

Parallel Scientific Computing
in C++ and MPI

A seamless approach to parallel algorithms and their implementation

George Em Karniadakis and Robert M. Kirby II

Cambridge University Press

Preface

Scientific computing is by its very nature a practical subject - it requires tools and a lot of
practice. To solve realistic problems we need not only fast algorithms but also a combination
of good tools and fast computers. This is the subject of the current book, which emphasizes
equally all three: algorithms, tools, and computers. Often times such concepts and tools are
taught serially across different courses and different textbooks, and hence the interconnection
between them is not immediately apparent. We believe that such a close integration is
important from the outset.

The book starts with a heavy dosage of C++ and basic mathematical and computational
concepts, and it ends emphasizing advanced parallel algorithms that are used in modern
simulations. We have tried to make this book fun to read, to somewhat demystify the
subject, and thus the style is sometimes informal and personal. It may seem that this
happens at the expense of rigor, and indeed we have tried to limit notation and theorem
proofing. Instead, we emphasize concepts and useful tricks-of-the-trade with many code
segments, remarks, reminders, and warnings throughout the book.

The material of this book has been taught at different times to students in engineering,
physics, computer science, and applied mathematics at Princeton University, Brown Univer-
sity, and MIT over the last 15 years. Different segments have been taught to undergraduates
and graduates, to novices as well as to experts. To this end, on all three subjects covered, we
start with simple introductory concepts and proceed to more advanced topics - bandwidth,
we believe, is one strength of this book.

We have been involved in large-scale parallel computing for many years from benchmark-
ing new systems to solving complex engineering problems in computational mechanics. We
represent two different generations of computational science and supercomputing, and our
expertise are both overlapping and complementary. The material we selected to include in
this book is based on our experiences and needs as computational scientists for high-order
accuracy, modular code, and domain decomposition. These are necessary ingredients for
pushing the envelope in simulation science and allow one to test new theories and concepts
or solve very large specific engineering problems accurately.

In addition to integrating C++ and MPI concepts and programs into the text, we also
provide with this book a software suite containing all the functions and programs discussed.
It is our belief, as stated earlier, that mastery of this subject requires both a knowledge of the
tools and substantial practice using the tools. Part of the integration that we are attempting
to achieve is attained when the reader is able to go immediately from the textbook to the
computer to experiment with the concepts which have been presented. We envision the
software suite allowing the reader to do the following: to verify the concepts presented in
the book by using the programs that are provided, to extend the programs in the book
to implement concepts that may have been discussed but not programmed, and to tackle
different problems than those presented using the software provided.

i

How to Use This Book

The current book is appropriate for use by students in engineering and physics, computer
science, and applied mathematics. It is designed to be more like a textbook and less of
a research monograph. The material can be used to fill two semesters with the following
breakdown: The first semester will cover chapters 1 to 5 at the senior undergraduate or first
year graduate level. The second semester will cover the remainder of the book in a first or
second year graduate course. Chapters 1 to 5 cover all the basic concepts in algorithms, C++,
and MPI. Chapters 6 to 10 cover discretization of differential equations and corresponding
solvers, and present more advanced C++ and MPI tools. The material in chapter 3 on
approximation of functions and discrete data is fundamental and precedes other topics. In
the basic material on discretization, we separated explicit from implicit approaches because
the parallel computational complexity of the two is fundamentally different.

A lighter course, e.g. a quarter course or a lower level undergraduate course, could be
based on chapters 1 to 5 by leaving out the MPI material and possibly other advanced
topics such as wavelets, advanced quadrature rules, and systems of nonlinear equations.
There are other possibilities as well. A graduate level course on numerical linear algebra can
be based on sections 4.1.6, 4.1.7 and chapters 7 to 10. Assuming that the student has a C++
background or even another high performance language then the addition of MPI material
in sections 2.3, 3.4, 4.3 and 5.13 to the above will constitute one full semester course on
parallel numerical linear algebra. Another possibility for a quarter course is to simply teach
the algorithms in chapters 5 to 8 covering traditional numerical analysis. Supplementary
notes from the instructor, e.g. theorem proofs and more case studies, can make this a full
semester course.

The book is designed so that it can be used with or without the C++ and MPI tools
and associated concepts but we strongly encourage the instructor to teach the course as a
seamless integration of both algorithms and tools.

Acknowledgements

We are grateful to Dr. Ma Xia and Dr. C. Evangelinos for their help and advice regarding
the material of this topic and for some of the figures that they provided. We would also like
to thank Ms. Madeline Brewster for her help in formatting the book and for typing a major
part of it. The first author is grateful for the many years of funding by the Office of Naval
Research, the Air Force Office of Scientific Research, and the Department of Energy.

Finally, we would like to thank our families for their continuous love, patience, and
understanding, especially during this long project.

Providence, Rhode Island, USA George Em Karniadakis
Salt Lake City, Utah, USA Robert M. Kirby II

ii

Contents

1 Scientific Computing and Simulation Science 2
1.1 What is Simulation? . 2
1.2 A Seamless Approach Path . 4
1.3 The Concept of Programming Language . 6
1.4 Why C++ and What is MPI? . 8
1.5 What About OpenMP? . 10
1.6 Algorithms and Top Ten List . 10

2 Basic Concepts and Tools 12
2.1 Introduction to C++ . 13

2.1.1 Two Basic Concepts in C++ . 14
2.1.2 Learning the Syntax and Other Basic Commands 21
2.1.3 Learning to Print . 34
2.1.4 Learning to Read . 35
2.1.5 How to Program in Style . 37

2.2 Mathematical and Computational Concepts 41
2.2.1 Notation . 41
2.2.2 Binary Numbers and Round-off . 41
2.2.3 Condition Number . 44
2.2.4 Vector and Matrix Norms . 44
2.2.5 Eigenvalues and Eigenvectors . 46
2.2.6 Memory Management . 48
2.2.7 Basic Linear Algebra - BLAS . 52
2.2.8 Exploiting the Structure of Sparse Matrices 61
2.2.9 Gram-Schmidt Vector Orthogonalization 62

2.3 Parallel Computing . 70
2.3.1 From Supercomputing to Soupercomputing 70
2.3.2 Mathematical Parallelism and Recursive-Doubling 76
2.3.3 Amdahl’s Law . 79
2.3.4 MPI - Message Passing Interface . 80

2.4 Homework Problems . 91

3 Approximation 94
3.1 Polynomial Representation . 95

3.1.1 Vandermonde and Newton Interpolation 95

iii

3.1.2 Arrays in C++ . 98
3.1.3 Lagrangian Interpolation . 114
3.1.4 The Runge Phenomenon . 117
3.1.5 Chebyshev Polynomials . 120
3.1.6 Hermite Interpolation and Splines . 126
3.1.7 Least-Squares Approximation . 131
3.1.8 Introduction to Classes . 142
3.1.9 Multi-Dimensional Interpolations . 153
3.1.10 Simple Domains . 154
3.1.11 Curvilinear Domains . 160

3.2 Fourier Series Representation . 163
3.2.1 Convergence . 163
3.2.2 Periodic Extension of Functions . 166
3.2.3 Differentiation and the Lanczos Filter 168
3.2.4 Trigonometric Interpolation . 171
3.2.5 Noisy Data . 173
3.2.6 Matrix Representation . 174
3.2.7 The Fast Fourier Transform (FFT) 176
3.2.8 The Fastest Fourier Transform in the West - FFTW 178

3.3 Wavelet Series Representation . 181
3.3.1 Basic Relations . 181
3.3.2 Dilation Equation . 185
3.3.3 Discrete Wavelet Transform: Mallat’s Algorithm 188
3.3.4 Some Orthonormal Wavelets . 190

3.4 Back to Parallel Computing: Send and Receive 197
3.5 Homework Problems . 201

3.5.1 Homework Problems for Section 3.1 201
3.5.2 Homework Problems for Section 3.2 205
3.5.3 Homework Problems for Section 3.3 206

4 Roots and Integrals 207
4.1 Root Finding Methods . 208

4.1.1 Polynomial Equations . 210
4.1.2 Fixed Point Iteration . 213
4.1.3 Newton-Raphson Method . 217
4.1.4 Passing Functions to Functions in C++ 221
4.1.5 Secant Method . 226
4.1.6 Systems of Nonlinear Equations . 227
4.1.7 Solution via Minimization:

Steepest Descent and Conjugate Gradients 230
4.2 Numerical Integration Methods . 240

4.2.1 Simple Integration Algorithms . 240
4.2.2 Advanced Quadrature Rules . 248
4.2.3 Multi-Dimensional Integration . 265

4.3 Back to Parallel Computing: Reduction . 268

iv

4.4 Homework Problems . 275
4.4.1 Homework Problems for Section 4.1 275
4.4.2 Homework Problems for Section 4.2 279

5 Explicit Discretizations 281
5.1 Explicit Space Discretizations . 282

5.1.1 Basics . 282
5.1.2 Uniform Grids . 285
5.1.3 MPI Parallel Implementation of Finite Differences 296
5.1.4 Multi-Dimensional Arrays in C++ 304
5.1.5 Non-Uniform Grids . 308
5.1.6 One-Dimensional Boundary Value Problem 314
5.1.7 Multi-Dimensional Discretizations . 316

5.2 Explicit Time Discretizations . 323
5.2.1 Multi-Step Schemes . 323
5.2.2 Convergence: Consistency and Stability 326
5.2.3 Stability and Characteristic Polynomials 328
5.2.4 Runge-Kutta Methods . 334
5.2.5 Stability of Runge-Kutta Methods . 338

5.3 Homework Problems . 340

6 Implicit Discretizations 345
6.1 Implicit Space Discretizations . 346

6.1.1 Difference Operators . 346
6.1.2 Method of Undetermined Coefficients 349
6.1.3 One-Dimensional Boundary Value Problem 357
6.1.4 Thomas Algorithm for Tridiagonal Systems 359
6.1.5 Parallel Algorithm for Tridiagonal Systems 367

6.2 Implicit Time Discretizations . 378
6.2.1 Fundamental Theorems for Multi-Step Methods 381
6.2.2 Stability of Stiff ODEs . 381
6.2.3 Second-Order Initial Value Problems 384
6.2.4 How to March in Time . 386

6.3 Homework Problems . 387

7 Relaxation: Discretization
and Solvers 390
7.1 Discrete Models of Unsteady Diffusion . 391

7.1.1 Temporal and Spatial Discretization 392
7.1.2 Accuracy of Difference Equation . 393
7.1.3 Stability of Difference Equation . 394
7.1.4 Spectrum of the Diffusion Operator 403
7.1.5 Multi-Dimensional Time-Space Stencils 409

7.2 Iterative Solvers . 416
7.2.1 Jacobi Algorithm . 416

v

7.2.2 Parallel Jacobi Algorithm . 422
7.2.3 Gauss-Seidel Algorithm . 431
7.2.4 Parallel (Black-Red) Gauss-Seidel Algorithm 433
7.2.5 Successive Acceleration Techniques - SOR 436
7.2.6 Symmetric Successive Acceleration Techniques - SSOR 438
7.2.7 SSOR with Chebyshev Acceleration 439
7.2.8 Convergence Analysis of Iterative Solvers 441
7.2.9 Relaxed Jacobi and Gauss-Seidel . 445
7.2.10 The Multigrid Method . 449

7.3 Homework Problems . 462

8 Propagation: Numerical Diffusion and Dispersion 466
8.1 Advection Equation . 467

8.1.1 Dispersion and Diffusion . 467
8.1.2 Other Advection Equations . 469
8.1.3 First-Order Discrete Schemes . 470
8.1.4 High-Order Discrete Schemes . 482
8.1.5 Effects of Boundary Conditions . 493

8.2 Advection-Diffusion Equation . 497
8.2.1 Discrete Schemes . 497
8.2.2 Effects of Boundary Conditions . 505

8.3 MPI: Non-Blocking Communications . 509
8.4 Homework Problems . 514

9 Fast Linear Solvers 517
9.1 Gaussian Elimination . 518

9.1.1 LU Decomposition . 520
9.1.2 To Pivot or Not to Pivot? . 524
9.1.3 Parallel LU Decomposition . 530
9.1.4 Parallel Back Substitution . 534
9.1.5 Gaussian Elimination and Sparse Systems 546
9.1.6 Parallel Cyclic Reduction for Tridiagonal Systems 547

9.2 Cholesky Factorization . 559
9.3 QR Factorization and Householder Transformation 560

9.3.1 Hessenberg and Tridiagonal Reduction 568
9.4 Preconditioned Conjugate Gradient Method - PCGM 572

9.4.1 Convergence Rate of CGM . 572
9.4.2 Preconditioners . 573
9.4.3 Toeplitz Matrices and Circulant Preconditioners 577
9.4.4 Parallel PCGM . 578

9.5 Non-Symmetric Systems . 585
9.5.1 The Arnoldi Iteration . 586
9.5.2 GMRES . 590
9.5.3 GMRES(k) . 594
9.5.4 Preconditioning GMRES . 597

vi

1

9.5.5 Parallel GMRES . 597
9.6 What Solver to Choose? . 598
9.7 Available Software for Fast Solvers . 601
9.8 Homework Problems . 602

10 Fast Eigensolvers 608
10.1 Local Eigensolvers . 609

10.1.1 Basic Power Method . 609
10.1.2 Inverse Shifted Power Method . 612

10.2 Householder Deflation . 616
10.3 Global Eigensolvers . 623

10.3.1 The QR Eigensolver . 623
10.3.2 The Hessenberg QR Eigensolver . 625
10.3.3 Shifted QR Eigensolver . 625
10.3.4 The Symmetric QR Eigensolver: Wilkinson Shift 627
10.3.5 Parallel QR Eigensolver: Divide-and-Conquer 627
10.3.6 The Lanczos Eigensolver . 635

10.4 Generalized Eigenproblems . 638
10.4.1 The QZ Eigensolver . 639
10.4.2 Singular Eigenproblems . 639
10.4.3 Polynomial Eigenproblems . 640

10.5 Arnoldi Method: Non-Symmetric Eigenproblems 640
10.6 Available Software for Eigensolvers . 641
10.7 Homework Problems . 643

A A. C++ Basics 646
A.1 Compilation Guide . 646
A.2 C++ Basic Data Types . 647
A.3 C++ Libraries . 647

A.3.1 Input/Output Library – iostream.h 647
A.3.2 Input/Output Manipulation Library – iomanip.h 648
A.3.3 Mathematics Library – math.h . 648

A.4 Operator Precedence . 649
A.5 C++ and BLAS . 649

B B. MPI Basics 651
B.1 Compilation Guide . 651
B.2 MPI Commands . 652

B.2.1 Predefined Variable Types in MPI . 652
B.2.2 Predefined Reduction Operators in MPI 653
B.2.3 MPI Function Declarations . 653
B.2.4 MPI Constants and Definitions . 672

Chapter 1

Scientific Computing and Simulation
Science

1.1 What is Simulation?

Science and engineering have undergone a major transformation at the research as well as
at the development and technology level. The modern scientist and engineer spend more
and more time in front of a laptop, a workstation, or a parallel supercomputer and less and
less time in the physical laboratory or in the workshop. The virtual wind tunnel and the
virtual biology lab are not a thing of the future, they are here! The old approach of “cut-
and-try” has been replaced by “simulate-and-analyze” in several key technological areas such
as aerospace applications, synthesis of new materials, design of new drugs, chip processing
and microfabrication, etc. The new discipline of nanotechnology will be based primarily on
large-scale computations and numerical experiments. The methods of scientific analysis and
engineering design are changing continuously, affecting both our approach to the phenomena
that we study as well as the range of applications that we address. While there is a lot
of software available to be used as almost a “black-box,” working in new application areas
requires good knowledge of fundamentals and mastering of effective new tools.

In the classical scientific approach, the physical system is first simplified and set in a form
that suggests what type of phenomena and processes may be important, and correspond-
ingly what experiments are to be conducted. In the absence of any known-type governing
equations, dimensional inter-dependence between physical parameters can guide laboratory
experiments in identifying key parametric studies. The database produced in the laboratory
is then used to construct a simplified “engineering” model which after field-test validation
will be used in other research, product development, design, and possibly lead to new tech-
nological applications. This approach has been used almost invariably in every scientific
discipline, i.e., engineering, physics, chemistry, biology, etc.

The simulation approach follows a parallel path but with some significant differences.
First, the phase of the physical model analysis is more elaborate: The physical system is
cast in a form governed by a set of partial differential equations, which represent continuum
approximations to microscopic models. Such approximations are not possible for all systems,
and sometimes the microscopic model should be used directly. Second, the laboratory exper-

2

1.1. What is Simulation? 3

iment is replaced by simulation, i.e., a numerical experiment based on a discrete model. Such
a model may represent a discrete approximation of the continuum partial differential equa-
tions, or it may simply represent a statistical representation of the microscopic model. Finite
difference approximations on a grid are examples of the first case, and Monte Carlo methods
are examples of the second case. In either case, these algorithms have to be converted to
software using an appropriate computer language, debugged, and run on a workstation or a
parallel supercomputer. The output is usually a large number of files of a few Megabytes to
hundreds of Gigabytes, being especially large for simulations of time-dependent phenomena.
To be useful, this numerical database needs to be put into graphical form using various vi-
sualization tools, which may not always be suited for the particular application considered.
Visualization can be especially useful during simulations where interactivity is required as
the grid may be changing or the number of molecules may be increasing.

The simulation approach has already been followed by the majority of researchers across
disciplines in the last few decades. The question is if this is a new science, and how one could
formally obtain such skills. Moreover, does this constitute fundamental new knowledge or is
it a “mechanical procedure,” an ordinary skill that a chemist, a biologist or an engineer will
acquire easily as part of “training on the job” without specific formal education. It seems
that the time has arrived where we need to reconsider boundaries between disciplines and
reformulate the education of the future simulation scientist, an inter-disciplinary scientist.

Let us re-examine some of the requirements following the various steps in the simulation
approach. The first task is to select the right representation of the physical system by
making consistent assumptions in order to derive the governing equations and the associated
boundary conditions. The conservation laws should be satisfied; the entropy condition should
not be violated; the uncertainty principle should be honored. The second task is to develop
the right algorithmic procedure to discretize the continuum model or represent the dynamics
of the atomistic model. The choices are many, but which algorithm is the most accurate
one, or the simplest one, or the most efficient one? These algorithms do not belong to a
discipline! Finite elements, first developed by the famous mathematician Courant and re-
discovered by civil engineers, have found their way into every engineering discipline, physics,
geology, etc. Molecular dynamics simulations are practiced by chemists, biologists, material
scientists, and others. The third task is to compute efficiently in the ever-changing world of
supercomputing. How efficient the computation is translates to how realistic of a problem is
solved, and therefore how useful the results can be to applications. The fourth task is to assess
the accuracy of the results in cases where no direct confirmation from physical experiments
is possible such as in nanotechnology or in biosystems or in astrophysics, etc. Reliability of
the predicted numerical answer is an important issue in the simulation approach as some
of the answers may lead to new physics or false physics contained in the discrete model or
induced by the algorithm but not derived from the physical problem. Finally, visualizing the
simulated phenomenon, in most cases in three-dimensional space and in time, by employing
proper computer graphics (a separate specialty on its own) completes the full simulation
cycle. The rest of the steps followed are similar to the classical scientific approach.

In classical science we are dealing with matter and therefore atoms but in simulation we
are dealing with information and therefore bits, so it is atoms versus bits! We should, there-
fore, recognize the simulation scientist as a separate scientist, the same way we recognized
just a few decades ago the computer scientist as different than the electrical engineer or the

1.2. A Seamless Approach Path 4

 Numerical
Mathematics

Computer
 Science

�����
�����

���
���

���
���

 Scientific
Computing

Modeling

Figure 1.1: Definition of scientific computing as the intersection of numerical mathematics, com-
puter science, and modeling.

applied mathematician. The new scientist is certainly not a computer scientist although she
should be computer literate in both software and hardware. She is not a physicist although
she needs a sound physics background. She is not an applied mathematician although she
needs expertise of mathematical analysis and approximation theory.

With the rapid and simultaneous advances in software and computer technology, espe-
cially commodity computing, the so-called soupercomputing, every scientist and engineer will
have on her desk an advanced simulation kit of tools consisting of a software library and
multi-processor computers that will make analysis, product development, and design more
optimal and cost-effective. But what the future scientists and engineers will need, first and
foremost, is a solid inter-disciplinary education.

Scientific computing is the heart of simulation science, and this is the subject of this
book. The emphasis is on a balance between classical and modern elements of numerical
mathematics and of computer science, but we have selected the topics based on broad mod-
eling concepts encountered in physico-chemical and biological sciences, or even economics
(see figure 1.1).

1.2 A Seamless Approach Path

Our aim in writing this book has been to provide the student, the future simulation scien-
tist, with a seamless approach to numerical algorithms, modern programming techniques,
and parallel computing. Often times such concepts and tools are taught serially across dif-
ferent courses and different textbooks, and hence the interconnection between them is not
immediately apparent. The necessity of integrating concepts and tools usually comes after
such courses are concluded, e.g. during a first job or a thesis project, thus forcing the student
to synthesize what is perceived to be three independent subfields into one in order to produce
a solution. Although this process is undoubtly valuable, it is time consuming and in many
cases it may not lead to an effective combination of concepts and tools. Moreover, from the

1.2. A Seamless Approach Path 5

pedagogical point of view, the integrated seamless approach can stimulate the student simul-
taneously through the eyes of multiple disciplines, thus leading to enhanced understanding
of subjects in scientific computing.

(a)

C++ MPI

This
Book

Algorithm s

(b)

C++ MPI

Algorithm s

Figure 1.2: Simultaneous integration of concepts shown in (a) in contrast with the classical serial
integration shown in (b).

As discussed in the previous section, in the scientific simulation approach there are several
successive stages that lead from :

1. The real world problem to its mathematical formulation;

2. From the mathematical description to the computer implementation and solution, and

3. From the numerical solution to visualization and analysis.

In this book, we concentrate on stage (2) which includes not only the mathematics of nu-
merical linear algebra and discretization but also the implementation of these concepts in
C++ and MPI.

There are currently several excellent textbooks and monographs on these topics but
without the type of integration that we propose. For example, the book by Golub & Ortega
[45] introduces pedagogically all the basic parallel concepts, but a gap remains between the
parallel formulation and its implementation. Similarly, the books by Trefethen & Bau [88]
and Demmel [26] provide rigor and great insight into numerical linear algebra algorithms,
but they do not provide sufficient material on discretization and implementation. On the
other hand, popular books in C++ (e.g., by Stroustrup [86]) and MPI (e.g., by Pacheco [73])
are references that teach programming using disconnected algorithmic examples, which is
useful for acquiring general programming skills but not for parallel scientific computing. Our
book treats numerics, parallelism, and programming equally and simultaneously by placing
the reader at a vantage point between the three areas as shown in the schematic of figure
1.2(a), and in contrast with the classical approach of connecting the three subjects serially
as illustrated in figure 1.2(b).

1.3. The Concept of Programming Language 6

1.3 The Concept of Programming Language

In studying computer languages, we want to study a new way of interacting with the com-
puter. Most people are familiar with the use of software purchased from your local computer
store, software ranging from word processors and spreadsheets to interactive games. But
have you ever wondered how these things are created? How do you actually “write” soft-
ware? Throughout this book we will be teaching through both lecture and example how to
create computer software that solves scientific problems. Our purpose is not to teach you
how to write computer games and the like, but the knowledge gained here can be used to
devise your own software endeavors.

It has been stated by some that the computer is a pretty dumb device, in that it only
understands two things – on and off. Like sending Morse code over a telegraph wire with
signals of dots and dashes, the computer uses sequences of zeros and ones as its language.
The zeros and ones may seem inefficient, but it is not just the data used, but the rules
applied to the data which make it powerful. This concept, in theory, is no different than
human language. If we were to set before you a collection of symbols, say a b c d ... z,
and indicate to you that you can use these to express even the most complex thoughts
and emotions of the human mind and heart, you would think we were crazy. Just 26 little
symbols? How can this be? We know, however, that it is not merely the symbols that are
important, but the rules used to combine the symbols. If you adhere to the rules defined by
the English language, then books like this can be written using merely combinations of the
26 characters! How is this similar to the computer? The computer is a complex device for
executing instructions. These instructions are articulated by using our two-base characters,
0 and 1, along with a collection of rules for combining them together. This brings us to our
first axiom:

Axiom I: Computers are machines which execute instructions. If someone is not telling the
computer what to do, it does nothing.

Most people have had some experience with computers, and immediately they will read
this statement and say: “Hey, I have had my computer do all kinds of things that I didn’t
want!”. Ah, but read the axiom carefully. The key to this axiom is the use of the term
someone. The one thing to keep in mind is that some human, or collection of humans,
developed software to tell the computer what to do. At a relatively low level, this would be
the people who wrote the operating system used by the computer. At a higher level, this
would be the people that developed the word processor or game that you were using. In
both cases, however, someone determined how the computer would act and react to your
input. We want you, after reading this book and understanding the concepts herein, to be
able to be in the driver’s seat. This leads us to our second axiom:

Axiom II: Computer programming languages allow humans a simplified means of giving the
computer instructions.

We tell you that we want you to be in the driver’s seat, and you tell me “I don’t want
to learn how to communicate in zeros and ones ... learning English was hard enough!” You
can imagine how slowly the computer age would have progressed if every programming class
consisted of the following lecture scheme. Imagine the first day of class. On the first day,

1.3. The Concept of Programming Language 7

the instructor tells you that you will be learning the two basic components of the computer
language today: 0 and 1. He may force you to say zero and one a few times, and then write
zero and one many times on a piece of paper for practice, but then, what else would there be
to learn concerning your character set? Class dismissed. Then, for the rest of the semester,
you would spent your time learning how to combine zeros and ones to get the computer to
do what you want. Your first assignment might be to add two numbers a and b, and to store
the result in c (i.e., c = a + b). You end up with something that looks like:

01011001010001000111010101000100

01011001011100100010100101000011

00111010101000100111010100100101

01011101010101010101010000111101

Seems like a longwinded way of saying

c = a+ b ?

But this is what the computer understands, so this is how we must communicate with it.
However, we do not communicate in this fashion. Human language and thought use a higher
abstraction than this. How can we make a bridge for this gap? We bridge this gap via
programming languages, see figure 1.3.

Computer

Assembly

C/C++

Java

Fortran Visual C++

 Visual
Quick Basic

Human

Low High

�����������
�����������
�����������

��������������
��������������
��������������
��������������

EasinessSpecificity

Figure 1.3: Programming languages provide us a means of bridging the gap between the computer
and the human.

The first programming language we will mention is assembly. The unique property of as-
sembly is that for each instruction, there is a one-to-one correspondence between a command
in assembly and a computer understandable command (in zeros and ones). For instance,
instead of writing

01011001010001000111010101000100

as a command, you could write ‘load a $1’. This tells the computer to load the contents
of the memory location denoted by ‘a’ into register $1 in the computer’s CPU (Central
Processing Unit). This is much better than before. Obviously, this sequence of commands
is much easier for the human to understand. This was a good start, but assembly is still
considered a “low-level language”. By low-level we mean that one instruction in assembly is

1.4. Why C++ and What is MPI? 8

equal to one computer instruction. But as we said earlier, we want to be able to think on
a higher level. Hence, there was the introduction of “higher level” languages. Higher level
languages are those in which one instruction in the higher-level language equals one or more
computer level instructions. We want a computer language where we can say ‘c = a + b’,
and this would be equivalent to saying :

load a $1

load b $2

add $1 $2 $3

save $3 c

One high-level instruction was equivalent to four lower level instructions (here written in
pseudo-assembly so that you can follow what is going on). This is preferable for many rea-
sons. For one thing, we as humans would like to spend our time thinking about how to solve
the problem, not just trying to remember (and write) all the assembly code! Secondly, by
writing in a higher-level language, we can write code that can work on multiple computers,
because the translation of the higher level code can be done by a compiler into the assembly
code of the processor on which we are running.

As you read through this book and do the exercises found herein, always be mindful
that our goal is to utilize the computer for accomplishing scientific tasks encountered in
simulation science. At a high-level, there is a science or engineering problem to solve, and
we want to use the computer as a tool for solving the problem. The means by which we
will use the computer is through the writing and execution of programs written using the
computing language C++ and the parallel message passing libraries of MPI.

1.4 Why C++ and What is MPI?

The algorithms we present in the book can certainly be implemented in other languages, e.g.
FORTRAN or Java, as well as other communication libraries, e.g. PVM (Parallel Virtual
Machine). However, we commit to a specific language and parallel library in order to provide
the student with the immediate ability to experiment with the concepts presented. To this
end, we have chosen C++ as our programming language for a multitude of reasons: First,
it provides an object-oriented infrastructure that accommodates a natural breakdown of the
problem into a collection of data structures and operations on those structures. Secondly, the
use of C++ transcends many disciplines beyond engineering where traditionally FORTRAN
has been the prevailing language. Thirdly, C++ is a language naturally compatible with the
basic algorithmic concepts of

• partitioning,

• recursive function calling,

• dynamic memory allocation, and

• encapsulation.

1.4. Why C++ and What is MPI? 9

Similarly, we commit to MPI (Message Passing Interface) as a message passing library be-
cause it accommodates a natural and easy partitioning of the problem, it provides portability
and efficiency, and it has received wide acceptance by academia and industry.

C++

Chapter 1 Chapter 10

Algorithm s

MPI

Figure 1.4: Progression of new material throughout the book in the three areas shown in figure
(1.2).

The simultaneous integration we propose in this book will be accomplished by carefully
presenting related concepts from all three sub-areas. Moving from one chapter to the next re-
quires different dosages of new material in algorithms and tools. This is explained graphically
in figure 1.4, which shows that while new algorithms are introduced at an approximately
constant rate, the introduction of new C++ and MPI material vary inversely. We begin
with an emphasis on the basics of the language, which allows the student to immediately
work on the simple algorithms introduced initially, while as the book progresses and the
computational complexity of algorithms increases the use of parallel constructs and libraries
is emphasized.

More specifically, to help facilitate the student’s immersion into object-oriented thinking,
we provide a library of classes and functions for use throughout the book. The classes
contained in this library are used from the very beginning of the book as a natural, user-
defined, extension of C++. As the book progresses, the underlying logic and programming
implementation of these classes are explained, bringing the student to a deeper understanding
of the development of C++ classes. We will denote all classes used within the book and not
inherent to C++ with the letters SC, such as the classes SCVector and SCMatrix.

Software

 Suite

This is done to clearly distinguish between C++ defined and
user-defined data types, and also to accentuate the utility of
user-defined types within the C++ programming language. As
students become more familiar and confident in their ability to
devise and use datatypes, we encourage them to use these facil-
ities provided by the language for more effective programming
and problem solving. All the codes of this book and many
more examples are included in the software suite, which is dis-
tributed with this book.

1.5. What About OpenMP? 10

1.5 What About OpenMP?

Due to the recent proliferation of distributed shared-memory (DSM) machines in the scientific
computing community, there is much interest in how best to appropriately utilize both the
distributed and the shared-memory partitioning of these systems. MPI provides an efficient
means of parallel communication among a distributed collection of machines; however, not
all MPI implementations take advantage of shared-memory when it is available between
processors (the basic premise being that two processors, which share common memory, can
communicate with each other faster through the use of the shared medium than through
other communication means).

OpenMP (Open Multi Processing) was introduced to provide a means of implementing
shared-memory parallelism in FORTRAN and C/C++ programs. Specifically, OpenMP
specifies a set of environment variables, compiler directives, and library routines to be used
for shared-memory parallelization. OpenMP was specifically designed to exploit certain
characteristics of shared-memory architectures such as the ability to directly access memory
throughout the system with low latency and very fast shared-memory locks. To learn more
about OpenMP, visit www.openmp.org.

A new parallel programming paradigm is emerging in which both the MPI and OpenMP
are used for parallelization. In a distributed shared-memory architecture, OpenMP would
be used for intra-node communication (i.e., between a collection of processors which share
the same memory subsystem) and MPI would be used for inter-node communication (i.e.,
between distinct distributed collections of processors). The combination of these two par-
allelization methodologies may provide the most effective means of fully exploiting modern
distributed shared-memory (DSM) systems.

1.6 Algorithms and Top Ten List

The Greeks and Romans invented many scientific and engineering algorithms, but it is be-
lieved that the term ‘algorithm’ stems from the name of the ninth-century Arab mathemati-
cian al-Khwarizmi, who wrote the book al-jabr wa’l muqabalach which eventually evolved
into today’s high school algebra textbooks. He was perhaps the first to stress systematic
procedures for solving mathematical problems. Since then, some truly ingenious algorithms
have been invented, but the algorithms that have formed the foundations of the scientific
computing as a separate discipline were developed in the second part of the twentieth cen-
tury. Dongarra & Sullivan put together a list of the top ten algorithms of the twentieth
century [33]. According to these authors, these algorithms had the greatest influence on
science and engineering in the past. They are in chronological order:

1. 1946: The Monte Carlo method for modeling probabilistic phenomena.

2. 1947: The Simplex method for linear optimization problems.

3. 1950: The Krylov subspace iteration method for fast linear solvers and eigensolvers.

4. 1951: The Householder matrix decomposition to express a matrix as a product of
simpler matrices.

1.6. Algorithms and Top Ten List 11

5. 1957: The FORTRAN compiler that liberated scientists and engineers from program-
ming in assembly.

6. 1959-1961: The QR algorithm to compute many eigenvalues.

7. 1962: The Quicksort algorithm to put things in numerical or alphabetical order fast.

8. 1965: The Fast Fourier Transform to reduce operation count in Fourier series repre-
sentation.

9. 1977: The Integer relation detection algorithm, which is useful for bifurcations and in
quantum field theory.

