forces have been computed, the local arrays are
reduced into a single array, a copy of which is place on each UE (see the discussion of
reduction in Sec. 6.4.2 for more information.)


http://my.safaribooksonline.com/0321228111/ch06lev1sec4#ch06lev2sec7
http://my.safaribooksonline.com/0321228111/ch06lev1sec4#ch06lev2sec7
http://my.safaribooksonline.com/0321228111/ch06lev1sec4#ch06lev2sec7
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry122
javascript:moveTo('ch03fig05');
javascript:moveTo('ch03fig05');
javascript:moveTo('ch03fig05');
http://my.safaribooksonline.com/0321228111/ch03lev1sec3#ch03lev1sec3
http://my.safaribooksonline.com/0321228111/ch03lev1sec3#ch03lev1sec3
http://my.safaribooksonline.com/0321228111/ch03lev1sec3#ch03lev1sec3
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec2#ch03lev1sec2
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev2sec3
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev2sec3
http://my.safaribooksonline.com/0321228111/ch03lev1sec1#ch03lev2sec3

+ The neighbor list, shared between the nonbonded force group and the neighbor-list update
group.
The neighbor list is essentially local data for the neighbor-list update group and read-only data
for the nonbonded force computation. The list can be managed in local storage on each UE.

Figure 3.5. Data sharing in molecular dynamics. We distinguish between sharing for
reads, read-writes, and accumulations.
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3.7. THE DESIGN EVALUATION PATTERN

Problem

Is the decomposition and dependency analysis so far good enough © move on to the next design

space, or should the design be revisited?

Context

At this point, the problem has been decomposed into tasks that can execute concurrently (using the
Task Decomposition and Data Decomposition patterns) and the dependencies between them have
been identified (using the Group Tasks, Order Tasks, and Data Sharing patterns). In particular, the
original problem has been decomposed and analyzed to produce:

A task decomposition that identifies tasks that can execute concurmrently
+ A data decomposition that identifies data local to each task
« A way of grouping tasks and ordering the groups to satisfy temporal constraints

+ An analysis of dependencies among tasks



It is these four items that will guide the designer's work in the next design space (the Algorithm
Structure pattems). Therefore, getting these items right and finding the best problem decomposition is
important for producing a high-quality design.

In some cases, the concurrency is straightforward and there is clearly a single best way to decompose
a problem. More often, however, multiple decompositions are possible. Hence, it is important before
proceeding too far into the design process to evaluate the emerging design and make sure it meets the
application's needs. Remember that algorithm design is an inherently iterative process, and designers
should not expect to produce an optimum design on the first pass through the Finding Concurrency
patterns.

Forces
The design needs to be evaluated from three perspectives.

+ Suitability for the target platform. Issues such as number of processors and how data structures
are shared will influence the efficiency of any design, but the more the design depends on he
target architecture, the less flexible it will be.

+ Design quality. Simplicity, flexibility, and efficiency are all desirable—but possibly
conflicting—attributes.

+ Preparation for the next phase of the design. Are the tasks and dependenciesregular or
irregular (that is, are they similar in size, or do they vary)? Is the interaction between tasks
synchronous or asynchronous (that is, do the interactions occur at regular intervals or highly
variable or even random times)? Are the tasks aggregated in an effective way? Understanding
these issues will help choose an appropriate solution from the patterns in the Algorithm
Structure design space.

Solution

Before moving on to the next phase of the design process, it is helpful to evaluate the work so far from
the three perspectives mentioned in the Forces section. The remainder of this pattern consists of
questions and discussions to help with the evaluation.

Suitability for target platform

Although it is desirable to delay mapping a program onto a particular target platform as long as
possible, the characteristics of the target platform do need to be considered at least minimally while
evaluating a design. Following are some issues relevant to the choice of target platform or platforms.

How many PEs are available? With some exceptions, having many more tasks than PEs makes it
easier to keep all the PEs busy. Obviously we can't make use of more PEs than we have tasks, but
having only one or a few tasks per PE can lead to poor load balance. For example, consider the case of
a Monte Carlo simulation in which a calculation is repeated over and over for different sets of
randomly chosen data, such that the time taken for the calculation varies considerably depending on
the data. A natural approach to developing a parallel algorithm would be to treat each calculation (for
a separate set of data) as a task; these tasks are then completely independent and can be scheduled
however we like. But because the time for each task can vary considerably, unless there are many



more tasks than PEs, it will be difficult to achieve good load balance.

The exceptions to this rule are designs in which the number of tasks can be adjusted to fit the number
of PEs in such a way that good load balance is maintained. An example of such a design is the block-
based matrix multiplication algorithm described in the Examples section of the Data Decomposition

pattern: Tasks correspond to blocks, and all the tasks involve roughly the same amount of
computation, so adjusting the number of tasks to be equal to the number of PEs produces an algorithm
with good load balance. (Note, however, that even in this case it might be advantageous to have more
tasks than PEs. This might, for example, allow overlap of computation and communication.)

How are data structures shared among PEs? A design that involves large-scale or fine-grained data
sharing among tasks will be easier to implement and more efficient if all tasks have access to the
same memory. Ease of implementation depends on the programming environment; an environment
based on a shared-memory model (all UEs share an address space) makes it easier to implement a
design requiring extensive data sharing. Efficiency depends also on the target machine; a design
involving extensive data-sharing is likely to be more efficient on a symmetric multiprocessor (where
access time to memory is uniform across processors) than on a machine that layers a shared-memory
environment over physically distributed memory. In contrast, if the plan is to use a message-passing
environment running on a distributed-memory architecture, a design involving extensive data sharing
is probably not a good choice.

For example, consider the task-based approach to the medical imaging problem described in the

Examples section of the Task Decomposition pattern. This design requires that all tasks have read
access to a potentially very large data structure (the body model). This presents no problems in a
shared-memory environment; it is also no problem in a distributed-memory environment in which
each PE has a large memory subsystem and there is plenty of network bandwidth to handle
broadcasting the large data set. However, in a distributed-memory environment with limited memory
or network bandwidth, the more memory-efficient algorithm that emphasizes the data decomposition
would be required.

A design that requires fine-grained data-sharing (in which the same data structure is accessed
repeatedly by many tasks, particularly when both reads and writes are involved) is also likely to be
more efficient on a shared-memory machine, because the overhead required to protect each access is
likely to be smaller than for a distributed-memory machine.

The exception to these principles would be a problem in which it is easy to group and schedule tasks
in such a way that the only large-scale or fine-grained data sharing is among tasks assigned to the
same unit of execution.

What does the target architecture imply about the number of UEs and how structures are shared
among them? In essence, we revisit the preceding two questions, but in terms of UEs rather than PEs.

This can be an important distinction to make if the target system depends on multiple UEs per PE to
hide latency. There are two factors to keep in mind when considering whether a design using more
than one UE per PE makes sense.

The first factor is whether the target system provides efficient support for multiple UEs per PE. Some
systems do provide such support, such as the Cray MTA machines and machines built with Intel
processors that utilize hyperthreading. This architectural approach provides hardware support for
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extremely rapid context switching, making it practical to use in a far wider range of latency-hiding
situations. Other systems do not provide good support for multiple UEs per PE. For example, an MPP
system with slow context switching and/or one processor per node might run much better when there
is only one UE per PE.

The second factor is whether the design can make good use of multiple UEs per PE. For example, if
the design involves communication operations with high latency, it might be possible to mask that
latency by assigning multiple UEs to each PE so some UEs can make progress while others are
waiting on a high-latency operation. If, however, the design involves communication operations that
are tightly synchronized (for example, pairs of blocking send/receives) and relatively efficient,
assigning multiple UEs to each PE is more likely to interfere with ease of implementation (by
requiring extra effort to avoid deadlock) than to improve efficiency.

On the target platform, will the time spent doing useful work in a task be significantly greater than the
time taken to deal with dependencies? A critical factor in determining whether a design is effective is
the ratio of time spent doing computation to time spent in communication or synchronization: The
higher the ratio, the more efficient the program. This ratio is affected not only by the number and type
of coordination events required by the design, but also by the characteristics of the target platform. For
example, a message-passing design that is acceptably efficient on an MPP with a fast interconnect
network and relatively slow processors will likely be less efficient, perhaps unacceptably so, on an
Ethernet-connected network of powerful workstations.

Note that this critical ratio is also affected by problem size relative to the number of available PEs,
because for a fixed problem size, the time spent by each processor doing computation decreases with
the number of processors, while the time spent by each processor doing coordination might stay the
same or even increase as the number of processors increases.

Design quality

Keeping these characteristics of the target platform in mind, we can evaluate the design along the
three dimensions of flexibility, efficiency, and simplicity.

Flexibility. It is desirable for the high-level design to be adaptable to a variety of different
implementation requirements, and certainly all the important ones. The rest of this section provides a
partial checklist of factors that affect flexibility.

+ Is the decomposition flexible in the number of tasks generated? Such flexibility allows the
design to be adapted to a wide range of parallel computers.

« Is the definition of tasks implied by the task decomposition independent of how they are
scheduled for execution? Such independence makes the load balancing problem easier to
solve.

« Can the size and number of chunks in the data decomposition be parameterized? Such
parameterization makes a design easier to scale for varying numbers of PEs.

+ Does the algorithm handle the problem's boundary cases? A good design will handle all
relevant cases, even unusual ones. For example, a common operation is to transpose a matrix
so that a distribution in terms of blocks of matrix columns becomes a distribution in terms of



blocks of matrix rows. It is easy to write down the algorithm and code it for square matrices
where the matrix order is evenly divided by the number of PEs. But what if the matrix is not
square, or what if the number of rows is much greater than the number of columns and neither
number is evenly divided by the number of PEs? This requires significant changes to the
transpose algorithm. For a rectangular matrix, for example, the buffer that will hold the matrix
block will need to be large enough to hold the larger of the two blocks. If either the row or
column dimension of the matrix is not evenly divisible by the number of PEs, then the blocks
will not be the same size on each PE. Can the algorithm deal with the uneven load that will
result from having different block sizes on each PE?

Efficiency. The program should effectively utilize the available computing resources. The rest of this

section gives a partial list of important factors to check. Note that typically it is not possible to

simultaneously optimize all of these factors; design tradeoffs are inevitable.

Can the computational load be evenly balanced among the PEs? This is easier if the tasks are
independent, or if they are roughly the same size.

Is the overhead minimized? Overhead can come from several sources, including creation and
scheduling of the UEs, communication, and synchronization. Creation and scheduling of UEs
involves overhead, so each UE needs to have enough work to do to justify this overhead. On
the other hand, more UEs allow for better load balance.

Communication can also be a source of significant overhead, particularly on distributed-
memory platforms that depend on message passing. As we discussed in Section 2.6, the time
to transfer a message has two components: latency cost arising from operating-system
overhead and message start-up costs on the network, and a cost that scales with the length of
the message. To minimize the latency costs, the number of messages to be sent should be kept
to a minimum. In other words, a small number of large messages is better than a large number
of small ones. The second tem is related to the bandwidth of the network. These costs can
sometimes be hidden by overlapping communication with computation.

On shared-memory machines, synchronization is a major source of overhead. When data is
shared between UEs, dependencies arise requiring one task to wait for another to avoid race
conditions. The synchronization mechanisms used to control this waiting are expensive
compared to many operations carried out by a UE. Furthermore, some synchronization
constructs generate significant memory traffic as they flush caches, buffers, and other system
resources to make sure UEs see a consistent view of memory. This extra memory traffic can
interfere with the explicit data movement within a computation. Synchronization overhead can
be reduced by keeping data well-localized to a task, thereby minimizing the frequency of
synchronization operations.

Simplicity. To paraphrase Einstein: Make it as simple as possible, but not simpler.

Keep in mind that practically all programs will eventually need to be debugged, maintained, and often

enhanced and ported. A design—even a generally superior design—is not valuable if it is too hard to

debug, maintain, and verify the correctness of the final program.

The medical imaging example initially described in Sec. 3.1.3 and then discussed further in the Task

Decomposition and Data Decomposition patterns is an excellent case in point in support of the value
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of simplicity. In this problem, a large database could be decomposed, but this decomposition would
force the parallel algorithm to include complex operations for passing trajectories between UEs and to
distribute chunks of the database. This complexity makes the resulting program much more difficult
to understand and greatly complicates debugging. The other approach, replicating the database, leads
to a vastly simpler parallel program in which completely independent tasks can be passed out ©
multiple workers as they are read. All complex communication thus goes away, and the parallel part of
the program is trivial to debug and reason about.

Preparation for next phase

The problem decomposition carried out with the Finding Concurrency pattems defines the key
components that will guide the design in the Algorithm Structure design space:

A task decomposition that identifies tasks that can execute concurrently
+ A data decomposition that identifies data local to each task
+ A way of grouping tasks and ordering the groups to satisfy temporal constraints
+ An analysis of dependencies among tasks
Before moving on in the design, consider these components relative to the following questions.

How regular are the tasks and their data dependencies? Regular tasks are similar in size and effort.
Irregular tasks would vary widely among themselves. If the tasks are irregular, the scheduling of the
tasks and their sharing of data will be more complicated and will need to be emphasized in the design.
In a regular decomposition, all the tasks are in some sense the same—roughly the same computation
(on different sets of data), roughly the same dependencieson data shared with other tasks, etc.
Examples include the various matrix multiplication algorithms described in the Examples sections of
the Task Decomposition, Data Decomposition, and other patterns.

In an irregular decomposition, the work done by each task and/or the data dependencies vary among
tasks. For example, consider a discrete-event simulation of a large system consisting of a number of
distinct components. We might design a parallel algonthm for this simulation by defining a task for
each component and having them interact based on the discrete events of the simulation. This would
be a very irregular design in that there would be considerable variation among tasks with regard to
work done and dependencies on cther tasks.

Are interactions between tasks (or task groups) synchronous or asynchronous? In some designs, the
interaction between tasks is also very regular with regard to time—that is, it is synchronous. For
example, a typical approach to parallelizing a linear-algebra problem involving the update of a large
matrix is to partition the matrix among tasks and have each task update its part of the matrix, using
data from both its and other parts of the matrix. Assuming that all the data needed for the update is
present at the start of the computation, these tasks will typically first exchange information and then
compute independently. Another type of example is a pipeline computation (see the Pipeline pattern),
in which we perform a multi-step operation on a sequence of sets of input data by setting up an
assembly line of tasks (one for each step of the operation), with data flowing from one task to the next
as each task accomplishes its work. This approach works best if all of the tasks stay more or less in
step—that is, if their interaction is synchronous.
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In other designs, the interaction between tasks is not so chronologically regular. An example is the
discrete-event simulation described previously, in which the events that lead to interaction between
tasks can be chronologically irregular.

Are the tasks grouped in the best way? The temporal relations are easy: Tasks that can run at the same
time are naturally grouped together. But an effective design will also group tasks together based on
their logical relationship in the overall problem.

As an example of grouping tasks, consider the molecular dynamics problem discussed in the
Examples section of the Group Tasks, Order Tasks, and Data Sharing patterns. The grouping we

eventually arrive at (in the Group Tasks pattern) is hierarchical: groups of related tasks based on the
high-level operations of the problem, further grouped on the basis of which ones can execute
concurrently. Such an approach makes it easier to reason about whether the design meets the
necessary constraints (because the constraints can be stated in terms of the task groups defined by the
high-level operations) while allowing for scheduling flexibility.

3.8. SUMMARY

Working through the patterns in the Finding Concurrency design space exposes the concurrency in
your problem. The key elements following from that analysis are

A task decomposition that identifies tasks that can execute concurrently

A data decomposition that identifies data local to each task

A way of grouping tasks and ordering the groups to satisfy temporal constraints
An analysis of dependencies among tasks

A pattern language is traditionally described as a web of patterns with one pattem logically connected
to the next. The output from the Finding Concurrency design space, however, does not fit into that
picture. Rather, the goal of this design space is to help the designer create the design elements that
together will lead into the rest of the pattern language.

Chapter 4. The Algorithm Structure Design
Space

4.1 INTRODUCTION

4.2 CHOOSING AN ALGORITHM STRUCTURE PATTERN

4.3 EXAMPLES

4.4 THE TASK PARALLELISM PATTERN
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4.5 THE DIVIDE AND CONQUER PATTERN

4.6 THE GEOMETRIC DECOMPOSITION PATTERN
4.7 THE RECURSIVE DATA PATTERN

4.8 THE PIPELINE PATTERN

4.9 THE EVENT-BASED COORDINATION PATTERN

4.1. INTRODUCTION

The first phase of designing a parallel algorithm consists of analyzing the problem to identify
exploitable concurrency, usually by using the patterns of the Finding Concurrency design space. The
output from the Finding Concurrency design spaceis a decomposition of the problem into design
elements:

- A task decomposition that identifies tasks that can execute concurmrently

+ A data decomposition that identifies data local to each task

+ A way of grouping tasks and ordering the groups to satisfy temporal constraints
+ An analysis of dependencies among tasks

These elements provide the connection from the Finding Concurrency design space to the Algorithm
Structure design space. Our goal in the Algorithm Structure design space is to refine the design and
move it closer to a program that can execute tasks concurrently by mapping the concurrency onto
multiple UEs running on a parallel computer.

Of the countless ways to define an algorithm structure, most follow one of six basic design pattems.
These patterns make up the Algorithm Structure design space. An overview of this design space and
its place in the pattern language is shown in Fig. 4.1.

Figure 4.1. Overview of the Algorithm Structure design space and its place in the
pattern language
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The key issue at this stage is to decide which pattern or patterns are most appropriate for the problem.
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First of all, we need to keep in mind that different aspects of the analysis can pull the design in
different directions; one aspect might suggest one structure while another suggests a different
structure. In nearly every case, however, the following forces should be kept in mind.

Efficiency. It is crucial that a parallel program run quickly and make good use of the computer
resources.

Simplicity. A simple algorithm resulting in easy-to-understand code is easier to develop,
debug, verify, and modify.

Portability. Ideally, programs should run on the widest range of parallel computers. This will
maximize the "market" for a particular program. More importantly, a program is used for
many years, while any particular computer system is used for only a few years. Portable
programs protect a software investment.

Scalability. Ideally, an algorithm should be effective on a wide range of numbers of processing
elements (PEs), from a few up to hundreds or even thousands.

These forces conflict in several ways, however.

Efficiency conflicts with portability: Making a program efficient almost always requires that the code
take into account the characteristics of the specific system on which it is intended to run, which limits
portability. A design that makes use of the special features of a particular system or programming
environment may lead to an efficient program for that particular environment, but be unusable for a
different platform, either because it performs poorly or because it is difficult or even impossible to
implement for the new platform.

Efficiency also canconflict with simplicity: For example, to write efficient programs that use the Task
Parallelism pattern, it is sometimes necessary to use complicated scheduling algorithms. These
algorithms in many cases, however, make the program very difficult to understand.

Thus, a good algorithm design must strike a balance between (1) abstraction and portability and (2)
suitability for a particular target architecture. The challenge faced by the designer, especially at this
early phase of the algorithm design, is t leave the parallel algorithm design abstract enough to
support portability while ensuring that it can eventually be implemented effectively for the parallel
systems on which it will be executed.

4.2. CHOOSING AN ALGORITHM STRUCTURE PATTERN

Finding an effective Algorithm Structure pattem for a given problem can be accomplished by
considering the questions in the following sections.

4.2.1. Target Platform

What constraints are placed on the parallel algorithm by the target machine or programming
environment?

In an ideal world, it would not be necessary to consider the details of the target platform at this stage
of the design, because doing so works against keeping the program portable and scalable. This is not
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an ideal world, however, and software designed without considering the major features of the target
platform is unlikely to run efficiently.

The primary issue is how many units of execution (UEs) the system will effectively support, because
an algorithm that works well for ten UEs may not work well for hundreds of UEs. It is not necessary
to decide on a specific number (in fact to do so would overly constrain the applicability of the design),
but it is important to have in mind at this point an order of magnitude for the number of UEs.

Another issue is how expensive it is to share information among UEs. If there is hardware support for
shared memory, information exchange takes place through shared access to common memory, and
frequent data sharing makes sense. If the target is a collection of nodes connected by a slow network,
however, the communication required to share information is very expensive and must be avoided
wherever possible.

When thinking about both of these issues—the number of UEs and the cost of sharing information—
avoid the tendency to over-constrain the design. Software typically outlives hardware, so over the
course of a program's life it may be used on a tremendous range of target platforms. The goal is to
obtain a design that works well on the original target platform, but at the same time is flexible enough
to adapt to different classes of hardware.

Finally, in addition to multiple UEs and some way to share information among them, a parallel
computer has one or more programming environments that can be used to implement parallel
algorithms. Different programming environments provide different ways to create tasks and share
information among UEs, and a design that does not map well onto the characteristics of the target
programming environment will be difficult to implement.

4.2.2. Major Organizing Principle

When considering the concurrency in the problem, is there a particular way of looking at it that stands
out and provides a high-level mechanism for organizing this concurrency?

The analysis carried out using the patterns of the Finding Concurrency design space describes the
potential concurrency in terms of tasks and groups of tasks, data (both shared and task-local), and
ordering constraints among task groups. The next step is to find an algorithm structure that represents
how this concurrency maps onto the UEs. There is usually a major organizing principle implied by the
concurrency. This usually falls into one of three camps: organization by tasks, organization by data
decomposition, and organization by flow of data. We now consider each of these in more detail.

For some problems, there is really only one group of tasks active at one time, and the way the tasks
within this group interact is the major feature of the concurrency. Examples include so-called
embarrassingly parallel programs in which the tasks are completely independent, as well as programs

in which the tasks in a single group cooperate to compute a result.

For other problems, the way data is decomposed and shared among tasks stands out as the major way
to organize the concurrency. For example, many problems focus on the update of a few large data
structures, and the most productive way to think about the concurrency is in temms of how this
structure is decomposed and distributed among UEs. Programs to solve differential equations or carry
out linear algebra computations often fall into this category because they are frequently based on
updating large data structures.
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Finally, for some problems, the major feature of the concurrency is the presence of well-defined
interacting groups of tasks, and the key issue is how the data flows among the tasks. For example, in a
signal-processing application, data may flow through a sequence of tasks organized as a pipeline, each
performing a transformation on successive data elements. Or a discrete-event simulation might be
parallelized by decomposing it into a tasks interacting via "events". Here, the major feature of the
concurrency is the way in which these distinct task groups interact.

Notice also that the most effective parallel algonthm design might make use of multiple algorithm
structures (combined hierarchically, compositionally, or in sequence), and this is the point at which to
consider whether such a design makes sense. For example, it often happens that the very top level of
the design is a sequential composition of one or more Algorithm Structure patterns. Other designs
might be organized hierarchically, with one pattern used to organize the interaction of the major task
groups and other patterns used to organize tasks within the groups—for example, an instance of the
Pipeline pattem in which individual stages are instances of the Task Parallelism pattern.

4.2.3. The Algorithm Structure Decision Tree

For each subset of tasks, which Algorithm Structure design pattern most effectively defines how to

map the tasks onto UEs?

Having considered the questions raised in the preceding sections, we are now ready to select an
algorithm structure, guided by an understanding of constraints imposed by the target platform, an
appreciation of the role of hierarchy and composition, and a major organizing principle for the
problem. The decision is guided by the decision tree shown in Fig. 4.2. Starting at the top of the tree,
consider the concurrency and the major organizing principle, and use this information to select one of
the three branches of the tree; then follow the upcoming discussion for the appropriate subtree. Notice
again that for some problems, the final design might combine more than one algorithm structure: If no
single structure seems suitable, it might be necessary to divide the tasks making up the problem into
two or more groups, work through this procedure separately for each group, and then determine how
to combine the resulting algorithm structures.

Figure 4.2. Decision tree for the Algorithm Structure design space
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Organize By Tasks

Select the Organize By Tasks branch when the execution of the tasks themselves is the best organizing

principle. Then determine how the tasks are enumerated. If they can be gathered into a set linear in
any number of dimensions, choose the Task Parallelism pattern. This pattern includes both situations
in which the tasks are independent of each other (so-called embarrassingly parallel algorithms) and
situations in which there are some dependencies among the tasks in the form of access to shared data
or a need to exchange messages. If the tasks are enumerated by a recursive procedure, choose the
Divide and Conquer pattem. In this pattern, the problem is solved by recursively dividing it into
subproblems, solving each subproblem independently, and then recombining the subsolutions into a
solution to the original problem.

Organize By Data Decomposition

Select the Organize By Data Decomposition branch when the decomposition of the data is the major
organizing principle in understanding the concurrency. There are two patterns in this group, differing
in how the decomposition is structured—Ilinearly in each dimension or recursively. Choose the
Geometric Decomposition pattern when the problem space is decomposed into discrete subspaces and
the problem is solved by computing solutions for the subspaces, with the solution for each subspace
typically requiring data from a small number of other subspaces. Many instances of this pattern can be
found in scientific computing, where it is useful in parallelizing grid-based computations, for
example. Choose the Recursive Data pattern when the problem is defined in terms of following links
through a recursive data structure (for example, a binary tree).

Organize By Flow of Data

Select the Organize By Flow of Data branch when the major organizing principle is how the flow of
data imposes an ordering on the groups of tasks. This pattern group has two members, one that
applies when this ordering is regular and static and one that applies when it is irregular and/or
dynamic. Choose the Pipeline pattern when the flow of data among task groups is regular, one-way,
and does not change during the algorithm (that is, the task groups can be arranged into a pipeline
through which the data flows). Choose the Event-Based Coordination pattern when the flow of data is
irregular, dynamic, and/or unpredictable (that is, when the task groups can be thought of as interacting
via asynchronous events).

4.2.4. Re-evaluation

Is the Algorithm Structure pattern (or pattemns) suitable for the target platform? It is important to
frequently review decisions made so far to be sure the chosen pattem(s) are a good fit with the target
platform.

After choosing one or more Algorithm Structure patterns to be used in the design, skim through their
descriptions to be sure they are reasonably suitable for the target platform. (For example, if the target
platform consists of a large number of workstations connected by a slow network, and one of the
chosen Algorithm Structure patterns requires frequent communication among tasks, it might be
difficult to implement the design efficiently.) If the chosen patterns seem wildly unsuitable for the
target platform, try identifying a secondary organizing principle and working through the preceding
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step again.

4.3. EXAMPLES

4.3.1. Medical Imaging

For example, consider the medical imaging problem described in Sec. 3.1.3. This application
simulates a large number of gamma rays as they move through a body and out to a camera. One way
to describe the concurrency is to define the simulation of each ray as a task. Because they are all
logically equivalent, we put them into a single task group. The only data shared among the tasks is a
large data structure representing the body, and since access to this data structure is read-only, the tasks
do not depend on each other.

Because there are many independent tasks for this problem, it is less necessary than usual to consider
the target platform: The large number of tasks should mean that we can make effective use of any
(reasonable) nunmber of UEs; the independence of the tasks should mean that the cost of sharing
information among UEs will not have much effect on performance.

Thus, we should be able to choose a suitable structure by working through the decision tree shown
previously in Fig. 4.2. Given that in this problem the tasks are independent, the only issue we really
need to worry about as we select an algorithm structure is how to map these tasks onto UEs. That is,
for this problem, the major organizing principle seems to be the way the tasks are organized, so we
start by following the Organize By Tasks branch.

We now consider the nature of our set of tasks—whether they are arranged hierarchically or reside in
an unstructured or flat set. For this problem, the tasks are in an unstructured set with no obvious
hierarchical structure among them, so we choose the Task Parallelism pattern. Note that in the
problem, the tasks are independent, afact that we will be able to use to simplify the solution.

Finally, we review this decision in light of possible target-plat form considerations. As we observed
earlier, the key features of this problem (the large number of tasks and their independence) make it
unlikely that we will need to reconsider because the chosen structure will be difficult to implement on
the target platform.

4.3.2. Molecular Dynamics

As a second example, consider the molecular dynamics problem described in Sec. 3.1.3. In the Task

Decomposition pattern, we identified the following groups of tasks associated with this problem:
+ Tasks that find the vibrational forces on an atom
« Tasks that find the rotational forces on an atom
« Tasks that find the nonbonded forces on an atom
+ Tasks that update the position and velocity of an atom

A task to update the neighbor list for all the atoms
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The tasks within each group are expressed as the iterations of a loop over the atoms within the
molecular system.

We can choose a suitable algorithm structure by working through the decision tree shown earlier in
Fig. 4.2. One option is to organize the parallel algorithm in terms of the flow of data among the
groups of tasks. Note that only the first three task groups (the vibrational, rotational, and nonbonded
force calculations) can execute concurrently; that is, they must finish computing the forces before the
atomic positions, velocities and neighbor lists can be updated. This is not very much concurrency to
work with, so a different branch in Fig. 4.2 should be used for this problem.

Another option is to derive exploitable concurrency from the set of tasks within each group, in this
case the iterations of a loop over atoms. This suggests an organization by tasks with a linear
arrangement of tasks, or based on Fig. 4.2, the Task Parallelism pattern should be used. Total available

concurrency is large (on the order of the number of atoms), providing a great deal of flexibility in
designing the parallel algorithm.

The target machine can have a major impact on the parallel algorithm for this problem. The
dependencies discussed in the Data Decomposition pattern (replicated coordinates on each UE and a

combination of partial sums from each UE to compute a global force array) suggest that on the order
of 2 -3 - N terms (where N is the number of atoms) will need to be passed among the UEs. The
computation, however, is of order n - N, where nis the number of atoms in the neighborhood of each
atom and considerably less than N. Hence, the communication and computation are of the same order
and management of communication overhead will be a key factor in designing the algorithm.

4.4. THE TASK PARALLELISM PATTERN

Problem

When the problem is best decomposed into a collection of tasks that can execute concurrently, how
can this concurrency be exploited efficiently?

Context

Every parallel algorithm is fundamentally a collection of concurrent tasks. These tasks and any
dependencies among them can be identified by inspection (for simple problems) or by application of
the patterns in the Finding Concurrency design space. For some problems, focusing on these tasks and
their interaction might not be the best way to organize the algorithm: In some cases it makes sense to
organize the tasks in terms of the data (as in the Geometric Decomposition pattern) or the flow of
data among concurrent tasks (as in the Pipeline pattern). However, in many cases it is best to work
directly with the tasks themselves. When the design is based directly on the tasks, the algorithm is
said to be a task parallel algorithm.

The class of task parallel algorithms is very large. Examples include the following.
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+ Ray-tracing codes such as the medical-imaging example described in the Task Decomposition

pattern: Here the computation associated with each "ray" becomes a separate and completely
independent task.

+ The molecular-dynamics example described in the Task Decomposition pattern: The update of

the nonbonded force on each atom is a task. The dependenciesamong tasks are managed by
replicating the force array on each UE to hold the partial sums for each atom. When all the
tasks have completed their contributions to the nonbonded force, the individual force arrays
are combined (or "reduced")into a single array holding the full summation of nonbonded
forces for each atom.

+ Branch-and-bound computations, in which the problem is solved by repeatedly removing a
solution space from a list of such spaces, examining it, and either declaring it a solution,
discarding it, or dividing it into smaller solution spaces that are then added to the list of spaces
to examine. Such computations can be parallelized using this pattern by making each "examine
and process a solution space" step a separate task. The tasks weakly depend on each other
through the shared queue of tasks.

The common factor is that the problem can be decomposed into a collection of tasks that can execute
concurrently. The tasks can be completely independent (as in the medical-imaging example) or there
can be dependencies among them (as in the molecular-dynamics example). In most cases, the tasks
will be associated with iterations of a loop, but it is possible to associate them with larger-scale
program structures as well.

In many cases, all of the tasks are known at the beginning of the computation (the first two examples).
However, in some cases, tasks arise dynamically as the computation unfolds, as in the branch-and-
bound example.

Also, while it is usually the case that all tasks must be completed before the problem is done, for some
problems, it may be possible to reach a solution without completing all of the tasks. For example, in
the branch-and-bound example, we have a pool of tasks corresponding to solution spaces to be
searched, and we might find an acceptable solution before all the tasks in this pool have been
completed.

Forces

+ To exploit the potential concurrency in the problem, we must assign tasks to UEs. Ideally we
want to do this in a way that is simple, portable, scalable, and efficient. As noted in Section
4.1, however, these goals may conflict. A key consideration is balancing the load, that is,
ensuring that all UEs have roughly the same amount of work to do.

« If the tasks depend on each other in some way (via either ordering constraints or data
dependencies), these dependencies must be managed correctly, again keeping in mind the
sometimes-conflicting goals of simplicity, portability, seal-ability, and efficiency.

Solution

Designs for task-parallel algorithms involve three key elements: the tasks and how they are defined,
the dependencies among them, and the schedule (how the tasks are assigned to UEs). We discuss
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them separately, but in fact they are tightly coupled, and all three must be considered before final
decisions are made. After these factors are considered, we look at the overall program structure and
then at some important special cases of this pattern.

Tasks

Ideally, the tasks into which the problem is decomposed should meet two criteria: First, there should
be at least as many tasks as UEs, and preferably many more, to allow greater flexibility in scheduling.
Second, the computation associated with each task must be large enough to offset the overhead
associated with managing the tasks and handling any dependencies. If the initial decomposition does
not meet these criteria, it is worthwhile to consider whether there is another way of decomposing the
problem into tasks that does meet the criteria.

For example, in image-processing applications where each pixel update is independert, the task
definition can be individual pixels, image lines, or even whole blocks in the image. On a system with
a small number of nodes connectedby a slow network, tasks should be large to offset high
communication latencies, so basing tasks on blocks of the image is appropriate. The same problem on
a system containing a large number of nodes connectedby a fast (low-latency) network, however,
would need smaller tasks to make sure enough work exists to keep all the UEs occupied. Notice that
this imposes a requirement for a fast network, because otherwise the smaller amount of work per task
will not be enough to compensate for communication overhead.

Dependencies

Dependencies among tasks have a major impact on the emerging algorithm design. There are two
categories of dependencies, ordering constraints and dependencies related o shared data.

For this pattern, ordering constraints apply to task groups and can be handled by forcing the groups to
execute in the required order. For example, in a task-parallel multidimensional Fast Fourier Transform,
there is a group of tasks for each dimension of the transform, and synchronization or other program
constructs are used to make sure computation on one dimension completes before the next dimension
begins. Alternatively, we could simply think of such a problem as a sequential composition of task-
parallel computations, one for each task group.

Shared-data dependencies are potentially more complicated. In the simplest case, there are no
dependencies among the tasks. A surprisingly large number of problems can be cast into this form.
Such problems are often called embarrassingly parallel. Their solutions are among the simplest of
parallel programs; the main considerations are how the tasks are defined (as discussed previously) and
scheduled (as discussed later). When data is shared among tasks, the algorithm can be much more
complicated, although there are still some common cases that can be dealt with relatively easily. We
can categorize dependencies as follows.

+ Removable dependencies. In this case, the dependency is not a true dependency between tasks,
but an apparent dependency that can be removed by simple code transformations. The simplest
case is a temporary variable whose use is completely local to each task; that is, each task
initializes the variable without reference to other tasks. This case can be handled by simply
creating a copy of the variable local to each UE. In more complicated cases, iterative
expressions might need to be transformed into closed-form expressions to remove a loop-



carried dependency. For example, consider the following simple loop:
int ii =0, jj = 0;

for(int 1 = 0; i< N; i++)

{
ii = ii + 1;
d[ii] = big time consuming work(ii);
ii =33 + i
aljjl = other big calc(jj);
}

The variables 11 and j j create a dependency between tasks and prevent parallelization of the
loop. We can remove this dependency by replacing 11 and j j with closed-form expressions
(noticing that the values of 11 and 1 are the same and that the value of j j is the sum of the
values from O through 1):

for(int 1 = 0; i< N; i++){

d[i] = big time consuming work(i);
al[(i*i+i)/2] = other big calc((i*i+i)/2));
}

"Separable" dependencies. When the dependencies involve accumulation into a shared data
structure, they can be separated from the tasks ("pulled outside the concurrent computation")
by replicating the data structure at the beginning of the computation, executing the tasks, and
then combining the copies into a single data structure after the tasks complete. Often the
accumulation is a reduction operation, in which a collection of data elements is reduced toa
single element by repeatedly applying a binary operation such as addition or multiplication.

In more detail, these dependenciescan be managed as follows: A copy of the data structure
used in the accumulation is created on each UE. Each copy is initialized (in the case of a
reduction, to the identity element for the binary operation—for example, zero for addition and
one for multiplication). Each task then carries out the accumulation into its local data
structure, eliminating the shared-data dependency. When all tasks are complete, the local data
structures on each UE are combined to produce the final global result (in the case of a
reduction, by applying the binary operation again). As an example, consider the following loop
to sum the elements of array f:

for(int 1 = 0; i< N; i++){
sum = sum + f(i);
}

This is technically a dependency between loop iterations, but if we recognize that the loop
body is just accumulating into a simple scalar variable, it can be handled as a reduction.

Reductions are so common that both MPI and OpenMP provide support for them as part of the
API. Sec. 6.4.2 in the Implementation Mechanisms design space discusses reductions in more
detail.

Other dependencies. If the shared data cannot be pulled out of the tasks and is both read and
written by the tasks, data dependencies must be explicitly managed within the tasks. How to
do this in a way that gives correct results and also acceptable performance is the subject of the
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Shared Data pattern.

Schedule

The remaining key element to consider is the schedule—the way in which tasks are assigned to UEs
and scheduled for execution. Load balance (as described in Chapter 2) is a critical consideration in
scheduling; a design that balances the computational load among PEs will execute more efficiently
than one that does not. Fig. 4.3 illustrates the problem.

Figure 4.3. Good versus poor load balance

independent tasks
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Two classes of schedules are used in parallel algorithms: static schedules, in which the distribution of
tasks among UEs is determined at the start of the computation and does not change; and dynamic
schedules, in which the distribution of tasks among UEs varies as the computation proceeds.

In a static schedule, the tasks are associated into blocks and then assigned to UEs. Block size is
adjusted so each UE takes approximately the same amount of time to complete its tasks. In most
applications using a static schedule, the computational resources available from the UEs are
predictable and stable over the course of the computation, with the most common case being UEs that
are identical (that is, the computing system is homogeneous). If the set of times required to complete
each task is narrowly distributed about a mean, the sizes of the blocks should be proportional to the
relative performance of the UEs (so, in a homogeneous system, they are all the same size). When the
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effort associated with the tasks varies considerably, a static schedule can still be useful, but now the
number of blocks assigned to UEs must be much greater than the number of UEs. By dealing out the
blocks in a round-robin manner (much as a deck of cards is dealt among agroup of card phyers), the
load is balanced statistically.

Dynamic schedules are used when (1) the effort associated with each task varies widely and is
unpredictable and/or (2) when the capabilities of the UEs vary widely and unpredictably. The most
common approach used for dynamic load balancing isto define a task queue to be used by all the
UEs; when a UE completes its current task and is therefore ready to process more work, it removes a
task from the task queue. Faster UEs or those receiving lighter-weight tasks will access the queue
more often and thereby be assigned more tasks.

Another dynamic scheduling strategy uses work stealing, which works as follows. The tasks are
distributed among the UEs at the start of the computation. Each UE has its own work queue. When
the queue is empty, the UE will try to steal work from the queue on some other UE (where the other
UE is usually randomly selected). In many cases, this produces an optimal dynamic schedule without
incurring the overhead of maintaining a single global queue. In programming environments or

packages that provide support for the construct, such as Cilk [BIK"96], Hood [BP99], or the FJTask
framework [LeaO0b, Lea], it is straightforward to use this approach. But with more commonly used
programming environments such as OpenMP, MPI, or Java (without support such as the FJTask
framework), this approach adds significant complexity and therefore is not often used.

Selecting a schedule for a given problem is not always easy. Static schedules incur the least overhead
during the parallel computation and should be used whenever possible.

Before ending the discussion of schedules, we should mention again that while for most problems all
of the tasks are known when the computation begins and all must be completed to produce an overall
solution, there are problems for which one or both of these is not true. In these cases, a dynamic
schedule is probably more appropriate.

Program structure

Many task-parallel problems can be considered to be loop-based. Loop-based problems are, as the
name implies, those in which the tasks are based on the iterations of a loop. The best solutions for
such problems use the Loop Parallelism pattern. This pattern can be particularly simple to implement
in programming environments that provide directives for automatically assigning loop iterations to
UEs. For example, in OpenMP a loop can be parallelized by simply adding a "parallel for" directive
with an appropriate schedule clause (one that maximizes efficiency). This solution is especially
attractive because OpenMP then guarantees that the resulting program is semantically equivalent to
the analogous sequential code (within roundoff error associated withdifferent orderings of
floatingpoint operations).

For problems in which the target platform is not a good fit with the Loop Parallelism pattern, or for
problems in which the model of "all tasks known initially, all tasks must complete" does not apply
(either because tasks can be created during the computation or because the computation can terminate
without all tasks being complete), this straightforward approach is not the best choice. Instead, the
best design makes use of a fask gueue; tasks are placed on the task queue as they are created and
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removed by UEs until the computation is complete. The overall program structure can be based on
either the Master/Worker pattern or the SPMD pattem. The former is particularly appropriate for
problems requiring a dynamic schedule.

In the case in which the computation can terminate before all the tasks are complete, some care must
be taken to ensure that the computation ends when it should. If we define the termination condition as
the condition that when true means the computation is complete—either all tasks are complete or
some other condition (for example, an acceptable solution has been found by one task)—then we want
to be sure that (1) the termination condition is eventually met (which, if tasks can be created
dynamically, might mean building into it a limit on the total number of tasks created), and (2) when
the termination condition is met, the program ends. How to ensure the latter is discussed in the
Master/Worker and SPMD patterns.

Common idioms

Most problems for which this pattern is applicable fall into the following two categories.

Embarrassingly parallel problems are those in which there are no dependencies among the tasks. A

wide range of problems fall into this category, ranging from rendering frames in amotion picture to
statistical sampling in computational physics. Because there are no dependencies tomanage, the focus
is on scheduling the tasks to maximize efficiency. In many cases, it is possible to define schedules that
automatically and dynamically balance the load among UEs.

Replicated data or reduction problems are those in which dependencies canbe managed by
"separating them from the tasks" as described earlier—replicating the data at the beginning of
computation and combining results when the termination condition is met (usually "all tasks
complete"). For these problems, the overall solution consists of three phases, one to replicate the data
into local variables, one to solve the now-independent tasks (using the same techniques used for
embarrassingly parallel problems), and one to recombine the results into a single result.

Examples

We will consider two examples of this pattern. The first example, an image-construction example, is
embarrassingly parallel. The second example will build on the molecular dynamics example used in
several of the Finding Concurrency patterns.

Image construction

In many image-construction problems, each pixel in the image is independent of all the other pixels.
For example, consider the well known Mandelbrot set [Dou86]. This famous image is constructed by
coloring each pixel according to the behavior of the quadratic recurrence relation

Equation 4.1

where C and Z are complex numbers and the recurrence is started with Z,= C. The image plots the
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imaginary part of C on the vertical axis and the real part on the horizontal axis. The color of each
pixel is black if the recurrence relation converges to a stable value or is colored depending on how
rapidly the relation diverges.

At the lowest level, the task is the update for a single pixel. First consider computing this set on a
cluster of PCs connected by an Ethernet. This is a coarsegrained system; that is, the rate of
communication is slow relative to the rate of computation. To offset the overhead incurred by the slow
network, the task size needs to be large; for this problem, that might mean computing a full row of the
image. The work involved in computing each row varies depending on the number of divergent pixels
in the row. The variation, however, is modest and distributed closely around a mean value. Therefore,
a static schedule with many more tasks than UEs will likely give an effective statistical balance of the
load among nodes. The remaining step in applying the pattern is choosing an overall structure for the
program. On a shared-memory machine using OpenMP, the Loop Parallelism pattern described in the
Supporting Structures design space is a good fit. On a network of workstations running MPI, the
SPMD pattern (also in the Supporting Structures design space) is appropriate.

Before moving on to the next example, we consider one more target system, a cluster in which the
nodes are not heterogeneous—that is, some nodes are much faster than others. Assume also that the
speed of each node may not be known when the work is scheduled. Because the time needed to
compute the image for a row now depends both on the row and on which node computes it, a dynamic
schedule is indicated. This in turn suggests that a general dynamic load-balancing scheme is indicated,
which then suggests that the overall program structure should be based on the Master/Worker pattern.

Molecular dynamics

For our second example, we consider the computation of the nonbonded forces in a molecular
dynamics computation. This problem is described in Sec. 3.1.3 and in [Mat95, PH95] and is used
throughout the patterns in the Finding Concurrency design space. Pseudocode for this computation is
shown in Fig. 4.4. The physics in this example is not relevant and is buried in code not shown here
(the computation of the neighbors list and the force function). The basic computation structure is a
loop over atoms, and then for each atom, a loop over interactions with other atoms. The number of
interactions per atom is computed separately when the neighbors list is determined. This routine (not
shown here) computes the number of atoms within a radius equal to a preset cutoff distance. The
neighbor list is also modified to account for Newton's third law: Because the force of atom 1 on atom
J is the negative of the force of atom j on atom 1, only half of the potential interactions need actually
be computed. Understanding this detail is not important for understanding this example. The key is
that this causes each loop over j to vary greatly from one atom to another, thereby greatly
complicating the load-balancing problem. Indeed, for the purposes of this example, all that must really
be understood is that calculating the force is an expensive operation and that the number of
interactions per atom varies greatly. Hence, the computational effort for each iteration over 1 is
difficult to predict in advance.

Figure 4.4. Pseudocode for the nonbonded computation in a typical molecular
dynamics code

function non bonded forces (N, Atoms, neighbors, Forces)
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Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forcez

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non bond force(atoms(1,i), atoms(1,j))
forceY = non_bond force(atoms(2,i), atoms(2,j))
forceZ = non bond force(atoms(3,i), atoms(3,j))
force(1l,i) += forceX; force(l,j) -= forceX;
force(2,1) += forceY; force(2,j) -= forceY;
force(3,1) += forceZ; force(3,j) -= forceZz;

end loop [j]

end loop [i]
end function non bonded forces

Each component of the force term is an independent computation, meaning that each (1, J) pairis
fundamentally an independent task. The number of atoms tends to be on the order of thousands, and
squaring that gives a number of tasks that is more than enough for all but the largest parallel systems.
Therefore, we can take the more convenient approach of defining a task as one iteration of the loop
over 1. The tasks, however, are not independent: The Torce array is read and written by each task.
Inspection of the code shows that the arrays are only used to accumulate results from the computation,
however. Thus, the full array can be replicated on each UE and the local copies combined (reduced)
after the tasks complete.

After the replication is defined, the problem is embarrassingly parallel and the same approaches
discussed previously apply. We will revisit this example in the Master/Worker, Loop Parallelism, and
SPMD patterns. A choice among these patterns is normally made based on the target platforms.

Known uses
There are many application areas in which this pattern is useful, including the following.

Many ray-tracing programs use some form of partitioning with individual tasks corresponding to scan
lines in the final image [BKSO1].

Applications written with coordination languages such as Linda are another rich source of examples

of this pattern [BCM*91]. Linda [CG91] is a simple language consisting of only six operations that
read and write an associative (that is, content-addressable) shared memory called a tuple space. The
tuple space provides a natural way to implement a wide variety of shared-queue and master/worker
algorithms.

Parallel computational chemistry applications also make heavy use of this pattern. In the quantum
chemistry program GAMESS, the loops over two electron integrals are parallelized with the task
queue implied by the Nextval construct within TCGMSG. An early version of the distance
geometry program DGEOM was parallelized with the master/worker form of this pattern. These
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examples are discussed in [Mat95].

PTEP (Parallel Telemetry Processor) [NBBO1], developed by NASA as the downlink processing
system for data from a planetary rover or lander, also makes use of this pattern. The system is
implemented in Java but can incorporate components implemented in other languages. For each
incoming data packet, the system determines which instrument produced the data, and then performs
an appropriate sequential pipeline of processing steps. Because the incoming data packets are
independent, the processing of individual packets can be done in parallel.

4.5. THE DIVIDE AND CONQUER PATTERN

Problem

Suppose the problem is formulated using the sequential divide-and-conquer strategy. How can the
potential concurrency be exploited?

Context

The divide-and-conquer strategy is employed in many sequential algorithms. With this strategy, a
problem is solved by splitting it into a number of smaller subproblems, solving them independently,
and merging the subsolutions into a solution for the whole problem. The subproblems can be solved
directly, or they can in turn be solved using the same divide-and-conquer strategy, leading to an
overall recursive program structure.

This strategy has proven valuable for a wide range of computationally intensive problems. For many
problems, the mathematical description maps well onto a divide-and-conquer algorithm. For example,
the famous fast Fourier transform algorithm [PTV93] is essentially a mapping of the doubly nested
loops of the discrete Fourier transform into a divide-and-conquer algorithm. Less well known is the
fact that many algorithms from computational linear algebra, such as the Cholesky decomposition

[ABE'97, PLA], also map well onto divide-and-conquer algorithms.

The potential concurrency in this strategy is not hard to see: Because the sub-problems are solved
independently, their solutions can be computed concurrently. Fig. 4.5 illustrates the strategy and the
potential concurrency. Notice that each "split" doubles the available concurrency. Although the
concurrency in a divide-and-conquer algorithm is obvious, the techniques required to exploit it
effectively are not always obvious.
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Figure 4.5. The divide-and-conquer strategy
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Forces

The traditional divide-and-conquer strategy is a widely useful approach to algorithm design.
Sequential divide-and-conquer algorithms are almost trivial to parallelize based on the obvious
exploitable concurrency.

As Fig. 4.5 suggests, however, the amount of exploitable concurrency varies over the life of the
program. At the outermost level of the recursion (initial split and final merge), there is little or
no exploitable concurrency, and the subproblems also contain split and merge sections.
Amdahl's law (Chapter 2) tells us that the serial parts of a program can significantly constrain
the speedup that can be achieved by adding more processors. Thus, if the split and merge
computations are nontrivial compared to the amount of computation for the base cases, a
program using this pattern might not be able to take advantage of large numbers of processors.
Further, if there are many levels of recursion, the number of tasks can grow quite large,
perhaps to the point that the overhead of managing the tasks overwhelms any benefit from
executing them concurrently.

In distributed-memory systems, subproblems can be generated on one PE and executed by
another, requiring data and results to be moved between the PEs. The algorithm will be more
efficient if the amount of data associated with a computation (that is, the size of the parameter
set and result for each subproblem) is small. Otherwise, large communication costs can
dominate the performance.

In divide-and-conquer algorithms, the tasks are created dynamically as the computation
proceeds, and in some cases, the resulting "task graph" will have an irregular and data-
dependent structure. If this is the case, then the solution should employ dynamic load
balancing.
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Figure 4.6. Sequential pseudocode for the divide-and-conquer algorithm

func solve returns Solution; // a solution stage

func baseCase returns Boolean; // direct solution test
func baseSolve returns Solution; // direct solution
func merge returns Solution; // combine subsolutions
func split returns Problem[]; // split into subprobs

Solution solve(Problem P) {
if (baseCase(P))
return baseSolve(P);
else {
Problem subProblems[N]; Solution subSolutions[N];
subProblems = split(P);
for (int i = 0; i < N; i++)
subSolutions[i] = solve(subProblems[i]);
return merge(subSolutions);
}
}

Solution

A sequential divide-and-conquer algorithm has the structure shown in Fig. 4.6. The cornerstone of
this structure is a recursively invoked function (solve ()) that drives each stage in the solution.
Inside solve, the problem is either split into smaller subproblems (using Split()) orit is directly
solved (using baseSolve ()). In the classical strategy, recursion continues until the subproblems
are simple enough to be solved directly, often with just a few lines of code each. However, efficiency
can be improved by adopting the view that baseSolve () should be called when (1) the overhead of
performing further splits and merges significantly degrades performance, or (2) the size of the
problem is optimal for the target system (for example, when the data required for a baseSolve ()
fits entirely in cache).

The concurrency in a divide-and-conquer problem is obvious when, as is usually the case, the
subproblems can be solved independently (and hence, concurrently). The sequential divide-and-
conquer algorithm maps directly onto a task-parallel algorithm by defining one task for each
invocation of the Solve () function, as illustrated in Fig. 4.7. Note the recursive nature of the design,
with each task in effect dynamically generating and then absorbing a task for each subproblem.

Figure 4.7. Parallelizing the divide-and-conquer strategy. Each dashed-line box
represents a task.
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At some level of recursion, the amount of computation required for a subproblems can become so
small that it is not worth the overhead of creating a new task to solve it. In this case, a hybrid program
that creates new tasks at the higher levels of recursion, then switches to a sequential solution when the
subproblems become smaller than some threshold, will be more effective. As discussed next, there are
tradeoffs involved in choosing the threshold, which will depend on the specifics of the problem and
the number of PEs available. Thus, it is a good idea to design the program so that this "granularity
knob" is easy to change.

Mapping tasks to UEs and PEs

Conceptually, this pattern follows a straightforward fork/join approach (see the Fork/Join pattern).
One task splits the problem, then forks new tasks to compute the subproblems, waits until the
subproblems are computed, and then joins with the subtasks to merge the results.

The easiest situation is when the split phase generates subproblems that are known to be about the
same size in terms of needed computation. Then, a straightforward implementation of the fork/join
strategy, mapping each task to a UE and stopping the recursion when the number of active subtasks is
the same as the number of PEs, works well.

In many situations, the problem will not be regular, and it is best to create more, finer-grained tasks
and use a master/worker structure to map tasks to units of execution. This implementation of this
approach is described in detail in the Master/Worker pattern. The basic ideais to conceptually
maintain a queue of tasks and a pool of UEs, typically one per PE. When a subproblem is split, the
new tasks are placed in the queue. When a UE finishes a task, it obtains another one from the queue.
In this way, all of the UEs tend to remain busy, and the solution shows a good load balance. Finer-
grained tasks allow a better load balance at the cost of more overhead for task management.

Many parallel programming environments directly support the fork/join construct. For example, in
OpenMP, we could easily produce a parallel application by turning the Tor loop of Fig. 4.6 into an
OpenMP parallel for construct. Then the subproblems will be solved concurrently rather than
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in sequence, with the OpenMP runtime environment handling the thread management. Unfortunately,
this technique will only work with implementations of OpenMP that support true nesting of parallel
regions. Currently, only a few OpenMP implementations do so. Extending OpenMP to better address
recursive parallel algorithms is an active area of research in the OpenMP community [Mat03]. One
proposal likely to be adopted in a future OpenMP specification is to add an explicit taskqueue
construct designed to support the expression of recursive algorithms [SHPTOQO].

The FJTask framework for Java [LeaO0b, Lea] provides support for fork/join programs with a pool of
threads backing the implementation. Several example programs using a divide-and-conquer strategy
are provided with the package.

Communication costs

Because tasks are generated dynamically from a single top-level task, a task can be executed on a
different PE than the one that generated it. In a distributed-memory system, a higher-level task will
typically have the data necessary to solve its entire problem, the relevant data must be moved to the
subproblem's PE, and the result moved back to the source. Thus it pays to consider how to efficiently
represent the parameters and results, and consider whether it makes sense to replicate some data at the
beginning of the computation.

Dealing with dependencies

In most algorithms formulated using the divide-and-conquer strategy, the subproblems can be solved
independently from each other. Less commonly, the subproblems require access to a common data
structure. These dependencies canbe handled using the techniques described in the Shared Data
pattern.

Other optimizations

A factor limiting the scalability of this pattern is the serial split and merge sections. Reducing the
number of levels of recursion required by splitting each problem into more subproblems can often
help, especially if the split and merge phases can be parallelized themselves. This might require
restructuring, but can be quite effective, especially in the limiting case of "one-deep divide and
conquer”, in which the initial split is into P subproblems, where P is the number of available PEs.
Examples of this approach are given in [Tho95].

Examples

Mergesort

Mergesort is a well-known sorting algorithm based on the divide-and-conquer strategy, applied as
follows to sort an array of N elements.

The base case is an array of size less than some threshold. This is sorted using an appropriate
sequential sorting algorithm, often quicksort.

In the split phase, the array is split by simply partitioning it into two contiguous subarrays,
each of size N/2.

In the solve-subproblems phase, the two subarrays are sorted (by applying the mergesort
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procedure recursively).
In the merge phase, the two (sorted) subarrays are recombined into a single sorted array.
This algorithm is readily parallelized by performing the two recursive mergesorts in parallel.

This example is revisited with more detail in the Fork/Join pattern in the Supporting Structures design
space.

Matrix diagonalization

Dongarra and Sorensen ([DS87]) describe a parallel algorithm for diagonalizing (computing the

eigenvectors and eigenvalues of) a symmetric tridiagonal matrix T. The problem is to find a matrix Q

such that QT - T - Q is diagonal; the divide-and-conquer strategy goes as follows (omitting the
mathematical details).

The base case is a small matrix which is diagonalized sequentially.

The split phase consists of finding matrix T' and vectors u, v, such that T=T' + UVT, and T'

0
0 1

where T, and T, are symmetric tridiagonal matrices (which can be diagonalized by recursive

has the form

calls to the same procedure).

The merge phase recombines the diagonalizations of T, and T, into a diagonalization of T.

Details can be found in [DS87] or in [GL96].

Known uses

Any introductory algorithms text will have many examples of algorithms based on the divide-and-
conquer strategy, most of which can be parallelized with this pattern.

Some algorithms frequently parallelized with this strategy include the Barnes-Hut [BH86] and Fast
Multipole [GGI0] algorithms used in N-body simulations; signal-processing algorithms, such as

discrete Fourier transforms; algorithms for banded and tridiagonal linear systems, such as those found
in the ScaLAPACK package [CD97, Scal; and algorithms from computational geometry, such as
convex hull and nearest neighbor.

A particularly rich source of problems that use the Divide and Conquer pattern is the FLAME project
[GGHvdGO1]. This is an ambitious project to recast linear algebra problems in recursive algorithms.
The motivation is twofold. First, mathematically, these algorithms are naturally recursive; in fact, most
pedagogical discussions of these algorithms are recursive. Second, these recursive algorithms have
proven to be particularly effective at producing code that is both portable and highly optimized for the
cache architectures of modern microprocessors.

Related Patterns

Just because an algorithm is based on a sequential divide-and-conquer strategy does not mean that it
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must be parallelized with the Divide and Conquer pattern. A hallmark of this pattern is the recursive
arrangement of the tasks, leading to a varying amount of concurrency and potentially high overheads
on machines for which managing the recursion is expensive. If the recursive decomposition into sub-
problems can be reused, however, it might be more effective to do the recursive decomposition, and
then use some other pattern (such as the Geometric Decomposition pattern or the Task Parallelism
pattern) for the actual computation. For example, the first production-level molecular dynamics
program to use the fast multipole method, PMD [Win95], used the Geometric Decomposition pattern
to parallelize the fast multipole algorithm, even though the original fast multipole algorithm used
divide and conquer. This worked because the multipole computation was carried out many times for
each configuration of atoms.

4.6. THE GEOMETRIC DECOMPOSITION PATTERN

Problem

How can an algorithm be organized around a data structure that has been decomposed into
concurrently updatable "chunks"?

Context

Many important problems are best understood as a sequence of operations on acore data structure.
There may be other work in the computation, but an effective understanding of the full computation
can be obtained by understanding how the core data structures are updated. For these types of
problems, often the best way to represent the concurrency is in terms of decompositions of these core
data structures. (This form of concurrency is sometimes known as domain decomposition, or coarse-
grained data parallelism.)

The way these data structures are built is fundamental to the algorithm. If the data structure is
recursive, any analysis of the concurrency must take this recursion into account. For recursive data
structures, the Recursive Data and Divide and Conquer patterns are likely candidates. For arrays and
other linear data structures, we can often reduce the problem to potentially concurrent components by
decomposing the data structure into contiguous substructures, in a manner analogous to dividing a
geometric region into subregions—hence the name Geometric Decomposition. For arrays, this
decomposition is along one ormore dimensions, and the resulting subarrays are usually called blocks.
We will use the term chunks for the substructures or subregions, to allow for the possibility of more
general data structures, such as graphs.

This decomposition of data into chunks then implies a decomposition of the update operation into
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tasks, where each task represents the update of one chunk, and the tasks execute concurrently. If the
computations are strictly local, that is, all required information is within the chunk, the concurrency is
embarrassingly parallel and the simpler Task Parallelism pattern should be used. In many cases,

however, the update requires information from points in other chunks (frequently from what we can
call neighboring chunks—chunks containing data that was nearby in the original global data
structure). In these cases, information must be shared between chunks to complete the update.

Example: mesh-computation program

The problem is to model 1D heat diffusion (that is, diffusion of heat along an infinitely narrow pipe).
Initially, the whole pipe is at a stable and fixed temperature. At time 0, we set both ends to different
temperatures, which will remain fixed throughout the computation. We then calculate how
temperatures change in the rest of the pipe over time. (What we expect is that the temperatures will
converge to a smooth gradient from one end of the pipe to the other.) Mathematically, the problem is
to solve a 1D differential equation representing heat diffusion:

Equation 4.2

ol 8t

at dar?

The approach used is to discretize the problem space (representing U by a one-dimensional array and
computing values for a sequence of discrete time steps). We will output values for each time step as
they are computed, so we need only save values for U for two time steps; we will call these arrays UK
(U at the timestep k) and uUKp1 (U at timestep k + 1). At each time step, we then need to compute for
each point in array Ukp1 the following:

ukpl[il=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]l+uk[i-1]);

Variables dt and dX represent the intervals between discrete time steps and between discrete points,
respectively.

Observe that what is being computed is a new value for variable UKp1 at each point, based on data at
that point and its left and right neighbors.

We can begin to design a parallel algorithm for this problem by decomposing the arrays UK and ukp1l
into contiguous subarrays (the chunks described earlier). These chunks can be operated on
concurrently, giving us exploitable concurrency. Notice that we have a situation in which some
elements can be updated using only data from within the chunk, while others require data from
neighboring chunks, as illustrated by Fig. 4.8.

Figure 4.8. Data dependencies in the heat-equation problem. Solid boxes indicate the
element being updated; shaded boxes the elements containing needed data.
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Example: matrix-multiplication program

Consider the multiplication of two square matrices (that is, compute C=A - B). As discussed in

[FJL*88], the matrices can be decomposed into blocks. The summations in the definition of matrix
multiplication are likewise organized into blocks, allowing us to write a blockwise matrix
multiplication equation

Equation 4.3

CY =y A% . BM

k

where at each step in the summation, we compute the matrix product A% . BN and add it ©o the
running matrix sum.

This equation immediately implies a solution in terms of the Geometric Decomposition pattern; that
is, one in which the algorithm is based on decomposing the data structure into chunks (square blocks
here) that can be operated on concurrently.

To help visualize this algorithm more clearly, consider the case where we decompose all three
matrices into square blocks with each task "owning" corresponding blocks of A, B, and C. Each task
will run through the sum over k to compute its block of C, with tasks receiving blocks from other
tasks as needed. In Fig. 4.9, we illustrate two steps in this process showing a block being updated (the
solid block) and the matrix blocks required at two different steps (the shaded blocks), where blocks of
the A matrix are passed across a row and blocks of the B matrix are passed around a column.

Figure 4.9. Data dependencies in the matrix-multiplication problem. Solid boxes
indicate the "chunk" being updated (C); shaded boxes indicate the chunks of A (row)
and B (column) required to update C at each of the two steps.
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Forces

 To exploit the potential concurrency in the problem, we must assign chunks of the
decomposed data structure to UEs. Ideally, we want to do this in a way that is simple, portable,
scalable, and efficient. As noted in Section 4.1, however, these goals may conflict. A key
consideration is balancing the load, that is, ensuring that all UEs have roughly the same
amount of work to do.

« We must also ensure that the data required for the update of each chunk is present when
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needed. This problem is somewhat analogous to the problem of managing data dependencies
in the Task Parallelism pattern, and again the design must keep in mind the sometimes-

conflicting goals of simplicity, portability, scalability, and efficiency.

Solution

Designs for problems that fit this pattern involve the following key elements: partitioning the global
data structure into substructures or "chunks" (the data decomposition), ensuring that each task has
access to all the data it needs to perform the update operation for its chunk (the exchange operation),
updating the chunks (the update operation), and mapping chunks to UEs in a way that gives good
performance (the data distribution and task schedule).

Data decomposition

The granularity of the data decomposition has a significant impact on the efficiency of the program.
In a coarse-grained decomposition, there are a smaller number of large chunks. This results in a
smaller number of large messages, which can greatly reduce communication overhead. A fine-grained
decomposition, on the other hand, results in a larger number of smaller chunks, in many cases leading
to many more chunks than PEs. This results in a larger number of smaller messages (and hence
increases communication overhead), but it greatly facilitates load balancing.

Although it might be possible in some cases to mathematically derive an optimum granularity for the
data decomposition, programmers usually experiment with a range of chunk sizes to empirically
determine the best size for a given system. This depends, ofcourse, on the computational performance
of the PEs and on the performance characteristics of the communication network. Therefore, the
program should be implemented so that the granularity is controlled by parameters that can be easily
changed at compile or runtime.

The shape of the chunks can also affect the amount of communication needed between tasks. Often,
the data to share between tasks is limited to the boundaries of the chunks. In this case, the amount of
shared information scales with the surface area of the chunks. Because the computation scales with
the number of points within a chunk, it scales as the volume of the region. This surface-to-volume
effect can be exploited to maximize the ratio of computation to communication. Therefore, higher-
dimensional decompositions are usually preferred. For example, consider two different
decompositions of an N by N matrix into four chunks. In one case, we decompose the problem into
four column chunks of size N by N/4. In the second case, we decompose the problem into four square
chunks of size N/2 by N/2. For the column block decomposition, the surface area is 2N + 2(N/4) or
SN/2. For the square chunk case, the surface area is 4(N/2) or 2N. Hence, the total amount of data that
must be exchanged is less for the square chunk decomposition.

In some cases, the preferred shape of the decomposition can be dictated by other concems. It may be
the case, for example, that existing sequential code can be more easily reused with a lower-
dimensional decomposition, and the potential increase in performance is not worth the effort of
reworking the code. Also, an instance of this pattern can be used as a sequential step in a larger
computation. If the decomposition used in an adjacent step differs from the optimal one for this
pattern in isolation, it may or may not be worthwhile to redistribute the data for this step. This is
especially an issue in distributed-memory systems where redistributing the data can require
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significant communication that will delay the computation. Therefore, data decomposition decisions
must take into account the capability to reuse sequential code and the need to interface with other
steps in the computation. Notice that these considerations might lead to a decomposition that would
be suboptimal under other circumstances.

Communication can often be more effectively managed by replicating the nonlocal data needed to
update the data in a chunk. For example, if the data structure is an array representing the points on a
mesh and the update operation uses a local neighborhood of points on the mesh, a common
communication-management technique is to surround the data structure for the block with a ghost
boundary to contain duplicates of data at the boundaries of neighboring blocks. So now each chunk
has two parts: a primary copy owned by the UE (that will be updated directly) and zero or more ghost
copies (also referred to as shadow copies). These ghost copies provide two benefits. First, their use
may consolidate communication into potentially fewer, larger messages. On latency-sensitive
networks, this can greatly reduce communication overhead. Second, communication of the ghost
copies can be overlapped (that is, it can be done concurrently) with the update of parts of the array
that don't depend on data within the ghost copy. In essence, this hides the communication cost behind
useful computation, thereby reducing the observed communication overhead.

For example, in the case of the mesh-computation example discussed earlier, each of the chunks
would be extended by one cell on each side. These extra cells would be used as ghost copies of the
cells on the boundaries of the chunks. Fig. 4.10 illustrates this scheme.

Figure 4.10. A data distribution with ghost boundaries. Shaded cells are ghost copies;
arrows point from primary copies to corresponding secondary copies.
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The exchange operation

A key factor in using this pattern correctly is ensuring that nonlocal data required for the update
operation is obtained before it is needed.

If all the data needed is present before the beginning of the update operation, the simplest approach is
to perform the entire exchange before beginning the update, storing the required nonlocal data in a
local data structure designed for that purpose (for example, the ghost boundary in a mesh
computation). This approach is relatively straightforward to implement using either copying or
message passing.

More sophisticated approaches in which computation and communication overlap are also possible.
Such approaches are necessary if some data needed for the update is not initially available, and may
improve performance in other cases as well. For example, in the example of a mesh computation, the
exchange of ghost cells and the update of cells in the interior region (which do not depend on the
ghost cells) can proceed concurrently. After the exchange is complete, the boundary layer (the values
that do depend on the ghost cells) can be updated. On systems where communication and computation
occur in parallel, the savings from such an approach can be significant. This is such a common feature
of parallel algorithms that standard communication APIs (such as MPI) include whole classes of
message-passing routines to overlap computation and communication. These are discussed in more
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detail in the MPI appendix.

The low-level details of how the exchange operation is implemented can have a large impact on
efficiency. Programmers should seek out optimized implementations of communication pattems used
in their programs. In many applications, for example, the collective communication routines in
message-passing libraries such as MPI are useful. These have been carefully optimized using
techniques beyond the ability of many parallel programmers (we discuss some of these in Sec. 6.4.2)
and should be used whenever possible.

The update operation

Updating the data structure is done by executing the corresponding tasks (each responsible for the
update of one chunk of the data structures) concurrently. If all the needed data is present at the
beginning of the update operation, and if none of this data is modified during the course of the
update, parallelization is easier and more likely to be efficient.

If the required exchange of information has been performed before beginning the update operation,
the update itself is usually straightforward to implement—it is essentially identical to the analogous
update in an equivalent sequential program, particularly if good choices have been made about how to
represent nonlocal data. If the exchange and update operations overlap, more care is needed to ensure
that the update is performed correctly. If a system supports lightweight threads that are well integrated
with the communication system, then overlap can be achieved via multithreading within a single task,
with one thread computing while another handles communication. In this case, synchronization
between the threads is required.

In some systems, for example MPI, nonblocking communication is supported by matching
communication primitives: one to start the communication (without blocking), and the other
(blocking) to complete the operation and use the results. For maximal overlap, communication should
be started as soon as possible, and completed as late as possible. Sometimes, operations can be
reordered to allow more overlap without changing the algorithm semantics.

Data distribution and task scheduling

The final step in designing a parallel algorithm for a problem that fits this pattern is deciding how to
map the collection of tasks (each corresponding to the update of one chunk) to UEs. Each UE can
then be said to "own" a collection of chunks and the data they contain. Thus, we have a two-tiered
scheme for distributing data among UEs: partitioning the data into chunks and then assigning these
chunks to UEs. This scheme is flexible enough to represent a variety of popular schemes for
distributing data among UEs.

In the simplest case, each task can be statically assigned to a separate UE; then all tasks can execute
concurrently, and the intertask coordination needed to implement the exchange operation is
straightforward. This approach is most appropriate when the computation times of the tasks are
uniform and the exchange operation has beenimplemented to overlap communication and
computation within each tasks.

The simple approach can lead to poor load balance in some situations, however. For example, consider
a linear algebra problem in which elements of the matrix are successively eliminated as the
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computation proceeds. Early in the computation, all the rows and columns of the matrix have
numerous elements to work with and decompositions based on assigning full rows or columns to UEs
are effective. Later in the computation, however, rows or columns become sparse, the work per row
becomes uneven, and the computational load becomes poorly balanced between UEs. The solution is
to decompose the problem into many more chunks than there are UEs and to scatter them among the
UEs with a cyclic or block-cyclic distribution. (Cyclic and block-cyclic distributions are discussed in
the Distributed Array pattern.) Then, as chunks become sparse, there are (with high probability) other

nonsparse chunks for any given UE to work on, and the load becomes well balanced. A rule of thumb
is that one needs around ten times as many tasks as UEs for this approach to work well.

It is also possible to use dynamic load-balancing algorithms to periodically redistribute the chunks
among the UEs to improve the load balance. These incur overhead that must be traded off against the
improvement likely to occur from the improved load balance and increased implementation costs. In
addition, the resulting program is more complex than those that use one of the static methods.
Generally, one should consider the (static) cyclic allocation strategy first.

Program structure

The overall program structure for applications of this pattern will normally use either the Loop
Parallelism pattern or the SPMD pattem, with the choice determined largely by the target platform.
These patterns are described in the Supporting Structures design space.

Examples

We include two examples with this pattern: a mesh computation and matrix multiplication. The
challenges in working with the Geometric Decomposition pattern are best appreciated in the low-level
details of the resulting programs. Therefore, even though the techniques used in these programs are
not fully developed until much later in the book, we provide full programs in this section rather than
high-level descriptions of the solutions.

Mesh computation

This problem is described in the Context section of this pattern. Fig. 4.11 presents a simple sequential
version of a program (some details omitted) that solves the 1D heat-diffusion problem. The program
associated with this problem is straightforward, although one detail might need further explanation:
After computing new values in UKp1 at each step, conceptually what we want to do is copy them to
uk for the next iteration. We avoid a time-consuming actual copy by making uk and ukp1 pointers to
their respective arrays and simply swapping them at the end of each step. This causes UK to point to
the newly computed values and UKp1 to point to the area to use for computing new values in the next
iteration.

Figure 4.11. Sequential heat-diffusion program

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#define NX 100
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#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[]) {
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int 1 = 1; 1 < NX-1; ++i)
uk[i] = 0.0;
for (int i = 0; i < NX; ++i)
ukpl[i] = uk[i];
}

void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukpl = malloc(sizeof(double) * NX);
double *temp;

double dx
double dt

1.0/NX;
0.5*dx*dx;

initialize(uk, ukpl);
for (int k = 0; k < NSTEPS; ++k) {

/* compute new values */

for (int i = 1; i < NX-1; ++i) {

ukpl[il=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);
}

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;

printValues(uk, Kk);
}

return 0;

}

This program combines a top-level sequential control structure (the time-step loop) with an array-

update operation, which can be parallelized using the Geometric Decomposition pattern. We show

parallel implementations of this program using OpenMP and MPL

OpenMP solution

A particularly simple version of the program using OpenMP and the Loop Parallelism pattern is

shown in Fig. 4.12. Because OpenMP is a shared-memory programming model, there is no need to

explicitly partition and distribute the two key arrays (UK and ukp1). The creation of the threads and
distribution of the work among the threads are accomplished with the parallel for directive.

#pragma parallel for schedule(static)
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The schedule (static) clause decomposes the iterations of the parallel loop into one
contiguous block per thread with each block being approximately the same size. This schedule is
important for Loop Parallelism programs implementing the Geometric Decomposition pattern. Good
performance for most Geometric Decomposition problems (and mesh programs in particular) requires
that the data in the processor's cache be used many times before it is displaced by data from new cache
lines. Using large blocks of contiguous loop iterations increases the chance that multiple values
fetched in a cache line will be utilized and that subsequent loop iterations are likely to find at least
some of the required data in cache.

The last detail to discuss for the program in Fig. 4.12 is the synchronization required to safely copy the
pointers. It is essential that all of the threads complete their work before the pointers they manipulate
are swapped in preparation for the next iteration. In this program, this synchronization happens
automatically due to the implied barrier (see Sec. 6.3.2) at the end of the parallel loop.

The program in Fig. 4.12 works well with a small number of threads. When large numbers of threads
are involved, however, the overhead incurred by placing the thread creation and destruction inside the
loop over k would be prohibitive. We can reduce thread-management overhead by splitting the
parallel for directive into separate parallel and for directives and moving the thread
creation outside the loop over K. This approach is shown in Fig. 4.13. Because the whole K loop is
now inside a parallel region, we must be more careful about how data is shared between threads. The
private clause causes the loop indices K and 1 to be local to each thread. The pointers Uk and
ukp1 are shared, however, so the swap operation must be protected. The easiest way to do this is to
ensure that only one member of the team of threads does the swap. In OpenMP, this is most easily
done by placing the update inside a Single construct. As described in more detail in the OpenMP
appendix, Appendix A, the first thread to encounter the construct will carry out the swap while the
other threads wait at the end of the construct.

Figure 4.12. Parallel heat-diffusion program using OpenMP

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[]) {
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int i = 1; i < NX-1; ++i)
uk[i] = 0.0;
for (int i=0; i < NX; ++i)
ukpl[i] = uk[i];
}

void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
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/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);

double *ukpl = malloc(sizeof(double) * NX);

double *temp;

double dx
double dt

1.0/NX;
0.5*%dx*dx;

initialize(uk, ukpl);
for (int k = 0; k < NSTEPS; ++k) {

#pragma omp parallel for schedule(static)
/* compute new values */
for (int i = 1; i < NX-1; ++i) {
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);
}

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;

printValues(uk, K);
}

return 0;

}

MPI solution

An MPI-based program for this example is shown in Fig. 4.14 and 4.15. The approach used in this
program uses a data distribution with ghost cells and the SPMD pattem.

Each process is given a single chunk of the data domain of size NX/NP, where NX is the total size of
the global data array and NP is the number of processes. For simplicity, we assume NX is evenly
divided by NP.

The update of the chunk is straightforward and essentially identical to that from the sequential code.
The length and greater complexity in this MPI program arises from two sources. First, the data
initialization is more complex, because it must account for the data values at the edges of the first and
last chunks. Second, message-passing routines are required inside the loop over K to exchange ghost
cells.

Figure 4.13. Parallel heat-diffusion program using OpenMP. This version has less
thread-management overhead.

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
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#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[]){/* NOT SHOWN */}
void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukpl = malloc(sizeof(double) * NX); double *temp;

int i,k;
double dx = 1.0/NX;
double dt = 0.5*dx*dx;

#pragma omp parallel private (k, 1)
{
initialize(uk, ukpl);

for (k = 0; k < NSTEPS; ++k) {
#pragma omp for schedule(static)
for (1 = 1; 1 < NX-1; ++i) {
ukpl[il=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);
}
/* "copy" ukpl to uk by swapping pointers */
#pragma omp single
{ temp = ukpl; ukpl = uk; uk = temp; }
}
}
return 0;

}

The details of the message-passing functions can be found in the MPI appendix, Appendix B. Briefly,
transmitting data consists of one process doing a send operation, specifyirg the buffer containing the
data, and another process doing a receive operation, specifying the buffer into which the data should
be placed. We need several different pairs of sends and receives because the process that owns the
leftmost chunk of the array does not have a left neighbor it needs tocommunicate with, and similarly
the process that owns the rightmost chunk does not have a right neighbor to communicate with.

Figure 4.14. Parallel heat-diffusion program using MPI (continued in Fig. 4.15)

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpi.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[], int numPoints,
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int numProcs, int myID) {
for (int 1 = 1; 1 <= numPoints; ++1)

uk[i] = 0.0;
/* left endpoint */
if (myID == 0) uk[1l] = LEFTVAL;

/* right endpoint */

if (myID == numProcs-1) uk[numPoints] = RIGHTVAL;

/* copy values to ukpl */

for (int 1 = 1; i1 <= numPoints; ++i) ukpl[i] = uk[i];
}

void printValues(double uk[], int step, int numPoints, int myID)
{ /* NOT SHOWN */ }

int main(int argc, char *argv[]) {
/* pointers to arrays for two iterations of algorithm */
double *uk, *ukpl, *temp;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

int numProcs, myID, leftNbr, rightNbr, numPoints;
MPI Status status;

/* MPI initialization */

MPI-Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &numProcs);

MPI Comm rank(MPI COMM WORLD, &myID); //get own ID

/* initialization of other variables */

leftNbr = myID - 1; // ID of left "neighbor" process
rightNbr = myID + 1; // ID of right "neighbor" process
numPoints = (NX / numProcs);

/* uk, ukpl include a "ghost cell" at each end */

uk = malloc(sizeof(double) * (numPoints+2));

ukpl = malloc(sizeof(double) * (numPoints+2));

initialize(uk, ukpl, numPoints, numProcs, myID);
/* continued in next figure */

We could further modify the code in Fig. 4.14 and 4.15 to use nonblocking communication to overlap
computation and communication, as discussed earlier in this pattern. The first part of the program is
unchanged from our first mesh computation MPI program (that is, Fig. 4.14). The differences for this
case are contained in the second part of the program containing the main computation loop. This code
is shown in Fig. 4.16.

Figure 4.15. Parallel heat-diffusion program using MPI (continued from Fig. 4.14)

Code View: Scroll / Show All

/* continued from Figure 4.14 */

for (int k = 0; k < NSTEPS; ++k) {
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/* exchange boundary information */
if (myID != 0)
MPI Send(&uk[1], 1, MPI DOUBLE, leftNbr, 0,
MPI COMM WORLD) ;
if (myID != numProcs-1)
MPI Send(&uk[numPoints], 1, MPI DOUBLE, rightNbr, O,
MPI COMM WORLD) ;
if (myID != 0)
MPI Recv(&uk[0], 1, MPI DOUBLE, leftNbr, 0,
MPI COMM WORLD, &status);
if (myID '= numProcs-1)
MPI Recv(&uk[numPoints+1],1, MPI DOUBLE, rightNbr, O,
MPI COMM WORLD, &status);

/* compute new values for interior points */
for (int i = 2; i < numPoints; ++1i) {
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

/* compute new values for boundary points */
if (myID != 0) {
int i=1;
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

if (myID != numProcs-1) {

int i=numPoints;

ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);
}

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;

printValues(uk, k, numPoints, myID);
/* clean up and end */

MPI Finalize();
return 0;

While the basic algorithm is the same, the communication is quite different. The immediate-mode
communication routines, MPI _Isend and MPI_TIrecv, are used to set up and then launch the
communication events. These functions (described in more detail in the MPI appendix, Appendix B)
return immediately. The update operatiors on the interior points can then take place because they
don't depend on the results of the communication. We then call functions to wait until the
communication is complete and update the edges of each UE's chunks using the results of the
communication events. In this case, the messages are small in size, so it is unlikely that this version of
the program would be any faster than our first one. But it is easy to imagine cases where large,
complex communication events would be involved and being able to do useful work while the
messages move across the computer network would result in significantly greater performance.
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Figure 4.16. Parallel heat-diffusion program using MPI with overlapping
communication/ computation (continued from Fig. 4.14)

Code View: Scroll / Show All

/* continued */
MPI Request reqRecvL, reqRecvR, reqSendL, reqSendR; //needed for
// nonblocking I/0

for (int k = 0; k < NSTEPS; ++k) {
/* initiate communication to exchange boundary information */
if (myID '= 0) {
MPI Irecv(&uk[O@], 1, MPI DOUBLE, leftNbr, O,
MPI COMM WORLD, &regRecvl);
MPI Isend(&uk[l], 1, MPI DOUBLE, leftNbr, O,
MPI COMM WORLD, &regSendl);

}
if (myID !'= numProcs-1) {
MPI Irecv(&uk[numPoints+1],1, MPI DOUBLE, rightNbr, 0,
MPI COMM WORLD, &reqRecvR);
MPI Isend(&uk[numPoints], 1, MPI DOUBLE, rightNbr, O,
MPI COMM WORLD, &reqSendR);
}
/* compute new values for interior points */
for (int i = 2; i < numPoints; ++1i) {
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

/* wait for communication to complete */
if (myID != 0) {

MPI Wait(&reqRecvL, &status); MPI Wait(&reqSendL, &status);
¥

if (myID != numProcs-1) {
MPI Wait(&regRecvR, &status); MPI Wait(&reqSendR, &status);
}

/* compute new values for boundary points */
if (myID '= 0) {
int i=1;
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

}
if (myID !'= numProcs-1) {
int i=numPoints;
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;

printValues(uk, k, numPoints, myID);

}

/* clean up and end */
MPI Finalize();
return 0;
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Figure 4.17. Sequential matrix multiplication

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#define N 100
#define NB 4

#define blockstart(M,i,j,rows per blk,cols per blk,stride) \
(M + ((i)*(rows_per blk))*(stride) + (j)*(cols per blk))

int main(int argc, char *argv[]) {
/* matrix dimensions */
int dimN = N; int dimP = N; int dimM = N;

/* block dimensions */
int dimNb = dimN/NB; int dimPb = dimP/NB; int dimMb = dimM/NB;

/* allocate memory for matrices */

double *A = malloc(dimN*dimP*sizeof (double));
double *B = malloc(dimP*dimM*sizeof (double));
double *C = malloc(dimN*dimM*sizeof (double));

/* Initialize matrices */
initialize(A, B, dimN, dimP, dimM);
/* Do the matrix multiplication */

for (int ib=0; ib < NB; ++ib) {
for (int jb=0; jb < NB; ++jb) {
/* find block[ib][jb] of C */
double * blockPtr = blockstart(C, ib, jb, dimNb, dimMb, dimM);
/* clear block[ib] [jb] of C (set all elements to zero) */
matclear(blockPtr, dimNb, dimMb, dimM);
for (int kb=0; kb < NB; ++kb) {
/* compute product of block[ib][kb] of A and
block[kb] [jb] of B and add to block[ib][jb] of C */
matmul add(blockstart(A, ib, kb, dimNb, dimPb, dimP),
blockstart(B, kb, jb, dimPb, dimMb, dimM),
blockPtr, dimNb, dimPb, dimMb, dimP, dimM, dimM);

}
}
}

/* Code to print results not shown */

return 0;

}

Matrix multiplication

The matrix multiplication problem is described in the Context section. Fig. 4.17 presents a simple
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sequential program to compute the desired result, based on decomposing the N by N matrix into
NB*NB square blocks. The notation block [1i] [j] in comments indicates the (i,j)-th block as
described earlier. To simplify the coding in C, we represent the matrices as 1D arrays (internally
arranged in row-major order) and define a macro blockstart to find the top-left corner of a
submatrix within one of these 1D arrays. We omit code for functions initialize (initialize
matrices A and B), printMat rix (print a matrix's values), matclear (clear a matrix—set all
values to zero), and matmul add (compute the matrix product of the two input matrices and add it
to the output matrix). Parameters to most of these functions include matrix dimensions, plus a stride
that denotes the distance from the start of one row of the matrix to the start of the next and allows us
to apply the functions to submatrices as well as to whole matrices.

Figure 4.18. Sequential matrix multiplication, revised. We do not show the parts of
the program that are not changed from the program in Fig. 4.17.

/* Declarations, initializations, etc. not shown -- same as
first version */

/* Do the multiply */
matclear(C, dimN, dimM, dimM); /* sets all elements to zero */
for (int kb=0; kb < NB; ++kb) {

for (int ib=0; ib < NB; ++ib) {
for (int jb=0; jb < NB; ++jb) {
/* compute product of block[ib][kb] of A and
block[kb][jb] of B and add to block[ib][jb] of C */
matmul add(blockstart(A, ib, kb, dimNb, dimPb, dimP),
blockstart(B, kb, jb, dimPb, dimMb, dimM),
blockstart(C, ib, jb, dimNb, dimMb, dimM),
dimNb, dimPb, dimMb, dimP, dimM, dimM);
}
}
}

/* Remaining code is the same as for the first version */

We first observe that we can rearrange the loops without affecting the result of the computation, as
shown in Fig. 4.18.

Observe that with this transformation, we have a program that combines a high-level sequential
structure (the loop over kb) with a loop structure (the nested loops over 1b and jb) that can be
parallelized with the Geometric Decomposition pattern.

OpenMP solution

We can produce a parallel version of this program for a shared-memory environment by parallelizing
the inner nested loops (over 1b and/or jb) with OpenMP loop directives. As with the mesh example,
it is important to keep thread-management overhead small, so once again the parallel directive
should appear outside of the loop over kb. A for directive would then be placed prior to one of the
inner loops. The issues raised by this algorithm and the resulting source code modifications are
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essentially the same as those arising from the mesh program example, so we do not show program
source code here.

MPI solution

A parallel version of the matrix multiplication program using MPI is shown in Fig. 4.19 and 4.20. The
natural approach with MPI is to use the SPMD pattern with the Geometric Decomposition pattern.
We will use the matrix multiplication algorithm described earlier.

Figure 4.19. Parallel matrix multiplication with message passing (continued in Fig.
4.20)

Code View: Scroll / Show All

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <mpi.h> #define N 100

#define blockstart(M,i,j,rows per blk,cols per blk,stride) \
(M + ((i)*(rows per blk))*(stride) + (j)*(cols per blk))

int main(int argc, char *argv([]) {
/* matrix dimensions */
int dimN = N; int dimP = N; int dimM = N;

/* block dimensions */
int dimNb, dimPb, dimMb;

/* matrices */
double *A, *B, *C;

/* buffers for receiving sections of A, B from other processes */
double *Abuffer, *Bbuffer;

int numProcs, myID, myID i, myID j, NB;
MPI Status status;

/* MPI initialization */

MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &numProcs);
MPI Comm rank(MPI COMM WORLD, &myID) ;

/* initialize other variables */

NB = (int) sqrt((double) numProcs);

myID i = myID / NB;

myID j myID % NB;

dimNb = dimN/NB; dimPb = dimP/NB; dimMb = dimM/NB;

A = malloc(dimNb*dimPb*sizeof (double));
B = malloc(dimPb*dimMb*sizeof (double));
C = malloc(dimNb*dimMb*sizeof (double));

Abuffer = malloc(dimNb*dimPb*sizeof (double));
Bbuffer = malloc(dimPb*dimMb*sizeof (double));

/* Initialize matrices */
initialize(A, B, dimNb, dimPb, dimPb, dimPb, NB, myID i, myID j);
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/* continued in next figure */

The three matrices (A, B, and C) are decomposed into blocks. The UEs (processes in the case of MPI)
involved in the computation are organized into a grid such that the indices of the matrix blocks map
onto the coordinates of the processes (that is, matrix block (i, j) is associated with the process with
row index 1 and column index j). For simplicity, we assume the number of processes NUMProcs is a
perfect square and its square root evenly divides the order of the matrices (N).

Figure 4.20. Parallel matrix multiplication with message-passing (continued from Fig.
4.19)

Code View: Scroll / Show All

/* continued from previous figure */
/* Do the multiply */

matclear(C, dimNb, dimMb, dimMb);
for (int kb=0; kb < NB; ++kb) {

if (myID j == kb) {
/* send A to other processes in the same "row" */
for (int jb=0; jb < NB; ++jb) {
if (jb !'= myID j)
MPI Send(A, dimNb*dimPb, MPI DOUBLE,
myID i*NB + jb, 0, MPI COMM WORLD);
}
/* copy A to Abuffer */
memcpy (Abuffer, A, dimNb*dimPb*sizeof (double));
}
else {
MPI Recv(Abuffer, dimNb*dimPb, MPI DOUBLE,
myID i*NB + kb, 0, MPI COMM WORLD, &status);
)
if (myID i == kb) {
/* send B to other processes in the same "column" */
for (int ib=0; ib < NB; ++ib) {
if (ib !'= myID i)
MPI Send(B, dimPb*dimMb, MPI DOUBLE,
ib*NB + myID j, ©, MPI_COMM WORLD);
}
/* copy B to Bbuffer */
memcpy (Bbuffer, B, dimPb*dimMb*sizeof (double));

}
else {
MPI Recv(Bbuffer, dimPb*dimMb, MPI DOUBLE,
kb*NB + myID j, ©, MPI_COMM WORLD, &status);
}

/* compute product of block[ib] [kb] of A and
block[kb][jb]l of B and add to block[ib][jb] of C */
matmul add(Abuffer, Bbuffer, C,
dimNb, dimPb, dimMb, dimPb, dimMb, dimMb); }
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}

/* Code to print results not shown */

/* Clean up and end */
MPI Finalize();
return 0;

Although the algorithm may seem complex at first, the overall idea is straightforward. The
computation proceeds through a number of phases (the loop over kb). At each phase, the process
whose row index equals the kb index sends its blocks of A across the row of processes. Likewise, the
process whose column index equals Kb sends its blocks of B along the column of processes.
Following the communication operations, each process then multiplies the A and B blocks it received
and sums the result into its block of C. After NB phases, the block of the C matrix on each process will
hold the final product.

These types of algorithms are very common when working with MPI. The key to understanding these
algorithms is to think in terms of the set of processes, the data owned by each process, and how data
from neighboring processes flows among the processes as the calculation unfolds. We revisit these
issues in the SPMD and Distributed Array patterns as well as in the MPI appendix.

A great deal of research has been carried out on parallel matrix multiplication and related linear
algebra algorithms. A more sophisticated approach, in which the blocks of A and B circulate among

processes, arriving at each process just in time to be used, is given in [FJL"88].

Known uses

Most problems involving the solution of differential equations use the Geometric Decomposition
pattern. A finite-differencing scheme directly maps onto this pattern. Another class of problems that
use this pattern comes from computational linear algebra. The parallel routines in the ScaLAPACK

[Sca, BCC"97] library are for the most part based on this pattermn. These two classes of problems cover
a large portion of all parallel applicatons in scientific computing.

Related Patterns

If the update required for each chunk can be done without data from other chunks, then this pattern
reduces to the embarrassingly parallel algonthm described in the Task Parallelism pattern. As an
example of such a computation, consider computing a 2D FFT (Fast Fourier Transform) by first
applying a 1D FFT to each row of the matrix and then applying a 1D FFT to each column. Although
the decomposition may appear data-based (by rows/by columns), in fact the computation consists of
two instances of the Task Parallelism pattern.

If the data structure to be distributed is recursive in nature, then the Divide and Conquer or Recursive
Data pattern may be applicable
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4.7. THE RECURSIVE DATA PATTERN

Problem

Suppose the problem involves an operation on arecursive data structure (such as a list, tree, or graph)
that appears to require sequential processing. How can operations on these data structures be
performed in parallel?

Context

Some problems with recursive data structures naturally use the divide-and-conquer strategy described
in the Divide and Conquer pattern with its inherent potential for concurrency. Other operations on

these data structures, however, seem to have little if any potential for concurrency because it appears
that the only way to solve the problem is to sequentially move through the data structure, computing a
result at one element before moving on to the next. Sometimes, however, it is possible to reshape the
operations in a way that a program can operate concurrently on all elements of the data structure.

An example from [J92] illustrates the situation: Suppose we have a forest of rooted directed trees
(defined by specifying, for each node, its immediate ancegtor, with a root node's ancestor being itself)
and want to compute, for each node in the forest, the root of the tree containing that node. To do this
in a sequential program, we would probably trace depth-first through each tree from its root to its leaf
nodes; as we visit each node, we have the needed information about the corresponding root. Total
running time of such a program for a forest of N nodes would be O(N). There is some potential for
concurrency (operating on subtrees concurrently), but there is no obvious way to operate on all
elements concurrently, because it appears that we cannot find the root for a particular node without
knowing its parent's root.

However, a rethinking of the problem exposes additional concurrency: We first define for each node a
"successor", which initially will be its parent and ultimately will be the root of the tree to which the
node belongs. We then calculate for each node its "successor's successor".For nodes one "hop" from
the root, this calculation does not change the value of its successor (because a root's parent is itself).
For nodes at least two "hops" away from a root, this calculation makes the node's successorits parent's
parent. We repeat this calculation until it converges (that is, the values produced by one step are the
same as those produced by the preceding step), at which point every node's successor is the desired
value. Fig. 4.21 shows an example requiring three steps to converge. At each step we can operate on
all N nodes in the tree concurrently, and the algorithm converges in at most log N steps.
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Figure 4.21. Finding roots in a forest. Solid lines represent the original parent-child
relationships among nodes; dashed lines point from nodes to their successors.

o

What we have done is transform the original sequential calculation (find roots for nodes one "hop"
from a root, then find roots for nodes two "hops" from a root, etc.) into a calculation that computes a
partial result (successor) for each node and then repeatedly combines these partial results, first with
neighboring results, then with results from nodes two hops away, then with results from nodes four
hops away, and so on. This grategy can be applied to other problems that at first appear unavoidably
sequential; the Examples section presents other examples. This technique is sometimes referred to as
pointer jumping or recursive doubling.

An interesting aspect of this restructuring is that the new algorithm involves substantially more total
work than the original sequential one (O(N log N) versus O(N)), but the restructured algorithm
contains potential concurrency that if fully exploited reduces total running time to O(log N) (versus
O(N)). Most strategies and algorithms based on this pattern similarly trade off an increase in total
work for a potential decrease in execution time. Notice also that the exploitable concurrency can be
extremely fine-grained (as in the previous example), which may limit the situations in which this
pattern yields an efficient algorithm. Nevertheless, the pattern can still serve as an inspiration for
lateral thinking about how to parallelize problems that at first glance appear to be inherently
sequential.

Forces

+ Recasting the problem to transform an inherently sequential traversal of the recursive data
structure into one that allows all elements to be operated upon concurrently does so at the cost
of increasing the total work of the computation. This must be balanced against the improved
performance available from running in parallel.



+ This recasting may be difficult to achieve (because it requires looking at the original problem
from an unusual perspective) and may lead to a design that is difficult to understand and
maintain.

«  Whether the concurrency exposed by this pattern can be effectively exploited to improve
performance depends on how computationally expensive the operation is and on the cost of
communication relative to computation on the target parallel computer system.

Solution

The most challenging part of applying this pattern is restructuring the operations over a recursive data
structure into a form that exposes additional concurrency. General guidelines are difficult to construct,
but the key ideas should be clear from the examples provided with this pattern.

After the concurrency has been exposed, it is not always the case that this concurrency can be
effectively exploited to speed up the solution of a problem. This depends on anumber of factors
including how much work is involved as each element of the recursive data structure is updated and on
the characteristics of the target parallel computer.

Data decomposition

In this pattern, the recursive data structure is completely decomposed into individual elements and
each element is assigned to a separate UE. Ideally each UE would be assigned to a different PE, but it
is also possible to assign multiple UEs to each PE. If the number of UEs per PE is too large, however,
the overall performance will be poor because there will not be enough concurrency to overcome the
increase in the total amount of work.

For example, consider the root-finding problem described earlier. We'll ignore overhead in our
computations. If N = 1024 and t is the time to perform one step for one data element, then the running
time of a sequential algorithm will be about 1024t. If each UE is assigned its own PE, then the
running time of the parallel algonthm will be around (log N)t or 10t. If only two PEs are available for
the parallel algorithm, however, then all N log N or 10240 computation steps must be performed on
the two PEs, and the execution time will be at least 5120t, considerably more than the sequential
algorithm.

Structure

Typically the result of applying this pattern is an algorithm whose top-level structure is a sequential
composition in the form of a loop, in which each iteration can be described as "perform this operation
simultaneously on all (or selected) elements of he recursive data structure". Typical operations
include "replace each element's successor with its successor's successor” (asin the example in the
Context section) and "replace a value held at this element with the sum of the current value and the
value of the predecessor's element."

Synchronization

Algorithms that fit this pattern are described in terms of simultaneously updating all elements of the
data structure. Some target platforms (for example, SIMD architectures such as the early Connection
Machines) make this trivial to accomplish by assigning each data element to a separate PE (possibly a



logical PE) and executing instructions in a lockstep fashion at each PE. MIMD platforms with the
right supporting programming environments (for example, High Performance Fortran [HPF97])
provide similar semantics.

If the target platform doesn't provide the required synchronization implicitly, it will be necessary to
introduce the synchronization explicitly. For example, if the operation perfformed during a loop
iteration contains the assignment

next [k] = next [next[k]]

then the parallel algorithm must ensure that next [Kk] is not updated before other UEs that need its
value for their computation have received it. One common technique is to introduce a new variable,
say hext2, at each element. Even-numbered iterations then read next but update next2, while
odd-numbered iterations read next2 and update next. The necessary synchronization is
accomplished by placing a barrier (as described in the Implementation Mechanisms design space)

between each successive pair of iterations. Notice that this can substantially increase the overhead
associated with the parallel algorithm, which can overwhelm any speedup derived from the additional
concurrency. This is most likely to be a factor if the calculation required for each element is trivial
(which, alas, for many of the examples it is).

If there are fewer PEs than data elements, the program designer must decide whether to assign each
data element to a UE and assign multiple UEs to each PE (thereby simulating some of the parallelism)
or whether to assign multiple data elements to each UE and process them serially. The latteris less
straightforward (requiring an approach similar to that sketched previously, in which variables involved
in the simultaneous update are duplicated), but can be more efficient.

Examples

Partial sums of a linked list

In this example, adopted from Hillis and Steele [HS86], the problem is to compute the prefix sums of
all the elements in a linked list in which each element contains a value x. In other words, after the

computation is complete, the first element will contain Xg the second will contain x, + x ] the third Xy

0

+X, +X,, etc.

Fig. 4.22 shows pseudocode for the basic algorithm. Fig. 4.23 shows the evolution of the computation
where X, is the initial value of the (i + 1)-th element in the list.
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Figure 4.23. Steps in finding partial sums of a list. Straight arrows represent links
between elements; curved arrows indicate additions.
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This example can be generalized by replacing addition with any associative operator and is sometime
known as a prefix scan. It can be used in a variety of situations, including solving various types of
recurrence relations.

Known uses

Algorithms developed with this pattern are a type of data parallel algorithm. They are widely used on
SIMD platforms and to a lesser extent in languages such as High Performance Fortran [HPF97].
These platforms support the fine-grained concurrency required for the pattern and handle
synchronization automatically because every computation step (logically if not physically) occurs in
lockstep on all the processors. Hillis and Steele [HS86] describe several interesting applications of
this pattern, including finding the end of a linked list, computing all partial sums of a linked list,
region labeling in two-dimensional images, and parsing.

Figure 4.22. Pseudocode for finding partial sums of a list

for all k in parallel

temp[k] = next[Kk];
while temp[k] != null
{

x[temp[k]] = x[k] + x[temp[k]];
temp[k] = temp [temp [K] 1;

In combinatorial optimization, problems involving traversing all nodes in a graph or tree can often be
solved with this pattern by first finding an ordering on the nodes to create a list. Euler tours and ear
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decomposition [EG88] are well-known techniques to compute this ordering.

JaJa [J92] also describes several applications of this pattern: finding the roots of trees in aforest of
rooted directed trees, computing partial sums on a set of rooted directed trees (similar to the preceding
example with linked lists), and list-ranking (determining for each element of the list its distance from
the start/end of the list).

Related Patterns

With respect to the actual concurrency, this pattern is very much like the Geometric Decomposition
pattern, a difference being that in this pattern the data structure containing the elements to be operated
on concurrently is recursive (at least conceptually). What makes it different is the emphasis on
fundamentally rethinking the problem to expose fine-grained concurrency.

4.8. THE PIPELINE PATTERN

Problem

Suppose that the overall computation involves performing a calculation on many sets of data, where
the calculation can be viewed in terms of data flowing through a sequence of stages. How can the
potential concurrency be exploited?

Context

An assembly line is a good analogy for this pattern. Suppose we want to manufacture a number of
cars. The manufacturing process can be broken down into a sequence of operations each of which
adds some component, say the engine or the windshield, to the car. An assembly line (pipeline)
assigns a component to each worker. As each car moves down the assembly line, each worker installs
the same component over and over on a succession of cars. After the pipeline is full (and until it starts
to empty) the workers can all be busy simultaneously, all performing their operations on the cars that
are currently at their stations.

Examples of pipelines are found at many levels of granularity in computer systems, including the CPU
hardware itself.

« Instruction pipeline in modern CPUs. The stages (fetch instruction, decode, execute, etc.) are
done in a pipelined fashion; while one instruction is being decoded, its predecessor is being
executed and its successor is being fetched.

«Vector processing (loop-level pipelining). Specialized hardware in some supercomputers
allows operations on vectors to be performed in a pipelined fashion. Typically, a compiler is
expected to recognize that a loop such as

for(i =0; i < N; i++) { a[i] = b[i] + c[i]; }
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can be vectorized in a way that the special hardware can exploit. After a short startup, one
a[1i] value will be generated each clock cycle.

« Algorithm-level pipelining. Many algorithms can be formulated as recurrence relations and
implemented using a pipeline or its higher-dimensional generalization, a systolic array. Such
implementations often exploit specialized hardware for performance reasons.

+ Signal processing. Passing a stream of real-time sensor data through a sequence of filters can
be modeled as a pipeline, with each filter corresponding to a stage in the pipeline.

« QGraphics. Processing a sequence of images by applying the same sequence of operations to
each image can be modeled as a pipeline, with each operation corresponding to a pipeline
stage. Some stages may be implemented by specialized hardware.

+ Shell programs in UNIX. For example, the shell command

cat sampleFile | grep "word" | we

creates a three-stage pipeline, with one process for each command (cat, grep, and wc).

These examples and the assembly-line analogy have several aspects in common. All involve applying
a sequence of operations (in the assembly line case it is installing the engine, installing the
windshield, etc.) to each element in a sequence of data elements (in the assembly line, the cars).
Although there may be ordering constraints on the operations on a single data element (for example, it
might be necessary to install the engine before installing the hood), it is possible to perform different
operations on different data elements simultaneously (for example, one can install the engine on one
car while installing the hood on another.)

The possibility of simultaneously performing different operations on different data elements is the
potential concurrency this pattern exploits. In terms of the analysis described in the Finding
Concurrency patterns, each task consists of repeatedly applying an operation to a data element
(analogous to an assembly-line worker installing a component), and the dependencies among tasks are
ordering constraints enforcing the order in which operations must be performed on each data element
(analogous to installing the engine before the hood).

Forces

+ A good solution should make it simple to express the ordering constraints. The ordering
constraints in this problem are simple and regular and lend themselves to being expressed in
terms of data flowing through a pipeline.

+ The target platform can include special-purpose hardware that can perform some of the
desired operations.

+ In some applications, future additions, modifications, or reordering of the stages in the
pipeline are expected.

« In some applications, occasional items in the input sequence can contain errors that prevent
their processing.
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Solution

The key idea of this pattern is captured by the assembly-line analogy, namely that the potential
concurrency can be exploited by assigning each operation (stage of the pipeline) to a different worker
and having them work simultaneously, with the data elements passing from one worker to the next as
operations are completed. In parallel-programming terms, the idea is to assign each task (stage of the
pipeline) to a UE and provide a mechanism whereby each stage of the pipeline can send data elements
to the next stage. This strategy is probably the most straightforward way to deal with this type of
ordering constraints. It allows the application to take advantage of special-puipose hardware by
appropriate mapping of pipeline stages to PEs and provides a reasonable mechanism for handling
errors, described later. It also is likely to yield a modular design that can later be extended or
modified.

Before going further, it may help to illustrate how the pipeline is supposed to operate. Let Ci represent
a multistep computation on data element i. Ci(j) is the jth step of the computation. The idea is to map

computation steps to pipeline stages so that each stage of the pipeline computes one step. Initially, the
first stage of the pipeline performs C, (1). After that completes, the second stage of the pipeline

receives the first data item and computes C1(2) while the first stage computes the first step of the
second item, C2(1). Next, the third stage computes C1(3), while the second stage computes C2(2) and
the first stage C3(1). Fig. 4.24 illustrates how this works for a pipeline consisting of four stages. Notice

that concurrency is initially limited and some resources remain idle until all the stages are occupied
with useful work. This is referred to as filling the pipeline. At the end of the computation (draining
the pipeline), again there is limited concurrency and idle resources as the final item works its way
through the pipeline. We want the time spent filling or draining the pipeline to be small compared to
the total time of the computation. This will be the case if the number of stages is small compared to
the number of items to be processed. Notice also that overall throughput/efficiency is maximized if
the time taken to process a data element is roughly the same for each stage.

Figure 4.24. Operation of a pipeline. Each pipeline stage i computes the i-th step of
the computation.

time .
pipeline stage 1 |f71 | Cy| |Cs| |Ca] |Cs| |Co
pipeline stage 2 Cy| [C2] |Cs| [C4] |Cs] |Ca
pipeline stage 3 Cy| [Cz| |Cs| |Csf| [C5] |Ce
pipeline stage 4 Gy Gy Cs Cy Cs Ce

This idea can be extended to include situations more general than a completely linear pipeline. For
example, Fig. 4.25 illustrates two pipelines, each with four stages. In the second pipeline, the third
stage consists of two operations that can be performed concurrently.


javascript:moveTo('ch04fig25');
javascript:moveTo('ch04fig25');
javascript:moveTo('ch04fig25');
javascript:moveTo('ch04fig24');
javascript:moveTo('ch04fig24');
javascript:moveTo('ch04fig24');

Figure 4.25. Example pipelines
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Defining the stages of the pipeline

Normally each pipeline stage will correspond to one task. Fig. 4.26 shows the basic structure of each
stage.

If the number of data elements to be processed is known in advance, then each stage can count the
number of elements and terminate when these have been processed. Alternatively, a sentinel
indicating termination may be sent through the pipeline.

It is worthwhile to consider at this point some factors that affect performance.

+ The amount of concurrency in a full pipeline is limited by the number of stages. Thus, a larger
number of stages allows more concurrency. However, the data sequence must be transferred
between the stages, introducing overhead to the calculation. Thus, we need to organize the
computation into stages such that the work done by a stage is large compared to the
communication overhead. What is "large enough" is highly dependent on the particular
architecture. Specialized hardware (such as vector processors) allows very fine-grained
parallelism.

+ The pattern works better if the operations performed by the various stages of the pipeline are
all about equally computationally intensive. If the stages in the pipeline vary widely in
computational effort, the slowest stage creates a bottleneck for the aggregate throughput.

Figure 4.26. Basic structure of a pipeline stage

initialize

while (more data)

{
receive data element from previous stage
perform operation on data element
send data element to next stage

}

finalize

+ The pattern works better if the time required to fill and drain the pipeline is small compared to
the overall running time. This time is influenced by the number of stages (more stages means
more fill/drain time).
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Therefore, it is worthwhile to consider whether the original decomposition into tasks should be
revisited at this point, possibly combining lightly-loaded adjacent pipeline stages into a single stage,
or decomposing a heavily-loaded stage into multiple stages.

It may also be worthwhile to parallelize a heavily-loaded stage using one of the other Algorithm
Structure pattems. For example, if the pipeline is processing a sequence of images, it is often the case
that each stage can be parallelized using the Task Parallelism pattern.

Structuring the computation

We also need a way to structure the overall computation. One possibility is to use the SPMD pattem
(described in the Supporting Structures design space) and use each UE's ID to select an option in a

case or switch statement, with each case corresponding to a stage of the pipeline.

To increase modularity, object-oriented frameworks can be developed that allow stages to be
represented by objects or procedures that can easily be "plugged in" to the pipeline. Such frameworks
are not difficult to construct using standard OOP techniques, and several are available as commercial
or freely available products.

Representing the dataflow among pipeline elements
How dataflow between pipeline elements is represented depends on the target platform.

In a message-passing environment, the most natural approach is to assign one process to each
operation (stage of the pipeline) and implement each connection between successive stages of the
pipeline as a sequence of messages between the corresponding processes. Because the stages are
hardly ever perfectly synchronized, and the amount of work carried out at different stages almost
always varies, this flow of data between pipeline stages must usually be both buffered and ordered.
Most message-passing environments (e.g., MPI) make this easy to do. If the cost of sending individual
messages is high, it may be worthwhile to consider sending multiple data elements in each message;
this reduces total communication cost at the expense of increasing the time needed to fill the pipeline.

If a message-passing programming environment is not a good fit with the target platform, the stages
of the pipeline can be connected explicitly with buffered channels. Such a buffered channel can be
implemented as a queue shared between the sending and receiving tasks, using the Shared Queue
pattern.

If the individual stages are themselves implemented as parallel programs, then more sophisticated
approaches may be called for, especially if some sort of data redistribution needs to be performed
between the stages. This might be the case if, for example, the data needs to be partitioned along a
different dimension or partitioned into a different number of subsets in the same dimension. For
example, an application might include one stage in which each data element is partitioned into three
subsets and another stage in which it is partitioned into four subsets. The simplest ways to handle such
situations are to aggregate and disaggregate data elements between stages. One approach would be to
have only one task in each stage communicate with tasks in other stages; this task would then be
responsible for interacting with the other tasks in its stage to distribute input data elements and collect
output data elements. Another approach would be to introduce additional pipeline stages to perform
aggregation/disaggregation operations. Either of these approaches, however, involves a fair amount of
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communication. It may be preferable to have the earlier stage "know" about the needs of its successor
and communicate with each task receiving part of its data directly rather than aggregating the data at
one stage and then disaggregating at the next. This approach improves performance at the cost of
reduced simplicity, modularity, and flexibility.

Less traditionally, networked file systems have been used for communication between stages in a
pipeline running in a workstation cluster. The data is written to a file by one stage and read from the
file by its successor. Network file systems are usually mature and fairly well optimized, and they
provide for the visibility of the file at all PEs as well as mechanisms for concurrency control. Higher
level abstractions such as tuple spaces and blackboards implemented over networked file systems can
also be used. File-system-based solutions are appropriate in large-grained applications in which the
time needed to process the data at each stage is large compared with the time to access the file system.

Handling errors

For some applications, it might be necessary to gracefully handle error conditions. One solution is to
create a separate task to handle errors. Each stage of the regular pipeline sends to this task any data
elements it cannot process along with error information and then continues with the next item in the
pipeline. The error task deals with the faulty data elements appropriately.

Processor allocation and task scheduling

The simplest approach is to allocate one PE to each stage of the pipeline. This gives good load balance
if the PEs are similar and the amount of work needed to process a data element is roughly the same for
each stage. If the stages have different requirements (for example, one is meant to be run on special-
purpose hardware), this should be taken into consideration in assigning stages to PEs.

If there are fewer PEs than pipeline stages, then multiple stages must be assigned to the same PE,
preferably in a way that improves or at least does not much reduce overall performance. Stages that do
not share many resources can be allocated to the same PE; for example, a stage that writes to a disk
and a stage that involves primarily CPU computation might be good candidates to share a PE. If the
amount of work to process a data element varies among stages, stages involving less work may be
allocated to the same PE, thereby possibly improving load balance. Assigning adjacent stages to the
same PE can reduce communication costs. It might also be worthwhile to consider combining
adjacent stages of the pipeline into a single stage.

If there are more PEs than pipeline stages, it is worthwhile to consider parallelizing one or more of the
pipeline stages using an appropriate Algorithm Structure pattern, as discussed previously, and
allocating more than one PE to the parallelized stage(s). This is particularly effective if the
parallelized stage was previously a bottleneck (taking more time than the other stages and thereby
dragging down overall performance).

Another way to make use of more PEs than pipeline stages, if there are no temporal constraints among
the data items themselves (that is, it doesn't matter if, say, data item 3 is computed before data item 2),
is to run multiple independent pipelines in parallel. This can be considered an instance of the Task
Parallelism pattern. This will improve the throughput of the overall calculation, but does not
significantly improve the latency, however, since it still takes the same amount of time for a data
element to traverse the pipeline.
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Throughput and latency

There are few more factors to keep in mind when evaluating whether a given design will produce
acceptable performance.

In many situations where the Pipeline pattern is used, the performance measure of interest is the
throughput, the number of data items per time unit that can be processed after the pipeline is already
full. For example, if the output of the pipeline is a sequence of rendered images to be viewed as an
animation, then the pipeline must have sufficient throughput (number of items processed per time
unit) to generate the images at the required frame rate.

In another situation, the input might be generated from real-time sampling of sensor data. In this case,
there might be constraints on both the throughput (the pipeline should be able to handle all the data as
it comes in without backing up the input queue and possibly losing data) and the latency (the amount
of time between the generation of an input and the completion of processing of that input). In this
case, it might be desirable to minimize latency subject to a constraint that the throughput is sufficient
to handle the incoming data.

Examples

Fourier-transform computations

A type of calculation widely used in signal processing involves performing the following
computations repeatedly on different sets of data.

1. Perform a discrete Fourier transform (DFT) on a set of data.
2. Manipulate the result of the transform elementwise.

3. Perform an inverse DFT on the result of the manipulation.

Examples of such calculations include convolution, correlation, and filtering operations ([PTV93]).
A calculation of this form can easily be performed by a three-stage pipeline.

« The first stage of the pipeline performs the initial Fourier transform; it repeatedly obtains one
set of input data, performs the transform, and passes the result to the second stage of the
pipeline.

+ The second stage of the pipeline performs the desired elementwise manipulation; it repeatedly
obtains a partial result (of applying the initial Fourier transform to an input set of data) from
the first stage of the pipeline, performs its manipulation, and passes the result to the third stage
of the pipeline. This stage can often itself be parallelized using one of the other Algorithm
Structure patterns.

+ The third stage of the pipeline performs the final inverse Fourier transform; it repeatedly
obtains a partial result (of applying the initial Fourier transform and then the elementwise
manipulation to an input set of data) from the second stage of the pipeline, performs the
inverse Fourier transform, and outputs the result.
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Each stage of the pipeline processes one set of data at a time. However, except during the initial filling
of the pipeline, all stages of the pipeline can operate concurrently; while the first stage is processing
the N-th set of data, the second stage is processing the (N — 1)-th set of data, and the third stage is
processing the (N - 2)-th set of data.

Java pipeline framework
The figures for this example show a simple Java framework for pipelines and an example application.

The framework consists of a base class for pipeline stages, PipelineStage, shown in Fig. 4.27,
and a base class for pipelines, LinearPipeline, shown in Fig. 4.28. Applications provide a
subclass of PipelineStage for each desired stage, implementing its three abstract methods to
indicate what the stage should do on the initial step, the computation steps, and the final step, and a
subclass of LinearPipeline that implements its abstract methods to create an array containing
the desired pipeline stages and the desired queues connecting the stages. For the queue connecting the
stages, we use LinkedBlockingQueue, an implementation of the BlockingQueue interface.
These classes are found in the java.util. concurrent package. These classes use generics to
specify the type of objects the queue can hold. For example, new
LinkedBlockingQueue<String> creates a BlockingQueue implemented by an underlying
linked list that can hold St rings. The operations of interest are put, to add an object © the queue,
and take, to remove an object, take blocks if the queue is empty. The class CountDownLatch,
also found in the java.util. concurrent package, is a simple barrier that allows the program to
print a message when it has teminated. Barriers in general, and CountDownLatch in particular,
are discussed in the Implementation Mechanisms design space.

The remaining figures show code for an example application, a pipeline to sort integers. Fig. 4.29 is
the required subclass of LinearPipeline, and Fig. 4.30 is the required subclass of
PipelineStage. Additional pipeline stages to generate or read the input and to handle the output
are not shown.

Known uses
Many applications in signal and image processing are implemented as pipelines.

The OPUS [SR98] system is a pipeline framework developed by the Space Telescope Science Institute
originally to process telemetry data from the Hubble Space Telescope and later employed in other
applications. OPUS uses a blackboard architecture built on top of a network file system for interstage
communication and includes monitoring tools and support for error handling.

Figure 4.27. Base class for pipeline stages

Code View: Scroll / Show All

import java.util.concurrent.*;
abstract class PipelineStage implements Runnable {
BlockingQueue in;

BlockingQueue out;
CountDownLatch s;
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boolean done;

//override to specify initialization step
abstract void firstStep() throws Exception;
//override to specify compute step
abstract void step() throws Exception;
//override to specify finalization step
abstract void lastStep() throws Exception;

void handleComputeException(Exception e)
{ e.printStackTrace(); }

public void run()
{
try
{ firstStep();
while('!'done){ step();}
lastStep();
}
catch(Exception e){handleComputeException(e);}
finally {s.countDown();}
}

public void init(BlockingQueue in,
BlockingQueue out,
CountDownLatch s)

{ this.in = in; this.out = out; this.s = s;}

Airborne surveillance radars use space-time adaptive processing (STAP) algorithms, which have been
implemented as a parallel pipeline [CLW'00]. Each stage is itself a parallel algorithm, and the
pipeline requires data redistribution between some of the stages.

Fx [GOS94], a parallelizing Fortran compiler based on HPF [HPF97], has been used to develop
several example applications [DGO*94,SSOG93] that combine data parallelism (similar to the form

of parallelism captured in the Geometric Decomposition pattern) and pipelining. For example, one
application performs 2D Fourier transforms on a sequence of images via a two-stage pipeline (one
stage for the row transforms and one stage for the column transforms), with each stage being itself
parallelized using data parallelism. The SIGPLAN paper ([SSOG93]) is especially interesting in that
it presents performance figures comparing this approach with a straight data-parallelism approach.

Figure 4.28. Base class for linear pipeline

Code View: Scroll / Show All

import java.util.concurrent.*;
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abstract class LinearPipeline {
PipelineStage[] stages;
BlockingQueue[] queues;
int numStages;
CountDownLatch s;

//override method to create desired array of pipeline stage objects
abstract PipelineStage[] getPipelineStages(String[] args);

//override method to create desired array of BlockingQueues
//element i of returned array contains queue between stages i and i+l
abstract BlockingQueue[] getQueues(String[] args);

LinearPipeline(String[] args)

{ stages = getPipelineStages(args);
queues = getQueues(args);
numStages = stages.length;

s = new CountDownLatch(numStages);

BlockingQueue in = null;
BlockingQueue out = queues[0];

for (int i = 0; i != numStages; i++)
{ stages[i].init(in,out,s);
in = out;
if (i < numStages-2) out = queues[i+l]; else out = null;
}
}
public void start()
{ for (int i = 0; i != numStages; i++)
{ new Thread(stages[i]).start();
}
}

}

[J92] presents some finer-grained applications of pipelining, including inserting a sequence of
elements into a 2-3 tree and pipelined mergesort.

Related Patterns

This pattern is very similar to the Pipes and Filters pattern of [BMR96]; the key difference is that
this pattern explicitly discusses concurrency.

For applications in which there are no temporal dependencies between the data inputs, an alternative
to this pattern is a design based on multiple sequential pipelines executing in parallel and using the
Task Parallelism pattern.

Figure 4.29. Pipelined sort (main class)

Code View: Scroll / Show All

import java.util.concurrent.*;
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class SortingPipeline extends LinearPipeline {

/*Creates an array of pipeline stages with the
number of sorting stages given via args. Input
and output stages are also included at the
beginning and end of the array. Details are omitted.
*/
PipelineStage[] getPipelineStages(String[] args)
{7/7....
return stages;

}

/* Creates an array of LinkedBlockingQueues to serve as
communication channels between the stages. For this
example, the first is restricted to hold Strings,
the rest can hold Comparables. */

BlockingQueue[] getQueues(String[] args)

{ BlockingQueue[] queues = new BlockingQueue[totalStages - 1];

queues[0] = new LinkedBlockingQueue<String>();

for (int i = 1; i!= totalStages -1; i++)

{ queues[i] = new LinkedBlockingQueue<Comparable>();}
return queues;

}

SortingPipeline(String[] args)
{ super(args);

public static void main(String[] args)

throws InterruptedException

{ // create pipeline
LinearPipeline 1 = new SortingPipeline(args);
l.start(); //start threads associated with stages
l.s.await(); //terminate thread when all stages terminated
System.out.println("All threads terminated");

At first glance, one might also expect that sequential solutions built using the Chain of Responsibility
pattern [GHJV95] could be easily parallelized using the Pipeline pattern. In Chain of Responsibility,
or COR, an "event" is passed along achain of objects until one or more of the objects handle the

event. This pattern is directly supported, for example, in the Java Servlet Specification[1] [SER] to
enable filtering of HTTP requests. With Servlets, as well as other typical applications of COR,

however, the reason for using the pattern is to support modular structuring of a program that will need

to handle independert events in different ways depending on the event type. It may be that only one

object in the chain will even handle the event. We expect that in most cases, the Task Parallelism

pattern would be more appropriate than the Pipeline pattern. Indeed, Servlet container

implementations already supporting multithreading to handle independent HT TP requests provide this

solution for free.
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T A Serviet is a Java program invoked by a Web server. The Java Servlets technology is

included in the Java 2 Enterprise Edition platform for Web server applications.

Figure 4.30. Pipelined sort (sorting stage)

Code View: Scroll / Show All

class SortingStage extends PipelineStage
{

Comparable val = null;

Comparable input = null;

void firstStep() throws InterruptedException
{ input = (Comparable)in.take();

done = (input.equals("DONE"));

val = input;

return;

}

void step() throws InterruptedException
{ input = (Comparable)in.take();
done = (input.equals("DONE"));
if (!done)
{ if(val.compareTo(input)<0)
{ out.put(val); val = input; }
else { out.put(input); }
} else out.put(val);
}

void lastStep() throws InterruptedException
{ out.put("DONE"); }
}

The Pipeline pattern is similar to the Event-Based Coordination pattern in that both patterns apply to
problems where it is natural to decompose the computation into a collection of semi-independent
tasks. The difference is that the Event-Based Coordination pattern is irregular and asynchronous
where the Pipeline pattern is regular and synchronous: In the Pipeline pattern, the semi-independent
tasks represent the stages of the pipeline, the structure of the pipeline is static, and the interaction
between successive stages is regular and loosely synchronous. In the Event-Based Coordination
pattern, however, the tasks can interact in very irregular and asynchronous ways, and there is no
requirement for a static structure.

4.9. THE EVENT-BASED COORDINATION PATTERN
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Problem

Suppose the application can be decomposed into groups of semi-independent tasks interacting in an
irregular fashion. The interaction is determined by the flow of data between them which implies
ordering constraints between the tasks. How can these tasks and their interaction be implemented so
they can execute concurrently?

Context

Some problems are most naturally represented as a collection of semi-independent entities interacting
in an irregular way. What this means is perhaps clearest if we compare this pattern with the Pipeline
pattern. In the Pipeline pattem, the entities form a linear pipeline, each entity interacts only with the
entities to either side, the flow of data is one-way, and interaction occurs at fairly regular and
predictable intervals. In the Event-Based Coordination pattern, in contrast, there is no restriction to a
linear structure, no restriction that the flow of data be one-way, and the interaction takes place at
irregular and sometimes unpredictable intervals.

As areal-world analogy, consider a newsroom, with reporters, editors, fact-checkers, and other
employees collaborating on gtories. As reporters finish stories, they send them to the appropriate
editors; an editor can decide to send the story to a fact-checker (who would then eventually send it
back) or back to the reporter for further revision. Each employee is a semi-independent entity, and
their interaction (for example, a reporter sending a story to an editor) is irregular.