10. 1987: The Fast multipole algorithm for N-body problems.

Although there is some debate as to the relative importance of these algorithms or the
absence of other important methods in the list, e.g. finite differences and finite elements,
this selection by Dongarra & Sullivan reflects some of the thrusts in scientific computing in
the past. The appearance of the FORTRAN compiler, for example, represents the historic
transition from assembly language to higher level languages, as discussed earlier. In fact, the
first FORTRAN compiler was written in 23,500 assembly language instructions! FORTRAN
has been used extensively in the past, especially in the engineering community, but most
of the recent scientific computing software has been re-written in C++, e.g. the Numerical
Recipes [75].

In this book we will cover in detail the algorithms (3), (4), (6) and (8) from the above
list, including many more recent versions, which provide more robustness with respect to
round-off errors and efficiency in the context of parallel computing. We will also present
discretizations of ordinary and partial differential equations using several finite difference
formulations.

Many new algorithms will probably be invented in the twenty-first century, hopefully
some of them from the readers of this book! As Dongarra & Sullivan noted “This century
will not be very restful for us, but is not going to be dull either!”

Chapter 2

Basic Concepts and Tools

In this chapter we introduce the main themes that we will cover in this book and provide an
introduction for each of them. We begin with a brief overview of C++ and define the two
basic concepts of functions and classes as well as other syntactic elements of the language. We
then introduce basic mathematical concepts that include elements of linear algebra, vector
orthogonalization, and corresponding codes and software. Finally, we introduce parallel
programming and review some generic parallel architectures as well as standard parallel
algorithms for basic operations, e.g., the fan-in algorithm for recursive doubling. We also
provide a brief overview of the main MPI commands.

12

2.1. Introduction to C++ 13

2.1 Introduction to C++

An ancient proverb states that the beginning of a thousand mile journey begins with a single
step. For us, this single step will be a brief overview of the C++ programming language. This
introduction is not designed to be all-inclusive, but rather it should provide the scaffolding
from which we will build concepts throughout this book. Admittedly, what you will read now
may seem daunting in its scope, but as you become more familiar with the concepts found
herein, you will be able to use the C++ language as a tool for furthering your understanding
of deeper mathematical and algorithmic concepts presented later in the book. With this in
mind, let us begin our thousand mile journey with this first step.

Any programming language can be broken down into two high level concepts:

• Data, and

• Operations on data.

Though this may seem like a trivial statement, quite often in science and engineering prob-
lems the real work that needs to be done is identifying what is the relevant data, and what
operations need to be executed on that data to obtain the desired results. From the pro-
gramming point of view, we will assume that you already have a clear concept of what data
is needed to solve the problem, and what algorithms will be acting on the data; we will focus
on translating these needs into the programming language.

We have chosen to present this material in a top-down manner; that is, we will start
from the high level of the program and work our way down toward lower and lower levels
of detail. At the end of this section, we will recapitulate what we have learned, and show
how all the pieces do indeed fit together though an example. We start with the idea of a
program, or ‘code’ as it is sometimes referred to within the scientific computing community.
A program is a sequence of instructions acting on a collection of data. Just as this chapter
had a starting point, every program must have a starting point, and in C++, the starting
point of execution is the “main” function, which is called main. This tells the computer
where to start execution of your program. The simplest C++ code that can be written is
the following:

int main(int argc, char ** argv){

}

This piece of code will compile and execute, but it will do absolutely nothing. Though
it may contain data inputed through the arguments argc and argv, it contains no operations
on that data. It merely provides the computer with a starting point of execution, and then
immediately terminates because all executable commands have been executed (which in this
case is none!).

Software

 Suite

This is your first C++ program. In keeping with programming
tradition, your first non-trivial C++ program should be the
following:

2.1. Introduction to C++ 14

#include<iostream.h>

int main(int argc, char ** argv){

cout << "Hello World" << endl;

}

At this stage, you should type in the program above, compile it using your native C++
compiler, and execute this program. The result of this program should be that the statement
“Hello World” is printed to your screen. If you have problems with this exercise, see Appendix
A.1.

In theory, you now have your first C++ program. You have written the code, compiled
and linked the code, and are able to execute the code on your native machine. Now that
this first step is behind us, let us jump into discussing some of the basic concepts, one of
which we have just gained some experience, i.e., the concept of a function.

2.1.1 Two Basic Concepts in C++

There are two basic concepts used throughout the C++ programming language: the concepts
of

• Function, and of

• Class.

The C programming language, upon its inception, had at least one self-defining feature:
modularity. The C language was designed to be modular, and this modularity was accom-
plished through the employment of functions. Almost everything in C is a function, and
some have said that “... all C really is a big function calling a bunch of other functions”.
Well, this is almost right. The C language basically consists of two components, a core lan-
guage specification which contains basic data types and constructs (such as if statements,
for statements, etc., some of which we discuss later on in this chapter), and a collection of
libraries, each of which contains many pre-defined functions. C++ built on this philosophy,
and introduced the “class” as a second fundamental building block of the language. Within
C++, functions and classes are intertwined to create the desired program.

We begin by defining what we mean by a function and a class. Functions and classes can
be distinguished by their fundamental premises. The primary premise of a function revolves
around what the function does, whereas the fundamental premise of a class revolves around
the data that the class contains. Functions are designed to be abstractions of algorithms;
Classes (at least as presented in this book) are an abstraction of data and operations on that
data. We will clarify this distinction by examining the two concepts in more detail.

Functions

Functions are abstractions which encapsulate a concept or algorithm. The concept of a
function is probably not new to you. In mathematics, we see functions all the time. We

2.1. Introduction to C++ 15

define functions so that we can abstract a particular operation or collection of operations
into one statement. In mathematics, we note functions in a manner like

f(x) = x3 − x2 + 2.

We understand that if we evaluate the function at the point x = 2, denoted f(2), this is
equivalent to substituting the number 2 into the expression x3−x2+2, yielding 23−22+2 = 6.
We hence would say that f(2) = 6. In mathematical parlance, we would add rigor to all
that we have done so far, and state this collection of operations as follows:

Given x as a real number, define f(x) as a function returning a real number, where the
definition of f(x) is given by the expression f(x) = x3 − x2 + 2.

This example demonstrates the three major components of a function:

• input, output, and contract (or algorithm).

We specified the valid range of parameters that can be inputed into this function (math-
ematically referred to as the domain of the function); we specified the range in which the
output would lie (mathematically referred to as the range of the function); and finally we
specified what, given a particular input, the function will do. The same holds true for C++.
For a function, we need to specify the input, output, and contract.

FunctionInput Output

Algorithm/Contract

Figure 2.1: A schematic of a function in C++.

In C++, the process of specifying the input, output, and contract is done in two stages,
see figure 2.1 1. These two stages are specifying the following for each function:

• Function declaration, and

• Function definition.

A function’s declaration accomplishes several things in one step. It declares the name
of the function and the data types of the input and output of the function. The function
definition specifies what the function will accomplish given particular input data. Hence,
the definition of a function is the algorithmic explanation of the contract of the function.

A schematic for the syntax used for the declaration of a C++ function is given in figure
2.2. Using this as our guide, let us attempt to formulate our mathematical function into a

1According to the language standard, it is possible to combine both of these items into one statement
satisfying the requirement for both simultaneously. For pedagogical clarity, we will always keep the two
stages separate.

2.1. Introduction to C++ 16

C++ function. For the purposes of this demonstration, let us assume that we have a data
type called float, which is the floating point representation of a real number. The function
declaration of our function “f” is given by:

float f(float x);

Output Function Name (Input/Output)
"Arguments"

Figure 2.2: Schematic of the syntax of a C++ function.

Examining our schematic given in 2.2, we can dissect this code to understand what is
going on. Let us see if we have met the three components of a function declaration. First,
we specified the name of the function, “f”. Next, we specified that the valid input to our
function is a floating point value. Finally, we specified that our function returns a floating
point value. Hence, we now have declared our function! What does declaration really mean
though? Declaration of a function allows us to use this function throughout our code with
the assumption that this function will act upon the contract of the function (later specified
by the definition of the function). A key thing to realize is that:

• A function must be declared before it can be used.

Because of this fact, many programmers place all their function declarations at the beginning
of their C++ program so that all functions are accessible everywhere. You will notice
throughout this book that we either place our function declarations within a header file
(the files with a .h extension) which are included at the beginning of a program, or we
directly insert the function declarations after the include files and prior to the main function
definition. An example template of this type of file setup is shown at the end of this section.

Another important fact is that within the argument list (the list of inputs and outputs
given as arguments to the function), the names specified are irrelevant. The compiler is only
concerned about the data type. Hence, it would be perfectly valid to write

float f(float);

Why have a variable name there, if it is just to be ignored? The most practical reason we
put variable names in function declarations is that we normally cut-and-paste the function
declaration from the function definition. The function definition does require variable names
to be used. We will now give the function definition so that this becomes more apparent.

2.1. Introduction to C++ 17

float f(float x){

float y;

y = x*x*x - x*x + 2;

return y;

}

Notice that the function definition has a very similar beginning to the function declara-
tion. As before, you specify the function name and the input and output data types. The
difference, however, is that the function definition is the implementation of our contract. For
the function definition, including specific variable names within the argument list is essential
because we will use these variable names throughout the definition to refer to that data that
was inputed. In C++, when data is inputed into a function, the information is passed by
value. This means that when the function is called, a copy of the information is created for
the function to use, not the original data. This is an important and yet subtle point about
C++. We will discuss this in more detail later (see section 3.1.2). For now, the thing to
remember is that the function takes from its argument list the information passed to it, and
it stores a copy of the information in a variable specified by the name given in the argument
list.

In this example, we declare a variable y in which we temporarily store the value of
our function, given by the expression x*x*x - x*x + 2, and then we return the value of the
variable y. The return statement designates the variable from which a value is to be returned
from the function back to the caller. If we were to examine a code snippet, we could use our
function just as we did mathematically by writing:

float w;

w = f(2);

If were to print the value of w, we would see that returned value is the floating point
value 6.000. Some of this will become more clear after we have discussed basic data types.
The key items to remember from this discussion are:

• Every function must have a function declaration and definition.

• Function declarations specify the name of the function and the data types of the inputs
and outputs.

• Function definitions specify the implementation of the algorithm used to carry out the
contract of the function.

• Variable names in function declarations do not matter.

2.1. Introduction to C++ 18

• Variable names in function definitions do matter because they specify how the data is
to be referred to in the implementation of the function.

• Variables passed to C++ functions are passed by value unless otherwise specified.

Software

 Suite
Putting it into Practice

Recall our little main function we wrote, compiled, and ran at the beginning of this
section. Let us now combine that code with our new function.

#include <iostream.h> // inclusion of library header file

// for use of cout

float f(float x); // function declaration

int main(int argc, char ** argv){

float w;

w = f(2);

cout << "The value of w is: " << w << endl;

}

float f(float x){ // function definition

float y;

y = x*x*x - x*x + 2;

return y;

}

If you were to compile and run this code, you would obtain a statement on your screen
that says: The value of w is: 6.00 .

In the program above, we use an object named cout, the declaration of which is found in
the system header file iostream.h. The object cout is used for printing to standard output,
which in many cases is the screen. For now, it is sufficient to know that the << symbols
delineate expressions to be printed. In the code above, the first statement to be printed is
the string “The value of w is:,” then the value associated with the variable w, and then the
end-of-line character denoted by the term endl. We will speak more about cout later in this
chapter.

Classes

Classes are abstractions which encapsulate data and operations on that data. In C++, the
concept of classes is used to simplify through encapsulation very complex data structures.

2.1. Introduction to C++ 19

A class consists of two parts: data and methods operating on the data. What you will find is
that methods are merely functions which are “attached” to classes. The concept of a method
is analogous to that of a function, with the primary focus of a method being to act on the
data of the class, and not on arbitrary inputed data.

For example, in the Gram-Schmidt routines in section 2.2.9, we utilize several user-defined
classes; among those classes is the class SCVector. Vector does not exist as a basic data type
in C++; however, the language allows us to define a new type, called SCVector, which
consists of a collection of basic data types and operations on that data. The declaration for
the class SCVector is given below. We will not go over every detail now, but will defer explicit
explanation until later in this book (see section 3.1.8). However, we call your attention to
the two basic concepts of classes in C++:

1. encapsulated data, and

2. methods acting on that data.

In this class, the variables dimension and data are encapsulated by the class, and all the
remaining methods (in the section marked ‘public’) act on this basic data.

Software

 Suite

We now present the class declaration of the SCVector class:

class SCVector{

private:

int dimension; // dimension of the vector

double *data; // pointer to array containing vector components

public:

SCVector(int dim); // default constructor

SCVector(const SCVector& v); // copy constructor

SCVector(int col, const SCMatrix &A); //secondary constructor

~SCVector(); //destructor

int Dimension() const; //dimension of the vector

double Length(); // Euclidean norm of the vector

void Normalize(); // normalize vector

double Norm_l1();

double Norm_l2();

double Norm_linf();

//************************

// User Defined Operators

2.1. Introduction to C++ 20

//************************

int operator==(const SCVector& v) const;

int operator!=(const SCVector& v) const;

SCVector & operator=(const SCVector& v);

double operator()(const int i) const;

double& operator()(const int i);

void Print() const;

};

Methods

Data

C++ Class

Input Output

Figure 2.3: A C++ class encapsulates data and methods acting on that data.

We will explain classes more thoroughly later (section 3.1.8), but let us take this oppor-
tunity to point out a few features of classes:

• In the class above, there are several “constructors”. A constructor is the first method
which is called when an object is instantiated. These methods can be used to initialize
data, set up information within the class, etc.

• A destructor is the method called prior to an object being deleted. The operating
system will call this method (if it is available) to allow the object to “clean up for
itself” prior to the operating system (OS) finishing the job by freeing the memory to
which the class was allocated.

• Notice that some methods of this class modify the data contained within the ob-
ject, while others merely compute things based upon the data within the object. For
instance, the function Normalize does exactly that – it normalizes the vector data con-
tained with the object to have norm one. The function Norm l2, however, does not
modify the data contained with the object, but merely computes the Euclidean norm
of the vector based upon the information within the object.

2.1. Introduction to C++ 21

Type Description

short short integer
int integer
long long integer

Table 2.1: Integer data types.

• Classes allow us to define what are referred to as overloaded operators. In the
declaration given above, we have listed these as “user defined operators”. In addition
to defining new data types, we can also define (or re-define) how common unary and
binary operators act on those objects (such as defining what ‘+’ means when two newly
defined objects are involved).

2.1.2 Learning the Syntax and Other Basic Commands

Getting Past “;” and “{ }”

As you may have already noticed from the small amount of code that we have presented to
you, the symbols “;” and “{ } ” are integral to C++. We will briefly describe the purpose
of these symbols here.

In general, the “;” is used to terminate an executable statement, hence why you see it at
the conclusion of the commands listed above. Having such a symbol denote the end of an
executable statement allows the compiler easily delineate between statements.

The { } brackets (called curly brackets) are used to denote scope. We will not go into
all the nuances of scope right now other than to tell you that the scope of a variable or a
function is the area of code in which that variable or function can be used.

Basic Data Types

In C++, variables are used to store information. In this section we go over some (not all, see
the Appendix A.2 for more information) of the basic data types available in C++. Just like
in mathematics, a variable is a symbol used to denote a particular value, either numerical
or character. One way of thinking of a variable is that it is a box in which information can
be stored. In C++, all variables must have a type. The type tells the computer what kind of
box to create, the dimension of the box, the shape, etc. The syntax for creating a variable
is:

<type> <variable list>

Some basic data types are listed in the tables 2.1, 2.2 and 2.3. Given the convention
above, we see that to declare a variable called x of type int, we would write:

int x;

2.1. Introduction to C++ 22

Type Description

float single precision
double double precision

Table 2.2: Floating point data types.

Type Description

char character

Table 2.3: Character data type.

This allocates a block of memory of the size of an integer, and would assign the symbol
x to refer to that location in memory. Hence, from now on, if we act on the variable x, we
are acting on the content of the memory assigned to x. This may sound odd at first, but
this is one of the subtle differences between computer programming and mathematics. One
thing that most people do not realize is that the computer does not have integer memory,
floating point memory, character memory, etc 2. As far as the computer is concerned,
memory is memory. The data type that is used tells the computer how to interpret memory.
A particular set of four bytes can be used in one program to represent an integer, and in
another program to represent a float. The computer does not care. What is important is
that the computer needs to know how to interpret the bit pattern of the four bytes. Does it
interpret the collection of bits as an integer or a float, or some other variable type? Coming to
grips with this notion will be very important when we start discussing the idea of addresses,
the subject of pointers, etc. So, there are two key points to remember about data types.
The data type you specify tells the computer two things:

• The number of bytes to use to hold the data.

• How to interpret the bit pattern specified in those bytes.

Now that you know that variables exist, and you know some of the basic types, here are
some rules to remember when using variables:

• Variables must be declared before they are used.

• Variable names can be of arbitrary length.

• Variable names are case sensitive.

• Variables are to be assumed to be uninitialized. Do not rely on the operating system
to initialize/zero values for you.

2Computers do in fact have specialized memory within the processor, called registers, which are either
integer or float/double.

2.1. Introduction to C++ 23

Symbol Interpretation

+ addition
- subtraction
* multiplication
/ division

Table 2.4: Binary arithmetic operations.

• Variable lists may be used. If we wish to allocate three integer variables a,b and c, we
may do so as follows: int a,b,c;. All three variables will be declared as integers. It
is also perfectly valid to declare each one with a separate statement.

• Variables may be initialized by either constants or expressions within the declaration
statement. Hence, if we wanted to initialize the integer variable a to zero, we could do
the following: int a=0;. You can also do this in the context of variable lists. Suppose
you want to initialize the integer variable b to one, but not the other variables. You
can do this as follows: int a,b=1,c;

Basic Operations

Now that we have some concept of variables, the natural question to ask is: “What can we
do with them ?” C++ provides a collection of basic operations, some of which are listed in
Table 2.4.

The operations presented look very much like the operations you would expect in math-
ematics. We must make two special notes, however. The first note is concerning the assign-
ment operator, and the second note is concerning order of precedence and associativity. In
C++, the symbol “=,” which we, in English, pronounce “equals,” should be interpreted as
“is assigned the value of,”, e.g. x = 2 is to be read x “is assigned the value of” 2. Take the
following C++ code example:

int x,y,z;

x = 2;

y = 4;

z = x + y;

The C++ interpretation of this code is as follows: First, declare three variables, x, y,
and z as integers. Next, assign x the value 2, then assign y the value 4. We then add the
values of x and y, and assign to z the newly computed value. The ordering is important. In
mathematics, we may say p = q or q = p, and both statements mean that p is equal to q.
However, in C++, p = q says that the variable p is assigned the same value as the variable
q, whereas q = p says that the variable q is assigned the value of p. As you can see, these
two statements are not equivalent.

2.1. Introduction to C++ 24

The second item to note is that operators have both precedence and associativity. The
C++ operator precedence and associativity are provided in table 2.5. What does operator
precedence and associativity really mean to the programmer? Examine the following exam-
ple: Assume that we want to add up six numbers: 1, 2, 3, 4, 5, 6. Mathematically, we write
this operation as 1 + 2 + 3 + 4 + 5 + 6. However, if we implement this expression, keeping
in mind that we are dealing with a binary operator “+,” then we would write the following
for summing: 1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15, 15 + 6 = 21. We begin by adding
the first two numbers together, and then we accumulate as we come to each new value. The
same is true for the computer. When the computer is faced with the expression:

int x,y,z,w;

x = 2.0;

y = 3.0;

z = 4.0;

w = x + y + z;

it interprets this as being equivalent to:

int x,y,z,w;

x = 2.0;

y = 3.0;

z = 4.0;

w = x + y;

w = w + z;

Notice that in the second expression, each evaluation involves only one binary expression.
Hence associativity is left to right in this case. Now suppose we had the following expression:

int x,y,z,w;

x = 2.0;

y = 3.0;

z = 4.0;

w = x + y * z;

The computer interprets this to be the following:

int x,y,z,w;

x = 2.0;

y = 3.0;

2.1. Introduction to C++ 25

z = 4.0;

w = y * z;

w = w + x;

Why multiplication prior to addition? The multiplication operator has precedence over
the addition operator, and hence all multiplications are done first. This is a very important
concept to realize:

Key Concept

• Order of operations is important. Precedence can make all the
difference!

OPERATIONS ASSOCIATIVITY
() [] → . left to right
! ∼ ++ - - + − ∗ & (type) sizeof right to left
∗ / % left to right
+ − left to right
<< >> left to right
< <= > >= left to right
= = != left to right

Table 2.5: Unitary +, -, and * have higher precedence than the binary forms.

One thing we should speak to is the use of () in expressions. Notice in the precedence
table that () are at the top of the list. This is for a reason. The use of () gives the programmer
the right to specify the order of precedence by explicitly placing () within the expression.
For instance, in the following piece of code

int x,y,z,w;

x = 2.0;

y = 3.0;

z = 4.0;

w = (x + y) * z;

the computer interpret this to be the following:

int x,y,z,w;

2.1. Introduction to C++ 26

Symbol Interpretation

! NOT

Table 2.6: Unitary Boolean Operations.

x = 2.0;

y = 3.0;

z = 4.0;

w = x + y;

w = w * z;

We have in effect told the computer the precedence order that we, the programmer, want
by explicitly specifying that the addition is to be done first, and then the multiplication.
This brings us to a good, sound coding rule:

Key Concept

• Use () to explicitly denote the order or precedence that is desired.
() cost you nothing in terms of computational time, yet they
can save you hours of debugging time trying to find an order of
precedence error.

The Boolean Expression

One of the most fundamental concepts used in computer science is the concept of a boolean
expression. A boolean expression returns a value of either true or false. In C++, true and
false are valid values of the enumerated (variable) type bool. For now, we will merely concern
ourselves with the fact that true may be converted to the integer value ‘1’ and false may be
converted to the integer value ‘0’. As you will see in three fundamental structures presented
below, boolean expressions are used to determine the flow of control. Flow of control is, in
layman’s terms, which C++ statements should be executed in a particular situation. Both
the unary and binary boolean operators are presented in tables 2.6 and 2.7.

Software

 Suite

There are several key facts to know about these operators.
First, they are binary operators just like + and - (addition and
subtraction, respectively). Thus, you can assign a variable the
value obtained by using them. For example, the following code
is perfectly legitimate:

2.1. Introduction to C++ 27

Symbol Interpretation

&& AND
‖ OR
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to

Table 2.7: Binary boolean operations.

#include <iostream.h>

int main(int argc, char ** argv){

int a,b,c;

a = 3;

b = 5;

c = a < b;

cout << "The value of c = " << c << endl;

}

If we were to print the value of c immediately following the assignment statement (as we
have in the code above through the use of the cout statement), we would find that the value
of c is 1, because it is true that the number 3 < 5. The ability to assign a variable the value
of a boolean expression holds true for all boolean binary operators.

Two other operators that may not be as familiar to most readers are the boolean AND
(&&), and boolean OR (‖). These two operators are commonly used to simplify logical
expressions so that several cases can be considered in one statement. The boolean values of
these two expressions are given below:

OR(‖)
0 1

0 0 1
1 1 1

AND(&&)

0 1
0 0 0
1 0 1

The two above tables should be interpreted in the following manner. Suppose we have
two variables a and b. The boolean value of variable a is denoted by the values on the left of
the table, and the boolean value of the variable b is denoted by the values on the top of the
table. If we were to execute the operation a <operator> b (where <operator> is either OR
or AND), then the result of this operation is given by the value in the square given by the

2.1. Introduction to C++ 28

respective row and column given by the values of a and b. Hence, if a = 1 and b = 0, a||b
yields the value 1 (true) while a&&b yields the value 0 (false). These logical relationships are
very important and hence should be memorized.

Software

 Suite

You may be wondering what happens if you use these boolean
operations on regular values. Let us suppose that you had the
following piece of code. What happens to the variable ‘c’?

#include <iostream.h>

int main(int argc, char ** argv){

int a,b,c;

a = 3;

b = 5;

c = a && b;

cout << "The value of c = " << c << endl;

}

Under such circumstances, a and b are implicitly cast to boolean expressions before the
AND operation is performed. Implicit casting does not affect the actual value of a or b,
but merely internally converts these values so that the computer can do the appropriate
boolean operation that you have requested. In such cases the following implicit casting rule
is applied:

• Any number not equal to zero (either positive or negative) denotes true (the logical
value 1), and zero denotes false (the logical value 0).

If we now try to answer the question of what will the computer do, we see that the computer
will first implicitly cast a and b to their appropriate values, which in this case are both logical
true since both are non-zero, and then the AND operation will be carried out. Looking at
the table above, we see that (true && true) equals true, and hence the value of c is true
(cast to the value 1).

An Example: The Collatz Problem

We will now proceed to explain three fundamental flow of control structures in C++: the
if statement, the while statement, and the for statement. We will motivate our discussion
of these three constructs with the following problem, known as the Collatz Problem. The
problem itself is given by a very simple algorithm:

• Start with any integer greater than zero; if the number is even, divide it by two, oth-
erwise multiply it by three and add one to it. Iterate this process until the number you
reach is the number one.

2.1. Introduction to C++ 29

Hence, if you start with the value 10, the sequence of numbers what you will obtain from
this algorithm is the sequence 10,5,16,8,4,2,1. In Figure 2.4 we plot the iterate value versus
iteration for two different initial guesses, 100 and 1000. The description of the algorithm
is quite simple, and the patterns given by plotting the iterated solution versus iteration
number are intriguing, however the problem that has stumped mathematicians for decades
is the following proposition attributed to Collatz:

• Given any integer greater than one, the algorithm described above will terminate (i.e.,
the value will reach one) in a finite number of iterations.

Since the algorithm is fairly simple to implement, many explicit numerical tests have been
done which demonstrate that for extremely large numbers this proposition holds true. How-
ever, at the time of this writing no theoretical proof exists for Collatz’s proposition.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

Initial Value:100
Number of Iterations: 25

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration

Ite
ra

te
 V

al
ue

Initial Value:1000
Number of Iterations: 111

Figure 2.4: Iteration history of the Collatz algorithm for two different initial guesses, n=100 and
n=1000.

We will present two pieces of code which implement the algorithm described above. The
first algorithm, denoted Collatz-A, makes the assumption that Collatz is right; the other,
Collatz-B, is a little less confident that the proposition holds true!

Software

 Suite

• Algorithm Collatz-A

#include<iostream.h>

int main(int argc, char ** argv){

int i,xn;

int initial_guess = 100; // **declaration and initialization

// by a constant within the same

// statement

2.1. Introduction to C++ 30

xn = initial_guess;

i = 0;

while(xn != 1){

cout << i << " " << xn << endl;

if(xn%2==0) // use of integer modulus operator

xn = xn/2;

else

xn = 3*xn+1;

i=i+1;

}

}

Software

 Suite

• Algorithm Collatz-B

#include <iostream.h>

int main(int argc, char ** argv){

int i,xn;

int max_iterations = 1000; // declaration and initialization

int initial_guess = 100; // declaration and initialization

xn = initial_guess;

for(i=0;i<max_iterations;i=i+1){

cout << i << " " << xn << endl;

if(xn == 1)

break; // use of break statement to exit for loop

// when the condition xn==1 is true

if(xn%2==0)

xn = xn/2;

else

xn = 3*xn+1;

}

}

2.1. Introduction to C++ 31

The fundamental difference between these two implementations is the choice of whether
to use the while statement or the for statement. In the Collatz-A code, the while statement
will terminate only if our iterate value reaches one; if it never reaches one, our program will
run forever (or until the system administrator kills your process thinking you accidently left
some mindless process running). Collatz-B, however, places a limit on the maximum number
of iterations that you will allow before giving up on Collatz. Both algorithms utilize the if
statement, so we will focus there first, and then move on to the description of both the for
and while statements.

The IF Statement

The if statement is truly at the core of any programming language. Almost all computer
architectures implement a form of the if statement as part of their fundamental set of com-
puter instructions. This is done because when someone sets up a computer problem, the
programmer is quite often confronted with algorithmic decisions in which if something is
true, then a particular piece of code should be done, and if it is not true, then another
piece of code should be done. Such logical decisions are not unique to programming, but
are fundamental to the way in which we, as humans, think. For this particular algorithm,
the “if” decision is based on whether the iterate value is odd or even. The way in which we
implemented this was as follows:

if(xn%2==0)

xn = xn/2;

else

xn = 3*xn+1;

Here, we check if the xn modulus 2 is zero (i.e., if the remainder from dividing xn by 2 is
zero); if it is, this implies that xn is even, and thus we should divide xn by two. Otherwise,
xn is odd, and thus we should multiply it by three and add one. From this you can see the
basic structure of the if statement. The basic structure is expressed in the following two
logical examples: if A then B, and if A then B else C.

Several examples are provided below so that you can see the syntactic structure of these
statements. There are a few things to point out: First, notice that if no {} brackets are used,
only the next statement immediately following the if statement is executed as part of the if.
This is a common programming mistake – people think that their if statement encompasses
many statements, but because they forgot to put {} brackets, only the first statement is
executed as part of the if. The other thing to notice is that you are not limited to only one
statement in the conditional. You can have logical statements such as if A then B,C,D,E,...
. Just remember, you need to use the {} brackets to denote this collection of commands!

Examples:

if(boolean statement)

statement 1;

2.1. Introduction to C++ 32

if(boolean statement)

statement 1;

else

statement 2;

if(boolean statement){

statement 1;

statement 2;

...

}

if(boolean statement){

statement 1;

statement 2;

}

else{

statement 3;

statement 4;

}

if(boolean statement){

statement 1;

statement 2;

}else if{

statement 3;

statement 4;

}

The WHILE Statement

The while statement is commonly used for executing a set of instructions while something
is true. For Collatz-A, in which we presume that Collatz was right, we continue to iterate
until our iterate xn reaches the value of one.

Two example while statements are presented below. Note that the rules concerning {}
discussed for if statements hold true here also. Multiple statements can be executed as part
of the while if {} are used to denote the extent of the statements.

Examples:

while(boolean expression)

statement 1;

while(boolean expression){

2.1. Introduction to C++ 33

statement 1;

statement 2;

...

}

The FOR Statement

For scientific programming in general, one of the most common statements used is the for
loop. For loops are used to denote a finite number of times a particular set of instructions
is to be executed. In Collatz-B, we only allow finite number of iterations to occur, in this
case 1000. If the iterate value has not reached the value one after 1000 iterations, the loop
terminates. The for statement used for Collatz-B is given below:

for(i=0;i<max_iterations;i=i+1){

// ... statements ...

}

We begin by initializing a variable i to the value zero. The second part of the statement
states that as long as i is less than max iterations, the statements contained within the
{} should be executed. The third component of the statement says to increment the value
of i by one (i.e., i = i + 1) at the conclusion of each iteration. Hence, in block form, the
expression becomes:

Initialize i = 0

head: if i < max_iterations, terminate

Execute statements

Increment the value of i by one

Return (go to) to the statement ‘head’

Hence ifmax iterations is equal to zero, the loop will never execute. For any integer value
of max iterations greater than zero, the statements inside the for statement will execute
max iteration times.

There are many variations of the for statement, all of which follow the concept illustrated
in the example above. We list here several instanciations of the for statement.

Examples:

for(statement 1; boolean expression; statement 2)

statement 3;

2.1. Introduction to C++ 34

for(statement 1; boolean expression; statement 2){

statement 3;

statement 4;

}

In the place of statement 1, we normally have the initialization of the looping variable.
Then, we have a boolean expression which tells us when the loop is to end. Then finally, we
have an increment statement which updates the looping variable. Although in this case we
have used solely integers, the for statement does not require it. If we were marching across
an evenly spaced grid on [0, 1] with grid spacing h, we could equally have used the following
for loop:

int N = 10; // Number of points with which discretize

double x, h = 1.0/(N-1); // ** Grid spacing; initialization

// by an expression.

for(x=0.0; x<=1.0; x = x+h){ //** notice that we can use

// float/double within the for

// ... appropriate statements here

}

2.1.3 Learning to Print

The printing routines to standard output (i.e., the screen) are handled by the class cout.
The declaration of cout can be found in the iostream.h header file. You will notice that we
included it in every program we have written so far which has used output to the screen.
This file must be included in any program using the cout statement.

Recall our Collatz example described above. In that example, we wanted to print the
value of i at each iteration, and the value of xn for that iteration, so we used the following
statement:

cout << i << " " << xn << endl;

The printing to standard output is initiated by cout. Following the cout class, the symbols
‘<<’ are used to delineate between items to print. In this case, we want to print the value of i,
followed by a space (here denoted by the string “ ”) followed by the value of xn. The symbol
‘endl’ denotes printing the end of line character. If we wanted to print the final iteration
count only, we could execute the following statement after the while or for statement:

2.1. Introduction to C++ 35

cout << "The final iteration number is: " << i << endl;

The general rule for the cout statement is that strings (denoted by quotation marks) are
printed literally; that is, exactly what is placed between quotes is printed. When variables
are placed in the cout statement, it is tacitly assumed that the contents of the variable are
to be printed, and not the variable name itself.

We now present some general remarks concerning the cout statement:

• The << used with cout is actually an overloaded operator. The class cout encapsulates
into an object the information necessary to accomplish printing to standard output.
The << operator is defined for all pre-defined variable types (int, float, double, etc.)
and allows us to “feed’ cout with the data that we wish to have printed to the screen.

• Instead of using ‘endl’, you can also use the end of line character ‘\n’ called newline.
For example, instead of

cout << "The final answer is yes" << endl;

you could equal use the following:

cout << "The final answer is yes\n";

Then ‘\n’ character is considered one character, and hence can be stored in a single
variable of type char.