Many other examples can be found in the field of discrete-event simulation, that is, simulation of a
physical system consisting of a collection of objects whose interaction is represented by a sequence of
discrete "events". An example of such a system is the car-wash facility described in [Mis86]: The
facility has two car-wash machines and an attendant. Cars arrive at random times at the attendant.
Each car is directed by the attendant to a nonbusy car-wash machine if one exists, or queued if both
machines are busy. Each car-wash machine processes one carat a time. The goal is to compute, for a
given distribution or arrival times, the average time a car spends in the system (time being washed
plus any time waiting for a nonbusy machine) and the average length of the queue that builds up at the
attendant. The "events" in this system include cars arriving at the attendant, cars being directed to the
car-wash machines, and cars leaving the machines. Fig. 4.31 sketches this example. Notice that it
includes "source" and "sink" objects to make it easier to model cars arriving and leaving the facility.
Notice also that the attendant must be notified when cars leave the car-wash machines so that it knows
whether the machines are busy.
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Figure 4.31. Discrete-event simulation of a car-wash facility. Arrows indicate the flow
of events.
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Also, it is sometimes desirable to compose existing, possibly sequential, program components that
interact in possibly irregular ways into a parallel program without changing the internals of the
components.

For problems such as this, it might make sense to base a parallel algorithm on defining a task (or a
group of tightly coupled tasks) for each component, or in the case of discrete-event simulation,
simulation entity. Interaction between these tasks is then based on the ordering constraints determined
by the flow of data between them.

Forces

+ A good solution should make it simple to express the ordering constraints, which can be
numerous and irregular and even arise dynamically. It should also make it possible for as many
activities as possible to be performed concurrently.

+ Ordering constraints implied by the data dependencies can be expressed by encoding them into
the program (for example, via sequential composition) or using shared variables, but neither
approach leads to solutions that are simple, capable of expressing complex constraints, and
easy to understand.

Solution

A good solution is based on expressing the data flow using abstractions called events, with each event
having a task that generates it and a task that processes it. Because an event must be generated before
it can be processed, events also define ordering constraints between the tasks. Computation within
each task consists of processing events.

Defining the tasks

The basic structure of each task consists of receiving an event, processing it, and possibly generating



events, as shown in Fig. 4.32.

If the program is being built from existing components, the task will serve as an instance of the
Facade pattern [GHJV93] by providing a consistent event-based interface to the component.

The order in which tasks receive events must be consistent with the application's ordering constraints,
as discussed later.

Figure 4.32. Basic structure of a task in the Event-Based Coordination pattern

initialize
while(not done)
{
receive event
process event
send events

}

finalize

Representing event flow

To allow communication and computation to overlap, one generally needs a form of asynchronous
communication of events in which a task can create (send) an event and then continue without waiting
for the recipient to receive it. In a message-passing environment, an event can be represented by a
message sent asynchronously from the task generating the event to the task that is to process it. Ina
shared-memory environment, a queue can be used to simulate message passing. Because each such
queue will be accessed by more than one task, it must be implemented in a way that allows safe
concurrent access, as described in the Shared Queue pattern. Other communication abstractions, such
as tuple spaces as found in the Linda coordination language or JavaSpaces [FHA99], can also be used
effectively with this pattern. Linda [CGO1] is a simple language consisting of only six operations that
read and write an associative (that is, content-addressable) shared memory called a tuple space. A
tuple space is a conceptually shared repository for data containing objects called tuples that tasks use
for communication in a distributed system.

Enforcing event ordering

The enforcement of ordering constraints may make it necessary for a task to process events in a
different order from the order in which they are sent, or to wait to process an event until some other
event from a given task has been received, so it is usually necessary to be able to look ahead in the
queue or message buffer and remove elements out of order. For example, consider the situation in Fig.
4.33. Task 1 generates an event and sends it to task 2, which will process it, and also sends itto task 3,
which is recording information about all events. Task 2 processes the event from task 1 and generates
a new event, a copy of which is also sent to task 3. Suppose that the vagaries of the scheduling and
underlying communication layer cause the event from task 2 to arrive before the event from task 1.
Depending on what task 3 is doing with the events, this may or may not be problematic. If task 3 is
simply tallying the number of events that occur, there is no problem. If task 3 is writing a log entry
that should reflect the order in which events are handled, however, simply processing events in the
order in which they arrive would in this case produce an incorrect result. If task 3 is controlling a gate,
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and the event from task 1 results in opening the gate and the event from task 2 in closing the gate, then
the out-of-order messages could cause significant problems, and task 3 should not process the first
event until after the event from task 1 has arrived and been processed.

Figure 4.33. Event-based communication among three tasks. Task 2 generates its
event in response to the event received from task 1. The two events sent to task 3
can arrive in either order.

In discrete-event simulations, a similar problem can occur because of the semantics of the application
domain. An event arrives at a station (task) along with a simulation time when it should be scheduled.
An event can arrive at a station before other events with earlier simulation times.

The first step is to determine whether, in a particular situation, out-of-order events can be a problem.
There will be no problem if the "event" path is linear so that no out-of-order events will occur, or if,
according to the application semantics, out-of-order events do not matter.

If out-of-order events may be a problem, then either an optimistic or pessimistic approach can be
chosen. An optimistic approach requires the ability to roll back the effects of events that are
mistakenly executed (including the effects of any new events that have been created by the out-of-
order execution). In the area of distributed simulation, this approach is called time warp [Jef85].
Optimistic approaches are usually not feasible if an event causes interaction with the outside world.
Pessimistic approaches ensure that the events are always executed in order at the expense of increased
latency and communication overhead. Pessimistic approaches do not execute events until it can be
guaranteed "safe" to do so. In the figure, for example, task 3 cannot process an event from task 2 until
it "knows" that no earlier event will arrive from task 1 and vice versa. Providing task 3 with that
knowledge may require introducing null events that contain no information useful for anything except
the event ordering. Many implementations of pessimistic approaches are based on time stamps that are
consistent with the causality in the system [Lam78].

Much research and development effort has gone into frameworks that take care of the details of event
ordering in discrete-event simulation for both optimistic [RMC*98] and pessimistic approaches

[CLL*99]. Similarly, middleware is available that handles event-ordering problems in process groups
caused by the communication system. An example is the Ensemble system developed at Comell

[VRBH'98].

Avoiding deadlocks

It is possible for systems using this pattern to deadlock at the application level—for some reason the
system arrives in a state where no task can proceed without first receiving an event from another task
that will never arrive. This can happen because of a programming error; in the case of a simulation, it
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can also be caused by problems in the model that is being simulated. In the latter case, the developer
must rethink the solution.

If pessimistic techniques are used tocontrol the order in which events are processed, then deadlocks
can occur when an event is available and actually could be processed, but is not processed because the
event is not yet known to be safe. The deadlock can be broken by exchanging enough information that
the event can be safely processed. This is a very significant problem as the overhead of dealing with
deadlocks can cancel the benefits of parallelism and make the parallel algorithms slower than a
sequential simulation. Approaches to dealing with this type of deadlock range from sending frequent
enough "null messages" to avoid deadlocks altogether (at the cost of many extra messages) to using
deadlock detection schemes to detect the presence of a deadlock and then resolve it (at the cost of
possible significant idle time before the deadlock is detected and resolved). The approach of choice
will depend on the frequency of deadlock. A middle-ground solution is to use timeouts instead of
accurate deadlock detection, and is often the best approach.

Scheduling and processor allocation

The most straightforward approach is to allocate one task per PE and allow all the tasks to execute
concurrently. If insufficient PEs are available to do this, then multiple tasks can be allocated to each
PE. This should be done in a way that achieves good load balance. Load balancing isa difficult
problem in this pattern due to its potentially irregular structure and possible dynamic nature. Some
infrastructures that support this pattern allow task migration so that the load can be balanced
dynamically at runtime.

Efficient communication of events

If the application is to perform well, the mechanism used to communicate events must be as efficient
as is feasible. In a shared-memory environment, this means making sure the mechanism does not have
the potential to become a bottleneck. In a message-passing environment, there are several efficiency
considerations; for example, whether it makes sense to send many short messages between tasks or try

to combine them. [YWC96] and [WY95] describe some considerations and solutions.

Examples

Known uses

A number of discrete-event simulation applications use this pattern. The DPAT simulation used to
analyze air traffic control systems [WieOl] is a successful simulation that uses optimistic techniques.
It is implemented using the GTW (Georgia Tech Time Warp) System [DFP"94]. The paper ([Wie01])
describes application-specific tuning and several general techniques that allow the simulation to work
well without excessive overhead for the optimistic synchronization. The Synchronous Parallel
Environment for Emulation and Discrete-Event Simulation (SPEEDES) [Met] is another optimistic
simulation engine that has been used for large-scale war-gaming exercises. The Scalable Simulation
Framework (SSF) [CLL99] is a simulation framework with pessimistic synchronization that has been
used for large-scale modeling of the Internet.

The CSWEB application described in [YWC"96] simulates the voltage output of combinational
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digital circuits (that is, circuits without feedback paths). The circuit is partitioned into subcircuits;
associated with each are input signal ports and output voltage ports, which are connected to form a
representation of the whole circuit. The simulation of each subcircuit proceeds in a timestepped
fashion; at each time step, the subcircuit's behavior depends on its previous state and the values read at
its input ports (which correspond to values at the corresponding output ports of other subcircuits at
previous time steps). Simulation of these subcircuits can proceed concurrently, with ordering
constraints imposed by the relationship between values generated for output ports and values read on

input ports. The solution described in [YWC96] fits the Event-Based Coordination pattern, defining
a task for each subcircuit and representing the ordering constraints as events.

Related Patterns

This pattern is similar to the Pipeline pattern in that both patterns apply to problems in which it is
natural to decompose the computation into a collection of semi-independent entities interacting in
terms of a flow of data. There are two key differences. First, in the Pipeline pattern, the interaction
among entities is fairly regular, with all stages of the pipeline proceeding in aloosely synchronous
way, whereas in the Event-Based Coordination pattern there is no such requirement, and the entities
can interact in very irregular and asynchronous ways. Second, in the Pipeline pattern, the overall
structure (number of tasks and their interaction) is usually fixed, whereas in the Event-Based
Coordination pattern, the problem structure can be more dynamic.

Chapter 5. The Supporting Structures Design
Space

5.1 INTRODUCTION

5.2 FORCES

5.3 CHOOSING THE PATTERNS

5.4 THE SPMD PATTERN

5.5 THE MASTER/WORKER PATTERN

5.6 THE LOOP PARALLELISM PATTERN

5.7 THE FORK/JOIN PATTERN

5.8 THE SHARED DATA PATTERN

5.9 THE SHARED QUEUE PATTERN

5.10 THE DISTRIBUTED ARRAY PATTERN

5.11 OTHER SUPPORTING STRUCTURES
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5.1. INTRODUCTION

The Finding Concurrency and Algorithm Structure design spaces focus on algorithm expression. At
some point, however, algorithms must be translated into programs. The patterns in the Supporting
Structures design space address that phase of the parallel program design process, representing an
intermediate stage between the problem-oriented pattems of the Algorithm Structure design space and
the specific programming mechanisms described in the Implementation Mechanisms design space.
We call these patterns Supporting Structures because they describe software constructions or
"structures" that support the expression of parallel algorithms. An overview of this design space and
its place in the pattern language is shown in Fig. 5.1.

Figure 5.1. Overview of the Supporting Structures design space and its place in the
pattern language
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The two groups of patterns in this space are those that represent program-structuring approaches and
those that represent commonly used shared data structures. These patterns are briefly described in the
next section. In some programming environments, some of these patterns are so well-supported that
there is little work for the programmer. We nevertheless document them as patterns for two reasons:
First, understanding the low-level details behind these structures is important for effectively using
them. Second, describing these structures as patterns provides guidance for programmers who might
need to implement them from scratch. The final section of this chapter describes structures that were
not deemed important enough, for various reasons, to warrant a dedicated pattem, but which deserve
mention for completeness.

5.1.1. Program Structuring Patterns

Patterns in this first group describe approaches for structuring source code. These patterns include the
following.

«  SPMD. In an SPMD (Single Program, Multiple Data) program, all UEs execute the same
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program (Single Program) in parallel, but each has its own set of data (Multiple Data).
Different UEs can follow different paths through the program. In the source code, the logic to
control this is expressed using a parameter that uniquely labels each UE (for example a process
ID).

+ Master/Worker. A master process or thread sets up a pool of worker processes or threads and a
bag of tasks. The workers execute concurrently, with each worker repeatedly removing a task
from the bag of tasks and processing it, until all tasks have been processed or some other
termination condition has been reached. In some implementations, no explicit master is
present.

+ Loop Parallelism. This pattern addresses the problem of transforming a serial program whose
runtime is dominated by a set of compute-intensive loops into a parallel program where the
different iterations of the loop are executed in parallel.

« Fork/Join. A main UE forks off some number of other UEs that then continue in parallel to
accomplish some portion of the overall work. Often the forking UE waits until the child UEs
terminate and join.

While we define each of these program structures as a distinct pattern, this is somewhat artificial. It is
possible, for example, to implement the Master/Worker pattern using the Fork/Join pattern or the
SPMD pattern. These patterns do not represent exclusive, unique ways to structure a parallel program.
Rather, they define the major idioms used by experienced parallel programmers.

These patterns also inevitably express a bias rooted in the subset of parallel programming
environments we consider in this pattern language. To an MPI programmer, for example, all program
structure patterns are essentially a variation on the SPMD pattem. To an OpenMP programmer,
however, there is a huge difference between programs that utilize thread IDs (that is, the SPMD
pattern) versus programs that express all concurrency in terms of loop-level worksharing constructs
(that is, the Loop Parallelism pattern).

Therefore, in using these patterns, don't think of them too rigidly. These pattems express important
techniques and are worthy of consideration in isolation, but do not hesitate to combine them in
different ways to meet the needs of a particular problem. For example, in the SPMD pattem, we will
discuss parallel algorithms based on parallelizing loops but expressed with the SPMD pattem. It
might seem that this indicates that the SPMD and Loop Parallelism patterns are not really distinct
patterns, but in fact it shows how flexible the SPMD pattern is.

5.1.2. Patterns Representing Data Structures

Patterns in this second group have to do with managing data dependencies. The Shared Data pattern
deals with the general case. The others describe specific frequently used data structures.

« Shared Data. This pattern addresses the general problem of handling data that is shared by
more than one UE, discussing both correctness and performance issues.

+ Shared Queue. This pattern represents a "thread-safe" implementation of the familiar queue
abstract data type (ADT), that is, an implementation of the queue ADT that maintains the
correct semantics even when used by concurrently executing UEs.
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5.2.

Distributed Array. This pattern represents a class of data structures often found in parallel
scientific computing, namely arrays of one or more dimensions that are decomposed into
subarrays and distributed among processes or threads.

FORCES

All of the program structuring pattemns address the same basic problem: how to structure source code

to best support algorithm structures of interest. Unique forces are applicable to each pattern, but in

designing a program around these structures, there are some common forces to consider in most cases:

Clarity of abstraction. Is the parallel algorithm clearly apparent from the source code?

In a well-structured program, the algorithm leaps from the page. The reader can see the details
of the algorithm with little mental effort. We refer to this quality as clarity of abstraction.
Good clarity of abstraction is always important for writing correct code, but is particularly
essential for parallel programs: Parallel programmers must deal with multiple simultaneous
tasks that interact in subtle ways. Getting this right can be very difficult, especially if it is hard
to figure out what the algorithm is doing by looking at the source code.

Scalability. How many processors can the parallel program effectively utilize?

The scalability of a program is restricted by three factors. First, there is the amount of
concurrency available in the algorithm. If an algorithm only has ten concurrent tasks, then
running with more than ten PEs will provide no benefit. Second, the fraction of the runtime
spent doing inherently serial work limits how many processors can be used. This is described
quantitatively by Amdahl's law as discussed in Chapter 2. Finally, the parallel overhead of the
algorithm contributes to the serial fraction mentioned in Amdahl's law and limits scalability.

Efficiency. How close does the program come to fully utilizing the resources of the parallel
computer? Recall the quantitative definition of efficiency given in Chapter 2:

Equation 5.1

Equation 5.2
T'(1)
PT(P)

P is the number of PEs, T(1) is some sequential reference time, and T(P) is the parallel time
with P PEs. S(P) is the speedup.

The most rigorous definition of efficiency sets T(1) to the execution time of the best sequential
algorithm corresponding to the parallel algorithm under study. When analyzing parallel
programs, "best" sequential algorithms are not always available, and it is common to use the
runtime for the parallel program on a single PE as the reference time. This can inflate the
efficiency because managing the parallel computation always incurs some overhead, even
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when executing on a single PE. Efficiency is closely related to scalability because every highly
scalable algorithm is also highly efficient. Even when the scalability is limited by the available
number of tasks or the parallel hardware, however, algorithms can differ in their efficiency.

Maintainability. Is the program easy to debug, verify, and modify?

Casting an algorithm into source code is almost never a one-time proposition. Programs need
to be debugged, new features added, performance tuned, etc. These changes to the source code
are referred to as maintenance. Programs are more or less maintainable depending on how
hard it is to make these changes and to do them correctly.

Environmental affinity. Is the program well aligned with the programming environment and
hardware of choice?

If the hardware, for example, lacks support for shared memory, an algorithm structure based
on shared memory would be a poor choice. This issue also comes up when considering
programming environments. When creating a programming environment, the creators usually
have a particular style of programming in mind. For example, OpenMP is designed
specifically for programs consisting of a series of loops, the iterations of which will be split
between multiple threads (loop-based parallelism). It is much easier to write software when
the program structure employed is well aligned with the programming environment.

Sequential equivalence. Where appropriate, does a program produce equivalent results when
run with many UEs as with one? If not equivalent, is the relationship between them clear?

It is highly desirable that the results of an execution of a parallel program be the same
regardless of the number of PEs used. This is not always possible, especially if bitwise
equivalence is desired, because floating-point operations performed in a different order can
produce small (or, for ill-conditioned algorithms, not so small) changes in the resulting values.
However, if we know that the parallel program gives equivalent results when executed on one
processor as many, then we can reason about correctness and do most of the testing on the
single-processor version. This is much easier, and thus, when possible, sequential equivalence
is a highly desirable goal.

5.3. CHOOSING THE PATTERNS

Choosing which program structure pattern to use is usually straightforward. In most cases, the
programming environment selected for the project and the patterns used from the Algorithm Structure
design space point to the appropriate program structure pattern to use. We will consider these two
factors separately.

The relationship between the patterns in the Algorithm Structure and Supporting Structures design
spaces is shown in Table 5.1. Notice that the Supporting Structures pattems can be used with multiple
Algorithm Structure pattems. For example, consider the range of applications using the
Master/Worker pattern: In [BCM+91, CG91, CGMS94], it is used to implement everything from
embarrassingly parallel programs (a special case of the Task Parallelism pattern) to those using the
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Geometric Decomposition pattern. The SPMD pattern is even more flexible and covers the most
important algorithm structures used in sciertific computing (which tends to emphasize the Geometric
Decomposition, Task Parallelism, and Divide and Conquer patterns). This flexibility can make it
difficult to choose a program structure pattern solely on the basis of the choice of Algorithm Structure

pattern(s).

Table 5.1. Relationship between Supporting Structures patterns and Algorithm
Structure patterns. The number of stars (ranging from zero to four) is an indication of
the likelihood that the given Supporting Structures pattern is useful in the
implementation of the Algorithm Structure pattern.

Divide . .
Task Geometric |Recursive| = | Event-Based
. and . Pipeline L.
Parallelism Decomposition| Data Coordination
Conquer
SPMD A | | el | |
Parallelism
ker
Fork/Join IM M—‘ IM M—‘ M—‘

The choice of programming environment, however, helps narrow the choice considerably. In Table
5.2, we show the relationship between programming environments and the Supporting Structures
patterns. MPI, the programming environment of choice on any distributed-memory computer, strongly
favors the SPMD pattern. OpenMP, the standard programming model used on vittually every shared-
memory computer on the market, is closely aligned with the Loop Parallelism pattern. The
combination of programming environment and Algorithm Structure patterns typically selects which

Supporting Structures patterns to use.

Table 5.2. Relationship between Supporting Structures patterns and programming
environments. The number of stars (ranging from zero to four) is an indication of the
likelihood that the given Supporting Structures pattern is useful in the programming

environment.

OpenMP MPI Java
SPMD ol | ol |
LoopParallelism %
Master/ Worker el |
Fork/Join el |
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5.4. THE SPMD PATTERN

Problem

The interactions between the various UEs cause most of the problems when writing correct and
efficient parallel programs. How can programmers structure their parallel programs to make these
interactions more manageable and easier to integrate with the core computations?

Context

A parallel program takes complexity to a new level. There are all the normal challenges of writing any
program. On top of those challenges, the programmer must manage multiple tasks running on
multiple UEs. In addition, these tasks and UEs interact, either through exchange of messages or by
sharing memory. In spite of these complexities, the program must be correct, and the interactions
must be well orchestrated if excess overhead is to be avoided.

Fortunately, for most parallel algorithms, the operations carried out on each UE are similar. The data
might be different between UEs, or slightly different computations might be needed on a subset of
UEs (for example, handling boundary conditions in partial differential equation solvers), but for the
most part each UE will carry out similar computations. Hence, in many cases the tasks and their
interactions can be made more manageable by bringing them all together into one source tree. This
way, the logic for the tasks is side by side with the logic for the interactions between tasks, thereby
making it much easier to get them right.

This is the so-called "Single Program, Multiple Data" (SPMD) approach. It emerged as the dominant
way to structure parallel programs early in the evolution of scalable computing, and programming
environments, notably MPI, have been designed to support this approach.[1]

11t is not that the available programming environments pushed SPMD; the force was the

other way around. The programming environments for MIMD machines pushed SPMD
because that is the way programmers wanted to write their programs. They wrote them
this way because they found it to be the best way to get the logic correct and efficient for
what the tasks do and how they interact. For example, the programming environment
PVM, sometimes considered a predecessor o MPI, in addition to the SPMD program
structure also supported running different programs on different UEs (sometimes called
the MPMD program structure). The MPI designers, with the benefit of the PVM
experience, chose to support only SPMD.

In addition to the advantages to the programmer, SPMD makes management of the solution much
easier. It is much easier to keep a software infrastructure up to date and consistent if there is only one
program to manage. This factor becomes especialy important on systems with large numbers of PEs.
These can grow to huge numbers. For example, the two fastest computers in the world according to
the November 2003 top 500 list [Top], the Earth Simulator at the Earth Simulator Center in Japan and
the ASCI Q at Los Alamos National Labs, have 5120 and 8192 processors, respectively. If each PE
runs a distinct program, managing the application software could quickly become prohibitively


http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry163
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry163
http://my.safaribooksonline.com/0321228111/biblio01#biblio01entry163
javascript:moveTo('ch05fn01');
javascript:moveTo('ch05fn01');
javascript:moveTo('ch05fn01');

difficult.

This pattern is by far the most commonly used pattern for structuring parallel programs. It
is particularly relevant for MPI programmers and problems using the Task Parallelism and
Geometric Decomposition patterns. It has also proved effective for problems using the
Divide and Conquer and Recursive Data patterns.

Forces

Using similar code for each UE is easier for the programmer, but most complex applications
require that different operations run on different UEs and with different data.

Software typically outlives any given parallel computer. Hence, programs should be portable.
This compels the programmer to assume the lowest common denominator in programming
environments, and to assume that only basic mechanisms for coordinating tasks will be
available.

Achieving high scalability and good efficiency in a parallel program requires that the program
be well aligned with the architecture of the parallel computer. Therefore, the details of the
parallel system must be exposed and, where appropriate, under the programmer's control.

Solution

The SPMD pattem solves this problem by creating a single source-code image that runs on each of the
UEs. The solution consists of the following basic elements.

Initialize. The program is loaded onto each UE and opens with bookkeeping operations to
establish a common context. The details of this procedure are tied to the parallel programming
environment and typically involve establishing communication channels with other UEs.

Obtain a unique identifier. Near the top of the program, an identifier is set that is unique to
each UE. This is usually the UE's rank within the MPI group (that is, a number in the interval
from O to N - 1, where N is the number of UEs) or the thread ID in OpenMP. This unique
identifier allows different UEs to make different decisions during program execution.

Run the same program on each UE, using the unique ID to differentiate behavior on different
UEs. The same program runs on each UE. Differences in the instructions executed by different
UEs are usually driven by the identifier. (They could also depend on he UE's data.) There are
many ways to specify that different UEs take different paths through the source code. The
most common are (1) branching statements to give specific blocks of code to different UEs
and (2) using the UE identifier in loop index calculations to split loop iteraions among the
UEs.

Distribute data. The data operated on by each UE is specialized to that UE by one of two
techniques: (1) decomposing global data into chunks and storing them in the local memory of
each UE, and later, if required, recombining them into the globally relevant results or (2)
sharing or replicating the program's major data structures and using the UE identifier to
associate subsets of the data with particular UEs.

Finalize. The program closes by cleaning up the shared context and shutting down the



computation. If globally relevant data was distributed among UEs, it will need to be
recombined.

Discussion

An important issue to keep in mind when developing SPMD programs is the clarity of abstraction,
that is, how easy it is to understand the algorithm from reading the program's source code. Depending
on how the data is handled, this can range from awful to good. If complex index algebra on the UE
identifier is needed to determine the data relevant to a UE or the instruction branch, the algorithm can
be almost impossible to follow from the source code. (The Distributed Array pattern discusses useful
techniques for arrays.)

In some cases, a replicated data algorithm combined with simple loop splitting is the best option
because it leads to a clear abstraction of the parallel algorithm within the source code and an
algorithm with a high degree of sequential equivalence. Unfortunately, this simple approach might not
scale well, and more complex solutions might be needed. Indeed, SPMD algorithms can be highly
scalable, and algorithms requiring complex coordination between UEs and scaling out to several
thousand UEs [PH95] have been written using this pattern. These highly scalable algorithms are
usually extremely complicated as they distribute the data across the nodes (that is, no simplifying
replicated data techniques), and they generally include complex load-balancing logic. These
algorithms, unfortunately, bear little resemblance to their serial counterparts, reflecting a common
criticism of the SPMD pattemn.

An important advantage of the SPMD pattern is that overheads associated wit startup and
termination are segregated at the beginning and end of the program, not inside time-critical loops.
This contributes to efficient programs and results in the efficiency issues being driven by the
communication overhead, the capability to balance the computational load among the UEs, and the
amount of concurrency available in the algorithm itself.

SPMD programs are closely aligned with programming environments based on message passing. For
example, most MPI or PVM programs use the SPMD pattern. Note, however, that it is possible to use
the SPMD pattem with OpenMP [CPPO1]. With regard to the hardware, the SPMD pattem does not
assume anything concerning the address space within which the tasks execute. As long as each UE
can run its own instruction stream operating on is own data (that is, the computer can be classified as
MIMD), the SPMD structure is satisfied. This generality of SPMD programs is one of the strengths of
this pattern.

Examples

The issues raised by application of the SPMD pattem are best discussed using three specific
examples:

+ Numerical integration to estimate the value of a definite integral using the trapezoid rule
+  Molecular dynamics, force computations

+  Mandelbrot set computation
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Numerical integration

We can use a very simple program, frequently used in teaching parallel programming, to explore
many of the issues raised by the SPMD pattern. Consider the problem of estimating the value of 11

using Eq. 5.3.
Equation 5.3

We use trapezoidal integration to numerically solve the integral. The ideais to fill the area under a
curve with a series of rectangles. As the width of the rectangles approaches zero, the sum of the areas
of the rectangles approaches the value of the integral.

Figure 5.2. Sequential program to carry out a trapezoid rule integration to compute

#include <stdio.h>
#include <math.h>

int main () {
int i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

step = 1.0/(double) num steps;

for (i=0;i< num steps; i++)
{
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*X);
}
pi = step * sum;
printf("pi %lf\n",pi);
return 0;

A program to carry this calculation out on a single processor is shown in Fig. 5.2. To keep the
program as simple as possible, we fix the number of steps to use in the integration at 1,000,000. The
variable sum is initialized to O and the step size is computed as the range in X (equal to 1.0 in this
case) divided by the number of steps. The area of each rectangle is the width (the step size) times the
height (the value of the integrand at the center of the interval). Because the width is a constant, we
pull it out of the summation and multiply the sum of the rectangle heights by the step size, step, to
get our estimate of the definite integral.

We will look at several versions of the parallel algorithm. We can see all the elements of a classic
SPMD program in the simple MPI version of this program, as shown in Fig. 5.3. The same program is
run on each UE. Near the beginning of the program, the MPI environment is initialized and the ID for
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each UE (my 1id) is given by the process rank for each UE in the process group associated with the
communicator MPT_COMM_WORLD (for information about communicators and other MPI details, see
the MPI appendix, Appendix B). We use the number of UEs and the ID to assign loop ranges

(1 startandi end) to each UE. Because the number of steps may not be evenly divided by the
number of UEs, we have to make sure the last UE runs up to the last step in the calculation. After the
partial sums have been computed on each UE, we multiply by the step size, Step, and then use the
MPI Reduce() routine to combine the partial sums into a global sum. (Reduction operations are
described in more detail in the Implementation Mechanisms design space.) This global value will only

be available in the process withmy 1id == 0, so we direct that process to print the answer.

In essence, what we have done in the example in Fig. 5.3 is to replicate the key data (in this case, the
partial summation value, sum), use the UE's ID to explicitly split up the work into blocks with one
block per UE, and then recombine the local results into the final global result. The challenge in
applying this pattern is to (1) split up the data correctly, (2) correctly recombine the results, and (3)
achieve an even distribution of the work. The first two steps were trivial in this example. The load
balance, however, is a bit more difficult. Unfortunately, the simple procedure we used in Fig. 5.3 could
result in significantly more work for the last UE if the number of UEs does not evenly divide the
number of steps. For a more even distribution of the work, we need to spread out the extra iterations
among multiple UEs. We show one way to do this in the program fragment in Fig. 5.4. We compute
the number of iterations left over after dividing the number of steps by the number of processors
(rem). We will increase the number of iterations computed by the first rem UEs to cover that amount
of work. The code in Fig. 5.4 accomplishes that task. These sorts of index adjustments are the bane of
programmers using the SPMD pattern. Such code is error-prone and the source of hours of frustration
as program readers try to understand the reasoning behind this logic.

Figure 5.3. MPI program to carry out a trapezoid rule integration in parallel by
assignhing one block of loop iterations to each UE and performing a reduction

Code View: Scroll / Show All

#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char *argv[]) {
int i, i start, i end;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

int my id, numprocs;
step = 1.0/(double) num steps;

MPI Init(&argc, &argv);
MPI Comm_rank(MPI_COMM WORLD, &my id);
MPI Comm size(MPI COMM WORLD, &numprocs);

i start = my id * (num steps/numprocs);
i end = i start + (num_steps/numprocs);
if (my id == (numprocs-1)) i end = num steps;

for (i=i start; i< i end; i++)
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X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

sum *= step;

MPI Reduce(&sum, &pi, 1, MPI DOUBLE, MPI SUM, O,
MPI COMM WORLD);

if (my id == 0) printf("pi %Lf\n",pi);

MPI Finalize();

return 0;

Finally, we use a loop-splitting strategy for the numerical integration program. The resulting program
is shown in Fig. 5.5. This approach uses a common trick to achieve a cyclic distribution of the loop
iterations: Each UE starts with the iteration equal to its rank, and then marches through the iterations
of the loop with a stride equal to the number of UEs. The iterations are interleaved among the UEs, in
the same manner as a deck of cards would be dealt. This version of the program evenly distributes the

load without resorting to complex index algebra.

Figure 5.4. Index calculation that more evenly distributes the work when the number
of steps is not evenly divided by the number of UEs. The idea is to split up the

remaining tasks (rem) among the first rem UEs.

int rem num_steps % numprocs;

i start = my id * (num_steps/numprocs);
i end = i start + (num_steps/numprocs);

if (rem != 0){
if(my id < rem){
i start += my id;
iend += (my id + 1);

}

else {
i start += rem;
i end += rem;

}

}

Figure 5.5. MPI program to carry out a trapezoid rule integration in parallel using a
simple loop-splitting algorithm with cyclic distribution of iterations and a reduction

Code View: Scroll / Show All

#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char *argv[]) {
int i;
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int num_steps = 1000000;
double x, pi, step, sum = 0.0;

int my id, numprocs;
step = 1.0/ (double) num steps;

MPI Init(&argc, &argv);
MPI Comm rank(MPI COMM WORLD, &my id);
MPI Comm size(MPI COMM WORLD, &numprocs);

for (i=my id; i< num steps; i+= numprocs)
{
X = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);
}
sum *= step;
MPI Reduce(&sum, &pi, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);
if (my id == 0) printf("pi %lf\n",pi);
MPI Finalize();
return 0;

Figure 5.6. OpenMP program to carry out a trapezoid rule integration in parallel using
the same SPMD algorithm used in Fig. 5.5

#include <stdio.h>
#include <math.h>
#include <omp.h>

int main () {
int num_steps = 1000000;
double pi, step, sum = 0.0;

step = 1.0/ (double) num steps;
#pragma omp parallel reduction(+:sum)

int i, id = omp get thread num();
int numthreads = omp get num threads();
double x;

for (i=id;i< num steps; i+=numthreads){
X = (1+0.5)*step;
sum += + 4.0/(1.0+x*x);
}
} // end of parallel region
pi = step * sum;
printf("\n pi is %lf\n",pi);
return 0;

SPMD programs can also be written using OpenMP and Java. In Fig. 5.6, we show an OpenMP
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version of our trapezoidal integration program. This program is very similar to the analogous MPI
program. The program has a single parallel region. We start by finding the thread ID and the number
of threads in the team. We then use the same trick to interleave iterations among the team of threads.
As with the MPI program, we use a reduction to combine partial sums into a single global sum.

Molecular dynamics

Throughout this pattern language, we have used molecular dynamics as a recurring example.

Molecular dynamics simulates the motions of a large molecular system. It uses an explicit time-
stepping methodology where ateach time step, the force on each atom is computed and standard
techniques from classical mechanics are used to compute how the forces change atomic motions.

This problem is ideal for presenting key concepts in parallel algorithms because there are so many
ways to approach the problem based on the target computer system and the intended use of the
program. In this discussion, we will follow the approach taken in [Mat95] and assume that (1) a
sequential version of the program exists, (2) having a single program for sequential and parallel
execution is important, and (3) the target system is a small cluster connected by standard Ethernet
LAN. More scalable algorithms for execution on massively parallel systems are discussed in [PH95].

Figure 5.7. Pseudocode for molecular dynamics example. This code is very similar to
the version discussed earlier, but a few extra details have been included. To support
more detailed pseudocode examples, the call to the function that initializes the force
arrays has been made explicit. Also, the fact that the neighbor list is only occasionally
updated is made explicit.

Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps
initialize forces (N, Forces)
if(time to update neighbor list)
neighbor list (N, Atoms, neighbors)
end if
vibrational forces (N, atoms, forces)
rotational forces (N, atoms, forces)
non_bonded-forces (N, atoms, neighbors, forces)
update atom positions and velocities(
N, atoms, velocities, forces)
physical properties ( ... Lots of stuff ... )
end loop

The core algorithm, including pseudocode, was presented in Sec. 3.1.3. While we won't repeat the
discussion here, we do provide a copy of the pseudocode inFig. 5.7.

The parallel algorithm is discussed in several of the patterns in the Finding Concurrency and

Algorithm Structure design spaces. Following are the key points from those discussions that we will

need here along with the location of the original discussion.

1. Computing the non_bonded forces takes the overwhelming majority of the runtime
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2.

(Sec. 3.1.3).

In computing the non_bonded force, each atom potentially interacts with all the other
atoms. Hence, each UE needs read access to the full atomic position array. Also, due to
Newton's third law, each UE will be scattering contributions to the force across the full force
array (the Examples section of the Data Sharing pattern).

One way to decompose the MD problem into tasks is to focus on the computations needed for
a particular atom, that is, we can parallelize this problem by assigning atoms to UEs (the
Examples section of the Task Decomposition pattern).

Given that our target is a small cluster and from point (1) in the preceding list, we will only parallelize

the force computations. Because the network is slow for parallel computing and given the data

dependency in point (2), we will:

Keep a copy of the full force and coordinate arrays on each node.

Have each UE redundantly update positions and velocities for the atoms (that is, we assume it
is cheaper to redundantly compute these terms than to do them in parallel and communicate
the results).

Have each UE compute its contributions to the force array and then combine (or reduce) the
UEs' contributions into a single global force array copied onto each UE.

The algorithm is a simple transformation from the sequential algorithm. Pseudocode for this SPMD

program is shown in Fig. 5.8. As with any MPI program, the MPI include file is referenced at the top

of the program. The MPI environment is initialized and the ID is associated wih the rank of the MPI

process.

Figure 5.8. Pseudocode for an SPMD molecular dynamics program using MPI

Code View: Scroll / Show All

#include <mpi.h>

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector

Array of Real :: forces (3,N) //force in each dimension
Array of Real :: final forces(3,N) //globally summed force
Array of List :: neighbors(LN) //atoms in cutoff volume

Array of Int :: local atoms(LN) //atoms for this UE

Int const N // number of atoms
Int const LN // maximum number of atoms assigned to a UE

Int ID // an ID for each UE
Int num UEs // the number of UEs in the parallel computation

ID = 0 // default ID (used by the serial code)

num UEs = 1 // default num UEs (used by the serial code)
MPI Init()

MPI Comm size(MPI_COMM WORLD, &ID)

MPI Comm rank(MPI_COMM WORLD, &num_ UEs)

loop over time steps
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initialize forces (N, forces, final forces)
if(time to update neighbor list)
neighbor list (N, LN, atoms, neighbors)
end if
vibrational forces (N, LN, local atoms, atoms, forces)
rotational forces (N, LN, local atoms, atoms, forces)
non_bonded forces (N, LN, atoms, local atoms, neighbors,
forces)

MPI All reduce{forces, final.forces, 3*N, MPI REAL, MPI SUM,
MPI COMM WORLD)

update atom positions and velocities(
N, atoms, velocities, final forces)
physical properties ( ... Lots of stuff ... )
end loop

MPI Finalize()

Figure 5.9. Pseudocode for the nonbonded computation in a typical parallel molecular
dynamics code. This code is almost identical to the sequential version of the function
shown in Fig. 4.4. The only major change is a new array of integers holding the indices
for the atoms assigned to this UE, local_atoms. We've also assumed that the neighbor
list has been generated to hold only those atoms assigned to this UE. For the sake of
allocating space for these arrays, we have added a parameter LN which is the largest
number of atoms that can be assigned to a single UE.

function non _bonded forces (N, LN, atoms, local atoms,
neighbors, Forces)

Int N // number of atoms
Int LN // maximum number of atoms assigned to a UE

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local atoms(LN) //atoms assigned to this UE
real :: forceX, forceY, forcez

loop [i] over local atoms

loop [j] over neighbors(i)

forceX = non bond force(atoms(1l,i), atoms(l,j))
forceY = non _bond force(atoms(2,i), atoms(2,j))
forceZ = non_bond force(atoms(3,i), atoms(3,j))
force{l,i) += forceX; force{l,j) -= forceX;
force(2,i) += forceY; force{2,j) -= forceY;
force{3,1i) += forcez; force{3,j) -= forcez;

end loop [j]

end loop [i]
end function non_bonded forces
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Only a few changes are made to the sequential functions. First, a second force array called

final forces is defined to hold the globally consistent force array appropriate for the update of
the atomic positions and velocities. Second, a list of atoms assigned to the UE is created and passed to
any function that will be parallelized. Finally, the neighbor 1ist is modified to hold the list for
only those atoms assigned to the UE.

Finally, within each of the functions to be parallelized (the forces calculations), the loop over atoms is
replaced by a loop over the list of local atoms.

We show an example of these simple changes in Fig. 5.9. This is almost identical to the sequential
version of this function discussed in the Task Parallelism pattern. As discussed eatdier, the following
are the key changes.

+ A new array has been added to hold indices for the atoms assigned to this UE. This array is of
length LN where LN is the maximum number of atoms that can be assigned to a single UE.

+ The loop over all atoms (loop over 1) has beenreplaced by a loop over the elements of the
local atoms list.

«  We assume that the neighbor list has been modified to correspond to the atoms listed in the
local atoms list.

The resulting code can be used for a sequential version of the program by setting LN to N and by
putting the full set of atom indices into Local atoms. This feature satisfies one of our design
goals: that a single source code would work for both sequential and parallel versions of the program.

The key to this algorithm is in the function to compute the neighbor list. The neighbor list function
contains a loop over the atoms. For each atom i, there is a loop over all other atoms and a test to
determine which atoms are in the neighborhood of atom i. The indices for these neighboring atoms
are saved in neighbors, a list of lists. Pseudocode for this code is shown in Fig. 5.10.

Figure 5.10. Pseudocode for the neighbor list computation. For each atom i, the
indices for atoms within a sphere of radius cutoff are added to the neighbor list for
atom i. Notice that the second loop (over j) only considers atoms with indices greater
than i. This accounts for the symmetry in the force computation due to Newton's third
law of motion, that is, that the force between atom i and atom j is just the negative
of the force between atom j and atom i.

Code View: Scroll / Show All

function neighbor (N, LN, ID, cutoff, atoms, local atoms,
neighbors)

Int N // number of atoms
Int LN // max number of atoms assigned to a UE
Real cutoff // radius of sphere defining neighborhood

Array of Real :: atoms (3,N) //3D coordinates

Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local atoms(LN) //atoms assigned to this UE
real :: dist squ

initialize lists (local atoms, neighbors)
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loop [i] over atoms on UE //split loop iterations among UEs
add to list (i, local atoms)
loop [j] over atoms greater than i
dist squ = square(atom(l,i)-atom(i
square(atom(2,1)-atom(2
square(atom(3,i)-atom(3
if(dist squ < (cutoff * cutoff))
add to list (j, neighbors(i))
end if
end loop [j]

)+
i) +
i))

’
’

end loop [i]
end function neighbors

The logic defining how the parallelism is distributed among the UEs is captured in the single loop in

Fig. 5.10:

loop [i] over atoms on UE //split loop iterations among UEs
add to list (i, local atoms)

The details of how this loop is split among UEs depends on the programming environment. An
approach that works well with MPI is the cyclic distribution we used in Fig. 5.5:

for (i=id;i<number of atoms; i+= number of UEs){
add to list (i, local atoms)
}

More complex or even dynamic distributions can be handled by creating an owner-computes filter
[Mat95]. An owner-computes filter provides a flexible and reusable schedule for mapping loop
iterations onto UEs. The filter is a boolean function of the ID and the loop iteration. The value of the
function depends on whether a UE "owns" a particular iteration of a loop. For example, in a molecular
dynamics program, the call to the owner-computes function would be added at the top of the
parallelized loops over atoms:

for (1=0;i<number of atoms; i++){
if !'(is _owner (i)) break

add to list (i, local atoms)

No other changes to the loop are needed to support expression of concurrency. If the logic managing
the loop is convoluted, this approach partitions the iterations among the UEs without altering that
logic, and the index partitioning logic is located clearly in one place in the source code. Another
advantage occurs when several loops that should be scheduled the same way are spread out
throughout a program. For example, on a NUMA machine or a cluster it is very important that data
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brought close to a PE be used as many times as possible. Often, this means reusing the same schedule
in many loops.

This approach is described further for molecular dynamics applications in [Mat935]. It could be
important in this application since the workload captured in the neighbor list generation may not
accurately reflect the workload in the various force computations. One could easily collect
information about the time required for each atom and then readjust the 1S _owner function to
produce more optimal work loads.

Figure 5.11. Pseudocode for a parallel molecular dynamics program using OpenMP

Code View: Scroll / Show All

#include <omp.h>
Int const N // number of atoms
Int const LN // maximum number of atoms assigned to a UE
Int ID // an ID for each UE
Int num UEs // number of UEs in the parallel computation
Array of Real :: atoms(3,N) //3D coordinates

Array of Real :: velocities(3,N) //velocity vector
Array of Real :: forces(3,N) //force in each dim
Array of List :: neighbors(LN) //atoms in cutoff volume

Array of Int :: local atoms(LN) //atoms for this UE

ID =0
num UEs =1

#pragma omp parallel private (ID, num UEs, local atoms, forces) {
ID = omp _get thread num()
num UEs = omp get num threads()

loop over time steps
initialize forces (N, forces, final forces)
if(time to update neighbor list)
neighbor list (N, LN, atoms, neighbors)

end if

vibrational forces (N, LN, local atoms, atoms, forces)

rotational forces (N, LN, local atoms, atoms, forces)

non bonded forces (N, LN, atoms, local atoms,

neighbors, forces)

#pragma critical

final forces += forces
#barrier

#pragma single
{
update atom positions and velocities(
N, atoms, velocities, forces)
physical properties ( ... Lots of stuff ... )
} // remember, the end of a single implies a barrier

end loop

} // end of OpenMP parallel region
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These SPMD algorithms work for OpenMP programs as well. All of the basic functions remain the
same. The top-level program is changed to reflect the needs of OpenMP. This is shown in Fig. 5.11.

The loop over time is placed inside a single parallel region. The parallel region is created with the
parallel pragma:

#pragma omp parallel private (ID, num UEs, local atoms, forces)

This pragma causes a team of threads to be created with each member of the team executing the loop
over time. The private clause causes copies of the listed variables to be created for each UE. The
reduction is carried out in a critical section:

#pragma critical
final forces += forces

A reduction clause on the parallel region cannot be used in this case because the result would not
be available until the parallel region completes. The critical section produces the correct result, but the
algorithm used has a runtime that is linear in the number of UEs and is hence suboptimal relative to

other reduction algorithms as discussed in the Implementation Mechanisms design space. On systems
with a modest number of processors, however, the reduction with a critical section works adequately.

The barrier following the critical section is required to make sure the reduction completes before the
atomic positions and velocities are updated. We then use an OpenMP single construct to cause only
one UE to do the update. An additional barrier is not needed following the single since the close of
a single construct implies a barrier. The functions used to compute the forces are unchanged
between the OpenMP and MPI versions of the program.

Mandelbrot set computation

Consider the well-known Mandelbrot set [Dou86]. We discussed this problem and its parallelization
as a task-parallel problem in the Task Parallelism pattern. Each pixel is colored based on the behavior

of the quadratic recurrence relation in Eq. 5.4.
Equation 5.4
Zur1=2 4+ C

C and Z are complex numbers and the recurrence is started with z, = C. The image plots the

imaginary part of C on the vertical axis (-1.5 to 1.5) and the real part on the horizontal axis (-1 to 2).
The color of each pixel is black if the recurrence relation converges to a stable value or is colored
depending on how rapidly the relation diverges.

In the Task Parallelism pattern, we described a parallel algorithm where each task corresponds to the
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computation of arow in the image. A static schedule with more tasks than UEs should be possible
that achieves an effective statistical balance of the load among nodes. We will show how to solve this
problem using the SPMD pattem with MPI.

Pseudocode for the sequential version of this code is shown in Fig. 5.12. The interesting part of the
problem is hidden inside the routine compute Row (). Because the details of this routine are not
important for understanding the parallel algorithm, we will not show them here, however. At a high
level, for each point in the row the following happens.

Figure 5.12. Pseudocode for a sequential version of the Mandelbrot set generation
program

Code View: Scroll / Show All

Int const Nrows // number of rows in the image
Int const RowSize // number of pixels in a row
Int const M // number of colors in color map

Real :: conv // divergence rate for a pixel

Array of Int :: color map (M) // pixel color based on conv rate
Array of Int :: row (RowSize) // Pixels to draw

Array of Real :: ranges(2) // ranges in X and Y dimensions

manage_user _input(ranges, color _map) // input ranges, color map initialize graphics(RowSize
for (int i = 0; i<Nrows; i++){

compute Row (RowSize, ranges, row)

graph(i, RowSize, M, color _map, ranges, row)

} // end loop [i] over rows

« Each pixel corresponds to a value of C in the quadratic recurrence. We compute this value
based on the input range and the pixel indices.

« We then compute the terms in the recurrence and set the value of the pixel based on whether it
converges to a fixed value or diverges. If it diverges, we set the pixel value based on the rate of
divergence.

Once computed, the rows are plotted to make the well-known Mandelbrot set images. The colors used
for the pixels are determined by mapping divergence rates onto a color map.

An SPMD program based on this algorithm is straightforward; code is shown in Fig. 5.13. We will
assume the computation is being carried out on some sort of distributed-memory machine (a cluster
or even an MPP) and that there is one machine that serves as the interactive graphics node, while the
others are restricted to computation. We will assume that the graphics node is the one with rank 0.

The program starts with the usual MPI setup, as described in the MPI appendix, Appendix B. The UE
with rank 0 takes input from the user and then broadcasts this to the other UEs. It then loops over the
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number of rows in the image, receiving rows as they finish and plotting them. UEs with rank other
than O use a cyclic distribution of loop iterations and send the rows to the graphics UE as they finish.

Known uses

The overwhelming majority of MPI programs use this pattern. Pedagogically oriented discussions of
SPMD programs and examples can be found in MPI textbooks such as [GLS99] and [Pac96].
Representative applications using this pattern include quantum chemistry [WSG95], finite element

methods [ABKP03, KLK"03], and 3D gas dynamics [MHC"99].

Figure 5.13. Pseudocode for a parallel MPI version of the Mandelbrot set generation
program

Code View: Scroll / Show All

#include <mpi.h>
Int const Nrows // number of rows in the image
Int const RowSize // number of pixels in a row
Int const M // number of colors in color map

Real :: conv // divergence rate for a pixel

Array of Int :: color map (M) // pixel color based on conv rate
Array of Int :: row (RowSize) // Pixels to draw

Array of Real :: ranges(2) // ranges in X and Y dimensions

Int :: inRowSize // size of received row

Int :: ID // ID of each UE (process)

Int :: num UEs // number of UEs (processes)

Int :: nworkers // number of UEs computing rows

MPI Status :: stat // MPI status parameter

MPI Init()
MPI_Comm size(MPI_COMM WORLD, &ID)
MPI Comm_rank(MPI_COMM WORLD, &num_UEs)

// Algorithm requires at least two UEs since we are
// going to dedicate one to graphics
if (num UEs < 2) MPI Abort(MPI COMM WORLD, 1)

if (ID == 0 ){
manage user input(ranges, color map) // input ranges, color map
initialize graphics(RowSize, Nrows, M, ranges, color_map)

}

// Broadcast data from rank 0 process to all other processes
MPI Bcast (ranges, 2, MPI REAL, 0, MPI COMM WORLD);
if (ID == 0) { // UE with rank 0 does graphics
for (int i = 0; i<Nrows; i++){
MPI Recv(row, &inRowSize, MPI REAL, MPI ANY SOURCE,
MPI_ANY TAG, MPI_COMM WORLD, &stat)
row _index = stat(MPI TAG)
graph(row _index, RowSize, M, color _map, ranges, Row)
} // end loop over i
else { // The other UEs compute the rows
nworkers = num UEs - 1
for (int i = ID-1; i<Nrows; i+=nworkers){
compute Row (RowSize, ranges, row)
MPI Send (row, RowSize, MPI REAL, 0, i, MPI COMM WORLD) ;
} // end loop over i

}
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MPI Finalize()

Examples of the SPMD pattern in combination with the Distributed Array pattern include the
GAMESS quantum chemistry program [0SGO03] and the ScaLAPACK library [BCC"97,Sca].

Related Patterns

The SPMD pattem is very general and can be used to implement other patterns. Many of the examples
in the text of this pattern are closely related to the Loop Parallelism pattern. Most applications of the
Geometric Decomposition pattern with MPI use the SPMD pattem as well. The Distributed Array
pattern is essentially a special case of distributing data for programs using the SPMD pattern.

5.5. THE MASTER/WORKER PATTERN

Problem

How should a program be organized when the design is dominated by the need to dynamically
balance the work on a set of tasks among the UEs?

Context

Parallel efficiency follows from an algorithm's parallel overhead, its serial fraction, and the load
balancing. A good parallel algorithm must deal with each of these, but sometimes balancing the load
is so difficult that it dominates the design. Problems falling into this category usually share one or
more of the following characteristics.

The workloads associated with the tasks are highly variable and unpredictable. If workloads
are predictable, they can be sorted into equal-cost bins, statically assigned to UEs, and
parallelized using the SPMD or Loop Parallelism patterns. But if they are unpredictable, static
distributions tend to produce suboptimal load balance.

The program structure for the computationally intensive portions of the problem doesnt map
onto simple loops. If the algorithm is loop-based, one can usually achieve a statistically near-
optimal workload by a cyclic distribution of iterations or by using a dynamic schedule on the
loop (for example, in OpenMP, by using the schedule (dynamic) clause). But if the
control structure in the program is more complex than a simple loop, more general approaches
are required.

The capabilities of the PEs available for the parallel computation vary across the parallel
system, change over the course of the computation, or are unpredictable.
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In some cases, tasks are tightly coupled (that is, they communicate or share read-and-write data) and
must be active at the same time. In this case, the Master/ Worker pattern is not applicable: The

programmer has no choice but to explicitly size or group tasks onto UEs dynamically (that is, during
the computation) to achieve an effective load balance. The logic to accomplish this can be difficult to
implement, and if one is not careful, can add prohibitively large parallel overhead.

If the tasks are independent of each other, however, or if the dependencies can somehow be pulled out
from the concurrent computation, the programmer has much greater flexibility in how to balance the
load. This allows the load balancing t© be done automatically and is the situation we address in this
pattern.

This pattern is particularly relevant for problems using the Task Parallelism pattern when
there are no dependenciesamong the tasks (embarrassingly parallel problems). It can also
be used with the Fork/Join pattern for the cases where the mapping of tasks onto UEs is
indirect.

Forces

+ The work for each task, and in some cases even the capabilities of the PEs, varies
unpredictably in these problems. Hence, explicit predictions of the runtime for any given task
are not possible and the design must balance the load without them.

+ Operations to balance the load impose communication overhead and can be very expensive.
This suggests that scheduling should revolve around a smaller number of large tasks. However,
large tasks reduce the number of ways tasks can be partitioned among the PEs, thereby making
it more difficult to achieve good load balance.

+ Logic to produce an optimal load can be convoluted and require error-prone changes to a
program. Programmers need to make trade-offs between the desire for an optimal distribution
of the load and code that is easy to maintain.

Solution

The well-known Master/Worker pattern is a good solution to this problem. This pattern is summarized
in Fig. 5.14. The solution consists of two logical elements: a master and one or more instances of a
worker. The master initiates the computation and sets up the problem. It then creates a bag of tasks. In
the classic algorithm, the master then waits until the job is done, consumes the results, and then shuts
down the computation.
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Figure 5.14. The two elements of the Master/Worker pattern are the master and the
worker. There is only one master, but there can be one or more workers. Logically, the
master sets up the calculation and then manages a bag of tasks. Each worker grabs a

task from the bag, carries out the work, and then goes back to the bag, repeating
until the termination condition is met.

master (1) workers (1 to N) ;

| mitiate computation |

; | set up problem |

Y

i ; .
| create bag of tasks |
: ! :
T N initialize |
E i '

| compute results | :

sleep until work is done

1
I
I
I
| launch workers |- S
¥
¥
i
I

i

| terminate computation |

v
r e e e m -
i
T
]
E.
et

| collect results |'r

e

A straightforward approach to implementing the bag of tasks is with a single shared queue as

described in the Shared Queue pattern. Many other mechanisms for creating a globally accessible
structure where tasks can be inserted and removed are possible, however. Examples include a tuple
space [CGI91,FHA99], a distributed queue, or a monotonic counter (when the tasks can be specified
with a set of contiguous integers).

Meanwhile, each worker enters a loop. At the top of the loop, the worker takes a task from the bag of
tasks, does the indicated work, tests for completion, and then goes to fetch the next task. This
continues until the termination condition is met, at which time the master wakes up, collects the
results, and finishes the computation.

Master/worker algorithms automatically balance the load. By this, we mean the programmer does not
explicitly decide which task is assigned to which UE. This decision is made dynamically by the
master as a worker completes one task and accesses the bag of tasks for more work.
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Discussion

Master/worker algorithms have good scalability as long as the number of tasks greatly exceeds the
number of workers and the costs of the individual tasks are not so variable that some workers take
drastically longer than the others.

Management of the bag of tasks can require global communication, and the overhead for this can limit
efficiency. This effect is not a problem when the work associated with the tasks on average is much
greater than the time required for management. In some cases, the designer might need to increase the
size of each task to decrease the number of times the global task bag needs to be accessed.

The Master/Worker pattern is not tied to any particular hardware environment. Programs using this
pattern work well on everything from clusters to SMP machines. It is, of course, beneficial if the
programming environment provides support for managing the bag of tasks.

Detecting completion

One of the challenges in working with master/ worker programs is to correctly determine when the
entire problem is complete. This needs to be done in a way that is efficient but also guarantees that all
of the work is complete before workers shut down.

+ In the simplest case, all tasks are placed in the bag before the workers begin. Then each task
continues until the bag is empty, at which point the workers terminate.

+ Another approach is to use a queue to implement the task bag and arrange for the master or a
worker to check for the desired termination condition. When it is detected, a poison pill, a
special task that tells the workers to terminate, is created. The poison pill must be placed in the
bag in such a way that it will be picked up on the next round of work. Depending on how the
set of shared tasks are managed, it may be necessary to create one poison pill for each
remaining worker to ensure that all workers receive the termination condition.

 Problems for which the set of tasks is not known initially produce unique challenges. This
occurs, for example, when workers can add tasks as well as consume them (such as in
applications of the Divide and Conquer pattern). In this case, it is not necessarily true that
when a worker finishes a task and finds the task bag empty that there is no more work to do—
another still-active worker could generate a new task. One must therefore ensure that the task
bag is empty and all workers are finished. Further, in systems based on asynchronous message
passing, it must be determined that there are no messages in transit that could, on their arrival,
result in the creation of a new task. There are many known algorithms that solve this problem.
For example, suppose the tasks are conceptually organized into a tree, where the root is the
master task, and the children of a task are the tasks it generates. When all of the children of a
task have terminated, the parent task can terminate. When all the children of the master task
have terminated, the computation has terminated. Algorithms for termination detection are
described in [BT89, Mat87,DS80].

Variations

There are several variations on this pattern. Because of the simple way it implements dynamic load
balancing, this pattern is very popular, especially in embarrassingly parallel problems (as described in
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the Task Parallelism pattern). Here are a few of the more common variations.

- The master may turn into a worker after it has created the tasks. This is an effective technique
when the termination condition can be detected without explicit action by the master (that is,
the tasks can detect the termination condition on their own from the state of the bag of tasks).

+  When the concurrent tasks map onto a simple loop, the master can be implicit and the pattern
can be implemented as a loop with dynamic iteration assignment as described in the Loop

Parallelism pattern.

+ A centralized task queue can become a bottleneck, especially in a distributed-memory
environment. An optimal solution [FLR98§] is based on random work stealing. In this
approach, each PE maintains a separate double-ended task queue. New tasks are placed in the
front of the task queue of the local PE. When a task is completed, a subproblem is removed
from the front of the local task queue. If the local task queue is empty, then another PE is
chosen randomly, and a subproblem from the back of its task queue is "stolen". If that queue is
also empty, then the PE tries again with another randomly chosen PE. This is particularly
effective when used in problems based on the Divide and Conquer pattern. In this case, the
tasks at the back of the queue were inserted earlier and hence represent larger subproblems.
Thus, this approach tends to move large subproblems while handling the finer-grained
subproblems at the PE where they were created. This helps the load balance and reduces
overhead for the small tasks created in the deeper levels of recursion.

+ The Master/Worker pattern can be modified to provide a modest level of fault tolerance
[BDKO95]. The master maintains two queues: one for tasks that still need to be assigned to
workers and another for tasks that have already been assigned, but mot completed. After the
first queue is empty, the master can redundantly assign tasks from the "not completed" queue.
Hence, if a worker dies and therefore can't complete its tasks, another worker will cover the
unfinished tasks.

Examples

We will start with a generic description of a simple master/worker problem and then provide a
detailed example of using the Master/Worker pattern in the parallel implementation of a program to
generate the Mandelbrot set. Also see the Examples section of the Shared Queue pattern, which
illustrates the use of shared queues by developing a master/worker implementation of a simple Java
framework for programs using the Fork/Join pattern.

Generic solutions

The key to the master/worker program is the structure that holds the bag of tasks. The code in this
section uses atask queue. We implement the task queue as an instance of the Shared Queue pattem.

The master process, shown in Fig. 5.15, initializes the task queue, representing each task by an integer.
It then uses the Fork/Join pattern to create the worker processes or threads and wait for them to
complete. When they have completed, it consumes the results.
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Figure 5.15. Master process for a master/worker program. This assumes a shared
address space so the task and results queues are visible to all UEs. In this simple
version, the master initializes the queue, launches the workers, and then waits for the
workers to finish (that is, the ForkJoin command launches the workers and then waits
for them to finish before returning). At that point, results are consumed and the
computation completes.

Int const Ntasks // Number of tasks
Int const Nworkers // Number of workers

SharedQueue :: task queue; // task queue
SharedQueue :: global results; // queue to hold results

void master()

{

void worker()

// Create and initialize shared data structures
task queue = new SharedQueue()

global results = new SharedQueue()

for (int i = 0; i < N; i++)
enqueue(task queue, 1)

// Create Nworkers threads executing function Worker()
ForkJoin (Nworkers, Worker)

consume_the results (Ntasks)

Figure 5.16. Worker process for a master/worker program. We assume a shared
address space thereby making task_queue and global_results available to the master
and all workers. A worker loops over the task_queue and exits when the end of the
queue is encountered.

void worker()
{
Int :: 1
Result :: res

while ('empty(task queue) {
i = dequeue(task queue)
res = do lots of work(i)
enqueue(global results, res)

}

The worker, shown in Fig. 5.16, loops until the task queue is empty. Every time through the loop, it
takes the next task and does the indicated work, storing the results in a global results queue. When the
task queue is empty, the worker terminates.

Note that we ensure safe access to the key shared variables (task queue and global results)
by using instances of the Shared Queue pattern.

For programs written in Java, a thread-safe queue can be used to hold Runnable objects that are
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executed by a set of threads whose run methods behave like the worker threads described previously:
removing a Runnable object from the queue and executing its run method. The Executor
interface in the java.util. concurrent package in Java 2 1.5 provides direct support for the
Master/Worker pattern. Classes implementing the interface provide an execute method that takes a
Runnable object and arranges for its execution. Different implementations of the Executor
interface provide different ways of managing the Thread objects that actually do the work. The
ThreadPoolExecutor implements the Master/Worker pattern by using a fixed pool of threads to
execute the commands. To use Executor, the program instantiates an instance of a class
implementing the interface, usually using a factory method in the Executors class. For example,
the code in Fig. 5.17 sets up a ThreadPooLlExecutor that creates num threads threads. These
threads execute tasks specified by Runnable objects that are placed in an unbounded queue.

After the Executor has been created, a Runnable object whose run method specifies the
behavior of the task can be passed to the execute method, which arranges for its execution. For
example, assume the Runnable object is referred to by a variable task. Then for the executor defined
previously, exec.execute (task); will place the task in the queue, where it will eventually be
serviced by one of the executor's worker threads.