2.1.4 Learning to Read

Printing to the screen is important, but what about inputing information into the computer?
To read from standard input (i.e., the keyboard) we use the object cin. The declaration of
cin can be found in the iostream.h header file. This file must be included in any program
using the cin statement.

The cin statement allows us to read data from the keyboard. In the Collatz programs
that we presented earlier, every time that the user wanted to produce the pattern for a
different number, the user would have to change the value of the initial guess variable and
then recompile the program. Suppose in our Collatz problem that we wanted the user to
input the initial value from the keyboard so that the program could be compiled just once
and use the inputed information each time it ran. To accomplish this, we can use the cin
statement as follows:

#include <iostream.h>

int main(int argc, char ** argv){

int i,xn;

int max_iterations = 1000; // declaration and initialization

2.1. Introduction to C++ 36

int initial_guess = 100; // declaration and initialization

cout << "Input a new value: ";

cin >> initial_guess;

xn = initial_guess;

for(i=0;i<max_iterations;i=i+1){

// remainder of the program given previously

In the code above, we query the user for a new value (using cout to print a message to
the screen), and then we use cin to retrieve the user’s keyboard input and place it into the
variable initial guess. Using the cin statement as above, we can now compile this program
once and rerun it allowing the user to input new values for which to obtain a Collatz sequence.

We now present some general remarks concerning the cin statement:

• Just as << was on overloaded operator for cout, >> is an overloaded operator for cin.
The operator >> is used to delineate between inputed items.

• cin ignores white space when reading from standard input. Suppose that we want to
input two integers into our program; we write the following:

int A,B;

cout << "Input two integers:";

cin >> A >> B;

The user could then type two integers separated by any number of white spaces (which
cin would ignore), and cin would put the two integers into the variables A and B.

• cin reads successively through the inputed stream of information. For example, suppose
that you wanted to input an integer and a floating point number into your program.
We write the following:

int A;

float B;

cout << "Input two integers:";

cin >> A >> B;

If the user inputs an integer and a float separated by white space, all will work as
expected. If the user, however, accidentally enters the floating point number first,
the program will read up to the decimal point to obtain the integer (suppose 10.3 is

2.1. Introduction to C++ 37

entered, cin will read the value 10 into the variable A) and then will continue from
that point to read the floating point value (which for this case cin will read the value
0.3 into the variable B).

For a more comprehensive description of the cin operator, we suggest that the reader
consult [86].

2.1.5 How to Program in Style

Though C++ is quite tolerant of programming styles, humans are not. Someone can write a
perfectly legitimate C++ code (syntactically and semantically), and yet it would be virtually
incomprehensible to anyone else but the programmer (and in some cases, it may even baffle
the programmer if she has not looked at it for a while). In general, it is good practice to
follow a few basic stylistic rules when programming:

• Comment the non-obvious. Here, non-obvious refers both to algorithmic tricks used
and programming tricks used.

• Space lines of code appropriately. White space and blank lines are ignored by the
compiler, hence you should use them to your advantage. A properly spaced out code
is much easier to read than a compacted, mangled piece of code.

• Use indentation to denote scope. When programming for, if, while, etc., you should
use indentation to denote scope. For example, examine the differences between the
two codes:

for(i=0;i<N;i=i+1){

y[i] = 0.0;

for(j=0;j<N;j=j+1){

y[i] = y[i] + A[i][j]*x[j];

}

}

versus

for(i=0;i<N;i=i+1){

y[i] = 0.0;

for(j=0;j<N;j=j+1){

y[i] = y[i] + A[i][j]*x[j];

}

}

As you can see, the indentation of the statements leads to immediate recognition of the
nesting of the statements. This type of ‘spot-check’ ability is very important when searching
for either algorithmic or syntactic bugs.

2.1. Introduction to C++ 38

How To Comment Code

C++ provides two means of commenting code: the single line comment and the block
comment. The single line comment is denoted by //. When the compiler reaches the //
statement, it ignores all characters which follow after up to the line return. Thus, we can
use this comment symbol to comment our coding example above as follows:

//This code computes the matrix-vector product A*x,

//and puts the result in y

for(i=0;i<N;i=i+1){ //loop over the rows

y[i] = 0.0; //initialize to zero

for(j=0;j<N;j=j+1){ //loop over the columns

y[i] = y[i] + A[i][j]*x[j];

}//end for j

}//end for i

The second means of commenting is by using the /* */ syntax. The C++ compiler will
ignore everything between /* and */, even if this spans across several lines. Hence, if we
wanted to comment out the loops from above, we could do the following:

/*

for(i=0;i<N;i=i+1){

y[i] = 0.0;

for(j=0;j<N;j=j+1){

y[i] = y[i] + A[i][j]*x[j];

}

} */

By placing these symbols before and after this block of code, we have commented out
the entire block of code. Obviously, this is not the only (nor the primary) use of comment
blocks. The purpose of this form of commenting is to allow the user to place more detailed
descriptions of algorithmic components of the code, which may take up more than one or
two single lines.

Software

 Suite
Putting it into Practice

We now introduce a full C++ program using the previously discussed coding examples.
The program below contains all the essential items necessary to compile and execute our
Collatz Algorithm (in this particular case, we are looking at Collatz-A).

2.1. Introduction to C++ 39

#include <iostream.h>

#include <iomanip.h>

int main(int argc, char ** argv){

int i,xn;

int initial_guess = 100;

xn = initial_guess;

i = 0;

while(xn != 1){

cout << i << " " << xn << endl;

if(xn == 1)

break;

if(xn%2==0)

xn = xn/2;

else

xn = 3*xn+1;

i=i+1;

}

}

The general format of our code is as follows: At the top of the file we place our “include”
statements. These statements are called “pre-compiled directives.” This means that they are
instructions to be carried out before the compilation is done. In this case, the “#include”
statement tells the compiler to insert the variable and function declarations found in the
header file “iostream.h” and “iomanip.h”. Since we have no other functions than our main
function, we have no other functions to declare. Our program begins with a main function,
which tells the computer where to start executing. Inside this function we place the C++
description of the algorithm we want executed.

To recapitulate, the general format of our C++ codes will be:

/********************************/

/* Include Statements */

/********************************/

#include <iostream.h> //Input/Output Header File

#include <iomanip.h> //Input/Output Manipulation Header File

#include <fstream.h> //File Input/Output Header File

#include <string.h> //String Manipulation Header File

#include <math.h> //Math Library Header File

// etc

2.1. Introduction to C++ 40

/***/

/* User-Defined Variable Declarations */

/***/

// Items such as Class declarations, etc.

/***********************************/

/* Function Declarations */

/***********************************/

// User-defined function declarations.

/***********************************/

/* Main Program */

/***********************************/

int main(int argc, char ** argv){

// ... Algorithm ...

}

/***********************************/

/* Function Definitions */

/***********************************/

Quite often throughout this book we will omit repeating this basic structure; we will focus
merely on providing algorithm and function definitions. Algorithms described throughout
this book can be inserted in the C++ programming shell above, compiled, and executed.
When deviations from the above style are needed, they will be explicitly mentioned in the
text.

2.2. Mathematical and Computational Concepts 41

2.2 Mathematical and Computational Concepts

2.2.1 Notation

We will denote a vector by a bold letter, so the transpose of a vector x of length n is
xT = (x1, x2, x3, . . . , xn). We will denote a matrix of size m× n by a capital bold letter, say
matrix A, which has entries (aij ; i = 1, . . . , m; j = 1, . . . , n). We will often write the matrix
A in terms of its columns ai, each one having m entries. We will also use the symbol O(np)
(read as “order-of” np) to denote either asymptotic computational complexity or convergence
rate.

2.2.2 Binary Numbers and Round-off

Appreciation of the finite arithmetic in scientific computing is very important and sloppy
handling of arithmetic precision often leads to erroneous results or even disasters in large
scientific computations. It has been reported, for example, that the Patriot missile failure
in Dharan, Saudi Arabia, on February 25, 1991 which resulted in 28 deaths, is ultimately
attributable to poor handling of rounding errors. Similarly, the explosion of an Ariane
5 rocket just after lift-off on its maiden voyage off French Guinea, on June 4, 1996, was
ultimately the consequence of simple overflow (the conversion from a 64-bit floating point
value to a 16-bit signed integer value).

While we are familiar and more comfortable with the base 10 arithmetic system, a com-
puter is restricted to a binary numbering system. The number 126, for example, has the
representation

126 = 1× 102 + 2× 101 + 6× 100

in the base-10 system, or equivalently

011111102 = 0× 27 + 1× 26 + 1× 25 + 1× 24 + 1× 23 + 1× 22 + 1× 21 + 0× 20

in the base-2 system. This is the floatic point representation.
In computing we call each place in a binary number a digit or a bit, and we call a group

of 8 bits a byte. Similarly, we call 1, 024 bytes a Kilo-byte (1 KB) and 1, 048, 576 bytes
a Megabyte (1 MB), and so on. An equivalent way to write the number 126 in scientific
notation is:

+ .126 × 103

sign fraction exponent

Therefore, in the computer we need to store the sign, the fraction and the exponent sepa-
rately. To this end, there is a standard notation adopted by IEEE (Institute of Electrical
and Electronic Engineers) for binary arithmetic, which is used in most computers (the old
Cray computers did not follow this convention). There are two types of floating point num-
bers, depending on the number of binary digits (bits) we store: Specifically, in the single
precision (float type in C++) we have 8 bits for the exponent and 23 bits in the fraction

2.2. Mathematical and Computational Concepts 42

whereas in the double precision (double type in C++) we have 11 bits for the exponent
and 52 bits for the fraction. In both cases we need to also reserve one bit for the sign. What
this means simply is that there is a lower and an upper bound on the size of numbers we can
deal with in the computer. In the single precision type this range extends from 2−126 to 2128

and in the double precision from 2−1022 to 21024, so clearly the latter allows great flexibility
in dealing with very small or very large numbers. The lower limit in this range determines
an underflow while the upper limit determines an overflow. What value a variable takes on
when it overflows/underflows depends both on the variable type and the computing archi-
tecture on which you are running. Even this large range, however, may not be sufficient
in applications, and one may need to extend it by using the so-called double extended
precision (long double in C++) which can store up to total of 128 bits. In practice, it is
more efficient to use adaptive arithmetic only when it is needed, for example in refining the
mesh down to very small length scales to resolve small vortices in a flow simulation.

The finite arithmetic in computing implies that the effective zero in the computer is about
6× 10−8 for single precision and 10−16 for double precision. We can determine the value of
machine epsilon by finding the value of 1

2p such that to the computer:

1.0 +
1

2p
= 1.0.

Software

 Suite

This is accomplished by increasing the value of p incremen-
tally, and monitoring the point at which the computer cannot
distinguish between the value 1 and the value 1 + 1

2p . This
procedure is implemented for both floating point and double
precision variables in the following two functions:

float FloatMachineEps(){

float fmachine_e, ftest;

fmachine_e = 1.0;

ftest = 1.0 + fmachine_e;

while(1.0 != ftest){

fmachine_e = fmachine_e/2.0;

ftest = 1.0 + fmachine_e;

}

return fmachine_e;

}

double DoubleMachineEps(){

double dmachine_e, dtest;

dmachine_e = 1.0;

2.2. Mathematical and Computational Concepts 43

dtest = 1.0 + dmachine_e;

while(1.0 != dtest){

dmachine_e = dmachine_e/2.0;

dtest = 1.0 + dmachine_e;

}

return dmachine_e;

}

Now, a natural question is “How do I use these functions?” For starters, we would write
the following program which uses both functions:

#include <iostream.h>

float FloatMachineEps();

double DoubleMachineEps();

int main(int * argc, char ** argv[]){

float fep;

double dep;

fep = FloatMachineEps();

dep = DoubleMachineEps();

cout << "Machine epsilon for single precision is: " << fep << endl;;

cout << "Machine epsilon for double precision is: " << dep << endl;

}

The machine zero values obtained by running the program above on a Pentium-4 proces-
sor are given in table 2.8.

Key Concept

• Notice the structure of this code:

1. Function declarations

2. “main” Function

3. Function definitions

2.2. Mathematical and Computational Concepts 44

Variable Type Machine Zero

float 5.96046e-08
double 1.11022e-16

Table 2.8: Machine zero for float and double precision for a Pentium-4 processor.

This code example demonstrates two important concepts. First, it demonstrates that in
computing, it is important to understand how arithmetic works on your machine. Secondly,
this example demonstrates that with very little programming, a user can investigate the
machine upon which she is running. We must be mindful that no computer can accomplish
infinite precision arithmetic; it is limited to finite precision. Finite precision arithmetic is
explained as follows: when the exact value of a basic operation, e.g. addition of two numbers,
is not represented with a sufficient number of digits, it is then approximated with the closest
floating point number. The approximation error incurred is referred to as the round-off error.
It is for this reason that such a fundamental property of addition as the associative property
is not always satisfied in the computer. For example

−1.0 + (1.0 + ε) �= (−1.0 + 1.0) + ε

as on the left-hand-side a very small number is added to a large number and that change
may not be represented exactly (due to round-off) in the computer.

2.2.3 Condition Number

The condition number is a very useful measure of the sensitivity of the numerical solution
to a slight change in the input. This number is proportional to the magnitude of the first
derivative of the solution. This can be formally shown by considering a solution φ(x) and
re-computing it for a slightly perturbed input, i.e., x + δx, where δx is the perturbation.
Using the Taylor series expansion and keeping the first term only, we obtain

φ(x+ δx) ≈ φ(x) + φ′(x)δx.

Thus, the change in the function values is

|φ(x+ δx)− φ(x)|
|φ(x)| ≈ |φ

′(x)||x|
|φ(x)| ×

|δx|
|x|

Using the above equation we define as condition number the first term in the product of
the right-hand-side. It represents the relative error in the solution (response) given a small
change in the input expressed by the independent variable x.

2.2.4 Vector and Matrix Norms

We define the most important norms that we will use to measure errors in this book. We need
norms both for vectors as well as for matrices. The norm of a vector xT = (x1, x2, x3, . . . , xn)
of length n is a scalar which obeys the following rules:

2.2. Mathematical and Computational Concepts 45

• ‖ x ‖≥ 0.

• ‖ x ‖= 0⇔ x = 0.

• ‖ αx ‖= |α| ‖ x ‖, where α is a scalar.

• ‖ x + y ‖≤‖ x ‖ + ‖ y ‖.

Some of the most commonly used norms are:

• Discrete L∞ - norm defined as: ‖ x ‖∞= maxi |xi|.

• Discrete L2 - norm defined as: ‖ x ‖2= (
∑n

i=1 x
2
i)

1
2 .

• Discrete L1 - norm defined as: ‖ x ‖1= ∑n
i=1 |xi| .

• Lp - norm defined as: ‖ x ‖p= (
∑n

i=1 |xi|p)1/p .

There is a theorem of equivalence of vector norms, and by this we mean that:
‖ x ‖p is equivalent to ‖ x ‖q if there exist numbers A(p,q,n) and B(p,q,n) so that

‖ x ‖p ≤ A ‖ x ‖q
‖ x ‖q ≤ B ‖ x ‖p .

Theorem: All Lp norms are equivalent for p ≥ 1 and the size of the vector is n finite.

Remark: For p > q > 1, then ‖ x ‖p≤‖ x ‖q≤ n ‖ x ‖p, where n is the vector length.

The above theorem is the reason why sometimes we omit the sub-index in the norm notation.
As an example, the L1 norm and the L2 norms are equivalent but not equal. In practice, this
means that either one can be used to measure errors and the convergence result we obtain
in our analysis would not depend on the particular norm.

The Cauchy-Schwarz Inequality is very useful in numerical analysis. For any two vectors
x and y we have:

|(x, y)| ≤ ‖ x ‖2 ‖ y ‖2,
where (x,y) is the inner product of the two vectors (see section 2.2.7) defined as (x, y) =∑n

i=1 xiyi.

Matrix Norms: The matrix norm generated by the vector norm ‖ x ‖p is defined by

‖ A ‖p= max
x �=0

‖ Ax ‖p
‖ x ‖p .

Similarly:

• The L∞ norm generates ‖ A ‖∞= max
i

n∑
j=1

|aij|, which is the maximum row sum.

2.2. Mathematical and Computational Concepts 46

• The L1 norm generates ‖ A ‖1= max
j

n∑
i=1

|aij |, which is the maximum column sum.

• The L2 generates the average matrix norm, i.e., ‖ A ‖2=
√

max λ(A∗A), where A∗A
is a positive symmetric matrix with positive real eigenvalues. Here A∗ denotes the
complex conjugate matrix of A, which in the case of real matrix entries it is the
transpose of A, i.e., A∗ = AT .

There are also two useful inequalities involving matrix norms:

‖ A + B ‖ ≤ ‖ A ‖ + ‖ B ‖
‖ Ax ‖ ≤ ‖ A ‖ ‖ x ‖ .

In the above inequalities we assume that a specific norm, as defined above, is chosen.

2.2.5 Eigenvalues and Eigenvectors

The eigenvalues and corresponding eigenvectors of a matrix A are determined by solving

Ax = λx⇒ (A− λI)x = 0,

where

I =




1

1 O
1

. . .

O 1




is the identity matrix. The eigenvectors x are non-zero if the determinant is zero, i.e.,

det(A− λI) = 0,

and this equation determines the eigenvalues λ. It can be re-written as

det(A− λI) = Πn
i=1(aii − λi) + pn−1(λ) = 0,

where aii are the diagonal elements of A and pn−1(λ) is a (n−1)th-order polynomial. There-
fore, an n × n matrix has exactly n eigenvalues, i.e., the roots of the above nth-order poly-
nomial, which may be real or complex and simple or multiple. However, the above approach
is rarely used in practice to compute the eigenvalues because it is computationally very
expensive and also unstable. This is illustrated with the Wilkinson matrix

W =




1 O(ε)
2

3
. . .

19
O(ε) 20




2.2. Mathematical and Computational Concepts 47

where by O(ε) we denote possible round-off error. In the absence of round-off the eigenvalues
are determined by

(1− λ)(2− λ)(3− λ) . . . (19− λ)(20− λ) = 0,

and thus: λi = i. However, for ε �= 0 the characteristic polynomial is

λ20 − 210λ19 + . . .+ 20! + ελ19.

Let us assume that ε = 10−11, then we obtain

λi = 1, 2, . . . , 8, 9, 10.01, 11.3, 12.5± 0.5i, 14.5± 0.5i, . . . , 20.

Therefore, the presence of even slight noise in the data results in several eigenvalues being
wrong, even complex in this case!

Similarity Transformation

Next, we provide some basic background on linear algebra. First, we define the similarity
transformation. Specifically, we say that the matrix A is similar to matrix B if A and
B have the same eigenvalues (i.e., the same eigenspectrum) but not necessarily the same
eigenvectors. Therefore, the transformation

A −→ PAP−1

where P is a non-singular matrix, leads to a matrix B = PAP−1 which is similar to A. This
can be proved based on the definitions. Let us assume

Ax = λx

and
PAP−1y = µy.

Then

AP−1y = P−1µy = µP−1y

and by defining x = P−1y, we have µ = λ, so all n eigenvalues are the same for both
A and PAP−1. We also note that if P is an orthogonal matrix then P−1 = PT and then
PAPT is similar to A. In theory, any non-singular matrix P can be used in the similarity
transformation, but the best choice in practice is to use an orthonormal matrix. The reason
is that with finite arithmetic ill-conditioned matrices amplify the round-off error and may
lead to erroneous results unlike orthonormal matrices.

Remark 1: The transpose matrix AT is similar to matrix A since they have the same
characteristic polynomial. However, they do not have the same eigenvectors. In contrast,
the inverse matrix A−1 has the same eigenvectors with A but inverse eigenvalues, λ−1

i . This
is true because

Ax = λx⇒ x = A−1λx⇒ λ−1x = A−1x.

2.2. Mathematical and Computational Concepts 48

Remark 2: The matrix Ak, where k is a positive integer, has eigenvalues λk, where λ are
the eigenvalues of A. However, Ak and A have the same eigenvectors. This can be extended
further and it is easy to show that if we construct the polynomial matrix

p(A) ≡ α0A
0 + α1A + α2A

2 + . . .+ αkA
k,

then
p(λ1), p(λ2), p(λ3) . . . p(λn)

are the eigenvalues of p(A). Correspondingly, the eigenvectors of A are also eigenvectors of
p(A). As an example, the eigenvalues of p1(A) = A + σI are (λi + σ).

We have already seen that computing the eigenvalues accurately from the determinant
may not always be possible, although the Newton-Raphson method of chapter 4 is an ac-
curate method of computing the roots of polynomials, but it may be inefficient. In chapter
10 we present several methods to compute iteratively and selectively the maximum and
minimum eigenvalues and corresponding eigenvectors.

2.2.6 Memory Management

Before we present BLAS (Basic Linear Algebra Subroutines) in the next section, we will
give you some preliminary information concerning memory management which will help to
make the next discussion more relevant.

In this section, we will discuss two issues:

• Memory layout for matrices, and

• cache blocking.

Our discussion will be directed toward understanding how memory layout in main memory
and cache (see figure 2.11) affect performance.

Memory Layout for Matrices

Computer memory consists of a linearly addressable space as illustrated in figure 2.5. In
this illustration, we denote memory as a one-dimensional partitioned strip. To the right of
the strip, the labels addr denote the address of the parcel of memory. By linearly addressable
we mean that addr2 = addr1 + addrset where addrset is the memory offset between two
contiguous blocks addressable memory.3 Single variables and one-dimensional arrays fit quite
nicely into this concept since a single integer variable needs only one parcel of memory, and
the array needs only one parcel of memory per element of the array.

How are two-dimensional arrays stored in memory? Since memory is linearly addressable,
in order to store a two-dimensional array we must decide how to decompose the matrix into
one-dimensional units. The two obvious means of doing this is decomposing the matrix into

3We have remained general because different architectures allow different addressable sets. Some archi-
tectures are bit addressable, some byte addressable, and some only word addressable. We will not delve
further into this matter, but the interested reader should consult a computer architecture book for more
details.

2.2. Mathematical and Computational Concepts 49

integer a
array of floats x

addr 1

addr 2

addr 3

addr 4

addr 5

addr 6

addr 43

addr 44

Location of the
 variable a

Location of the first
 element of array x

Location of the second
 element of array x

Location of the third
 element of array x

Memory

Figure 2.5: Schematic showing the memory layout for an integer variable and an array of floating
point values. The partitioned strip denotes the memory of the computer, and the labels addr to
the right denote the address of the parcel of memory.

a collection of rows or decomposing the matrix into a collection of columns. The first is
referred to as “row-major order”, and the later is referred to as “column-major order”. This
concept is illustrated in figure 2.6.

After examining figure 2.6, we draw your attention to the following statements:

• The amount of memory used by both ordering is the same. Nine units of memory are
used in both cases.

• The linear ordering is different. Although both orderings start with the same entry
(S00), the next addressable block in memory contains a different entry of S (S01 for
row-major order versus S10 for column-major order). This is an important observation
which we will discuss further in just a moment.

• If S is a symmetric matrix (meaning Sij = Sji), then row-major ordering and column-
major ordering appear identical.

• C++ uses row-major ordering while FORTRAN uses column-major ordering. In sec-
tion 5.1.4 we discuss how multi-dimensional arrays are allocated in C++, and how
row-major ordering comes into play.

In addition to the comments above, one other item needs to be mentioned before we can
conclude this discussion. As shown in figure 2.11, most modern computing architectures
have several layers of memory between what we have referred to as “main memory” and
the central processing unit (CPU). Main memory is normally much slower than the CPU,

2.2. Mathematical and Computational Concepts 50

S
00 S

01

S
10

S
11

S
00

S
01

S
02

S
10

S
02

S
12

S
22

S
21

S
20

S
11

S
12

S
20

S
21

S
22

S
00

S
10

S
20

S
01

S
11

S
21

S
02

S
12

S
22

 Row
Major
Order

Column
 Major
 Order

Figure 2.6: The 3× 3 matrix S is decomposed by row-major ordering on the left and by column-
major ordering on the right.

and hence engineers decided to insert smaller but faster memory between main memory
and the CPU (in this discussion, we will lump register memory in with the CPU and will
refer to Level 1 (L1) and Level 2 (L2) cache simply as “cache”). If all the items necessary to
accomplish a computation could fit into cache, then the total time to execute the instructions
would be reduced because the time cost of loads and stores to memory would be accelerated.

In general, even for programs in which not all the data can fit into cache, the use of cache
decreases the total time cost by using cached data as much as possible. This is referred to as
cache reuse. The goal is that once some piece of information has been loaded into cache,
it should be reused as much as possible (since access to it is much faster than accessing the
same piece of data from main memory). Whenever a piece of needed information is found in
cache, we have what is referred to as a cache hit. Whenever a piece of information cannot
be found in cache, and hence it must be obtained from main memory (by loading it into
cache), we have what is referred to as a cache miss.

Items from main memory are loaded in blocks of size equal to the size of a cache line, a
term which comes from the size of the lines going from main memory modules to the cache
memory modules. Hence, if you want to access one element of an array, and it is not in cache
(a miss), an entire cache line’s worth of information will be loaded into cache, which may
include many contiguous elements of the array. We draw your attention to figure 2.7. In this
illustration, we are examining the memory layout during a matrix-vector multiplication. The
3× 3 matrix A is stored in row-major order followed by a 3× 1 vector x. In this simplified
example, our cache consists of nine units which are loaded/stored in blocks of three units
(our cache line is of size three units).

At macro time t0, the first element of A is needed, so an entire cache line’s worth of

2.2. Mathematical and Computational Concepts 51

a11

a12

a13

a21

a22

a23

a31

a32

a33

x1

x2

x3

a11

a12

a13

x1

x2

x3

b1

a31

a32

a33

x1

x2

x3

b1

a21

a22

a23

x1

x2

x3

b1

b3

b2b2

Main Memory
Cache at t = t0 Cache at t = t1 Cache at t = t2

t read *1

t read **2

* **

Write back to main memory

Figure 2.7: Main memory and cache layout for a matrix-vector multiplication.

information is loaded, which in this case consists of three units. Hence, the entire first row
of A is loaded into cache. The first element of the vector x is needed, and hence an entire
cache line’s worth of information is loaded, which is equal to all of x. To accomplish the dot
product of the first row of A with the vector x, the other entries already in cache are needed.
Thus, we have several cache hits as other computations are accomplished in order to obtain
the end result of the dot product, b1. At macro time t1, the first item in the second row of
A is needed, and hence there is a cache miss. An entire cache line of information is loaded,
which in this case is the entire second row. Again, many computations can be accomplished
until another cache miss happens, in which case new information must be loaded to cache.

Although this is a very simplied example, it demonstrates how memory layout can be
very important to cache reuse. What would have happened if we had stored the matrix A in
column-major order, but had implemented the algorithm above? Because of the particular
cache size and cache line size, we would have had a cache miss almost every time we needed
an entry of A, and hence the total time cost would have been greatly increased because of
the excessive direct use of main memory instead of the fast cache.

Cache Blocking

The concept of cache blocking is to structure the data and operations on that data so
that maximum cache reuse can be achieved (maximize cache hits). In the example above, we
have achieved this by choosing to store the matrix A in row-major order for the particular
algorithm which we implemented.

Keep this concept in mind during the discussion of BLAS in the next section. In several
cases, different implementations are given for the same mathematical operation, some de-

2.2. Mathematical and Computational Concepts 52

pending on whether your matrix is stored in column-major order or in row-major order. In
the end, the computational time used to run your program can be significantly altered by
paying attention to which algorithm is most efficient with which memory layout. Taking into
account cache characteristics when determining the data partition used is very important,
and can greatly enhance or deteriorate the performance of your program.

2.2.7 Basic Linear Algebra - BLAS

Basic operations with vectors and matrices dominate scientific computing programs, and
thus to achieve high efficiency and clean computer programs an effort has been made in
the last few decades to standardize and optimize such operations. Two of the most basic
operations with vectors which appear in a code repeatedly are inner (dot) product and
outer product. The inner or dot product returns a scalar, however, the outer product
returns a matrix. For example:

Inner Product

[a1 a2 a3 . . .]



b1
b2
b3
...


 = c,

where c is the scalar value of the inner product, and c = 0 implies that the two vectors are
orthogonal, a terminology similar to vector calculus.

Outer Product 

a1

a2

a3
...


 [b1 b2 b3 . . .] =



a1b1 a1b2 a1b3 · · ·
a2b1 a2b2 a2b3 · · ·
a3b1 a3b2 a3b3 · · ·

...


 .

In addition to the inner and outer products, there are several other standard matrix and
vector operations that are used repeatedly in scientific computing. A convenient taxonomy
is based on their computational complexity, i.e., the number of floating point operations
required to complete an operation. In the previous example with the inner product of vectors
with length n, we require n multiplications and (n−1) additions or a total of approximately
2n operations. We denote the computational complexity of the inner product as O(n) (read
as “order n”). Similarly, we can estimate the computational complexity of the outer product
to be O(n2). We can then define levels of operations as

O(n), O(n2), and O(n3),

and this is exactly what has been done with the BLAS, a collection of routines that perform
specific vector and matrix operations. BLAS stands for Basic Linear Algebra Subprograms
and were first proposed by Lawson et al. [67] and further developed in [27, 29]. BLAS serve
as building blocks in many computer codes, and their performance on a certain computer
usually reflects the performance of that code on the same computer. This is why most of the

2.2. Mathematical and Computational Concepts 53

computer vendors optimize BLAS for specific architectures. BLAS provide both efficiency
and modularity. The most recent trend has been to develop a new generation of “self-tuning”
BLAS libraries targeting the rich but complex memory systems of modern processors.

The adaptive BLAS software is called ATLAS, which stands for
Automatically Tuned Linear Algebra Software [93]. ATLAS is an implementation of em-
pirical optimization procedures that allow for many different ways of performing a kernel
operation with corresponding timers to determine which approach is best for a particular
platform. More specifically, ATLAS uses two techniques: Multiple implementation and code
generation. In the latter, a highly parameterized code is written that generates many different
kernel implementations. In the former, different hand-written versions of the same kernel are
explicitly provided. The ATLAS framework also allows the user to supply machine-specific
implementations for other operations, for example prefetch instructions and even different
timers in order to affect optimization.

Level “1”

The first level, BLAS1, include O(n) operations, and include scalar-vector multipli-
cation, vector addition, inner (dot) product, vector multiply, and the so-called “saxpy”
operation. The latter simply means “scalar alpha x plus y” and serves as a mnemonic rule
for adding a vector to another vector multiplied with a scalar.

c = dot(x,y)

c = c+ x(i)y(i); i = 1, n

and also

z = saxpy(α,x,y)

z(i) = αx(i) + y(i); i = 1, n

In the above expressions the equal sign implies “assignment” rather than equality as is com-
mon in computer programming.

A typical performance of the double precision (ddot) inner product on the Intel Pentium-4
(1.7GHz) (see figure 2.12) is shown in figure 2.8. Specifically, the ATLAS version of BLAS is
employed with two different options of handling the data: “hot” implies that the vector is in
cache and “cold” that is out of cache. This processor has two levels of cache, which are both
on the chip (see figure 2.12). The primary (L1) cache is 16 Kbytes while the secondary (L2)
cache is 256 Kbytes.4 We see that the “hot/hot” combination results in the best performance,
which, however, is less than half of the maximum possible speed of 1.7 Gflops for a single
operation per cycle. On the other hand, when the vector sizes exceed the cache size, at array
size approximately 10,000, the performance asymptotes to approximately 250 Mflops, which
is only a fraction of the maximum speed.

Level “2”
4This is relatively small cashe. The new processors have cache of several MB.

2.2. Mathematical and Computational Concepts 54

150

200

250

300

350

400

450

500

550

600

650

700

100 1000 10000 100000 1e+06

M
flo

p/
se

c

array size

Comparative ddot() performance on a Xeon4 1.7GHz

ATLAS hot/hot
ATLAS hot/cold
ATLAS cold/hot

ATLAS cold/cold

Figure 2.8: Performance of the dot product on the Intel Pentium-4 with speed 1.7 GHz. (Courtesy
of C. Evangelinos)

The second level, BLAS2, include O(n2) operations, and specifically the most important
operation in scientific computing, i.e., matrix-vector multiplication. 5 There are two ways
of performing this operation depending on how we access the matrix A, either by row or by
column.

• z = MatVec.ij(A,x). This is the row version.

Initialize z(i) = 0.0 for i = 1, n
Begin Loop i = 1, n

Begin Loop j = 1, n
z(i) = z(i) + A(i, j)x(j)

End Loop
End Loop

• z = MatVec.ji(A,x). This is the saxpy version. We give an example of this version
as it may be less familiar to the reader compared to the inner product version.

[
1 2
3 4

] [
5
6

]
= 5

[
1
3

]
+ 6

[
2
4

]
.

The saxpy version is basically a linear combination of the columns of the matrix A
with weights given by the entries of the vector. We will also refer to this version as the
FORTRAN programming version since the matrix A is accessed by columns, which is
the way that matrices are stored in FORTRAN language. The loop that implements

5The matrix-vector BLAS routine has the name dgemv (double precision) but also the name mxv is used.

2.2. Mathematical and Computational Concepts 55

the column version is shown below. It is different than the row version only in the
order of the loops (i then j instead of the j then i presented below)..

Initialize z(i) = 0.0 for i = 1, n
Begin Loop j = 1, n

Begin Loop i = 1, n
z(i) = z(i) + A(i, j)x(j)

End Loop
End Loop

An operation that involves matrix-vector products, which is the generalization of
saxpy, is the Gaxpy :

• Gaxpy (General A x plus y).

z = y + Ax; z = gaxpy (A, x, y)
↓ ↓ ↓

m× n n m

To compute a gaxpy we use the saxpy operation in the following loop.

z = y
Begin Loop j = 1, n

z = z + x(j)A(., j)︸ ︷︷ ︸
column

End Loop

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

M
flo

p/
se

c

array size

Comparative dgemv() performance on a Xeon4 1.7GHz

ATLAS N hot
ATLAS N cold
ATLAS T hot

ATLAS T cold

Figure 2.9: Performance of the matrix-vector multiply on the Intel Pentium-4 with speed of 1.7
GHz. (Courtesy of C. Evangelinos)

2.2. Mathematical and Computational Concepts 56

A typical performance of the double precision (dgemv) matrix-vector operation on the
Intel Pentium-4 (1.7GHz) is shown in figure 2.9. Specifically, the ATLAS version of the
BLAS2 routine is employed with different ways of handling the matrix, accessing it either
with unit stride (“T” stands for transpose) or with larger stride (“N” stands for normal).
Similarly to the dot operation in figure 2.8, hot and cold refer to in-cache or out-of-cache
operations, respectively. Here we see that the maximum achievable speed is larger than the
BLAS1 level operation of figure 2.8, but again in the above matrices with a rank of 200 the
out-of-cache operations result in inferior performance.

Level “3”

In this level we have the matrix-matrix multiplication, which is an O(N3) operation. It
can be accomplished in six different ways, based on the basic operations of lower computa-
tional complexity of level 1 and level 2. 6 These six different loop arrangements were first
proposed by Dongarra, Gustavson and Karp [31]. The corresponding BLAS are BLAS3.
We present here the inner (dot) product version, the middle product or saxpy version, and
the outer product version. The other three ways are similar to the three versions that we
present here and form the so-called “dual” algorithms. In all cases the basic loop is

cij = cij + aikbkj

for the matrix multiplication C = AB, so it is the order of indexing which is different.
To make ideas more clear we present a specific example below with a 2 × 2 matrix-matrix
multiplication.

• Inner (dot) product version:[
1 2
3 4

] [
5 6
7 8

]
=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]

• Middle (saxpy) product version:[
1 2
3 4

] [
5 6
7 8

]
=
[
5

[
1
3

]
+ 7

[
2
4

]
6

[
1
3

]
+ 8

[
2
4

]]

• Outer product version:[
1 2
3 4

] [
5 6
7 8

]
=

[
1
3

] [
5 6

]
+

[
2
4

] [
7 8

]
.

Although mathematically equivalent, the different versions can have very different levels
of computer performance because of the different ways that they access memory.

Next we write the general loops for the three versions presented above for a matrix
A(m×r);B(r×n); C = AB. The asymptotic operation count for this operation is O(2mnr)
flops.

6The matrix-matrix BLAS routine has the name dgemm (double precision) but also the name mxm is
used.

2.2. Mathematical and Computational Concepts 57

• Inner (Dot) product version or MatMat.ijk Algorithm. Matrix A is accessed by rows
and matrix B by columns, while the matrix C is constructed row-by-row:

Initialize C(i, j) = 0.0 for i = 1, m; j = 1, n
Begin Loop i = 1, m

Begin Loop j = 1, n
Begin Loop k = 1, r

C(i, j) = C(i, j) + A(i, k)B(k, j)
End Loop

End Loop
End Loop

• Dual inner (Dot) product version or MatMat.jik Algorithm. Matrix A is accessed by
rows and matrix B by columns, while the matrix C is constructed column-by-column
(note that the ordering of the i and j loops has changed):

Initialize C(i, j) = 0.0 for i = 1, m; j = 1, n
Begin Loop j = 1, n

Begin Loop i = 1, m
Begin Loop k = 1, r

C(i, j) = C(i, j) + A(i, k)B(k, j)
End Loop

End Loop
End Loop

• Middle (Gaxpy) product version or MatMat.jki Algorithm. Matrix A and matrix B
are both stored by columns, so we have repeated matrix-vector multiplies of matrix A
with columns of B, and this is done using the linear combination version of BLAS2:

Initialize C(i, j) = 0.0 for i = 1, m; j = 1, n
Begin Loop j = 1, n

Begin Loop k = 1, r
Begin Loop i = 1, m

C(i, j) = C(i, j) + A(i, k)B(k, j)
End Loop

End Loop
End Loop

Notice that the above operation can be accomplished by using the gaxpy operation as
follows

C(., j) = gaxpy(A,B(., j), C(., j))

The dual operation of the outer product is MatMat.ikj, and it is implemented with a
similar loop as above where we need to exchange i and j.

2.2. Mathematical and Computational Concepts 58

• Outer product version or MatMat.kji version Algorithm. Here matrix A is accessed
by columns and matrix B is accessed by rows in order to form outer products.

Begin Loop k = 1, r
Begin Loop j = 1, n

Begin Loop i = 1, m
C(i, j) = C(i, j) + A(i, k)B(k, j)︸ ︷︷ ︸

saxpy

End Loop
End Loop

End Loop

The dual operation for the outer product version is MatMat.kij, and it is implemented
with a similar loop as above where we need to exchange i for j.

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

M
flo

p/
se

c

array size

Comparative dgemm() performance on a Xeon4 1.7GHz

ATLAS NN hot
ATLAS NN cold

ATLAS TT hot
ATLAS TT cold

Figure 2.10: Performance of the matrix-matrix multiply on the Intel Pentium-4 with speed 1.7
GHz. (Courtesy of C. Evangelinos)

A typical performance of the double precision (dgemm) matrix-matrix operation on the
Intel Pentium-4 (1.7GHz) is shown in figure 2.10. Specifically, the ATLAS version of the
BLAS3 routine is employed with different ways of handling the matrix, accessing it either T
or N, hot or cold, as before. Here ATLAS employs cache blocking by carefully partitioning
the matrices into blocks and making effective reuse of the data. This results in a performance
which is approximately the same for all different ways of accessing the data. If no such fine
tuning were performed, the asymptotic performance would drop dramatically for matrices of
rank above 100. It is interesting to note here that the asymptotic performance is well above
1.7 Gflops that corresponds to a single operation per cycle. This is because one of the two
available floating point units of Pentium-4 (the SSE2) is capable of executing any pairwise
operation of eight available registers every cycle for a maximum performance of four single
or two double precision flops per cycle at IEEE 754 precision.

2.2. Mathematical and Computational Concepts 59

L Cache

L Cache2

Main Memory

Hard Disk Storage

Long−Term Storage (Tapes, CDs)

1

CPU Registers

Figure 2.11: Memory hierarchies in typical computer.

System Bus

Bus Unit

Level 2 Cache

Memory Subsystem

Level 1 Data Cache

Execution Units

 Integer and FP
Execution Units

 Fetch/
Decode

Trace Cache

Microcode
 ROM

BTB/Branch Prediction

Front End

Out−of−
 order
execution
 logic

Retirement

Branch History Update

Out−of−order Engine

Figure 2.12: Block diagram of the Intel Pentium-4 .

2.2. Mathematical and Computational Concepts 60

BLAS and Memory Access

The practical difference in the various ways of implementing matrix-vector and matrix-matrix
operations lies in the way we access memory and the type of memory, i.e., main memory
or cache memory, as the latter is typically ten times faster than the former. To appreciate
this difference we sketch in figure 2.11 a pyramid of hierarchies (see [30] for more details)
in today’s typical computer that shows the relative distance between the central processing
unit (CPU) and the various levels of memory. The larger the size of memory, the longer it
takes to access it. A layout of the Intel Pentium-4 is shown in figure 2.12.

The cost associated with the BLAS programs can be computed by taking into account
the total number of floating operations but also including the cost associated with memory
access to load the operands. The following time estimate (T) is a conservative one, as it
assumes that there is no overlap between computation and loading of data:

T = nf × δt+ nm × τ = nf × δt(1 +
nm

nf
× τ

δt
),

where nf is the number of floating point operations, nm is the number of memory references,
and δt and τ are the times to execute a floating point operation and the time to load an
operand, respectively, and both are fixed for a given computer model.

From the above equation, we can see that the ratio of nm/nf plays an important role in
minimizing the total time. For each BLAS routine we can estimate this ratio for the three
levels of operation. For example:

• For BLAS1 such as the saxpy operation, we have that nf = 2n,nm = 3n+ 1 and thus
nm/nf → 3/2 for large n.

• For BLAS2 (matrix-vector multiply) we have that nf = 2n2, nm = n2 + 3n and thus
nm/nf → 1

2
for large n.

• Finally, for BLAS3 (matrix-matrix multiply) we have that nf = 2n4, nm = 4n3 and
thus nm/nf → 2/n for large n.

From the three levels of operations, it is clear that the matrix-matrix multiply is the most
efficient one as the number of memory references per flop decreases for larger size matrices.
This is the reason that the asymptotic performance measured in the figures 2.8, 2.9 and 2.10
is maximum for the matrix-matrix operation. It is, therefore, a good practice in writing
code to involve more matrix-matrix multiplications and use BLAS2 or BLAS1 less often, if
possible.

Remark 1: There are also several other routines in all levels of BLAS for different opera-
tions. For example, generation of plane rotations in BLAS1, solvers of triangular equations
in BLAS2, multiplications of a general matrix by a triangular matrix in BLAS3, etc. The
reader can find all this information on the web using the URL for the netlib freeware libraries:

http://www.netlib.org/blas and also http://www.netlib.org/atlas

2.2. Mathematical and Computational Concepts 61

Remark 2: BLAS accommodate both single and double precision corresponding to prefixes
s and d, respectively, in the names of subroutines. For a subset of routines (dot products
and matrix-vector products) extended-precision is also available for very-high accuracy com-
putations (prefix e). BLAS also accommodate complex arithmetic.

2.2.8 Exploiting the Structure of Sparse Matrices

The asymptotic limit of computational complexity in obtaining

C(m× n) = A(m× r)B(r × n)

is O(2nmr), but this limit overpredicts the count of operations for small size matrices. In
practice, we often encounter sparse matrices, and thus we have to be able to obtain a better
estimate for the operation count taking into account that sparsity. One such example is the
multiplication of two upper triangular square matrices A and B (n× n), which contain aij

and bij as entries. The resulting matrix C is also upper triangular, as is shown below for the
case of n = 3.

C =


 a11b11 a11b12 + a12b22 a11b13 + a12b23 + a13b33

0 a22b22 a22b23 + a23b33
0 0 a33b33




To implement the general case of multiplication of upper triangular matrices, we write
the following loop:

Initialize C(i, j) = 0.0 for i = 1, n; j = 1, n
Begin Loop i = 1, n

Begin Loop j = i, n
Begin Loop k = i, j

C(i, j) = C(i, j) + A(i, k)B(k, j)︸ ︷︷ ︸
2(j−i+1) flops

End Loop
End Loop

End Loop

Notice that this is the inner product version MatMat.ijk but with the lower limits in the
index j and k modified so that only entries in the upper triangular matrix are involved in
the computation. Clearly, we want to avoid multiplying zero entries! In order to evaluate
the flop count, we sum the amount of arithmetic associated with the most deeply nested
statements in the algorithm. To this end, we obtain

n∑
i=1

n∑
j=i

2(j − i+ 1) =
n∑

i=1

n−i+1∑
j=1

2j ≈
n∑

i=1

2
(n− i+ 1)2

2
=

n∑
i=1

i2 ≈ n3

3
(2.1)

Note that we used the following sums in the above derivation:

n∑
p=1

p =
n(n + 1)

2
≈ n2

2

2.2. Mathematical and Computational Concepts 62

and also
n∑

p=1

p2 =
n3

3
+
n2

2
+
n

6
≈ n3

3
.

The corresponding cost for computing these matrices as full matrices is 2n3, and thus the
savings with the above algorithm is six-fold.

In the same spirit, we could exploit the structure of other sparse matrices both in comput-
ing and in storing them. A particular structure that is often encountered in solving numerical
partial differential equations is that of banded matrices of the form shown below, where
we have a tridiagonal matrix [a(i), b(i), c(i)] with b(i) on the diagonal.

A =



b1 a1 0
c1 b2 a2

. . .
. . .

. . .

0 cn−1 bn an−1




First, it is advantageous to store such matrices in terms of their diagonals [a,b,c]. Next, we
can easily verify that

Ax = bx⊕u ax1 ⊕l cx2

where xT = (x1, . . . , xn) is a vector of length n but xT
1 = (x2, x3, . . . , xn) and xT

2 =
(x1, x2, . . . , xn−1) are vectors of length (n−1). Because of this mismatching in vector length,
the summation ⊕ in the above equation should be interpreted appropriately, i.e., we should
add (⊕u) the diagonal a above the main diagonal b (here the second term in the sum) to
the first component of bx and also add (⊕l) the diagonal c below the main diagonal to the
last component of bx. Also, the multiplications between all vectors should be performed in
an element-wise fashion.

2.2.9 Gram-Schmidt Vector Orthogonalization

Important operations in scientific computing are vector orthogonalization and normalization.
The Gram-Schmidt process starts with n linearly independent vectors xi and ends with n
orthonormal vectors qi, i.e., vectors which are orthogonal to each other, and also their L2-
norm is unity. Let us consider the vectors xi, i = 0, . . . , n − 1 each of length M . We want
to produce vectors qi, i = 0, . . . , n − 1 where the first vector q0 is the normalized x0, the
vector q1 is orthogonal to q0 and normalized, the vector q2 is orthogonal to q0 and q1, and
so on. The idea is to produce a vector

yi = xi − (qT
i−1xi)qi−1 − . . .− (qT

0 xi)q0 ,

which subtracts the projection of xi onto each vector qj for j = 0, . . . , i−1. Having obtained
yi we can then normalize it to obtain the corresponding orthonormal vector, i.e.,

qi =
yi

‖ yi ‖2
.

We can summarize this algorithm as follows:

2.2. Mathematical and Computational Concepts 63

• Initialize: Compute r00 =‖ x0 ‖2. If r00 = 0 STOP, else q0 = x0/r00.

• Begin Loop: For j = 0, . . . , n− 1 Do:

1. Compute rij = qT
i xj , i = 0, . . . , j − 1

2. yj = xj −∑j−1
i=0 rijqi

3. rjj =‖ yj ‖2
4. If rjj = 0 STOP

else qj = yj/rjj

• End Loop.

Example: Let us assume that we want to orthonormalize the vectors

x0 =


 1

0
2


 and x1 =


 2

3
0




thus, following the above algorithm, we obtain

• r00 = (12 + 02 + 22)1/2 = 2.2367 and q0 =
1

2.2367
(1 0 2)T

so

q0 =


 0.4472

0
0.8942




• r01 = qT
0 x1 = 0.8942

and

y1 = x1 − r01q0 =


 2

3
0


− 0.8942


 0.4472

0
0.8942


 =


 1.6001

3
−0.7996




so

r11 =‖ y1 ‖2=
[
(1.6001)2 + 32 + (−0.7996)2

]1/2
= 1.7887

and

q1 =
y1

r11
=


 0.89456

1.6722
0.4470




Notice that we can write
 1 2

0 3
2 0


 =


 0.4472 0.89456

0 1.6772
0.8942 0.4470



[

2.2367 0.8942
0 1.7887

]

2.2. Mathematical and Computational Concepts 64

The algorithm above is presented using common mathematical abstractions, such as
vectors and matrices. The beauty of C++ is that these mathematical abstractions can be
implemented in C++ as “user-defined” data types, in particular for this case, as classes. We
now present the implementation of the above algorithm in C++, utilizing some predefined
user-defined classes that we have created. Explanation of the class syntax of this function will
be given later in section 3.1.8, along with details as to how to create your own user-defined
data types.

Software

 Suite
Gram-Schmidt Code

In the coding example below, we are using the SCVector class that we previously defined
(section 2.1.1). Because we have defined the SCVector class to have mathematical properties
just like what we would expect, we see that we can translate the algorithm given above
directly into the code. Admittedly, some of the C++ syntax in the function below goes
beyond what you have been taught thus far; the details of the class implementation of
this code will be given later on in this book (see section 3.1.8). What you should notice,
however, is that classes, such as SCVector, allow you to more closely model the mathematical
definitions used in the algorithmic description of the solution of the problem.

SCstatus GramSchmidt(SCVector * x, SCVector * q){

int i,j;

int dim = x[0].Dimension();

SCVector y(dim);

SCMatrix r(dim);

r(0,0) = x[0].Norm_l2();

if(r(0,0)==0.0)

return(FAIL);

else

q[0] = x[0]/r(0,0);

for(j=1;j<dim;j++){ // corresponds to Begin Loop

for(i=0;i<=j-1;i++)

r(i,j) = dot(q[i],x[j]); // corresponds to 1

y = x[j];

for(i=0;i<=j-1;i++)

y = y - r(i,j)*q[i]; // corresponds to 2

r(j,j) = y.Norm_l2(); // corresponds to 3

2.2. Mathematical and Computational Concepts 65

if(r(j,j) == 0.0)

return(FAIL);

else

q[j] = y/r(j,j); // corresponds to 4

}

return(SUCCESS);

}

Observe in the code above that we allocate within this function an SCMatrix r which we
use throughout the function, and which is discarded when the function returns to its calling
function. We may want to retain r, however. In this case, we can create a function which
has an identical name as the previous function but contains an additional variable within the
argument list. The name and the argument list are used to distinguish which function we
are referring to when we call the function. (this concept will be discussed further in section
4.1.4).

Software

 Suite

In the function below, we pass into the function GramSchmidt
a SCMatrix r which it populates over the course of the com-
putation.

SCstatus GramSchmidt(SCVector * x, SCVector * q, SCMatrix &r){

int i,j;

int dim = x[0].Dimension();

SCVector y(dim);

r(0,0) = x[0].Norm_l2();

if(r(0,0)==0.0)

return(FAIL);

else

q[0] = x[0]/r(0,0);

for(j=1;j<dim;j++){ // corresponds to Begin Loop

for(i=0;i<=j-1;i++)

r(i,j) = dot(q[i],x[j]); // corresponds to 1

y = x[j];

for(i=0;i<=j-1;i++)

y = y - r(i,j)*q[i]; // corresponds to 2

r(j,j) = y.Norm_l2(); // corresponds to 3

2.2. Mathematical and Computational Concepts 66

if(r(j,j) == 0.0)

return(FAIL);

else

q[j] = y/r(j,j); // corresponds to 4

}

return(SUCCESS);

}

Key Concept

• Classes can help you more closely mimic the natural data struc-
tures of the problem. We are not confined to working with only
the low level concepts of integers, floats, and characters.

QR Factorization and Code

Another important point which we will often use in this book is a special matrix factor-
ization. In particular, if the vectors xi, i = 0, . . . , n− 1 form the columns of a matrix X of
size m× n, also qi, i = 0, . . . , n− 1 form the columns of matrix Q, and rij are the entries of
a square n× n matrix R (which turns out to be upper triangular) the following equation is
valid

X = QR

which is known as QR decomposition (or factorization) of the matrix X, and it has important
implications in obtaining eigenvalues and solutions of linear systems.

Software

 Suite

We now present a C++ function which accomplishes the QR
decomposition of a matrix.

Just as was stated above, we input a matrix X to be decomposed into the matrices Q
and R. We begin by creating two arrays of vectors q and v, which will serve as input to
our original Gram-Schmidt routine. As you will see, this routine contains only two basic
components:

1. A data management component, which is going from matrices to a collection of vectors
and back, and

2.2. Mathematical and Computational Concepts 67

2. A call to the Gram-Schmidt routine that we wrote previously (and now you understand
why we may have wanted to be able to retrieve the value of the SCMatrix r).

This routine demonstrates one important issue in scientific computing, i.e., the compromise
between computational time and programmer’s time. In this case, one may argue that if we
were to write a routine specifically for QR decomposition, then we could reduce some of the
cost of the data management section, and thus have a “more optimal code”. However, this
consideration must be balanced by considering how much computational time is used for data
manipulation versus the time to properly write and debug an entirely new function. In this
particular case, in theory, we have already written and tested our GramSchmidt(v,q,R)
function, and hence we are confident that if we give the Gram-Schmidt function proper in-
puts, it will return the correct solution. Hence, we can focus our programming and debugging
on the extension of the concept, rather than on the details of optimization. Optimization
is certainly important if we were to be calling this routine many times in a particular simu-
lation; however, optimization-savy individuals, as the old saying goes, often miss the forest
for the trees!

SCstatus QRDecomposition(SCMatrix X, SCMatrix &Q, SCMatrix &R){

int i,j;

int num_vecs = X.Rows();

int dim = X.Columns();

SCstatus scflag;

Vector *q = new SCVector[num_vecs](dim),

*v = new Vector[num_vecs](dim);

for(i=0;i<num_vecs;i++){

for(j=0;j<dim;j++)

v[i](j) = X(j,i);

}

scflag = GramSchmidt(v,q,R);

for(i=0;i<num_vecs;i++)

for(j=0;j<dim;j++)

Q(j,i) = q[i](j);

return scflag;

}

Modified Gram-Schmidt Algorithm and Code

Notice that the Gram-Schmidt method breaks down at the kth stage if xk is linearly de-
pendent on the previous vectors xj , j = 0, . . . , k − 2 because ‖ xk ‖2= 0. It has also been
observed that, in practice, even if there are no actual linear dependencies, orthogonality
may be lost because of finite arithmetic and round-off problems, as discussed earlier. To this

2.2. Mathematical and Computational Concepts 68

end, a modified Gram-Schmidt process has been proposed which is almost always used
in computations. Specifically, an intermediate result is obtained,

y0
j = qj − (qT

0 xj)q0,

which we project onto q0 (instead of the original xj), as follows:

y1
j = y0

j − (qT
1 y0

j)q1 ,

and so on. This process then involves successive one-dimensional projections. In the follow-
ing, we present a row-oriented version of the modified Gram-Schmidt algorithm.

• Initialize: Set qi = xi, i = 0, . . . , n− 1.

• Begin Loop: For i = 0, . . . , n− 1 Do:

rii = ||qi||2
qi = qi/rii

For j = i+ 1, . . . , n− 1 Do:

rij = qT
i qj

qj = qj − rijqi

End Loop

• End Loop.

Software

 Suite

We present a C++ implementation of the modified Gram-
Schmidt algorithm below. With the exception of the com-
mented block of code, the remaining code is identical to the
original code provided above.

SCstatus ModifiedGramSchmidt(Vector * x, Vector * q, Matrix &r){

int i,j;

int dim = x[0].Dimension();

Vector y(dim);

r(0,0) = x[0].Norm_l2();

if(r(0,0)==0)

return(FAIL);

else

q[0] = x[0]/r(0,0);

2.2. Mathematical and Computational Concepts 69

for(j=1;j<dim;j++){

/***/

/* We replace the following block of lines from the */

/* original Gram-Schmidt algorithm presented above, */

/* for(i=0;i<=j-1;i++) */

/* r(i,j) = dot(q[i],x[j]); */

/* */

/* y = x[j]; */

/* for(i=0;i<=j-1;i++) */

/* y = y - r(i,j)*q[i]; */

/* */

/* with the modification described above. The */

/* following lines implement that modification. */

/***/

y = x[j];

for(i=0;i<=j-1;i++){

r(i,j) = dot(q[i],y);

y = y - r(i,j)*q[i];

}

/***/

/* End of Modification */

/***/

r(j,j) = y.Norm_l2();

if(r(j,j) == 0)

return(FAIL);

else

q[j] = y/r(j,j);

}

return(SUCCESS);

}

Remark 1: The computational complexity of the Gram-Schmidt process is O(mn2) irre-
spective of which version is used. This is evident by comparing the comment block inserted
into the Modified Gram-Schmidt code. If you carefully examine the deleted code versus
the newly inserted code, you will see that the number of operations that is performed is
identical. It is often the case in scientific computing that although two algorithms may be

2.3. Parallel Computing 70

identical mathematically (i.e., in infinite precision), one algorithm is inherently better than
the other when implemented numerically. Furthermore, in this case, we see that we achieve
an additional benefit from the modified algorithm at no additional cost.

Remark 2: The loss of orthogonality of Q in the modified Gram-Schmidt method
depends on the condition number κ(A) of the matrix A obtained by using the specified
vectors as columns [8]. In general, the orthogonality of Q can be completely lost with the
classical Gram-Schmidt method while the orthogonality property may not be lost with the
modified Gram-Schmidt method but it may not be acceptable when the matrix A is ill-
conditioned. A better approach is to employ the Householder method discussed in section
9.3, which is more accurate and also computationally less expensive. For example, the cost
for Gram-Schmidt is O(mn2) while for the Householder method is O(mn2 − n3/3).

2.3 Parallel Computing

• Imagine a large hall like a theater, except that the circles and galleries go right round through
the space usually occupied by the stage. The walls of this chamber are painted to form a map
of the globe...A myriad of computers are at work upon the weather of the part of the map
where each sits, but each computer attends only to one equation or part of an equation. The
work of each region is coordinated by an official of higher rank...From the floor of the pit a
tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits the
man in charge of the whole theater; he is surrounded by several assistants and messengers.
One of his duties is to maintain a uniform speed of progress in all parts of the globe. In this
respect he is like the conductor of an orchestra in which the instruments are slide rules and
calculating machines. But instead of waving a baton he turns a beam of blue light upon those
who are behindhand.

Lewis F. Richardson, “Weather Prediction By Numerical Process” (1922)

This prophetic quote describes quite accurately the many hardware and software ingre-
dients of a modern parallel computer. It refers to a multiple instruction/multiple data type
and involves domain decomposition as the mode of partitioning the work load. The concepts
of master node that synchronizes the processes as well as of load balancing are also included
in the statement.

In the following, we briefly review some parallel computer architectures and introduce
parallel concepts and tools.

2.3.1 From Supercomputing to Soupercomputing

A supercomputer is the fastest computer of its time; today’s supercomputer is tomorrow’s
desktop or laptop computer. One of the first supercomputers of historical significance was the
Cray-1. It was used quite successfully in many applications involving large-scale simulation
in the early 1980s. The Cray-1 was not a parallel computer, however, but it employed
a powerful (at the time) vector processor with many vector registers attached to the main
memory (see figure 2.13). Today, all supercomputers are parallel computers. Some are based

2.3. Parallel Computing 71

Vector

Vector

Vector

Registers

Registers

Control

Control

Control
Functional

Scalar

Functional

Units

Functional
Units

Units

Memory

Execution

Vector

Registers

Instruction

Scalar

Address

Buffers

I/O
Control

Exchange

Functional

Units

Floating

Point

Address

CRAY−1

Figure 2.13: Schematic of the first Cray computer, the Cray-1.

on specialized processors and networks, but the majority are based on commodity hardware
and open source operating system and applications software. In this section, we will review
briefly some of the history and the recent trends.

Types of Parallel Computers

A popular taxonomy for parallel computers is the description introduced by Michael Flynn
in the mid 1960s [36] of the programming model as single instruction/ multiple data stream
(SIMD) or multiple instruction/ multiple data stream (MIMD). In a SIMD computer, such
as the Thinking Machines CM-2 or the NCUBE Inc. computers of the 1980s, each pro-
cessor performs the same arithmetic operation (or stays idle) during each computer clock,
as controlled by a central control unit (see figure 2.14). In this model (also referred to as
a data parallel program) high-level languages (e.g., CM Fortran, C∗, and Lisp) are used,
and computation and communication among processors are synchronized implicitly at every
clock period.

On a MIMD computer (see figure 2.15) each of the parallel processing units executes oper-
ations independently of each other, subject to synchronization through appropriate message
passing at specified time intervals. Both parallel data distribution as well as the message
passing and synchronization are under user control. Examples of MIMD systems include the
Intel Gamma and Delta Touchstone computers and, with fewer but more powerful processors,
the Cray C-90, and the first generation of IBM SP2 (all made in the 1990s).

While it is often easier to design compilers and programs for SIMD multiprocessors
because of the uniformity among processors such systems may be subject to great compu-
tational inefficiencies. This is due to their inflexibility when stages of a computation are

2.3. Parallel Computing 72

Processing
element 0

Processing
element 1

Processing
element P−1

 Local
memory 0

 Local
 memory 1

 Local
 memory P−1

Node 0 Node 1 Node P−1

....

...

Control unit

Figure 2.14: Schematic of SIMD parallel computer.

encountered in which there is not a large number of identical operations. There has been a
natural evolution of multiprocessor systems towards the more flexible MIMD model, espe-
cially the merged programming model in which there is a single program (perhaps executing
distinct instructions) on each node. This merged programming model is a hybrid between
the data parallel model and the message passing model and was successfully exemplified in
the Connection Machine CM-5. In this SPMD (single program multiple data) model, data
parallel programs can enable or disable the message passing mode, and thus one can take
advantage of the best features of both models.

Processing
element 1

Processing
element P−1

 Local
 memory 0

 Local
 memory 1

 Local
 memory P−1

Node 0 Node 1 Node P−1

...

Processing
element 1

Control unit 1 Control unit P−1Control unit 0 ...

...

Figure 2.15: Schematic of MIMD parallel computer.

MIMD computers can have either shared memory as the SGI Origin 2000 or distributed
memories as in the IBM SP system. The issue of shared memory requires further clarification
as it is different from the centralized memory. Shared memory means that a single address
space can be accessed by every processor through a synchronized procedure. In non-shared
memory systems explicit communication procedures are required. The prevailing paradigm

2.3. Parallel Computing 73

in parallel computing today is one where the physical memory is distributed, but the address
space is shared as this is a more flexible and easier as a programming environment.

PC Clusters

The most popular and cost-effective approach to parallel computing is cluster computing,
based for example, on PCs running the Linux operating system (hereafter referred to merely
as Linux). The effectiveness of this approach depends on the communication network con-
necting the PCs together, which may vary from fast Ethernet to Myrinet that can broadcast
messages at a rate of several Ggabits per second (Gbs).

NODE 0

P P

P P

Memory

0 1

2 3

NODE 1

P P

P P

Memory

0 1

2 3

NODE P−1

P P

P P

Memory

0 1

2 3

.

High Speed
 Switch

Figure 2.16: Schematic of Generic Parallel Computer (GPC).

Issues of computer design, balancing memory, network speed, and processing speed can
be addressed by examining the Generic Parallel Computer (GPC) depicted in figure 2.16.
The key components of the GPC are an interconnecting set of P processing elements (PE)
with distributed local memories, a shared global memory, and a fast disk system (DS). The
GPC serves as a prototype of most PC-based clusters that have dominated supercomputing
in the last decade both on the scientific as well as the commercial front.

The first PC cluster was designed in 1994 at NASA Goddard Space Flight Center to
achieve one Gigaflop. Specifically, 16 PCs were connected together using a standard Ethernet
network. Each PC had an Intel 486 microprocessor with sustained performance of about 70
Megaflops. This first PC cluster was built for only $40,000 compared to $1 million, which
was the cost for a commercial equivalent supercomputer at that time. It was named Beowulf
after the lean hero of medieval times who defeated the giant Grendel. In 1997 researchers
at the Oak Ridge national laboratory built a Beowulf cluster from many obsolete PCs of
various types; for example, in one version it included 75 PCs with Intel 486 microprocessors,
53 Intel Pentium PCs and five fast Alpha workstations. Dubbed the stone soupercomputer
because it was built at almost no cost, this PC heterogeneous cluster was able to perform
important simulations producing detailed national maps of ecoregions based on almost 100
million degrees of freedom [54]. A picture of this first soupercomputer is shown in figure
2.17.

2.3. Parallel Computing 74

Figure 2.17: Soupercomputer of the Oak Ridge national laboratory. (Courtesy of F. Hoffman)

Building upon the success of the first such system, the BEOWULF project [7, 81], sev-
eral high performance systems have been built that utilize commodity microprocessors with
fast interconnects exceeding one Gigabits per second in bandwidth. Moore’s law (an em-
pirical statement made in 1965 by the Intel co-founder Gordon Moore) suggests that the
performance of a commodity microprocessor doubles every 18 months, which implies that,
even without fundamental changes in the fabrication technology, processors with a speed of
several tens of Gigaflops can become available. Nanotechnology can help in prolonging the
validity of this statement, which has been true for at least four decades. New developments
include the TeraHertz transistor and the packaging of more than one billion transistors on
a single chip will hopefully keep Moore’s law alive. Intel’s Pentium-4 (see figure 2.12) has
about 42 million transistors).

In addition to enhancements in the speed of individual processors, there have been several
key developments that have enabled commodity supercomputing:

• The development and maturization of the free operating system Linux, which is now
available for all computer platforms. The freely distributable system and the open
source software movement has established Linux as the operating system of choice, so
almost all PC clusters are Linux based.

• The MPI standard that has made parallel coding portable and easy. There are sev-
eral implementations such as MPICH, SCore, etc. but they all share the same core
commands which we present in this book.

• The rapid advances in interconnect and fast switches with small latencies, which are
now widely available unlike the early days of proprietory and expensive systems avail-
able only by a few big vendors.

Grid Supercomputing

The computational grid is a new distributed computing paradigm, similar in spirit to the
electric power grid. It provides scalable high-performance mechanisms for discovering and

2.3. Parallel Computing 75

negotiating access to geographically remote resources. It came about by the internet and
world wide web advances and the fact that similarly to Moore’s law for computer speed, the
speed of networks doubles every about nine months. This is twice the rate of Moore’s law,
and it implies that the performance of a wide area network (WAN) increases by two orders
of magnitude every five years!

Computing on remote platforms involves several steps, to first identify the available sites,
to negotiate fast access to them, and configure the local hardware and software to access
them. The Grid provides the hardware and software infrastructure that allows us to do this.
The community-based opensource Globus toolkit is the most popular software infrastructure
[38], see also

http://www.globus.org

It implements protocols for secure identification, allocation and release of resources from a
globally federated pool of supercomputers, i.e., the Grid.