Figure 5.17. Instantiating and initializing a pooled executor

/*create a ThreadPoolExecutor with an unbounded queue*/
Executor exec = new Executors.newFixedThreadPool(num threads);

The Master/Worker pattern can also be used with SPMD programs and MPI. Maintaining the global
queues is more challenging, but the overall algorithm is the same. A more detailed description of
using MPI for shared queues appearsin the Implementation Mechanisms design space.

Mandelbrot set generation

Generating the Mandelbrot set is described in detail in the Examples section of the SPMD pattern.
The basic idea is to explore a quadratic recurrence relation at each point in a complex plane and color
the point based on the rate at which the recursion converges or diverges. Each point in the complex
plane can be computed independertly and hence the problem is embarrassingly parallel (see the Task
Parallelism pattern).

In Fig. 5.18, we reproduce the pseudocode given in the SPMD pattern for a sequential version of this
problem. The program loops over the rows of the image displaying one row at a time as they are
computed.

On homogeneous clusters or lightly-loaded shared-memory multiprocessor computers, approaches
based on the SPMD or Loop Parallelism patterns are most effective. On a heterogeneous cluster or a
multiprocessor system shared among many users (and hence with an unpredictable load on any given
PE at any given time), a master/worker approach will be more effective.

We will create a master/worker version of a parallel Mandelbrot program based on the high-level
structure described earlier. The master will be responsible for graphing the results. In some problems,
the results generated by the workers interact and it can be important for the master to wait until all the
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workers have completed before consuming results. In this case, however, the results do not interact, so
we split the fork and join operations and have the master plot results as they become available.
Following the FOrk, the master must wait for results to appear on the global results queue.
Because we know there will be one result per row, the master knows in advance how many results to
fetch and the termination condition is expressed simply in terms of the number of iterations of the
loop. After all the results have been plotted, the master waits at the Join function until all the
workers have completed, at which point the master completes. Code is shown in Fig. 5.19. Notice that
this code is similar to the generic case discussed earier, except that we have overlapped the processing
of the results with their computation by splitting the FOrk and Join. As the names imply, Fork
launches UEs running the indicated function and J01in causes the master to wait for the workers to
cleanly terminate. See the Shared Queue pattern for more details about the queue.

Figure 5.18. Pseudocode for a sequential version of the Mandelbrot set generation
program

Code View: Scroll / Show All

Int const Nrows // number of rows in the image
Int const RowSize // number of pixels in a row
Int const M // number of colors in color map

Real :: conv // divergence rate for a pixel

Array of Int :: color map (M) // pixel color based on Conv rate
Array of Int :: row (RowSize) // Pixels to draw

Array of real :: ranges(2) // ranges in X and Y dimensions

manage user input(ranges, color map) // input ranges, color map initialize graphics(RowSize
for (int 1 = 0; i<Nrows; i++){

compute Row (RowSize, ranges, row)

graph(i, RowSize, M, color _map, ranges, row)

} // end loop [i] over rows

Figure 5.19. Master process for a master/worker parallel version of the Mandelbrot set
generation program

Code View: Scroll / Show All

Int const Ntasks // number of tasks
Int const Nworkers // number of workers
Int const Nrows // number of rows in the image
Int const RowSize // number of pixels in a row
Int const M // number of colors in color map
typedef Row :: struct of {

int :: index

array of int :: pixels (RowSize)
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} temp row;
Array of Int :: color map (M) // pixel color based on conv rate
Array of Real :: ranges(2) // ranges in X and Y dimensions
SharedQueue of Int :: task queue; // task queue
SharedQueue of Row :: global results; // queue to hold results
void master()
{
void worker();
manage user input(ranges, Color map) // input ranges, color map
initialize graphics(RowSize, Nrows, M, ranges, color _map)
// Create and initialize shared data structures
task queue = new SharedQueue();
global results = new SharedQueue();
for (int i = 0; i < Nrows; i++)
enqueue(task queue, 1i);
// Create Nworkers threads executing function worker()
Fork (Nworkers, worker);
// Wait for results and graph them as they appear
for (int 1 = 0; i< Nrows; i++) {
while (empty(task queue) { // wait for results
wait
}
temp row = dequeue(global results)
graph(temp row index, RowSize, M, color map, ranges, Row.pixels)
}
// Terminate the worker UEs
Join (Nworkers);
}

Figure 5.20. Worker process for a master/worker parallel version of the Mandelbrot
set generation program. We assume a shared address space thereby making
task_queue, global_results, and ranges available to the master and the workers.

void worker()

{
Int i, irow;
Row temp row;

while ('empty(task queue) {
irow = dequeue(task queue);
compute Row (RowSize, ranges, irow, temp row.pixels)
temp row.index = irow
enqueue(global results, temp row);




The code for the worker is much simpler and is shown in Fig 5.20. First, note that we assume the
shared variables such as the queues and computation parameters are globally visible to the master and
the workers. Because the queue is filled by the master before forking the workers, the termination
condition is simply given by an empty queue. Each worker grabs a row index, does the computation,
packs the row index and the computed row into the result queue, and continues until the queue is
empty.

Known uses

This pattern is extensively used with the Linda programming environment. The tuple space in Linda is
ideally suited to programs that use the Master/Worker pattern, as described in depth in [CG91] and in

the survey paper [CGMS94].

The Master/Worker pattern is used in many distributed computing environments because these
systems must deal with extreme levels of unpredictability in the availability of resources. The
SETI@home project [SET] uses the Master/Worker pattern to utilize volunteers' Internet-connected
computers to download and analyze radio telescope data as part of the Search for Extraterrestrial
Intelligence (SETI). Programs constructed with the Calypso system [BDK95], a distributed computing
framework which provides system support for dynamic changes in the set of PEs, also use the
Master/Worker pattern. A parallel algorithm for detecting repeats in genomic data [RHBO3] uses the
Master/Worker pattern with MPI on a cluster of dual-processor PCs.

Related Patterns

This pattern is closely related to the Loop Parallelism pattern when the loops utilize some form of
dynamic scheduling (such as when the schedule (dynamic) clause is used in OpenMP).

Implementations of the Fork/Join pattern sometimes use the Master/Worker pattern behind the scenes.
This pattern is also closely related to algorithms that make use of the nextval function from
TCGMSG [Har91, WSG95, LDSH95]. The nextval function implements a monotonic counter. If
the bag of tasks can be mapped onto a fixed range of monotonic indices, the counter provides the bag

of tasks and the function of the master is implied by the counter.

Finally, the owner-computes filter discussed in the molecular dynamics example in the SPMD pattern
is essentially a variation on the master/worker theme. In such an algorithm, all the master would do is
set up the bag of tasks (loop iterations) and assign them to UEs, with the assignment of tasks to UEs
defined by the filter. Because the UEs can essentially perform this assignment themselves (by
examining each task with the filter), no explicit master is needed.

5.6. THE LOOP PARALLELISM PATTERN

Problem

Given a serial program whose runtime is dominated by a set of computationally intensive loops, how
can it be translated into a parallel program?
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Context

The overwhelming majority of programs used in scientific and engineering applications are expressed
in terms of iterative constructs; that is, they are loop-based. Optimizing these programs by focusing
strictly on the loops is a tradition dating back to the older vector supercomputers. Extending this
approach to modern parallel computers suggests a parallel algorithm strategy in which concurrent
tasks are identified as iterations of parallelized loos.

The advantage of structuring a parallel algorithm around parallelized loops is particularly important in
problems for which well-accepted programs already exist. In many cases, it isn't practical to massively
restructure an existing program to gain parallel performance. This is particularly important when the
program (as is frequently the case) contains convoluted code and poorly understood algorithms.

This pattern addresses ways to structure loop-based programs for parallel computation. When existing
code is available, the goal is to "evolve" a sequential program into a parallel program by a series of
transformations on the loops. Ideally, all changes are localized to the loops with transformations that
remove loop-carried dependencies andleave the overall program semantics unchanged. (Such
transformations are called semantically neutral transformations).

Not all problems can be approached in this loop-driven manner. Clearly, it will only work when the
algorithm structure has most, if not all, of the computationally intensive work buried in a manageable
number of distinct loops. Furthermore, the body of the loop must result in loop iterations that work
well as parallel tasks (that is, they are computationally intensive, express sufficient concurrency, and
are mostly independent).

Not all target computer systems align well with this style of parallel programming. If the code cannot
be restructured to create effective distributed data structures, some level of support for a shared
address space is essential in all but the most trivial cases. Finally, Amdahl's law and its requirement to
minimize a program's serial fraction often means that loop-based approaches are only effective for
systems with smaller numbers of PEs.

Even with these restrictions, this class of parallel algorithms is growing rapidly. Because loop-based
algorithms are the traditional approach in high-performance computing and are still dominant in new
programs, there is a large backlog of loop-based programs that need to be ported to modern parallel
computers. The OpenMP API was created primarily to support parallelization of these loop-driven
problems. Limitations on the scalability of these algorithms are serious, but acceptable, given that
there are orders of magnitude more machines with two or four processors than machines with dozens
or hundreds of processors.

This pattern is particularly relevant for OpenMP programs running on shared-memory
computers and for problems using the Task Parallelism and Geometric Decomposition
patterns.

Forces

+ Sequential equivalence. A program that yields identical results (except for round-off errors)
when executed with one thread or many threads is said to be sequentially equivalent (also
known as serially equivalent). Sequentially equivalent code is easier to write, easier to
maintain, and lets a single program source code work for serial and parallel machines.



Incremental parallelism (or refactoring). When parallelizing an existing program, it is much
easier to end up with a correct parallel program if (1) the parallelization is introduced as a
sequence of incremental transformations, one loop at a time, and (2) the transformations don't
"break" the program, allowing testing to be carried out after each transformation.

Memory utilization. Good performance requires that the data access patterns implied by the
loops mesh well with the memory hierarchy of the system. This can be at odds with the
previous two forces, causing a programmer to massively restructure loops.

Solution

This pattern is closely aligned with the style of parallel programming implied by OpenMP. The basic

approach consists of the following steps.

Find the bottlenecks. Locate the most computationally intensive loops either by inspection of
the code, by understanding the performance needs of each subproblem, or through the use of
program performance analysis tools. The amount of total runtime on representative data sets
contained by these loops will ultimately limit the scalability of the parallel program (see
Amdahl's law).

Eliminate loop-carried dependencies. The loop iterations must be nearly independent. Fnd
dependencies between iterations or read/write accesses and transform the code to remove or
mitigate them. Finding and removing the dependencies is dscussed in the Task Parallelism
pattern, while protecting dependencies wit synchronization constructs is discussed in the
Shared Data pattern.

Parallelize the loops. Split up the iterations among the UEs. To maintain sequential
equivalence, use semantically neutral directives such as those provided with OpenMP (as
described in the OpenMP appendix, Appendix A). Ideally, this should be done to one loop at a
time with testing and careful inspection carried out at each point to make sure race conditions
or other errors have not been introduced.

Optimize the loop schedule. The iterations must be scheduled for execution by the UEs so the
load is evenly balanced. Although the right schedule can often be chosen based on aclear
understanding of the problem, frequently it is necessary to experiment to find the optimal
schedule.

This approach is only effective when the compute times for the loop iterations are large enough to

compensate for parallel loop overhead. The number of iterations per loop is also important, because

having many iterations per UE provides greater scheduling flexibility. In some cases, it might be

necessary to transform the code to address these issues.

Two transformations commonly used are the following:

Merge loops. If a problem consists of a sequence of loops that have consistent loop limits, the
loops can often be merged into a single loop with more complex loop iterations, as shown in

Fig. 5.21.

Coalesce nested loops. Nested loops can often be combined into a single loop with a larger
combined iteration count, as shown in Fig. 5.22. The larger number of iterations can help
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overcome parallel loop overhead, by (1) creating more concurrency to better utilize larger
numbers of UEs, and (2) providing additional options for how the iterations are scheduled onto
UEs.

Parallelizing the loops is easily done with OpenMP by using the omp parallel for directive.
This directive tells the compiler to create a team of threads (the UEs in a shared-memory
environment) and to split up loop iterations among the team. The last loop in Fig. 5.22 is an example
of a loop parallelized with OpenMP. We describe this directive at a high level in the Implementation

Mechanisms design space. Syntactic details are included in the OpenMP appendix, Appendix A.

Notice that in Fig. 5.22 we had to direct the system to create copies ofthe indices 1 and j local to
each thread. The single most common error in using this pattern is to neglect to "privatize" key
variables. If 1 and j are shared, then updates of 1 and j by different UEs can collide and lead to
unpredictable results (that is, the program will contain a race condition). Compilers usually will not
detect these errors, so programmers must take great care to make sure they avoid these situations.

Figure 5.21. Program fragment showing merging loops to increase the amount of work
per iteration

Code View: Scroll / Show All

#define N 20
#define Npoints 512

void FFT(); // a function to apply an FFT

void invFFT(); // a function to apply an inverse FFT
void filter(); // a frequency space filter

void setH(); // Set values of filter, H

int main() {
int i, j;
double A[Npoints], B[Npoints], C[Npoints], H[Npoints];

setH(Npoints, H);
// do a bunch of work resulting in values for A and C

// method one: distinct loops to compute A and C
for(i=0; i<N; i++){
FFT (Npoints, A, B); // B
filter(Npoints, B, H); //
invFFT(Npoints, B, A); //

transformed A
B filtered with H
inv transformed B

> w

}

for(i=0; i<N; i++){
FFT (Npoints, C, B); // B
filter(Npoints, B, H); //
invFFT(Npoints, B, C); //

transformed C
B filtered with H
inv transformed B

O W

}

// method two: the above pair of loops combined into

// a single loop

for(i=0; i<N; i++){
FFT (Npoints, A, B); // B
filter(Npoints, B, H); //
invFFT (Npoints, B, A); //
FFT (Npoints, C, B); // B

transformed A
= B filtered with H
= inv transformed B
transformed C

>l
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filter(Npoints, B, H); // B
invFFT(Npoints, B, C); // C

B filtered with H
inv transformed B

}

return 0;

The key to the application of this pattern is to use semantically neutral modifications to produce
sequentially equivalent code. A semantically neutral modification doesn't change the meaning of the
single-threaded program. Techniques for loop merging and coalescing of nested loops described
previously, when used appropriately, are examples of semantically neutral modifications. In addition,
most of the directives in OpenMP are semantically neutral. This means hat adding the directive and
running it with a single thread will give the same result as running the original program without the
OpenMP directive.

Two programs that are semantically equivalent (when run with a single thread) need not both be
sequentially equivalent. Recall that sequentially equivalent means that the program will give the same
result (subject to round-off errors due to changing the order of floating-point operations) whether run
with one thread or many. Indeed, the (semantically neutral) transformations that eliminate loop-
carried dependencies are notivated by the desire to change a program that is not sequentially
equivalent to one that is. When transformations are made to improve performance, even though the
transformations are semantically neutral, one must be careful that sequential equivalence has not been
lost.

Figure 5.22. Program fragment showing coalescing nested loops to produce a single
loop with a larger number of iterations

Code View: Scroll / Show All

#define N 20
#define M 10

extern double work(); // a time-consuming function
int main() {

int i, j, ij;

double A[N][M];

// method one: nested loops

for(j=0; j<N; j++){
for(i=0; i<M i++){

A[i][j] = work(i,j);

}

}

// method two: the above pair of nested loops combined into
// a single loop.
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for(ij=0; 1j<N*M; ij++){
j = 1j/N;
i=ijoM;

ATi][j] = work(i,j);

// method three: the above loop parallelized with OpenMP.

// The omp pragma creates a team of threads and maps

// loop iterations onto them. The private clause

// tells each thread to maintain local copies of ij, j, and i.

#pragma omp parallel for private(ij, j, i)
for(ij=0; ij<N*M; ij++){

j = 1j/N;

i=1ij%M;

A[il[j]1 = work(i,j);
}
return 0;

It is much more difficult to define sequentially equivalent programs when the code mentions either a
thread ID or the number of threads. Algorithms that reference thread IDs and the number of threads
tend to favor particular threads or even particular numbers of threads, a situation that is dangerous
when the goal is a sequentially equivalent program.

When an algorithm depends on the thread ID, the programmer is using the SPMD pattern. This may
be confusing. SPMD programs can be loop-based. In fact, many of the examples in the SPMD pattern
are indeed loop-based algorithms. But they are not instances of the Loop Parallelism pattern, because
they display the hallmark trait of an SPMD program—namely, they use the UE ID to guide the
algorithm.

Finally, we've assumed that a directive-based system such as OpenMP is available when using this
pattern. It is possible, but clearly more difficult, to apply this pattern without such a directive-based
programming environment. For example, in object-oriented designs, one can use the Loop Parallelism
pattern by making clever use of anonymous classes with parallel iterators. Because the parallelism is
buried in the iterators, the conditions of sequential equivalence can be met.

Performance considerations

In almost every application of this pattern, especially when used with OpenMP, the assumption is
made that the program will execute on a computer that has multiple PEs sharing a single address
space. This address space is assumed to provide equal-time access to every element of memory.

Unfortunately, this is usually not the case. Memories on modern computers are hierarchical. There are
caches on the PEs, memory modules packaged with subsets of PEs, and other complications. While
great effort is made in designing shared-memory multiprocessor computers to make them act like
symmetric multiprocessor (SMP) computers, the fact is that all shared-memory computers display



some degree of nonuniformity in memory access times across the system. In many cases, these effects
are of secondary concem, and we can ignore how a program's memory access patterns match up with
the target system's memory hierarchy. In other cases, particularly on larger shared-memory machines,
programs must be explicitly organized according to the needs of the memory hierarchy. The most
common trick is to make sure the data access pattems during initialization of key data structures
match those during later computation using these data structures. This is discussed in more detail in
[Mat03, NAO1] and later in this pattern as part of the mesh computation example.

Another performance problem is false sharing. This occurs when variables are not shared between
UESs, but happen to reside on the same cache line. Hence, even though the program semantics implies
independence, each access by each UE requires movement of a cache line between UEs. This can
create huge overheads as cache lines are repeatedly invalidated and moved between UEs as these
supposedly independent variables are updated. An example of a program fragment that would incur
high levels of false sharing is shown in Fig. 5.23. In this code, we have a pair of nested loops. The
outermost loop has a small iteration count that will map onto the number of UEs (which we assume is
four in this case). The innermost loop runs over a large number of time-consuming iterations.
Assuming the iterations of the innermost loop are roughly equal, this loop should parallelize
effectively. But the updates to the elements of the A array inside the innermost loop mean each update
requires the UE in question to own the indicated cache line. Although the elements of A are truly
independent between UEs, they likely sit in the same cache line. Hence, every iteration in the
innermost loop incurs an expensive cache line invalidate-and-movement operation. Itis not
uncommon for this to not only destroy all parallel speedup, but to even cause the parallel program to
become slower as more PEs are added. The solution is to create a temporary variable on each thread
to accumulate values in the innermost loop. False sharing is still a factor, but only for the much
smaller outermost loop where the performance impact is negligible.

Figure 5.23. Program fragment showing an example of false sharing. The small array A
is held in one or two cache lines. As the UEs access A inside the innermost loop, they
will need to take ownership of the cache line back from the other UEs. This back-and-
forth movement of the cache lines destroys performance. The solution is to use a
temporary variable inside the innermost loop.

Code View: Scroll / Show All

#include <omp.h>
#define N 4 // Assume this equals the number of UEs
#define M 1000

extern double work(int, int); // a time-consuming function
int main() {

int i, j;
double A[N] = {0.0}; // Initialize the array to zero

// method one: a loop with false sharing from A since the elements
// of A are likely to reside in the same cache line.

#pragma omp parallel for private(j,i)
for(j=0; j<N; j++){
for(i=0; i<M; i++){
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A[j] += work(i,j);
}
}

// method two: remove the false sharing by using a temporary
// private variable in the innermost loop

double temp;

#pragma omp parallel for private(j,i, temp)
for(j=0; j<N; j++){
temp = 0.0;
for(i=0; i<M;i++){
temp += work(i,j);

}
A[j] += temp;
}
return 0;
}
Examples

As examples of this pattern in action, we will briefly consider the following:
+ Numerical integration to estimate the value of a definite integral using the trapezoid rule
+  Molecular dynamics, nonbonded energy computation
+  Mandelbrot set computation
+  Mesh computation

Each of these examples has been described elsewhere in detail. We will restrict our discussion in this
pattern to the key loops and how they can be parallelized.

Numerical integration
Consider the problem of estimating the value of 11 using Eq. 5.5.

Equation 5.5

1
1
'y [ —dx
Jo 1 + =

We use trapezoidal integration to numerically solve the integral. The idea s to fill the area under a
curve with a series of rectangles. As the width of the rectangles approaches 0, the sum of the areas of
the rectangles approaches the value of the integral.

A program to carry out this calculation on a single processor is shown in Fig. 5.24. To keep the
program as simple as possible, we fix the number of steps to use in the integration at 1,000,000. The
variable sum is initialized to O and the step size is computed as the range in X (equal to 1.0 in this
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case) divided by the number of steps. The area of each rectangle is the width (the step size) times the
height (the value of the integrand at the center of the interval). The width is a constant, so we pull it
out of the summation and multiply the sum of the rectangle heights by the step size, sStep, to get our
estimate of the definite integral.

Figure 5.24. Sequential program to carry out a trapezoid rule integration to compute

#include <stdio.h>
#include <math.h>

int main () {
int i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

step = 1.0/ (double) num steps;

for (i=0;i< num steps; i++)
{
X = (i+0.5)*step;
sum = sum + 4.0/ (1.0+x*x);
}
pi = step * sum;
printf("pi %lf\n",pi);
return 0;

Creating a parallel version of this program using the Loop Parallelism pattern is simple. There is only
one loop, so the inspection phase is tivial. To make the loop iterations independent, we recognize that
(1) the values of the variable X are local to each iteration, so this variable can be handled as a thread-
local or private variable and (2) the updates to Sum define a reduction. Reductions are supported by
the OpenMP API. Other than adding #include <omp .h>[2], only one additional line of code is
needed to create a parallel version of the program. The following is placed above the for loop:

(21 The OpenMP include file defines function prototypes and opaque data types used by
OpenMP.

#pragma omp parallel for private(x) reduction(+:sum)

The pragma tells an OpenMP compiler to (1) create a team of threads, (2) create a private copy of X
and sum for each thread, (3) initialize sum to O (the identity operand for addition), (4) map loop
iterations onto threads in the team, (5) combine local values of Sum into a single global value, and (6)
join the parallel threads with the single master thread. Each of these steps is described in detail in the
Implementation Mechanisms design space and the OpenMP appendix, Appendix A. For a non-

OpenMP compiler, this pragma is ignored and therefore has no effect on the program's behavior.
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Molecular dynamics.

Throughout this book, we have used molecular dynamics as a recurring example. Molecular dynamics
simulates the motions of a large molecular system. It uses an explicit time-stepping methodology
where at each time step the force on each atom is computed and standard techniques from classical
mechanics are used to compute how the forces change atomic motions.

The core algorithm, including pseudocode, was presented in Sec. 3.1.3 and in the SPMD pattern. The
problem comes down to a collection of computationally expensive loops over the atoms within the
molecular system. These are embedded in a top-level loop over time.

The loop over time cannot be parallelized because the coordinates and velocities from time step T -

1 are the starting point for time step t. The individual loops over atoms, however, can be parallelized.
The most important case to address is the nonbonded energy calculation. The code for this
computation is shown in Fig. 5.25. Unlike the approach used in the examples from the SPMD pattem,
we assume that the program and its data structures are unchanged from the serial case.

Figure 5.25. Pseudocode for the nonbonded computation in a typical parallel
molecular dynamics code. This is code is almost identical to the sequential version of
the function shown previously in Fig. 4.4.

function non _bonded forces (N, Atoms, neighbors, Forces)
Int N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forcez

loop [i] over atoms

loop [j] over neighbors(i)

forceX = non_bond force(atoms(l,i), atoms(1,j))
forceY = non bond force(atoms(2,i), atoms(2,j))
forceZ = non _bond force(atoms(3,i), atoms(3,j))
force, (1,1) += forceX; force(l,j) -= forceX;
force(2,i) += forceY; force{2, ]) -= forceY;
force{3,i) += forceZ; force{3,j) -= forceZ;

end loop [j]

end loop [i]
end function non bonded forces

We will parallelize the Loop [1] over atoms. Notice that the variables forceX, forcey, and
forceZ are temporary variables used inside an iteration. We will need to create local copies of these
private to each UE. The updates to the Torce arrays are reductions. Parallelization of this function
would therefore require adding a single directive before the loop over atoms:

#pragma omp parallel for private(j, forceX, forceY, forcez) \
reduction (+ : force)
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The work associated with each atom varies unpredictably depending on how many atoms are in "its
neighborhood". Although the compiler might be able to guess an effective schedule, in cases such as
this one, it is usually best to try different schedules to find the one that works best. The work per atom
is unpredictable, so one of the dynamic schedules available with OpenMP (and described in the
OpenMP appendix, Appendix A) should be used. This requires the addition of a single schedule
clause. Doing so gives us our final pragma for parallelizing this program:

#pragma omp parallel for private(j, forceX, forceY, forcez) \
reduction (+ : force) schedule (dynamic,10)

This schedule tells the compiler to group the loop iterations into blocks of size 10 and assign them
dynamically to the UEs. The size of the blocks is arbitrary and chosen to balance dynamic scheduling
overhead versus how effectively the load can be balanced.

OpenMP 2.0 for C/C++ does not support reductions over arrays so the reduction would need to be
done explicitly. This is straightforward and is shown in Fig. 5.11. A future release of OpenMP will
correct this deficiency and support reductions over arrays for all languages that support OpenMP.

The same method used to parallelize the nonbonded force computation could be used throughout the
molecular dynamics program. The performance and scalability will lag the analogous SPMD version
of the program. The problem is that each time a parallel directive is encountered, a new team of
threads is in principle created. Most OpenMP implementations use a thread pool, rather than actually
creating a new team of threads for each parallel region, which minimizes thread creation and
destruction overhead. However, this method of parallelizing the computation still adds significant
overhead. Also, the reuse of data from caches tends to be poor for these approaches. In principle, each
loop can access a different pattern of atoms on each UE. This eliminates the capability for UEs to
make effective use of values already in cache.

Even with these shortcomings, however, these approaches are commonly used when the goal is extra

parallelism on a small shared-memory system [BBE"99]. For example, one might use an SPMD
version of the molecular dynamics program across a cluster and then use OpenMPto gain extra
performance from dual processors or from microprocessors utilizing simultaneous multithreading

[MPSO02].

Mandelbrot set computation

Consider the well-known Mandelbrot set [Dou86]. We discuss this problem and its parallelization as a
task-parallel problem in the Task Parallelism and SPMD pattems. Each pixel is colored based on the

behavior of the quadratic recurrence relation in Eq. 5.6.
Equation 5.6
A n+1 Z 2 + o

Ll

C and Z are complex numbers and the recurrence is started with Z,= C. The image plots the
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imaginary part of C on the vertical axis (-1.5 to 1.5) and the real part on the horizontal axis (-1 to 2).
The color of each pixel is black if the recurrence relation converges to a stable value or is colored
depending on how rapidly the relation diverges.

Pseudocode for the sequential version of this code is shown in Fig. 5.26. The interesting part of the
problem is hidden inside the routine compute Row (). The details of this routine are not important
for understanding the parallel algorithm, however, so we will not show them here. At a high level, the
following happens for each point in the row.

« Each pixel corresponds to a value of C in the quadratic recurrence. We compute this value
based on the input range and the pixel indices.

Figure 5.26. Pseudocode for a sequential version of
the Mandelbrot set generation program

Code View: Scroll / Show All

Int const Nrows // number of rows in the image
Int const RowSize // number of pixels in a row
Int const M // number of colors in color map

Real :: conv // divergence rate for a pixel

Array of Int :: color map (M) // pixel color based on conv rate
Array of Int :: row (RowSize) // Pixels to draw

Array of Real :: ranges(2) // ranges in X and Y dimensions

manage user input(ranges, color map) // input ranges,
//color map initialize graphics(RowSize, Nrows, M, ranges, color _map)

for (int i = 0; i<Nrows; i++)({
compute Row (RowSize, ranges, row)

graph(i, RowSize, M, color-map, ranges, row)
} // end loop [i] over rows

«  We then compute the terms in the recurrence and set the value of the pixel based on whether it
converges to a fixed value or diverges. If it diverges, we set the pixel value based on the rate of
divergence.

Once computed, the rows are plotted to make the well-known Mandelbrot set images. The colors used
for the pixels are determined by mapping divergence rates onto a color map.

Creating a parallel version of this program using the Loop Parallelism pattern is trivial. The iterations
of the loop over rows are independent. All we need to do is make sure each thread has its own row to
work on. We do this with the single pragma:

#pragma omp parallel for private(row)

The scheduling can be a bit tricky because work associated with each row will vary considerably
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depending on how many points diverge. The programmer should try several different schedules, but a
cyclic distribution is likely to provide an effective load balance. In this schedule, the loop iterations
are dealt out like a deck of cards. By interleaving the iterations among a set of threads, we are likely to
get a balanced load. Because the scheduling decisions are static, the overhead incurred by this
approach is small.

#pragma omp parallel for private(Row) schedule(static, 1)

For more information about the schedule clause and the different options available to the parallel
programmer, see the OpenMP appendix, Appendix A.

Notice that we have assumed that the graphics package is thread-safe. This means that multiple
threads can simultaneously call the library without causing any problems. The OpenMP specifications
require this for the standard I/O library, but not for any other libraries. Therefore, it may be necessary
to protect the call to the graph function by placing it inside a critical section:

#pragma critical
graph(i, RowSize, M, color _map, ranges, row)

We describe this construct in detail in the Implementation Mechanisms design space and in the

OpenMP appendix, Appendix A. This approach would work well, but it could have serious
performance implications if the rows took the same time to compute and the threads all tried to graph
their rows at the same time.

Mesh computation

Consider a simple mesh computation that solves the 1D heat-diffusion equation. The details of this
problem and its solution using OpenMP are presented in the Geometric Decomposition pattern. We
reproduce this solution in Fig. 5.27.

This program would work well on most shared-memory computers. A careful analysis of the program
performance, however, would expose two performance problems. First, the Single directive required
to protect the swapping of the shared pointers adds an extra barrier, thereby greatly increasing the
synchronization overhead. Second, on NUMA computers, memory access overhead is likely to be
high because we've made no effort to keep the arrays near the PEs that will be manipulating them.

We address both of these problems in Fig. 5.28. To eliminate the need for the single directive, we
modify the program so each thread has its own copy of the pointers UK and ukp1. This can be done
with a private clause, but to be useful, we need the new, private copies of UK and ukp1 to point to
the shared arrays comprising the mesh of values. We do this with the firstprivate clause applied
to the parallel directive that creates the team of threads.

The other performance issue we address, minimizing memory access overhead, is more subtle. As
discussed earlier, to reduce memory traffic in the system, it is important to keep the data close to the
PEs that will work with the data. On NUMA computers, this corresponds to making sure the pages of
memory are allocated and "owned" by the PEs that will be working with the data contained in the
page. The most common NUMA page-placement algonthm is the "first touch" algorithm, in which
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the PE first referencing aregion of memory will have the page holding that memory assigned to it. So
a very common technique in OpenMP programs is to initialize data in parallel using the same loop
schedule as will be used later in the computations.

Figure 5.27. Parallel heat-diffusion program using OpenMP. This program is described
in the Examples section of the Geometric Decomposition pattern.

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[]) {
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int i=1; i < NX-1; ++i)
uk[i] = 0.0;
for (int i = 0; i < NX; ++1i)
ukpl [i] = uk[i];
}

void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukpl = malloc(sizeof(double) * NX);
double *temp;
int i,k;

double dx = 1.0/NX; double dt = 0.5*dx*dx;
#pragma omp parallel private (k, i)
{
initialize(uk, ukpl);

for (k = 0; k < NSTEPS; ++k) {
#pragma omp for schedule(static)
for (i =1; i < NX-1; ++i) {

ukpl[il=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

¥
/* "copy" ukpl to uk by swapping pointers */
#pragma omp single
{temp = ukpl; ukpl = uk; uk = temp;}

}

}

return 0;

We do this by first changing the initialization slightly so the initialization loop is identical to the
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computation loop. We then use the same loop parallelization directive on the initialization loop as on
the computational loop. This doesn't guarantee an optimal mapping of memory pages onto the PEs,
but it is a portable way to improve this mapping and in many cases come quite close to an optimal
solution.

Figure 5.28. Parallel heat-diffusion program using OpenMP, with reduced thread
management overhead and memory management more appropriate for NUMA
computers

Code View: Scroll / Show All

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpl[]) {
int i’
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
ukpl[NX-1] = 0.0;
#pragma omp for schedule(static)
for (1 = 1; i < NX-1; ++i){
uk[i] = 0.0;
ukpl[i] 0.0;

I ©

}
void printValues(double uk[], int step) { /* NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm */
double *uk = malloc(sizeof(double) * NX);
double *ukpl = malloc(sizeof(double) * NX); double *temp;
int i,k;

double dx = 1.0/NX; double dt = 0.5*dx*dx;

#pragma omp parallel private (k, i, temp) firstprivate(uk, ukpl)
{

initialize(uk, ukpl);

for (k = 0; k < NSTEPS; ++k)
{ #pragma omp for schedule(static)
for (1 =1; i < NX-1; ++1) {
ukpl[i]=uk[i]+ (dt/(dx*dx))*(uk[i+1]-2*uk[i]+uk[i-1]);

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;
}
}

return 0;
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Known uses

The Loop Parallelism pattern is heavily used by OpenMP programmers. Annual workshops are held in
North America (Wompat: Workshop on OpenMP Applications and Tools), Europe (EWOMP:
European Workshop on OpenMP), and Japan (WOMPEI: Workshop on OpenMP Experiences and
Implementations) to discuss OpenMP and its use. Proceedings from many of these workshops are
widely available [VIKTO0, Sci03, EVO1] and are full of examples of the Loop Parallelism pattern.

Most of the work on OpenMP has been restricted to shared-memory multiprocessor machines for
problems that work well with a nearly flat memory hierarchy. Work has been done to extend OpenMP
applications to more complicated memory hierarchies, including NUMA machines [NAO1, SSGFOO0]
and even clusters [HLCZ99, SHTSO1].

Related Patterns

The concept of driving parallelism from a collection of loops is general and used with many patterns.
In particular, many problems using the SPMD pattem are loop-based. They use the UE ID, however,
to drive the parallelization of the loop and hence don't perfectly map onto this pattern. Furthermore,
problems using the SPMD pattern usually include some degree of parallel logic in between the loops.
This allows them to decrease their serial fraction and is one ofthe reasons why SPMD programs tend
to scale better than programs using the Loop Parallelism pattern.

Algorithms targeted for shared-memory computers that use the Task Parallelism or Geometric
Decomposition patterns frequently use the Loop Parallelism pattern.

5.7. THE FORK/JOIN PATTERN

Problem

In some programs, the number of concurrent tasks varies as the program executes, and the way these
tasks are related prevents the use of simple control structures such as parallel loops. How can a
parallel program be constructed around such complicated sets of dynamic tasks?

Context

In some problems, the algorithm imposes a general and dynamic parallel contol structure. Tasks are
created dynamically (that is, forked) and later terminated (that is, joined with the forking task) as the
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program continues to execute. In most cases, the relationships between tasks are simple, and dynamic
task creation canbe handled with parallel loops (as described in the Loop Parallelism pattern) or

through task queues (as described in the Master/Worker pattern). In other cases, relationships between
the tasks within the algorithm must be captured in the way the tasks are managed. Examples include
recursively generated task structures, highly irregular sets of connected tasks, and problems where
different functions are mapped ornto different concurrent tasks. In each of these examples, tasks are
forked and later joined with the parent task (that is, the task that executed the fork) and the other tasks
created by the same fork. These problems are addressed in the Fork/Join pattern.

As an example, consider an algorithm designed using the Divide and Conquer pattem. As the
program execution proceeds, the problem is split into subproblems and new tasks are recursively
created (or forked) to concurrently execute subproblems; each of these tasks may in turn be further
split. When all the tasks created to handle a particular split have terminated and joined with the parent
task, the parent task continues the computation.

This pattern is particularly relevant for Java programs running on shared-memory
computers and for problems using the Divide and Conquer and Recursive Data patterns.
OpenMP can be used effectively with this pattern when the OpenMP environment
supports nested parallel regions.

Forces

« Algorithms imply relationships between tasks. In some problems, there are complex or
recursive relations between tasks, and these relations need to be created and terminated
dynamically. Although these can be mapped onto familiar control structures, the design in
many cases is much easier to understand if the structure of the tasks is mimicked by the
structure of the UEs.

+ A one-to-one mapping of tasks onto UEs is natural in these algorithms, but that must be
balanced against the number of UEs a system can handle.

+ UE creation and destruction are costly operations. The algorithm might need to be recast to
decrease these operations so they don't adversely affect the program's overall performance.

Solution

In problems that use the Fork/Join pattern, tasks map onto UEs in different ways. We will discuss two
different approaches to the solution: (1) a simple direct mapping where there is one task per UE, and
(2) an indirect mapping where a pool of UEs work on sets of tasks.

Direct task/UE mapping

The simplest case is one where we map each sub-task to a UE. As new subtasks are forked, new UEs
are created to handle them. This will build up corresponding sets of tasks and UEs. In many cases,
there is a synchronization point where the main task waits for its subtasks to finish. This is called a
join. After a subtask terminates, the UE handling it will be destroyed. We will provide an example of
this approach later using Java.

The direct task/UE mapping solution to the Fork/Join pattern is the standard programming model in
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OpenMP. A program begins as a single thread (the master thread). A parallel construct forks a team of
threads, the threads execute within a shared address space, and at the end of the parallel construct, the
threads join back together. The original master thread then continues execution until the end of the
program or until the next parallel construct.]3] This structure underlies the implementation of the
OpenMP parallel loop constructs described in the L.oop Parallelism pattern.

311 principle, nested parallel regions in OpenMP programs also map onto this direct-

mapping solution. This approach has been successfully used in [AML99]. The OpenMP
specification, however, lets conforming OpenMP implementations "serialize" nested
parallel regions (that is, execute them with a team of size one). Therefore, an OpenMP
program cannot depend on nested parallel regions actually forking additional threads, and
programmers must be cautious when using OpenMP for all but the simplest fork/join
programs.

Indirect task/UE mapping

Thread and process creation and destruction is one of the more expensive operations that occur in
parallel programs. Thus, if a program contains repeated fork and join sections, the simple solution,
which would require repeated destruction and creation of UEs, might not be efficient enough. Also, if
at some point there are many more UEs than PEs, the program might incur unacceptable overhead due
to the costs of context switches.

In this case, it is desirable to avoid the dynamic UE creation by implementing the fork/join paradigm
using a thread pool. The idea is to create a (relatively) static set of UEs before the first fork operation.
The number of UEs is usually the same as the number of PEs. The mapping of tasks to UEs then
occurs dynamically using a task queue. The UEs themselves are not repeatedly created and destroyed,
but simply mapped to dynamically created tasks as the need arises. This approach, although
complicated to implement, usually results in efficient programs with good load balance. We will
discuss a Java program that uses this approach in the Examples section of this pattern.

In OpenMP, there is some controversy over the best approach to use with this indirect-mapping
approach [Mat03]. An approach gaining credibility is one based on a new, proposed OpenMP
workshare construct called a taskqueue [SHPTO0Q]. The proposal actually defines two new
constructs: a taskqueue and a task. As the name implies, the programmer uses a taskqueue
construct to create the task queue. Inside the taskqueue construct, a task construct defines a
block of code that will be packaged into a task and placed on the task queue. The team of threads (as
usually created with a parallel construct), playing the role of a thread pool, pulls tasks off the queue
and executes them until the queue is empty.

Unlike OpenMP parallel regions, taskqueues can be dependably nested to produce a hierarchy of
task queues. The threads work across task queues using work-stealing to keep all threads fully
occupied untl all of the queues are empty. This approach has been shown to work well [SHPTO00] and
is likely to be adopted in a future OpenMP specification.

Examples

As examples of this pattern, we will consider direct-mapping and indirect-mapping implementations
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of a parallel mergesort algorithm. The indirect-mapping solution makes use of a Java package FJTasks
[Lea00b]. The Examples section of the Shared Queue pattern develops a similar, but simpler,
framework.

Mergesort using direct mapping

As an example, consider the straightforward implementation of a method to performs a mergesort in
Java shown in Fig. 5.29. The method takes a reference to the array to be sorted and sorts the elements
with indices ranging from 10 (inclusive) to hi (exclusive). Sorting the entire array A is done by
invoking sort(A,0,A.length).

Figure 5.29. Parallel mergesort where each task corresponds to a thread

Code View: Scroll / Show All

static void sort(final int[] A,final int lo, final int hi)
{ int n = hi - 1lo;

//if not large enough to do in parallel, sort sequentially
if (n <= THRESHOLD){ Arrays.sort(A,lo,hi); return; }
else
{ //split array
final int pivot = (hi+lo)/2;

//create and start new thread to sort lower half
Thread t = new Thread()
{ public void run()
{ sort(A, lo, pivot); }
}.

t.start();

//sort upper half in current thread
sort(A,pivot,hi);

//wait for other thread
try{t. join();}
catch (InterruptedException e){Thread.dumpStack();}

//merge sorted arrays

int [] ws = new int [n] ;

System.arraycopy(A,lo,ws,0,n);

int wpivot = pivot - lo;

int wlo = 0;

int whi = wpivot;

for (int i = lo; i !'= hi; i++)

{ if((wlo < wpivot) && (whi >= n II ws[wlo] <= ws[whi]))
{ A[i] = ws[wlo++]; }
else { A[i] = ws[whi++];

}

}
}
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The first step of the method is to compute the size of the segment of the array to be sorted. If the size
of the problem is too small to make the overhead of sorting it in parallel worthwhile, then a sequential
sorting algorithm is used (in this case, the tuned quicksort implementation provided by the Arrays
class in the java.util package). If the sequential algorithm is not used, then a pivot point is
computed to divide the segment to be sorted. A new thread is forked to sort the lower half of the array,
while the parent thread sorts the upper half. The new task is specified by the run method of an
anonymous inner subclass of the Thread class. When the new thread has finished sorting, it
terminates. When the parent thread finishes sorting, it performs a join to wait for the child thread to
terminate and then merges the two sorted segments together.

This simple approach may be adequate in fairly regular problems where appropriate threshold values
can easily be determined. We stress that it is crucial that the threshold value be chosen appropriately:
If too small, the overhead from too many UEs can make the program run even slower than a sequential
version. If too large, potential concurrency remains unexploited.

Figure 5.30. Instantiating FJTaskRunnerGroup and invoking the master task

Code View: Scroll / Show All

int groupSize = 4; //number of threads
FJTaskRunnerGroup group = new FJTaskRunnerGroup(groupSize); group.invoke(new FJTask()
{ public void run()
{ synchronized(this)
{ sort(A,0, A.length); }

Mergesort using indirect mapping

This example uses the FJTask framework included as patt of the public-domain package
EDU.oswego.cs.dl.util.concurrent [Lea00b].[4] Instead of creating a new thread to
execute each task, an instance of a (subclass of) FJTask is created. The package then dynamically
maps the FJTask objects to a static set of threads for execution. Although less general than a
Thread, an FJTask is a much lighter-weight object than a thread and is thus much cheaper to create

and destroy. In Fig. 5.30 and Fig. 5.31, we show how to modify the mergesort example to use
FJTasks instead of Java threads. The needed classes areimported from package
EDU.oswego.cs.dl.util.concurrent. Before starting any FJTasks, a
FJTaskRunnerGroup must be instantiated, as shown in Fig. 5.30. This creates the threads that will
constitute the thread pool and takes the number of threads (group size) as a parameter. Once
instantiated, the master task is invoked using the 1nvoke method on the FJTaskRunnerGroup.

(4] This package was the basis for the new facilities to support concurrency introduced via
JSR166 in Java 2 1.5. Its author, Doug Lea, was a lead in the JSR effort. The FJTask
framework is not part of Java 2 1.5, but remains available in [LeaO0b].
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The sort routine itself is similar to the previous version except that the dynamically created tasks are
implemented by the run method of an FJTask subclass instead of a Thread subclass. The fork
and j0oin methods of FJTask are used to fork and join the task in place of the Thread start
and j0in methods. Although the underlying implementation is different, from the programmer's
viewpoint, this indirect method is very similar to the direct implementation shown previously.

A more sophisticated parallel implementation of mergesort is provided with the FJTask examples in
the util. concurrent distribution. The package also includes functionality not illustrated by this
example.

Known uses

The documentation with the FJTask package includes several applications that use the Fork/Join
pattern. The most interesting of these include Jacobi iteration, a parallel divide-and-conquer matrix
multiplication, a standard parallel-processing benchmark program that simulates heat diffusion across
a mesh, LU matrix decomposition, integral computation using recursive Gaussian Quadrature, and an
adaptation of the Microscope game.[5]

(5] According to the documentation for this application, this is the game that is played
while looking through the microscope in the laboratory in The 7th Guest (T7G; A CD-
ROM game for PCs). It is a board game in which two players compete to fill spaces on the
board with their tiles, something like Reversi or Othello.

Figure 5.31. Mergesort using the FJTask framework

static void sort(final int[] A,final int lo, final int hi) {
int n = hi - lo;
if (n <= THRESHOLD){ Arrays.sort(A,lo,hi); return; }
else {
//split array
final int pivot = (hi+lo)/2;

//override run method in FJTask to execute run method
FJTask t = new FJTask()
{ public void run()
{ sort(A, lo, pivot); }
}

//fork new task to sort lower half of array
t.fork();

//perform sort on upper half in current task
sort(A,pivot,hi);

//join with forked task
t.join();

//merge sorted arrays as before, code omitted

Because OpenMP is based on a fork/join programming model, one might expect heavy use of the
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Fork/Join pattern by OpenMP programmers. The reality is, however, that most OpenMP programmers
use either the Loop Parallelism or SPMD patterns because the current OpenMP standard provides
poor support for true nesting of parallel regions. One of the few published accounts of using the
Fork/Join pattern with standard OpenMP is a paper where nested parallelism was used to provide fine-
grained parallelism in an implementation of LAPACK [ARVO03].

Extending OpenMP so it can use the Fork/Join pattern in substantial applications is an active area of
research. We've mentioned one of these lines of investigation for the case of the indirect-mapping
solution of the Fork/Join pattern (the task queue [SHPTOQ]). Another possibility is to support nested
parallel regions with explicit groups of threads for the direct-mapping solution of the Fork/Join

pattern (the Nanos OpenMP compiler [GAM*00)).

Related Patterns
Algorithms that use the Divide and Conquer pattern use the Fork/Join pattem.

The Loop Parallelism pattern, in which threads are forked just to handle a single parallel loop, is an
instance of the Fork/Join pattern.

The Master/Worker pattern, which in turn uses the Shared Queue pattern, can be used to implement
the indirect-mapping solution.

5.8. THE SHARED DATA PATTERN

Problem

How does one explicitly manage shared data inside a set of concurrent tasks?

Context

Most of the Algorithm Structure patterns simplify the handling of shared data by using techniques to
"pull" the shared data "outside" the set of tasks. Examples include replication plus reduction in the

Task Parallelism pattern and altemating computation and communication in the Geometric
Decomposition pattern. For certain problems, however, these techniques do not apply, thereby
requiring that shared data be explicitly managed inside the set of concurrent tasks.

For example, consider the phylogeny problem from molecular biology, as described in [YWC96]. A
phylogeny is a tree showing relationships between organisms. The problem consists of generating
large numbers of subtrees as potential solutions and then rejecting those that fail to meet the various
consistency criteria. Different sets of subtrees can be examined concurrently, so a natural task
definition in a parallel phylogeny algorithm would be the processing required for each set of subtrees.
However, not all sets must be examined—if a set S is rejected, all supersets of S can also be rejected.
Thus, it makes sense to keep track of the sets still to be examined and the sets that have been rejected.
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Given that the problem naturally decomposes into nearly independent tasks (one per set), the solution
to this problem would use the Task Parallelism pattern. Using the pattern is complicated, however, by

the fact that all tasks need both read and write access to the data structure of rejected sets. Also,
because this data structure changes during the computation, we cannot use the replication technique
described in the Task Parallelism pattern. Partitioning the data structure and basing a solution on this

data decomposition, as described in the Geometric Decomposition pattern, might seem like a good

alternative, but the way in which the elements are rejected is unpredictable, so any data decomposition
is likely to lead to a poor load balance.

Similar difficulties can arise any time shared data must be explicitly managed inside a set of
concurrent tasks. The common elements for problems that need the Shared Data pattern are (1) at
least one data structure is accessed by multiple tasks in the course of the program's execution, (2) at
least one task modifies the shared data structure, and (3) the tasks potentially need to use the modified
value during the concurrent computation.

Forces

+ The results of the computation must be correct for any ordering of the tasks that could occur
during the computation.

« Explicitly managing shared data can incur parallel overhead, which must be kept small if the
program is to run efficiently.

+ Techniques for managing shared data can limit the number of tasks that can run concurrently,
thereby reducing the potential scalability of an algorithm.

« If the constructs used to manage shared data are not easy to understand, the program will be
more difficult to maintain.

Solution

Explicitly managing shared data can be one of the more error-prone aspects of designing a parallel
algorithm. Therefore, a good approach is to start with a solution that emphasizes simplicity and clarity
of abstraction and then try more complex solutions if necessary to obtain acceptable performance.
The solution reflects this approach.

Be sure this pattern is needed

The first step is to confirm that this pattern is truly needed; it might be worthwhile to revisit decisions
made earlier in the design process (the decomposition into tasks, for example) to see whether different
decisions might lead to a solution that fits one of the Algorithm Structure patterns without the need to
explicitly manage shared data. For example, if the Task Parallelism pattern is a good fit, it is

worthwhile to review the design and see if dependencies canbe managed by replication and reduction.

Define an abstract data type

Assuming this pattern must indeed be used, start by viewing the shared data as an abstract data type
(ADT) with a fixed set of (possibly complex) operations on the data. For example, if the shared data
structure is a queue (see the Shared Queue pattern), these operations would consist of put (enqueue),
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take (dequeue), and possibly other operations, such as a test for an empty queue or a test to see if a
specified element is present. Each task will typically perform a sequence of these operations. These
operations should have the property that if they are executed serially (that is, one at a time, without
interference from other tasks), each operation will leave the data in a consistent state.

The implementation of the individual operations will most likely involve a sequence of lower-level
actions, the results of which should not be visible to other UEs. For example, if we implemented the
previously mentioned queue using a linked list, a "take" operation actually involves a sequence of
lower-level operations (which may themselves consist of a sequence of even lower-level operations):

1. Use variable Tirst to obtain a reference to the first object in the list.
2. From the first object, get a reference to the second object in the list.
3. Replace the value of Tirst with the reference to the second object.
4. Update the size of the list.

5. Return the first element.

If two tasks are executing "take" operations concurrently, and these lower-level operations are
interleaved (that is, the "take" operations are not being executed atomically), the result could easily be
an inconsistent list.

Implement an appropriate concurrency-control protocol

After the ADT and its operations have been identified, the objective is to implement a concurrency-
control protocol to ensure that these operations give the same results as if they were executed serially.
There are several ways to do this; start with the first technique, which is the simplest, and then try the
other more complex techniques if it does not yield acceptable performance. These more complex
techniques can be combined if more than one is applicable.

One-at-a-time execution. The easiest solution is to ensure that the operations are indeed executed
serially.

In a shared-memory environment, the most straightforward way to do this is to treat each operation as
part of a single critical section and use a mutual-exclusion protocol to ensure that only one UE at a
time is executing its critical section. This means that all of the operations on the data are mutually
exclusive. Exactly how this is implemented will depend on the facilities of the target programming
environment. Typical choices include mutex locks, synchronized blocks, critical sections, and

semaphores. These mechanisms are described in the Implementation Mechanisms design space. If the
programming language naturally supports the implementation of abstract data types, it is usually
appropriate to implement each operation as a procedure or method, with the mutual-exclusion
protocol implemented in the method itself.

In a message-passing environment, the most straightforward way to ensure serial execution is to assign
the shared data structure to a particular UE. Each operation should correspond to a message type;
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other processes request operations by sending messages to the UE managing the data structure, which
processes them serially.

In either environment, this approach is usually not difficult to implement, but it can be overly
conservative (that is, it might disallow concurrent execution of operations that would be safe to
execute simultaneously), and it can produce a bottleneck that negatively affects the performance of the
program. If this is the case, the remaining approaches described in this section should be reviewed to
see whether one of them can reduce or eliminate this bottleneck and give better performance.

Noninterfering sets of operations. One approach to improving performance begins by analyzing the
interference between the operations. We say that operation A interferes with operation B if A writes a
variable that B reads. Notice that an operation may interfere with itself, which would be a concem if
more than one task executes the same operation (for example, more than one task executes "take"
operations on a shared queue). It may be the case, for example, that the operations fall into two
disjoint sets, where the operations in different sets do not interfere with each other. In this case, the
amount of concurrency can be increased by treating each of the sets as a different critical section. That
is, within each set, operations execute one a time, but operations in different sets can proceed
concurrently.

Readers/writers. If there is no obvious way to partition the operations into disjoint sets, consider the
type of interference. It may be the case that some of the operations modify the data, but others only
read it. For example, if operation A is a writer (both reading and writing the data) and operation B is a
reader (reading, but not writing, the data), A interferes with itself and with B, but B does not interfere
with itself. Thus, if one task is performing operation A, no other task should be able to execute either
A or B, but any number of tasks should be able to execute B concurrently. In such cases, it may be
worthwhile to implement a readers/writers protocol that will allow this potential concurrency to be
exploited. The overhead of managing the readers/writers protocol is greater than that of simple mutex
locks, so the length of the readers' computation should be long enough to make this overhead
worthwhile. In addition, there should generally be a larger number of concurrent readers than writers.

The java.util.concurrent package provides readAvrite locks to support the readers/writers
protocol. The code in Fig. 5.32 illustrates how these locks are typically used: First instantiate a
ReadWritelock, and then obtain its read and write locks. ReentrantReadWritelLockis a
class that implements the ReadWritelock interface. To perform a read operation, the read lock
must be locked. To perform a write operation, the write lock must be locked. The semantics of the
locks are that any number of UEs can simultaneously hold the read lock, but the write lock is
exclusive; that is, only one UE can hold the write lock, and if the write lock is held, no UEs can hold
the read lock either.

Figure 5.32. Typical use of read/write locks. These locks are defined in the
java.util.concurrent.locks package. Putting the unlock in the finally block ensures
that the lock will be unlocked regardless of how the try block is exited (normally or
with an exception) and is a standard idiom in Java programs that use locks rather than
synchronized blocks.

Code View: Scroll / Show All

class X {
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ReadWriteLock rw = new ReentrantReadWritelLock() ;
// ...

/*operation A is a writer*/
public void A() throws InterruptedException {
rw.writelock().lock(); //lock the write lock

try {
// ... do operation A
}

finally {
rw.writeLock().unlock(); //unlock the write lock
}

}

/*operation B is a reader*/
public void B() throws InterruptedException {
rw.readLock().lock(); //lock the read lock
try {
// ... do operation B
}

finally {
rw.readLock().unlock(); //unlock the read lock
}

}
}

Readers/writers protocols are discussed in [And00] and most operating systems texts.

Reducing the size of the critical section. Another approach to improving performance begins with
analyzing the implementations of the operations in more detail. It may be the case that only part of the
operation involves actions that interfere with other operations. If so, the size of the critical section can
be reduced to that smaller part. Notice that this sort of optimization is very easy to get wrong, so it
should be attempted only if it will give significant performance improvements over simpler
approaches, and the programmer completely understands the interferences in question.

Nested locks. This technique is a sort of hybrid between two of the previous approaches,
noninterfering operations and reducing the size of the critical section. Suppose we have an ADT with
two operations. Operation A does a lot of work both reading and updating variable X and then reads
and updates variable Y in a single statement. Operation B reads and writes Y. Some analysis shows
that UEs executing A need to exclude each other, UEs executing B need to exclude each other, and
because both operations read and update Y, technically, A and B need to mutually exclude each other
as well. However, closer inspection shows that the two operations are almost noninterfering. If it
weren't for that single statement where A reads and updates Y, the two operations could be
implemented in separate critical sections that would allow one A and one B to execute concurrently. A
solution is to use two locks, as shown in Fig. 5.33. A acquires and holds LoCKA for the entire
operation. B acquires and holds 10 CkB for the entire operation. A acquires LoCKB and holds it only
for the statement updating Y.

Whenever nested locking is used, the programmer should be aware of the potential for deadlocks and
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double-check the code. (The classic example of deadlock, stated in terms of the previous example, is
as follows: A acquires LoCKA and B acquires LoCKB. A then tries to acquire LoCkB and B tries to
acquire LOCKA. Neither operation can now proceed.) Deadlocks can be avoided by assigning a partial
order to the locks and ensuring that locks are always acquired in an order that respects the partial
order. In the previous example, we would define the order to be LOCKA < 1ockB and ensure that
LocKkA is never acquired by a UE already holding LockB.

Application-specific semantic relaxation. Yet another approach is to consider partially replicating

shared data (the software caching described in [YWC'96]) and perhaps even allowing the copies to be
inconsistent if this can be done without affecting the results of the computation. For example, a
distributed-memory solution to the phylogeny problem described earlier might give each UE its own
copy of the set of sets already rejected andallow these copies to be out of synch; tasks may do extra
work (in rejecting a set that has already been rejected by a task assigned to a different UE), but this
extra work will not affect the result of the computation, and it may be more efficient overall than the
communication cost of keeping all copies i synch.

Figure 5.33. Example of nested locking using synchronized blocks with dummy objects
lockA and lockB

class Y {
Object lockA
Object lockB

new Object();
new Object();

void A()
{ synchronized(lockA)
{
....compute....
synchronized(lockB)
{ ....read and update y....
}
}
}

void B() throws InterruptedException
{ synchronized(lockB)
{ ...compute....
}
}
}

Review other considerations

Memory synchronization. Make sure memory is synchronized as required: Caching and compiler
optimizations can result in unexpected behavior with respect to shared variables. For example, a stale
value of a variable might be read from a cache or register instead of the newest value written by
another task, or the latest value might not have been flushed to memory and thus would not be visible
to other tasks. In most cases, memory synchronization is performed implicitly by higher-level
synchronization primitives, but it is still necessary to be aware of the issue. Unfortunately, memory
synchronization techniques are very platform-specific. In OpenMP, the flush directive can be used to
synchronize memory explicitly; it is implicitly invoked by several other directives. In Java, memory is
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implicitly synchronized when entering and leaving a synchronized block, and, in Java 2 1.5, when
locking and unlocking locks. Also, variables marked volatile are implicitly synchronized with
respect to memory. This is discussed in more detail in the Implementation Mechanisms design space.

Task scheduling. Consider whether the explicitly managed data dependencies addressed by this
pattern affect task scheduling. A key goal in deciding how to schedule tasks is good load balance;in
addition to the considerations described in the Algorithm Structure pattern being used, one should

also take into account that tasks might be suspended waiting for access to shared data. It makes sense
to try to assign tasks in a way that minimizes such waiting, or to assign multiple tasks to each UE in
the hope that there will always be one task per UE that is not waiting for access to shared data.

Examples

Shared queues

The shared queue is a commonly used ADT and an excellent example of the Shared Data pattern. The
Shared Queue pattem discusses concurmrency-control protocols and the techniques used to achieve
highly efficient shared-queue programs.

Genetic algorithm for nonlinear optimization

Consider the GAFORT program from the SPEC OMP2001 benchmark suite [ADE*01]. GAFORT is a
small Fortran program (around 1,500 lines) that implements a genetic algorithm for nonlinear
optimization. The calculations are predominantly integer arithmetic, and the program's performance is
dominated by the cost of moving large arrays of data through the memory subsystem.

The details of the genetic algorithm are not important for this discussion. We are going to focus on a
single loop within GAFORT. Pseudocode for the sequential version of this loop, based on the
discussion of GAFORT in [EM], is shown in Fig. 5.34. This loop shuffles the population of
chromosomes and consumes on the order of 36 percent of the runtime in a typical GAFORT job

[AEO3].

Figure 5.34. Pseudocode for the population shuffle loop from the genetic algorithm
program GAFORT

Int const NPOP // number of chromosomes ("40000)
Int const NCHROME // length of each chromosome

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

loop [j] over NPOP
iother = rand(j) // returns random value greater
// than or equal to zero but not
// equal to j and less than NPOP

// Swap Chromosomes
temp(1:NCHROME) = iparent(1:NCHROME, iother)
iparent(1:NCHROME, iother) = iparent(1l:NCHROME, j)
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iparent(1:NCHROME, j) = temp(1l:NCHROME)

// Swap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

end loop [j]

A parallel version of this program will be created by parallelizing the loop, using the Loop Parallelism
pattern. In this example, the shared data consists of the iparent and fitness arrays. Within the
body of the loop, calculations involving these arrays consist of swapping two elements of iparent
and then swapping the corresponding elements of fitness. Examination of these operations shows
that two swap operations interfere when at least one of the locations being swapped is the same in
both operations.

Thinking about the shared data as an ADT helps us to identify and analyze the actions taken on the
shared data. This does not mean, however, that the implementation itself always needs to reflect this
structure. In some cases, especially when the data structure is simple and the programming language
does not support ADTs well, it can be more effective to forgo the encapsulation implied in an ADT
and work with the data directly. This example illustrates this.

As mentioned earlier, the chromosomes being swapped might interfere with each other; thus the loop
over J cannot safely execute in parallel. The most straightforward approach is to enforce a "one at a
time" protocol using a critical section, as shown in Fig. 5.35. It is also necessary to modify the
random number generator so it produces a consistent set of pseudorandom numbers when called in
parallel by many threads. The algorithms to accomplish this are well understood [Mas97], but will not

be discussed here.

Figure 5.35. Pseudocode for an ineffective approach to parallelizing the population
shuffle in the genetic algorithm program GAFORT

Code View: Scroll / Show All

#include <omp.h>
Int const NPOP // number of chromosomes ("40000)
Int const NCHROME // length of each chromosome

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

#pragma omp parallel for loop [j] over NPOP
iother = par_rand(j) // returns random value greater
// than or equal to zero but not
// equal to j and less than NPOP

#pragma omp critical

// Swap Chromosomes
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temp(1:NCHROME) = iparent(1:NCHROME, iother)
iparent(1:NCHROME, iother) = iparent(1:NCHROME, j)
iparent(1:NCHROME, j) = temp(1l:NCHROME)

// Swap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

end loop [j]

The program in Fig. 5.35 can safely execute with multiple threads, but it will not run any faster as
more threads are added. In fact, this program will slow down as more threads are added because the
threads will waste system resources as they wait for their turn to execute the critical section. In
essence, the concurrency-control protocol eliminates all of the available concurrency.