The Grid also allows the implementation of network-enabled solvers for scientific com-
puting, such as the package NetSolve [14]. NetSolve searches for available computational
resources within the Grid and chooses the best available resource based upon some sort of
match-making procedure. It consists of three parts: a client, an agent, and a server. Client
is the user issueing a request that is received by the agent. The latter allocates the best
server or servers which perform the computation and return the results to the client. The
server is a daemon process, which is on the alert awaiting requests from the client.

Performance Measurements and Top 500

As regards performance of parallel computers, there is no universal yardstick to measure it,
and in fact the use of a single number to characterize performance such as the peak perfor-
mance quoted by the manufacturer is often misleading. It is common to evaluate performance
in terms of benchmark runs consisting of kernels, algorithms, and applications so that differ-
ent aspects of the computer system are measured. This approach, however, is still dependent
on the quality of software rather than just hardware characteristics. The controversy over
performance evaluation methods has been recognized by the computer science community
and there have been several recent attempts to provide more objective performance metrics
for parallel computers [57]. A discussion of some of the most popular benchmarks, the BLAS
routines, was presented in 2.2.7, and more information can be found on the web at:

http://www.netlib.org/benchmark

A good basis for performance evaluation of supercomputers is also provided in the Top500
list, see:

URL: http://www.top500.org/

This was created by Dongarra in the early 1990s and it is updated twice a year. This list
reports the sites around the world with the 500 most powerful supercomputers. Performance
on a LINPACK benchmark [28] is the measure used to rank the computers. This is a code
that solves a system of linear equations, see chapter 9, using the best software for each

2.3. Parallel Computing 76

platform. Based on the data collected so far and the current Teraflop sustained speeds
achieved, it is predicted that the first PETAFlop/s (1015 floating point operations per second)
supercomputer would be available around 2010 or perhaps sooner.

2.3.2 Mathematical Parallelism and Recursive-Doubling

We now review briefly the mathematics of parallelism. There are many basic mathematical
operations that have a high degree of parallelism, and by this we mean that they can be
performed simultaneously and independently of each other. Consider, for example, the
element-wise multiplication of two vectors x,y to produce another vector c, i.e.,

ci = xiyi, i = 1, . . . , N.

Clearly, in this case all N products can be obtained simultaneously, and thus we can imagine
that each term in this product being evaluated by a different computer. In this particular
example there is of course no need to engage N different processors to do such a simple
operation, but the point we want to make is that for this operation there are no dependencies
among the different pairs of data. This is an example of perfect mathematical parallelism.
This form of parallelism also applies to the task of finding the maximum in each pair of a
set of N pairs of numbers, i.e., max (xi, yi), i = 1, . . . , N . This operation is also perfectly
parallel, and we will refer to such problems as EP (Embarassingly Parallel).

Notice, however, that if we attempt to find the absolute maximum number in the above
pairs we introduce inter-dependencies among the data, and such an operation is not perfectly
parallel anymore. The same is true for simple BLAS operations, for example the evaluation
of an inner (dot) product, i.e.,

c =
N∑

i=1

xiyi,

where c is a scalar. This requires the summation of all N product pairs (xiyi), which
is clearly a serial operation as it involves accumulation of the sum of a next pair to the
previous accumulation, and so on. Another such example is the evaluation of a polynomial
p(x), e.g.

p(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ aNx
N ,

at a specific point x0, which is also an accumulation operation. For this example, a straight-
forward computation would require recomputing the powers of x or else we would require
extra storage. This last issue can be avoided by resorting to Horner’s rule and alternating
multiplications and additions appropriately. For example, the polynomial

p(x) = 2 + 3x+ 7x2 + 4x3 + x4,

can be computed from the equivalent equation

p(x) = 2 + (3 + (7 + (4 + x)x)x)x,

which can be computed recursively with (N − 1) multiplication and N additions. This is an
important point: observe that the mathematical result of the two forms is the same, however

2.3. Parallel Computing 77

the number of operations that must be accomplished to obtain the result is different. This
type of operation rearrangement for optimization is common (and powerful) in scientific
computing. This particular operation, however, is still serial because in order to proceed
with the next iteration we need the results from the previous one.

Let us now revisit the computation of the inner product mentioned above. To be able
to perform the addition of the terms (xiyi) faster than in the straightforward serial fashion
from left to right, we can break the sum into two smaller sums (assuming for convenience
that N is an even number). For example, we have that the two sets are

N/2∑
i=1

xiyi and
N∑

i=N/2+1

xiyi .

We can compute the two sums separately and then collect the two results and perform
another sum to obtain the final result. The total number of additions is, of course, the
same, i.e., (N − 1) but assuming that we can execute the two big sums simultaneously the
wall clock time is almost half of what it was before. We can estimate more precisely the
wall clock time by assuming that it takes the computer a time δt to perform an addition.
This time δt is related to the processor speed, and it is in the range of several nanoseconds
for a relatively fast computer. The total time required for the straightforward approach is
T1 = (N − 1)δt. Then, the total time required after we break up the problem into two
subproblems is T2 = (N/2− 1)δt+ δt+ C, where C represents the time required to collect
the two results from the sub-sums. We can measuse the speed-up of this data partionining
method from the ratio

S2 =
T1

T2
=

N − 1

N/2 + C/δt
.

For efficiency we want S2 to be larger than one, which will be true if the relative communication-
to-computation time C/δt is small. If this cost is negligible then for N very large we obtain
S2 ≈ 2, which is the theoretical maximum speed-up.

This simple exercise illustrates how we can extract parallelism from an operation that
is seemingly serial at a first glance. Moreover, this data partitioning approach can be con-
tinued recursively so that the sub-sums are smaller and smaller, to a single pair of numbers
in this particular approach. This divide-and-conquer approach is fundamental to paral-
lel processing thinking. It is also known by other names, e.g. the fan-in algorithm or the
recursive-doubling algorithm. Another advantage of recursive-doubling is that it leads to en-
hanced numerical stability because when we sum up a large set of numbers in a serial fashion
significant accumulation of errors can occur. However, the recursive doubling algorithm and
corresponding pair-wise summation is assured to be more stable.

We can now generalize the example above by assuming that we have P computer pro-
cessors available, and that P = N , with N = 2q, so that we can reduce the evaluation of a
dot product into a summation of two numbers on each processor. The total number of stages
or branches in this tree, which is illustrated in figure 2.18 for the case of N = 8, is q; here
q = 3. Using the aforementioned recursive thinking, we can estimate the speed-up factor to
be

SP =
T1

TP
=

(N − 1)δt

qδt+ qC
,

2.3. Parallel Computing 78

P
0

P
1

P
2

P
3

P
4

P
5

P
6 P

7

x y1 1x y0 0 x y2 2 x y3 3 x y4 4 x y5 5 x y6 6 x y7 7

x y1 1x y0 0 + +x y2 2 x y3 3+ x y4 4 x y5 5+ +x y6 6 x y7 7+

x y1 1x y0 0 + x y2 2 x y3 3 x y4 4 x y5 5 x y6 6 x y7 7+ + +

x y1 1x y0 0 + +x y2 2 x y3 3+ x y4 4 x y5 5+ +x y6 6 x y7 7++

Figure 2.18: Inner (dot) product operation following the fan-in algorithm for N = P = 8.

where we include a total communication cost of qC assuming that in each stage the commu-
nication time penalty to collect terms and send them to other processors is C; let us denote
the relative time by α = C/δt. We can rewrite the speed-up factor in terms of the problem
size N or the number of processors P

SP =
N − 1

(1 + α) log2N
=

P − 1

(1 + α) log2 P
.

We see from the last equation that even for zero communications (α = 0), the theoretical
maximum speed-up factor is

SP =
P − 1

log2 P
< P and ηP =

P − 1

P log2 P
,

where the last equation defines the parallel efficiency ηP . For an EP (embarassingly parallel)
problem we have that ηP = 1 or 100%. It is clear that in this recursive algorithm the parallel
efficiency is less than perfect even if we ignore communications among the processors. At
successive stages of the computations less and less processors are involved in the computation,
and in fact in the last stage only two processors are involved while (P − 2) are staying idle.
The parallel efficiency, therefore, should reflect this load imbalance amongst the P processors.

If communication is taken into account in the above simple model, which assumes that
C = αδt, then we have that

SP (α = 1) =
1

2
SP (α = 0).

Therefore, we are computing at only 50% parallel efficiency. In practice, there are other
factors which may limit the parallel efficiency even more. For example, the number of
processors may not match exactly with the size of the problem, the total problem or sub-
problems may not fit in the memory, or a startup time penalty known as latency may slow

2.3. Parallel Computing 79

down the transferring of data. In this latter case, a better model for the communication cost
is

C = L+ βl

where L is the latency and l is the message length. Also β−1 is the bandwidth, which reflects
the maximum rate at which messages can be exchanged. Latency is significant when we
transfer small parcels of data often, but for longer size messages it is a subdominant time
cost. Typical ranges for L are from a few nanoseconds to a few microseconds, and it is
usually inversely proportional to the cost of the computer multiprocessor.

2.3.3 Amdahl’s Law

A more general model for the speed-up factor was proposed by Gene Amdahl (1967), which is
often referred to as Amdahl’s law [2]. In its simplest form it assumes that some percentage,
say ξ, of the program or code cannot be parallelized, and that the remaining (1 − ξ) is
perfectly parallel. Neglecting any other communication delays such as memory contention,
latencies, etc. Amdahl’s model for speed-up states that

SP =
T1

[ξ + (1− ξ)/P]T1
=

1

ξ + 1−ξ
P

, (2.2)

and thus an upper bound in the limit of P → ∞ is SP ≤ 1/ξ. This implies that even if
ξ = 1% (meaning only 1% of the program is not parallelizable) for P = 100 we have that
S100 = 50, so we operate at half the maximum efficiency; see also figure 2.19.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

100

P

S
P

ξ =0.01
ξ=0.1
ξ=.5

Figure 2.19: Speed-up factor versus number of processors for three different degrees of parallelizable
code.

Although useful, this performance measure SP can sometimes be misleading since it may
favor inefficient but highly parallelizable algorithms instead of more efficient algorithms that
may be more difficult to map onto a parallel multiprocessor computer. Also, the derivation

2.3. Parallel Computing 80

of Amdahl’s law relies on the assumption that the serial work ξ is independent of the size
of the problem size N . In practice, it has been observed that ξ decreases as a function of
problem size. Therefore, the upper bound on the speed-up factor SP usually increases as
a function of problem size. Another anomaly is the so-called superlinear speed-up, which
means that the speed-up factor has been measured to be more than P . This may happen
because of memory access and cache mismanagement or because the serial implementation
on a single processor is suboptimal.

There are several industry standard benchmark programs such as Whetstone, ScaLA-
PACK and LINPACK benchmarks. While these benchmarks have been used extensively
in all advanced computer system evaluations, specific benchmarks have been developed to
evaluate shared, distributed, and hybrid memory parallel computers. They vary from simple
parallel loops to measure the ability of parallelizing compilers to the PERFECT benchmark
which consists of thirteen programs including several fluid dynamics programs, to the MIMD
benchmarks, e.g. Genesis consisting of FFTs, partial differential equations, molecular dy-
namics, and linear algebra. A particularly popular set of benchmarks was developed at
NASA Ames, the NAS parallel benchmarks, a suite of eight programs with three versions
for serial, machine-dependent, and MPI-based implementations:

(see URL: http://www.nas.nasa.gov/Software/NPB).

Measures of performance based on Amdahl’s law are particularly effective for small pro-
grams that do not require extensive and intensive use of computer memory. Most computer
benchmarks are of this sort, but they do not in fact represent many of the requirements for
the solution of large-scale simulations.

2.3.4 MPI - Message Passing Interface

Parallel computing, in its conceptual form, appears to be a very reasonable concept. Many
of the concepts found in parallel computing have analogous concepts in social areas such as
business management. The idea of many people working together toward one goal is similar
to many processes working together toward one solution. The idea of wanting to partition
the work so that all processors are busy and none remain idle is similar to wanting to keep
your team busy, with noone having to sit around waiting on someone else for information.
From this perspective, we see that parallel computing is a natural extension of the concept
of divide-and-conquer; that is, we first begin with a problem which we want to solve, we
then access the available resources we can use toward solving the problem (which in the case
of computing will be the number of processors that can be used), and we then attempt to
partition the problem into manageable pieces which can be done concurrently by each person
on the team.

Key Concept

• Parallel Computing is a Divide-and-Conquer Strategy.

2.3. Parallel Computing 81

The most common difficulty that people have with this concept is not the divide-and-
conquer component; most often, we are quite comfortable with the concept of partitioning
a problem into workable subproblems. However, it may be difficult to see how a specific
problem can be partitioned efficiently to be solved in parallel, and secondly to understand
how you can get computers to work in parallel. Both of these issues, at varying levels, will
be addressed in this book.

Throughout this book, we will be discussing how to take specific numerical algorithms
and partition them among multiple processors. Hence, at this stage of your reading, we will
focus on the second of the two major difficulties:

• Understanding and implementing parallel programming on a computer.

The first issue that we will draw your attention to is that the goal of this book is not to
give detailed descriptions of the hardware and software mechanisms used for implementing
parallel computers. Our goal in this book, and the goal of most simulation scientists, is to
use the parallel computing tools already designed and created for them. Hence, we focus
on the problem we are trying to solve, and not on the intricate details of getting computers
to communicate with each other. To this end, we have chosen to employ MPI, a Message-
Passing Interface, for handling our parallel computing communication needs.

There are many good books on MPI itself, e.g. [51] and [73], both of which give some
of the history and the developmental rational behind a message passing interface. We will
not cover this information other than to mention that the basic premise behind MPI is
that multiple parallel processes work concurrently towards a common goal using “messages”
as their means of communicating with each other. This idea is illustrated in figure 2.20.
Multiple MPI processes may run on different processors, and these processes communicate
through the infrastructure provided by MPI. As users, we need not know the implementation
of this infrastructure, we need only to know how to take advantage of it! To this end,
almost everything in MPI can be summed up in the single idea of “Message Sent - Message
Received.”

Communication via MPI

Process 0 Process 1 Process 2 Process 3

Figure 2.20: Schematic of MPI processes working together.

2.3. Parallel Computing 82

Key Concept

• Almost everything in MPI can be summed up in the single idea
of “Message Sent - Message Received.”

We will be discussing the mechanics of this process, i.e., the MPI routines to use in order
to accomplish this, throughout this book. Let us begin our parallel computing experience by
understanding from a high-level the differences between our previous “serial” codes (those
programs that we have been addressing previous to this point) and our new “parallel” codes.
Up to now, every program that we have discussed has had one single thread of execution.
A simplistic breakdown is the following: the program started, data was allocated, work was
done on that data, and an answer was produced. All the steps were presented in a serial
fashion: A then B then C, etc. Think of this model as the “you working alone” model. You,
as a single person, have a goal to accomplish, and you set out with a specific collection of
tasks that need to be done in order to get the job done. You decide an order in which these
need to be accomplished, and then you plow through them one-by-one. Now, imagine that
you are working with someone else toward a common goal. You must now ask yourself the
following question:

• How can I partition the problem so that we can utilize our resources and accomplish
the goal in the least amount of time (or with the least effort)? This is a parallelization
question!

This parallelization question can be broken down into the following two questions:

• What work can be accomplished concurrently?

• When is communication between concurrent processes necessary?

Take the following example: Suppose that you are taking a class in which this book is
being used as the text. The goal (hopefully) is for everyone to read the text. If there is only
one copy of the text, then one possible strategy is for the instructor to prepare an ordered
list of all those in the class, and for each person to read the text when it is his turn. This is
thus a serial process; you as a student must wait until your turn in order to read the book,
and must remain idle (with respect to the reading the book) until you have obtained a copy.
However, if the goal is for everyone to read the book, then a more optimal solution with
respect to time is for everyone to have a copy of the book simultaneously! Then each person
can be reading the book concurrently. This is an example of an Embarrassingly Parallel
Algorithm.

Now, how would such an algorithm be implemented in parallel using MPI? We will begin
with a modification of our “Hello World” program. We must first specify our goal: We
want each process to print to the screen “Hello World!” Since this does not require any
communication, this should be able to be done concurrently by all the processes involved.

2.3. Parallel Computing 83

Software

 Suite

Our first MPI program to accomplish this is the following pro-
gram:

#include <iostream.h>

#include <mpi.h>

int main(int argc, char ** argv){

MPI_Init(&argc,&argv);

cout << "Hello World!" << endl;

MPI_Finalize();

}

Compilation and execution details for MPI programs is provided in the Appendix B.1.
What is the first thing that you should notice about MPI? The programming interface to
MPI is a collection of functions! MPI is a library of functions designed to handle all the
nitty-gritty details of message passing on the architecture on which you want to run. We
notice several things immediately about the program above:

• We included mpi.h. This provides us with the function declarations for all MPI func-
tions.

• We must have a beginning and an ending. The beginning is in the form of an MPI Init()
call, which indicates to the operating system that this is an MPI program and allows the
OS to do any necessary initialization. The ending is in the form of an MPI Finalize()
call, which indicates to the OS that “clean-up” with respect to MPI can commence.

• If the program is embarrassingly parallel, then the operations done between the MPI
initialization and finalization involve no communication.

When you compile and run this program, you obtain a collection of “Hello World!”
messages printed to your screen. The number of messages is equal to the number of processes
on which you ran the program 7. This is your first parallel program!

The two MPI functions that you used in the previous program have the following form:

• MPI Init

int MPI Init(
int* argc ptr /* in/out */,
char** argv ptr[] /* in/out */)

7Though the printing by the program is done concurrently, the computer must serialize the output in
order to write it to the screen. We still consider this to be an embarrassingly parallel process.

2.3. Parallel Computing 84

• MPI Finalize

int MPI Finalize(void)

In this book, we will take for granted the information that is passed to MPI Init. Just
as in Figure 2.20, our MPI program started up a number of processes, each of which printed
its message. The most natural question to ask is:

• How does a process know which number he is?

There are two important commands very commonly used in MPI:

• MPI Comm rank

int MPI Comm rank(
MPI Comm comm /* in */,
int* result /* out */)

• MPI Comm size

int MPI Comm size(
MPI Comm comm /* in */,
int* size /* out */)

The first of these two functions, MPI Comm rank , provides you with your process
identification or rank (which is an integer ranging from 0 to P − 1, where P is the number
of processes on which are are running), and MPI Comm size provides you with the total
number of processes that have been allocated. The argument com is called the communica-
tor , and it essentially is a designation for a collection of processes which can communicate
with each other. MPI has functionality to allow you to specify varies communicators (dif-
fering collections of processes); however, in this book, whenever a communicator must be
specified, we will always use MPI COMM WORLD, which is predefined within MPI and
consists of all the processes initiated when we run our parallel program.

If you were running a P = 8 process job, MPI Comm size would pass back the number
8 as the total number of processes running, and MPI Comm rank would return to you a
number 0, 1, ..., 7 denoting which process you currently were executing within. How do you
use this information?

Software

 Suite

Let us modify our code above to not only have each MPI pro-
cess print out “Hello World!” but also to tell us which process
the message is coming from, and how many total processes
with which it is joined.

#include <iostream.h>

#include <mpi.h>

int main(int argc, char ** argv){

int mynode, totalnodes;

2.3. Parallel Computing 85

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

cout << "Hello world from process " << mynode;

cout << " of " << totalnodes << endl;

MPI_Finalize();

}

When run four processes, the screen output may look like:

Hello world from process 0 of 4

Hello world from process 3 of 4

Hello world from process 2 of 4

Hello world from process 1 of 4

Note, as we pointed out, the output to the screen may not be ordered correctly since all
processes are trying to write to the screen at the same time, and the operating system has
to decide on an ordering. However, the thing to notice is that each process called out with
its process identification number and the total number of MPI processes of which it was a
part.

It is at this point that we want to make a critical observation: when running with MPI,
all processes use the same compiled binary, and hence all processes are running the exact
same code. What in an MPI distinguishes a parallel program running on P processors from
the serial version of the code running on P processors? Two things distinguish the parallel
program:

1. Each process uses its process rank to determine what part of the algorithm instructions
are meant for it.

2. Processes communicate with each other in order to accomplish the final task.

Even though each process receives an identical copy of the instructions to be executed,
this does not imply that all processes will execute the same instructions. Because each
process is able to obtain its process rank (using MPI Comm rank), it can determine which
part of the code it is supposed to run. This is accomplished through the use of if statements.
Code that is meant to be run by one particular process should be enclosed within an if
statement, which verifies the process identification number of the process. If the code is not
placed with if statements specific to a particular id, then the code will be executed by all
processes (like in the case of the code above). Shortly we will show you a parallel program
in which this fact is illustrated.

We, as of yet, have not actually accomplished the second point, communicating between
processes (from the programmers point of view); we have merely relied on the operating
system and other software system layers to handle the initiation and termination of our
MPI processes across multiple processors. Recall that we said that MPI can be summed
up in the concept of sending and receiving messages. Sending and receiving is done with

2.3. Parallel Computing 86

the following two functions: MPI Send and MPI Recv. Below we present the function
syntax, argument list description, a usage example and some remarks for the MPI Send
and MPI Recv commands.

Function Call Syntax

int MPI Send(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,

int MPI Recv(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

Understanding the Argument Lists

• message - starting address of the send/recv buffer.

• count - number of elements in the send/recv buffer.

• datatype - data type of the elements in the send buffer.

• source - process rank to send the data.

• dest - process rank to receive the data.

• tag - message tag.

• comm - communicator.

• status - status object.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be sent/recv

int sender; // process number of the sending process

2.3. Parallel Computing 87

int receiver; // process number of the receiving process

int tag; // integer message tag

MPI_Status status; // variable to contain status information

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize

double * databuffer = new double[datasize];

// Fill in sender, receiver, tag on sender/receiver processes,

// and fill in databuffer on the sender process.

if(mynode==sender)

MPI_Send(databuffer,datasize,MPI_DOUBLE,receiver,

tag,MPI_COMM_WORLD);

if(mynode==receiver)

MPI_Recv(databuffer,datasize,MPI_DOUBLE,sender,tag,

MPI_COMM_WORLD,&status);

// Send/Recv complete

Remarks

• In general, the message array for both the sender and receiver should be of the same
type and both of size at least datasize.

• In most cases the sendtype and recvtype are identical.

• The tag can be any integer between 0-32767.

• MPI Recv may use for the tag the wildcard MPI ANY TAG. This allows an MPI Recv
to receive from a send using any tag.

• MPI Send cannot use the wildcard MPI ANY TAG. A specific tag must be specified.

• MPI Recv may use for the source the wildcard MPI ANY SOURCE. This allows an
MPI Recv to receive from a send from any source.

2.3. Parallel Computing 88

• MPI Send must specify the process rank of the destination. No wildcard exists.

Software

 Suite

To get you started, we will begin with a small numerical exam-
ple. Imagine that we want to sum up all the numbers from 1
to 1000. We could implement this as the following serial code:

#include<iostream.h>

int main(int argc, char ** argv){

int sum;

sum = 0;

for(int i=1;i<=1000;i=i+1)

sum = sum + i;

cout << "The sum from 1 to 1000 is: " << sum << endl;

}

Instead, let us use multiple processes to do the job. Now admittedly, multiple processes
are not needed for this job, but the point of this exercise is for you to see how we partition
the problem. The first thing we realize is that to effectively sum up all the numbers from 1 to
1000 using multiple processes, we want to partition the sums across the processes. Suppose
that we use only two processes, then we want that process 0 sums from 1 to 500, and process
1 sums from 501 to 1000, and then at the end, the two values are added together to obtain
the total sum of all numbers from 1 to 1000. A schematic of this is provided in figure 2.21.
Given P processes, the problem of summing is partitioned into P subproblems, and then at
the end all processes send their information to process 0 for the final accumulation of the
results.

0 1 2 3 5 6 74

0

Figure 2.21: Gathering of all information to one process using sends and receives.

The first question we must ask ourselves is how do we partition the processing? Recall
from our discussion above that every process can find out how many total processes are

2.3. Parallel Computing 89

being used, and which process it is (by using MPI Comm size and MPI Comm rank,
respectively). Let mynode be the variable storing the result of the call to MPI Comm rank,
and let totalnodes be the variable storing the result of the call to MPI Comm size. Then,
the formula for partitioning the sums across the processes is given by the following code:

startval = 1000*mynode/totalnodes+1;

endval = 1000*(mynode+1)/totalnodes;

If you use only one process, then totalnodes = 1 andmynode = 0, and hence startval = 1
and endval = 1000. If you are using two processes, then totalnodes = 2, and mynode is
either 0 or 1. For mynode = 0, startval = 1 and endval = 500, and for mynode = 1,
startval = 501 and endval = 1000. You can continue this procedure until you are using
1000 processes, at which point each process is only summing one value (i.e., not summing at
all!), and all the values are sent to process zero for accumulation.

Once we have the starting value and ending value of our sum, each process can execute a
for loop which sums up the values between its startval and its endval. Then, once the local
accumulation is done, each process (other than process 0) sends its sum to process 0.

Software

 Suite

The code below is a C++/MPI program which accomplishes
this:

#include<iostream.h>

#include<mpi.h>

int main(int argc, char ** argv){

int mynode, totalnodes;

int sum,startval,endval,accum;

MPI_Status status;

MPI_Init(argc,argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes); // get totalnodes

MPI_Comm_rank(MPI_COMM_WORLD, &mynode); // get mynode

sum = 0; // zero sum for accumulation

startval = 1000*mynode/totalnodes+1;

endval = 1000*(mynode+1)/totalnodes;

for(int i=startval;i<=endval;i=i+1)

sum = sum + i;

if(mynode!=0)

MPI_Send(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD);

else

2.3. Parallel Computing 90

for(int j=1;j<totalnodes;j=j+1){

MPI_Recv(&accum,1,MPI_INT,j,1,MPI_COMM_WORLD, &status);

sum = sum + accum;

}

if(mynode == 0)

cout << "The sum from 1 to 1000 is: " << sum << endl;

MPI_Finalize();

}

We will present more detailed information about the MPI Send and
MPI Recv commands later in this book (see section 3.4). Note however, the general struc-
ture of the message passing. First, observe that there is an if statement, which distinguishes
between whether you are process 0 or any other process. Why? Because recall, all processes
other than process zero are sending, whereas process 0 is receiving. We should decide our
programs so that for each message sent using an the command MPI Send, there is some
receiving process.

Hence, whereas each process other than 0 has one MPI Send call, process 0 has (P − 1)
MPI Recv calls (where P is the total number of processes used). This is an important
concept to understand. Often times an MPI program has been sitting idle because one
process was sending, and there were no process waiting to receive!

This portion of the text was not meant to be all inclusive, nor are you expected to be able
to go out and write MPI codes using sends and receives with blinding efficiency (especially
since we have not yet explained the argument lists forMPI Send andMPI Recv). However,
as you go through this book, you will slowly but surely accumulate MPI knowledge and
experience, and at the end, you will hopefully be writing C++/MPI code with confidence!

2.4. Homework Problems 91

2.4 Homework Problems

1. Prove that the condition number in the L2-norm of an othogonal matrix is 1, and that
the condition number (in any norm) of a matrix is greater or equal one.

2. Use the classical Gram-Schmidt and the modified Gram-Schmidt algorithms to or-
thonormalize the vectors

x0 =


 1

10−4

0


 and x1 =


 1

0
10−4




Compare the two results. What do you observe?

3. Find the eigenvalues of an n× n matrix with all entries equal to 1.

4. Modify Collatz-B so that instead of using the expression xn+1 = 3xn + 1 you use
xn+1 = 5xn + 1. Use the number 100 as an initial guess and with the maximum
number of iterations set to 10,000. What do you observe? Postulate as to why this
happens.

(Hint: Have you ever played an arcade game in which you eventually were scoring a
negative number?)

5. The Fibonacci sequence is a sequence of integers created by the following inductive
process: given f0 = 0 and f1 = 1, the next number in the sequence is equal to the sum
of the previous two numbers, i.e.,

fn = fn−1 + fn−2.

This process can be continued indefinitely and produces the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13

(a) Write a program which allows the user to input a desired number of terms N of
the Fibonacci sequence, and outputs the sequence f0, f1, . . . , fN to the screen.

(b) Modify your program so that you keep track of the ratio fn

fn−1
. How many terms

do you need so that the difference between fn

fn−1
and fn−1

fn−2
is less than 1.0× 10−5?

(c) What is the value of this ratio? The number you have converged to is called the
Golden Mean.

6. The harmonic series
∑∞

k=1 1/k diverges, i.e., it grows without bound as we include more
terms. Consider the truncation that includes the first n terms, which we call partial
sum Sn and can be computed recursively from Sn = Sn−1 + 1/n with S1 = 1. What is
the largest Sn that can be obtained in your computer in single precision?

7. The Pythagorean theorem states that the sum of the squares of the sides of a right
triangle is equal to the square of the hypotenuse. Thus, if x and y are the lengths of the
two sides of a right triangle, and z is the length of the hypotenuse, then x2 + y2 = z2.
Fermat, a lawyer and amateur mathematician during the 1600s, postulated that there

2.4. Homework Problems 92

exists no other integer m (other than m = 2) such that xm + ym = zm for the sides of
a right triangle as described above.

(a) Write a function power which takes as input a double precision number x and an
integer m and returns as output a double precision number which is equal to the
value of x raised to the power m (i.e., xm).

(b) Write a function pythagoreus which takes as input two double precision numbers
x and y and an integer m and returns as output a double precision number which
is equal to the value of xm + ym. Use the function power written above.

(c) Write a program which queries the user for three values: two double precision
number which equal the length of two of the sides of a right triangle, and an
integer N . Your program should first use the function pythagoreus to determine
the value of the square of the hypotenuse. Then you should write a loop which
checks to see if there exists any integer 2 < m ≤ N such that zm = xm + ym. If
you find such a value of m, print the result and break out of the loop. If you do
not find a value m such that the above expression is true, print a message which
states that no value can be found for the value N provided by the user.

8. Change the stride of the summing example given in section 2.3 (make the stride of the
additions equal to the number of processors). This will require devising new formulae
for the variables startval and endval, and changing the i = i + 1 used within the
summing loop to some other increment.

9. Modify the summing example as follows:

(a) At the beginning of the main function, add an integer variable master, and initial-
ize this value to some number between zero and the number of processors minus
one.

(b) Modify theMPI Send/MPI Recv sequence such that all processes except master
send, and process master receives.

(Hint: From the example, in the MPI Send, the ‘0’, denotes that you are sending
to process zero; in theMPI Recv, the j denotes the process from which a message
is being received. These will need to be modified.)

(c) Output the sum from master.

(d) Add cout statements so that each sending process prints a message stating to
whom it is sending, and add cout statements so that the receiving process ac-
knowledges from whom it has received.

10. Modify the summing example as follows:

(a) Instead of summing integers, change the appropriate variables so that you will
now sum doubles. You will need to use MPI DOUBLE instead of MPI INT
within the MPI calls. Verify that you obtain the same answer as the integer case.

(b) Change the sum so that you are summing 1
i

instead of i.

2.4. Homework Problems 93

(c) At the top of the program, immediately following the #include<iostream.h>

statement, add #include<iomanip.h>. Then prior to calling the cout statement,
add the following line:
cout << setprecision(20);

After making these changes and recompiling, run your program on 2,4, and 8
processes. What differences in the sum of 1

i
do you see? Postulate as to why this

is so.

11. Modify the parallel MPI code to do the following:

(a) Have process zero query the user for the number of elements over which to sum.

(b) From process zero, distribute to all processes the number of elements to sum
(using sends and receives) and appropriately calculate the interval over which
each process is to sum.

(c) Accomplish the summing as is already done in the program.

(d) After creating the final answer on process zero, print the result.

Chapter 3

Approximation

Two of the most common tasks in scientific computing are interpolation of discrete data
and approximation by known functions of the numerical solution, the source terms, and the
boundary or initial conditions. Therefore, we need to perform these tasks both accurately and
efficiently. The data are not always nicely distributed on a uniform lattice or grid, and thus
we must learn how to manage these situations as well. We often use polynomials to represent
discrete data as they are easy to “manipulate,” i.e., differentiate and integrate. However,
sines and cosines as well as special functions, called wavelets, are very effective means to
perform interpolation and approximation, and they have very interesting properties.

In this section, we will study different such representations and their corresponding C++
implementations. We consider cases where the data are just sufficient to determine exactly
the representation (deterministic case) as well as cases where the data are more than the
information needed (overdetermined case).

Finally, we will present a more detailed discussion of MPI Send and MPI Recv, the
two fundamental building blocks of MPI.

94

3.1. Polynomial Representation 95

3.1 Polynomial Representation

In this section we will study different ways of interpolating data on equidistant and more
general grids using polynomials. We will discuss both accuracy and efficiency and will
introduce C++ arrays and other concepts to effectively implement the algorithms.

3.1.1 Vandermonde and Newton Interpolation

Assuming that we have the data available on the discrete set of points {x0, x1, . . . , xN} with
corresponding values {f(x0), f(x1), . . . f(xN)}, then we can construct a function f(x) that
passes through the pairs (xi, f(xi)) by the approximation

f(x) ≈ pN(x) =
N∑

k=0

akφk(x) ,

where pN (x) is referred to as the interpolating polynomial, φk(x) are a priori known poly-
nomials, and ak are the unknown coefficients. We call φk(x) the basis, and its choice is very
important in obtaining an efficient approximation. For example, assuming that φk(x) = xk,
k = 0, . . . , N , then we have the following representation at the known pair (xi, f(xi))

f(xi) = a0 + a1xi + a2x
2
i + . . .+ aNx

N
i , i = 0, . . . N .

All together we have (N + 1) such equations for the (N + 1) unknowns ai, i = 0, . . . , N .
This system of equations can be recast in matrix form with the vector of unknowns aT =
(a0, a1, a2, . . . , aN) as follows



1 x0 x2
0 . . . xN

0

1 x1 x2
1 . . . xN

1

1 xN x2
N . . . xN

N







a0

a1
...
aN




=




f(x0)

f(x1)
...

f(xN)



,

or in compact form
Va = f ,

where the matrix V is known as the Vandermonde matrix. This matrix is non-singular
because we assume that all {x0, x1, . . . xN} are distinct points, and therefore there exists a
unique polynomial of order N that represents this data set. We could obtain the vector of
coefficients a from

a = V−1f ,

by inverting the Vandermonde matrix V and subsequently performing matrix-vector mul-
tiplications with f(xi). This, however, is an expensive operation with a cost of O(N3) to
invert the matrix V (see chapter 9), and it is rarely used in practice.

One approach in reducing the computational complexity is to simply change the basis to

φk(x) = Πk−1
i=0 (x− xi) ,

3.1. Polynomial Representation 96

so f(x) is now approximated by

f(x) ≈ a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . .+ aN (x− x0)(x− x1) . . . (x− xN−1). (3.1)

Notice that we still use a polynomial basis, but we have simply shifted it with respect
to the coordinates of the data points. This simple shift turns out to have a dramatic effect
since now the new unknown coefficients can be computed by inverting the following system


1 0 . . . 0
1 (x1 − x0) . . . 0
...
1 (xN − x0) . . . (xN − x0)(xN − x1) . . . (xN − xN−1)






a0

a1
...
aN




=



f(x0)
f(x1)

...
f(xN)


 ,

which is a lower triangular matrix and requires only O(N2) operations in order to obtain
the vector of unknown coefficients. This is done by simple forward substitution, and can be
implemented readily using BLAS2.

Remark: It is instructive to compare this method, which is called Newton interpolation,
with the Vandermonde interpolation. Assuming that we use Gauss elimination to obtain
the vector of unknown coefficients (see chapter 9), we see that the change of basis in the
Newton approach takes us directly to the second stage of Gauss elimination, which is the
forward substitution, while in the Vandermonde approach we have to essentially perform an
LU decomposition of the matrix V, which is an O(N3) operation. However, the Vander-
monde matrix is a special one, and its inversion can also be done in O(N2) operations (e.g.
using FFTs, see section 3.2). Thus, the two approaches discussed here are computationally
equivalent.

Newton Interpolation: Recursive Algorithm

There is a nice recursive property that we can deduce from Newton’s interpolation method,
and which can be used for writing compact C++ code as we shall see in the next section.

Solving for the first few coefficients, we obtain

a0 = f(x0)

a1 =
f(x1)− f(x0)

x1 − x0

a2 =

f(x2)−f(x0)
x2−x0

− f(x1)−f(x0)
x1−x0

x2 − x1

...

3.1. Polynomial Representation 97

so we see that the coefficient
ak = F(x0, x1, . . . , xk) ,

that is the kth coefficient is a function of the first k function values f(xk). F is a function of
both the xk variables and the f(xk) data (and hence, in the end, since f(x) is a function of
x, then really F is just a function of the xk’s as given above).

To obtain a recursive relation for the coefficient ak we need to write the approximation
in the grid

Gk
0 ≡ {xi}, i = 0, . . . k ,

where the subscript denotes the starting index and the superscript denotes the ending index.
To this end, we consider the two subsets

Gk−1
0 ≡ {x0, x1, . . . , xk−1}, and

Gk
1 ≡ {x1, x2, . . . , xk},

of k grid points each. We also denote the corresponding polynomial approximations by pk
0(x),

pk−1
0 (x) and pk

1 formed by using the grids Gk
0, G

k−1
0 and Gk

1, respectively. We then observe
that

(x0 − xk)p
k
0(x) = (x− xk)p

k−1
0 (x)− (x− x0)p

k
1(x) , (3.2)

as the polynomial pk
0(x) passes through all the pairs

(xi, f(xi)), i = 0, . . . , k.

Next, upon substitution of pk
0(x), p

k−1
0 (x) and pk

1(x) in equation (3.2) by their full expansions,
which are

pk
0(x) = a0 + a1(x− x0) + . . .+ ak(x− x0) . . . (x− xk−1)

pk−1
0 (x) = a0 + a1(x− x0) + . . .+ ak−1(x− x0) . . . (x− xk−2)

pk
1(x) = b1 + b2(x− x1) + . . .+ bk(x− x1) . . . (x− xk−1).

and comparing the coefficients of highest polynomial power, xk, we obtain:

(x0 − xk)ak = ak−1 − bk
or

(x0 − xk)F(x0, x1, . . . xk) = F(x0, x1, . . . xk−1)− F(x1, x2, . . . xk)

and therefore

F(x0, x1, . . . xk) =
F(x0, . . . xk−1)− F(x1, . . . xk)

x0 − xk
. (3.3)

We thus obtain the higher divided differences (i.e., coefficients) from the lower ones from
equation (3.3).

We illustrate this procedure on a grid G2
0 containing three grid points (x0, x1, x2), so that

F(x0) = f(x0); F(x1) = f(x1); F(x2) = f(x2),

3.1. Polynomial Representation 98

then at the next level

F(x0, x1) =
F(x0)−F(x1)

x0 − x1

F(x1, x2) =
F(x1)−F(x2)

x1 − x2

and

F(x0, x1, x2) =
F(x0, x1)−F(x1, x2)

x0 − x2

,

and so on, for grids with more points.

3.1.2 Arrays in C++

So far, when we have discussed variables in C++, we have referred to single variables, such
as the variables mynode and totalnode presented in section 2.3.4. Now, mathematically, we
just introduced a collection of variables in the form of a sequence: x0, x1, x2, ...xN . If you
were to write a program which involved such a sequence of numbers, how would you declare
these variables? Of course, to start with, you may use the knowledge you gained from section
2.1.2 to decide how to declare the variables. The variable declaration would look like the
following (for N = 5):

double x0,x1,x2,x3,x4,x5;

This does not seem too difficult. However, imagine that you want to use 100 points!
Do you want to type x0, x1, ..., x99? And even more annoying, suppose that you want
to compare the results of running a program using 50 points compared to 1000 points! Do
not be dismayed; C++ has a solution to your problem! The C++ solution to this problem
is the concept of arrays. In C++, you can allocate a block of memory locations using the
concepts of arrays. There are two means of accomplishing this: static allocation and dynamic
allocation. We will discuss both briefly.

Static Allocation of Arrays

The first means by which you can allocate an array is to statically allocate the array. For
our purposes, we will take this to mean that prior to both compilation and execution, the
size of the array is known. In the previous section, we discussed the idea of using a discrete
set of points {x0, x1, . . . , xN} for interpolation. For a specific example, let us take N = 99
(so that the total number of points is 100 points), and let us assume that we want our grid
points to be evenly spaced in the interval [0, 1].

Software

 Suite

The following piece of code would statically allocate an array
of 100 doubles, and would fill in those variables with their
appropriate positions in the interval [0, 1]:

3.1. Polynomial Representation 99

#include <iostream.h>

int main(int argc, char * argv[]){

int i;

double x[100];

double dx = 1.0/99.0;

for(i=0;i<100;i++)

x[i] = i*dx;

for(i=0;i<100;i++)

cout << "x[" << i << "] = " << x[i] << endl;

}

Let us now examine in detail the statements in this program. First, notice the syntax
used for allocating static arrays:

<type> <variable name> [size]

Here, size is the number of memory positions that you want allocated. In our example,
we wanted 100 doubles to be allocated. Once the allocation is done, how do we access these
variables? C++ uses [] for accessing variables in an array. In the above allocation, x[0] is
the first element, x[1] is the second element, etc. There are several key points for you to
realize:

• C++ array indexing always begins at 0. Hence, the first position in an array is always
the position denoted by [0].

• C++ does not verify that you do not overrun an array. To overrun an array is to
attempt to access a memory location which has not been allocated to the array. In
the above example, trying to access x[100] would be illegal because we only allocated
an array containing 100 elements (indexed 0, . . . , 99). C++ will not complain when
compiling, but may cause a segmentation fault (or even far worse, it may run normally
but give the wrong results!). You should be very careful not to overrun arrays!

• When statically allocating arrays, you cannot use a variable for the size parameter.
Hence the following C++ code is invalid:

int npts = 100;

double x[npts];

Your C++ compiler will complain that this is illegal! This is because it is not until the
program is actually executed that the value of npts is known to the program (recall
that upon execution npts is both allocated in memory, and then intialized to the value
100). This type of operation can be done with dynamic memory allocation, which will
also be discussed below.

3.1. Polynomial Representation 100

• We can, however, index the array using variables. In the above example, we are able
to iterate through all the values of the array using a for loop.

WARNING Programmer Beware!
• C++ arrays always begin their

indexing at 0!
• Array allocations are done by
size, not the final index value!
Hence if you allocate an array
with 100 elements, you would
index them from 0, . . . , 99!

Implicit and Explicit Casting

At this stage, let us interject a brief note concerning a common mistake made by pro-
grammers first learning C++. Notice in the above example that we have allocated a variable
dx, and we have initialized it to 1.0/99.0. What would happen if we were to write 1/99? The
answer: the variable would be set to 0.0 instead of 0.01010101 as we would have expected.
Why you might ask? All binary operations in C++ are type-specific. Although we use the
‘+’ symbol to add two integers together, and we also use the ‘+’ to add two floats together,
the operations which the computer accomlishes to execute these two operations are different.
What happens when you want to mix-and-match variable types? Suppose that you want to
add 10.0+1, where 10.0 is a floating point value, and 1 is an integer? The answer: C++ will
implicitly cast the value 1 to 1.0 (i.e., from an integer value to a floating point value), and
then will carry out the binary operation of ‘+’ between two floating point values. Casting is
the conversion of information stored by a variable from one type to another. Implicit casting
implies that the casting operation is done automatically for you (C++ also allows explicit
casting, which we also mention below). The order of casting is presented in figure 3.1. In
the figure, there is a pictorial example of implicit casting.

Why will 1/99 yield the value 0? Since the value 1 is an integer, and the value 99 is
an integer, then the division operator used will be the integer division operator ‘/’. As an
integer operation, 99 divides 1 zero times, and hence the solution is zero! However, if we
were to write 1.0/99, we now have a floating point value divided by an integer, and hence the
computer must first cast the integer value to a float. Operationally, the computer would first
cast the value 99 to the value 99.0, and then would use the floating point division operator
‘/’ to divide 1.0 by 99.0, yielding 0.01010101.

WARNING Programmer Beware!
• Incorrect assumptions
concerning implicit casting
can lead to erroneous
answers!

3.1. Polynomial Representation 101

Integer

Float

Double

int float+

float float+

Implicit Casting
 Order

Implicit Cast

Resulting Float

Example

Figure 3.1: Implicit casting precedence.

C++ also allows explicit casting; that is, it allows you, the programmer, to specify that
you want a value cast to a different type. The syntax used for explicit casting is the following:

(type to cast to) <variable name>

For example, suppose that we want to explicity cast the value of an integer variable to a
floating point variable. We could write the following:

int x = 1;

float y;

y = (float) x;

In this example, the value of x is explicitly cast to a floating point value, and then the
floating point variable is assigned that value. In the above example, if you were not using
the explicit casting operator (float), the variable would have to be implicitly cast. Explicit
casting is useful in identifying to both you - the programmer - and to the computer the
places that you expect a casting call to occur.

Dynamic Allocation of Arrays

Recall from our static allocation example, we stated that in order for an array to be
allocated statically, the size of the array must be known prior to compilation and execution.
Suppose that we want to specify the size of an array “on-the-fly;” that is, suppose that we
want the user to be able to input the size of an array, and the program, while executing, to
allocate the properly sized array. How can this be done? This can be accomplished in C++
using dynamic allocation. Dynamic allocation occurs using the new operator.

3.1. Polynomial Representation 102

Software

 Suite

Let us re-examine our example from above. Suppose that we
want the user to be able to input the number of points into
which he would like to partition the interval [0, 1]. This can be
accomplished with the following code:

#include <iostream.h>

int main(int argc, char * argv[]){

int i,npts;

double *x; //declaration of pointer variable ’x’

double dx;

cout << "Enter the number of points in [0,1]: ";

cin >> npts;

x = new double[npts]; // dynamic allocation of npts doubles

dx = 1.0/(npts-1);

for(i=0;i<npts;i++)

x[i] = i*dx;

for(i=0;i<npts;i++)

cout << "x[" << i << "] = " << x[i] << endl;

delete[] x; // deallocation of dynamically allocated

// memory

}

We will now analyze the differences between this code and the one presented previously:
First, you will notice that we allow the user to input the number of points into the program.
This is accomplished through the use of cin. This class, like cout, is declared in the system
header file iostream.h. By using cin, we can obtain data from standard input, which in this
case is from the keyboard. Recall from the previous chapter the following facts:

• cin reads from standard input (which for us is the keyboard)

• Observe that the direction of the >> is opposite of cout. This is for a reason. For cout,
you are taking information from the variables that you provide to the expression and
are providing that information to the operating system to be written to the screen.
In the case of cin, you obtain data from the operating system, and place it into the
variables provided in calling statement.

• The program must read one data item for each variable in the cin input list. Hence if
we have the statement cin >> a >> b; where both a and b are declared as integers,

3.1. Polynomial Representation 103

then cin will expect that there are two distinct integers for it to read from standard
input.

• You may place one or more blank (space) characters to delineate numerical values.

• Any blank space prior to the value to be read is ignored.

Immediately following the computer’s execution of the cin statement, the variable npts
has a value equal to the number of points that the programmer wants for this discretization.
Next, we allocate an array dynamically using the new operator. This is but one step in a
three-step process (to be described further in just a moment). We then do the operations
just as we had done before, and we conclude by “freeing” the memory that we allocated by
using the delete/delete[] operator. To recapitulate, the three steps that occur in dynamic
memory allocation are:

1. Declaration of a pointer variable.

2. Allocation of memory using the new operator.

3. Deallocation of memory using the delete/delete[] operator.

We will now discuss each of these three steps individually. We begin with the first step:
declaration of a pointer variable. Pointers are variables which hold addresses. They may hold
addresses to integer variables; they may hold addresses to floating point or double precision
variables. Pointer variables are type-specific.

Key Concept

• Pointer variables are type-specific.

In the above example, we have obtained from the cin statement the number of points that
the user wants to use. This is stored in the integer variable npts. We now want to allocate
an array of size npts. First, notice that we have declared a variable x of type double*. The
use of the ‘*’ prior to the variable name designates this as a pointer variable (i.e., a variable
that holds the address in memory of a double) instead of declaring a double. To recapitulate:

double x;

declares a variable named ‘x’ of type double (that is, x is a variable valid for containing
a double precision number), whereas

double *x;

3.1. Polynomial Representation 104

declares a variable named ‘x’ of type “double *” 1, which is a variable valid to contain the
address in memory of a double precision variable. For now, you should take this mechanism
for granted; this distinction will become more apparant as we use pointers more and more.

One common mistake when declaring multiple pointers is to misplace the ‘*’. Take for
example the following two declarations:

double *x1,y1;

double *x2,*y2;

The first of these two statements declares a variable named x1 of type double* and
then declares a variable named y1 of type double (not double*). However, in the second
declaration, both x2 and y2 are declared of type double star.

Once a pointer variable has been declared, we can ask the operating system to allocate
for us a block of memory to contain our collection of doubles. This process is accomplished
through the use of new. The new command asks the operating system (OS) for a block of
memory of the type and size for which we ask, and returns to us the address of that block
of memory. If no memory is available (or for whatever other reason the OS may decide not
to be cooperative), the new command will return NULL, which is called the “Null pointer”
or “Null address.” This implies that we have not successfully obtained our request. In the
code above, we ask the OS for npts doubles in the following syntactic form:

<address> new <type> [size]

If the OS is successful in giving us the memory we request, we will have a block of memory
which we can access just as we did in the static memory allocation case. To access the first
double in the array, we access x[0], and so forth.

At the conclusion of our program, or at some stage of the program where the array is no
longer needed, we should release the memory used for this array back to the operating system
for reuse. This process is called deallocating memory. To accomplish this deallocation, we
use the delete [] command. In our case

delete[] x;

informs the OS that the memory that was allocated to the pointer variable x is no longer
needed, and can be released. There are actually two delete operators, delete and delete []
which are used for informing the OS that dynamically allocated memory can be reclaimed.
The distinction between the aforementioned operators is the following:

• delete (with no [] following it) is used when only a single object has been allocated.
Suppose we were to allocate space to hold an integer as follows:

int * a = new int;

Space for only one integer was allocated (i.e., one integer object was allocated), hence
to deallocate we would merely use delete as follows:

1Programmers quite often actually say “double star” when pronouncing this variable type.

3.1. Polynomial Representation 105

delete a;

• delete [] is used when an array of objects has been allocated. Suppose we were to
allocate space to hold 20 integers as follows:

int * a = new int[20];

Space for 20 integers was allocated (i.e., an array of 20 integer objects was allocated),
hence to deallocate we would use the delete [] as follows:

delete[] a;

Remark: Both delete and delete[] take only one argument. A comma separated list is
not valid, and although it will compile, it will not give the desired result.

Allocation/Deallocation Rule-of-Thumb: If your allocation statement new requires
the use of [], then so does the deallocation statement delete.

WARNING Programmer Beware!
• Once memory is
deallocated, you should not
use it!

Passing Arrays to Functions

Finally, we want to draw your attention to passing arrays in C++. Passing arrays in C++
comes down to passing the pointer variable. Whether you declared the array dynamically or
statically, you still end up passing a pointer. This is one subtle point which is not apparent
when you declare arrays statically: statically declared arrays are really just pointers in
disguise. Whether you are dealing with statically declared or dynamically declared arrays,
you will pass them to functions in the same fashion.

Software

 Suite

In the program below, we have encapsulated the generation
of the grid into a function called “CreateGrid EvenlySpaced.”
This function takes as arguments the size of the array npts and
the pointer variable x. With these two pieces of information,
the function can successfully fill in the array, as had been done
before.

#include <iostream.h>

#include "SCchapter3.h" //contains declaration of

//CreateGrid_EvenlySpaced

3.1. Polynomial Representation 106

int main(int argc, char * argv[]){

int i,npts;

double *x;

double dx;

cout << "Enter the number of points in [0,1]: ";

cin >> npts;

x = new double[npts];

CreateGrid_EvenlySpaced(nts, x, 0.0, 1.0);

for(i=0;i<npts;i++)

cout << "x[" << i << "] = " << x[i] << endl;

delete[] x;

}

// Definition of CreateGrid_EvenlySpaced is in SCchapter3.cpp

void CreateGrid_EvenlySpaced(int npts, double *x,

double a, double b){

double dx = (b-a)/(npts-1.0);

for(int i=0;i<npts;i++)

x[i] = a + i*dx;

return;

}

There are three things that we want to draw your attention to in this example:

1. Note that in both the declaration and definition of the function
CreateGrid EvenlySpaced we declare x as a variable of type double*; this is im-
portant. The compiler needs to know (and recognize) that it is passing an address.

2. Note also that we have to pass npts into the function CreateMesh. What if we did not?
Recall that variables within functions are local to the function. Hence, if we do not
explicitly tell the function that the size of the array is npts, it has no way of knowing
it!

3. Observe in the example above that for including the standard header file iostream.h we
use #include<iostream.h>, whereas to include our user-defined header file SCchapter3.h
we use #include "SCchapter3.h". The angled bracket notation < . . . > is to used

3.1. Polynomial Representation 107

when including standard library headers obtained from the standard include directory
(files such as iostream.h, iomanip.h, math.h, etc.). To include user-defined header
files from the current directory, quotation marks " ... " are used.

Passing by Value Versus Passing by Reference

Recall in the previous chapter that we mentioned that unless otherwise stated all variables
passed to a function are, by default, passed by value. We now want to clarify the difference
between the ideas of passing by value, passing by reference, and passing the address.

• Passing by Value - When a variable is passed to a function by value, a new memory
location is allocated, and a copy of the contents of the variable are placed in the
new memory location. The function may then locally modify the contents of the new
location. When the function returns, the new memory location is released and its
contents lost. Consider the following program:

#include <iostream.h>

void func(int a);

int main(int argc, char * argv[]){

int b;

b = 4;

func(b);

cout << "value of b = " << b << endl;

}

void func(int a){

cout << "value of a = " << a << endl;

a = 64;

}

In the program above, the variable b is passed to the function func by value. When
the function is executed, a new memory location (distinct from the memory location
of the variable b) is allocated on the function stack and assigned to the variable name
a locally within the function. The contents of b are copied into the location associated
with the variable a. The first cout statement prints that the value of a is 4. The
local function variable a is then assigned the value 64, and the function returns. Upon
returning, the local memory is returned to the system. The second cout statement
prints that the value of b is still 4; it was uneffected by the function.

• Passing by Reference - When a variable is passed to a function by reference, no new
memory location is allocated; instead, the local variable within the function is assigned
to refer to the same memory location as the variable being passed. Consider the
following program:

3.1. Polynomial Representation 108

#include <iostream.h>

void func(int &a);

int main(int argc, char * argv[]){

int b;

b = 4;

func(b);

cout << "value of b = " << b << endl;

}

void func(int &a){

cout << "value of a = " << a << endl;

a = 64;

}

In the program above, the variable b is passed to the function func by reference. Notice
the placement of the & in both function declaration and definition; this syntax informs
the compiler that we want the variable passed by reference. When the function is
executed, the local variable a is assigned to the same memory location as b. The first
cout statement will print that the value of a is 4. The local function variable a is then
assigned the value 64, and the function returns. Since the local variable a referred to
the same memory location as b, the second cout statement prints that the value of b is
64.

• Passing the Address - Instead of passing by value or by reference, we have the third
option of passing (explicitly) the address of the variable. When an address is passed,
the address value is stored in a pointer variable of the appropriate type. Consider the
following program:

#include <iostream.h>

void func(int *a);

int main(int argc, char * argv[]){

int b;

b = 4;

func(&b);

cout << "value of b = " << b << endl;

}

void func(int *a){

cout << "value of a = " << *a << endl;

3.1. Polynomial Representation 109

*a = 64;

}

In the function func above, we declare the input argument to be a pointer to an
integer. When the function func is called from within main, we use the operator &,
which stands for “take the address of”. Inside of the function func, an integer pointer
variable is created, and the address of b is stored there. The contents of the memory
location to which a points can be accessed using the operator ∗, which stands for “the
memory location that is pointed to by”. The first cout statement will print that the
value of ∗a is 4. The memory to which a points is then assigned the value 64, and the
function returns. Since the local variable a pointed to the same memory location as b,
the second cout statement prints that the value of b is 64.

Code for Recursive Newton’s Algorithm

Let us now try to use the C++ concepts we have just introduced to implement Newton’s
recursive algorithm. To accomplish this, we first need to look at how to partition the problem.
The first thing we observe from the mathematical description of section 3.1.1 is that we will
need to generate an array of doubles, which will contain the differencing coefficients ak from
the formulation given previously. First, we need to have:

1. The number of interpolation points.

2. A grid of points at which the interpolation is to be exact.

3. An array containing the function we wish to interpolate evaluated at the interpolating
grid.

4. An array to store the Newton differencing coefficients ak.

Software

 Suite

Let us take the top-down approach. First, assume that we
have the four items enumerated above. The following function
encapsulates the calculation of the differencing coefficients:

void NewtonDiffTable(int npts, double *xpts, double *funcvals,

double * newton_coeffs){

int i,j;

for(i=0;i<npts;i++)

newton_coeffs[i] = NewtonDiffFunction(0,i, xpts, funcvals);

}

In this function, npts is the number of interpolating points, xpts is an array containing
the interpolating grid, funcvals is an array containing the function we wish to interpolate
evaluated at the interpolating grid. For each coefficient ai (contained within the array
element newton coeffs[i]), we call the following NewtonDiffFunction:

3.1. Polynomial Representation 110

double NewtonDiffFunction(int start_index, int ending_index,

double * xpts, double * funcvals){

double val;

int diff = ending_index-start_index;

if(diff == 0){

val = funcvals[start_index];

}

else{

val = (NewtonDiffFunction(start_index,ending_index-1,

xpts,funcvals) -

NewtonDiffFunction(start_index+1,ending_index,

xpts,funcvals))/

(xpts[start_index]-xpts[ending_index]);

}

return val;

}

As input, this function takes a starting index and an ending index (both of which are
assumed to be in between zero and (npts − 1)), the interpolating grid, and the function
to be interpolated evaluated on that grid. What is different about this function? It calls
itself! This is a powerful concept which can be used in C++, i.e. the concept of recursive
function calling. In the function above, notice that we are able to replicate in C++ code the
mathematical recursive relation given in equation (3.3).

In order for the recursion to be effective, we must have two things:

1. A recursive relationship, and

2. A stopping condition.

Key Concept

• Recursive functions require two things: A recursive definition and
a stopping condition.

The first item seems quite obvious; recursion requires a recursive definition. The second
item, although it sounds trivial, is often the stumbling block – often we do not know when
the recursive relationship ends. In the example code above, the recursive definition is given

3.1. Polynomial Representation 111

in equation (3.3) and the stopping condition is determined by the condition that the starting
index be the same as the ending index. From our mathematical definitions above, we know
that when the starting index and ending index are the same, then the Newton formula gives
back the value of the function evaluated at that index value.

Software

 Suite

Once we have successfully calculated the Newton divided differ-
ences, we can now implement our Newton interpolating poly-
nomial as follows:

double NewtonInterpolant(double x, int npts, double * xpts,

double * newton_coeffs){

int i,j;

double sum = 0.0, xval;

for(i=0;i<npts;i++){

xval = 1.0;

for(j=0;j<i;j++)

xval = xval*(x-xpts[j]);

sum = sum + newton_coeffs[i]*xval;

}

return sum;

}

As input, this function takes a value x, which is the value at which we want to know the
value of the interpolating polynomial, the number of interpolating points npts, an array of
interpolating points xpts, and the array of previously calculated Newton divided differences.
As output, this function gives the value of the interpolating polynomial evaluated at the
point x. Observe that this code replicates the mathematical definition given in equation
(3.1).

3.1. Polynomial Representation 112

Software

 Suite

We will now use the previously defined functions in a pro-
gram. Below, we have provided a program which interpolates
the Runge function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]. (3.4)

This code queries the user for the degree of the interpolating
polynomial, and prints on the screen the values of the inter-
polating polynomial evaluated at 1000 evenly spaced points
on the interval [−1, 1]. This example demonstrates the use of
output/input with cout/cin respectively, dynamic memory al-
location, and recursive functions (through the calling of the
NewtonDiffTable function). In figure 3.2, we plot the results
of running the program when the degree of the interpolating
polynomial is set to five.

#include <iostream.h>

#include "SCchapter3.h"

double func(double x);

int main(int argc, char * argv[]){

int i;

int degree, polypnts;

int npts = 1000; //number of points used for plotting

double xpt, soln, approx;

cout << "Enter the degree of the interpolating polynomial: ";

cin >> degree;

polypnts = degree+1; //number of points is

// equal to 1 + degree

double * poly_xpts = new double[polypnts];

double * func_vals = new double[polypnts];

double * newton_coeffs = new double[polypnts];

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){

func_vals[i] = func(poly_xpts[i]);

}

NewtonDiffTable(polypnts, poly_xpts, func_vals,

newton_coeffs);

3.1. Polynomial Representation 113

for(i=0;i<npts;i++){

xpt = -1.0 + 2.0*i/(npts-1);

soln = func(xpt);

approx = NewtonInterpolant(xpt, polypnts,

poly_xpts, newton_coeffs);

cout << xpt << " " << soln << " " << approx << endl;

}

delete[] poly_xpts;

delete[] func_vals;

delete[] newton_coeffs;

}

double func(double x){

double y;

y = 1.0 + 25.0*x*x;

y = 1.0/y;

return y;

}

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: Comparison of the solution (solid) and fifth-order interpolation polynomial (dashed)
obtained using the Newton differencing program.

We will conclude this section by making some observations concerning the code above.

3.1. Polynomial Representation 114

• Notice in the program above that we have variable declarations after executable state-
ments. This is one major difference between the programming language C (and many
other programming languages) and C++. In many languages, all declarations must be
made prior to executable statements. This is not true in C++. In C++, variables may
be declared at any point within the program. Observe that we declare three pointer
variables (double * variables) following the input sequence. Our primary reason for
often placing all the variable declarations at the beginning of a function is clarity.

• In chapter 2 we mentioned that in C++ it is possible to initialize a variable with an
executable statement and not just a constant. This is exactly what we have done in
the program above. Observe that we initialize each new double* variable (with which
the previous remark was dealing) with the results of the new operator.

• For each item we want to delete, we must execute an individual delete[] statement.
You cannot combine them like variable declaration in the following manner:

delete[] poly_xpts, func_vals, newton_coeffs;

Though the compiler will not complain about the statement given above, only the last
variable will have the valid operation done to it. Both delete and delete[] take only
one argument.

3.1.3 Lagrangian Interpolation

Another basis which is often used in practice to interpolate data primarily on non-equidistant
grids is Lagrangian interpolation. Here, the basis φk(x) is equal to the Lagrangian polynomial
which is defined by

hk(x) = Π

(
(x− xi)

(xk − xi)

)
, i = 0, 1, . . .N ; i �= k. (3.5)

This is a polynomial of degree N and satisfies the equation

hi(xj) = δij ,

where δij is the Kronecker delta

δij =

{
1, i = j
0, i �= j

.

Software

 Suite
Putting it into Practice

The following code implements this definition and returns values of the Lagrange poly-
nomial.

3.1. Polynomial Representation 115

double LagrangePoly(double x, int pt, int npts, double * xpts){

int i;

double h=1.0;

for(i=0;i<pt;i++)

h = h * (x - xpts[i])/(xpts[pt]-xpts[i]);

for(i=pt+1;i<npts;i++)

h = h * (x - xpts[i])/(xpts[pt]-xpts[i]);

return h;

}

This code is relatively simple, yet there is one point to which we would like to draw
your attention. Notice in the mathematical definition of Lagrange polymonials there is the
condition i �= j, which in the above code translates into i != pt. This can be implemented
in one of two ways:

1. As above, by breaking the sum into two parts, and having a separate for loops for each
part.

2. Having one for loop ranging from 0 ≤ i < npts, in which inside the for loop there is an
if statement which checks if the value of the looping variable is the same as the value
of pt.

Thus, the alternative function definition is the following:

double LagrangePoly(double x, int pt, int npts, double * xpts){

int i;

double h=1.0;

for(i=0;i<npts;i++)

if(i!=pt)

h = h * (x - xpts[i])/(xpts[pt]-xpts[i]);

return h;

}

These two definitions accomplish the same objective; however, their efficiency may be
different. The reason for the efficiency difference comes from the repeated use of the if
statement. The if statement is, in general, a very difficult computer instruction to optimize
because the value of the boolean expression is not known ahead of time, and hence which
branch of the if the computer will have to execute is uncertain until the boolean expression

3.1. Polynomial Representation 116

is evaluated. Hence, avoiding unnecessary if statements is, in general, a good policy because
it allows the compiler to accomplish more code optimization.2

Key Concept

• A good rule of thumb: Avoid if statements within for loops.

Returning to the mathematics, by definition, then, we have that

f(x) =
∑
k

akφx(x) or

f(x) =
∑
k

f(xk)hk(x),

which in C++ is implemented as follows:

double LagrangeInterpolant(double x, int npts, double *xpts,

double * funcvals){

int i;

double sum = 0.0;

for(i=0;i<npts;i++){

sum = sum + funcvals[i]*LagrangePoly(x,i,npts,xpts);

}

return sum;

}

We can reuse the program presented for the Newton divided differences (previous section)
to now do Lagrange interpolation. First, we can remove the declaration of the Newton
Differencing coefficients, and we can also remove the call to the function NewtonDiffTable.
Now, instead of callingNewtonInterpolant(. . .), we will call LagrangeInterpolant(. . .) with
its appropriate arguments. We have extracted the relevant code from the program presented
earlier, and now present a modified version of the code. The key thing to observe is that by
writing modular code, we have increased code reuseability.

double * poly_xpts = new double[polypnts];

double * func_vals = new double[polypnts];

2In recent years, there has been considerable work in processor design to incorporate what is referred
to as “branch prediction.” During runtime, the processor monitors the behavior of branches, and attempts
to predict which branch of the if will be taken. By doing so (i.e., if it predicts correctly) it can pipeline
instructions with no additional cost due to the branching statement. If it is wrong, it will incur the normal
branching penalty (in terms of pipelining).

3.1. Polynomial Representation 117

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){

func_vals[i] = func(poly_xpts[i]);

}

for(i=0;i<npts;i++){

xpt = -1.0 + 2.0*i/(npts-1);

soln = func(xpt);

approx = LagrangeInterpolant(xpt, polypnts,

poly_xpts, func_vals);

cout << xpt << " " << soln << " " << approx << endl;

}

delete[] poly_xpts;

delete[] func_vals;

Key Concept

• Modular code is reusable code!

The coefficients in this polynomial representation are the function values at the grid
points. Therefore, this approach is very efficient, especially for a “static” grid, as the La-
grangian polynomials can be constructed once, stored, and be used repeatedly. However,
in a dynamic grid where the grid points {xi} change, we need to recompute all Lagrangian
polynomials, and this may be costly.