The solution to this problem is to take advantage of the fact that the swap operations on the shared
data only interfere when at least one of the locations being swapped is the same in both operations.
Hence, the right concurrency-control protocol uses pairwise synchronization with nested locks,
thereby adding only modest overhead when loop iterations do not interfere. The approach used in

[ADE"01] is to create an OpenMP lock for each chromosome. Pseudocode for this solution is shown
in Fig. 5.36. In the resulting program, most of the loop iterations do not actually interfere with each
other. The total number of chromosomes, NPOP (40,000 in the SPEC OMP2001 benchmark), is much
larger than the number of UEs, so there is only a slight chance that loop iterations will happen to
interfere with another loop iteration.

OpenMP locks are described in the OpenMP appendix, Appendix A. The locks themselves use an
opaque type, omp lock t, defined in the omp . h header file. The lock array is defined and later
initialized in a separate parallel loop. Once inside the chromosome-swapping loop, the locks are set
for the pair of swapping chromosomes, the swap is carried out, and the locks are unset. Nested locks
are being used, so the possibility of deadlock must be considered. The solution here is to order the
locks using the value of the indices of the array element assocated with the lock. Always acquiring
locks in this order will prevent deadlock when a pair of loop iterations happen to be swapping the
same two elements at the same time. After the more efficient concurrency-control protocol is
implemented, the program runs well in parallel.

Known uses

A solution to the phylogeny problem described in the Context section is presented in [YWC496]. The
overall approach fits the Task Parallelism pattern; the rejected-sets data structure is explicitly managed
using replication and periodic updates to reestablish consistency among copies.

Another problem presented in [YWC"96] is the Grobner basis program. Omitting most of the details,
in this application the computation consists of using pairs of polynomials to generate new
polynomials, comparing them against a master set of polynomials, and adding those that are not linear
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combinations of elements of the master set to the master set (where they are used to generate new
pairs). Different pairs can be processed concumrently, so one can define a task for each pair and

partition them among UEs. The solution described in [YWC'96] fits the Task Parallelism pattern
(with a task queue consisting of pairs of polynomials), plus explicit management of the master set

using an application-specific protocol called software caching.

Figure 5.36. Pseudocode for a parallelized loop to carry out the population shuffle in
the genetic algorithm program GAFORT. This version of the loop uses a separate lock
for each chromosome and runs effectively in parallel.

Code View: Scroll / Show All

#include <omp.h>
Int const NPOP // number of chromosomes ("40000)
Int const NCHROME // length of each chromosome

Array of omp lock t :: lck(NPOP)

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

// Initialize the locks
#pragma omp parallel for
for (j=0; j<NPOP; j++){ omp init lock (&Llck(j)) }

#pragma omp parallel for
for (j=0; j<NPOP; j++){
iother = par _rand(j) // returns random value >= 0, != j,
// < NPOP
if (j < iother) {
set omp lock (lck(j)); set omp lock (lck(iother))

}
else {

set omp lock (lck(iother)); set omp lock (lck(j))
}

// Swap Chromosomes

temp(1:NCHROME) = iparent(1:NCHROME, iother);
iparent(1:NCHROME, iother) = iparent(1:NCHROME, j);
iparent(1:NCHROME, j) = temp(1:NCHROME);

// Swap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

if (j < iother) {
unset omp lock (lck(iother)); unset omp lock (lck(j))
}

else {
unset omp lock (lck(j)); unset omp lock (lck(iother))

}
} // end loop [j]
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Related Patterns

The Shared Queue and Distributed Array patterns discuss specific types of shared data structures.
Many problems that use the Shared Data pattern use the Task Parallelism pattern for the algorithm

structure.

5.9. THE SHARED QUEUE PATTERN

Problem

How can concurrently-executing UEs safely share a queue data structure?

Context
Effective implementation of many parallel algorithms requires a queue that is to be shared among
UEs. The most common situation is the need for a task queue in programs implementing the

Master/Worker pattern.

Forces

+ Simple concurrency-control protocols provide greater clarity of abstraction and make it easier
for the programmer to verify that the shared queue has been correctly implemented.

+ Concurrency-control protocols that encompass too much of the shared queue in a single
synchronization construct increase the chances UEs will remain blocked waiting to access the

queue and will limit available concurrency.

A concurrency-control protocol finely tuned to the queue and how it will be used increases the
available concurrency, but at the cost of much more complicated, and more error-prone,

synchronization constructs.

+ Maintaining a single queue for systems with complicated memory hierarchies (as found on
NUMA machines and clusters) can cause excess communication and increase parallel
overhead. Solutions may in some cases need to break with the single-queue abstraction and use

multiple or distributed queues.

Solution

Ideally the shared queue would be implemented as part of the target programming environment, either
explicitly as an ADT to be used by the programmer, or implicitly as support for the higher-level
patterns (such as Master/Worker) that use it. In Java 2 1.5, such queues are available in the
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java.util.concurrent package. Here we develop implementations from scratch to illustrate
the concepts.

Implementing shared queues can be tricky. Appropriate synchronization must be utilized to avoid race
conditions, and performance considerations—especially for problems where large numbers of UEs
access the queue—can require sophisticated synchronization. In some cases, a noncentralized queue
might be needed to eliminate performance bottlenecks.

However, if it is necessary to implement a shared queue, it can be done as an instance of the Shared
Data pattern: First, we design an ADT for the queue by defining the values the queue can hold and the
set of operations on the queue. Next, we consider the concurrency-control protocols, starting with the
simplest "one-at-a-time execution" solution and then applying a series of refinements. To make this
discussion more concrete, we will consider the queue in terms of a specific problem: a queue to hold
tasks in a master/worker algorithm. The solutions presented here, however, are general and can be
easily extended to cover other applications of a shared queue.

The abstract data type (ADT)

An ADT is a set of values and the operations defined on that set of values. In the case of a queue, the
values are ordered lists of zero or more objects of some type (br example, integers or task IDs). The
operations on the queue are put (or enqueue) and take (or dequeue). In some situations, there might
be other operations, but for the sake of this discussion, these two are sufficient.

We must also decide what happens whena take is attempted on an empty queue. What should be
done depends onhow termination will be handled by the master/worker algorithm. Suppose, for
example, that all the tasks will be created at startup time by the master. In this case, an empty task
queue will indicate that the UE should terminate, and we will want the take operation on an empty
queue to return immediately with an indication that the queue is empty—that is, we want a
nonblocking queue. Another possible situation is that tasks can be created dynamically and that UEs
will terminate when they receive a special poison-pill task. In this case, appropriate behavior might be
for the take operation on an empty queue to wait until the queue is nonempty—that is, we want a
block-on-empty queue.

Queue with "one at a time" execution

Nonblocking queue. Because the queue will be accessed concurrently, we must define a concurrency-
control protocol to ensure that interference by multiple UEs will not occur. As recommended in the
Shared Data pattern, the simplest solution is to make all operations on the ADT exclude each other.
Because none of the operations on the queue can block, a straightforward implementation of mutual
exclusion as described in the Implementation Mechanisms design spaces suffices. The Java
implementation shown in Fig. 5.37 uses a linked list to hold the tasks in the queue. (We develop our
own list class rather than using an unsynchronized library class such as java.util.LinkedList
or a class from the java.util.concurrent package to illustrate how to add appropriate
synchronization.) head refers to an always-present dummy node.[6]

(1 The code for take makes the old head node into a dummy node rather than simply

manipulating next pointers to allow us to later optimize the code so that put and get
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can execute concurrently.

The first task in the queue (if any) is held in the node referred to by head.next. The iSEmpty
method is private, and only invoked inside a synchronized method. Thus, it need not be synchronized.
(If it were public, it would need to be synchronized as well.) Of course, numerous ways of
implementing the structure that holds the tasks are possible.

Block-on-empty queue. The second version of the shared queue is shown in Fig. 5.38. In this version
of the queue, the take operation is changed so that a thread trying to take from an empty queue will
wait for a task rather than returning immediately. The waiting thread needs to release its lock and
reacquire it before trying again. This is done in Java using the wait and notify methods. These are
described in the Java appendix, Appendix C. The Java appendix also shows the queue implemented
using locks from the java.util.concurrent. locks package introduced in Java 2 1.5 instead
of wait and notify. Similar primitives are available with POSIX threads (Pthreads) [But97,IEE],
and techniques for implementing this functionality with semaphores and otherbasic primitives can be
found in [And0Q0].

Figure 5.37. Queue that ensures that at most one thread can access the data
structure at one time. If the queue is empty, null is immediately returned.

Code View: Scroll / Show All

public class SharedQueuel

{
class Node //inner class defines 1list nodes
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}

}

private Node head
private Node last

new Node(null); //dummy node
head;

public synchronized void put(Object task)

{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;

}

public synchronized Object take()
{ //returns first task in queue or null if queue is empty
Object task = null;
if (!isEmpty())
{ Node first = head.next;
task = first.task;
first.task = null;

head = first;
}
return task;
}
private boolean isEmpty(){return head.next == null;}
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In general, to change a method that returns immediately if a condition is false to one that waits until
the condition is true, two changes need to be made: First, we replace a statement of the form

if (condition){do something;}

Figure 5.38. Queue that ensures at most one thread can access the data structure at
one time. Unlike the first shared queue example, if the queue is empty, the thread
waits. When used in a master/worker algorithm, a poison pill would be required to
signal termination to a thread.

Code View: Scroll / Show All

public class SharedQueue2
{
class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
}

private Node head = new Node(null);
private Node last = head;

public synchronized void put(Object task)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
notifyAll();
}

public synchronized Object take()
{ //returns first task in queue, waits if queue is empty
Object task = null;
while (isEmpty())
{try{wait();}catch(InterruptedException ignore){}}
{ Node first = head.next;
task = first.task;
first.task = null;

head = first;
}
return task;
}
private boolean isEmpty(){return head.next == null;}
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with a loop[7]

17 The fact thatwait can throw an InterruptedException must be dealt with; it
is ignored here for clarity, but handled properly in the code examples.

while( !condition) {wait();} do something;

Second, we examine the other operations on the shared queue and add anotifyAlLl to any
operations that might establish condition. The result is an instance of the basic idiom for using wait,
described in more detail in the Java appendix, Appendix C.

Thus, two major changes are made in moving to the code in Fig. 5.38. First, we replace the code
if (!isEmpty( )){....}

with

while(isEmpty())
{try{wait()}catch(InterruptedException ignore){}}{....}

Second, we note that the put method will make the queue not empty, so we add to it a call to
notifyAlLl

This implementation has a performance problem in that it will generate extraneous calls ©
notifyAlLl. This does not affect the correctness, but it might degrade the performance. One way
this implementation could be optimized would be to minimize the number of invocations of
notifyAllin put. One way to do this is to keep track of the number of waiting threads and only
perform a notifyAll when there are threads waiting. We would have, for int w indicating the
number of waiting threads:

while( !condition){w++; wait(); w—-} do_something;

and
if (w>0) notifyAll();

In this particular example, because only one waiting thread will be able to consume a task,
notifyAll could be replaced by notify, which notifies only one waiting thread. We show code
for this refinement in a later example (Fig. 5.40).

Concurrency-control protocols for noninterfering operations

If the performance of the shared queue is inadequate, we must look for more efficient concurrency-


javascript:moveTo('ch05fig40');
javascript:moveTo('ch05fig40');
javascript:moveTo('ch05fig40');
javascript:moveTo('ch05fig38');
javascript:moveTo('ch05fig38');
javascript:moveTo('ch05fig38');
http://my.safaribooksonline.com/0321228111/app03#app03
http://my.safaribooksonline.com/0321228111/app03#app03
http://my.safaribooksonline.com/0321228111/app03#app03
javascript:moveTo('ch05fn07');
javascript:moveTo('ch05fn07');
javascript:moveTo('ch05fn07');

control protocols. As discussed in the Shared Data pattern, we need to look for noninterfering sets of
operations in our ADT. Careful examination of the operations in our nonHocking shared queue (see
Fig. 5.37 and Fig. 5.38) shows that the put and take are noninterfering because they do not access
the same variables. The put method modifies the reference last and the next member of the
object referred to by Llast. The take method modifies the value of the task member in the object
referred to by head. next and the reference head. Thus, put modifies Last and the next
member of some Node object. The take method modifies head and the task member of some
object. These are noninterfering operations, so we can use one lock for put and a different lock for

take. This solution is shown in Fig. 5.39.

Figure 5.39. Shared queue that takes advantage of the fact that put and take are
noninterfering and uses separate locks so they can proceed concurrently

Code View: Scroll / Show All

public class SharedQueue3

{

class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
}

private Node head
private Node last

new Node(null);
head;

private Object putLock = new Object();
private Object takeLock = new Object();

public void put(Object task)
{ synchronized(putLock)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
}
}

public Object take()

{ Object task = null;
synchronized(takelLock)
{ if ('isEmpty())

{ Node first = head.next;
task = first.task;
first.task = null;
head = first;

}

}

return task;
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Concurrency-control protocols using nested locks

The approach shown in Fig. 5.39 isn't as easy to apply to a block-on-empty queue, however. First of
all, thewait, notify, and notifyAll methods on an object canonly be invoked within a block
synchronized on that object. Also, if we have optimized the invocations of N0t 1fy as described

previously, then w, the count of waiting threads, is accessed in both put and take. Therefore, we use
putLock both to protect w and to serve as the lock on which a taking thread blocks when the queue
is empty. Code is shown in Fig. 5.40. Notice that putLock.wait () in get will release only the
lock on putLock, so ablocked thread will continue to block other takers from the outer block
synchronized on takeLock. This is okay for this particular problem. This scheme continues to allow

putters and takers to execute concurrently; the only exception being when the queue is empty.

Figure 5.40. Blocking queue with multiple locks to allow concurrent put and take on a

nonempty queue

Code View: Scroll / Show All

pubic class SharedQueue4
{
class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
}

private Node head
private Node last
private int w;

private Object putLock = new Object();
private Object takelLock = new Object();

new Node(null);
head;

public void put(Object task)
{ synchronized(putLock)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
if(w>0){putLock.notify();}
}
}

public Object take()
{ Object task = null;
synchronized(takeLock)
{ //returns first task in queue, waits if queue is empty
while (isEmpty())
{ try{synchronized(putLock){w++; putlLock.wait();w--;} }
catch(InterruptedException error){assert false;}}
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;
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}
}

return task;

}

private boolean isEmpty() {return head.next == null;}

Another issue to note is that this solution has nested synchronized blocks in both take and put.
Nested synchronized blocks should always be examined for potential deadlocks. In this case, there
will be no deadlock because put only acquires one lock, putLock. More generally, we would define
a partial order over all the locks and ensure that the locks are always acquired in an order consistent
with our partial order. For example, here, we could define takeLock < putLock and make sure
that the synchronized blocks are entered in a way that respects that partial order.

As mentioned earlier, several Java-based implementations of queues are included in Java 2 1.5 in the
java.util.concurrent package, some based on the simple strategies discussed here and some
based on more complex strategies that provide additional flexibility and performance.

Distributed shared queues

A centralized shared queue may cause a hot spot, indicating that performance might be improved by a
more distributed implementation. As an example, we will develop a simple package to support
fork/join programs using a pool of threads and a distributed task queue in the underlying
implementation. The package is a much simplified version of the FJTask package [LeaOOb], which in

turn uses ideas from [BJK'96]. The idea is to create a fixed pool of threads to execute the tasks that
are dynamically created as the program executes. Instead of a single central task queue, we associate a
nonblocking queue with each thread. When a thread generates a new task, it is placed in its own
queue. When a thread is able to execute a new task, it first tries to obtain a task from its own queue. If
its own queue is empty, it randomly chooses another thread and attempts to steal a task from that

thread's queue and continues checking the other queues until a task is found. (In [BJIK'96], this is
called random work stealing.)

A thread terminates when it receives a poison-pill task. For the fork/join programs we have in mind,
this approach has been shown to work well when threads remove tasks from their own queue in LIFO
(last in, first out) order and from other queues in FIFO (first in, first out) order. Therefore, we will add
to the ADT an operation that removes the last element, to be used by threads to remove tasks from
their own queues. The implementation can then be similar to Fig. 5.40, but with an additional method
takelLast for the added operation. The result is shown in Fig. 5.41.

The remainder of the package comprises three classes.

- Task s an abstract class. Applications extend it and override its run method to indicate the
functionality of a task in the computation. Methods offered by the class include Tork and
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join.
- TaskRunner extends Thread and provides the functionality of the threads in the thread
pool. Each instance contains a shared task queue. The task-stealing code is in this class.

Figure 5.41. Nonblocking shared queue with takeLast
operation

Code View: Scroll / Show All

public class SharedQueue5
{
class Node
{ Object task;
Node next;
Node prev;

Node(Object task, Node prev)
{this.task = task; next = null; this.prev = prev;}

}

private Node head
private Node last

new Node(null, null);
head;

public synchronized void put(0bject task)

{ assert task != null: "Cannot insert null task";
Node p = new Node(task, last);
last.next = p;
last = p;

}

public synchronized Object take()
{ //returns first task in queue or null if queue is empty
Object task = null;
if (!'isEmpty())
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;
}

return task;

}

public synchronized Object takelLast()

{ //returns last task in queue or null if queue is empty
Object task = null;
if (!'isEmpty())
{ task = last.task; last = last.prev; last.next = null;}
return task;

}

private boolean isEmpty(){return head.next == null;}

- TaskRunnerGroup manages the TaskRunners. It contains methods to initialize and shut
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down the thread pool. It also has a method executeAndwait that starts a task running and
waits for its completion. This method is used to get the computation started. (It is needed
because the Tork method in class Task can only be invoked from within a Task. We
describe the reason for this restriction later.)

Figure 5.42. Abstract base class for tasks

Code View: Scroll / Show All

public abstract class Task implements Runnable

{
//done indicates whether the task is finished
private volatile boolean done;
public final void setDone(){done = true;}
public boolean isDone(){return done;}

//returns the currently executing TaskRunner thread
public static TaskRunner getTaskRunner()
{ return (TaskRunner)Thread.currentThread() ; }

//push this task on the local queue of current thread
public void fork()
{ getTaskRunner().put(this);

}

//wait until this task is done
public void join()

{ getTaskRunner().taskJoin(this);
}

//execute the run method of this task
public void invoke()
{ if (!isDone()){run(); setDone(); }
}

}

We will now discuss these classes in more detail. Task is shown in Fig. 5.42. The only state
associated with the abstract class is done, which is marked volatile to ensure that any thread that
tries to access it will obtain a fresh value.

The TaskRunner class is shown in Fig. 5.43, Fig. 5.44, and Fig. 5.45. The thread, as specified in
the run method, loops until the poison task is encountered. First it tries to obtain a task from the back

of its local queue. If the local queue is empty, it attempts to steal a task from the front of a queue
belonging to another thread.

The code for the TaskRunnerGroup class is shown in Fig. 5.46. The constructor for
TaskRunnerGroup initializes the thread pool, given the number of threads as a parameter.
Typically, this value would be chosen to match the number of processors in the system. The
executeAndwWait method starts a task by placing it in the task queue of thread 0.

One use for this method is get a computation started. Something like this is needed because we can't
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just fork a new Task from a main or other non-TaskRunner thread—this is what was meant by
the earlier remark that the Tork and j0in methods of Task can only be invoked from within
another Task. This is because these methods require interaction with the TaskRunner thread
executing the task (for example, Tork involves adding the task to the thread's task queue); we find the
appropriate TaskRunner using Thread.getCurrentThread, thus fork and join must be
invoked only in code being executed by a thread that is a TaskRunner.

Figure 5.43. Class defining behavior of threads in the thread pool (continued in Fig.
5.44 and Fig. 5.45)

Code View: Scroll / Show All

import java.util.*;

class TaskRunner extends Thread

{

private final TaskRunnerGroup g; //managing group

private final Random chooseToStealFrom; //random number generator
private final Task poison; //poison task

protected volatile boolean active; //state of thread

final int id; //index of task in the TaskRunnerGroup

private final SharedQueue5 q; //Nonblocking shared queue

//operations relayed to queue

public void put(Task t){qg.put(t);}

public Task take(){return (Task)q.take() ;}

public Task takelLast(){return (Task)q.takelLast() ;}

//constructor
TaskRunner (TaskRunnerGroup g, int id, Task poison)
{ this.g = g;
this.id = id;
this.poison = poison;
chooseToStealFrom = new Random(System.identityHashCode(this));
setDaemon(true);
g = new SharedQueue5();

}

protected final TaskRunnerGroup getTaskRunnerGroup(){return g;}
protected final int getlD(){return id;}
/* continued in next figure */

We normally also want the program that creates the initial task to wait until it completes before going
on. To accomplish this and also meet the restriction on when TOrk can be invoked on a task, we
create a "wrapper" task whose function s to start the initial task, wait for it to complete, and then
notify the main thread (the one that called executeAndWait). We then add this wrapper task to
thread 0's task queue, making it eligible to be executed, and wait for it to notify us (with
notifyAll) that it has completed.
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All of this may be clearer from the usage of fork, join, and executeAndWait in the Fibonacci
example in the Examples section.

Figure 5.44. Class defining behavior of threads in the thread pool (continued from Fig.
5.43 and continued in Fig. 5.45)

Code View: Scroll / Show All

/* continued from previous figure */
//Attempts to steal a task from another thread. First chooses a
//random victim, then continues with other threads until either
//a task has been found or all have been checked. If a task
//is found, it is invoked. The parameter waitingFor is a task
//on which this thread is waiting for a join. If steal is not
//called as part of a join, use waitingFor = null.
void steal(final Task waitingFor)
{ Task task = null;

TaskRunner[] runners = g.getRunners();
int victim = chooseToStealFrom.nextInt(runners.length);

for (int 1 = 0; i != runners.length; ++i)
{ TaskRunner tr = runners[victim];
if (waitingFor != null && waitingFor.isDone()){break;}
else

{ if (tr !'= null && tr != this)
task = (Task)tr.q.take();
if(task != null) {break;}
yield();
victim = (victim + 1)%runners.length;

} //have either found a task or have checked all other queues
//if have a task, invoke it

if(task !'= null && ! task.isDone())

{ task.invoke(); }

/* continued in next figure

Examples

Computing Fibonacci numbers

We show in Fig. 5.47 and Fig. 5.48 code that uses our distributed queue package.[8] Recall that

(8] This code is essentially the same as the class to compute Fibonacci numbers that is

provided as a demo with the FJTask package, except for the slight modification necessary
to use the classes described previously.
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Equation 5.7

Fib(0) = 0

Equation 5.8

Fib(1) = 1

Equation 5.9

Fib(n + 2) = Fib(n) + Fib(n + 1)

This is a classic divide-and-conquer algorithm. To use our task package, we define a class F1b that
extends Task. Each F1b task contains a member number that initially contains the number for
which the Fibonacci number should be computed and later is replaced by the result. The getAnswer
method returns the result after it has been computed. Because this variable will be accessed by
multiple threads, it is declared volatile.

Figure 5.45. Class defining behavior of threads in the thread pool (continued from Fig.
5.43 and Fig. 5.44)

Code View: Scroll / Show All

/* continued from previous figure */
//Main loop of thread. First attempts to find a task on local
//queue and execute it. If not found, then tries to steal a task
//from another thread. Performance may be improved by modifying
//this method to back off using sleep or lowered priorities if the
//thread repeatedly iterates without finding a task. The run
//method, and thus the thread, terminates when it retrieves the
//poison task from the task queue.
public void run()
{ Task task = null;
try
{ while (!poison.equals(task))
{ task = (Task)q.takeLast();
if (task '= null) { if ('task.isDone()){task.invoke();}}
else { steal(null); }

}
} finally { active = false; }
}

//Looks for another task to run and continues when Task w is done.
protected final void taskJoin(final Task w)
{ while('w.isDone())
{ Task task = (Task)q.takelLast();
if (task !'= null) { if (!'task.isDone()){ task.invoke();}}
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else { steal(w); }
}
}
}

The run method defines the behavior of each task. Recursive parallel decomposition is done by
creating anew F1ib object for each subtask, invoking the To rk method on each subtask to start their
computation, calling the j01n method for each subtask to wait for the subtasks to complete, and then
computing the sum of their results.

The main method drives the computation. It first reads proc (the number of threads to create), num
(the value for which the Fibonacci number should be computed), and optionally the
sequentialThreshold. The value of this last, optional parameter (the default is 0) is used to
decide when the problem is too small to bother with a parallel decomposition and should therefore use
a sequential algorithm. After these parameters have been obtained, the main method creates a
TaskRunnerGroup with the indicated number of threads, and then creates a F1b object, initialized
with num. The computation is initiated by passing the Fib object to the TaskRunnerGroup's
invokeAndWait method. When this returns, the computation is finished. The thread pool is shut
down with the TaskRunnerGroup's cancel method. Finally, the result is retrieved from the
Fib object and displayed.

Figure 5.46. The TaskRunnerGroup class. This class initializes and manages the threads
in the thread pool.

Code View: Scroll / Show All

class TaskRunnerGroup

{ protected final TaskRunner[] threads;
protected final int groupSize;
protected final Task poison;

public TaskRunnerGroup(int groupSize)
{ this.groupSize = groupSize;
threads = new TaskRunner[groupSizel];
poison = new Task(){public void run(){assert false;}};
poison.setDone();
for (int i = 0; i!= groupSize; i++)
{threads[i] = new TaskRunner(this,i,poison);}
for(int i=0; i!= groupSize; i++){ threads[i].start(); }

}

//start executing task t and wait for its completion.
//The wrapper task is used in order to start t from within
//a Task (thus allowing fork and join to be used)
public void executeAndWait(final Task t)
{ final TaskRunnerGroup thisGroup = this;
Task wrapper = new Task()
{ public void run()
{ t.fork();
t.join();
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setDone();
synchronized(thisGroup)
{ thisGroup.notifyAll();} //notify waiting thread
}
b
//add wrapped task to queue of thread[0]
threads[0] .put(wrapper);
//wait for notification that t has finished.
synchronized(thisGroup)
{ try{thisGroup.wait();}
catch(InterruptedException e){return;}
}

}

//cause all threads to terminate. The programmer is responsible
//for ensuring that the computation is complete.
public void cancel()
{ for(int i=0; i'= groupSize; i++)
{ threads[i].put(poison); }
}

public TaskRunner[] getRunners(){return threads;}

Related Patterns

The Shared Queue pattern is an instance of the Shared Data pattern. It is often used to represent the
task queues in algorithms that use the Master/Worker pattern. It can also be used to support thread-
pool-based implementations of the Fork/Join pattern.

Figure 5.47. Program to compute Fibonacci numbers (continued in Fig. 5.48)

Code View: Scroll / Show All

public class Fib extends Task
{
volatile int number; // number holds value to compute initially,
//after computation is replaced by answer
Fib(int n) { number = n; } //task constructor, initializes number

//behavior of task
public void run() {
int n = number;

// Handle base cases:
if (n <= 1) { // Do nothing: fib(0) = 0; fib(1l) =1 }
// Use sequential code for small problems:
else if (n <= sequentialThreshold) {
number = seqFib(n);
}
// Otherwise use recursive parallel decomposition:
else {
// Construct subtasks:
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Fib f1
Fib f2

new Fib(n - 1);
new Fib(n - 2);

// Run them in parallel:
fl.fork();f2.fork();
// Await completion;
fl.join();f2.join();

// Combine results:
number = fl.number + f2.number;
// (We know numbers are ready, so directly access them.)

}
}

// Sequential version for arguments less than threshold
static int seqgFib(int n) {

if (n <= 1) return n;

else return seqFib(n-1) + seqFib(n-2);

}

//method to retrieve answer after checking to make sure
//computation has finished, note that done and isDone are
//inherited from the Task class. done is set by the executing
//(TaskRunner) thread when the run method is finished.
int getAnswer() {

if (!isDone()) throw new Error("Not yet computed");

return number;

}

/* continued in next figure */

Note that when the tasks in a task queue map onto a consecutive sequence of integers, a monotonic
shared counter, which would be much more efficient, can be used in place of a queue.

Figure 5.48. Program to compute Fibonacci numbers (continued from Fig. 5.47)

Code View: Scroll / Show All

/* continued from previous figure */
//Performance-tuning constant, sequential algorithm is used to
//find Fibonacci numbers for values <= this threshold
static int sequentialThreshold = 0;

public static void main(String[] args) {
int procs; //number of threads
int num; //Fibonacci number to compute
try {
//read parameters from command line
procs = Integer.parselnt(args[0]);
num = Integer.parselnt(args[1l]);
if (args.length > 2)
sequentialThreshold = Integer.parselnt(args[2]);
}
catch (Exception e) {
System.out.println("Usage: java Fib <threads> <number> "+



javascript:expandCodeSegments()
javascript:expandCodeSegments()
javascript:expandCodeSegments()
javascript:moveTo('ch05fig47');
javascript:moveTo('ch05fig47');
javascript:moveTo('ch05fig47');

"[<sequentialThreshold>]");
return;

}

//initialize thread pool
TaskRunnerGroup g = new TaskRunnerGroup(procs);

//create first task
Fib f = new Fib(num);

//execute it
g.executeAndWait (f);

//computation has finished, shutdown thread pool
g.cancel();

//show result

long result;

{result = f.getAnswer();}

System.out.println("Fib: Size: " + num + " Answer: " + result);

5.10. THE DISTRIBUTED ARRAY PATTERN

Problem

Arrays often need to be partitioned between multiple UEs. How can we do this so the resulting
program that is both readable and efficient?

Context

Large arrays are fundamental data structures in scientific computing problems. Differential equations
are at the core of many technical computing problems, and solving these equations requires the use of
large arrays that arise naturally when a continuous domain is replaced by a collection of values at
discrete points. Large arrays also arise in signal processing, statistical analysis, global optimization,
and a host of other problems. Hence, it should come as no surprise that dealing effectively with large
arrays is an important problem.

If parallel computers were built with a single address space that was large enough to hold the full
array yet provided equal-time access from any PE to any array element, we would not need to invest
much time in how these arrays are handled. But processors are much faster than large memory
subsystems, and networks connecting nodes are much slower than memory buses. The end result is



usually a system in which access times vary substantially depending on which PE is accessing which
array element.

The challenge is to organize the arrays so that the elements needed by each UE are nearby at the right
time in the computation. In other words, the arrays must be distributed about the computer so that the
array distribution matches the flow of the computation.

This pattern is important for any parallel algorithm involving large arrays in a parallel algonithm. It is
particularly important when the algorithm uses the Geometric Decomposition pattern for its algorithm
structure and the SPMD pattern for its program structure. Although this pattern is in some respects
specific to distributed-memory environments in which global data structures must be somehow
distributed among the ensemble of PEs, some of the ideas of this pattern apply if the single address
space is implemented on a NUMA platform, in which all PEs have access to all memory locations, but
access time varies. For such platforms, it is not necessary to explicitly decompose and distribute
arrays, but it is still important to manage the memory hierarchy so that array elements stay close[9] to
the PEs that need them. Because of this, on NUMA machines, MPI programs can sometimes
outperform similar algorithms implemented using a native multithreaded API. Further, the ideas of
this pattern can be used with a multithreaded API to keep memory pages close to the processors that
will work with them. For example, if the target system uses a first touch page-management scheme,
efficiency is improved if every array element is initialized by the PE that will be working with it. This
strategy, however, breaks down if arrays need to be remapped in the course of the computation.

PINUMA computers are usually built from hardware modules that bundle together

processors and a subset of the total system memory. Within one of these hardware
modules, the processors and memory are "close" together and processors can access this
"close" memory in much less time than for remote memory.

Forces

+ Load balance. Because a parallel computation is not finished until all UEs complete their
work, the computational load among the UEs must be distributed so each UE takes nearly the
same time to compute.

- Effective memory management. Modern microprocessors are much faster than the computer's
memory. To address this problem, high-performance computer systems include complex
memory hierarchies. Good performance depends on making good use of this memory
hierarchy, and this is done by ensuring that the memory references implied by a series of
calculations are close to the processor making the calculation (that is, data reuse from the
caches is high and needed pages stay accessible to the processor).

« Clarity of abstraction. Programs involving distributed arrays are easier to write, debug, and
maintain if it is clear how the arrays are divided among UEs and mapped to local arrays.

Solution

Overview

The solution is simple to state at a high level; it is the details that make it complicated. The basic
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approach is to partition the global array into blocks and then map those blocks onto the UEs. This
mapping onto UEs should be done so that, as the computation unfolds, each UE has an equal amount
of work to carry out (that is, the load must be well balanced). Unless all UEs share asingle address
space, each UE's blocks will be stored in an array that is local to a single UE. Thus, the code will
access elements of the distributed array using indices into a local array. The mathematical descrption
of the problem and solution, however, is based on indices into the global array. Thus, it must be clear
how to move back and forth between two views of the array, one in which each element is referenced
by global indices and one in which it is referenced by a combination of local indices and UE
identifier. Making these translations clear within the text of the program is the challenge of using this
pattern effectively.

Array distributions
Over the years, a small number of array distributions have become standard.

One-dimensional (1D) block. The array is decomposed in one dimension only and distributed
one block per UE. For a 2D matrix, for example, this corresponds to assigning a single block
of contiguous rows or columns to each UE. This distribution is sometimes called a column
block or row block distribution depending on which single dimension is distributed among the
UEs. The UEs are conceptually organized as a 1D array.

Two-dimensional (2D) block. As in the 1D block case, one block is assigned to each UE, but
now the block is a rectangular subblock of the original global array. This mapping views the
collection of UEs as a 2D array.

Block-cyclic. The array is decomposed into blocks (using a 1D or 2D partition) such that there
are more blocks than UEs. These blocks are then assigned round-robin to UEs, analogous to
the way a deck of cards is dealt out. The UEs may be viewed as either a 1D or 2D array.

Next, we explore these distributions in more detail. For illustration, we use a square matrix A of order
8, as shown in Fig. 5.49.[10]

197 1 this and the other figures in this pattern, we will use the following notational

conventions: A matrix element will be represented as a lowercase letter with subscripts
representing indices; for example, a is the element in ow 1 and column 2 of matrix A.

A submatrix will be represented as an uppercase letter with subscripts representing
indices; for example, Ao 0 is a submatrix containing the top-left corner of A. When we

talk about assigning parts of A to UEs, we will reference different UEs using UE and an
index or indices in parentheses; for example, if we are regarding UEs as forming a 1D
array, UE(0) is the conceptually leftmost UE, while if we are regarding UEs as forming a
2D array, UE(0, 0) is the conceptually top-left UE. Indices are all assumed to be zero-
based (that is, the smallest index is 0).
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Figure 5.49. Original square matrix A

Qoo | @o1 | @02 | %03 | %04 | %05 | Qo6 | Fo7

Qo (G |Gz | Q13 | @14 | Q15 | Q6 | Q15

flaqg | oy | Gag | Gag | Qoy | Moy | dag | (ag

Gzo0 | @31 | @32 | @33 | @34 | @35 | 236 | 037

Qg0 | @4 | Qg2 | Gq3 | Qg4 | g5 | Qa6 | 947

Qg0 | @51 | U952 | @53 | @54 | U556 | @56 | %57

Tgo | P61 | 62 | C6a | T4 | Tos | e | T67

Qo | O7y | U2 | Gg | Qg4 | Q75 | Qg | G777

1D block. Fig. 5.50 shows a column block distribution of A onto a linear array of four UEs. The
matrix is decomposed along the column index only; the number of columns in each block, MB (2
here), is the matrix order divided by the number of UEs. Matrix element (i,j) is assigned to
UE(G\WMB).[11]

1 We will use the notation "\" for integer division, and "/" for normal division. Thus
a\b=La/bl. Also, L] (floor) is the largest integer at most x, and [x] (ceiling) is the
smallest integer at least x. For example, La/3] = 1, and Las2l=2.
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Figure 5.50. 1D distribution of A onto four UEs

@00 | o1 Gpz | 903 Qo4 | A05 Qpg | 90,7
10 | 211 12 | 13 Q14 | M5 Mg | 17
azo | @21 Qg9 | G23 agq4 | @25 Qag | A27
g | @31 ga | gy g4 | B35 Tz | O37
Tan | 2, 42 | B43 44 | M5 Ty | Cg7
asn | @5, G52 | @53 B54 | @55 Grg | 57
dgo | @a.1 Gga | Ggg Qg4 | Bg5 Qg | Qg7
7o | 971 Q72| Q73 @74 | 75 Qrg | A77
UE(D) UE(1) UE(2) UE(3)

Mapping to UEs. More generally, we could have an N x M matrix where the number of UEs, P, need
not divide the number of columns evenly. In this case, MB is the maximum number of columns
mapped to a UE, and all UEs except UE(P - 1) contain MB blocks. Then, MB = [M/P‘L and elements
of column j are mapped to UE(I.j/MBJ).[m (This reduces to the formula given earlier for the
example, because in the special case where P evenly divides M, [M/P1=M/P and |.j/MBJ =j/MB.)
Analogous formulas apply for row distributions.

[12] Notice that this is not the only possible way to distribute columns among UEs when
the number of UEs does nat evenly divide the number of columns. Another approach,
more complex to define but producing a more balanced distribution in some cases, is to
first define the minimum number of columns per UE as LM/PJ, and then increase this
number by one for the first (M mod P) UEs. For example, for M = 10 and P = 4, UE(0)
and UE(1) would have three columns each and UE(2) and UE(3) would have two columns
each.

Mapping to local indices. In addition to mapping the columns to UEs, we also need to map the global
indices to local indices. In this case, matrix element (i,j) maps to local element (i,jmod MB). Given
local indices (x,y) and UE(w), we can recover the global indices (x,wMB + y). Again, analogous
formulas apply for row distributions.

2D block. Fig. 5.51 shows a 2D block distribution of A onto a two-by-two array of UEs. Here, A is
being decomposed along two dimensions, so for each subblock, the number of columns is the matrix
order divided by the number of columns of UEs, and the number of rows is the matrix order divided
by the number of rows of UEs. Matrix element (i,j) is assigned to UE(1\2,j\2).
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Figure 5.51. 2D distribution of A onto four UEs

Mapping to UEs. More generally, we map an N x M matrix to a p,xP, matrix of UEs. The maximum

size of a subblock is NB x MB, where NB = rN/PR-l and MB = [M/Pcl. Then, element (i,j) in the

global matrix is stored in UE(i/NBJ, jiMBI.

Mapping to local indices. Global indices (i,j) map to local indices (i mod NB,j mod MB). Given local
indices (x, y) on UE(z, w) the corresponding global indices are (zZNB + x, wMB + y).

Block-cyclic. The main idea behind the block-cyclic distribution is to create more blocks than UEs
and allocate them in a cyclic manner, similar to dealing out a deck of cards. Fig. 5.52 shows a 1D
block-cyclic distribution of A onto a linear array of four UEs, illustrating how columns are assigned ©
UEs in a round-robin fashion. Here, matrix element (i,j) is assigned to UE(j mod 4) (where 4 is the

number of UEs).

UE(0, 0) UE(0, 1)
oo | Qo1 | Xp2 | @03 o4 | To5 | @og | @07
1o | @11 | 912 | 13 g |15 |16 | O 7
@20 | 92,1 | 922 | @23 (2.4 | 925 | G256 | @27
@30 | 3,1 | @32 | ®33 g4 | T35 | 236 | 93,7
Qg0 | 41 | 42 | B4 Agq | Aq5 | Cg6 | C47
@50 | @51 | 952 | @53 @54 | 955 | 956 | @57
Agn | 96,1 | %62 | %63 Agq | 965 | %66 | P67
Ty | Qg | Q72 | B74 fIg4 | 75 | g | Q77

UE(1, 0) UE(1, 1)
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Figure 5.52. 1D block-cyclic distribution of A onto four UEs

Qg0 | To4 g1 | Tos5 Qg2 | Cpa g3 | Gp7
o | %14 11| M5 e | M6 15 | @17
fog | Tp4 ftay | Mg oo | Baq g | Gpq
Qa0 | @34 @31 | 235 Q32 | @36 Q33 | G37
Qg0 | B4 41 | @45 @y2 | Q48 43 | Ba7
a50 | B54 @51 | @55 52 | A58 axs | @57
Ggo | Tg4 g | Xg5 Bg2 | Cap g3 | Qg7
Q70 | 74 @71 | 21,5 72 | Q76 73 | G717
UE(D) UE(1) UE(2) UE(3)

Fig. 5.53 and Fig. 5.54 show a 2D block-cyclic distribution of A onto a two-by-two array of UEs: Fig.

5.53 illustrates how A is decomposed into two-by-two submatrices. (We could have chosen a different
decomposition, for example one-by-one submatrices, but two-by-two illustrates how this distribution
can have both block and cyclic characteristics.) Fig. 5.54 then shows how these submatrices are
assigned to UEs. Matrix element (i,j) is assigned to UE(i mod 2, j mod 2).
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Figure 5.53. 2D block-cyclic distribution of A onto four UEs, part 1: Decomposing A
Q| A1 Qpa | Apg a4 | Aps Qye | Fp7
Qo | @11 dy2 | 13 14 | 15 g | X1,7

Ayp Apq Ay Ays
Qg | Qg dgq | Qg3 g g | da5 Qog | Mg 7
@zo | Q3,1 Q32 | Q33 g4 | Q35 Az | O37

Ajp Ajq Ajg Ayg
Qyp | Qs Qyo | Ay yq | Qu5 Qg6 | Ay 7
Qs | @51 Q5a | Q53 Qg4 | B55 Qrg | B57

As g Ay Ag g Ag g
Qgo | Oe,1 Qg2 | Qg3 Ogq | Xg5 Qg6 | T6,7
Qrp | B71 Qrq | Q74 74 | B7 5 g | O77

Agg Ag Agg Agg

Figure 5.54. 2D block-cyclic distribution of A onto four UEs, part 2: Assigning

submatrices to UEs

UE(0, 0) UE(, 1)
Agp | Aoz Agy | Aog
Agg | Agp Agq | Ags
Ao | Age Ay | Ags
Azg | Agz Agq | Ags
UE(1, 0) UE(1, 1)




Mapping to UEs. In the general case, we have an N x M matrix to be mapped onto a PR x p, array of

UEs. We choose block size NB x MB. Element (i,j) in the global matrix will be mapped to UE(z, w),
where z = Li/NBJ mod P, and w= |.j/MBJ mod P.

Mapping to local indices. Because multiple blocks are mapped to the same UE, we can view the local
indexing blockwise or elementwise.

In the blockwise view, each element on a UE is indexed locally by block indices (I, m) and indices (X,
y) into the block. To restate this: In this scheme, the global matrix element (i,j) will be found on the
UE within the local (1, m) block at the position (x, y) where (1, m) = (Li/(P, NB)J, Lj/(P_ MB)J) and (x,

y) = (imod NB, j mod MB). Fig. 5.55 illustrates this for UE(0,0).

Figure 5.55. 2D block-cyclic distribution of A onto four UEs: Local view of elements of
A assigned to UE(0,0). LA is the block with block indices (I, m). Each element is

labeled both with its original global indices (ai,j) and its indices within block LA m

(I y)-

LAy | LAg,

g | &p 4 p 5

(loo) | (o) | (loo) | (to1)

0 &y 4 Q15

(ho) | (111) | (o) | (1)

40 041 Ty 4 45

(loo) | (lo1) | (10,0) ("fﬂ.:]

50 | @51 4 | U5

(h0) | (Ta) | (Bo) | (1)
LA,

For example, consider global matrix element a . Because PR = PC = NB = MB =2, this element will

map to UE(0,0). There are four two-by-two blocks on this UE. From the figure, we see that this
element appearsin the block on the bottom left, or block LAl 0 and indeed, from the formulas, we

obtain (I, m) = (I.(2 X Z)J, |.(2 X 2)J) = (1,0). Finally, we need the local indices within the block. In this
case, the indices within block are (x, y) = (5 mod 2, 1 mod 2) = (1, 1).

In the elementwise view (which requires that all the blocks for each UE form a contiguous matrix),
global indices (i, j) are mapped elementwise to local indices (INB + x,mMB + y), where | and m are
defined as before. Fig. 5.56 illustrates this for UE(0,0).
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Figure 5.56. 2D block-cyclic distribution of A onto four UEs: Local view of elements of
A assigned to UE(0,0). Each element is labeled both with its original global indices aj;

and its local indices [x', y' . Local indices are with respect to the contiguous matrix
used to store all blocks assigned to this UE.

Qpo ap1 ap 4 aps

(lo0) | (1) | (To2) | (To3)
Q10 Q1,1 1.4 15

(l10) | (1) | (Br2) | (P18)

Q40 @41 g4 Q45

(l20) | (l21) | (P22) | (P23)

Qo | @51 Qs 4 Q55

(Is0) | (I31) | (I32) | (I33)

Again, looking at global matrix element a_ ., we see that viewing the data as a single matrix, the

5 I
element is found at local indices (1 x2 +1,0x2 + 1) =(3, 1). Local indices (x, y) in block (I, m) on
UE(z, w) correspond to global indices ((lPR +z)NB + x,(mPC + w)MB +y).

Choosing a distribution

To select which distribution to use for a problem, consider how the computational load on the UEs
changes as the computation proceeds. For example, in many single-channel signal-processing
problems, the same set of operations is performed on each column of an array. The work does not vary
as the computation proceeds, so a column block decomposition will produce both clarity of code and
good load balance. If instead the amount of work varies by column, with higher-numbered columns
requiring more work, a column block decomposition would lead to poor load balance, with the UEs
processing lower-numbered columns finishing ahead of the UEs processing higher-numbered
columns. In this case, a cyclic distribution would produce better load balance, because each UE is
assigned a mix of low-numbered and high-mumbered columns.

This same approach applies to higher dimensions as well. ScaLAPACK [Sca, BCC'97], the leading
package of dense linear algebra software for distributed-memory computers, requires a 2D block-
cyclic distribution. To see why this choice was made, consider Gaussian elimination, one of the more
commonly used of the ScaLAPACK routines. In this algorithm, also known as LU decomposition, a
dense square matrix is transformed into a pair of triangular matrices, an upper matrix U and a lower
matrix L. At a high level, the algorithm proceeds from the upper-left corner and works its way down
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the diagonal of the global matrix, eliminating elements below the diagonal and transforming the
remaining blocks to the right as needed. A block distribution would result in idle UEs as the
processing marches down the diagonal. But with a 2D block-cyclic distribution such as the one shown
in Fig. 5.54, each UE contains elements used both early and late in the algorithm, resulting in
excellent load balance.

Mapping indices

The examples in the preceding section illustrate how each element of the original (global) array is
mapped to a UE and how each element in the global array, after distribution, is identified by both a set
of global indices and a combination of UE identifier and local information. The original problem is
typically stated in terms of global indices, but computation within each UE must be in terms of local
indices. Applying this pattern effectively requires that the relationship between global indices and the
combination of UE and local indices be as transparent as possible. In a quest for program efficiency, it
is altogether too easy to bury these index mappings in the code in a way that makes the program
painfully difficult to debug. A better approach is to use macros and inline functions to capture the
index mappings; a human reader of the program then only needs to master the macro or function once.
Such macros or functions also contribute to clarity of abstraction. The Examples section illustrates
this strategy.

Aligning computation with locality

One of the cardinal rules of performance-oriented computing is to maximize reuse of data close to a
UE. That is, the loops that update local data should be organized in a way that gets as much use as
possible out of each memory reference. This objective can also influence the choice of array
distribution.

For example, in linear algebra computations, it is possible to organize computations on a matrix into
smaller computations over submatrices. If these submatrices fit into cache, dramatic performance
gains can result. Similar effects apply to other levels of the memory hierarchy: minimizing misses in
the translation lookaside buffer (TLB), page faults, and so on. A detailed discussion of this topic goes
well beyond the scope of this book. An introduction can be found in [PH98].

Examples

Transposing a matrix stored as column blocks

As an example of organizing matrix computations into smaller computations over submatrices,
consider transposing a square matrix distributed with a column block distribution. For simplicity, we
will assume that the number of UEs evenly divides the number of columns, so that all blocks are the
same size. Our strategy for transposing the matrix will be based on logically decomposing the matrix
into square submatrices, as shown in Fig. 5.57. Each of the labeled blocks in the figure represents a
square submatrix; labels show how the blocks of the transpose relate to the blocks of the original

matrix. (For example, the block labeled (AO 1)T in the transpose is the transpose of the block labeled

AO | In the original matrix.) The algorithm proceeds in phases; the number of phases is the number of

submatrices per UE (which is also the number of UEs). In the first phase, we transpose the
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submatrices on the diagonal of A, with each UE transposing one submatrix and no communication
required. In successive phases, we transpose the submatrices one below the diagonal, then two below
the diagonal, and so forth, wrapping around to the top of the matrix as necessary. In each of these
phases, each UE must transpose one of its submatrices, send it to another UE, and receive a

submatrix. For example, in the second phase, the UE labeled UE(1) must compute (A2 1)T, send it to
UE(2), and receive (AO 1)T from UE(0). Figs. 5.58 and 5.59 show code to transpose such a matrix.

This code represents a function that will transpose a square column-blocked array. We assume the
blocks are distributed contiguously with one column block per UE. This function is intended as part
of a larger program, so we assume the array has already been distributed prior to calling this function.

Figure 5.57. Matrix A and its transpose, in terms of submatrices, distributed among

four UEs
A AT
Ap g A Ape Aga (AH.H}T (A, I(:,j?' {Aag }T [ﬂ;:,_[.}r
A Ay Az Agg (AU_]}T {‘11.1).{' [Az_,}'r [.«1“]""
Az Ag Aga Aoy (A2)| (A1)l [(Az2)"]  (As2)”
A:&.u —’1-:{,1 —’1:{,2 A:{,:{ {AIP.H }T |:A | ..'tJT (AI,H]T (A_.‘..H]T
LTED) [7E(1) UE(2) [TE(3) TR LTE(1}) LE(2) [TE(3)

The program represents each local column block (one for A and one for the transposed result) asa 1D
array. These arrays in turn consist of Num _procs submatrices each, each of size block size =
Block order * Block order, where Block order is the number of columns per UE. We
can therefore find the block indexed ID using the BLOCK macro:

Figure 5.58. Code to transpose a matrix (continued in Fig. 5.59)

Code View: Scroll / Show All

/*******************************************************************

NAME: trans_isend ircv

PURPOSE: This function uses MPI Isend and Irecv to transpose
a column-block distributed matrix.

*******************************************************************/

#include "mpi.h"
#include <stdio.h>

/*******************************************************************

** This function transposes a local block of a matrix. We don't
** display the text of this function as it is not relevant to the
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** point of this example.
*******************************************************************/
void transpose(

double* A, int Acols, /* input matrix */

double* B, int Bcols, /* transposed mat */

int sub rows, int sub cols); /* size of slice to transpose */

/*******************************************************************

** Define macros to compute process source and destinations and

** local indices
*******************************************************************/
#define TO (ID, PHASE, NPROC) ((ID + PHASE ) % NPROC)

#define FROM(ID, PHASE, NPROC) ((ID + NPROC - PHASE) % NPROC)
#define BLOCK(BUFF, ID) (BUFF + (ID * block size))

/* continued in next figure */

Figure 5.59. Code to transpose a matrix (continued from Fig. 5.58)

Code View: Scroll / Show All

/* continued from previous figure */

void trans isnd ircv(double *buff, double *trans, int Block order,
double *work, int my ID, int num procs)
{

int iphase;

int block size;

int send to, recv from;

double *bblock; /* pointer to current location in buff */
double *tblock; /* pointer to current location in trans */
MPI Status status;

MPI Request send req, recv_req;

block size = Block order * Block order;

/*******************************************************************

** Do the transpose in num_procs phases.
kk
** In the first phase, do the diagonal block. Then move out
** from the diagonal copying the local matrix into a communication
** puffer (while doing the local transpose) and send to process
** (diag+phase)%,num procs.
*******************************************************************/
bblock = BLOCK(buff, my ID);
tblock = BLOCK(trans, my ID);

transpose(bblock, Block order, tblock, Block order,
Block order, Block order);

for (iphase=1; iphase<num procs; iphase++){
recv_from = FROM(my ID, iphase, num procs);
tblock = BLOCK(trans, recv.from);
MPI.Irecv (tblock, block size, MPI DOUBLE, recv_from,
iphase, MPI COMM WORLD, &recv req);
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send to = TO(my ID, iphase, num procs);
bblock = BLOCK(buff, send to);
transpose(bblock, Block order, work, Block order,
Block order, Block order);
MPI Isend (work, block size, MPI DOUBLE, send to,
iphase, MPI COMM WORLD, &send.req);

MPI Wait(&recv req, &status);
MPI Wait(&send req, &status);

#define BLOCK(BUFF, ID) (BUFF + (ID * block size))

BUFF is the start of the 1D array (buff for the original array, trans for the transpose) and ID is the
second index of the block. So for example, we find the diagonal block of both arrays as follows:

bblock = BLOCK(buff, my ID);
tblock BLOCK(trans, my ID);

In succeeding phases of the algorithm, we must determine two things: (1) the index of the block we
should transpose and send and (2) the index of the block we should receive. We do this with the TO
and FROM macros:

#define TO(ID, PHASE, NPROC) ((ID + PHASE ) % NPROC)
#define FROM(ID, PHASE, NPROC) ((ID + NPROC - PHASE) % NPROC)

The TO index shows the progression through the off-diagonal blocks, working down from the
diagonal and wrapping back to the top at the bottom of the matrix. At each phase of the algorithm, we
compute which UE is to receive the block and then update the local pointer (bblocKk) to the block
that will be sent:

send to = TO(my ID, iphase, num procs);
bblock = BLOCK(buff, send to);

Likewise, we compute where the next block is coming from and which local index corresponds to that
block:

recv_from = FROM(my ID, iphase, num procs);
tblock = BLOCK(trans, recv_from);

This continues until all of the blocks have been transposed.



We use immediate (nonblocking) sends and receives in this example. (These primitives are described
in more detail in the MPI appendix, Appendix B.) During each phase, each UE first posts a receive
and then performs a transpose on the block it will send. After that transpose is complete, the UE sends
the now-transposed block to the UE that should receive it. At the bottom of the loop and before
moving to the next phase, functions are called to force the UE to wait until both the sends and receives
complete. This approach lets us overlap communication and computation. More importantly (because
in this case there isn't much computation to overlap with communication), it prevents deadlock: A
more straightforward approach using regular sends andreceives would be to first transpose the block
to be sent, then send it, and then (wait to) receive a block from another UE. However, if the blocks to
be sent are large, a regular send might block because there is insufficient buffer space for the message;
in this case, such blocking could produce deadlock. By instead using nonblocking sends and receives
and posting the receives first, we avoid this situation.

Known uses

This pattern is used throughout the scientific-computing literature. The well-known ScaLAPACK
package [Sca, BCC97] makes heavy use of the 2D block-cyclic distribution, and the documentation
gives a thorough explanation of mapping and indexing issues for this distribution.

Several different array distributions were embedded into the HPF language [HPF97] definition.
Some of the most creative uses of this pattern can be found in quantum chemistry, particularly in the
area of post Hartree Fock computations. The Global Arrays or GA package [NHL94, NHL96,

NHK02, Gloa] was created specifically to address distributed-array problems in post Hartree Fock
algorithms. A more recent approach is described in [NHL96,LDSH95].

The PLAPACK package [ABE*97,PLA,vdG97] takes a different approach to array distribution.
Rather than focusing on how to distribute the arrays, PLAPACK considers how the vectors operated

upon by the arrays are organized. From these distributed vectors, the corresponding array distributions
are derived. In many problems, these vectors correspond to the physical quantities in the problem
domain, so the PLAPACK team refers to this as the physically based distribution.

Related Patterns

The Distributed Array pattern is often used together with the Geometric Decomposition and SPMD
patterns.

5.11. OTHER SUPPORTING STRUCTURES

This pattern language (and hence the Supporting Structures pattems) is based on common practice
among OpenMP, MPI, and Java programmers writing code for both shared-memory and distributed-
memory MIMD computers. Parallel application programmers will in most cases find the patterns they
need within this pattern language.

There are, however, additional patterns (with their own supporting structures) that have at various
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times been important in parallel programming. They are only rarely used at this time, but it is still
important to be aware of them. They can provide insights into different opportunities for finding and
exploiting concurrency. And it is possible that as parallel architectures continue to evolve, the parallel
programming techniques suggested by these pattems may become important.

In this section, we will briefly describe some of these additional patterns and their supporting
structures: SIMD, MPMD, Client-Server, and Declarative Programming. We close with a brief
discussion of problem-solving environments. These are not patterns, but they help programmers work
within a targeted set of problems.

5.11.1. SIMD

A SIMD computer has a single stream of instructions operating on mutiple streams of data. These
machines were inspired by the belief that programmers would find it too difficult to manage multiple
streams of instructions. Many important problems are data parallel; that is, the concurrency can be
expressed in terms of concurrent updates acrcss the problem's data domain. Carried to its logical
extreme, the SIMD approach assumes that it is possible to express all parallelism in terms of the data.
Programs would then have single-thread semantics, making understanding and hence debugging them
much easier. The basic ideabehind the SIMD pattem can be summarized as follows.

+ Define a network of virtual PEs to be mapped onto the actual PEs. These virtual PEs are
connected according to a well-defined topology. Ideally the topology is (1) well-aligned with
the way the PEs in the physical machine are connected and (2) effective for the communication
patterns implied by the problem being solved.

+ Express the problem in terms of arrays or other regular data structures that can be updated
concurrently with a single stream of instructions.

+ Associate these arrays with the local memories of the virtual PEs.

- Create a single stream of instructions that operates on slices of the regular data structures.
These instructions may have an associated mask so they can be selectively skipped for subsets
of array elements. This is critical for handling boundary conditions or other constraints.

When a problem is truly data parallel, this is an effective pattern. The resulting programs are relatively
easy to write and debug [DKKO90].

Unfortunately, most data problems contain subproblems that are not data parallel. Setting up the core
data structures, dealing with boundary conditions, and post-processing after a core data parallel
algorithm can all introduce logic that might not be strictly data parallel. Furthermore, this style of
programming is tightly coupled to compilers that support data-parallel programming. These compilers
have proven difficult to write and result in code that is difficult to optimize because it can be far
removed from how a program runs on a particular machine. Thus, this style of parallel programming
and the machines built around the SIMD concept have largely disappeared, except for a few special-
purpose machines used for signal-processing applications.

The programming environment most closely associated with the SIMD pattem is High Performance
Fortran (HPF) [HPE97]. HPF is an extension of the array-based constructs in Fortran 90. It was
created to support portable parallel programming across SIMD machines, but also t allow the SIMD
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programming model to be used on MIMD computers. This required explicit control over data
placement onto the PEs and the capability to remap the data during a calculation. Its dependenceon a
strictly data-parallel, SIMD model, however, doomed HPF by making it difficult to use with complex

applications. The last large community of HPF users is in Japan [ZJS"02], where they have extended
the language to relax the data-parallel constraints [HPF99].

5.11.2. MPMD

The Multiple Program, Multiple Data (MPMD) pattem, as the name implies, is used in aparallel
algorithm when different programs run on different UEs. The basic approach is the following.

Decompose the problem into a set of subproblems, where each subproblem maps onto a subset
of UEs. Often each subset of UEs corresponds to the nodes of a different parallel computer.

Create independent programs solving the appropriate subproblems and tuned to the relevant
target UEs.

Coordinate the programs running on distinct UEs as needed, typically through a message-
passing framework.

In many ways, the MPMD approach is not too different from an SPMD program using MPI. In fact,
the runtime environments associated with the two most common implementations of MPI, MPICH
[MPI] and LAM/MPI [LAM], support simple MPMD programming.

Applications of the MPMD pattern typically arise in one of two ways. First, the architecture of the
UEs may be so different that a single program cannot be used across the full system. This is the case
when using parallel computing across some type of computational grid [Glob,FK03] using multiple
classes of high-performance computing architectures. The second (and from a parallel-algonthm point
of view more interesting) case occurs when conpletely different simulation programs are combined
into a coupled simulation.

For example, climate emerges from a complex interplay between atmospheric and ocean phenomena.
Well-understood programs for modeling the ocean and the atmosphere independently have been
developed and highly refined over the years. Although an SPMD program could be createdthat
implements a coupled ocean/atmospheric model directly, a more effective approach is to take the
separate, validated ocean and atmospheric programs and couple them through some intermediate
layer, thereby producing a new coupled model from well-understood component models.

Although both MPICH and LAM/MPI provide some support for MPMD programming, they do not
allow different implementations of MPI to interact, so only MPMD programs using a common MPI
implementation are supported. To address a wider range of MPMD problems spanning different
architectures and different MPI implementations, a new standard called interoperable MPI (iMPI) was
created. The general idea of coordinating UEs through the exchange of messages is common to MPI
and iMPI, but the detailed semantics are extended in iMPI © address the unique challenges arising
from programs running on widely differing architectures. These multi-architecture issues can add
significant communication overhead, so the part of an algorithm dependent on the performance of
1iMPI must be relatively coarse-grained.

MPMD programs are rare. As increasingly complicated coupled simulations grow in importance,
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however, use of the MPMD pattern will increase. Use of this pattern will also grow as grid technology
becomes more robust and more widely deployed.

5.11.3. Client-Server Computing

Client-server architectures are related o MPMD. Traditionally, these systems have comprised two or
three tiers where the front end is a graphical user interface executed on a client's computer and a
mainframe back end (often with multiple processors) provides access to a database. The middle tier, if
present, dispatches requests from the clients to (possibly multiple) back ends. Web servers are a
familiar example of a client-server system. More generally, a server might offer a variety of services to
clients, an essential aspect of the system being that services have well-defined interfaces. Parallelism
can appear at the server (which can service many clients concurrently or can use parallel processing to
obtain results more quickly for single requests) and at the client (which can initiate requests at more
than one server simultaneously).

Techniques used in client-server systems are especially important in heterogeneous systems.
Middleware such as CORBA [COR] provides a standard for service interface specifications, enabling
new programs to be put together by composing existing services, even if those services are offered on
vastly different hardware platforms and implemented in different programming languages. CORBA
also provides facilities to allow services to be located. The Java J2EE (Java 2 Platform, Enterprise
Edition) [Javb] also provides significant support for client-server applications. In both of these cases,
interoperability was a major design force.

Client-server architectures have traditionally been used in enterprise rather than scientific
applications. Grid technology, which is heavily used in scientific computing, borrows from client-
server technology, extending it by blurring the distinction between clients and servers. All resources in
a grid, whether they are computers, instruments, file systems, or anything else connected to the
network, are peers and can serve as clients and servers. The middleware provides standards-based
interfaces to tie the resources together into a single system that spans multiple administrative domains.

5.11.4. Concurrent Programming with Declarative Languages

The overwhelming majority of programming is done with imperative languages such as C++, Java, or
Fortran. This is particularly the case for traditional applications in science and engineering. The
artificial intelligence community and a small subset of academic computer scientists, however, have
developed and shown great success with a different class of languages, the declarative languages. In
these languages, the programmer describes a problem, a problem domain, and the conditions solutions
must satisfy. The runtime system associated withthe language then uses these to find valid solutions.