3.1.4 The Runge Phenomenon

Up to this point, we have assumed that all polynomial interpolation formulas converge
irrespective of the distribution of points xi, i.e., uniform with equidistant spacing or non-
uniform with arbitrary spacing. We have to wonder, however, if the type of function we try
to approximate matters? Usually, polynomial approximation in the neighborhood of a point
is safe, but as we try to extend this interpolation in the large, i.e., away from the given data,
proper conditions have to be satisfied, as we will illustrate in this section. First, we state a
fundamental theorem that justifies polynomial approximation.

Weierstrass Theorem (1885): Any continuous function defined in a finite range can be
approximated to any degree of accuracy by polynomial powers.

3.1. Polynomial Representation 118

While this theorem is re-assuring it does not suggest what is the appropriate type of poly-
nomial approximation. Specifically, the question still remains if equidistant data always
produce stable and convergent polynomial approximations. Experience shows that the an-
swer to this question is negative, and in fact it was O. Runge in 1901, who first discovered
this troubling fact by considering the function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1] . (3.6)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

Figure 3.3: Plot of the Runge function (equation (3.4); solid line) and approximations using 10
equidistant points (dashed line) and 20 equidistant points (dashed-dot line).

In figure 3.3 we plot this function along with a polynomial approximation on ten and
twenty equidistant points. We observe that the approximation is accurate around the origin
but at x ≥ ±0.72 the interpolating polynomial does not converge; taking more than ten
points makes the oscillations worse. On the other hand, by interpolating the Runge function
at special non-equidistant points, obtained from

xk = cos(kπ/N), i = 0, . . . , N

we obtain a stable polynomial approximation, which converges fast to the exact solution as
the number of grid points increases; this is shown in figure 3.4. These special points are the
roots of the derivatives of Chebyshev polynomials, which we will study in the next section.
Other type of approximations, such as trigonometric interpolation, may also be stable, see
section 3.2.4.

The question then remains for equidistant polynomial interpolation how can we know in
advance which functions have stable polynomial approximations? We know that for Taylor
type expansions this question relates to the analyticity of a function in the complex plane,
and we are perhaps familiar with the Taylor circle inside which there are no singularities.
The same picture emerges here also except that the circle is replaced by an oval shape

3.1. Polynomial Representation 119

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

x

Figure 3.4: Plot of the Runge function (equation (3.4); solid line) and approximations using 10
points (dashed line) and 20 points (dashed-dot line) following the cosine-law distribution of grid
points.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.522

0.522

Figure 3.5: Region of required analyticity for a function for stable equidistant polynomial inter-
polation.

3.1. Polynomial Representation 120

region, which is shown in figure 3.5. The proof is rather elaborate and the interested reader
is referred to the book by Lanczos [66].

Theorem: The necessary and sufficient condition for convergence of equidistant polynomial
interpolation is that a function not have any singularities in the oval region Ω corresponding
to the definition interval of f(x) with x ∈ [−1, 1].

The Runge function of equation (3.4) has singularities at z = ±i/5, and this is the reason
for the unstable behavior close to the end-points. The more general Runge function

f(x) =
ε2

ε2 + x2
, x ∈ [−1, 1]

has a singularity at x = ±iε. This is a very tough function to approximate, as at x = 0 we
have f(0) = 1 but at distance only ε away we have f(ε) = 1

2
, independent of the value of ε.

You can appreciate what happens when ε = 10−6!

3.1.5 Chebyshev Polynomials

Spectral approximations and more specifically polynomial approximations using Chebyshev
polynomials are a very effective means of representing relatively smooth data and also nu-
merical solutions of partial differential equations. Just as before, we can write our polynomial
approximation pN (x) as truncated series of the form

f(x) ≈ pN (x) =
N∑

k=0

akTk(x),

where Tk(x) is the kth Chebyshev polynomial. The Chebyshev polynomial series converges
very fast; the polynomials are determined from recursion relations such as:

T0(x) = 1; T1(x) = x; Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1. (3.7)

Software

 Suite

The following code implements this recursive formula; plots of
Tk(x), k = 0, 1, 2, 3, 4 are shown in figure 3.6.

double ChebyshevPoly(int degree, double x){

double value;

switch(degree){

case 0:

value = 1.0;

break;

case 1:

value = x;

3.1. Polynomial Representation 121

break;

default:

value = 2.0*x*ChebyshevPoly(degree-1,x) -

ChebyshevPoly(degree-2,x);

}

return value;

}

In this example, there are two things that we want to point out. First, notice that for this
particular example, we have two explicit stopping conditions: when k = 0 and when k = 1.
This is because our recurrence relation contains references to (k− 1) and (k− 2), and hence
we need both to be valid in order to get the kth term. The second thing to observe in this
example is the use of a not previously mentioned C++ statement, the switch statement.

The SWITCH Statement

The switch statement is a convenient way of replacing a collection of if-else statements. In
the example above, we have the following logic: If the value of degree is 0, then return the
number 1.0, else if the value of degree is 1, return the value of x, else the value is what is
given by the recurrence relation. We could implement this using if-else statements as follows:

if(degree == 0)

value = 1.0;

else{

if(degree == 1)

value = x;

else

value = 2.0*x*ChebyshevPoly(degree-1,x) -

ChebyshevPoly(degree-2,x);

}

However, C++ has a statement named switch which accomplishes this type of logic for
you. The syntax of a switch statement is as follows:

switch(variable){

case a:

statement 1;

break;

case b:

statement 2;

statement 3;

break;

3.1. Polynomial Representation 122

default:

statement 4;

}

Here, ‘variable’ is the variable that you want to test; ‘a’, ‘b’, etc. are the constant values
that you want to test against (these cannot be variables, they must be constants). When
the switch is executed, the first case in which the variable is equivalent to the case is where
execution begins. All statements below that case statement are executed. Hence, when all
the statements that you want done for a particular case have been executed, you must use a
break statement to exit the switch. The default case is the case that is executed if no other
cases have matched the variable.

WARNING Programmer Beware!
• Do not forget to put
break statements between
independent cases!

Because of the “flow-through” nature of the switch statement, one can group cases to-
gether. Suppose, for example, that we wanted to implement a statement which executes
statement 1 if cases 0 and 1 are true, and statement 2 otherwise. The following pseudo-code
example demonstrates the implementation of this logic:

switch(degree){

case 0:

case 1:

statement 1;

break;

default:

statement 2;

}

In this example, if either case 0 or case 1 is true, then statement 1 (and only statement
1, due to the break statement) will be executed. For all other values of the variable degree,
statement 2 will be executed.

Key Concept

• Switch is a nice organizational tool for implementing if-else re-
lationships.

3.1. Polynomial Representation 123

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

n=0

n=1

n=2

n=3

n=4

Figure 3.6: Chebyshev polynomials of order 0 through 4 in the interval [−1, 1].

Properties of Chebyshev Polynomials

Next, we summarize some important properties of the Chebyshev polynomials:

• Symmetry: Tn(−x) = (−1)nTn(x).

• The leading coefficient is 2n−1, n ≥ 1.

• Zeros: The roots of Tn(x) are xk = cos
(

2k+1
n
· π

2

)
, k = 0, 1, . . . , n−1. These are called

Gauss points and we will use them later in numerical integration. The roots of its
derivative T ′

k(x), which are the locations of extrema for Tk(x), are the Gauss-Lobatto
points and are given by x′k = cos kπ

n
. We also have that

Tn(x′k) = (−1)k, k = 0, 1, 2, . . .

• Orthogonality in the continuous inner product is:

∫ 1

−1
TiTj

dx√
(1− x2)

= (Ti, Tj) =




0, i �= j

π/2, i = j �= 0

π, i = j = 0

We often use orthogonality in the discrete inner product:

m∑
k=0

Ti(xk)Tj(xk) =




0, i �= j

m+1
2
, i = j �= 0

m+ 1, i = j

3.1. Polynomial Representation 124

• Lagrangian Interpolant: The Chebyshev Lagrangian interpolant through N Gauss
points has a simple form:

hk(x) =
TN(x)

T ′
N(xk)(x− xk)

, x �= xk .

• Grid Transformation: The following grid transformation maps the Gauss-Lobatto
points xk = cos(kπ/N), k = 0, . . . , N to a new set of grid points ξk obtained from:

ξk =
sin−1(αxk)

sin−1(α)
, (3.8)

where α ∈ (0, 1] defines the exact distribution. For α→ 0 the new points are equidis-
tant and the Chebyshev approximation resembles the Fourier method. However, for
stability of the approximation the new points cannot be exactly equidistant, and thus
α > 0.

• MiniMax Property: Of all the nth-degree polynomials with leading coefficient 1, the
polynomial 21−nTn(x) has the smallest maximum norm in the interval [−1, 1]. The
value of its maximum norm is 21−n.

Approximation Error and Convergence Rate

Let us assume that we are given the values of a function f(x) on a grid of (m + 1) points,
and we use a polynomial p(x) to represent the data on this grid. The error (or remainder
r(x)) in the approximation of a function f(x) is then

|f(x)− p(x)| = (x− x0)(x− x1) . . . (x− xm)|f (m+1)(ξ)|
(m+ 1)!

,

where ξ ∈ [x0, xm]. This error behaves like the polynomial curve

r(x) ∼ (x− x0)(x− x1)(x− x2) . . . (x− xm),

which oscillates, similar in fact to the least-squares approximation (section 3.1.7), and unlike
the Taylor expansion approximation where the error increases exponentially as∼ (x−x0)

m+1.
Now, we can attempt to find the optimum distribution of the grid points, which means

that we seek to minimize the maximum magnitude of

q(x) ≡ (m+ 1)! p(x) = (x− x0)(x− x1) . . . (x− xm).

To this end, we can use the minimax property to obtain

q(x) = 2−mTm+1(x),

thus {xk} are the zeros of the Chebyshev polynomial Tm+1(x), and thus the grid points xk

are the roots of Tm+1(x), i.e.,

xk = cos

(
2k + 1

m+ 1

π

L

)
, k = 0, 1, . . .m

3.1. Polynomial Representation 125

We now state Rivlin’s minimax error theorem:

MiniMax Error Theorem: The maximum pointwise error of a Chebyshev series expansion
that represents an arbitrary function f(x) is only a small constant away from the minimax
error, i.e., the smallest possible pointwise error of any N th degree polynomial. The following
inequality applies:

‖ f(x)−
N∑

k=0

akTk(x) ‖∞≤ 4

(
1 +

lnN

π2

)
· ‖ f(x)−mm(x) ‖∞,

where mm(x) is the best possible polynomial.
Note that for N = 128 the prefactor is less than 5 and for N = 2, 688, 000 the pre-factor

is 4
(
1 + lnN

π2

)
≈ 10. Therefore, the Chebyshev expansion series is within a decimal point of

the minimax approximation.
The convergence of Chebyshev polynomial expansions is similar to Fourier cosine series,

as the following transformation applies

x = cos θ and Tn(cos θ) = cos(nθ) .

Assuming an infinite expansion of the form

f(x) =
∞∑

k=0

akTx(x)

then

ak =
1

πck

∫ π

0
f(cos θ) cos kθdθ =

2

πck

∫ 1

−1
f(x)Tk(x)

dx√
1− x2

,

where we have defined

ck =

{
2, k = 0
1, k > 0

.

The convergence rate of the expansion series is defined by the decaying rate of the coef-
ficients ak. To this end, if :

• f (p)(x) is continuous ∀ |x| ≤ 1, p = 0, 1, 2, . . . , n− 1, and

• f (n)(x) is integrable

then

ak � 1

kn
.

This implies that for infinitely differentiable functions the convergence rate is extremely
fast. This convergence is called exponential, and it simply means that if we double the
number of grid points the approximation error will decrease by a two orders of magnitude
(i.e., a factor of 100), instead of a factor of four which will correspond to interpolation with
quadratic polynomials and second-order convergence rate. The above estimate also shows
that in the Chebyshev approximation we can exploit the regularity, i.e., smoothness, of the
function to accelerate the convergence rate of the expansion. Also, notice that unlike the

3.1. Polynomial Representation 126

Fourier series (see section 3.2), the convergence of Chebyshev series does not depend on the
values of f(x) at the end points, because the boundary terms vanish automatically.

Finally, an important consequence of the rapid convergence of Chebyshev polynomial
expansions of smooth functions is that they can be differentiated normally term-wise, i.e.,

dpf(x)

dxp
=

∞∑
k=0

ak
dpTk(x)

dxp
.

In computing Chebyshev derivatives higher than the first, inaccurate results may be obtained
due to round-off. In particular, it has been observed that round-off may be significant for
the second derivative for N > 128, for the third derivative for N > 64, and for the fourth
derivative for N > 32. This round-off can be reduced if the grid transformation given by
equation (3.8) is employed.

Example: The following example, first presented in Gottlieb & Orszag [49], shows the fast
convergence of Chebyshev discretization. The exact representation for the sine function
corresponding to wave number M is

sinMπ(x+ α) = 2
∞∑

n=0

1

cn
Jn(Mπ) sin(Mπα +

1

2
nπ)Tn(x),

where Jn(x) is the Bessel function of order n. We can argue that Jn(Mπ)→ 0 exponentially
fast for n > Mπ, given that the Bessel function can be approximated by

Jn(Mπ) ≈ 1√
2πn


e Mπ

2n︸ ︷︷ ︸
≤1




n

if
n

M
> π.

This result leads to the following heuristic rule for Chebyshev series approximation, proposed
by Gottlieb & Orszag:

Quasi-sinusoidal rule-of-thumb: In order to resolve M complete waves it is required that
Mπ modes be retained, or in other words π polynomials should be retained per wavelength.

Although very good, such a resolution capability is less than that of a Fourier method
that requires approximately two points per wave! In fact, the above is an asymptotic result,
and a more practical rule for the total number of points N is:

N = 6 + 4(M − 1),

which has been verified in many numerical experiments.

3.1.6 Hermite Interpolation and Splines

We now turn to piecewise polynomial interpolation using relatively low-order polynomials,
unlike the single domain global interpolation. As we know from our previous discussion,
the more (distinct) grid points that we introduce into the polynomial approximation, the
higher the order of the interpolating polynomial. As the degree of the polynomial increases,

3.1. Polynomial Representation 127

the interpolating polynomial becomes more oscillatory. One solution to this problem is to
use multiple piecewise polynomials of low-order instead of one high-order polynomial. This
has the advantage that the interpolation error is proportional to a lower order derivative
resulting in better accuracy and more flexibility. The method of splines, first used in naval
architecture, is a very effective way of such an approach and facilitates smooth transition
between subdomains.

To proceed, let us first consider cubic Hermite interpolation where both function and
derivatives are interpolated. The interpolation problem can be stated as follows:

• Given data for the function values y and slopes s, (xL; yL; sL) and (xR; yR; sL) at the
left (xL) and right (xR) boundaries of one-dimensional domain, find a cubic polynomial

p(x) = a0 + a1(x− xL) + a2(x− xL)2 + a3(x− xL)2(x− xR)

with the four unknown coefficients obtained from

p(xL) = yL, p(xR) = yR

p′(xL) = sL, p′(xR) = sR.

The first derivative is

p′(x) = a1 + 2a2(x− xL) + a3[2(x− xL)(x− xR) + (x− xL)2]

and by substituting the known data at the boundaries, we have

p(xL) = yL = a0; a0 + a1∆x+ a2(∆x)
2 = yR

p′(xL) = sL = a1; a1 + 2a2∆x+ a3(∆x)
2 = sR,

where ∆x ≡ xR−xL is the domain size. We recast the above in matrix-vector form as follows


1 O
0 1
1 ∆x ∆x2

0 1 2∆x ∆x2





a0

a1

a2

a3


 =



yL

sL

yR

sR




and we see that the coefficient matrix is lower-triangular.

The solution is obtained by forward substitution:

a0 = yL, a2 = y′′L

a1 = sL, a3 = y′′′L

where we have defined the forward differences at the left boundary as:

y′L =
yR − yL

∆x
, y

′′
L =

y
′
L − sL

∆x
, y′′′L =

sL − 2y′L + sR

∆x2
.

3.1. Polynomial Representation 128

Theorem on Accuracy of Hermite Interpolation: For a function f(x) interpolated by
a cubic Hermite polynomial p(x) in a domain of size ∆x, the error is bounded from above
by

‖ f(x)− p(x) ‖∞ ≤ ‖ f
(4)(x) ‖∞
384

(∆x)4.

This theorem guarantees that if the domain is divided into 100 subintervals then the error

will be reduced by a factor of 108! The proof is based on evaluating the maximum contribution
of the remainder at the mid-point of the domain.

Constructing Cubic Splines: Having obtained simple formulas for Hermite cubic polyno-
mial interpolation, we now proceed to construct formulas for different types of cubic splines.
Here we replace the extra information given for first derivatives (sL, sR) at the end-points
of the domain by imposing continuity at the interior points. We assume, therefore, that the
entire domain is subdivided into subdomains or cells and that the function and its derivatives
are continuous at the breakup points, which we call the interior points. We can state the
problem of constructing splines as follows:

• Given the data points (x1, y1), . . . (xn, yn), find a piecewise cubic interpolant S(x) so
that S(x), S

′
(x) and S

′′
(x) are continuous at all interior points xi, i = 2, . . . , (n− 1).

To achieve this we have to choose the slopes (si, i = 1, . . . , n) at all points appropriately. To
maintain continuity of the slopes we simply assign a single value at each point. However, we
have to enforce continuity of the second derivative explicitly. To this end, we consider the
subdomain x ∈ [xi, xi+1] and apply Hermite interpolation as before where the point xi is the
left boundary and the point xi+1 is the right boundary, as shown in figure 3.7.

i i+1

xL xR

Figure 3.7: Interpolation in the interval x ∈ [xi, xi+1].

We then construct the cubic polynomial

pi(x) = yi + si(x− xi) + y′′i (x− xi)
2 + y′′′i (x− xi)

2(x− xi+1),

where

y′i =
yi+1 − yi

∆xi
; y′′i =

y′i − si

∆xi
; y′′′i =

si − 2y′i + si+1

(∆xi)2
,

with ∆xi ≡ xi+1 − xi. We also obtain the second derivative

p′′i (x) = 2y′′i + y′′′i [4(x− xi) + 2(x− xi+1)] .

Next, we move to the adjacent cell x ∈ [xi+1, xi+2] in order to apply Hermite interpolation
on this interval, see figure 3.8.

3.1. Polynomial Representation 129

i+1 i+2

xL xR

Figure 3.8: Interpolation in the interval x ∈ [xi+1, xi+2].

We construct the polynomial

pi+1(x) = yi+1 + si+1(x− xi+1) + y′′i+1(x− xi+1)
2 + y′′′i+1(x− xi+1)

2(x− xi+2),

and its second derivative

p′′i+1(x) = 2y′′i+1 + y′′′i+1[4(x− xi+1) + 2(x− xi+2)].

Next, we enforce continuity of second derivative at xi+1 and obtain equations for the
unknown slopes:

2

∆xi

(2si+1 + si − 3y
′
i) =

2

∆xi+1

(3y
′
i+1 − 2si+1 − si+2),

which can be re-written as

∆xi+1si + 2(∆xi + ∆xi+1)si+1 + ∆xisi+2 = 3(∆xi+1y
′
i + ∆xiy

′
i+1) (3.9)

i = 1, . . . , n− 2.

The above equations can be recast in a matrix-vector form with a tridiagonal coefficient
matrix. However, we have no information for the slopes s1, sn (the end-slopes), and thus we
cannot solve for the slopes yet; we need additional information, the type of which specifies
different classes of splines:

• I. The Complete Spline: Here the additional information is given at the end-points
where the end-slopes are explicitly specified, i.e., s1 = SL and sn = SR.

• II. The Natural Spline: In this case the curvature (i.e., p′′(x)) at the end-points is
set to zero, i.e.

p′′1(xL) = 0⇒ s1 =
1

2
(3y

′
1 − s2) and sn =

1

2
(3y

′
n−1 − sn−1).

• III. The Not-A-Knot Spline: In this case, no explicit information on the end-points
is provided, but instead we use continuity of the third-derivative p

′′′
(x) at the points

x2 and xn−1. Using

p
′′′
i (x) = 6

si + si+1 − 2y
′
i

(∆xi)2
,

and enforcing the continuity condition, we obtain

s1 = −s2 + 2y
′
1 +

(
∆x1

∆x2

)2

(s2 + s3 − 2y
′
2).

3.1. Polynomial Representation 130

This forms the first row in the triagonal matrix-vector system, which now has a band-
width of two instead of one. A similar equation is valid for the other end (last row in
the matrix-vector system).

• IV. The B-Spline: An example of a very popular cubic spline derived from the above
Hermite interpolation is the basic or B-spline. It corresponds to zero slopes at the end-
points, i.e., sL = sR = 0, and it is symmetric. Its support is five points, that is, it is
non-zero within four equidistant intervals ∆x. It is defined by the five points

(xi, yi) = [(1, 0), (1, 1), (2, 4), (3, 1), (4, 0)].

Solving the matrix-vector system constructed from equation (3.9):


2 1
1 4 1

1 4 1
1 4 1

1 2







s1

s2

s3

s4

s5


 = 3




1
4
0
−4
−1




we obtain

B(x) ≡ S(x) =




x3, 0 ≤ x ≤ 1

4− 6(2− x)2 + 3(2− x)3, 1 ≤ x ≤ 2

4− 6(2− x)2 − 3(2− x)3, 2 ≤ x ≤ 3

(4− x)3, 3 ≤ x ≤ 4,

and it is zero everywhere else as shown in figure 3.9. Note that the B-spline, which has
its origin in applications of beam vibrations, satisfies a minimum principle. Specifically,
the B-spline has the smallest bending energy

E(B(x)) =
∫ N

0

(
d2B

dx2

)2

dx,

among all functions or other splines that go through the same data points.

Next, we state a theorem that gives upper bounds for the error of spline interpolation up
to the third derivative. This depends on the end-points, so the theorem is for the complete
spline:

Theorem on Accuracy of Complete Splines: Let S(x) be the cubic spline that interpo-

lates f(x), x ∈ [a, b] at points xi = i∆x, where ∆x = (b−a)
n

, i = 0, . . . , n, and also sL = f
′
(a)

and sR = f
′
(b), then:

‖ S(r)(x)− f (r)(x) ‖2 ≤ εr ‖ f (4) ‖2 (∆x)4−r, r = 0, 1, 2, 3

where ε0 = 5
384
, ε1 = 1

24
, ε2 = 3

8
and ε3 = 1.

3.1. Polynomial Representation 131

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.9: Plot of the B-spline. Its support extends over four intervals.

3.1.7 Least-Squares Approximation

What we have dealt with so far are interpolations for which the number of unknowns matches
the number of constraints in the function values or slopes. The cubic splines are perhaps a
slight exception, as extra information is needed to determine them, but that too could be
cast in a form of a linear system

Ca = y ,

where a is the vector of unknowns and y is the vector of prescribed values.
In practical scientific computing, however, the opposite situation may occur where we

may have much more information than we actually require. For example, consider the case
of data analysis in an experiment with many measurements and with the dependent variable
following a quadratic trend. It is clear that, unless we are really lucky, not all measurements
will lie on a parabola! It is also clear that not all measurements have the same confidence
associated with them, and this should be reflected in the polynomial interpolant. The
question then is what type of parabola fits best the data and has built-in the measurements-
accuracy reported.

A similar situation arises in the problem of smoothing the data, a familiar task in engi-
neering, and Gauss was the first to provide a general treatment of this subject. He introduced
the bracket notation which we will use here, i.e., for a set of m grid points we define

[y] ≡ y1 + . . .+ ym

and the moments
[wxk] = w1x

k
1 + w2x

k
2 + . . .+ wmx

k
m .

To obtain the least-squares polynomial, we assume that we have m points and the pairs
(xi, yi), i = 1, . . . , m, and we try to represent them with a polynomial p(x) of degree n

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n,

3.1. Polynomial Representation 132

where m ≥ n + 1. The strict inequality corresponds to an over-determined system that we
discuss in this section. In matrix-vector form, if we follow the straightforward path, as in
the Vandermonde approach (section 3.1.1), we have that

C(m× (n+ 1))× a(n+ 1) = y(m),

so the matrix C is rectangular, and for m > (n + 1) this system does not always have a
solution.

However, there is a minimum principle associated with this problem. That is, instead
of solving the system Ca = y we attempt to find the vector a such that we minimize the
residual

r(a) =‖ Ca− y ‖2 .
This results in solving a system of the form

CTC a = CTy, (3.10)

where CTC is a symmetric positive definite matrix if C has linearly independent columns.
This may not be obvious at first but following Gauss, we can derive the normal equations

that result in the matrix-vector form of equation (3.10). To this end, we compute the residual

ri = a0 + a1xi + . . .+ anx
n
i − yi

at each measurement point xi, i = 1, . . . , m. We now form the sum of the square of all the
m residuals

R(a0, a1, . . . , an) =
m∑

i=1

wir
2
i ,

where wi is a weight that reflects confidence in the accuracy of measurement at point xi.
The next step is to minimize the residual R by taking its derivatives with respect to all ai

and setting them to zero, i.e.,

∂R

∂ai

= 0 for i = 1, . . . , m.

Using the Gauss notation, this yields

a0[wx
0] + a1[wx

1] + . . .+ an[wxn] = [wy]

a0[wx
1] + a1[wx

2] + . . .+ an[wxn+1] = [wxy]
...

a0[wx
n] + a1[wx

n+1] + . . .+ an[wx2n] = [wxny].

We also note that the unknowns are (a0, a1, . . . , an) and that the coefficient matrix H is:

H =




[wx0] [wx1] . . . [wxn]

[wx1] [wx2] . . . [wxn+1]
...

...

[wxn] [wxn+1] . . . [wx2n]




3.1. Polynomial Representation 133

which is an (n + 1) × (n + 1) matrix, the so-called Hankel matrix, with its cross-diagonals
constant. Also, if we form

W =



w1

w2 0

0
. . .

wm




the matrix of weights, then we can write the Hankel matrix as

H = VTWV

where

V =




1 x1 . . . xn
1

1 x2 . . . xn
2

...
...

1 xm . . . xn
m




is the rectangular Vandermonde matrix; it is non-singular if at least (n + 1) points (out of
the total m points) are distinct. The normal equations can be recast in matrix-vector form
as

(VTWV)a = VTWy

where
yT = (y1, y2, . . . , ym)

are the measurements.

The normal equations are, in some sense, a generalization of the Vandermonde approach
where the set

(1, x, x2, . . . , xn)

is used as basis φk(x) in the expansion

f(x) ≈
n∑

k=0

akφk(x).

We can change the basis, as we did in the case of deterministic interpolation, in order to
arrive at a better algorithm to compute the coefficients (ao, a1, . . . an) via recursion. To this
end, minimization of

R(a0, a1, . . . an) =
m∑

i=1

wi[f(xi)− yi]
2

results in a coefficient matrix G((n + 1)× (n+ 1)) with elements

gij =
m∑

k=1

wkφi(xk)φj(xk)

for the system Ga = b or

gijaj = bi with bi =
m∑

k=1

wkφi(xk)yk.

3.1. Polynomial Representation 134

If this basis is orthonormal, i.e.,

m∑
k=1

wkφi(xk)φj(xk) =

{
0, i �= j
1, i = j

then the matrix G is a diagonal matrix and the computation of the unknown vector a
becomes a trivial matter. We have seen that the Chebyshev polynomials are orthonormal
but their construction requires special Gauss-Lobbato points (see section 3.1.5). Here the
key is to discover a similar three-term recurrence formula for a given arbitrary distribution
of points {xi}. We expect that such a three-term recurrence formula is possible given that
the Gram-Schmidt orthogonality procedure of this form for vectors leads to that form, see
section 2.2.9; similar results should be expected for polynomials.

Let us call the basis φk(x) = qk(x) where qk(x) is the orthonormal polynomial which, by
assumption, satisfies the recursion

qj+1(x) = xqj(x)− αj+1qj(x)− βjqj−1(x), j = 1, . . . , (n− 1). (3.11)

We need to find recurrence relations for the constants αi+1 and βj as well as initial conditions.
From the orthonormality constraint we have that

q0(x) = 1

and by assuming that
q1(x) = x− α1,

we require orthonormality, i.e.,

m∑
i=1

wiq0(xi)q1(xi) = 0

or
m∑

i=1

wi(xi − α1) = 0

or
m∑

i=1

wiα1 =
m∑

i=1

wixi ⇒ α1 =
1

γ0

m∑
i=1

wixi

where

γ0 ≡
m∑

i=1

wi

and in general, we define

γk ≡
m∑

i=1

wiq
2
k(xi).

Similarly, we can obtain the coefficients α2 and β2 by insisting that q2(x) be orthogonal to
q1(x) and q0(x), which are the two previous polynomials. By induction we obtain the general
result from the following two orthogonality constraints:

m∑
i=1

wiqj+1(xi)qj(xi) = 0; qj+1 ⊥ qj (3.12)

3.1. Polynomial Representation 135

m∑
i=1

wiqj+1(xi)qj−1(x1) = 0, qj+1 ⊥ qj−1 (3.13)

These conditions are sufficient to prove that qj+1 ⊥ qk, k = 0, . . . , j − 2.

By substituting the recurrence formula (equation (3.11)) for qj+1 in equations (3.12) and
(3.13), we obtain

αj+1 =
1

γj

m∑
i=1

wixiq
2
j (xi)

and

βj =
1

γj−1

m∑
i=1

wi [xiqj−1(xi)︸ ︷︷ ︸
eqn.3.11

]qj(xi)

=
1

γj−1

∑
wi[qj(xi) + αjqj−1(xi) + βj−1qj−2(xi)] · qj(xi)

=
1

γj−1

∑
wiq

2
j (xi) =

γj

γj−1

⇒ βj =
γj

γj−1
.

We can now write the following recursive algorithm for computing the orthogonal polynomials
qk(x):

Initialize:

γ0 =
m∑

i=1

wi; q0(x) = 1; q1(x) = x− 1

γ0

m∑
i=1

wixi

Begin Loop j = 1, n− 1

γj =
∑m

i=1wiq
2
j (xi)

βj =
γj

γj−1

αi+1 = 1
γj

∑m
i=1wixiq

2
j (xi)

qj+1(x) = xqj(x)− αj+1qj(x)− βjqj−1(x)

End Loop

Having constructed all the orthogonal polynomials qk(x), the unknown coefficients are com-
puted from

ak =
1

γk

m∑
i=1

wiqk(xi)yi, k = 0, 1, . . . , n

and finally

f(x) ≈
n∑

k=0

akqk(x)

3.1. Polynomial Representation 136

is the least-squares polynomial.

Remark: There is a similarity between the procedure we just described and the QR de-
composition presented in section 2. Recall that the problem of finding a least-square
polynomial is equivalent to solving the system

CTCa = CT y.

We can apply QR decomposition to matrix C, to obtain

C = QR

and the above equation becomes

RTR a = RTQTy

or
R a = QT y

with R being upper triangular. The vector of unknown coefficients a is then obtained by
back substitution. In practice, another version of QR factorization is preferable, the so-called
Householder triangulaziation, which we will study in chapter 9.

Software

 Suite
Putting it into Practice

From the discussion above, we see that given a set of data, we need to calculate and
store three quantities: αi, βi, and the set of least-squares coefficients. We will accomplish
this with the function presented below. This function takes as input the number of points
over which the least-squares approximation is to be calculated (npts), an array of positions
x, data values (or function values) at the previously mentioned spatial points stored in the
array funcvals, the degree of the least-squares approximation ndeg, and then as output
arrays this routine will fill in the arrays alpha, beta and lscoeffs. Note that this function
assumes that all the arrays have been allocated:

void LS_ComputeCoeffs(int npts, double *xpts, double *funcvals,

int ndeg, double *alpha, double *beta, double *lscoeffs){

int i,j;

double xi,tmpd;

double * gamma = new double[ndeg+1];

//////////////////////////

// Compute average first

3.1. Polynomial Representation 137

xi = 0.0;

for(i=0;i<npts;i++){

xi += xpts[i];

}

xi /= (double) npts;

/////////////////////////

gamma[0] = npts;

alpha[0] = beta[0] = 0.0;

alpha[1] = xi;

for(j=1;j<=ndeg-1;j++){

gamma[j] = 0.0;

alpha[j+1] = 0.0;

for(i=0;i<npts;i++){

tmpd = LS_OrthoPoly(j,xpts[i],alpha,beta);

gamma[j] += tmpd*tmpd;

alpha[j+1] += xpts[i]*tmpd*tmpd;

}

alpha[j+1] /= gamma[j];

beta[j] = gamma[j]/gamma[j-1];

}

gamma[ndeg] = 0.0;

for(i=0;i<npts;i++){

tmpd = LS_OrthoPoly(ndeg,xpts[i],alpha,beta);

gamma[ndeg] += tmpd*tmpd;

}

beta[ndeg] = gamma[ndeg]/gamma[ndeg-1];

for(j=0;j<=ndeg;j++){

lscoeffs[j] = 0.0;

for(i=0;i<npts;i++)

lscoeffs[j] = lscoeffs[j] + funcvals[i]*

LS_OrthoPoly(j,xpts[i],alpha,beta);

lscoeffs[j] /= gamma[j];

}

delete[] gamma;

return;

}

3.1. Polynomial Representation 138

There are two issues that we would like to point your attention to as you examine this
function:

1. Remark 1: If you examine the mathematical formulation carefully, you notice that
the above function relies on the orthogonal polynomial function being defined. The
definition for the orthogonal polynomial requires the α and β to be defined. At first
glance, there appears to be a circular dependency! However, it is not. Observe that
whenever the orthogonal polynomial needs to know α and β, they have already been
properly calculated. The point: this is a highly inductive process. The ordering of
calculation is very important in this routine. You should take the time to chart out
the dependencies, and observe how timing is everything!