Declarative semantics impose a different style of programming that overlaps with the approaches
discussed in this pattern language, but has some significant differences. There are two important
classes of declarative languages: functional languages and logic programming languages.

Logic programming languages are based on formal rules of logical inference. The most common logic
programming language by far is Prolog [SS94], a programming language based on first-order
predicate calculus. When Prolog is extended to support expression of concurmrency, the result is a
concurrent logic programming language. Concurrency is exploited in one of three ways with these
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Prolog extensions: and-parallelism (execute multiple predicates), or-parallelism (execute multiple
guards), or through explicit mapping of predicates linked together through single-assignment variables

[CG8O].

Concurrent logic programming languages were a hot area of research in the late 1980s and early
1990s. They ultimately failed because most programmers were deeply committed to more traditional
imperative languages. Even with the advantages of declarative semantics and the value of logic
programming for symbolic reasoning, the learning curve associated with these languages proved
prohibitive.

The older and more established class of declarative programming languages is based on functiond
programming models [Hud89]. LISP is the oldest and best known of the functional languages. In pure
functional languages, there are no side effects from a function. Therefore, functions can execute as
soon as their input data is available. The resulting algorithms express concurrency in terms of the
flow of data through the program leading, thereby resulting in "data-flow" algorithms [Jag96].

The best-known concurrent functional languages are Sisal [FCO90], Concurrent ML [Rep99, Con]
(an extension to ML), and Haskell [HPF]. Because mathematical expressions are naturally written
down in a functional notation, Sisal was particularly straightforward to work with in science and
engineering applications and proved to be highly efficient for parallel programming. However, just as
with the logic programming languages, programmers were unwilling to part with their familiar
imperative languages, and Sisal essentially died. Concurrent ML and Haskell have not made major
inroads into high-performance computing, although both remain popular in the functional
programming community.

5.11.5. Problem-Solving Environments

A discussion of supporting structures for parallel algorithms would not be complete without
mentioning problem-solving environments (PSE). A PSE is a programming environment specialized
to the needs of a particular class of problems. When applied to parallel computing, PSEs also imply a
particular algorithm structure as well.

The motivation behind PSEs is to spare the application programmer the low-level details of the
parallel system. For example, PETsc (Portable, Extensible, Toolkit for Scientific Computation)
[BGMSI98] supports a variety of distributed data structures and functions required to use them for
solving partial differential equations (typically for problems fitting the Geometric Decomposition
pattern). The programmer needs to understand the data structures within PETSc,but is spared the
need to master the details of how to implement them efficiently and portably. Other important PSEs

are PLAPACK [ABE"97] (for dense linear algebra problems) and POOMA [RHC"96] (an object-
oriented framework for scientific computing).

PSEs have not been very well accepted. PETSc is probably the only PSE that is heavily used for
serious application programming. The problem is that by tying themselves to a narrow class of
problems, PSEs restrict their potential audience and have a difficult time reaching a critical mass of
users. We believe that over time and as the core patterns behind parallel algorithms become better
understood, PSEs will be able to broaden their impact and play a more dominant role in parallel
programming.
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Chapter 6. The Implementation Mechanisms
Design Space

6.1 OVERVIEW

6.2 UE MANAGEMENT

6.3 SYNCHRONIZATION

6.4 COMMUNICATION

Up to this point, we have focused on designing algorithms and the high-level constructs used to
organize parallel programs. With this chapter, we shift gears and consider a program's source code and
the low-level operations used to write parallel programs.

What are these low-level operations, or implementation mechanisms, for parallel programming? Of
course, there is the computer's instruction set, typically accessed through a high-level programming
language, but this is the same for serial and parallel programs. Our concern is the implementation
mechanisms unique to parallel programming. A complete and detailed discussion of these parallel
programming "building blocks" would fill a large book. Fortunately, most parallel programmers use
only a modest core subset of these mechanisms. These core implementation mechanisms fall into
three categories:

UE management
Synchronization
Communication

Within each of these categories, the most commonly used mechanisms are covered in this chapter. An
overview of this design space and its place in the pattern language is shown in Fig. 6.1.
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Figure 6.1. Overview of the Implementation Mechanisms design space and its place in
the pattern language

[ Finding Concurrency l
i
T

| Algorithm Structure |
i

T

| Supporting Structures |
I
T

Implementation Mechanisms

——————————————————————————————— N eEESEESEsE=E s

Communication !

--------------- -

In this chapter we also drop the formalism of patterns. Most of the implementation mechanisms are
included within the major parallel programming environments. Hence, rather than use patterns, we
provide a high-level description of each implementation mechanism and then investigate how the
mechanism maps onto our three target programming environments: OpenMP, MPI, and Java. This
mapping will in some cases be trivial and require little more than presenting an existing construct in
an API or language. The discussion will become interesting when we look at operations native to one
programming model, but foreign to another. For example, it is possible to do message passing in
OpenMP. It is not pretty, but it works and can be useful at times.

We assume that the reader is familiar with OpenMP, MPI, and Java and how they are used for writing
parallel programs. Although we cover specific features of these APIs in this chapter, the details of
using them are left to the appendixes.

6.1. OVERVIEW

Parallel programs exploit concurrency by mapping instructions onto multiple UEs. At a very basic
level, every parallel program needs to (1) create the set of UEs, (2) manage interactions between them
and their access to shared resources, (3) exchange information between UEs, and (4) shut them down
in an orderly manner. This suggests the following categories of implementation mechanisms.

+ UE management. The creation, dedruction, and management of the processes and threads
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used in parallel computation.

+ Synchronization. Enforcing constraints on the ordering of events occurring in different UEs.
This is primarily used to ensure that shared resources are accessed by a collection of UEs in
such a way that the program is correct regardless of how the UEs are scheduled.

« Communication. The exchange of information between UEs.

6.2. UE MANAGEMENT

Let us revisit the definition of unit of execution, or UE. A UE is an abgraction for the entity that
carries out computations and is managed for the programmer by the operating system. In modern
parallel programming environments, there are two types of UEs: processes and threads.

A process is a heavyweight object that carries with it the state or context required to define its place in
the system. This includes memory, program counters, registers, buffers, open files, and anything else
required to define its context within the operating system. In many systems, different processes can
belong to different users, and thus processes are well protected from each other. Creating a new
process and swapping between processes is expensive because all that state must be saved and
restored. Communication between processes, even on the same machine, is also expensive because the
protection boundaries must be crossed.

A thread, on the other hand, is a lightweight UE. A collection of threads is contained in a process.
Most of the resources, including the memory, belong to the process and are shared among the threads.
The result is that creating a new thread and switching context between threads is less expensive,
requiring only the saving of a program counter and some registers. Communication between threads
belonging to the same process is also inexpensive because it can be done by accessing the shared
memory.

The mechanisms for managing these two types of UEs are completely different. We handle them
separately in the next two sections.

6.2.1. Thread Creation/Destruction

Threads require a relatively modest number of machine cycles to create. Programmers can reasonably
create and destroy threads as needed inside a program, and as long as they do not do so inside tight
loops or time-critical kernels, the program's overall runtime will be affected only modestly. Hence,
most parallel programming environments make it straightforward to create threads inside a program,
and the API supports thread creation and destruction.

OpenMP: thread creation/destruction

In OpenMP, threads are created with the parallel pragma:

#pragma omp parallel
{ structured block }



Each thread will independently execute the code within the structured block. A structured block is just
a block of statements with a single point of entry at the top and a single point of exit at the bottom.

The number of threads created in OpenMP can be either left to the operating system or controlled by
the programmer (see the OpenMP appendix, Appendix A, for more details).

Destruction of threads occurs at the end of the structured block. The threads wait at the end of the
structured block. After all threads have arrived, the threads are destroyed and the original or master
thread continues.

Java: thread creation/destruction

In Java, threads are instances of the java. lang.Thread class ora subclass of the Thread class.
A Thread object is instantiated in the usual way using the new keyword, and then the start
method is invoked to launch the thread. The thread thus created can access any variable visible
according to Java's scope rules.

There are two ways to specify the behavior of a thread. The first is to create a subclass of Thread
and override the run method. The following shows how to do this to create a thread that, when
launched, will execute thread body.

class MyThread extends Thread
{ public void run(){ thread body }}

To create and launch the thread one would write

Thread t = new MyThread() ; //create thread object
t. start(); //launch the thread

To use the second approach, we define a class that implements the java. lang. Runnable
interface, which contains a single method public void run(), and pass an instance of the
Runnable class to the Thread constructor. For example, first we define the Runnable class:

class MyRunnable implements Runnable
{ public void run(){ thread body }}

To create and execute the thread, we create a Runnable object and pass it © the Thread
constructor. The thread is launched using the Start method as before:

Thread t = new Thread(new MyRunnable()); //create Runnable
//and Thread objects
t.start(); //start the thread

In most cases, the second approach is preferred.[1]

(1 In Java, a class can implement any number of interfaces, but is only allowed to extend a
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single superclass. Thus, extending Thread in the first approach means that the class
defining the run method cannot extend an application-specific class.

A thread terminates when the run method returns. The Thread object itself will be collected after
termination by the garbage collector in the same way as any other object in a Java program.

The java.util. concurrent package defines the Executor and Executor-Services
interfaces and provides several classes implementing them. These classes directly support higher-level
structures such as the Master/Worker pattern by arranging for the execution of Runnables while
hiding the details of thread creation and scheduling. More details are given in the Java appendix,

Appendix C.

MPI: thread creation/destruction

MPI is fundamentally based on processes. It is thread-aware in that the MPI 2.0 API [Mesa] defines
different levels of thread safety and provides functions to query a system at runtime as to the level of
thread safety that is supported. The API, however, has no concept of creating and destroying threads.
To mix threads into an MPI program, the programmer must use a thread-based programming model in
addition to MPL.

6.2.2. Process Creation/Destruction

A process carries with it all the information required to define its place in the operating system. In
addition to program counters and registers, a process includes a large block of memory (its address _
space), system buffers, and everything else required to define its state to the operating system.
Consequently, creating and destroying processes is expensive and not done very often.

MPI: process creation/destruction

In older message-passing APIs such as PVM [Sun90], the capability to create new processes was
embedded in the API. A programmer could issue a command called PVM_spawn to create a new
process:

PVM Spawn(node, program-executable)

This capability of PVM allowed programmers to control which executables ran on which nodes from
inside a program. In MPI 1.1, however, this capability was not provided to the programmer and was
left to the runtime environment. This decision might seem like a step backwards, but it was done for
two reasons. One was the observation that the vast majority of PVM programs were based on the
SPMD pattern, so it made sense tobuild this pattern into MPIL. Second, it allowed the standard to be
implemented on a wider range of parallel architectures. Many of the MPP computers available at the
time the MPI Forum defined MPI could not easily handle a spawn statement.

For an example of process creation in MPI, consider an MPI program with an executable named f00.
The programmer launches the job on multiple processors (four in this example) with the command:

mpirun -np 4 foo
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In response to this command, the system goes to a standard file listing the names of the nodes to use,
selects four of them, and launches the same executable on each one.

The processes are desroyed when the programs running on the nodes of the parallel computer exit. To
make the termination clean, an MPI program has as its final executable statement:

MPI Finalize()

The system attempts to clean up any processes left running after the program exits. If the exit is
abnormal, such as can happen when an external interrupt occurs, it is possible for orphan child
processes to be left behind. This is a major concem in large production environments where many
large MPI programs come and go. Lack of proper cleanup can lead to an overly crowded system.

Java: process creation/destruction

Usually, one instance of a Java runtime (implementing the Java Virtual Machine, or JVM,
specification) corresponds to a process, which will then contain all the threads created by the Java
programs it supports. Limited facilities for creating new processes, and communicating and
synchronizing with them, are found in the java.lang.Process and java.lang.Runtime
classes in the standard API. These processes, however, are typically used to invoke non-Java programs
from within a Java program, not for parallelism. Indeed, the specification does not even require that a
new child process execute concurrently with the parent.

Java can also be used in distributed-memory machines; in this case, one starts a JVM instance on each
machine using facilities of the operating system.

OpenMP: process creation/destruction

OpenMP is an API created to support multithreaded programming. These threads share asingle
process. There is no capability within OpenMP to create or destroy processes.

The extension of OpenMP to distributed-memory computers and hence to a multiprocess model is an
active area of research [SLGZ99, BB99, Omn]. These systems usually adopt the technique used by

MPI and leave process creation and dedruction to the runtime environment.

6.3. SYNCHRONIZATION

Synchronization is used o enforce a constraint on the order of events occurring in different UEs.
There is a vast body of literature on synchronization [And00], and it can be complicated. Most
programmers, however, use only a few synchronization methods on aregular basis.

6.3.1. Memory Synchronization and Fences

In a simple, classical model of a shared-memory multiprocessor, each UE executes a sequence of
instructions that can read or write atomically from the shared memory. We can think of the
computation as a sequence of atomic events, with the events from different UEs interleaved. Thus, if
UE A writes a memory location and then UE B reads it, UE B will see the value written by UE A.
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Suppose, for example, that UE A does some work and then sets a variable done to true. Meanwhile,
UE B executes a loop:

while ('!'done) {/*do something but don't change done*/}

In the simple model, UE A will eventually set done, and then in the next loop iteration, UE B will
read the new value and terminate the loop.

In reality, several things could go wrong. First of all, the value of the variable may not actually be
written by UE A or read by UE B. The new value could be held in a cache instead of the main
memory, and even in systems with cache coherency, the value could be (as a result of compiler
optimizations, say) held in a register and not be made visible to UE B. Similarly, UE B may try to read
the variable and obtain a stale value, or due to compiler optimizations, not even read the value more
than once because it isn't changed in the loop. In general, many factors—properties of the memory
system, the compiler, instruction reordering etc.—can conspire to leave the contents of the memories
(as seen by each UE) poorly defined.

A memory fence is a synchronization event that guarantees that the UEs will see a consistent view of
memory. Writes performed before the fence will be visible to reads performed after the fence, as
would be expected in the classical model, and all reads performed after the fence will obtain a value
written no eadier than the latest write before the fence.

Clearly, memory synchronization is only an issue when there is shared context between the UEs.
Hence, this is not generally an issue when the UEs are processes running in a distributed-memory
environment. For threads, however, putting memory fences in the right location can make the
difference between a working program and a program riddled with race conditions.

Explicit management of memory fences is cumbersame and error prone. Fortunately, most
programmers, although needing © be aware of the issue, only rarely need to deal with fences
explicitly because, as we will see in the next few sections, the memory fence is usually implied by
higher-level synchronization constructs.

OpenMP: fences

In OpenMP, a memory fence is defined with the flush statement:
#pragma omp flush

This statement affects every variable visible to the calling UE, causing them to be updated within the
computer's memory. This is an expensive operation because guaranteeing consstency requires some
of the cache lines and all system buffers and registers to be written to memory. A lower cost version of
flush is provided where the programmer lists the variables to be flushed:

#pragma omp flush (flag)

OpenMP programmers only rarely use the T Lush construct because OpenMP's high-level



synchronization constructs imply a flush where needed. When custom synchronization constructs are
created, however, TLush can be critical. A good example is pairwise synchronization, where the
synchronization occurs between specific pairs of threads rather than among the full team. Because
pairwise synchronization is not directly supported by the OpenMP API[2], when faced with an
algorithm that demands it, programmers must create the pairwise synchronization construct on their
own. The code in Fig. 6.2 shows how to safely implement pairwise synchronization in OpenMP using
the Tlush construct.

211f a program uses synchronization among the full team, the synchronization will work

independently of the size of the team, even if the team size is one. On the other hand, a
program with pairwise synchronization will deadlock if run with a single thread. An
OpenMP design goal was to encourage code that is equivalent whether run with one
thread or many, a property called sequential equivalence. Thus, high-level constructs that
are not sequentially equivalent, such as pairwise synchronization, were left out of the APL

In this program, each thread has two blocks of work to carry out concurrently with the other threads in
the team. The work is represented by two functions: do_a whole bunch () and

do more stuff (). The contents of these functions are irrelevant (and hence are not shown) for
this example. All that matters is that for this example we assume that a thread cannot safely begin
work on the second function—do _more stuff ()-until its neighbor has finished with the first
function—do a whole bunch().

The program uses the SPMD pattem. The threads communicate their status for the sake of the
pairwise synchronization by setting their value (indexed by the thread ID) of the flag array. Because
this array must be visible to all of the threads, it needs to be a shared array. We create this within
OpenMP by declaring the array in the sequential region (that is, prior to creating the team of threads).
We create the team of threads with a parallel pragma

#pragma omp parallel shared(flag)

When the work is done, the thread sets its flag to 1 to notify any interested threads that the work is
done. This must be flushed to memory to ensure that other threads can see the updated value:

#pragma omp flush (flag)

Figure 6.2. Program showing one way to implement pairwise synchronization in
OpenMP. The flush construct is vital. It forces the memory to be consistent, thereby
making the updates to the flag array visible. For more details about the syntax of
OpenMP, see the OpenMP appendix, Appendix A.

Code View: Scroll / Show All

#include <omp.h>
#include <stdio.h>
#define MAX 10 // max number of threads

// Functions used in this program: the details of these
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// functions are not relevant so we do not include the

// function bodies.

extern int neighbor(int); // return the ID for a thread's neighbor
extern void do a whole bunch(int);

extern void do more stuff( );

int main() {
int flag[MAX]; //Define an array of flags one per thread
int 1i;

for(i=0;i<MAX;i++)flag[i] = 0;
#pragma omp parallel shared (flag)
{

int ID;
ID = omp _get thread num(); // returns a unique ID for each thread.

do_a wholebunch(ID); // Do a whole bunch of work.

flag[ID] = 1; // signal that this thread has finished its work
#pragma omp flush (flag) // make sure all the threads have a chance to
// see the updated flag value

while (!flag[neighbor(ID)]){ // wait to see if neighbor is done.
#pragma omp flush(flag) // required to see any changes to flag
}

do more stuff(); // call a function that can't safely start until
// the neighbor's work is complete
} // end parallel region
}

The thread then waits until its neighbor is finished with do_a_whole_bunch() before moving on
to finish its work with a call to do_more work().

while (!flag( neighbor(ID))){ // wait to see if neighbor is done.
#pragma omp flush(flag) // required to see any changes to flag
}

The flush operation in OpenMP only affects the thread-visible variables for the calling thread. If
another thread writes a shared variable and forces it to be available to the other threads by using a
flush, the thread reading the variable still needs to execute a flush to make sure it picks up the new
value. Hence, the body of the while loop must include a flush (flag) construct to make sure
the thread sees any new values in the Tlag array.

As we mentioned earlier, knowing when a flush is needed and when it is not can be challenging. In
most cases, the flush is built into the synchronization construct. But when the standard constructs
aren't adequate and custom synchronization is required, placing memory fences in the right locations
is essential.



Java: fences

Java does not provide an explicit flush construct as in OpenMP. In fact, the Java memory model[3] is
not defined in terms of flush operations, but in tems of constraints on visibility and ordering with
respect to locking operations. The details are complicated, but the general ideais not: Suppose thread
1 performs some operations while holding lock L and then releases the lock, and then thread 2
acquires lock L. The rule is that all writes that occurred in thread 1 before thread 1 released the lock
are visible in thread 2 after it acquires the lock. Further, when a thread is started by invoking its
start method, the started thread sees all writes visible to the caller at the call point. Similarly, when
a thread calls join, the caller will see all writes performed by the terminating thread.

31 Java is one of the first languages where an attempt was made to specify its memory

model precisely. The original specification has been criticized for imprecision as well as
for not supporting certain synchronization idioms while at the same time disallowing
some reasonable compiler optimizations. A new specification for Java 2 1.5 is described
in [JSRa]. In this book, we assume the new specification.

Java allows variables to be declared as volatile. When a variable is marked volatile, all writes to
the variable are guaranteed to be immediately visible, and all reads are guaranteed to obtain the last
value written. Thus, the compiler takes care of memory synchronization issues for volatiles.[4] In a
Java version of a program containing the fragment (where done is expected to be set by another
thread)

(4] From the point of view of the rule stated previously, reading a volatile variable is

defined to have the same effect with regard to memory synchronization as acquiring a
lock associated with the variable, whereas writing has the same effect as releasing a lock.

while ('!'done) {.../*do something but don't change done*/}

we would mark done to be volatile when the variable is declared, as follows, and then ignore
memory synchronization issues related to this variable in the rest of the program.

volatile boolean done = false;

Because the volatile keyword can be applied only to references to an array and not to the
individual elements, the java.util. concurrent. atomic package introduced in Java 2 1.5
adds a notion of atomic arrays where the individual elements are accessed with volatile semantics. For
example, in a Java version of the OpenMP example shown in Fig. 6.2, we would declare the flag
array to be of type AtomicIntegerArray and update and read with that class's set and get
methods.

Another technique for ensuring proper memory synchronization is synchronized blocks. A
synchronized block appears as follows:

synchronized(some object){/*do something with shared variables*/}
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We will describe synchronized blocks in more detail in Sec. 6.3.3 and the Java appendix, Appendix C.
For the time being, it is sufficient to know that some_object is implicitly associated with a lock
and the compiler will generate code to acquire this lock before executing the body of the synchronized
block and to release the lock on exit from the block. This means that one can guarantee proper
memory synchronization of access to a variable by ensuring that all accesses to the variable occur in
synchronized blocks associated with the same object.

MPI: fences

A fence only arises in environments that include shared memory. In MPI specifications prior to MPI
2.0, the API did not expose shared memory to the programmer, and hence there was no need for a
user-callable fence. MPI 2.0, however, includes one-sided communication constructs. These constructs
create "windows" of memory visible to other processes in an MPI program. Data can by pushed to or
pulled from these windows by a single process without the explicit cooperation of the process owning
the memory region in question. These memory windows require some type of fence, but are not
discussed here because implementations of MPI 2.0 are not widely available at the time this was
written.

6.3.2. Barriers

A barrier i1s a synchronization point at which every member of a collection of UEs must arrive before
any members can proceed. If a UE arrives early, it will wait until all of the other UEs have arrived.

A barrier is one of the most common high-level synchronization constructs. It has relevance both in
process-oriented environments such as MPI and thread-based systems such as OpenMP and Java.

MPI: barriers

In MPI, a barrier is invoked by calling the function
MPI Barrier(MPI COMM)

where MPI COMM is a communicator defining the process group and the communication context. All
processes in the group associated withthe communicator participate in the barrier. Although it might
not be apparent to the programmer, the barrier itself is almost always implemented with a cascade of
pairwise messages using the same techniques as used in areduction (see the discussion of reduction in
Sec. 6.4.2).

Figure 6.3. MPI program containing a barrier. This program is used to time the
execution of function runit().

Code View: Scroll / Show All

#include <mpi.h> // MPI include file
#include <stdio.h>

extern void runit();

int main(int argc, char **argv) {
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int num _procs; // number of processes in the group
int ID; // unique identifier ranging from @ to (num procs-1)
double time init, time final, time_ elapsed;

//
// Initialize MPI and set up the SPMD program
//

MPI Init(&argc,&argv);

MPI Comm rank(MPI COMM WORLD, &ID);

MPI Comm size (MPI_COMM WORLD, &num procs);

// Ensure that all processes are set up and ready to go before timing // runit ()
MPI Barrier(MPI_COMM WORLD) ;
time.init = MPI Wtime();
runit(); // a function that we wish to time on each process
time final = MPI Wtime();
time elapsed = time final - time init;

printf(" I am \%d and my computation took \%f seconds\n",
ID, time elapsed);

MPI-Finalize();
return 0;

As an example of a barrier, consider the program in Fig. 6.3. This simple program sets up the MPI
environment and then records the execution time of a function called runit ( ) (the code of which
is not shown). The time itself is found using the MPI timing routine:

MPI Wtime()

This function returns a double-precision value holding the elapsed time in seconds since some point in
the past. The difference between the value returned after the function call and the value returned
before the function call gives the elapsed time for the function's execution. This is wall clock time,
that is, the time that would elapse on a clock external to the computer.

There can be considerable variation in process startup or the initialization of MPI. Thus, for the time
to be consistent across all the processes, it is important that all processes enter the timed section of
code together. To address this issue, we place a barrier before the timed section of code

OpenMP: barriers

In OpenMP, a simple pragma sets the barrier:

#pragma omp barrier
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All threads in the team participate in the barrier. As an example of a barrier, consider the code in Fig.
6.4. This program is essentially the same as the MPI program. A barrier is used to ensure that all
threads complete any startup activities before the timing measurements are taken. The timing routine,
omp Wtick(), was modeled after the analogous MPI routine, MPT Wtime (), and is defined in
the same way.

Figure 6.4. OpenMP program containing a barrier. This program is used to time the
execution of function runit().

Code View: Scroll / Show All

#include <omp.h>
#include <stdio.h>

extern void runit();

int main(int argc, char **argv) {
double time init, time final, time elapsed;

#pragma omp parallel private(time init, time final, time elapsed)

int ID;

ID = omp get thread num();
//
// ensure that all threads are set up and ready to go before timing runit()
//

#pragma omp barrier

time init = omp get wtime();
runit(); // a function that we wish to time on each thread
time final = omp get wtime();
time elapsed = time final - time init;
printf(" I am %d and my computation took \%f seconds\n",
) ID, time elapsed);

return ();

}

In addition to an explicit barrier as shown in Fig. 6.4, OpenMP automatically inserts barriers at the
end of the worksharing constructs (for, single, section, etc.). This implicit barrier can be
disabled, if desired, by using the nowait clause.

The barrier implies a call to TLush, so the OpenMP barrier creates a memory fence as well. These
memory flushes, combined with any cycles wasted while UEs wait at the barrier, make it a potentially
expensive construct. Barriers, which are expensive in any programming environment, must be used
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where required to ensure the correct program semantics, but for performance reasons should be used
no more than absolutely required.

Java: barriers

Java did not originally include a barrier primitive, although it is not difficult to create one using the
facilities in the language, as was done in the public-domain util. concurrent package [Lea]. In
Java 2 1.5, similar classes are provided in the Java.util.concurrent package.

A CyclicBarrier is similar to the barrier described previously. The Cyclic-Barrier class
contains two constructors: one that requires the number of threads that will synchronize on the barrier,
and another that takes the number of threads along with a Runnable object whose run method will
be executed by the last thread to arrive at the barrier. When a thread arrives at the barrier, it invokes
the barrier's await method. If a thread "breaks" the barrier by terminating prematurely with an
exception, the other threads will throw a BrokenBarrierException. A CyclicBarrier
automatically resets itself when passed and can be used multiple times (in a loop, for example).

In Fig. 6.5, we provide a Java version of the barrier examples given previously using a
CyclicBarrier.

The java.util.concurrent package also provides a related synchronization primitive
CountDownlLatch. A CountDownLatch is initialized to a particular value N. Each invocation of
its countDown method decreases the count. A thread executing the await method blocks until the
value of the latch reaches 0. The separation of countDown (analogous to "arriving at the barrier")
and await (waiting for the other threads) allows more general situations than "all threads wait for all
other threads to reach a barrier." For example, a single thread could wait for N events to happen, or N
threads could wait for a single event to happen. A CountDownLatch cannot be reset and can only
be used once. An example using a CountDownLatch is given in the Java appendix, Appendix C.

6.3.3. Mutual Exclusion

When memory or other system resources (for example, a file system) are shared, the program must
ensure that multiple UEs do not interfere with each other. For example, if two threads try to update a
shared data structure at the same time, a race condition results that can leave the structure in an
inconsistent state. A critical section is a sequence of statements that conflict with a sequence of
statements that may be executed by other UEs. Two sequences of statements conflict if both access the
same data and at least one of them modifies the data. To protect the resources accessed inside the
critical section, the programmer must use some mechanism that ensures that only one thread at a time
will execute the code within the critical section. This s called mutual exclusion.

Figure 6.5. Java program containing a CyclicBarrier. This program is used to time the
execution of function runit().

Code View: Scroll / Show All

import java.util.concurrent.*;

public class TimerExample implements Runnable {
static int N;
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static CyclicBarrier barrier;
final int ID;

public void run()

{
//wait at barrier until all threads are ready
System.out.println(ID + " at await");
try{ barrier.await(); }
catch (InterruptedException ex) { Thread.dumpStack();}
catch (BrokenBarrierException ex){Thread.dumpStack();}

//record start time
long time init = System.currentTimeMillis() ;

//execute function to be timed on each thread runit() ;

//record ending time
long time final = System.currentTimeMillis() ;

//print elapsed time

System.out.println("Elapsed time for thread "+ID+
" = "+(time_final-time init)+" msecs");

return;

}
void runit(){...} //definition of runit()
TimerExample(int ID){this.ID = ID;}

public static void main(String[] args)
{ N = Integer.parselInt(args[0]); //read number of threads

barrier = new CyclicBarrier(N); //instantiate barrier
for(int i = 0; i!'= N; i++) //create and start threads

{new Thread(new TimerExample(i)) .start() ; }

}

When using mutual exclusion, it is easy to fall into a situation where one thread is making progress
while one or more threads are blocked waiting for their turn to enter the critical section. This can be a
serious source of inefficiency in a parallel program, so great care must be taken when using mutual-
exclusion constructs. It is important to minimize the amount of code that is protected by mutual
exclusion and, if possible, stagger the arrival at the mutual-exclusion construct by the members of a
team of threads so a minimum number of threads are waiting to execute the protected code. The
Shared Data pattern discusses the issue of what should be protected by mutual exclusion. Here we
focus on the implementation mechanisms for protecting a critical section.

Figure 6.6. Example of an OpenMP program that includes a critical section

Code View: Scroll / Show All
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#include <omp.h>
#include <stdio.h>
#define N 1000

extern double big computation(int, int);
extern void consume results(int, double, double *);

int main() {
double global result[N];

#pragma omp parallel shared (global result)
{

double local result;
int I;
int ID = omp get thread num(); // set a thread ID

#pragma omp for

for(i=0;i<N;i++){
local result = big computation(ID, 1i); // carry out the UE's work
#pragma omp critical

consume_results(ID, local result, global result);
}
}
}

return 0;

OpenMP: mutual exclusion

In OpenMP, mutual exclusion is most easily accomplished using a construct called critical section. An
example of using the critical section congruct for OpenMP is shown in Fig. 6.6.

In this program, a team of threads is created to cooperatively carry out a series of N calls to
big computation(). The pragma

#pragma omp for

1s the OpenMP construct that tells the compiler to distribute the iterations of the loop among a team of
threads. After big computation() is complete, the results need to be combined into the global
data structure that will hold the result.

While we don't show the code, assume the update within consume results () can be done in any
order, but the update by one thread must complete before another thread can execute an update. The
critical pragma accomplishes this for us. The first thread to finish its big computation()
enters the enclosed block of code and calls consume results (). If a thread arrives at the top of
the critical-section block while another thread is processing the block, it waits until the prior thread is
finished.

The critical section is an expensive synchronization operation. Upon entry to a critical section, a
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thread flushes all visible variables to ensure that a consistent view of the memory is seen inside the
critical section. At the end of the critical section, we need any memory updates occurring within the
critical section to be visible to the other threads in the team, so a second flush of all thread-visible
variables is required.

The critical section construct is not only expensive, it is not very general. It cannot be used among
subsets of threads within a team or to provide mutual exclusion between different blocks of code.
Thus, the OpenMP API provides a lower-level and more flexible construct for mutual exclusion called
a lock.

Locks in different shared-memory APIs tend to be similar. The programmer declares the lock and
initializes it. Only one thread at a time is allowed to hold the lock. Other threads trying to acquire the
lock will block. Blocking while waiting for a lock is inefficient, so many lock APIs allow threads to
test a lock's availability without trying to acquire it. Thus, a thread can opt to do useful work and come
back to attempt to acquire the lock later.

Consider the use of locks in OpenMP. The example in Fig. 6.7 shows use of a simple lock to make
sure only one thread at a time attempts to write to standard output.

The program first declares the lock to be of type omp Lock t. This is an opaque object, meaning
that as long as the programmer only manipulates lock objects through the OpenMP runtime library,
the programmer can safely work with the locks without ever considering the details of the lock type.
The lock is then initialized with a call toomp_init lock

Figure 6.7. Example of using locks in OpenMP

#include <omp.h>
#include <stdio.h>

int main() {
omp lock t lock; // declare the lock using the lock
// type defined in omp.h

omp_set num threads(5);

omp_init lock (&lock); // initialize the lock
#pragma omp parallel shared (lock)

{

int id = omp get thread num();

omp_set lock (&lock);

printf("\n only thread %d can do this print\n",id);
omp_unset lock (&lock);

To be of any use for managing concurrency, a lock must be shared between the individual members of
the team of threads. Thus, the lock is defined prior to the parallel pragma and declared as a
shared variable (which is the default, but we call the Shared clause in this example just to emphasize
the point). Inside the parallel region, a thread can set the lock, which causes any other threads
attempting to set the same lock to block and wait until the lock has been unset.

Unlike the OpenMP critical section, an OpenMP lock does not define a memory fence. If the
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operations carried out by the thread holding the lock depend on any values from other threads, the
program might fail because the memory might not be consistent. Managing memory consistency can
be difficult for many programmers, so most OpenMP programmers opt to avoid locks and use the
much safer critical sections.

Java: mutual exclusion

The Java language provides support for mutual exclusion with the synchronized block construct and
also, in Java 2 1.5, with new lock classes contained in the package

java.util.concurrent. lock. Every object in a Java program implicitly contains its own
lock. Each synchronized block has an associated object, and a thread must acquire the lock on that
object before executing the body of the block. When the thread exits the body of the synchronized
block, whether normally or abnormally by throwing an exception, the lock is released.

In Fig. 6.8, we provide a Java version of the example given previously. The work done by the threads
is specified by the run method in the nested Wo rker class. Note that because N is declared to be
final (and is thus immutable), it can safely be accessed by any thread without requiring any
synchronization.

For the synchronized blocks to exclude each other, they must be associated with the same object. In
the example, the synchronized block in the run method uses this.getClass() as an argument.
This expression returns a reference to the runtime object representing the Wo rker class. This is a
convenient way to ensure that all callers use the same object. We could also have introduced a global
instance of java. lang.0bject (or an instance of any other class) and used that as the argument
to the synchronized block. What is important is that all the threads synchronize on the same object. A
potential mistake would be to use, say, this, which would not enforce the desired mutual exclusion
because each worker thread would be synchronizing on itself—and thus locking a different lock.

Because this is a very common misunderstanding and source of errors in multithreaded Java
programs, we emphasize again that a synchronized block only protects a critical section from access
by other threads whose conflicting statements are also enclosed in a synchronized block with the same
object as an argument. Synchronized blocks associated with different objects do not exclude each
other. (They also do not guarantee memory synchronization.) Also, the presence of a synchronized
block in a method does not constrain code that is not in a synchronized block. Thus, forgetting a
needed synchronized block or making a mistake with the argument to the synchronized block can
have serious consequences.

The code in Fig. 6.8 is structured similarly to the OpenMP example. A more common approach used
in Java programs is to encapsulate a shared data structure in a class and provide access only through
synchronized methods. A synchronized method is just a special case of a synchronized block that
includes an entire method.

Figure 6.8. Java version of the OpenMP program in Fig. 6.6

Code View: Scroll / Show All

public class Example {
static final int N = 10;
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static double[] global result = new double[N];

public static void main(String[] args) throws InterruptedException

{

//create and start N threads

Thread[] t = new Thread[N];
for (int i = 0; i !'= N; i++)
{t[i] = new Thread(new Worker(i)); t[i] .start( ) ; }

//wait for all N threads to finish
for (int i = 0; i !'= N; i++){t[i].join();}

//print the results

for (int i = 0; i'!'=N; i++)
{System.out.print(global result[i] + " ");}

System.out.println("done");

}

static class Worker implements Runnable
{

double local result;

int i;

int ID;

Worker(int ID){this.ID = ID;}

//main work of threads
public void run()
{ //perform the main computation
local result = big computation(ID, i);

//update global variables in synchronized block
synchronized(this.getClass())
{consume_results(ID, local result, global result);}

//define computation
double big computation(int ID, int i){ . . . }

//define result update
void consume results(int ID, double local result,

double[] global result){. . .}
}

It is implicitly synchronized on this for normal methods and the class object for static methods. This
approach moves the responsibility for synchronization from the threads accessing the shared data
structure to the data structure itself. Often this is a better-engineered approach. In Fig. 6.9, the
previous example is rewritten to use this approach. Now the global result variable is
encapsulated in the Example2 class and marked private to help enforce this. (To make the point, the
Worker class is no longer a nested class.) The only way for the workers to access the

global result array is through the consume results method, which is now a synchronized
method in the Example2 class. Thus, the responsibility for synchronization has been moved from
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the class defining the worker threads to the class owning the global result array.

Figure 6.9. Java program showing how to implement mutual exclusion with a
synchronized method

Code View: Scroll / Show All

public class Example2 {
static final int N = 10;
private static double[] global result = new double[N];

public static void main(String[] args) throws InterruptedException
{ //create and start N threads

Thread[] t = new Thread[N] ;
for (int i = 0; 1 !'= N; i++)
{t[i] = new Thread(new Worker(i)); t[i] .start( ) ; }

//wait for all threads to terminate
for (int i = 0; 1 !'= N; i++){t[i] . join( ) ;}

//print results

for (int i = 0; i!=N; i++)
{System.out.print(global result[i] + " ");}

System.out.println("done");

}

//synchronized method serializing consume results method
synchronized static void consume results(int ID, double local result)
{ global.result[ID] = . . . }
}

class Worker implements Runnable
{

double local result;

int i;

int ID;

Worker(int ID){this.ID = ID;}

public void run()
{ //perform the main computation
local result = big computation(ID, i); //carry out the UE's work

//invoke method to update results
Example2.consume results(ID, local result);

}

//define computation
double big computation(int ID, int i){ . . . }

The synchronized block construct in Java has some deficiencies. Probably the most important for
parallel programmers is the lack of a way to find out whether a lock is available before attempting to
acquire it. There is also no way to interrupt a thread waiting on a synchronized block, and the
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synchronized block construct forces the locks to be acquired and releasedin a nested fashion. This
disallows certain kinds of programming idioms in which a lock is acquired in one block and released
in another.

As aresult of these deficiencies, many programmers have created their own lock classes instead of
using the built-in synchronized blocks. For examples, see [Lea]. In response to this situation, in Java 2
1.5, package java.util.concurrent. locks provides several lock classes that can be used as
an alternative to synchronized blocks. These are discussed in the Java appendix, Appendix C.

MPI: mutual exclusion

As is the case with most of the synchronization constructs, mutual exclusion is only needed when the
statements execute within a shared context. Hence, a shared-nothing API such as MPI does not
provide support for critical sections directly within the standard. Consider the OpenMP program in
Fig. 6.6. If we want to implement a similar method in MPI with a complex data structure that has to
be updated by one UE at a time, the typical approach is to dedicate a process to this update. The other
processes would then send their contributions to the dedicated process. We show this situation in Fig.
6.10.

This program uses the SPMD pattem. As with the OpenMP program in Fig. 6.6, we have a loop to
carry out N calls to big computation(), the results of which are consumed and placed in a
single global data structure. Updates to this data structure must be protected so that results from only
one UE at a time are applied.

We arbitrarily choose the UE with the highest rank to manage the critical section. This process then

executes a loop and posts N receives. By using the MPI ANY SOURCE and MPI ANY TAG values
in the MPI Recv () statement, the messages holding results from the calls to

big computation() are taken in any order. If the tag or ID are required, they can be recovered

from the status variable returned from MPI Recv ().

The other UEs carry out the N calls to big computation (). Because one UE has been dedicated
to managing the critical section, the effective number of processes in the computation is decreased by
one. We use a cyclic distribution of the loop iterations as was described in the Examples section of the
SPMD pattern. This assigns the loop iterations in a round-robin fashion. After a UE completes its
computation, the result is sent to the process managing the critical section[5]

5] We used a synchronous send (MPI Ssend()), which does not return until a matching
MPI receive has been posted, to duplicate the behavior of shared-memory mutual
exclusion as closely as possible. It is worth noting, however, that in a distributed-memory
environment, making the sending process wait until the message has been received is only
rarely needed and adds additional parallel overhead. Usually, MPI programmers go to
great lengths to avoid parallel overheads and would only use synchronous message
passing as a last resort. In this example, the standard-mode message-passing functions,
MPI Send() and MPI Recv (), would be a better choice unless either (1) a condition
external to the communication requires the two processes to satisfy an ordering constraint,
hence forcing them to synchronize with each other, or (2) communication buffers or
another system resource limit the capacity of the computer receiving the messages,
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thereby forcing the processes on the sending side to wait until the receiving side is ready.

Figure 6.10. Example of an MPI program with an update that requires mutual
exclusion. A single process is dedicated to the update of this data structure.

Code View: Scroll / Show All

#include <mpi.h> // MPI include file

#include <stdio.h>

#define N 1000

extern void consume results(int, double, double * );
extern double big computation(int, int);

int main(int argc, char **argv) {
int Tagl = 1; int Tag2 = 2; // message tags
int num procs; // number of processes in group
int ID; // unique identifier from @ to (num Procs-1)
double local result, global result[N];
int i, ID CRIT;
MPI Status stat; // MPI status parameter

// Initialize MPI and set up the SPMD program
MPI Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD, &ID);
MPI Comm size (MPI_COMM WORLD, &num procs);

// Need at least two processes for this method to work
if(num procs < 2) MPI Abort(MPI COMM WORLD,-1);

// Dedicate the last process to managing update of final result
ID CRIT = num procs-1;
if (ID == ID CRIT) {
int ID sender; // variable to hold ID of sender
for(i=0;i<N;i++){
MPI Recv(&local result, 1, MPI DOUBLE, MPI ANY SOURCE,
MPI_ ANY TAG, MPI COMM WORLD, &stat);
ID sender = stat.MPI SOURCE;
consume_results(ID sender, local result, global result);
}
}
else {
num_procs--;
for(i=ID;i<N;i+=num procs){ // cyclic distribution of loop iterations
local result = big computation(ID, i); // carry out UE's work

// Send local result using a synchronous Send - a send that doesn't
// return until a matching receive has been posted.
MPI Ssend (&local result, 1, MPIDOUBLE, ID CRIT, ID,
MPI COMM WORLD);
}

}
MPI Finalize();
return 0;
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6.4. COMMUNICATION

In most parallel algorithms, UEs need to exchange information as the computation proceeds. Shared-
memory environments provide this capability by default, and the challenge in these systems is to
synchronize access to shared memory so that the results are correct regardless of how the UEs are
scheduled. In distributed-memory systems, however, it is the other way around: Because there are few,
if any, shared resources, the need for explicit synchronization to protect these resources is rare.
Communication, however, becomes a major focus of the programmer's effort.

6.4.1. Message Passing

A message is the most basic communication element. A message consists of a header containing data
about the message (for example, source, destination, and a tag) and a series of bits to be
communicated. Message passing is typically two-sided, meaning that a message is explicitly sent
between a pair of UEs, from a specific source to a specific destination. In addition to direct message
passing, there are communication events that involve multiple UEs (usually all of them) in a single
communication event. We call this collective communication. These collective communication events

often include computation as well, the classic example being a global summation where a set of
values distributed about the system is summed into a single value on each node.

In the following sections, we will explore communication mechanisms in more detail. We start with
basic message passing in MPI, OpenMP, and Java. Then, we consider collective communication,
looking in particular at the reduction operation in MPI and OpenMP. We close with a brief look at
other approaches to managing communication in parallel programs.

MPI: message passing

Message passing between a pair of UEs is the most basic of the communication operations and
provides a natural starting point for our discussion. A message is sent by one UE andreceived by
another. In its most basic form, the send and the receive operation are paired.

As an example, consider the MPI program in Fig. 6.11 and 6.12. In this program, a ring of processors
work together to iteratively compute the elements within afield (field in the program). To keep the
problem simple, we assume the dependenciesin the update operation are such that each UE only
needs information from its neighbor to the left to update the field.

We show only the parts of the program relevant to the communication. The details of the actual
update operation, initialization of the field, or even the structure of the field and boundary data are
omitted.

The program in Fig. 6.11 and 6.12 declares its variables and then initializes the MPI environment. This

is an instance of the SPMD pattem where the logic within the parallel algorithm will be driven by the
process rank ID and the number of processes in the team.

After initializing Tield, we set up the communication pattern by computing two variables, Left
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and right, that identify which processes are located to the left and the right. In this example, the
computation is straightforward and implements a ring communication pattem. In more complex
programs, however, these index computations can be complex, obscure, and the source of many errors.

The core loop of the program executes a number of steps. At each step, the boundary data is collected
and communicated to its neighbors by shifting around a ring, and then the local block of the field
controlled by the process is updated.

Figure 6.11. MPI program that uses a ring of processors and a communication pattern
where information is shifted to the right. The functions to do the computation do not
affect the communication itself so they are not shown. (Continued in Fig. 6.12.)

Code View: Scroll / Show All

#include <stdio.h>
#include "mpi.h" // MPI include file
#define IS ODD(x) ((x)%2) // test for an odd int

// prototypes for functions to initialize the problem, extract
// the boundary region to share, and perform the field update.
// The contents of these functions are not provided.

extern void init (int, int, double *, double * , double *);
extern void extract boundary (int, int, int, int, double *);
extern void update (int, int, int, int, double *, double *);
extern void output results (int, double *);

int main(int argc, char **argv) {
int Tagl = 1; // message tag
int nprocs; // the number of processes in the group
int ID; // the process rank
int Nsize; // Problem size (order of field matrix)
int Bsize; // Number of doubles in the boundary
int Nsteps; // Number of iterations
double *field, *boundary, *incoming;

int i, left, right;
MPI Status stat; // MPI status parameter

// Initialize MPI and set up the SPMD program
MPI_Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD, &ID);
MPI Comm size(MPI COMM WORLD, &nprocs);

init (Nsize, Bsize, field, boundary, incoming);

/* continued in next figure */

Notice that we had to explicitly switch the communication between odd and even processes. This
ensures that the matching communication events are ordered consistently on the two processes
involved. This is important because on systems with limited buffer space, a send may not be able to
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return until the relevant receive has been posted.

OpenMP: message passing

Message passing can be an effective strategy in OpenMP. One use of message passing in OpenMP is
to emulate an MPI algorithm, for example when porting a working MPI program to a system where
only OpenMP is available. Another case is when using NUMA machines where data locality is
important. By using the SPMD pattern and message passing, the programmer can more precisely
control how the program data is aligned with the system's memory hierarchy, thereby resulting in
better performance.

Figure 6.12. MPI program that uses a ring of processors and a communication pattern
where information is shifted to the right (continued from Fig. 6.11)

Code View: Scroll / Show All

/* continued from previous figure */

// assume a ring of processors and a communication pattern
// where boundaries are shifted to the right.

left = (ID+1); if(left>(nprocs-1)) left = 0;
right = (ID-1); if(right<@)right = nprocs-1;

for(i = 0; i < Nsteps; i++){

extract boundary(Nsize, Bsize, ID, nprocs, boundary);
if (IS 0DD(ID))A{
MPI Send (boundary, Bsize, MPI.DOUBLE, right, Tagl,
MPI COMM WORLD);
MPI Recv (incoming, Bsize, MPI.DOUBLE, left, Tagl,
MPI COMM WORLD, &stat);

}
else {
MPI Recv (incoming, Bsize, MPI DOUBLE, left, Tagl,
MPI COMM WORLD, &stat);
MPI Send (boundary, Bsize, MPI DOUBLE, right, Tagl,
MPI COMM WORLD);
}
update(Nsize, Bsize, ID, nprocs, field, incoming);
}

output results(Nsize, field);
MPI Finalize();
return 0;

A particularly easy way to use message passing within OpenMP is shown in Fig. 6.13 and 6.14. This

program is basically the same as the MPI program in Fig. 6.11 and 6.12. As before, we hide details of

the problem not relevant to a discussion of the parallel algorithm.

Message passing is accomplished in OpenMP by the receiving process reading the message from a
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shared data structure. In MPI, the synchronization required by the problem is implied by the message-
passing functions. In OpenMP, the synchronization is explicit. We start with a barrier to make sure
all threads are at the same point (that is, ready to fill the boundary they will share). A second
barrier ensures that all the threads have finished filling their boundary before the receiving side
uses the data.

This strategy is extremely effective for problems that involve the same amount of work on each thread.
When some threads are faster than other threads, because either the hardware is less loaded or perhaps
the data is not evenly distributed, the use of barriers leads to excessive parallel overhead as threads
wait at the barrier. The solution is to more finely tune the synchronization to the needs of the problem,
which, in this case, would indicate that pairwise synchronization should be used.

The "message-passing”" OpenMP program in Fig. 6.15 shows a simple way to introduce pairwise
synchronization in OpenMP. This code is much more complicated than the OpenMP program in Fig._
6.13 and Fig. 6.14. Basically, we have added an array called done that a thread uses to indicate that its
buffer (that is, the boundary data) is ready to use. A thread fills its buffer, sets the flag, and then
flushes it to make sure other threads can see the updated value. The thread then checks the flag for its

neighbor and waits (using a so-called spin lock) until the buffer from its neighbor is ready to receive.

Figure 6.13. OpenMP program that uses a ring of threads and a communication
pattern where information is shifted to the right (continued in Fig. 6.14)

Code View: Scroll / Show All

#include <stdio.h>

#include <omp.h> // OpenMP include file

#define MAX 10 // maximum number of threads

//

// prototypes for functions to initialize the problenm,

// extract the boundary region to share, and perform the

// field update. Note: the initialize routine is different
// here in that it sets up a large shared array (that is, for
// the full problem), not just a local block.

//

extern void init (int, int, double *, double * , double *);
extern void extract boundary (int, int, double *, double *);
extern void update (int, int, double *, double *);

extern void output results (int, double *);

int main(int argc, char **argv) {
int Nsize; // Problem size (order of field matrix)
int Bsize; // Number of doubles in the boundary
double *field;
double *boundary[MAX]; // array of pointers to a buffer to hold
// boundary data
//
// Create Team of Threads
//

init (Nsize, Bsize, field, boundary, incoming);
/* continued in next figure */
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This code is significantly more complex, but it can be more efficient on two counts. First, barriers
cause all threads to wait for the full team. If any one thread is delayed for whatever reason, it slows
down the entire team. This can be disastrous for performance, especially if the variability between
threads' workloads is high. Second, we've replaced two barriers with one barrier and a series of
flushes. A flush is expensive, but notice that each of these flushes only flushes a single small array
(done). It is likely that multiple calls to a flush with a single array will be much faster than the single
flush of all thread-visible data implied by a barrier.

Java: message passing

The Java language definition does not specify message passing (as it does facilities for concurrent
programming with threads). Similar techniques to those discussed for message passing in OpenMP
could be used. However, the standard class libraries provided with the Java distribution provide
extensive support for various types of communication in distributed environments. Rather than
provide examples of those techniques, we will provide an overview of the available facilities.

Figure 6.14. OpenMP program that uses a ring of threads and a communication
pattern where information is shifted to the right (continued from Fig. 6.13)

Code View: Scroll / Show All

/* continued from previous figure */
#pragma omp parallel shared(boundary, field, Bsize, Nsize)

//
// Set up the SPMD program. Note: by declaring ID and Num threads
// inside the parallel region, we make them private to each thread.

//
int ID, nprocs, i, left;

ID = omp_get thread num();
nprocs = omp _get num threads();

if (nprocs > MAX) {
exit (-1);
}

;j assume a ring of processors and a communication pattern
// where boundaries are shifted to the right.
{éft = (ID-1); if(left<0) left = nprocs-1;
for(i = 0; i < Nsteps; i++){
#pragma omp barrier
extract boundary(Nsize, Bsize, ID, nprocs, boundary[ID]);
#pragma omp barrier

update(Nsize, Bsize, ID, nprocs, field, boundary[left]);
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}
output results(Nsize, field);
return 0;

Java provides significant support for client-server distributed computing in heterogeneous
environments. It is very easy to set up a TCP socket connection between two PEs and send and receive
data over the connection. The relevant classes are found in packages java.net and java. 10. The
serialization facilities (see the java.i0.Serializable interface) support converting a possibly
complex data structure into a sequence of bytes that can be transmitted over a network (or written to a
file) and reconstructed at the destination. The RMI (remote method invocation) packages

java. rmi. * provide a mechanism enabling an object on one JVM to invoke methods on an object
in another JVM, which may be running on a different computer. Serialization is used by the RMI
packages to marshal the arguments to the method and return the result to the caller.

Figure 6.15. The message-passing block from Fig. 6.13 and Fig. 6.14, but with more
careful synchronization management (pairwise synchronization)

Code View: Scroll / Show All

int done[MAX]; // an array of flags dimensioned for the
// boundary data
//
// Create Team of Threads
//
init (Nsize, Bsize, field, boundary, incoming);

#pragma omp parallel shared(boundary, field, Bsize, Nsize)

// Set up the SPMD program. Note: by declaring ID and Num threads
// inside the parallel region, we make them private to each thread.

int ID, nprocs, i, left;

ID = omp get thread num();
nprocs = omp get num threads();
if (nprocs > MAX) { exit (-1); }

//

// assume a ring of processors and a communication pattern
// where boundaries are shifted to the right.

//

left = (ID-1); if(left<@) left = nprocs-1;

done[ID] = 0; // set flag stating "buffer ready to fill"
for(i = 0; i < Nsteps; i++){

#pragma omp barrier // all visible variables flushed, so we
// don't need to flush "done".
extract boundary(Nsize, Bsize, ID, num procs, boundary[ID]);
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done[ID] = 1; // flag that the buffer is ready to use
#pragma omp flush (done)

while (done[left] != 1){
#pragma omp flush (done)
}

update(Nsize, Bsize, ID, num procs, field, boundary[left]);
done[left] = 0; // set flag stating "buffer ready to fill"
}

output results(Nsize, field);

Although the java, 1o, java.net,and java.rmi.* packages provide very convenient
programming abstractions and work very well in the domain for which they were designed, they incur
high parallel overheads and are considered to be inadequate for high-performance computing. High-
performance computers typically use homogeneous networks of computers, so the general-purpose
distributed computing approaches supported by Java's TCP/IP support result in data conversions and
checks that are not usually needed in high-performance computing. Another source of parallel
overhead is the emphasis in Java on portability. This led to lowest-common-denominator facilities in
the design of Java's networking support. A major problem is blocking I/0. This means, for example,
that a read operation on asocket will block until data is available. Stalling the application is usually
avoided in practice by creating a new thread to perform the read. Because a read operation canbe
applied to only one socket at a time, this leads to a cumbersome and nonscalable programming style
with separate threads for each communication partner.

To remedy some of these deficiencies, (which were also affecting high-performance enterprise
servers) new I/O facilities in the java.nio packages were introduced in Java 2 1.4. Because the Java
specification has now been split into three separate versions (enterprise, core, and mobile), the core
Java and enterprise Java APIs are no longer restricted to supporting only features that can be
supported on the least capable devices. Results reported by Pugh and Sacco [PS04] indicate that the
new facilities promise to provide sufficient performance to make Java a reasonable choice for high-
performance computing in clusters.

The java.nio packages provide nonblocking I/O and selectors so that one thread can monitor
several socket connections. The mechanism for this is a new abstraction, called a channel, that serves
as an open connection © sockets, files, hardware devices, etc. A SocketChannel is used for
communication over TCP or UDP connections. A program may read or write to or from a
SocketChannel into a Byte Buffer using nonblocking operations. Buffers are another new
abstraction introduced in Java 2 1.4. They are containers for linear, finite sequences of primitive types.
They maintain a state containing a current position (along with some other information) and are
accessed with "put" and "get" operations that put or get an element in the slot indicated by the current
position. Buffers may be allocated as direct or indirect. The space for a direct buffer is allocated
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outside of the usual memory space managed by the JVM and subject to garbage collection. As a
result, direct buffers are not moved by the garbage collector, and references to them can be passed to
the system-level network software, eliminating a copying step by the JVM. Unfortunately, this comes
at the price of more complicated programming, because put and get operations are not especially
convenient to use. Typically, however, one would not use a Buf fer for the main computation in the
program, but would use a more convenient data structure such as an array that would be bulk copied

to or from the Buffer .ol

Many parallel programmers desire higher-level, or at least more familiar, communication abstractions
than those supported by the standard packages in Java. Several groups have implemented MPI-like
bindings for Java using various approaches. One approach uses the JNI (Java Native Interface) to bind
to existing MPI libraries. JavaMPI [Min97] and mpiJava [BCKIL.98] are examples. Other approaches
use new communication systems written in Java. These are not widely used and are in various states
of availability. Some [JCS98] attempt to provide an MPI-like experience for the programmer
following proposed standards described in [BCO0], while others experiment with alternative models
[Man]. An overview is given in [AJMJS02]. These systems typically use the old java. 10 because
the java. nio package has only recently become available. An exception is the work reported by
Pugh and Sacco [PS04]. Although they have not, at this writing, provided downloadable software,
they describe a package providing a subset of MPI with performance measurements that suggests an
optimistic outlook for the potential of Java with java.n1io0 for high-performance computing in
clusters. One can expect that in the near future more packages built on java.nio that simplify
parallel programming will become available.

6.4.2. Collective Communication

When multiple (more than two) UEs participate in a single communication event, the event is called a
collective communication operation. MPI, as a message-passing library, includes most of the major
collective communication operations.

+ Broadcast. A mechanism to send a single message to all UEs.

« Barrier. A point within a program at which all UEs must arrive before any UEs can continue.
This is described earlier in this chapter with the other synchronization mechanisms, but it is
mentioned again here because in MPI it is implemented as a collective communication.

+ Reduction. A mechanism to take a collection of objects, one on each UE, and combine them
into a single object on one UE (MPI Reduce) or combine them such that the combined
value is left on each of the UEs (MPI Allreduce).

Of these, reduction is the most commonly used. It plays such an important role in parallel algorithms
that it is included within most parallel programming APIs (including shared-memory APIs such as
OpenMP). We will focus on reduction in this discussion because the communication patterns and
techniques used with reduction are the same as those used with any of the global communication
events.

Reduction

A reduction operation reduces a collection of data items to a single data item by repeatedly combining
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the data items pairwise with a binary operator, usually one that is associative and commutative.
Examples of reductions include finding the sum, product, or maximum of all elements n an array. In
general, we can represent such an operation as the calculation of

Equation 6.1

Up @ U1 O =" O Up—1

where o is a binary operator. The most general way to implement a reduction is to perform the
calculation serially from left to right, an approach that offers no potential for concurrent execution. If
o is associative, however, the calculation in Eq. 6.1 contains exploitable concurrency, in that partial

results over subsets of Vet Vo can be calculated concurrently and then combined. If o is also

m-1
commutative, the calculation can be not only regrouped, but also readered, opening up additional
possibilities for concurrent execution, as described later.

Not all reduction operators have these useful properties, however, and one question to be considered is
whether the operator can be treated as if it were associative and/or commutative without significantly
changing the result of the calculation. For example, floating-point addition is not strictly associative
(because the finite precision with which numbers are represented can cause round-off errors,
especially if the difference in magnitude between operands is large), but if all the data items to be
added have roughly the same magnitude, it is usually close enough to associative to permit the
parallelization strategies discussed next. If the data items vary considerably in magnitude, this may
not be the case.

Most parallel programming environments provide constructs that implement reduction.

«  MPI provides general-purpose functions MPI Reduce and MPI Allreduce as well as
support for several common reduction operations (MPI MIN, MPI MAX, and MPI SUM).

« OpenMP includes a reduction clause that can be applied on a parallel section or a
workshare construct. It provides for addition, subtraction, multiplication, and a number of
bitwise and logical operators.

As an example of a reduction, consider the MPI program in Fig. 6.16. This is a continuation of our
earlier example where we used a barrier to enforce consistent timing (Fig. 6.3). The timing is
measured for each UE independertly. As an indication of the load imbalance for the program, it is
useful to report the time as a minimum time, a maximum time, and an average time. We do this in Fig._
6.16 with three calls toMPI Reduce—one with the MPI_MIN function, one with the MPT MAX
function, and one with the MPI_SUM function.

An example of reduction in OpenMP can be found in Fig. 6.17. This is an OpenMP version of the
program in Fig. 6.16. The variables for the number of threads (num_threads) and the average time
(ave time) are declared prior to the parallel region so they can be visible both inside and following
the parallel region. We use a reduction clause on the parallel pragma to indicate that we will
be doing a reduction with the + operator on the variable ave time. The compiler will create a local
copy of the variable and initialize it to the value of the identity of the operator in question (zero for
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addition). Each thread sums its values into the local copy. Following the close of the parallel region,
all the local copies are combined with the global copy to produce the final value.

Because we need to compute the average time, we need to know how many threads were used in the
parallel region. The only way to safely determine the number of threads is by a call to the

omp _num_threads () function inside the parallel region. Multiple writes to the same variable
can interfere with each other, so we place the call toomp num_threads () insidea single
construct, thereby ensuring that only one thread will assign a value to the shared variable

num threads. A single in OpenMP implies a barrier, so we do not need to explicitly include one
to make sure all the threads enter the timed code at the same time. Finally, note that we compute only
the average time in Fig. 6.17 because min and max operatrs are not included in the C/C++ OpenMP
version 2.0.

Figure 6.16. MPI program to time the execution of a function called runit(). We use
MPI_Reduce to find minimum, maximum, and average runtimes.

Code View: Scroll / Show All

#include "mpi.h" // MPI include file
#include <stdio.h>

int main(int argc, char**argv) {
int num procs; // the number of processes in the group
int ID; // a unique identifier ranging from 0 to (num Procs-1)
double local result;
double time init, time final, time elapsed;
double min time, max time, ave time;

// Initialize MPI and set up the SPMD program

MPI Init(&argc,&argv);
MPI Comm rank(MPI_COMM WORLD, &ID);
MPI Comm size (MPI_COMM WORLD, &num procs);

//
// Ensure that all processes are set up and ready to go before timing // runit ()

//
MPI Barrier(MPI_COMM WORLD);

time init = MPI Wtime();

runit(); // a function that we wish to time on each process

time final = MPI Wtime();

time elapsed = time final-time_ init;

MPI Reduce (&time elapsed, &min time, 1, MPI DOUBLE, MPI MIN, O,
MPI COMM WORLD);

MPI Reduce (&time elapsed, &max time, 1, MPI DOUBLE, MPI MAX, 0,
MPI COMM WORLD);

MPI Reduce (&time elapsed, &ave time, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

if (ID == 0){
ave time = ave time /(double)num procs;
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printf(" min, ave and max times (secs): %f, %f, %f\n",
min_time, ave time,max_time);

}

MPI Finalize();
return 0;

Implementing reduction operations

Most programmers will never implement their own reductions because the reduction mechanisms
available with most parallel programming environments meet their needs. Java, however, does not
provide a reduction operator, so Java programmers might need to implement their own parallel
reductions. In any case, the algorithms used for reductions are instructive and well worth the effort to
understand.

Figure 6.17. OpenMP program to time the execution of a function called runit(). We
use a reduction clause to find sum of the runtimes.

Code View: Scroll / Show All

#include <stdio.h>
#include <omp.h> // OpenMP include file

extern void runit();

int main(int argc, char**argv) {
int num_threads; // the number of processes in the group
double ave time=0.0;

#pragma omp parallel reduction(+ : ave time) num_ threads(10)

double local result;
double time init, time final, time elapsed;

// The single construct causes one thread to set the value of
// the num_threads variable. The other threads wait at the
// barrier implied by the single construct.

#pragma omp single

num_threads = omp get num threads();

time_init = omp_get wtime();

runit(); // a function that we wish to time on each process

time final = omp_get wtime();

time elapsed = time final - time init;

ave time += time elapsed;

ave time = ave time/(double)num threads;
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printf(" ave time (secs): % \n", ave time);
return 0;

We consider tree-basedreductions in the following discussion. These are the simplest of the scalable
parallel reduction algorithms and although not optimal, they expose most of the issues addressed in

the more optimal reduction algorithms [CKP*93].

Serial computation

If the reduction operator is not associative, or cannot be treated as associative without significantly
affecting the result, it will likely be necessary to perform the entire reduction serially in a single UE,
as sketched in Fig. 6.18. If only one UE needs the result of the reduction, it is probably simplest to
have that UE perform the operation; if all UEs need the result, the reduction operation can be followed
by a broadcast operation to communicate the result to other UEs. For simplicity, the figure shows a
situation in which there are as many UEs as data items. The solution can be extended to situations in
which there are more data items than UEs, but the requirement that all the actual computation be done
in a single UE still holds because of the lack of associativity. (Clearly this solution completely lacks
concurrency; we mention it for the sake of completeness and because it might still be useful and
appropriate if the reduction operation represents only a relatively small part of a computation whose
other parts do have exploitable concurrency.)

Figure 6.18. Serial reduction to compute the sum of a(0) through a(3). sum(a(i:j))
denotes the sum of elements i through j of array a.
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In this approach, the individual combine-two-elements operations must be performed in sequence, so
it is simplest to have them all performed by a single task. Because of the data dependencies (indicated
by the arrows in the figure), however, some caution is required if the reduction operation is performed
as part of a larger calculation involving multiple concurrent UEs; the UEs not performing the
reduction can continue with other work only if they can do so without affecting the computation of the
reduction operation (for example, if multiple UEs share access to an array and one of them is
computing the sum of the elements of the array, the others should not be simultaneously modifying
elements of the array). In a message-passing environment, this can usually be accomplished using
message passing to enforce the data-dependency constraints (that is, the UEs not performing the
reduction operation send their data to the single UE actually doing the computation). In other
environments, the UEs not performing the reduction operation canbe forced to wait by means of a
barrier.

Tree-based reduction

If the reduction operator is associative or can be treated as such, then the tree-based reducton shown
in Fig. 6.19 is appropriate. The algorithm proceeds through a series of stages; at each stage half the
UEs pass their data to another UE. At the beginning, all of the UEs are actively involved in the
reduction, but at each stage, half the UEs drop out, and finally we are left with a single UE holding the
reduced value.

Figure 6.19. Tree-based reduction to compute the sum of a(0) through a(3) on a
system with 4 UEs. sum(a(i:j)) denotes the sum of elements i through j of array a.
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For simplicity, the figure shows the case where there are as many UEs as data items. The solution can
be extended to situations in which there are more data items than UEs by first having each UE
perform a serial reduction on a subset of the data items and then combining the results as shown. (The
serial reductions, one per UE, are independent and can be done concumrently.)

In a tree-based reduction algorithm some, but not all, of the combine-twoelements operations can be
performed concurrently (for example, in the figure, we can compute sum(a(0:1)) and sum
(a(2:3)) concurrently, but the computation of sum(a(0:3) ) must occur later). A more general

sketch for performing a tree-based reduction using 2" UEs similarly breaks down into n steps, with
each step involving half as many concurrent operations as the previous step. As with the serial
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strategy, caution is required to make sure that the data dependencies shown in the figure are honored.
In a message-passing environment, this can usually be accomplished by appropriate message passing;
in other environments, it could be implemented using barrier synchronization after each of the n steps.

Using the tree-based reduction algorithm is particularly attractive if only one UE needs the result of
the reduction. If other UEs also need the result, the reduction operation can be followed by a broadcast
operation to communicate the result to other UEs. Notice that the broadcast is just the inverse of the
reduction shown in Fig. 6.19; that is, at each stage, a UE passes the value to two UEs, thereby
doubling the number of UEs with the broadcast value.

Recursive doubling

If all of the UEs must know the result of the reduction operation, then the recursive-doubling scheme
of Fig. 6.20 is better than the tree-based approach followed by a broadcast.

Figure 6.20. Recursive-doubling reduction to compute the sum of a(0) through a(3).
sum (a(i:j)) denotes the sum of elements i through j of array a.
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As with the tree-based code, if the number of UEs is equal to 2n, then the algorithm proceeds in n
steps. At the beginning of the algorithm, every UE has some number of values to contribute to the
reduction. These are combined locally to a single value to contribute to the reduction. In the first step,
the even-numbered UEs exchange their partial sums with their odd-numbered neighbors. In the
second stage, instead of immediate neighbors exchanging values, UEs two steps away interact. At the
next stage, UEs four steps away interact, and so forth, doubling the reach of the interaction at each
step until the reduction is complete.

At the end of n steps, each UE has a copy of the reduced value. Comparing this to the previous
strategy of using a tree-based algorithm followed by a broadcast, we see the following: The reduction
and the broadcast take n steps each, and the broadcast cannot begin until the reduction is complete, so
the elapsed time is O(2n), and during these 2n steps many of the UEs are idle. The recursive-doubling
algorithm, however, involves all the UEs at each step and produces the single reduced value at every
UE after only n steps.
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6.4.3. Other Communication Constructs

We have looked at only the most common message-passing constructs: point-to-point message passing
and collective communication. There are many important variations in message passing. In MP1, it is
possible to fine-tune performance by changing how the communication buffers are handled or to
overlap communication and computation. Some of these mechanisms are described in the MPI

appendix, Appendix B.

Notice that in our discussion of communication, there is a receiving UE and a sending UE. This is
called two-sided communication. For some algorithms (as discussed in the Distributed Array pattern),
the calculations involved in computing indices into a distributed data structure and mapping them onto
the process owning the desired data can be very complicated and difficult to debug. Some of these
problems can be avoided by using one-sided communication.

One-sided communication occurs when a UE manages communication with another UE without the
explicit involvement of the other UE. For example, a message can be directly "put" into a buffer on
another node without the involvement of the receiving UE. The MPI 2.0 standard includes a one-sided
communication API. Another example of one-sided communication is an older system called GA or

Global Arrays [NHL94, NHL.96, NHK"02, Gloa]. GA provides a simple onesided communication
environment specialized to the problem of distributed-array algorithms.

Another option is to replace explicit communication with a virtual shared memory, where the term
"virtual" is used because the physical memory could be distributed. An approach that was popular in
the early 1990s was Linda [CGO91]. Linda is based on an associative virtual shared memory called a
tuple space. The operations n Linda "put", "take", or "read" a set of values bundled together into an
object called a ruple. Tuples are accessed by matching against a template, making the memory
content-addressable or associative. Linda is generally implemented as a coordination language, that is,
a small set of instructions that extend a normal programming language (the so-called computation
language). Linda is no longer used to any significant extent, but the idea of an associative virtual
shared memory inspired by Linda lives on in JavaSpaces [FHA99].

More recent attempts to hide message passing behind a virtual shared memory are the collection of
languages based on the Partitioned Global Address Space Model: UPC [UPC], Titanium [Tita], and
Co-Array Fortran [Co]. These are explicitly parallel dialects of C, Java, and Fortran (respectively)
based on a virtual shared memory. Unlike other shared-memory models, such as Linda or OpenMP,
the shared memory in the Partitioned Global Address Space model is partitioned and includes the
concept of affinity of shared memory to particular processors. UEs canread and write each others'
memory and perform bulk transfers, but the programming model takes into account nonuniform

memory access, allowing the model to be mapped onto a wide range of machines, from SMP to
NUMA to clusters.

Endnotes

6. Pugh and Sacco [PS04] have reported that it is actually more efficient to do bulk copies
between buffers and arrays before a send than to eliminate the array and perform the
calculation updates directly on the buffers using put and get.
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Appendix A. A Brief Introduction to OpenMP
A.1 CORE CONCEPTS
A.2 STRUCTURED BLOCKS AND DIRECTIVEFORMATS
A.3 WORKSHARING
A.4 DATA ENVIRONMENT CLAUSES
A.5 THE OpenMP RUNTIME LIBRARY
A.6 SYNCHRONIZATION
A.7 THE SCHEDULECLAUSE
A.8 THE REST OF THE LANGUAGE

OpenMP [OMP] is a collection of compiler directives and library functions that are used to create
parallel programs for shared-memory computers. OpenMP is combined with C, C++, or Fortran to
create a multithreading programming language; that is, the language model is based on the
assumption that the UEs are threads that share an address space.

The formal definition of OpenMP is contained in a pair of specifications, one for Fortran and the
other for C and C++. They differ in some minor details, but for the most part, a programmer who
knows OpenMP for one language can pick up the other language with little additional effort.

OpenMP is based on the fork/join programming model. An executing OpenMP program starts as a
single thread. At points in the program where parallel execution is desired, the program forks_
additional threads to form a team of threads. The threads execute in parallel acrcss a region of code
called a parallel region. At the end of the parallel region, the threads wait until the full team arrives,
and then they join back together. At that point, the original or master thread continues until the next
parallel region (or the end of the program).

The goal of OpenMP's creators was to make OpenMP easy for application programmers to use.
Ultimate performance is important, but not if it would make the language difficult for software
engineers to use, either to create parallel programs or to maintain them. To this end, OpenMP was
designed around two key concepts: sequential equivalence and incremental parallelism.

A program is said to be sequentially equivalent when it yields the same[1] results whether it executes
using one thread or many threads. A sequentially equivalent program is easier to maintain and, in
most cases, much easier to understand (and hence write).

1 The results may differ slightly due to the nonassociativity of floating-point operations.
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Figure A.1. Fortran and C programs that print a simple string to standard output

program simple #include <stdio.h>

print =,"E pur si muove" int main()

stop {

end printf("E pur =i mueve ‘\n");

}

Incremental parallelism refers to a style of parallel programming in which a program evolves from a

sequential program into a parallel program. A programmer starts with a working sequential program
and block by block finds pieces of code that are worthwhile to execute in parallel. Thus, parallelism is
added incrementally. At each phase of the process, there is a working program that can be verified,
greatly increasing the chances that the project will be successful.

It is not always possible to use incremental parallelism or to create sequentially equivalent OpenMP
programs. Sometimes a parallel algorithm requires complete restructuring of the analogous sequential
program. In other cases, the program is constructed from the beginning to be parallel and there is no
sequential program to incrementally parallelize. Also, there are parallel algorithms that do not work
with one thread and hence cannot be sequentially equivalent. Still, incremental parallelism and
sequential equivalence guided the design of the OpenMP API and are recommended practices.

A.1. CORE CONCEPTS

We will start our review of the core concepts behind OpenMP by considering a simple program that
prints a string to the standard output device. Fortran and C versions of this program are given in Fig.
Al

We will write a version of this program that creates multiple threads, each of which will print "E pur
si muove."[2

(2] These words are attributed to Giordano Bruno on February 16, 1600, as he was burned

at the stake for insisting that the earth orbited the Sun. This Latin phrase roughly
translates as "And nonetheless, it moves."

OpenMP is an explicitly parallel programming language. The compiler doesn't guess how to exploit
concurrency. Any parallelism expressed in a program is there because the programmer directed the
compiler to "put it there". To create threads in OpenMP, the programmer designates blocks of code
that are to run in parallel. This is done in C and C++ with the pragma

#pragma omp parallel

or in Fortran with the directive
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C$0OMP PARALLEL

Modern languages such as C and C++ are block structured. Fortran, however, is not. Hence, the
Fortran OpenMP specification defines a directive to close the parallel block:

$0HP END PARALLEL

This pattern is used with other Fortran constructs in OpenMP; that is, one form opens the structured
block, and a matching form with the word END inserted after the OMP closes the block.

In Fig. A.2, we show parallel programs in which each thread prints a string to the standard output.

When this program executes, the OpenMP runtime system creates a number of threads, each of which
will execute the instructions inside the parallel construct. If the programmer doesn't specify the
number of threads to create, a default number is used. We will later show how to control the default
number of threads, but for the sake of this example, assume it was set to three.

OpenMP requires that I/O be thread safe. Therefore, each output record printed by one thread is
printed completely without interference from other threads. The output from the program in Fig. A.2
would then look like:

E pur si muove
E pur si muove
E pur si muove

In this case, each output record was identical. It is important to note, however, that although each
record prints as a unit, the records can be interleaved in anyway, so a programmer cannot depend on
the threads writing their records in a particular order.

Figure A.2. Fortran and C programs that print a simple string to standard output

program simple #include <stdio.h>
CE0MP PARALLEL #include “omp.h"
print *,"E pur si muove® int main()
CE0MF END PARALLEL {
stop #pragma omp parallel
end {

printf("E pur =i muove\n");
}
}
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Figure A.3. Fortran and C programs that print a simple string to standard output

program simple rinclude <stdio.h>
integer i #include "omp.h"
i=5
C$0MP PARALLEL int main()
print = ,"E pur gi muove®,i {
C$0MP END PARALLEL int i=5;
stop
end #pragma omp parallel

printf (*E pur si muove Rd\n",i):
}
}

OpenMP is a shared-memory programming model. The details of the memory model will be
discussed later, but a good rule that holds in most cases is this: A variable allocated prior to the
parallel region is shared between the threads. So the program in Fig. A.3 would print:

E pur si muove 5
E pur si muove 5
E pur si muove 5

If a variable is declared inside a parallel region, it is said to be local or private to a thread. In C, a
variable declaration canoccur in any block. In Fortran, however, declarations can only occur at the
beginning of a subprogram.

Fig. A.4 shows a C program with a local variable. We have also included a call to a function called
omp _get thread num(). This integer function is part of the OpenMP standard runtime library
(described later in this appendix). It returns an integer unique to each thread that ranges from zero to
the number of threads minus one. If we assume the default number of threads is three, then the
following lines (interleaved in any order) will be printed:

0, i
2, i
1, 1

O o0
I n
I n
(OO, 0,

Figure A.4. Simple program to show the difference between shared and local (or
private) data

#include <stdio.h>
#include <omp.h>
int main()

{

int i=5; // a shared variable
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#pragma omp parallel
{

int c; // a variable local or private to each thread
c = omp _get thread num();
printf("c = %d, i = %d\n",c,1i);

}

The first value printed is the private variable, C, where each thread has its own private copy holding a
unique value. The second variable printed, 1, is shared, and thus all the threads display the same value
for 1.

In each of these examples, the runtime system is allowed to select the number of threads. This is the
most common approach. It is possible to change the operating system's default number of threads to
use with OpenMP applications by setting the OMP_NUM THREADS environment variable. For
example, on a Linux system with CSh as the shell, to use three threads in our program, prior to
running the program one would issue the following command:

setenv OHP_NUM THREADS 3

The number of threads to be used can also be set inside the program with the num_threads clause.
For example, to create a parallel region with three threads, the programmer would use the pragma

#pragma omp parallel num threads(3)

In each of these cases, the number of threads should be thought of as a request for a certain number of
threads. The system in certain circumstances may provide fewer threads than the number requested.
Hence, if an algorithm must know the actual number of threads being used, the program must query
the system for this number inside the parallel region. We discuss how to do this later when we
describe OpenMP's muntime library.

A.2. STRUCTURED BLOCKS AND DIRECTIVE FORMATS

An OpenMP construct is defined to be a directive (or pragma) plus a block of code. Not just any block
of code will do. It must be a structured block; that is, a block with one point of entry at the top and a
single point of exit at the bottom.

An OpenMP program is not allowed to branch into or out of a structured block. To attempt to do so is
a fatal error generally caught at compile time. Likewise, the structured block cannot contain a
return statement. The only branch statements allowed are those that shut down the entire program
(STOP in Fortran or exit () in C). When the structured block contains only a single statement, it is
not necessary to include the brackets (in C) or the end construct directives.

As we saw in our simple example, an OpenMP directive in C or C++ has the form



#pragma omp directive-name [clause[ clause] ... ]

where directive-name identifies the construct and the optional clauses[3] modify the construct.
Some examples of OpenMP pragmas in C or C++ follow:

(3] Throughout this appendix, we will use square brackets to indicate optional syntactic

elements.

#pragma omp parallel private(ii, jj, kk)
#pragma omp barrier
#pragma omp for reduction(+:result)

For Fortran, the situation is more complicated. We will consider only the simplest case, fixed-form[4]
Fortran code. In this case, an OpenMP directive has the following form:

(4] Fixed form refers to the fixed-column conventions for statements in older versions of

Fortran (Fortran77 and earlier).

sentinel directive-name [clause[[,]clause] ... ]

where sentinel can be one of:

C$0HP
C!OHP
*10HP

The rules conceming fixed-form source lines apply. Spaces within the constructs are optional, and
continuation is indicated by a character in column six. For example, the following three OpenMP
directives are equivalent:

C$oMP PARALLEL DO PRIVATE(I,J)

*10HP PARALLEL
*10MP1 DOPRIVATE(I,J)

C!OMP PARALLEL DO PRIVATE(I,J)

A.3. WORKSHARING

When using the parallel congruct alone, every thread executes the same block of statements. There
are times, however, when we need different code to map onto different threads. This is called
worksharing.
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The most commonly used worksharing construct in OpenMP s the construct to split loop iterations
between different threads. Designing a parallel algorithm around parallel loops is an old tradition in
parallel programming [X393]. This style is sometimes called loop splitting and is discussed at length
in the Loop Parallelism pattern. In this approach, the programmer identifies the most time-consuming

loops in the program. Each loop is restructured, if necessary, so the loop iterations are largely
independent. The program is then parallelized by mapping different groups of loop iterations onto
different threads.

For example, consider the program in Fig. A.S. In this program, a computationally intensive function
big comp() is called repeatedy to compute results that are then combined into a single global
answer. For the sake of this example, we assume the following.

Figure A.5. Fortran and C examples of a typical loop-oriented program

program loop
real =8 answer, ras
real *8 big_comp
integer i, N
N = 1000
answer = 0.0;
do i=1,N
res = big_comp(i)
call combine(answer, res)
end do
print *,answer
stop
end

#include <stdio.h>

#define N 1000

extern void combine(double, double);
extern double big_comp(int);

int main() {

int i;

double answar, res;

answer = 0.0;

for (i=0;i<N;i++){
res = big_comp(i);
combine (ansver ,res) ;

}

printf("4f\n", ansver);

Figure A.6. Fortran and C examples of a typical loop-oriented program. In this version
of the program, the computationally intensive loop has been isolated and modified so
the iterations are independent.

program loop
real *B answer, res(1000)
real *B big_comp
integer i, N
N = 1000
answer = 0.0;
do i=1,N
res{i) = big_comp(i)
end do

do i=1, N
call combine(answer,res{i}}
end do

print *,answer
stop
end

#include <stdic.h>

extern void combine(double, double);
extern double big_comp(int);

#define N 1000

int main{) {
int i
double answer, res[N];
answer = 0.0;
for(i=0;i<N;i++)
res[i] = big_comp(i);

for (i=0;i<h;i++){
combine (ansver,res(i));

}

printf ("{f\a", ansver);
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« The combine () routine does not take much time to run.
« The combine () function must be called in the sequential order.

The first step is to make the loop iterations independent. One way to accomplish this is shown in Fig.
A.6. Because the combine( ) function must be called in the same order as in the sequential
program, there is an extra ordering constraint introduced into the parallel algorithm. This creates a
dependency between the iterations of the loop. If we want to run the loop iterations in parallel, we
need to remove this dependency.

In this example, we've assumed the combine () function is simple and doesn't take much time.
Hence, it should be acceptable to run the calls to combine () outside the parallel region. We do
this by placing each intermediate result computed by big comp () into an element of an array. Then
the array elements can be passed to the combine () function in the sequential order in a separate
loop. This code transformation preserves the meaning of the original program (that is, the results are
identical between the parallel code and the original version of the program).

With this transformation, the iterations of the first loop are independent and they can be safely
computed in parallel. To divide the loop iterations among multiple threads, an OpenMP worksharing
construct is used. This construct assigns loop iterations from the immediately following loop onto a
team of threads. Later we will discuss how to control the way the loop iterations are scheduled, but for
now, we leave it to the system to figure out how the loop iterations are to be mapped onto the threads.
The parallel versions are shown in Fig. A.7.

Figure A.7. Fortran and C examples of a typical loop-oriented program parallelized
with OpenMP

program loop #include <stdioc.h>

real *3 answer, res{i000) #include <ocmp.h>

real *8 big_comp() #define N 1000

integer i,N extern void combine({double,double);
N = 1000 extern double big_comp{int);

answer = 0.0;
int main() {

CE0MP PARALLEL int i;
C$0MP DO double answer, res([N];
de i=1,N answer = 0.0;
res{i) = big_comp(i)
end do #prag=a omp parallel
CH0OMF END DO {
CH0MF END PARALLEL #pragma omp for
for(i=0;i<N;i++} {
do i=1,N reg[i] = big_comp(i);
call combine{answer,res) ¥
end do }
print *,answver for (i=0;i<N;i++}{
stop combine {ansver ,res[i]);
end }

printf ("X{\n", answer);
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The OpenMP parallel construct is used to create the team of threads. This is followed by the
worksharing construct to split up loop iterations among the threads: a DO construct in the case of
Fortran and a Tor construct for C/C++. The program runs correctly in parallel and preserves
sequential equivalence because no two threads update the same variable and any operations (such as
calls to the combine( ) function) that do not commute or are not associative are carried out in the
sequential order. Notice that, according to the rules we gave earlier concerning the sharing of
variables, the loop control variable 1 would be shared between threads. The OpenMP specification,
however, recognizes that it never makes sense to share the loop control index on a parallel loop, so it
automatically creates a private copy of the loop control index for each thread.

By default, there is an implicit barrier at the end of any OpenMP workshare construct; that is, all the
threads wait at the end of the construct and only proceed after all of the threads have arrived. This
barrier can be removed by adding a nowait clause to the worksharing construct:

#pragma omp for nowait

One should be very careful when using a nowait because, in most cases, these barriers are needed to
prevent race conditions.

There are two other commonly used types of worksharing constructs in OpenMP: the single
construct and the sections construct. The single construct defines a block of code that will be
executed by the first thread that encounters the construct. The other threads skip the construct and
wait at the implicit barrier at the end of the Single (unless the nowait clause is used). We used
this construct in the OpenMP reduction example in the Implementation Mechanisms design space. We
needed to copy the number of threads used in aparallel region into a shared variable. To make sure
only one thread wrote into this shared variable, we placed it in a Single construct:

#pragma omp single
num_threads = omp get num threads();

The sections construct is used to set up a region of the program where distinct blocks of code are
to be assigned to different threads. Each block is defined with a section construct. We do not use
sections in any of our examples, so we will not discuss them in detail here.

Finally, it is very common in an OpenMP program to have a parallel construct immediately followed
by a worksharing construct. For example, in Fig. A.7, we had

#pragma omp parallel
{

#pragma omp for

As a shortcut, OpenMP defines a combined construct:

#pragma omp parallel for
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This is identical to the case where the parallel and for constructs are placed within separate
pragmas.

A.4. DATA ENVIRONMENT CLAUSES

OpenMP is a relatively simple API. Most of the challenges in working with OpenMP arise from the
details of how data is shared between threads and how data initialization interacts with OpenMP. We
will address some of the more common issues here, but to thoroughly understand the data
environment associated with OpenMP, one should read the OpenMP specification [OMP]. Details of
memory synchronization are discussed in the section on synchronization (Section 6.3) in the
Implementation Mechanisms design space.

We begin by defining the terms we will use to describe the data environment in OpenMP. In a
program, a variable is a container (or more concretely, a storage location in memory) bound to a name
and holding a value. Variables can be read and written as the program runs (as opposed to constants
that can only be read).

In OpenMP, the variable that is bound to a given name depends on wheher the name appears prior to
a parallel region, inside a parallel region, or following a parallel region. When the variable is declared
prior to a parallel region, it is by default shared and the name is always bound to the same variable.

OpenMP, however, includes clauses that can be added to parallel and to the worksharing
constructs to control the data environment. These clauses affect the variable bound to a name. A
private (list) clause directs the compiler to create, for each thread, a private (or local) variable
for each name included in the list. The names in the private list must have been defined and bound ©
shared variables prior to the parallel region. The initial values of these new private variables are
undefined, so they must be explicitly initialized. Furthermore, after the parallel region, the value of a
variable bound to a name appearing in a private clause for the region is undefined.

For example, in the Loop Parallelism pattern we presented a program to carry out a simple trapezoid
integration. The program consists of a single main loop in which values of the integrand are computed
for a range of X values. The X variable is a temporary variable set and then used in each iteration of
the loop. Hence, any dependencies implied by this variable can be removed by giving each thread its
own copy of the variable. This can be done simply with the private (Xx) clause, as shown in Fig._
A.8. (The reduction clause in this example is discussed later)

Figure A.8. C program to carry out a trapezoid rule integration to compute (here
comes equation)

+1 4
—2 i
-FII 1+ =

#include <stdio.h>
#include <math.h>
#include <omp.h>
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int main () {
int 1i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

step = 1.0/ (double) num steps;

#pragma omp parallel for privateW reduction(+:sum)
for (i=0;i< num_steps; i++)
{
X = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
}
pi = step * sum;
printf("pi %Llf\n",pi);
return®

Several other clauses change how variables are shared beween threads. The most commonly used
ones follow.

- firstprivate(list). Just as with private, for each name appearing in the list, a new
private variable for that name is created for each thread. Unlike private, however, the newly
created variables are initialized with the value of the variable that was bound to the name in
the region of code preceding the construct containing the firstprivate clause. This
clause can be used on both parallel and the worksharing constructs.

- lastprivate (list). Once again, private variables for each thread are created for each
name in the List. In this case, however, the value of the private variable from the
sequentially last loop iteration is copied out into the variable bound to the name in the region
following the OpenMP congruct containing the Lastprivate clause. This clause canonly
be used with the loop-oriented workshare constructs.

Variables generally can appear in the list of only a single data clause. The exception is with
lastprivate and firstprivate, because it is quite possible that a private variable will need
both a well-defined initial value and a value exported to the region following the OpenMP construct in
question.

An example using these clauses is provided in Fig. A.9. We declare four variables private to each
thread and assign values to three of them: h = 1, j = 2, andk = 0. Following the parallel
loop, we print the values of h, j, and K. The variable K is well defined. As each thread executes a
loop iteration, the variable K is incremented. It is therefore a measure of how many iterations each
thread handled.

Figure A.9. C program showing use of the private, firstprivate, and lastprivate
clauses. This program is incorrect in that the variables h and j do not have well-
defined values when the printf is called. Notice the use of a backslash to continue the
OpenMP pragma onto a second line.

#include <stdio.h>
#include <omp.h>
#define N 1000
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int main()
{
int h, i, j, k;
h=1; j =2; k=0;
#pragma omp parallel for private(h) firstprivate(j,k) \
lastprivate(j,k)
for(i=0;i<N;i++) {
k++;
j=h+ 1; //ERROR: h, and therefore j, is undefined
}

printf("h = %d, j = %d, k = %d\n",h, j, k); //ERROR j and h
//are undefined

The value passed outside the loop because of the Lastprivate clause is the value of K for
whichever thread executed the sequentially last iteration of the loop (that is, the iteration for which i
= 999). The values of both h and j are undefined, but for different reasons. The variable j is
undefined because it was assigned the value from a sum with an uninitialized variable (h) inside the
parallel loop. The problem with the variable h is more subtle. It was declared as a private variable,
but its value was unchanged inside the parallel loop. OpenMP stipulates, however, that after a name
appears in any of the private clauses, the variable associated with that name in the region of code
following the OpenMP construct is undefined. Hence, the print statement following the parallel
for does not have a well-defined value of h to print.

A few other clauses affect the way variables are shared, but we do not use them in this book and hence
will not discuss them here.

The final clause we will discuss that affects how data is shared isthe reduction clause. Reductions
were discussed at length in the Implementation Mechanisms design space. A reduction is an operation

that, using a binary, associative operator, combines a set of values into a single value. Reductions are
very common and are included in most parallel programming environments. In OpenMP, the
reduction clause defines a list of variable names and a binary operator. For each name in the list, a
private variable is created and initialized with the value of the identity element for the binary operator
(for example, zero for addition). Each thread carries out the reduction into its copy of the local
variable associated witheach name in the list. At the end of the construct containing the reduction
clause, the local values are combined with the associated value prior to the OpenMP construct in
question to define a single value. This value is assigned to the variable with the same name in the
region following the OpenMP construct containing the reduction.

An example of a reduction was given in Fig. A.8. In the example, the reduction clause was applied
with the + operator to compute a summation and leave the result in the variable sum.

Although the most common reduction involves summation, OpenMP also supports reductions in
Fortran for the operators +, *, -, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND,
IOR, and TEOR. In C and C++, OpenMP supports reduction with the standard C/C++ operators *, -,
& |, 7, && and | |. C and C++ do not include a number of useful intrinsic functions such as "min" or
"max" within the language definition. Hence, OpenMP cannot provide reductions in such cases; if
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they are required, the programmer must code them explicitly by hand. More details about reduction in
OpenMP are given in the OpenMP specification [OMP].

A.5. THE OpenMP RUNTIME LIBRARY

As much as possible, the syntax of OpenMP is expressed through compiler directives. Certain features
of the language, however, can only be handled with runtime library functions. Of the functions within
the runtime library, the most commonly used functions are the following.

- omp set num threads () takes an integer argument and requests that the operating
system provide that number of threads in subsequent parallel regions.

Figure A.10. C program showing use of the most
common runtime library functions

#include <stdio.h>
#include <omp.h>

int main() {
int id, numb;
omp_set num threads(3);
#pragma omp parallel private (id, numb)
id = omp get thread num();
numb = omp getnum threads();
printf(" I am thread %d out of %d \n",id,numb);

}
}

- omp_get num_threads() (integer function) returns the actual number of threads in the
current team of threads.

- omp get thread num() (integer function) returns the ID of a thread, where the ID
ranges from O to the number of threads minus 1. The thread with ID of 0O is the master thread.

+ The lock functions create, use, and destroy locks. These are described later with the other
synchronization constructs.

We provide a simple example of how these functions are used in Fig. A.10. The program prints the
thread ID and the number of threads to the standard output.

The output from the program in Fig. A.10 would look something like this:

I am thread 2 out of 3
I am thread 0 out of 3
I am thread 1 out of 3

The output records would be complete and nonoverlapping because OpenMP requires that the I/0
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libraries be thread-safe. Which thread prints its record when, however, is not specified, and any valid
interleaving of the output records can occur.

A.6. SYNCHRONIZATION

Many OpenMP programs can be written using only the parallel and parallel for
(parallel do in Fortran) constructs. There are algorithms, however, where one needs more careful
control over how variables are shared. When multiple threads read and write shared data, the
programmer must ensure that the threads do not interfere with each other, so that the program returns
the same results regardless of how the threads are scheduled. This is of critical importance since as a
multithreaded program runs, any semantically allowed interleaving of the instructions could actually
occur. Hence, the programmer must manage reads and writes to shared variables to ensure that threads
read the correct value and that multiple threads do not try to write to a variable at the same time.

Synchronization is the process of managing shared resources so that reads and writes occur in the

correct order regardless of how the threads are scheduled. The concepts behind synchronization are

discussed in detail in the section on synchronization (Section 6.3) in the Implementation Mechanisms
design space. Our focus here will be on the syntax and use of synchronization in OpenMP.

Consider the loop-based program in Fig. A.S earlier in this chapter. We used this example to introduce
worksharing in OpenMP, at which time we assumed the combination of the computed results (res)
did not take much time and had to occur in the sequential order. Hence, it was no problem to store
intermediate results in a shared array and later (within a serial region) combine the results into the
final answer.

In the more common case, however, results of big comp () can be accumulated in any order as long
as the accumulations do not interfere. To make things more interesting, we will assume that the
combine() and big comp () routines are both time-consuming and take unpredictable and
widely varying amounts of time to execute. Hence, we need to bring the combine () function into
the parallel region and use synchronization constructs to ensure that parallel calls to the combine ()
function do not interfere.

The major synchronization constructs in OpenMP are the following.

- flush defines a synchronization point at which memory consistency is enforced. This canbe
subtle. Basically, a modern computer can hold values in registers or buffers that are not
guaranteed to be consistent with the computer's memory at any given point. Cache coherency
protocols guarantee that all processors ultimately see a single address space, but they do not
guarantee that memory references will be up to date and consistent at every point in time. The
syntax of flush is

#pragma omp flush [(list)]

where 11st is a comma-separated list of variables that need to be flushed. If the list is
omitted, all variables visible to the calling thread will be flushed. Programmers only rarely
need to call flush because it is automatically inserted at most points where it is needed.
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Typically it is needed only by programmers building their own low-level synchronization
primitives.

- critical implements a critical section for mutual exclusion. In other words, only one
thread at a time will execute the structured block within a critical section. The other threads
will wait their turn at the top of the construct.

The syntax of a critical section is

#pragma omp critical [(name)]
{ a structured block }

where name is an identifier that can be used to support disjoint sets of critical sections. A
critical section implies a call to TLush on entry to and on exit from the critical section.

- barrier provides a synchronization point at which the threads wait until every member of
the team has arrived before any threads continue. The syntax of a barrier is

#pragma omp barrier

A barrier can be added explicitly, but it is also implied where it makes sense (such as at the
end of parallel or worksharing constructs). A barrier implies a flush.

Critical sections, barriers, and flushes are discussed further in the Implementation Mechanisms

design space.

Returning to our example in Fig. A.5, we can safely include the call to the combine( ) routine inside
the parallel loop if we enforce mutual exclusion. We will do this with the critical construct as
shown in Fig. A.11. Notice that we had to create a private copy of the variable res to prevent
conflicts between iterations of the loop.

Figure A.11. Parallel version of the program in Fig. A.5. In this case, however, we
assume that the calls to combine() can occur in any order as long as only one thread at
a time executes the function. This is enforced with the critical construct.

#include <stdio.h>

#include <omp.h>

#define N 1000

extern void combine(double,double);
extern double big comp(int);

int main() {
int i;
double answer, res;
answer = 0.0;
#pragma omp parallel for private (res)
for (i=0;i<N;i++){
res = big comp(i);
#pragma omp critical
combine(answer, res);
}

printf("%f\n", answer);

}
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For most programmers, the high-level synchronization constructs in OpenMP are sufficient. There are
cases, however, where the high-level synchronization constructs cannot be used. Two common cases
where this situation comes up are the following.

The synchronization protocols required by a problem cannot be expressed with OpenMP's
high-level synchronization constructs.

The parallel overhead incurred by OpenMP's high-level synchronization constructs is too
large.

To address these problems, the OpenMP runtime library includes low-level synchronization functions
that provide a lock capability. The prototypes for lock functions are included in the omp. h include
file. The locks use an opaque data type omp Lock t defined in the omp . h include file. The key
functions follow.

void omp init lock(omp lock t *lock). Initialize the lock.

void omp destroy lock(omp lock t *lock). Destroy the lock, thereby freeing
any memory associated with the lock.

void omp set lock(omp lock t *Llock). Setoracquire the lock. If the lock is
free, then the thread calling omp set lock() will acquire the lock and continue. If the
lock is held by another thread, the thread calling omp _set lock () will wait on the call
until the lock is available.

void omp unset lock(omp lock t *lock). Unset or release the lock so some
other thread can acquire it.

int omp test lock(omp lock t *lock). Test or inquire if the lock is available. If
it is, then the thread calling this function will acquire the lock and continue. The test and
acquisition of the lock is done atomically. If it is not, the function returns false (nonzero) and
the calling thread continues. This function is used so athread can do useful work while
waiting for a lock.

The lock functions guarantee that the lock variable itself is consistently updated between threads, but
do not imply a flush of other variables. Therefore, programmers using locks must call flush
explicitly as needed. An example of a program using OpenMP locks is shown in Fig. A.12. The
program declares and then initializes the lock variables at the beginning of the program. Because this
occurs prior to the parallel region, the lock variables are shared between the threads. Inside the
parallel region, the first lock is used to make sure only one thread at a time tries to print a message to
the standard output. The lock is needed to ensure that the two printf statements are executed
together and not interleaved with those of other threads. The second lock is used to ensure that only
one thread at a time executes the g0 for it () function, but this time, the omp test lock()
function is used so a thread can do useful work while waiting for the lock. After the parallel region
completes, the memory associated with the locks is freed by a call to omp lock destroy().

Figure A.12. Example showing how the lock functions in OpenMP are used

Code View: Scroll / Show All
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#include <stdio.h>
#include <omp.h>

extern void do something else(int); extern void go for it(int);

int main() {
omp lock t lcki, lck2; int id;

omp_init lock(&lcki);
omp_init lock(&lck2);

#pragma omp parallel shared(lcki, lck2) private(id)
{
id = omp get thread numO ;

omp_set lock(&Llcki);

printf("thread %d has the lock \n", id);
printf("thread %d ready to release the lock \n", id);
omp unset lock(&Llcki);

while (! omp test lock(&lck2)) {

do_something else(id); // do something useful while waiting
// for the lock
}

go_for _it(id); // Thread has the lock

omp unset lock(&lck2);
}
omp_destroy lock(&lcki);
omp _destroy lock(&lck2);
}

A.7. THE SCHEDULE CLAUSE

The key to performance in a loop-based parallel algorithm is to schedule the loop iterations onto
threads such that the load is balanced between threads. OpenMP compilers try to do this for the
programmer. Although compilers are excellent at managing data dependencies and are very effective

at generic optimizations, they do a poor job of understanding, for a particular algorithm, memory

access patterns and how execution times vary from one loop iteration to the next. To get the best

performance, programmers need to tell the compiler how to divide the loop iterations among the

threads.

This is accomplished by adding a schedule clause to the for or do worksharing constructs. In

both C and Fortran, the schedule clause takes the form
schedule( sched [,chunk])



where sched is either static, dynamic, guided, or runtime and chunk s an optional
integer parameter.

schedule (static [,chunk]). The iteration space is divided into blocks of size
chunk. If chunk is omitted, then the block size is selected to provide one approximately
equal-sized block per thread. The blocks are dealt out to the threads that make up a team in a
round-robin fashion. For example, a chunk size of 2 for 3 threads and 12 iterations will create
6 blocks containing iterations (0,1), (2,3), (4,5), (6,7), (8,9), and (10,11) and assign them to
threads as [(0,1), (6,7)] to one thread, [(2,3), (8,9)] to another thread and [(4,5), (10,11)] to the
last thread.

schedule (dynamic [chunk]). The iteration space is divided into blocks of size
chunk. If chunk is omitted, the block size is set to 1. Each thread is initially given one block
of iterations to work with. The remaining blocks are placed in a queue. When a thread finishes
with its current block, it pulls the next block of iterations that need to be computed off the
queue. This continues until all the iterations have been computed.

schedule (guided [chunk]). This is a variation of the dynamic schedule optimized
to decrease scheduling overhead. As with dynamic scheduling, the loop iterations are divided
into blocks, and each thread is assigned one block initially and then receives an additional
block when it finishes the current one. The difference is the size of the blocks: The size of the
first block is implementation-dependent, but laige; block size is decreased rapidly for
subsequent blocks, down to the value specified by chunk. This method has the benefits of the
dynamic schedule, but by starting with large block sizes, the number of scheduling decisions
at runtime, and hence the parallel overhead, is greatly reduced.

schedule (runtime). The runtime schedule stipulates that the actual schedule and
chunk size for the loop is to be taken from the value of the environment variable
OMP_SCHEDULE. This lets a programmer try different schedules without having to recompile
for each trial.

Consider the loop-based program in Fig. A.13. Because the schedule clause is the same for both
Fortran and C, we will only consider the case for C. If the runtime associated with different loop
iterations changes unpredictably as the program runs, a static schedule is probably not going to be
effective. We will therefore use the dynamic schedule. Scheduling overhead is a serious problem,
however, so to minimize the number of scheduling decisions, we will start with a block size of 10
iterations per scheduling decision. There are no firm rules, however, and OpenMP programmers
usually experiment with a range of schedules and chunk sizes until the optimum values are found. For
example, parallel loops in programs such as the one in Fig. A.13 can also be effectively scheduled
with a static schedule as long as the chunk size is small enough that work is equally distributed among
threads.

Figure A.13. Parallel version of the program in Fig. A.11, modified to show the use of
the schedule clause

#include <stdio.h>
#include <omp.h>
#define N 1000
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extern void combine(double,double);
extern double big comp(int);

int main() {
int i;
double answer, res;
answer = 0.0;
#pragma omp parallel for private(res) schedule(dynamic,10)
for (i=0;i<N;i++){
res = big comp(i);
#pragma omp critical
combine(answer,res);
}

printf("sf\n", answer);

}

A.8. THE REST OF THE LANGUAGE

This discussion has addressed only the features of OpenMP used in this book. Although we have
covered the most commonly used constructs in OpenMP, a programmer interested in working with the
OpenMP language should obtain the complete specification [OMP]. The definition of the full API is
only 50 pages of text. The specification also includes more than 25 pages of examples. A book about
the language is available [CDK+00], and a description of the abstractions behind OpenMP and some
ideas about future directions are presented in [MatOS]. There is a growing body of literature about
OpenMP; many OpenMP applications are described in the proceedings of the various OpenMP
workshops [VIKT00, EVOl, EWOO01].

Appendix B. A Brief Introduction to MPI

B.1 CONCEPTS

B.2 GETTING STARTED

B.3 BASIC POINT-TO-POINT MESSAGE PASSING

B.4 COLLECTIVE OPERATIONS

B.5 ADVANCED POINT-TO-POINT MESSAGE PASSING
B.6 MPI AND FORTRAN

B.7 CONCLUSION

MPI (Message Passing Interface) is the standard programming environment for distributed-memory
parallel computers. The central construct in MPI is message passing: One process| 1] packages
information into a message and sends that message to another process. MPI, however, includes far
more than simple message passing. MPI includes outines to synchronize processes, sum numbers
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distributed among a collection of processes, scatter data across a collection of processes, and much
more.

) The UEs are processes in MPI.

MPI was created in the early 1990s to provide a common message-passing environment that could run
on clusters, MPPs, and even shared-memory machines. MPI is distributed in the form of a library, and
the official specification defines bindings for C and Fortran, although bindings for other languages
have been defined as well. The overwhelming majority of MPI programmers today use MPI version
1.1 (released in 1995). The specification of an enhanced version, MPI 2.0, with parallel I/O, dynamic
process management, one-sided communication, and other advanced features was released in 1997.
Unfortunately, it was such a complex addition to the standard that at the time this is being written
(more than six years after the standard was defined), only a handful of MPI implementations support
MPI 2.0. For this reason, we will focus on MPI 1.1 in this discussion.

There are several implementations of MPI in common use. The two most common are LAM/MPI

LAM] and MPICH [MPI]. Both may be downloaded free of charge and are straightforward to install
using the instructions that come with them. They support a wide range of parallel computers,
including Linux clusters, NUMA computers, and SMPs.

B.1. CONCEPTS

The basic idea of passing a message is deceptively simple: One process sends a message and another
one receives it. Digging deeper, however, the details behind message passing become much more
complicated: How are messages buffered within the system? Can a process do useful work while it is
sending or receiving messages? How can messages be identified so that sends are always paired with
their intended receves?

The long-term success of MPl is due to its elegant solution to these (and other) problems. The
approach is based on two core elements of MPI: process groups and a communication context. A
process group is a set of processes involved in a computation. In MPI, all the processes involved in the
computation are launched together when the program starts and belong to a single group. As the
computation proceeds, however, the programmer can divide the processes into subgroups and
precisely control how the groups interact.

A communication context provides a mechanism for grouping together sets of related
communications. In any message-passing system, messages must be labeled so they can be delivered
to the intended destination or destinations. The message labels in MPI consist of the ID of the sending
process, the ID of the intended receiver, and an integer tag. A receive statement includes parameters
indicating a source and tag, either or both of which may be wild cards. The result, then, of executing a
receive statement at process i is the delivery of a message with destination i whose source and tag
match those in the receive statement.

While straightforward, identifying messages with source, destination, and tag may not be adequate in
complex applications, particularly those that include libraries or other functions reused from other
programs. Often, the application programmer doesn't know any of the details about this borrowed
code, and if the library includes calls to MPI, the possibility exists that messages in the application
and the library might accidentally share tags, destinations IDs, and source IDs. This could lead to
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errors when alibrary message is delivered to application code, or vice versa. One way to deal with
this problem is for library writers to specify reserved tags that users must avoid in their code. This
approach has proved cumbersome, however, and is prone to error because it requires programmers to
carefully read and follow the instructions in the documentation.

MPT's solution to this problem is based on the notion of communication contexts.[2] Each send (and
its resulting message) and receive belong to a communication context, and only those communication
events that share a communication context will match. Hence, even if messages share a source, a
destination, and a tag, they will not be confused with each other as long as they have different
contexts. Communication contexts are dynamically created and guaranteed to be unique.

(21 The Zipcode message passing library [SSD"94] was the only message-passing library

in use prior to MPI that included distinct communication contexts.

In MPI, the process group and communication context are combined into a single object called a
communicator. With only a few exceptions, the functions in MPI include a reference to a
communicator. At program startup, the runtime system creates a common communicator called

MPI_COMM_WORLD

In most cases, MPI programmers only need a single communicator and just use MPI COMM WORLD.
While creating and manipulating communicators is straightforward, only programmers writing
reusable software components need to do so. Hence, manipulating communicators is beyond the scope
of this discussion.

B.2. GETTING STARTED

The MPI standard does not mandate how a job is started, so there is considerable variation between
different MPI implementations and in different situations (for example, jobs started interactively
versus jobs started by a batch scheduler). For starting a job interactively with MPI 1.1, the most
common method launches all the processes involved in the MPI program together on nodes obtained
from a list in a configuration file. All processes execute the same program. The command that
accomplishes this is usually called mpirun and takes the name of the program as a parameter.
Unfortunately, the MPI standard does not define the interface to mpirun, and it varies between MPI
implementations. Details can be found in each implementation's documentation [LAM, MPI].

All MPI programs include a few basic elements. Consider the program in Fig. B.1.

We will explore the elements of MPI required to turn this into a parallel program where multiple
processes execute the function. First, the function prototypes for MPI need to be defined. This is done
with the MPI include file:

#include <mpi.h>
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Next, the MPI environment must be initialized. As part of the initialization, the communicator shared
by all the processes is created. As mentioned eadier, this is called MPI_COMM_WORLD:

MPI_Init(&argc, &argv);

The command-line arguments are passed into MPI_Init so the MPI environment can influence the
behavior of the program by adding its own command-line arguments (transparently to the
programmer). This function returns an integer status flag used to indicate success or failure of the
function call. With very few exceptions, all MPI functions return this flag. Possible values of this flag
are described in the MPI include file, mpi. h.

Figure B.1. Program to print a simple string to standard output

#include <stdio.h>
int main(int argc, char **argv) {
printf("\n Never miss a good chance to shut up \n"); }

Figure B.2. Parallel program in which each process prints a simple string to the
standard output

#include <stdio.h>
#include "mpi.h"

int main(int argc, char **argv) {
int num procs; // the number of processes in the group
int ID; // a unique identifier ranging from 0 to (num procs-1)

if (MPI Init(&argc, &argv) !'= MPI SUCCESS) {
// print error message and exit

}
MPI Comm size (MPI_COMM WORLD, &num procs);

MPI Comm rank (MPI_COMM WORLD, &ID);
printf("\n Never miss a good chance to shut up %d \n",ID);

MPI Finalize();

Although not required, almost every MPI program uses the number of processes in the group and the
rank[3] of each process in the group to guide the computation, as described in the SPMD pattern. This
information is found through calls to the functions MPI _Comm sizeand MPI Comm rank:

(3]

The rank is an integer ranging from zero to the number of processes in the group minus
one. It indicates the position of each process within the process group.

int num procs; // the number of processes in the group
int ID;// a unique identifier ranging from @ to (num procs-1)

MPI Comm size(MPI_COMM WORLD, &num_procs);
MPI Comm rank(MPI COMM WORLD, &ID);
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When the MPI program finishes running, the environment needs to be cleanly shut down. This is done
with this function:

MPI Finalize();

Using these elements in our simple example program, we arrive at the parallel program in Fig. B.2.

If at any point within a program a fatal condition is detected, it might be necessary to shut down the
program. If this is not done carefully, processes can be left on some of the nodes. These processes,
called orphan processes, can in principle stay around "forever" waiting for interaction with other
processes within the group. The following function tells the MPI runtime environment to make a best-
effort attempt to shut down all the processes in the MPI program:

MPI Abort();

B.3. BASIC POINT-TO-POINT MESSAGE PASSING

The point-to-point message-passing routines in MPI send a message from one process to another.
There are more than 21 functions in MPI 1.1 for point-to-point communication. This large set of
message-passing functions provides the controls needed to optimize the use of communication buffers
and specify how communication and computation overlap.

The most commonly used message-passing functions in MPI 1.1 are the blocking send/receive
functions defined in Fig. B.3. The MPT Send () function returns when the buffer (buff) has been
transmitted into the system and can safely be reused. On the receiving side, the MPI Recv ()
function returns when the buffer (buff) has received the message and is ready t use.
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Figure B.3. The standard blocking point-to-point communication routines in the C
binding for MPI 1.1

int MPI_Send (buff, count, MPI_type, dest, tag, Comm);

int MPI_Recv (buff, count, MPI_type, source, tag, Comm, &stat);

buff Pointer to a buffer with a type compatible with
MPI_type.

int count The number of items of the indicated type
contained in buff.

MPI_type The type of the items in the buffers. The most

commonly used types are MPI_DOUBLE, MPI_INT,
MPI_LONG, and MPI_FLODAT.

int source The rank for the process s:‘m]ill;.'; the IMESSagEe,
The constant HPT_ANY_SOURCE can be used by
HPI_RE!':'-" Lo F!.{'{'l"lﬂ ik 'I]I!'!‘i.‘-CFIHI' Ir(ﬁ]ll -'-l['ll'.\' SOLTOE,

int dest The rank of the process receiving the message,

int tag An integer to identify the message involved in
the communication. The constant MPI_ANY_TAG
is a wild card that matches with any tag value.

MPI_Status stat A structure holding status information on
receipt of the message,

MPI_COMM COMM The MPI communicator; this is usually the

default MPI_COMM_WORLD.

The MPI Status data type is defined inmpi.h. The status variable is used to characterize a
received message. [fFMPI ANY TAG was used by MPI Recv (), for example, the actual tag for the
message can be extracted from the status variables as Status.MPI_TAG.

The program in Fig. B.4 provides an example of how to use the basic message-passing functions. In
this program, a message is bounced between two processes. This program (sometimes called a "ping
pong" program) is frequently used as a performance metric for communication systems in parallel
computers.

Figure B.4. MPI program to "bounce” a message between two processes using the
standard blocking point-to-point communication routines in the C binding to MPI 1.1

Code View: Scroll / Show All

#include <stdio.h> // standard I/0 include file

#include "memory.h" // standard include file with function
// prototypes for memory management

#include "mpi.h" // MPI include file

int main(int argc, char **argv) {
int Tagl = 1; int Tag2 = 2; // message tags
int num procs; // the number of processes in the group
int ID; // a unique identifier ranging from O to (num procs-1)
int buffer_count = 100; // number of items in message to bounce
long *buffer; // buffer to bounce between processes
int i;
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MPI Status stat; // MPI status parameter

MPI Init(&argc,&argv); // Initialize MPI environment
MPI Comm rank(MPI COMM WORLD, &ID); // Find Rank of this

// process in the group
MPI Comm size (MPI COMM WORLD, &num procs); //Find number of

// processes in the group

if (num _procs != 2) MPI Abort(MPI COMM WORLD, 1);
buffer = (long *)malloc(buffer count* sizeof(long));

for (i=0; i<buffer_count; i++) // fill buffer with some values
buffer[i] = (long) 1i;

if (ID == 0) {
MPI Send (buffer, buffer count, MPI LONG, 1, Tagl,
MPI COMM WORLD);
MPI Recv (buffer, buffer count, MPI LONG, 1,
Tag2, MPI_COMM WORLD, &stat);
}
else {
MPI Recv (buffer, buffer count, MPI LONG, 0, Tagl,
MPI COMM WORLD,&stat);
MPI Send (buffer, buffer count, MPI LONG, 0, Tag2,

MPI_COMM WORLD);
}
MPI Finalize();

The program opens with the regular include files and declarations. We initialize MPI as the first
executable statement in the program. This could be done later, the only firm requirement being that
initialization must occur before any MPI routines are called. Next, we determine the rank of each
process and the size of the process group. To keep the example short and simple, the program has
been written assuming there will only be two processes in the group. We verify this fact (aborting the
program if necessary) and then allocate memory to hold the buffer.

The communication itself is split into two parts. In the process with rank equal to 0, we send and then
receive. In the other process, we receive and then send. Matching up sends andreceives in this way
(sending and then receiving on one side of a pairwise exchange of messages while receiving and then
sending on the other) can be important with blocking sends and laige messages. To understand the
issues, consider a problem where two processes (ID 0 and ID 1) both need to send a message (from
buffer outgoing) and receive a message (into buffer incoming). Because this is an SPMD program, it
is tempting to write this as

int neigh; // the rank of the neighbor process
If (ID == 0) neigh = 1; else neigh = 0;

MPI Send (outgoing, buffer count, MPI LONG, neigh, Tagl,
MPI_COMM WORLD) ;



// ERROR: possibly deadlocking program
MPI Recv (incoming, buffer count, MPI LONG, neigh, Tag2,
MPI COMM WORLD, &stat);

This code is simple and compact. Unfortunately, in some cases (large message sizes), the system can't
free up the system buffers used to send the message until they have been copied into the incoming
buffer on the receiving end of the communication. Because the sends block until the system buffers
can be reused, the receive functions are never called and the program deadlocks. Hence, the safest way
to write the previous code is to split up the communications as we did in Fig. B.4.

B.4. COLLECTIVE OPERATIONS

In addition to the point-to-point message-passing routines, MPI includes a set of operations in which
all the processes in the group work together to carry out a complex communication. These collective
communication operations are extremely important in MPI programming. In fact, many MPI
programs consist primarily of collective operations and completely lack pairwise message passing.

The most commonly used collective operations include the following.

- MPI Barrier. A barrier defines a synchronization point at which all processes must arrive
before any of them are allowed to proceed. For MPI, this means that every process using the
indicated communicator must call the barrier function before any of them proceed. This
function is described in detail in the Implementation Mechanisms design space.

- MPI Bcast. A broadcast sends a message from one process to all the processes in a group.

- MPI Reduce. A reduction operation takes a set of values (in the buffer pointed to by inbuff)
spread out around a process group and combines them using the indicated binary operation. To
be meaningful, the operation in question must be associative. The most common examples for
the binary function are summation and finding the maximum or minimum of a set of values.
Notice that the final reduced value (in the buffer pointed to by outbuff) is only available in the
indicated destination process. If the value is needed by all processes, there is a variant of this
routine called MPI_Al1l reduce (). Reductions are described in detail in the
Implementation Mechanisms design space.

The syntax of these functions is defined in Fig. B.S.

In Figs. B.6 and B.7 we present a program that uses these three functions. In this program, we wish to
time a function that passes a message around a ring of processes. The code for the ring
communication function is not relevant for this discussion, but for completeness, we provide it in Fig.
B.8. The runtime for any parallel program is the time taken by the slowest process. So we need to find
the time consumed in each process and then find the maximum across all the processes. The time is
measured using the standard MPI timing function:

double MPI Wtime();
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Figure B.6. Program to time the ring function as it passes messages around a ring of
processes (continued in Fig. B.7). The program returns the time from the process that
takes the longest elapsed time to complete the communication. The code to the ring
function is not relevant for this example, but it is included in Fig. B.8.

Code View: Scroll / Show All

//

// Ring communication test.

// Command-line arguments define the size of the message
// and the number of times it is shifted around the ring:
//

// a.out msg size num shifts

//

#include "mpi.h"

#include <stdio.h>

#include <memory.h>

int main(int argc, char **argv) {
int num_shifts = 0; // number of times to shift the message
int buff _count = 0; // number of doubles in the message
int num procs = 0; // number of processes in the ring
int ID; // process (or node) id
int buff size bytes; // message size in bytes
int i;

double t0; // wall-clock time in seconds

double ring time; // ring comm time - this process

double max time; // ring comm time - max time for all processes
double *x; // the outgoing message

double *incoming; // the incoming message

MPI Status stat;

// Initialize the MPI environment MPI Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD, &ID);
MPI Comm size(MPI COMM WORLD, &num procs);

// Process, test, and broadcast input parameters
if (ID == 0)f
if (argc !'= 3){
printf("Usage: %s <size of message> <Num of shifts> \n",*argv);
fflush(stdout);
MPI Abort(MPI_COMM WORLD, 1);
}

buff count = atoi(*++argv); num shifts = atoi(*++argv);

printf(": shift %d doubles %d times \n",buff count, num shifts);
fflush(stdout);
}

// Continued in the next figure
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Figure B.7. Program to time the ring function as it passes messages around a ring of
processes (continued from Fig. B.6)

Code View: Scroll / Show All

// Continued from the previous figure

// Broadcast data from rank 0@ process to all other processes
MPI Bcast (&buff count, 1, MPI INT, ©, MPI COMM WORLD);
MPI Bcast (&num shifts, 1, MPI INT, ©, MPI COMM WORLD);

// Allocate space and fill the outgoing ("x") and "incoming" vectors.
buff size bytes = buff count * sizeof(double);

X = (double*)malloc(buff size bytes);
incoming = (double*)malloc(buff size bytes);

for(i=0;i<buff count;i++){
x[i] = (double) i;
incoming[i] = -1.0;

// Do the ring communication tests.
MPI Barrier(MPI_COMM WORLD);

t0 = MPI Wtime();

/* code to pass messages around a ring */

ring (x,incoming,buff count,num procs,num shifts,ID);
ring time = MPI Wtime() - tO;

// Analyze results
MPI Barrier(MPI_COMM WORLD);

MPI Reduce(&ring time, &max_time, 1, MPI DOUBLE, MPI MAX, 0,
MPI_COMM WORLD) ;
if(ID == 0){
printf("\n Ring test took %f seconds", max time);
}
MPI Finalize();
}
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Figure B.5. The major collective communication routines in the C binding to MPI 1.1
(MPI_Barrier, MPI_Bcast, and MPI_Reduce)

int MPI_Barrier (COMM);
int MPI_Becast {(outbuff, count, MPI_type, source, COMM);

int MPI_Reduce (inbuff, cutbuff, count, MPI_type, OP, dest, COMM);

inbuff, sutbuff Pointers to buffers with a type compatible with
MPI_type.

int count The number of items of the indicated type
contained in bufl.

MPI_type The type of the items in the buffers as defined
in mpi.h.

int source The rank for the process sending the message.

int dest The process that will hold the final output value
from the reduction.

MFI_COMM COMM The MPI communicator; this is usually the
default MPI_COMM_WORLD.

op The operation used in the reduction as defined
in mpi.h. Common values are MPI_MIN, MPI_MAX,
and MPI_SUM.

MPI Wtime() returns the time in seconds since some arbitrary point in the past. Usually the time
interval of interest is computed by calling this function twice.

This program begins as most MPI programs do, with declarations, MPI initialization, and finding the
rank and number of processes. We then process the command-line arguments to determine the
message size and number of times to shift the message around the ring of processes. Every process
will need these values, so the MPTI Bcast () function is called to broadcast these values.

We then allocate space for the outgoing and incoming vectors to be used in the ring test. To produce
consistent results, every process must complete the initialization before any processes enter the timed
section of the program. This is guaranteed by calling the MPI _Barrier () function just before the
timed section of code. The time function is then called to get an initial time, the ring test itself is
called, and then the time function is called a second time. The difference between these two calls to
the time functions is the elapsed time this process spent passing messages around the ring.

Figure B.8. Function to pass a message around a ring of processes. It is deadlock-free
because the sends and receives are split between the even and odd processes.

Code View: Scroll / Show All

/*******************************************************************

NAME: ring
PURPOSE: This function does the ring communication, with the
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odd numbered processes sending then receiving while the even
processes receive and then send.
The sends are blocking sends, but this version of the ring
test still is deadlock-free since each send always has a
posted receive.
*******************************************************************/
#define IS ODD(x) ((x)%2) /* test for an odd int */
#include "mpi.h"
ring(
double *x, /* message to shift around the ring */
double *incoming, /* buffer to hold incoming message */
int buff count, /* size of message */
int num procs, /* total number of processes */a
int num_shifts, /* numb of times to shift message */
int my ID) /* process id number */

int next; /* process id of the next process */

int prev; /* process id of the prev process */

int i;

MPI Status stat;
/*******************************************************************

** In this ring method, odd processes snd/rcv and even processes rcv/snd.
******************************************************************/

next (my ID +1 )%num_procs;

prev ((my ID==0)7?(num _procs-1):(my ID-1));

if( IS ODD(my ID) ){

for(i=0;i<num shifts; i++){

MPI Send (x, buff count, MPI DOUBLE, next, 3,
MPI COMM WORLD);

MPI Recv (incoming, buff count, MPI DOUBLE, prev, 3,
MPI COMM WORLD, &stat);

}
}
else{
for(i=0;i<num shifts; i++){
MPI Recv (incoming, buff count, MPI DOUBLE, prev, 3,
MPI COMM WORLD, &stat);
MPI Send (x, buff count, MPI DOUBLE, next, 3,
MPI COMM WORLD);
}
}




The total runtime for an MPI program is given by the time required by the slowest processor. So to
report a single number for the time, we need to determine the maximum of the times taken by each
processors. We do this with a single call to MPI_Reduce() with MPI_MAX.

Figure B.9. The nonblocking or asynchronous communication functions

int MPI_Isend(outbuff, count, MPI_type, dest, tag, MPI_COMM, regquast);
int MPI_Irecv (inbuff, count, MFI_type, source, tag, MPI_COMM, request);
int MPI_Wait{request, status);

int MPI_Test(request, flag, status);

inbuff, outbuff Pointers to a buffer with a type compatible with
MPI_type.

int count The number of items of the indicated type
contained in buff,

MPI_type The type of the items in the buffers as defined
in mpi.h.

int source The rank for the process sending the message.

int tag A label for the message.

int dest The process that will hold the final output value
from the reduction.

MPI_COMM COMM The MPI communicator; this is usually the
default MPT_COMM_WORLD.

MPI_Request request A handle used to interact with the
communication.

int flag A flag set to nonzero (true) if the message has

completed.

B.5. ADVANCED POINT-TO-POINT MESSAGE PASSING

Most MPI programmers use only the standard point-to-point message-passing functions. MPI includes
additional message-passing functions, however, giving programmers more control over the details of
the communication. Probably the most important of these advanced message-passing routines are the
nonblocking or asynchronous communication functions.

Nonblocking communication can sometimes be used to decrease parallel overhead by overlapping
computation and communication. The nonblocking communication functions return immediately,
providing "request handles" that can be waited on and queried. The syntax of these functions is
presented in Fig. B.9. To understand how these functions are used, consider the program in Fig. B.10.

After initializing the MPI environment, memory is allocated for the field (U) and the buffers used to
communicate the edges of U (B and inB). The ring communication pattern is then established for each
process by computing the IDs for the processes to the left and to the right. Entering the main
processing loop, each iteration begins by posting the receive:
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MPI Irecv(inB, N, MPI DOUBLE, left, i, MPI COMM WORLD, &req_recv);

Figure B.10. Program using nonblocking communication to iteratively update a field
using an algorithm that requires only communication around a ring (shifting messages
to the right)

Code View: Scroll / Show All

#include <stdio.h>

#include <mpi.h>

// Update a distributed field with a local N by N block on each process
// (held in the array U). The point of this example is to show

// communication overlapped with computation, so code for other

// functions is not included.

#define N 100 // size of an edge in the square field.
void extern initialize(int, double*);

void extern extract boundary(int, double*, double*);
void extern update interior(int, double*);

void extern update edge(int,double*, double*);

int main(int argc, char **argv) {
double *U, *B, *inB;
int i, num procs, ID, left, right, Nsteps = 100;
MPI Status status;
MPI Request req recv, req send;

// Initialize the MPI environment
MPI Init(&argc,&argv);
MPI Comm rank(MPI COMM WORLD, &ID);
MPI Comm_size(MPI_COMM WORLD, &num_procs);

// allocate space for the field (U), and the buffers
// to send and receive the edges (B, inB)

U = (double*)malloc(N*N * sizeof(double));
B = (double*)malloc(N * sizeof(double));
inB = (double*)malloc(N * sizeof(double));

// Initialize the field and set up a ring communication pattern initialize (N, U);
right = ID + 1; if (right > (num procs-1)) right = 0;
left = ID - 1; if (left < 0 ) left = num procs-1;

// Iteratively update the field U

for(i=0; i<Nsteps; i++){
MPI Irecv(inB, N, MPI DOUBLE, left, i, MPI COMM WORLD, &req recv);
extract_boundary(N, U, B); //Copy the edge of U into B
MPI Isend(B, N, MPI DOUBLE, right, i, MPI COMM WORLD, &req send);
update interior(N, U);
MPI Wait(&req recv, &status); MPI Wait(&req send, &status);
update edge(ID, inB, U);

}

MPI Finalize();

}
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The function returns as soon as the system sets up resources to hold the message incoming from the
left. The handle req_recv provides a mechanism to inquire about the status of the communication. The
edge of the field is then extracted and sent to the neighbor on the right:

MPI Isend(B, N, MPI DOUBLE, right, i, MPI COMM WORLD, &req send);

While the communication is taking place, the program updates the interior of the field (the interior
refers to that part of the update that does not require edge information from the neighboring
processes). After that work is complete, each process must wait until the communication is complete

MPI Wait(&req send, &status);
MPI Wait(&req recv, &status);

at which point, the field edges are updated and the program continues to the next iteration.

Another technique for reducing parallel overhead in an MPI program is persistent communication.
This approach is used when a problem is dominated by repeated use of a communication pattem. The
idea is to set up the communication once and then use it multiple times to pass the actual messages.
The functions used in persistent communication are

MPI Send init(outbuff, count, MPI type, dest, tag, MPI COMM, &request);
MPI Recv _init(inbuff, count, MPI type, src, tag, MPI COMM, &request);
MPI Start(&request);

MPI Wait(&request, &status);

MPI Send initandMPI Recv_1init are called to set up the communication. A request handle
is returned to manipulate the actual communication events. The communication is initiated with a call
to MPI Start, at which point, the process is free to continue with any computation. When no
further work can be done until the communication is complete, the processes can wait on a call to
MPI Wait. A function using persistent communication for the ring communication pattern used in

Fig. B.8 is shown in Fig. B.11.

In addition to nonblocking and persistent communication, MPI defines several communication modes
corresponding to different ways the sends work with the communication buffers:

« Standard mode (MPI Send). The standard MPI send; the send will not complete until the
send buffer is empty and ready to reuse.

«  Synchronous mode (MPI_Ssend). The send does not complete until after a matching receive
has been posted. This makes it possible to use the communication as a pairwise
synchronization event.

- Buffered mode MPI Bsend). User-supplied buffer space is used to buffer the messages. The
send will complete as soon as the send buffer is copied to the system buffer.
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Figure B.11. Function to pass a message around a ring of processes using persistent
communication

Code View: Scroll / Show All

/*******************************************************************

NAME: ring persistent
PURPOSE: This function uses the persistent communication request
mechanism to implement the ring communication in MPI.

#include "mpi.h"
#include <stdio.h>

ring persistent(
double *x, /* message to shift around the ring */
double *incoming, /* buffer to hold incoming message */
int buff count, /* size of message */
int num procs, /* total number of processes */
int num_shifts, /* numb of times to shift message */
int my ID) /* process id number */

int next; /* process id of the next process */

int prev; /* process id of the prev process */

int i;

MPI Request snd req; /* handle to the persistent send */
MPI Request rcv_req; /* handle to the persistent receive */
MPI Status stat;

/*******************************************************************

** In this ring method, first post all the sends and then pick up
** the. messages with the receives.
*******************************************************************/
next (my ID +1 )%num procs;
prev ((my ID==0)7?(num _procs-1):(my ID-1));

MPI Send init(x, buff count, MPI DOUBLE, next, 3,
MPI COMM WORLD, &snd req);
MPI Recv init(incoming, buff count, MPI DOUBLE, prev, 3,
MPI COMM WORLD, &rcv req);
for(i=0;i<num shifts; i++){

MPI Start(&snd req);
MPI Start(&rcv req);

MPI Wait(&snd req, &stat);
MPI Wait(&rcv _req, &stat);

- Ready mode (MPI Rsend). The send will transmit the message immediately under the
assumption that a matching receive has already been posted (an erroneous program otherwise).
On some systems, ready mode communication is more efficient.

Most of the MPI examples in this book use standard mode. We used the synchronous-mode
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communication to implement mutual exclusion in the Implementation Mechanisms design space.
Information about the other modes can be found in the MPI specification [Mesb].

B.6. MPI AND FORTRAN

The formal MPI definition includes language bindings for C and Fortran. Bindings for MPI and Java
have been defined as well [BC0OO0, Min97, BCKL98, AIMJS02]. Up to this point, we have focused on
C. Translating from C to Fortran, however, is straightforward and based on a few simple rules.

« The include file in Fortran containing constants, error codes, etc., is calledmpif. h.

«  MPI routines essentially have the same names in the two languages. Whereas the MPI
functions in C are case-sensitive, the MPI subprograms in Fortran are case-insensitive.

 In every case except for the timing routines, Fortran uses subroutines while C uses functions.

+ The arguments to the C functions and Fortran subroutines are the same with the obvious
mappings onto Fortran's standard data types. Thereis one additional argument added to most
Fortran subroutines. This is an integer parameter, 1err, that holds the MPI error return code.

For example, we show C and Fortran version of MPI's reduction routine in Fig. B.12.

Figure B.12. Comparison of the C and Fortran language bindings for the reduction
routine in MP1 1.1

[View full size image]

Opaque objects (such as MPI COMM or MPI Request) are of type INTEGER in Fortran (with the
exception of Boolean-valued variables, which are of type LOGICAL).

A simple Fortran program using MPI is shown in Fig. B.13. This program shows how the basic setup
and finalization subroutines work in MPI Fortran. The direct analogy with the MPI C language
binding should be clear from this figure. Basically, if a programmer understands MPI with one
language, then he or she knows MPI for the other language. The basic congructs are the same
between language bindings; however, programmers must be careful when mixing Fortran-MPI and C-
MPI because the MPI specifications do not guarantee interoperability between languages.

Figure B.13. Simple Fortran MPI program where each process prints its ID and the
number of processes in the computation

program firstprog
include "mpif.h"
integer ID, Nprocs, ierr

call MPI INIT( ierr )
call MPI COMM RANK ( MPI COMM WORLD, ID, ierr)
call MPI COMM SIZE ( MPI COMM WORLD, Nprocs, ierr )
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print *, "Process ", ID, " out of ", Nprocs
call MPI FINALIZE( ierr )

end

B.7. CONCLUSION

MPI is by far the most commonly used API for parallel programming. It is often called the "assembly
code" of parallel programming. MPI's low-level constructs are closely aligned to the MIMD model of
parallel computers. This allows MPI programmers to precisely control how the parallel computation
unfolds and write highly efficient programs. Perhaps even more important, this lets programmers
write portable parallel programs that run well on shared-memory machines, massively parallel
supercomputers, clusters, and even over a grid.

Learning MPI can be intimidating. It is huge, with more than 125 different functions in MPI 1.1. The
large size of MPI does make it complex, but most programmers avoid this complexity and use only a
small subset of MPI. Many parallel programs can be written with just six functions: MPT Init,

MPI Comm Size,MPI Comm Rank,MPI Send,MPI Recv,andMPI Finalize. Good
sources of more information about MPIinclude [Pac96], [GLS99], and [GS98]. Versions of MPI are
available for most computer systems, usually in the form of open-source software readily available on-
line. The most commonly used versions of MPI are LAM/MPI [LAM] and MPICH [MPI].

Appendix C. A Brief Introduction to Concurrent
Programming in Java

C.1 CREATING THREADS

C.2 ATOMICITY, MEMORY SYNCHRONIZATION, AND THE wlatile KEYWORD
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@

.3 SYNCHRONIZED BLOCKS

@)

4 WAIT AND NOTIFY

@

.5 LOCKS

C.6 OTHER SYNCHRONIZATION MECHANISMS AND SHARED DATA
STRUCTURES

C.7INTERRUPTS

Java is an object-oriented programming language that provides language support for expressing
concurrency in shared-memory programs. Java's support for polymorphism can be exploited to write
frameworks directly supporting some of the patterns described in this book. The framework provides
the infrastructure for the pattern; the application programmer adds subclasses containing the
application-specific code. An example is found in the Examples section of the Pipeline pattern.

Because Java programs are typically compiled to an intermediate language called Java bytecode,
which 1s then compiled and/or interpreted on the target machine, Java programs enjoy a high degree of
portability.

Java can also be used for distributed computing, and the standard libraries provide support for several
mechanisms for interprocess communication in distributed systems. A brief overview of these is given
in the Implementation Mechanisms design space. In addition, there is an ever-growing collection of
packages that allow concurrency and interprocess communication to be expressed at higher levels than
with the facilities provided by the language and core packages. Currently, the most common type of
applications that exploit Java's facilities for concurrency are multithreaded server-side applications,
graphical user interfaces, and programs that are naturally distributed due to their use of data and/or
resources in different locations.

The performance available from current implementations of Java is not as good as that from
programming languages more typically used in high-performance scientific computing. However, the
ubiquity and portability of Java, along with the language support for concurrency, make it an
important platform. For many people, a Java program may be their first concurrent program. In
addition, continually improving compiler technology and libraries should reduce the performance gap
in the future.

Figure C.1. A class holding pairs of objects of an arbitrary type. Without generic
types, this would have been done by declaring x and y to be of type Object, requiring
casting the returned values of getX and getY. In addition to less-verbose programs,
this allows type errors to be found by the compiler rather than throwing a
ClassCastException at runtime.

Code View: Scroll / Show All

/*class holding two objects of arbitrary type providing swap and accessor methods. The gene

class Pair<Gentype>

//Gentype is a type variable

{ private Gentype Xx,y;
void swap(){Gentype temp = x; x=y; y=temp;}
public Gentype getX(){return x;}
public Gentype getY(){return y;}
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Pair(Gentype x, Gentype y){this.x = x; this.y

=y}
public String toString(){return "(" + x + "," + y +

")}

/*The following method, defined in some class, instantiates two Pair objects, replacing the

public static void test()
{ /*create a Pair holding Strings.*/
Pair<String> pl = new Pair<String>("hello", "goodbye");

/*create a Pair holding Integers. Autoboxing automatically creates Integer objects fron
new Pair<Integer>(new Integer(l), new Integer(2));*/
Pair<Integer> p2 = new Pair<Integer>(1l,2);

/*do something with the Pairs.*/
System.out.println(pl); pl.swap(); System.out.println(pl);
System.out.println(p2); p2.swap(); System.out.println(p2);

In this appendix, we describe Java 2 1.5[1] [Java], which, compared with earlier versions, includes
several additions to the programming language and standard libraries. Additions to the programming
language include support for generic types, autoboxing (which provides automatic conversion between
primitive and object types suwch as int and Integer), and enhanced for loops. The example in
Fig. C.1 illustrates generic types, the only language addition used in this book.

(1) The version available at press time was J2SE 1.5.0 Beta 1.

Java 2 1.5 also provides significantly enhanced support for concurrent programming via several
changes in the java. lang and java.util packages and the introduction of new packages
java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent. locks. A new, more precise specification of the memory model has
also been incorporated. The facilities for concurrent programming are described in [JSRb, JSRc] and
the new memory model is described in [JSRa].

It isn't feasible to give a complete introduction to Java in this appendix. Hence, we assume that the
reader has some familiarity with the language and focus on those aspects that are most relevant to
shared-memory parallel programming, including new features introduced in Java 2 1.5. Introductions
to Java and its (pre-Java 2 1.5) libraries can be found in [AGH00, HC02, HCO1]. An excellent
discussion of concurrent programming in Java is [Lea0Oa].

C.1l. CREATING THREADS

In Java, an application always has at least one thread, the one that executes the main method. A new
thread is created by instantiating and starting a thread object; the code to be executed is provided in
a run method, as described later. A thread terminates when its run method returns. A thread can be
normal or marked as a daemon thread. Each thread runs independently of the other threads in an
application, and the application terminates when all of its nondaemon threads have terminated.
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A thread can access all variables visible to its run method according to the usual Java scope rules.
Thus, by making variables visible to multiple threads, memory can be shared between them. By
encapsulating variables, memory can be protected from access by other threads. In addition, a variable
can be marked final, which means that, once initialized, its value will not change. Provided the
initialization is done properly, final variables can be accessed by multiple threads without requiring
synchronization. (However, marking a reference final does not guarantee immutability of the
referenced object; care must be taken to ensure that it is thread-safe as well.)

There are two different ways to specify the run method that a thread will execute. One is to extend
the Thread class and override its run method. Then, one simply instantiates an object of the
subclass and calls its inherited Start method. The more common approach is to instantiate a
Thread object using the constructor that takes a Runnable object as a parameter. As before,
invoking the Thread object's sStart method begins the thread's execution. The Runnable
interface contains a public void run method; the newly created thread executes the Runnable
object's run method. Because the run method is parameterless, information is typically passed to the
thread via data members of the Thread subclass or the Runnable. These are typically set in the
constructor.

In the following example, the class ThinkParallel implements the Runnable interface (that is,
it declares that it implements the interface and provides a public void run() method). The
main method creates and starts four Thread objects. Each of these is passed a ThinkParallel
object, whose 1d field has been set to the value of loop counter 1. This causes four threads to be
created, each executing the run method of the ThinkParallel class.

Figure C.2. Program to create four threads, passing a Runnable in the Thread
constructor. Thread-specific data is held in a field of the Runnable object.

Code View: Scroll / Show All

class ThinkParallel implements Runnable

{

int id; //thread-specific variable containing thread ID
/*The run method defines the thread's behavior*/

public void run()
{ System.out.println(id + ": Are we there yet?");

}

/*Constructor sets id*/
ThinkParallel (int id){this.id = id;}

/*main method instantiates and starts the threads*/ public static void main(String[] arc

{ /*create and start 4 Thread objects, passing each a ThinkParallel object
*/

for(int 1 = 0; 1 '= 4; i++)
{ new Thread(new ThinkParallel(i)) .start();
}

}
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C.1.1. Anonymous Inner Classes

A common programming idiom found in several of the examples uses an anonymous class to define
the Runnables or Threads at the point where they are created. This often makes reading the
source code more convenient and avoids file and class clutter. We show how to rewrite the example of
Fig. C.2 using this idiom in Fig. C.3. Variables that are local to a method cannot be mentioned in an
anonymous class unless declared final, and are thus immutable after being assigned a value. This is
the reason for introducing the seemingly redundant variable j.

C.1.2. Executors and Factories

The java, util. concurrent package provides the Executor interface and its subinterface
ExecutorServices along with several implementations. An Executor executes Runnable
objects while hiding the details of thread creation and scheduling.[2] Thus, instead of instantiating a
Thread object and passing it a Runnable to execute a task, one would instantiate an Executor
object and then use the Executor's execute method to execute the Runnable. For example, a
ThreadPoolExecutor manages a pool of threads and arranges for the execution of submitted
Runnables using one of the pooled threads. The classes implementing the interfaces provide
adjustable parameters, but the Executors class provides factory methods that create various
ExecutorServices preconfigured for the most common scenarios. For example, the factory
method Executors.newCachedThreadPool () returns an ExecutorService withan
unbounded thread pool and automatic thread reclamation. This will attempt to use a thread from the
pool if one is available, and, if not, create a new thread. Idle threads are removed from the pool after a
certain amount of time. Another example is Executors.newFixedThreadPool (int
nThreads), which creates a fixed-size thread pool containing NThreads threads. It contains an
unbounded queue for waiting tasks. Other configurations are possible, both using additional factory
methods not described here and also by directly instantiating a class implementing
ExecutorService and adjusting the parameters manually.

(2] The ExecutorServices interface provides additional methods to manage thread
termination and support Futures. The implementations of Executor in
java.util. concurrent also implement the ExecutorServices interface.

Figure C.3. Program similar to the one in Fig. C.2, but using an anonymous class to
define the Runnable object

class ThinkParallelAnon {
/*main method instantiates and starts the threads*/
public static void main(String[] args)
{ /*create and start 4 Thread objects,

passing each a Runnable object defined by an anonymous class
*/
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for(int i = 0; i = 4; i++)
{ final int j = 1i;
new Thread( new Runnable() //define Runnable objects
// anonymously
{ int id = j; //references
public void run()
{ System.out.println(id + ":
Are we there yet?");}

) . start();

As an example, we could rewrite the previous example as shown in Fig. C.4. Note that to change to a
different thread-management policy, we would only need to invoke a different factory method for the
instantiation of the Executor. The rest of the code would remain the same.

The run method in the Runnable interface does not return a value and cannot be declared to throw
exceptions. To correct this deficiency, the Cal lable interface, which contains a method call that
throws an Exception and returns a result, was introduced. The interface definition exploits the new
support for generic types. Cal lables can arrange execution by using the submit method of an
object that implements the ExecutorService interface. The submit method returns a Future
object, which represents the result of an asynchronous computation. The Future object provides
methods to check whether the computation is complete, to wait for completion, and to get the result.
The type enclosed within angle brackets specifies that the class is to be specialized to that type.

Figure C.4. Program using a ThreadPoolExecutor instead of creating threads directly

import java.util.concurrent.*;
class ThinkParalleln implements Runnable {
int id; //thread-specific variable containing thread ID

/*The run method defines the tasks behavior*/
public void run()
{ System.out.println(id + ": Are we there yet?");

}

/*Constructor sets id*/
ThinkParalleln(int id){this. id = id;}

/*main method creates an Executor to manage the tasks*/
public static void main(String[] args)

{ /*create an Executor using a factory method in Executors*/
ExecutorService executor = Executors.newCachedThreadPool();

// send each task to the executor
for(int i= 0; i l= 4; i++)
{ executor.execute(new ThinkParalleln(i)); }
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/*shuts down after all queued tasks handled*/
executor.shutdown();

As an example, we show in Fig. C.5 a code fragment in which the main thread submits an anonymous
Callableto an Executor. The Executor arranges for the call method to be executed in
another thread. Meanwhile, the original thread performs some other work. When finished with the
other work, it uses the get method to obtain the result of the Callable's execution. If necessary,
the main thread will block on the get method until the result is available.

Figure C.5. Code fragment illustrating use of Callable and Future

/*execute a Callable that returns a Double.
The notation Future<Double> indicates a (generic) Future that
has been specialized to be a <Double>.
*/
Future<Double> future = executor.submit(
new Callable<Double>() {
public Double call() { return result of long computation; }
});

do something else( ); /* do other things while long
computation proceeds in another thread */
try {
Double d = (future.get()); /* get results of long
computation, waiting if necessary*/
} catch (ExecutionException ex) { cleanup(); return; }

C.2. ATOMICITY, MEMORY SYNCHRONIZATION, AND THE
volatile KEYWORD

The Java Virtual Machine (JVM) specification requires that reads and wriites of all the primitive types,
except Long and double, be atomic. Thus, a statement such as done = true will not be
interfered with by another thread. Unfortunately, as was explained in the Implementation Mechanisms

design space, more than just atomicity is needed. We also need to ensure that the write is made visible
to other threads and that values that are read are the freshest values. In Java, a variable marked
volatile is guaranteed to have memory synchronized on each access. The volatile keyword
applied to Long and double guarantees, in addition, atomicity.

The java.util. concurrent .atomic package provides extended support for atomicity and
memory synchronization. For example, the package includes a variety of classes that provide atomic
compareAndSet operations on their types. On many systems, such operations can be implemented
with a single machine instruction. Where it makes sense, other operations such as atomic increment
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may be provided. The package also provides array classes where the individual array elements have
volatile semantics.[3] The classes in the java. util. concurrent. atomic package are
only useful when critical updates for an object are limited to a single variable. As a result, they are
most commonly used as building blocks for higher-level constructs.

3111 the Java language, declaring an array to be volatile only makes the reference to the

array volatile, not the individual elements.

The following code uses the getAndIncrement method of the AtomicLong class to implement
a thread-safe sequencer. The getAndIncrement method atomically obtains the value of the
variable, increments it, and returns the original value. Such a sequencer could be used to implement a
task queue in some master/worker designs.

class Sequencer

{

private AtomicLong sequenceNumber = new AtomicLong(0);
public long next() { return sequenceNumber.getAndIncrement(); }

}

C.3. SYNCHRONIZED BLOCKS

When variables can be accessed by multiple threads, care must be taken to ensure that data-corrupting
race conditions cannot occur. Java provides a construct called synchronized blocks to allow the
programmer to ensure mutually exclusive access to shared variables. Synchronized blocks also serve

as implicit memory fences, as described in the Implementation Mechanisms design space (Section
6.3).

Every class in aJava program is a direct or indirect subclass of class Object. Every Object
instance implicitly contains a lock. A synchronized block is always associated with an object: Before a
thread can enter a synchronized block, it must acquire the lock associated with that object. When the
thread leaves the synchronized block, whether normally or because an exception was thrown, the lock
is released. At most one thread can hold the lock at the same time, so synchronized blocks can be used
to ensure mutually exclusive access to data. They are also used o synchronize memory.

A synchronized block is specified in code as

synchronized(object ref){...body of block....}

The curly braces delimit the block. The code for acquiring and releasing the lock is generate by the
compiler.

Suppose we add a variable static int count tothe ThinkParallel class to be incremented
by each thread after it prints its message. This is a static variable, so there is one per class (not one per
object), and it is visible and thus shared by all the threads. To avoid race conditions, count could be
accessed in a synchronized block.[4] To provide protection, all threads must use the same lock, so we
use the object associated with the class itself. For any class X, X. class is areference to the
unique object representing class X, so we could write the following:
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4] of course, for this particular situation, one could instead use an atomic variable as
defined in the Java.util.concurrent. atomic package.

public void run()
{ System.out.println(id + ": Are we there yet?");
synchronized(ThinkParallel.class){count++;}

}

It is important to emphasize that only synchronized blocks associated with the same object exclude
each other. Two synchronized blocks associated with different objects could execute concurmrently. For
example, a common programming error would be to write the previous code as

public void run()

{ System.out.println(id + ": Are we there yet?");
synchronized(this){count++;} //WRONG!

}

In the buggy version, each thread would be synchronizing on the lock associated withthe "self" or
this object. This would mean that each thread locks a different lock (the one associated with the
thread object itself) as it enters the synchronized block, so none of them would exclude each other.
Also, a synchronized block does not constrain the behavior of a thread that references a shared
variable in code that is not in a synchronized block. It is up to the programmer to carefully ensure that
all mentions of shared variables are appropriately protected.

Special syntax is provided for the common situation in which the entire method body should be inside
a synchronized block associated with the this object. In this case, the Synchronized keyword is
used to modify the method declaration. That is,

public synchronized void updateSharedVariables(...)
{....body.... }

is shorthand for

public void updateSharedVariables(...)
{ synchronized(this){....body....} }

C.4. WAIT AND NOTIFY

It is sometimes the case that a thread needs to check to see whether some condition holds. If it holds,
then the thread should perform some action; if not, it should wait until some other thread established
the condition. For example, a thread might check a buffer to see whether it contains an item. If it does,
then an item is removed. If not, the thread should wait until a different thread has inserted one. It is
important that checking the condition and performing the action be done atomically. Otherwise, one
thread could check the condition (that is, find the buffer nonempty), another thread could falsify it (by
removing the only item), and then the first thread would perform an action that depended on the



condition (which no longer holds) and corrupt the program state. Thus, checking the condition and
performing the action need to be placed inside a synchronized block. On the other hand, the thread
cannot hold the lock associated with the synchronized block while waiting because this would block
other threads from access, preventing the condition from ever being established. What is neededis a
way for a thread waiting on a condition to release the lock and then, after the condition has been
satisfied, reacquire the lock before rechecking the condition and performing its action. Traditional
monitors [Hoa74] were proposed to handle this situation. Java provides similar facilities.

The Object class, along with the previously mentioned lock, also contains an implicit wait set that
serves as a condition variable. The Object class provides several versions of walt methods that
cause the calling thread to implicitly release the lock and add itself to the wait set. Threads in the wait
set are suspended and not eligible to be scheduled to run.

Figure C.6. Basic idiom for using wait. Because wait throws an InterruptedException,
it should somehow be enclosed in a try-catch block, omitted here.

synchronized(lockObject)
{ while( ! condition ){ lockObject.wait();}
action;

}

The basic idiom for using wait is shown in Fig. C.6. The scenario is as follows: The thread acquires
the lock associated with LockObject. It checks condition. If the condition does not hold, then
the body of the while loop, the wait method, is executed. This causes the lock to be released,
suspends the thread, and places it in the wait set belonging to LockObject. If the condition does
hold, the thread performs action and leaves the synchronized block. On leaving the synchronized
block, the lock is released.

Threads leave the wait set in one of three ways. First, the Object class methods notify and
notifyAll awaken one or all threads, respectively, in the wait set of that object. These methods are
intended to be invoked by a thread that establishes the condition being waited upon. An awakened
thread leaves the wait set and joins the threads waiting to reacquire the lock. The awakened thread will
reacquire the lock before it continues execution. The wait method may be called without parameters
or with timeout values. A thread that uses one of the timed walt methods (that is, one that is given a
timeout value) may be awakened by notification as just described, or by the system at some point after
the timeout has expired. Upon being reawakened, it will reacquire the lock and continue normal
execution. Unfortunately, there is no indication of whether a thread was awakened by a notification or
a timeout. The third way that a thread can leave the wait set is if it is interrupted. This causes an
InterruptedException to be thrown, whereupon the control flow in the thread follows the
normal rules for handling exceptions.

We now continue describing the scenario started previously for Fig. C.6, at the point at which the

thread has waited and been awakened. When awakened by some other thread executing notify or
notifyAllon LockObject (or by a timeout), the thread will be removed from the wait set. At
some point, it will be scheduled for execution and will attempt to reacquire the lock associated with
lockObject. After the lock has been reacquired, the thread will recheck the condition and either
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release the lock and wait again or, if the condition holds, execute action without releasng the lock.

It is the job of the programmer to ensure that waiting threads are properly notified after the condition
has been established. Failure to do so can cause the program to stall. The following code illustrates
using the NotifyALll method after statements in the program that establish the condition:

synchronized(lockObject) {
establish the condition;
lockObject.notifyAll()

}

In the standard idiom, the call to wait is the body of a while loop. This ensures that the condition
will always be rechecked before performing the action and adds a considerable degree of robustness to
the program. One should never be tempted to save a few CPU cycles by changing the while loop to
an 1f statement. Among other things, the while loop ensures that an extra Notify method can
never cause an error. Thus, as a first step, one can use NOtifyALL at any point that might possibly
establish the condition. Performance of the program might be improved by careful analysis that would
eliminate spurious N0tifyAlls, and in some programs, it may be possible to replace notifyAll
with notify. However, these optimizations should be done carefully. An example illustrating these
points is found in the Shared Queue pattern.

C.5. LOCKS

The semantics of synchronized blocks together with wait and notify have certain deficiencies
when used in the straightforward way described in the previous section. Probably the worst problem is
that there is no access to information about the state of the associated implicit lock. This means that a
thread cannot determine whether or not a lock is available before attempting to acquire it. Further, a
thread blocked waiting for the lock associated with a synchronized block cannot be interrupted.[S]
Another problem is that only a single (implicit) condition variable is associated with each lock. Thus,
threads waiting for different conditions to be established share a wait set, with not1fy possibly
waking the wrong thread (and forcing the use of notifyAll).

(5] This is discussed further in the next section.

For this reason, in the past many Java programmers implemented their own locking primitives or used
third-party packages such as util. concurrent [Lea]. Now, the java.util.concurrent.
Locks package provides Reent rantLock,[6] which is similar to synchronized blocks, but with
extended capabilities. The lock must be explicitly instantiated

(6] A lock is reentrant if it canbe acquired multiple times by the same thread without

causing deadlock.

//instantiate lock
private final ReentrantLock lock = new ReentrantLock() ;
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Figure C.7. A version of SharedQueue2 (see the Shared Queue pattern) using a Lock and
Condition instead of synchronized blocks with wait and notify

Code View: Scroll / Show All

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.locks.*;

class SharedQueue2 {
class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
}

private Node head
private Node last

new Node(null);
head;

Lock lock = new ReentrantLock();
final Condition notEmpty = lock.newCondition();

public void put(Object task)
{ //cannot insert null
assert task != null: "Cannot insert null task";
lock.lock();
try{ Node p = new Node(task); last.next = p; last = p;
notEmpty.signalAll() ;
} finally{lock.unlock();}
}

public Object take()
{ //returns first task in queue, waits if queue is empty
Object task = null;
lock.lock();
try {
while (isEmpty())
{ try{ notEmpty.await(); }
catch(InterruptedException error)
{ assert false:"sg2: no interrupts here";}

}
Node first = head.next; task = first.task; first.task = null;
head = first;

} finally{lock.unlock();}
return task;

}

private boolean isEmpty() {return head.next == null;}

}

and should always be used in a try-catch block, such as

//critical section
lock.lock(); // block until lock acquired
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try { critical section }
finally { lock.unlock(); }

Other methods allow information about the state of the lock to be acquired. These locks trade
syntactic convenience and a certain amount of support by the compiler (it is impossible for the
programmer to forget to release the lock associated witha synchronized block) for greater flexibility.

In addition, the package provides implementations of the new Condition interface that implements
a condition variable. This allows multiple condition variables to be associated with a single lock. A
Condition associated witha lock is obtained by calling the lock's newCondition method. The
analogues ofwait, notify, and notifyAll are await, signal, and signalAll. An
example of using these new classes to implement a shared queue (as described in the Shared Queue

pattern) is shown in Fig. C.7.

C.6. OTHER SYNCHRONIZATION MECHANISMS AND SHARED
DATA STRUCTURES

A comparison with OpenMP reveals that OpenMP has constructs analogous to synchronized blocks
(locks and critical sections), but lacks features similar to wait and notify. This is because
OpenMP offers higher-level constructs typically used in parallel piogramming rather than the more
general approach in Java. One can easily implement a variety of higher-level constructs using the
available features. Also, the java.util.concurrent package provides several higher-level
synchronization primitives and shared dat structures. The synchronization primitives include
CountDownLatch (a simple single-use barrier that causes threads to block until a given number of
threads have reached the latch), CyclicBarrier (a cyclic barrier that automatically resets when it
has been passed and thus is convenient to use multiple times, for example, in a loop), and
Exchanger (which allows two threads to exchange objects at a synchronization point).
CountDownLatch and CyclicBarrier are also discussed in the Implementation Mechanisms
design space in Sec. 6.3.2.

In Fig. C.8, we show a very simple loop-based program along with a parallel version in Fig. C.9. This
is similar to the example in the OpenMP appendix, Appendix A.

Figure C.8. Simple sequential loop-based program similar to the one in Fig. A.5

class SequentiallLoop {
static int num_iters = 1000;
static double[] res = new double[num iters];
static double answer = 0.0;

static void combine(int i){..... }
static double big comp(int i){..... }

public static void main(String[] args)

{ for (int 1 = 0; 1 < num iters; i++){ res[i] = big comp(i); }
for (int i = 0; 1 < num iters; i++){ combine(i);}
System.out.println(answer));

}
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Figure C.9. Program showing a parallel version of the sequential program in Fig. C.8
where each iteration of the big_comp loop is a separate task. A thread pool containing
ten threads is used to execute the tasks. A CountDownLatch is used to ensure that all of
the tasks have completed before executing the (still sequential) loop that combines
the results.

Code View: Scroll / Show All

import java.util.concurrent.*;
class ParallellLoop {

static ExecutorService exec;
static CountDownLatch done;

static int num iters = 1000;

static double [] res = new double [num iters] ;
static double answer = 0.0;

static void combine(int i){..... }

static double big comp(int i){..... }

public static void main(String[] args) throws InterruptedException
{ /*create executor with pool of 10 threads */
exec = Executors.newFixedThreadPool(10);

/*create and initialize the countdown latch*/
done = new CountDownLatch(num iters);

long startTime = System.nanoTime();
for (int 1 = 0; 1 < num_iters; i++)
{ //only final local vars can be referenced in an anonymous class
final int j = 1i;
/*pass the executor a Runnable object to execute the loop
body and decrement the CountDownLatch */
exec.execute(new Runnable(){
public void run()
{ res[j] = big comp(j);
done.countDown(); /*decrement the CountDownLatch*/

1)
}

done.await(); //wait until all tasks have completed

/*combine results using sequential loop*/
for (int 1 = 0; 1 < num iters; i++){ combined); }
System.out.println(answer);

/*cleanly shut down thread pool*/
exec.shutdown();
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The java. util. concurrent package also provides several implementations of the Shared
Queue pattern as well as some thread-safe Collection classes, including
ConcurrentHashMap, CopyOnWriteArrayList, and CopyOnWriteArraySet.

C.7. INTERRUPTS

Part of the state of a thread is its interrupt status. A thread can be interrupted using the interrupt
method. This sets the interrupt status of the thread to interrupted.

If the thread is suspended (that is, it has executed await, sleep, join, or other command that
suspends the thread), the suspension will be interrupted and an InterruptedException thrown.
Because of this, the methods that can cause blocking, such as wait, throw this exception, and thus
must either be called from a method that declares itself to throw the exception, or the call must be
enclosed within a try-catch block. Because the signature of the run method in class Thread and
interface Runnable does not include throwing this exception, a try-catch block must enclose, either
directly or indirectly, any call to a blocking method invoked by a thread. This does not apply to the
main thread, because the main method can be declared to throw an InterruptedException.

The interrupt status of a thread can be used to indicate that the thread should terminate. To enable
this, the thread's run method should be coded to periodically check the interrupt status (using the
isInterrupted or the interrupted method); if the thread has been interrupted, the thread
should return from its run method in an orderly way. InterruptedExceptions can be caught
and the handler used to ensure graceful termination if the thread is interrupted when waiting. In many
parallel programs, provisions to externally stop a thread are not needed, and the catch blocks for
InterruptedExceptions can either provide debugging information or simply be empty.

The Callable interface was introduced as an alternative to Runnable that allows an exception to
be thrown (and also, as discussed previously, allows a result to be returned). This interface exploits the
support for generic types.



Glossary
* Abstract data type (ADT).

A data type given by its set of allowed values and the available operations on those values. The
values and operations are defined independently of a particular representation of the values or
implementation of the operations. In a programming language that directly supports ADTs, the
interface of the type reveals the operations on it, but the implementation is hidden and can (in
principle) be changed without affecting clients that use the type. The classic example of an ADT
is a stack, which is defined by its operations, typically including push and pop. Many different
internal representations are possible.

e Abstraction.

Abstraction can have several meanings depending on the context. In software, it often means
combining a set of small operations or data items and giving them a name. For example, control
abstraction takes a group of operations, combines them into a procedure, and gives the
procedure a name. As another example, a class in object-oriented programming is an abstraction
of both data and control. More generally, an abstraction is a representation that captures the
essential character of an entity, but hides the specific details. Often we will talk about a named
abstraction without concern for the actual details, which may not be determined.

* Address space.

The range of memory locations that a process or processor can access. Depending on context,
this could refer to either physical or virtual memory.

* ADT.

See [abstract data type]

e Amdahl's law.

A law stating that (under certain assumptions, as described in Sec. 2.5) the maximum speedup
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that can be obtained by running an algorithm on a system of P processors is

(1)
(v + 152) T(1)

1

S(P) =

e T
T . -

where y is the serial fraction of the program, and T(n) yrunning on n processors.

See also [speedup]
See also [serial fraction]

* AND parallelism.

This is one of the main techniques for introducing parallelism into a logic language. Consider
the goal A: B, C,D (read "A follows from B and C and D"), which means that goal A succeeds
if and only if all three subgoals—B and C and D—succeed. In AND parallelism, subgoals B, C,
and D are evaluated in parallel.

* APL

See [application programming interface]
* Application Programming Interface (API).

An API defines the calling conventions and other information needed for one software module
(typically an application program) to utilize the services provided by another software module.
MPI is an API for parallel programming. The term is sometimes used more loosely to define the
notation used by programmers to express a particular functionality in a program. For example,
the OpenMP specification is referred to as an API. An important aspect of an APl is that any
program coded to it can be recompiled to run on any system that supports that AP

e Atomic.

Atomic has slightly different meanings in different contexts. An atomic operation at the
hardware level is uninterruptible, for example load and store, or atomic test-and-set instructions.
In the database world, an atomic operation (ortransaction) is one that appears to execute
completely or not at all. In parallel programming, an atomic operation is one for which
sufficient synchronization has been provided that it cannot be interfered with by other UEs.
Atomic operations also must be guaranteed to terminate (for example, no infinite loops).

* Autoboxing.
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A language feature, available in Java 2 1.5, that provides automatic conversion of data of a
primitive type to the corresponding wrapper type—for example, from int to Integer.

e Bandwidth.

The capacity of a system, usually expressed as items per second. In parallel computing, the most
common usage of the term "bandwidth" is in reference to the number of bytes per second that
can be moved across a network link. A parallel program that generates relatively small numbers
of huge messages may be limited by the bandwidth of the network, in which case it is called a
bandwidth-limited program.

See also [bisection bandwidth]

* Barrier.
A synchronization mechanism applied to groups of UEs, with the property that no UE in the
group can pass the barrier until all UEs in the group have reached the barrier. In other words,

UEs arriving at the barrier suspend or block until all UEs have arrived; they can then all
proceed.

* Beowulf cluster.
A cluster built from PCs running the Linux operating system. Clusters were already well
established when Beowulf clusters were first built in the early 1990s. Prior to Beowulf, however,

clusters were built from workstations running UNIX. By dropping the cost of cluster hardware,
Beowulf clusters dramatically increased access to cluster computing.

* Bisection bandwidth.

The bidirectional capacity of a network between two equal-sized partitions of nodes. The cut
across the network is taken at the narrowest point in each bisection of the network.

* Broadcast.

Sending a message to all members of a group of recipients, usually all UEs participating in a
computation.

* Cache.
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A relatively small region of memory that is local to a processor and is considerably faster than
the computer's main memory. Cache hierarchies consisting of one or more levels of cache are
essential in modern computer systems. Because processors are so much faster than the
computer's main memory, a processor can run at a significant fraction of full speed only if the
data can be loaded into cache before it is needed and that data can be reused during a
calculation. Data is moved between the cache and the computer's main memory in small blocks
of bytes called cache lines. An entire cache line is moved when any byte within the memory
mapped to the cache line is accessed. Cache lines are removed from the cache according to
some protocol when the cache becomes full and spaceis needed for other data, or when they are
accessed by some other processor. Usually each processor hasits own cache (though sometimes
multiple processors share alevel of cache), so keeping the caches coherent (that is, ensuring that
all processors have the same view of memory through their distinct caches) is an issue that must
be dealt with by computer architects and compiler writers. Programmers must be aware of
caching issues when optimizing the performance of software.

e ccNUMA.

Cache-coherent NUMA. A NUMA maodel where data is coherent at the level of the cache.
See also [NUMA]

¢ Cluster.

Any collection of distinct computers that are connected and used as a parallel computer, or to
form a redundant system for higher availability. The computers in a cluster are not specialized to
cluster computing and could, in principle, be used in isolation as standalone computers. In other
words, the components making up the cluster, both the computers and the networks connecting
them, are not custom-built for use in the cluster. Examples include Ethernet-connected
workstation networks and rack-mounted workstations dedicated t parallel computing.

See also [workstation farm]
¢ Collective communication.

A high-level operation involving a group of UEs andhaving at its core the cooperative exchange
of information between the UEs. The high-level operation might be a pure communication event
(for example, a broadcast) or it might include some computation (for example, a reduction).

See also [broadcast]
See also [reduction]

e Concurrent execution.

A condition in which two or more UEs are active and making progress simultaneously. This can
be either because they are being executed at the same time on different PEs, or because the
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actions of the UEs are interleaved on the same PE.

* Concurrent program.

A program with multiple loci of control (threads, processes, etc.).

* Condition variable.

Condition variables are part of the monitor synchronization mechanism. A condition variable is
used by a process or thread to delay until the monitor's state satisfies some condition; it is also
used to awaken a delayed process when the condition becomes true. Associated with each
condition variable is a wait set of suspended (delayed) processes or threads. Operations on a
condition variable include wait (add this process or thread to the wait set for this variable) and
signal or notify (awaken a process or thread on the wait set for this variable).

See also [monitor]
* Copy on write.

A technique that ensures, using minimal synchronization, that concurrent threads will never see
a data structure in an inconsistent state. To update the structure, a copy is made, modifications
are made on the copy, and then the reference to the old structure is atomically replaced with a
reference to the new. This means that a thread holding a reference to the old structure may
continue to read an old (consistent) version, but no thread will ever see the structure in an
inconsistent state. Synchronization is only needed to acquire and update the reference to the
structure, and to serialize the updates.

* Counting semaphore.

Counting semaphores are semaphores whose state can represent any integer. Some
implementations allow the P and V operations to take an integer parameter and increment or
decrement the state (atomically) by that value.

See also [semaphore]
* Cyclic distribution.

A distribution of data (for example, components of arrays) or tasks (for example, loop iterations)
produced by dividing the set into a number of blocks greater than the number of UEs and then
allocating those blocks to UEs in a cyclic manner analogous to dealing a deck of cards.
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* Data parallel.

A type of parallel computing in which the concurrency is expressed by applying a single stream
of instructions simultaneously to the elements of adata structure.

e Deadlock.

An error condition common in parallel programming in which the computation has stalled
because a group of UEs are blocked and waiting for each other in a cyclic configuration.

* Design pattern.

A design pattern is a "solution to a problem in context"; that is, it represents a high-quality
solution to a recurring problem in design.

* Distributed computing.

A type of computing in which a computational task is divided into subtasks that execute on a
collection of networked computers. The networks are general-purpose networks (LANs, WANSs,
or the Internet) as opposed to dedicated cluster interconnects.

* Distributed shared memory (DSM).

An address space shared among multiple UEs that is constructed from memory subsystems that
are distinct and distributed about the system. There may be operating-system and hardware
support for the distributed shared memory system, or the shared memory may be implemented
entirely in software as a separate middleware layer

See also [Virtual shared memory]

* DSM.

See [distributed shared memory]

 Eager evaluation.

A scheduling strategy where the evaluation of an expression, or execution of a procedure, can
occur as soon as (but not before) all of its arguments have been evaluated. Eager evaluation is
typical for most programming environments and contrasts with lazy evaluation. Eager

evaluation can sometimes lead to extra work (or even nontermination) when an argument that
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will not actually be needed in a computation must be computed anyway.

* Efficiency.

The efficiency E of a computation is the speedup normalized by the number of PEs (P). It is
given by

S(P)
j’:l

E(F)

and indicates how effectively the resources in a parallel computer are used.

* Embarrassingly parallel.

A task-parallel algonthm in which the tasks are completely independent. See the Task
Parallelism pattern.

* Explicitly parallel language.

A parallel programming language in which the programmer fully defines the concurrency and
how it will be exploited in a parallel computation. OpenMP, Java, and MPI are explicitly parallel
languages.

* Factory.

A class with methods to create objects, usually instances of any one of several subclasses of an
abstract base class. Design patterns for factory classes (Abstract Factory and Factory Method)
were given in [GHIVO9S].

* False sharing.

False sharing occurs when two semantically independent variables reside in the same cache line
and UEs running on multiple processors modify these variables. They are semantically
independent so menory conflicts are avoided, but the cache line holding the variables must be
shuffled between the processors, and the performance suffers.

e Fork.
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See [fork/join]
* Fork/join.

A programming model used in multithreaded APIs such as OpenMP. A thread executes a fork
and creates additional threads. The threads (called a team in OpenMP) execute concurrently.
When the members of the team complete their concurrent tasks, they execute joins and suspend
until every member of the team has arrived at the join. At that point, the members of the team
are destroyed and the original thread continues.

¢ Framework.

A reusable, partially complete program that embodies a design for applications in a particular
domain. Programmers complete the program by providing application-specific components.

e Future variable.

A mechanism used in some parallel programming enviroments for coordinating the execution of
UEs. The future variable is a special variable that will eventually hold the result from an
asynchronous computation. For example, Java (in package java.util. concurrent)
contains a class Future to hold future variables.

* Generics.

Programming language features that allow programs to contain placeholders for certain entities,
typically types. The generic component's definition is completed before it is used in a program.
Generics are included in Ada, C++ (via templates), and Java.

e Grid.

A grid is an architecture for distributed computing and resource sharing. A grid system is
composed of a heterogeneous collection of resources connected by local-area and/or wide-area
networks (often the Internet). These individual resources are general and include compute
servers, storage, application servers, information services, or even scientific instruments. Grids
are often implemented in terms of Web services and integrated middleware components that
provide a consistent interface to the grid. A grid is different from a cluster in that the resources
in a grid are not controlled through a single point of administration; the grid middleware
manages the system so control of resources on the grid and the policies governing use of the
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resources remain with the resource owners.

* Heterogeneous.

A heterogeneous system is constructed from components of more than one kind. An example is
a distributed system with a variety of processor types.

* Homogeneous.

The components of a homogeneous system are all of the same kind.

* Hypercube.

A multicomputer in which the nodes are placed at the vertices of a d-dimensional cube. The

most frequently used configuration is a binary hypercube where each of 2" nodes is connected
to n others.

* Implicitly parallel language.

A parallel programming language in which the details of what can execute concurrently and
how that concurrency is implemented is left to the compiler. Most parallel functional and
dataflow languages are implicitly parallel.

* Incremental parallelism.

Incremental parallelism is a technique for parallelizing an existing program, in which the
parallelization is introduced as a sequence of incremental changes, parallelizing one loop at a
time. Following each transformation, the program is tested to ensure that its behavior is the
same as the original program, greatly decreasing the chances of introducing undetected bugs.

See also [refactoring]

* Java Virtual Machine (JVM).

An abstract stack-based computing machine whose instruction set is called Java bytecode.
Typically, Java programs are compiled into class files containing bytecode, a symbol table, and
other information. The purpose of the JVM is to provide a consistent execution environment for
class files regardless of the underlying platform.
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e Join.

See [fork/join]

* JVM.

See [Java Virtual Machine]
 Latency.

The fixed cost of servicing a request, such as sending a message or accessing information from
a disk. In parallel computing, the term most often is used to refer to the time it takes to send an
empty message over the communication medium, from the time the send routine is called to the
time the empty message is received by the recipient. Programs that generate large numbers of
small messages are sensitive to the latency and are called latency-bound programs.

* Lazy evaluation.

A scheduling policy that does not evaluate an expression (or invoke a procedure) until the
results of the evaluation are needed. Lazy evaluation may avoid some unnecessary work and in
some situations may allow a computation to terminate that otherwise would not. Lazy
evaluation is often used in functional and logic programming.

e Linda.

A coordination language for parallel programming.

See also [tuple space]
* Load balance.

In a parallel computation, tasks are assigned to UEs, which are then mapped onto PEs for
execution. The net work carried out by the collection of PEs is the "load" associated with the
computation. Load balance refers to how that load is distributed among the PEs. In an efficient
parallel program, the load is balanced so each PE spends about the same amount of time on the
computation. In other words, in a program with good load balance, each PE finishes with its
share of the load at about the same time.

* Load balancing.
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The process of distributing work to UEs such that each UE involved in a parallel computation
takes approximately the same amount of time. There are two major forms of load balancing. In
static load balancing, the distribution of work is determined before the computation starts. In
dynamic load balancing,the load is modified as the computation proceeds (that is, during
runtime).

* Locality.

The extent to which the computations carried out by a PE use data that is associated with (that
is, is close to) that PE. For example, in many dense linear algebra problems, the key to high
performance is to decompose matrices into blocks and then structure the calculations in terms
of these blocks so data brought into a processor's cache is used many times. This is an example
of an algorithm transformation that increases locality in a computation.

* Massively parallel processor (MPP).

A distributed-memory parallel computer designed to scale to hundreds if not thousands of
processors. To better support high scalability, the computer elements or nodes in the MPP
machine are custom-designed for use in a scalable computer. This typically includes tight

integration between the computing elements and the scalable network.

* Message Passing Interface (MPI).

A standard message passing interface adopted by most MPP vendors as well as by the cluster-
computing community. The existence of a widely supported standard enhances program
portability; an MPI-based program developed for one platform should also run on any other
platform for which an implementation of MPI exists.

* MIMD (Multiple Instruction, Multiple Data).

One of the categories of architectures in Flynn's taxonomy of computer architectures. In a
MIMD system, each PE has its own stream of instructions operating on its own data. The vast
majority of modern parallel systems use the MIMD architecture.

e Monitor.

Monitors are a synchronization mechanism originally proposed by Hoare [Hoa74]. A monitor is
an ADT implementation that guarantees mutually exclusive access to its internal data.
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Conditional synchronization is provided by condition variables

See also [condition variable]

* MPL

See [Message Passing Interface]

* MPP.

See [massively parallel processor]
* Multicomputer.

A parallel computer based on a distributed-memory, MIMD parallel architecture. The system
appears to the user as a single computer.

* Multiprocessor.

A parallel computer with multiple processors that share an address space.

* Mutex.

A mutual exclusion lock. A mutex serializes the execution of multiple threads.

* Node.

Common term for the computational elements that make up a distributed-memory parallel
machine. Each node has its own memory and at least one processor; that is, a node can be a
uniprocessor or some type of multiprocessor.

* NUMA.

This term is used to describe a shared-memory computer system where not all memory is
equidistant from all processors. Thus, the time required to access memory locations is not
uniform, and for good performance the programmer usually needs to be concerned with the
placement of data in the memory.
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* Opaque type.
A type that can be used without knowledge of the internal representation. Instances of the

opaque type can be created and manipulated via a well-defined interface. The data types used
for MPI communicators and OpenMP locks are examples.

* OpenMP.
A specification defining compiler directives, library routines, and environment variables that

can be used to express shared-memory parallelism in Fortran and C/C++ programs. OpenMP
implementations exist for a large variety of platforms.

* OR parallelism.
An execution technique in parallel logic languages in which multiple clauses can be evaluated in

parallel. For example, consider a problem with two clauses: A: B, CandA: E,F. The
clauses can execute in parallel until one of them succeeds.

* Parallel file system.
A file system that is visible to any processor in the system and can be read and written by
multiple UEs simultaneously. Although a parallel file system appears to the computer system as

a single file system, it is physically distributed among a number of disks. To be effective, the
aggregate throughput for read and write must be scalable.

* Parallel overhead.
The time spent in a parallel computation managing the computation rather than computing

results. Contributors to parallel overhead include thread creation and scheduling,
communication, and synchronization.

* PE.

See [processing element]
* Peer-to-peer computing.

A distributed computing model in which each node has equal standing among the collection of
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nodes. In the most typical usage of this term, the same capabilities are offered by each node, and
any node can initiate a communication session with another node. This contrasts with, for
example, client-server computing. The capabilities that are shared in peerto-peer computing
include file-sharing as well as computation.

* POSIX.

The Portable Operating System Interface as defined by the Portable Applications Standards
Committee (PASC) of the IEEE Computer Society. Whereas other operating systems follow
some of the POSIX standards, the primary use of this term refers to the family of standards that
define the interfaces in UNIX and UNIX-like (for example, Linux) operating systems.

* Precedence graph.

A way of representing the order constraints among a collection of statements. The nodes of the
graph represent the statements, and there is a directed edge from node A to node B if statement
A must be executed before statement B. A precedence graph with a cycle represents a collection
of statements that cannot be executed without deadlock.

* Process.

A collection of resources that enable the execution of program instructions. These resources can
include virtual memory, I/O descriptors, a runtime stack, signal handlers, user and group IDs,
and access control tokens. A more high-level view is that a process is a "heavyweight" UE with
its own address space.

See also [unit of execution]

See also [thread]
* Process migration.
Changing the processor responsible for running a process during execution. Process migration is

commonly used to dynamically balance the load on multiprocessor systems. It is also used ©
support fault-tolerant computing by moving processes away from failing processors.

* Processing element (PE).

A generic term used to reference a hardware element that executes a stream of instructions. The
context defines what unit of hardware is considered a PE. Consider a cluster of SMP
workstations. In some programming environments, each workstation is viewed as executing a
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single instruction stream; in this case, a PE is a workstation. A different programming
environment running on the same hardware, however, might view each processor of the
individual workstations as executing an individual instruction stream; in this case, the PE is the
processor rather than the workstation.

* Programming environment.

Programming environments provide the basic tools and APIs needed to construct programs. A
programming environment implies a particular abstraction of the computer system called a
programming model.

* Programming model.

Abstraction of a computer system, for example the von Neumann model used in traditional
sequential computers. For parallel computing, there are many possible models typically
reflecting different ways processors can be interconnected. The most common are based on
shared memory, distributed memory with message passing, or a hybrid of the two.

e Pthreads.

Another name for POSIX threads, that is, the definition of threads in the various POSIX
standards.

See also [POSIX]

« PVM (Parallel Virtual Machine).
A message-passing library for parallel computing. PVM played an important role in the history
of parallel computing as it was the first portable message-passing programming environment to

gain widespread use in the parallel computing community. It has largely been superseded by
MPIL.

* Race condition.

An error condition peculiar to parallel programs in which the outcome of a program changes as
the relative scheduling of UEs varies.

* Reader/writer locks.
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This pair of locks is similar to mutexes except that multiple UEs can hold a read lock, whereas a
write lock excludes both other writers and all readers. Reader/writer locks are often effective
when resources protected by the lock are read far more often than they are written.

¢ Reduction.

An operation that takes a collection of objects (usualy one on each UE) and combines them
into a single object on one UE or combines them such that each UE has a copy of the combined
object. Reductions typically involve combining a set of values pairwise using an associative,
commutative operator, such as addition or max.

* Refactoring.

Refactoring is a software engineering technique in which a program is restructured carefully so
as to alter its internal structure without changing its external behavior. The restructuring occurs
through a series of small transformations (called refactorings) that can be verified as preserving
behavior following each transformation. The system is fully working and verifiable following
each transformation, greatly decreasing the chances of introducing serious, undetected bugs.
Incremental parallelism can be viewed as an application of refactoring to parallel programming.

See also [incremental parallelism]

* Remote procedure call (RPC).

A procedure invoked in a different address space than the caller, often on a different machine.
Remote procedure calls are a popular approach for interprocess communication and launching
remote processes in distributed client-server computing environments.

* RPC.

See [remote procedure call]

* Semaphore.

An ADT used to implement certain kinds of synchronization. A semaphore has a value that is
constrained to be a nonnegative integer and two atomic operations. The allowable operations are
V (sometimes called up) and P (sometimes called down). A V operation increases the value of
the semaphore by one. A P operation decreases the value of the semaphore by one, provided
that can be done without vidating the constraint that the value be nonnegative. A P operation
that 1s initiated when the value of the semaphore is 0 suspends. It may continue when the value
is positive.
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e Serial fraction.

Most computations consist of parts that contain exploitable concurrency and parts that must be

executed serially. The serial fraction is that fraction of the program's execution time taken up by
the parts that must execute serially. For example, if a program decomposes into setup, compute,
and finalization, we could write

‘;ml‘m' = JIr.urfu,ra + frrur.l,rruh' + ':_fr':'lfj.r.l:h'ﬁr.l.ll

If the setup and finalization phases must execute serially, then the serial fraction would be

1

- "I.l.'f.l'rr;r.l .f_,f.iﬂr.l.."i.:ufmn

¥y =

1 If.u.fr’n'
* Shared address space.

An addressable block of memory that is shared between a collection of UEs.

* Shared memory.

A term applied to both hardware and software indicating the presence of a memory region that
is shared between system components. For programming environments, the term means that
memory is shared between processes or threads. Applied to hardware, it means that the
architectural feature tying processors together is shared memory.

See also [shared address space]

* Shared nothing.

A distributed-memory MIMD architecture where nothing other than the local-area network is
shared between the nodes.

* Simultaneous multithreading (SMT).

An architectural feature of some processors that allows multiple threads to issue instructions on
each cycle.

In other words, SMT allows the functional units that make up the processor to work on behalf of
more than one thread at the same time. Examples of systems utilizing SMT are microprocessors
from Intel Corporation that use Hyper-Threading Technology.
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» SIMD (Single Instruction, Multiple Data).

One of the categories in Flynn's taxonomy of computer architectures. Ina SIMD system, a
single instruction stream runs synchronously on multiple processors, each with its own data
stream.

* Single-assignment variable.

A special kind of variable to which a value can be assigned only once. The variable initially is
in an unassigned state. After a value has been assigned, it cannot be changed. These variables
are commonly used with programming environments that employ a dataflow control strategy,
with tasks waiting to fire until all input variables have been assigned.

* SMP.

See [symmetric multiprocessor]

* SMT.

See [simultaneous multithreading]

* Speedup.

Speedup, S, is a multiplier indicating how many times faster the parallel program is than its
sequential counterpart. It is given by

where T(n) yon a system with n PEs. When the speedup equals the number of PEs in the
parallel computer, the speedup is said to be perfectly linear.

* Single Program, Multiple Data (SPMD).

This is the most common way to organize a parallel program, especially on MIMD computers.
The idea is that a single program is written and loaded onto each node of a parallel computer.
Each copy of the single program runs independently (aside from coordination events), so the
instruction streams executed on each node can be completely different. The specific path
through the code is in part selected by the node ID.
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* SPMD.

See single program

See also [multiple data]
e Stride.

The increment used when stepping through a structure in memory. The precise meaning of
stride is context dependent. For example, in an M x N array stored in a column-major order in a
contiguous block of memory, traversing the elements of a column of the matrix involves a stride
of one. In the same example, traversing across a row requires a stride of M.

* Symmetric multiprocessor (SMP).

A shared-memory computer in which every processor is functionally identical and has equal-
time access to every memory address. In other words, both memory addresses and operating
system services are equally available to every processor.

* Synchronization.

Enforcing constraints on the ordering of events occurring in different UEs. This is primarily
used to ensure that shared resources are accessed by a collection of UEs in such a way that the
program is correct regardless of how the UEs are scheduled.

* Systolic array.

A parallel architecture consisting of an array of processors with each processor connectedto a
small number of its nearest neighbors. Data flows through the array. As data arrives at a
processor, it carries out its assigned operations and then passes the output to one or more of its
nearest neighbors. Although each processor in a systolic array can run a distinct stream of
instructions, they progress in lock-step, alternating between computation and communication
phases. Hence, systolic arrays have a great deal in common with the SIMD architecture.

* Systolic algorithm.

A parallel algonthm where tasks operate synchronously with a regular nearest-neighbor
communication pattem. Many computational problems can be formulated as systolic algorithms
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by reformulating as a certain type of recurrence relation.

e Task.

A task is a sequence of instructions that operate together as a group. This group corresponds to
some logical part of an algorithm or program.

* Task queue.

A queue that holds tasks for execution by one or more UEs. Task queues are commonly used to
implement dynamic scheduling algorithms in programs using the Task Parallelism pattern,
particularly when used with the Master/Worker pattern.

e Thread.

A fundamental unit of execution on certain computers. In a UNIX context, threads are
associated with a process and share the process's environment. This makes the threads
lightweight (that is, a context switch between threads is cheap). A more high-level view is that a
thread is a "lightweight" unit of execution that shares an address space with other threads.

See also [unit of execution]

See also [process]

* Transputer.

The transputer is a microprocessor developed by Inmos Ltd. with on-chip support for parallel
processing. Each processor contains four high-speed communication links that are easily
connected to the links of other transputers and a very efficient built-in scheduler for
multiprocessing.

* Tuple space.

A shared-memory system where the elements held in the memory are compound objects known
as tuples. A tuple is a small set of fields holding values or variables, as in the following
examples:

(3, "the larch", 4)
(X, 47,12,4,89,3)

("done")
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As seen in these examples, the fields making up a tuple can hold integers, strings, variables,
arrays, or any other value defined in the base programming language. Whereas traditional
memory systems access objects through an address, tuples are accessed by association. The
programmer working with a tuple space defines a template and asks the system to deliver tuples
matching the template. Tuple spaces were created as part of the Linda coordination language
[CGI1]. The Linda language is small, with only a handful of primitives to insert tuples, remove
tuples, and fetch a copy of a tuple. It is combined with a base language, such as C, C++, or
Fortran, to create a combined parallel programming language. In addition to its original
implementations on machines with a shared address space, Linda was also implemented with a
virtual shared memory and used to communicate between UEs running on the nodes of
distributed-memory computers. The idea of an associative virtual shared memory as inspired by
Linda has been incorporated into JavaSpaces [FHA99].

* UE

See [unit of execution]

* Unit of execution (UE).

Generic term for one of a collection of concurrently-executing entities, usually either processes
or threads.

See also [process]

See also [thread]

* Vector supercomputer.

A supercomputer with a vector hardware unit as an integral part of its central processing unit
boards. The vector hardware processes arrays in a pipeline fashion.

* Virtual shared memory.

A system that provides the abstraction of shared memory, allowing programmers to write to a
shared memory even when the underlying hardware is based on a distributed-memory
architecture. Virtual shared memory systems can be implemented within the operating system
or as part of the programming environment.

* Workstation farm.

A cluster constructed from workstations typically running some version of UNIX. In some
cases, the term "farm" is used to imply that the system will be used to run large numbers of
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independent sequential jobs as opposed to parallel computing.
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