2. Remark 2: Dynamic memory allocation within functions is quite natural, and most
programmers have no problem allocating arrays within functions. However, many
programmers become negligent, and do not deallocate the temporary memory that
they needed. In the function above, the array gamma is allocated for temporary usage
within this function. Note that this temporary array is deallocated (using the delete[]
command) just prior to the function returning. Recall that the local variables within a
function are local to the function, and go away when the function concludes. Hence, if
memory is allocated to gamma and is not returned to the system prior to the function
returning, that memory is “lost” for the remainder of the runtime of your program!
This is what is referred to as a memory leak. If you view memory as a conserved
quantity (that is, that for every allocation there is a deallocation), then if you forget
to deallocate a piece of memory prior to it being inaccessible by the user (in this
case due to the pointer variable going away when the function returns), then memory
has “leaked,” and hence the total amount of memory available for dynamic memory
allocation is reduced.

WARNING Programmer Beware!
• Beware of memory leaks!
For every allocate
(new) there should be a
deallocate (delete[])

Using the Switch

Software

 Suite

Once again, we use the concept of recursion for quickly imple-
menting the mathematical definition of the orthogonal polyno-
mial. Again, we have two base cases, when the index of the
polynomial is 0 or 1; for all other positive values of the index,
the value of the polynomial is calculated using the recursion
relation.

3.1. Polynomial Representation 139

double LS_OrthoPoly(int j, double x, double *alpha, double *beta){

int i;

double value;

switch(j){

case 0:

value = 1.0;

break;

case 1:

value = x - alpha[j];

break;

default:

value = (x-alpha[j])*LS_OrthoPoly(j-1,x,alpha,beta) -

beta[j-1]*LS_OrthoPoly(j-2,x,alpha,beta);

break;

}

return value;

}

Once the coefficients have been calculated, then the least-squares approximating polyno-
mial can be evaluated at any point. Below we present the implementation of this function.

double LSApproximatingPoly(int ndeg, double x, double *alpha,

double *beta, double *lscoeffs){

double value = 0.0;

for(int i=0;i<=ndeg;i++)

value += lscoeffs[i]*LS_OrthoPoly(i, x, alpha, beta);

return value;

}

C++ Compound Assignment

Look carefully at the function above. You will notice something new: the “+=” operator.
This is a convenient C++ shorthand used for accumulation. The C++ statement

a += b;

is equivalent to the statement

a = a + b;

3.1. Polynomial Representation 140

Shorthand Description

i++ Pre-increment, i = i + 1
++i Post-increment, i = i + 1
i– Pre-decrement, i = i - 1
–i Post-decrement, i = i - 1

i += j i = i + j
i -= j i = i - j
i *= j i = i * j
i /= j i = i / j

Table 3.1: C++ compound assignment operations.

which is to be interpreted as taking the value of b and accumulating it to a. Table 3.1
gives a collection of these “shorthand” programming notations used in C++.

Pre- and post-incrementing/decrementing may be somewhat confusing at first, but con-
sider the following code

j = i++;

k = ++p;

in which we use the post-incrementor in the first line, and the pre-incrementor in the second
line. If we expand this shorthand notation into its traditional C++ code, we obtain the
following:

j = i;

i = i + 1;

p = p + 1;

k = p;

Notice that in the first example, the post-incrementor is used, so the assignment is
accomplished first, and then the increment. The exact opposite happens when the pre-
incrementor is used. When used as an individual statement (such as we have used it in for
statements), the two give identical results.

WARNING Programmer Beware!
• C++ shorthands can be
convenient but deadly! A slip
of the finger, and += can
be =+, which is a valid
C++ statement, setting one value
as the positive value of another
value! Not what was intended!!

3.1. Polynomial Representation 141

Software

 Suite

Below, we present a program which uses the functions de-
scribed above. Notice the general structure of this program:

1. Query the user to obtain information.

2. Allocate necessary memory (dynamically).

3. Produce a grid, and evaluate the function to be approx-
imated.

4. Compute least squares coefficients by calling
LS ComputeCoeffs.

5. Evaluate approximating polynomial on a fine grid for
plotting.

6. Deallocate dynamic memory used within the program.

#include <iostream.h>

#include "SCchapter3.h"

double func(double x);

int main(int argc, char * argv[]){

int i;

int degree, polypnts;

int npts = 1000; //number of points used for plotting

double xpt, soln, approx;

cout << "Enter the degree of the least squares polynomial: ";

cin >> degree;

cout << "Enter the number of points to use for evaluation: ";

cin >> polypnts;

double * poly_xpts = new double[polypnts];

double * func_vals = new double[polypnts];

double * alpha = new double[degree+1];

double * beta = new double[degree+1];

double * lscoeffs = new double[degree+1];

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){

3.1. Polynomial Representation 142

func_vals[i] = func(poly_xpts[i]);

}

LS_ComputeCoeffs(polypnts, poly_xpts, func_vals, degree,

alpha, beta, lscoeffs);

for(i=0;i<npts;i++){

xpt = -1.0 + 2.0*i/(npts-1);

soln = func(xpt);

approx = LSApproximatingPoly(degree, xpt, alpha,

beta, lscoeffs);

cout << xpt << " " << soln << " " << approx << endl;

}

delete[] alpha;

delete[] beta;

delete[] lscoeffs;

delete[] poly_xpts;

delete[] func_vals;

}

double func(double x){

double y;

y = 1.0 + 25.0*x*x;

y = 1.0/y;

return y;

}

Key Concept

• As a programmer, you should have a gameplan! Always take a
few moments to formulate the general structure of your program;
this will save you much time in the end!

3.1.8 Introduction to Classes

In the previous chapter, we discussed the two fundamental concepts within C++, i.e., the
idea of functions and the idea of classes. In this section, we will present a brief overview of

3.1. Polynomial Representation 143

how to declare, define, and use classes. We will use as an example the class SCV ector found
in the software suite. We will then illustrate the rationale of classes by defining a new class
to be used in a least-squares example.

This section is meant only to be a brief overview of classes for the cases where classes are
used in this book. To discover the full power of classes (through inheritance, etc.), we refer
the reader to [86].

Class Declaration

Software

 Suite

Classes are user-defined data types. We first present the decla-
ration of our user-defined class SCV ector, and then will com-
ment on the specifics of the declaration:

class SCVector{

private:

int dimension;

double *data;

public:

SCVector(int dim);

SCVector(const SCVector& v);

SCVector(int col, const SCMatrix &A);

~SCVector();

int Dimension() const;

double Length(); /* Euclidean Norm of the Vector */

void Normalize();

double Norm_l1();

double Norm_l2();

double Norm_linf();

double MaxMod();

double ElementofMaxMod();

int MaxModindex();

//************************

// User Defined Operators

//************************

int operator==(const SCVector& v) const;

int operator!=(const SCVector& v) const;

SCVector & operator=(const SCVector& v);

double operator()(const int i) const;

3.1. Polynomial Representation 144

double& operator()(const int i);

void Print() const;

void Initialize(double a);

void Initialize(double *v);

};

We now present some remarks concerning the code above:

• Observe the structure of a class declaration. First, there is the use of the key word
class, followed by the user-defined variable name which will be used later when creating
instantiations of this class. Within the {}, there are three key words used to denote
accessibility:

1. private – those variables and functions that cannot be accessed from outside of
the object. Access is non-inheritable.

2. protected – those variables and functions that cannot be accessed from outside of
the object. Access is inheritable.

3. public – those variables and functions that can be accessed from outside of the
object.

Those variables/methods within the private section are only accessible from within
the object, whereas variables/methods in the public section are accessible outside the
object.

• The declaration of a class must be concluded by a “;”.

• You may have noticed that we used the term object in the above definitions, and you
may have assumed that we really meant class. We did not. In C++ nomenclature, a
class refers to the declaration of the user-defined variable, while an object is an instance
of a variable of that type. Take for example the predefined variable type int. In C++
parlance, we would refer to our declaration of int as the class, and every variable that
we create as “an object of type int.”

• Within the private section of this class, we have declared two variables dimension and
data which can be used within the object.

• In the public section, we have declared a collection of methods which access or modify
the data contained within the object.

Method Definitions

Software

 Suite

We now discuss some of the method definitions for this class
found within the software suite.

Each method has the following structure:

3.1. Polynomial Representation 145

<return type> ClassName::MethodName(<argument list>)

The return type, method name, and argument list are similar to what we have seen with
functions. In the case of a class method, we also designate the class to which the method is
assigned (using the “ClassName::” syntax).

Constructor: A constructor is the first function which is called when the object is in-
stantiated. In this case, the constructor requires the input of the dimension of the vector.
The constructor then uses this information to initialize the local variable dimension, and to
allocate memory which is assigned to the local variable data.

SCVector::SCVector(int dim){

dimension = dim;

data = new double[dimension];

for(int i=0;i<dimension;i++)

data[i] = 0.0;

}

Copy Constructor: A copy constructor is used whenever a copy is required (either by
the programmer or the program). The object to be copied is passed as an argument to this
method. Notice that the argument is passed as a const (meaning that within the method we
cannot change the value of the object v), and that it is passed by reference (denoted by the
“&”) so that no new memory allocation is required to store the contents of v (as opposed to
if we had passed by value). The current object is initialized so that it is a copy of v.

SCVector::SCVector(const SCVector &v){

dimension = v.Dimension();

data = new double[dimension];

for(int i=0;i<dimension;i++)

data[i] = v.data[i];

}

Destructor: This method is called automatically when the object is released back to the
operating system. Its purpose is to clean up the storage contained within the object.

SCVector::~SCVector(){

dimension = 0;

delete[] data;

data = NULL;

}

General Methods: From the class declaration presented above, we present two method
definitions, one which merely accesses the data with the object to provide a result, and the
second with acts upon the data contained within the object. Consider the following two
method definitions:

3.1. Polynomial Representation 146

double SCVector::Norm_l2(){

double sum = 0.0;

for(int i=0;i<dimension;i++)

sum += data[i]*data[i];

return(sqrt(sum));

}

void SCVector::Normalize(){

double tmp = 1.0/Norm_l2();

for(int i=0;i<dimension;i++)

data[i] = data[i]*tmp;

}

In the first method, we use the information stored within the class (contained within data)
to compute the L2 norm of the vector, and we return this information at the conclusion of
the function. In the second method, we act upon the data contained within the object by
normalizing the value of the vector to one. Notice within the Normalize method that we
call local class method Norm l2 to obtain the discrete L2 norm of the vector.

Overloaded Operators

In addition to class methods, we can also overload operators so that they are appropriately
defined for our new user-defined data type. Consider the following operator declaration:

SCVector operator+(const SCVector& v1, const SCVector& v2);

and corresponding operator definition:

SCVector operator+(const SCVector& v1, const SCVector& v2){

int min_dim = min_dimension(v1,v2);

SCVector x(min_dim);

for(int i=0;i<min_dim;i++)

x(i) = v1(i) + v2(i);

return x;

}

The basic syntax is as follows:

<return type> operator<symbol>(<argument 1>,<argument 2>)

where the return type, symbol, and arguments are to be supplied by the programmer. Using
this syntax we appropriately define what it means to add (using the binary operator ’+’)
two SCVector objects. We will illustrate how this is used below.

3.1. Polynomial Representation 147

Object Allocation and Usage

To understand how all the information presented above is used, consider the following code:

SCVector a(3),b(3),c(3); //allocate SCVectors a,b,c

//Constructor is called automatically to

//allocate memory and provide default

//initialization

a(0) = 1.0; //Initialize the values of ’a’ using () operator

a(1) = 2.0; //defined for the class SCVector

a(2) = 3.0;

b(0) = -2.0; //Initialize the values of ’b’using () operator

b(1) = 1.0; //defined for the class SCVector

b(2) = 3.0;

c = a+b; //Use overloaded operator ’+’ to compute

//the sum of a and b, and use of the

//overloaded operator ’=’ to assign

//the value to ’c’

c.Print(); //Use print method to print the value of c

Execution of this code within a program would yield the result [-1.0; 3.0; 6.0] printed
to standard output.

Software

 Suite
Putting it into Practice

The least-squares example presented earlier provides a good motivation for using classes.
Observe that associated with each least-squares approximating polynomial we form, we need
to keep track of three arrays, alpha, beta and lscoeffs, for each approximating polynomial!
Is this do-able? Certainly. But from an organizational standpoint, we would like to be able
to automatically associate the appropriate arrays with the right polynomials. Imagine that
we were asked to handle 20-100 least squares approximations simultaneously! Doable, yes;
messy, yes; but recall that classes can provide us a means of organizing our data.

First, we begin by giving the class declaration:

class LSPoly{

3.1. Polynomial Representation 148

private:

int ndeg;

double *alpha, *beta, *lscoeffs;

double LSPolyOrtho(int j, double x);

public:

LSPoly();

~LSPoly();

void PrintCoeffs();

int Initialize(int npts, int in_ndeg, double * xpts,

double * funcvals);

double Evaluate(double x);

};

In addition to the four variables ndeg, alpha, beta, and lscoeffs declared within the
class, five methods associated with this class have declared. We present the definitions of
these five methods and provide a brief explanation of each.

Default Constructor: This method is called automatically when the object is instantiated
if no other constructor is called. Observe that in this case we initialize variables to either
zero or NULL (whichever is appropriate for the variable type).

LSPoly::LSPoly(){

ndeg = 0;

alpha = NULL;

beta = NULL;

lscoeffs = NULL;

}

Destructor: This method is called automatically when the object is destroyed.

LSPoly::~LSPoly(){

delete[] alpha;

delete[] beta;

delete[] lscoeffs;

ndeg = 0;

alpha = NULL;

beta = NULL;

lscoeffs = NULL;

}

The next method is a “private” method; that is, it can only be called from within the
object. This means that the only valid places that this function can be called are within
other methods defined within the object.

3.1. Polynomial Representation 149

double LSPoly::LSPolyOrtho(int j,double x){

int i;

double value;

switch(j){

case 0:

value = 1.0;

break;

case 1:

value = x - alpha[j];

break;

default:

value = (x-alpha[j])*LSPolyOrtho(j-1,x) -

beta[j-1]*LSPolyOrtho(j-2,x);

break;

}

return value;

}

The next three methods are “public” methods; that is, they can be accessed from outside
the object. The first method accomplishes the initialization of the class which consists of
computing the values stored in alpha, beta, and gamma. The second method allows us to
print the contents of the object, and the third method allows us to evaluate the least-squares
approximation using the information stored within the object.

int LSPoly::Initialize(int npts, int in_ndeg, double * xpts,

double * funcvals){

int i,j;

double xi,tmpd;

if(alpha!=NULL){

cerr << "Error:: LSPoly has already been initialized" << endl;

return 0;

}

ndeg = in_ndeg;

/* Storage for this object */

lscoeffs = new double[ndeg+1];

alpha = new double[ndeg+1];

beta = new double[ndeg+1];

/* Storage for just this method */

3.1. Polynomial Representation 150

double * gamma = new double[ndeg+1];

//////////////////////////

// Compute average first

xi = 0.0;

for(i=0;i<npts;i++){

xi += xpts[i];

}

xi /= (double) npts;

/////////////////////////

gamma[0] = npts;

alpha[0] = beta[0] = 0.0;

alpha[1] = xi;

for(j=1;j<=ndeg-1;j++){

gamma[j] = 0.0;

alpha[j+1] = 0.0;

for(i=0;i<npts;i++){

tmpd = LS_OrthoPoly(j,xpts[i],alpha,beta);

gamma[j] += tmpd*tmpd;

alpha[j+1] += xpts[i]*tmpd*tmpd;

}

alpha[j+1] /= gamma[j];

beta[j] = gamma[j]/gamma[j-1];

}

gamma[ndeg] = 0.0;

for(i=0;i<npts;i++){

tmpd = LSPolyOrtho(ndeg,xpts[i]);

gamma[ndeg] += tmpd*tmpd;

}

beta[ndeg] = gamma[ndeg]/gamma[ndeg-1];

for(j=0;j<=ndeg;j++){

lscoeffs[j] = 0.0;

for(i=0;i<npts;i++)

lscoeffs[j] = lscoeffs[j] + funcvals[i]*LSPolyOrtho(j,xpts[i]);

lscoeffs[j] /= gamma[j];

}

delete[] gamma;

3.1. Polynomial Representation 151

return 1;

}

void LSPoly::PrintCoeffs(){

cout << endl;

cout << "*********************************" << endl;

cout << "i\talpha\tbeta\tlscoeffs" << endl;

for(int j=0;j<=ndeg;j++){

cout << j << "\t" << alpha[j] << "\t";

cout << beta[j] << "\t" << lscoeffs[j] << endl;

}

cout << "*********************************" << endl << endl;

return;

}

double LSPoly::Evaluate(double x){

double value = 0.0;

for(int i=0;i<=ndeg;i++)

value += lscoeffs[i]*LSPolyOrtho(i,x);

return value;

}

Now, we want to put it all together into one piece of code. Using the information above,
we have now declared a class named LSPoly, and we have provided definitions to all its
methods. We now use this new user-defined variable in the program below.

#include <iostream.h>

#include "SCchapter3.h"

double func(double x);

int main(int argc, char * argv[]){

int i;

int degree, polypnts;

int npts = 1000; //number of points used for plotting

double xpt, soln, approx;

3.1. Polynomial Representation 152

LSPoly poly; // Our user-defined class!

cout << "Enter the degree of the least-squares polynomial: ";

cin >> degree;

cout << "Enter the number of points to use for evaluation: ";

cin >> polypnts;

double * poly_xpts = new double[polypnts];

double * func_vals = new double[polypnts];

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){

func_vals[i] = func(poly_xpts[i]);

}

poly.Initialize(polypnts,degree,poly_xpts,func_vals);

for(i=0;i<npts;i++){

xpt = -1.0 + 2.0*i/(npts-1);

soln = func(xpt);

approx = poly.Evaluate(xpt);

cout << xpt << " " << soln << " " << approx << endl;

}

delete[] poly_xpts;

delete[] func_vals;

}

double func(double x){

double y;

y = 1.0 + 25.0*x*x;

y = 1.0/y;

return y;

}

We want to draw your attention to certain key items within the program above:

• We begin by instantiating a variable of type LSPoly, just like creating a “regular”
(pre-defined) variable. As stated above, when the variable is initiated, the constructor
is called.

• To access both variables and methods which are public, we use the “.” notation.

3.1. Polynomial Representation 153

<variable name>.<object variable>

or

<variable name>.<method>(... <method argument list> ...)

In the example above, we access the Initialize method as follows:

poly.Initialize(polypnts,degree,poly_xpts,func_vals);

where poly is the name of the object, and Initialize is the name of the public method
that we want to access.

If, instead of the object, we were using a pointer to the object, we use the “-¿” notation
as follows:

<pointer variable name>-><object variable>

or

<pointer variable name>-><method>(... <method argument list> ...)

• All the information necessary for the least squares approximation is stored within the
object, and hence the call for evaluating the least squares polynomial is merely the
call:

approx = poly.Evaluate(xpt);

3.1.9 Multi-Dimensional Interpolations

We can extend the interpolation methods we have presented so far in two-dimensions or
three-dimensions by constructing appropriate two- or three-dimensional polynomials. In
two dimensions, for example, we have

f(x, y) =
∑
k

αkφk(x, y)

where αk are the unknown coefficients, and the exact form of the polynomial basis φk(x, y)
depends on the shape of the computational domain. In order to simplify the presentation, we
first consider canonical domains, and subsequently we present mapping techniques to deal
with more general domains. The approach presented here is typically followed in finite ele-
ment methods, see [63], where polynomial approximations in subdomains (the “elements”)
are required; however this polynomial approximation is general, and also is easy to imple-
ment.

3.1. Polynomial Representation 154

ξ 2

ξ 1

(−1,−1) (1,−1)

(1,1)(−1,1)

1 2

34

(0,0) ξ 1

ξ 2

(−1,−1) (1,−1)

(−1,1)

1 2

3

(0,0)

Figure 3.10: Standard domains for the quadrilateral (left), and triangular (right) expansion in
terms of the Cartesian coordinates ξ1, ξ2.

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

ξ1 ξ2

1

ξ1 ξ2ξ1
2 ξ2

2

ξ1
3 ξ1

2
 ξ2 ξ1

 ξ2

2 ξ2
3

ξ1
2

 ξ2
2 ξ1

 ξ2

3ξ1
3

 ξ2ξ1
4 ξ2

4

ξ1
3

 ξ2
3ξ1

4
 ξ2

2ξ1
5

 ξ2 ξ1
2

 ξ2
4 ξ1 ξ2

5ξ1
6 ξ2

6

ξ1
2

 ξ2
3ξ1

3
 ξ2

2ξ1
4

 ξ2 ξ1

 ξ2

4ξ1
5 ξ2

5

ξ1
4

 ξ2
3 ξ1

3
 ξ2

4ξ1
5

 ξ2
2ξ1

6
 ξ2 ξ1

2
 ξ2

5 ξ1 ξ2
6ξ1

7 ξ2
7

p q

Figure 3.11: Pascal’s diagram that shows the polynomial space for the triangular expansion (shaded
region) and square region (shaded region plus values within dotted line). The example here is for
cubic polynomial approximation.

3.1.10 Simple Domains

The canonical domains we consider are the square and the triangular domains with the
coordinates ξ1 ∈ [−1, 1] and ξ2 ∈ [−1, 1] being the normalized coordinates as shown in figure
3.10. Similar extensions can be constructed in three-dimensions for a standard hexahedron
and a tetrahedron. In figure 3.11 we construct the so-called Pascal’s diagram to demonstrate
graphically the polynomial space for each region.

We first consider the square domain, for which it is computationally efficient to split
directions by constructing tensor-products of the form

f(ξ1, ξ2) ≈
∑
p

∑
q

αpqφp(ξ1)φq(ξ2).

Let us re-write the above equation using one-dimensional Lagrangian interpolants hi(ξ), i.e.

f(ξ1, ξ2) ≈
∑
p

∑
q

fpqhp(ξ1)hq(ξ2)

3.1. Polynomial Representation 155

where fpq are the function values at the node (p, q).
In the standard square, bilinear interpolation is achieved by employing the one-dimensional

linear interpolants

hi(ξ) =
1

2
(1± ξ), i = 1, 2

and thus

f(ξ1, ξ2) ≈ 1

4
[f1(1− ξ1)(1− ξ2)] +

1

4
[f2(1 + ξ1)(1− ξ2)] +

1

4
[f3(1 + ξ1)(1 + ξ2)] +

1

4
[f4(1− ξ1)(1 + ξ2)]

where we have used a counter-clockwise convention to number the corners of the domain,
and fi denotes the function values at each vertex starting from the low left corner, see figure
3.10.

Software

 Suite
Putting it into Practice

We can implement the above formula as follows:

double Square_2dInterpolant(SCPoint x, int npts, double *funcvals){

double value = 0.;

double h[4];

if(npts != 4){

cerr << "Error in Square_2dInterpolant -- ";

cerr << "Invalid npts given" << endl;

return value;

}

h[0] = 0.5*(1.0-x(0));

h[1] = 0.5*(1.0+x(0));

h[2] = 0.5*(1.0-x(1));

h[3] = 0.5*(1.0+x(1));

value = funcvals[0]*h[0]*h[2] + funcvals[1]*h[1]*h[2] +

funcvals[2]*h[1]*h[3] + funcvals[3]*h[0]*h[3];

return value;

}

3.1. Polynomial Representation 156

In this routine, we rely on the use of the data type SCPoint, which is a user-defined class
included in the software suite. What is important for you to know concerning SCPoint is
that if P is a variable of type SCPoint, then the coordinate (x, y) is stored as (P (0), P (1)).
Hence, in this 2D example, we are providing an SCPoint which has two accessible values,
x(0) and x(1): x(0) = ξ0 and x(1) = ξ1.

Let us observe a few items within this code:

• Notice that because we know how many interpolants we will need, we can use static
allocation of an array for holding the temporary values of the interpolants. If instead
of four points we knew that we would use nine points, then we could allocate h[9]
instead of h[4]. Obviously this is much easier than typing h0,h1, . . . h8! It would
also be perfectly valid to use dynamic memory allocation here; we have chosen not to
for optimization reasons. For such a small number of variables, the cost of dynamic
memory allocation outweighs the convenience.

• In this function, we introduce the concept of argument checking. We have written the
function above with the intention of providing the two-dimensional bilinear interpo-
lation. From the theory, we see that this requires that four function values be given.
What would happen if we are only given three function values (that is, what if the
user had only allocated and assigned values for funcvals[0], funcvals[1] and funcvals[2])?
Using this function would be invalid, and in all likelihood our program would crash!
Quite often programmers introduce checks into their code to help minimize such mis-
takes. In this case, we check to make sure that we have received npts = 4; if not, we
issue a warning that we received an invalid npts value, and we return 0.0.

• Notice that we used cerr instead of cout. The object cerr is an output object like cout,
and is also declared in iostream.h. The difference between cout and cerr is that cerr
writes to standard error instead of standard output (which may or may not be the
same actual output device).

Key Concept

• Carefully designed argument checking can save you hours of de-
bugging time! Plan ahead for your own possible mistakes – and
prevent them from occurring.

High-Order Interpolation

Higher order approximations can be constructed if more information about the function f(x)
is given. Typically, that information may be available at the midpoints of the edges of the

3.1. Polynomial Representation 157

domain or even at the center of the domain. In this case, we need to first construct higher
order one-dimensional Lagrangian interpolants. Let us consider the case of an extra one and
two interior points distributed equidistantly along the edge. From their definition we have
that

h3(ξ) = 1− ξ2 and h4(ξ) = 1− 27ξ3 − 9ξ2 + 27ξ + 9.

A B

CD

E

F

G

H
I

A D B

E

C

F

Figure 3.12: Domain and points where the data is specified for square (left) and triangle (right).

With the above four one-dimensional Lagrangian interpolants we can construct up to
third-order polynomial approximations in a square domain if information is given at all
the points A, B, . . . , I as shown in figure 3.12. As an example, let us assume that we
have available f(A), f(B), f(C), f(D) and f(E). Then the interpolants (also called shape
functions) are as follows:

hA =
1

4
(1− ξ1)(1− ξ2)− 1

2
hE ; hB = 1

4
(1 + ξ1)(1− ξ2)− 1

2
hE;

hC =
1

4
(1− ξ1)(1 + ξ2); hD = 1

4
(1 + ξ1)(1 + ξ2);

hE =
1

2
(1− ξ2

1) .

Let us now assume that in addition we also have function values at the points I and F.
Then the above interpolants can be easily modified to handle this case as well by adding
extra terms that reflect this interaction

hA =
1

4
(1− ξ1)(1− ξ2)− 1

2
hE − 1

4
hI ; hB = 1

4
(1 + ξ1)(1− ξ2)− 1

2
hE − 1

2
hF − 1

4
hI

hC =
1

4
(1− ξ1)(1 + ξ2)− 1

2
hF − 1

4
hI ; hD = 1

4
(1 + ξ1)(1 + ξ2)− 1

4
hI

hE =
1

2
(1− ξ2

1)(1− ξ2)−
1

2
hI ; hF = 1

2
(1 + ξ1)(1− ξ2

2)− 1
2
hI

hI = (1− ξ2
1)(1− ξ2

2).

3.1. Polynomial Representation 158

These approximations can be extended to hexahedral domains using the tensor-product
form. For example, in the case of trilinear interpolation with the function values specified at
the eight vertices the shape functions are:

hi(ξ1, ξ2, ξ3) =
1

8
(1± ξ1)(1± ξ2)(1± ξ3).

For higher order interpolations similar constructions can be obtained with the approximating
polynomials defined by the hierarchy shown in figure 3.13(a), which is Pascal’s diagram for
hexahedral domains. For more details see ([63], chapter 3).

�������������
�������������
�������������
�������������
�������������
�������������
��������������������

�������
�������
�������
�������

ξ1ξ3
2

ξ1 ξ2
2ξ1

2
 ξ2ξ1

3 ξ2
3

ξ3
3

ξ2ξ3
2

ξ2
2ξ3 ξ1

 ξ2
 ξ3 ξ1

2ξ3

ξ3

ξ1
 ξ2

1

ξ3
2

ξ1
 ξ3

ξ1
2

ξ2
 ξ3

ξ2
2ξ1

 ξ2

����������
����������
����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������

������������
������������
������������
������������
������������
������������
��������������������
��������
��������
��������

ξ1ξ3
2

ξ1 ξ2
2ξ1

2
 ξ2ξ1

3 ξ2
3

ξ3
3

ξ2ξ3
2

ξ2
2ξ3 ξ1

 ξ2
 ξ3 ξ1

2ξ3

ξ3

ξ1
 ξ2

1

ξ3
2

ξ1
 ξ3

ξ1
2

ξ2
 ξ3

ξ2
2ξ1

 ξ2

Figure 3.13: Pascal’s diagram for hexahedral (left) and tetrahedal domains (right).

Non-Tensor Products

For a triangular region, however, no tensor products are easily constructed unless special
coordinate systems and transformations are introduced, see [63]. For linear interpolation,
the shape functions are constructed, e.g., by collapsing the corners D and C of the square to
obtain

htr
i = hsq

i =
1

4
(1 + (−1)ir)(1− s), i = A,B

and

htr
C = hsq

C + hsq
D =

1

2
(1 + ξ2).

These can be recomputed after we renormalize the coordinates so that ξ1 ∈ [0, 1] and ξ2 ∈
[0, 1] to obtain

hA = 1− ξ1 − ξ2, hB = ξ1, hC = ξ2.

Furthermore, if we have data at the midpoints of the edges of the triangle (see figure
3.12(b)) we can construct complete quadratic interpolation using the shape functions

hA = 1− ξ1 − ξ2 − 1

2
hD − 1

2
hF ; hB = ξ1 − 1

2
hD − 1

2
hE ;

3.1. Polynomial Representation 159

(−1,−1,−1) (1,−1,−1)

(−1, 1,−1)

(−1,−1, 1)

ξ1

ξ2

ξ3

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������

A3

ξ1

21

(−1,−1) (1,−1)

(−1,1)

ξ2

A1A2

21

3

3

4

b)a)

Figure 3.14: (a) The area coordinate system in the standard triangular region. Each coordinate
l1, l2, and l3 can be interpreted as the ratio of areas A1, A2, and A3 over the total area. (b) The
standard tetrahedral region for the definition of volume coordinates.

hC = ξ2 − 1

2
hE − 1

2
hF ; hD = 4ξ1(1− ξ1 − ξ2);

hE = 4ξ1ξ2; hF = 4ξ2(1− ξ1 − ξ2).

Another popular way of constructing linear interpolations in a triangular region is by
using the area (and volume in three-dimensions) coordinates, otherwise known as barycentric
or triangular/tetrahedral coordinates.

The area coordinate system is illustrated in figure 3.14(a) for the standard triangle. Any
point in the triangle is described by three coordinates l1, l2, and l3, which can be interpreted
as the ratio of the areas A1, A2 and A3 over the total area A = A1 + A2 + A3, that is,

l1 =
A1

A
; l2 =

A2

A
; l3 =

A3

A
.

Therefore l1, l2, and l3 have a unit value at the vertices marked 1, 2 and 3 in figure 3.14(a),
respectively. By definition these coordinates satisfy the relationship:

l1 + l2 + l3 = 1,

and they can be expressed in terms of ξ1, ξ2 as:

l1 = 1
2
(1− ξ1)− 1

2
(1 + ξ2);

l2 = 1
2
(1 + ξ1);

l3 = 1
2
(1 + ξ2).

A similar construction follows for volume coordinates l1, l2, l3, l4, which are defined as
having a unit value at the vertices marked 1, 2, 3, 4 in figure 3.14(b). In terms of the local
Cartesian coordinates the volume coordinate system is defined as:

l1 =
−(1 + ξ1 + ξ2 + ξ3)

2
; l2 =

(1 + ξ1)

2
;

l3 =
(1 + ξ2)

2
; l4 =

(1 + ξ3)

2
.

3.1. Polynomial Representation 160

���������������
���������������
���������������
���������������

ξ1

ξ2

Ωe

Ωst

AB

C

�����������������
�����������������
�����������������
�����������������

ξ1

ξ2

Ωe

Ωst
A

BC

D

x1

x2

x1

x2

a) b)
A B

C

A B

CD

Figure 3.15: To construct a C0 expansion from multiple elements of specified shapes (for example,
triangles or rectangles), each elemental region Ωe is mapped to a standard region Ωst in which all
local operations are evaluated [63].

3.1.11 Curvilinear Domains

In many practical simulation problems we need to perform polynomial interpolation in re-
gions which may be of an arbitrary shape and orientation as illustrated in figure 3.15. Such
general domains can be broken into subdomains which are triangular or quadrilateral regions.
These can be then transformed to standard regions as shown in figure 3.10. To treat these
more general domains we follow the method presented in [63]; we introduce a one-to-one
mapping denoted by

x1 = χe
1(ξ1, ξ2), x2 = χe

2(ξ1, ξ2)

in two dimensions, and similarly

x1 = χe
1(ξ1, ξ2, ξ3), x2 = χe

2(ξ1, ξ2, ξ3), x3 = χe
3(ξ1, ξ2, ξ3)

in three dimensions.
For elemental shapes with straight sides a simple mapping may be constructed using

linear interpolation. For example, to map a triangular region [as in figure 3.15(a)] assuming
that the coordinates of the triangle {(xA

1 , x
A
2), (xB

1 , x
B
2), (xC

1 , x
C
2)} are known we can use

x1 = χ(ξ1, ξ2) =
1

2
xA

1 (−ξ2 − ξ1) +
1

2
xB

1 (1 + ξ1) +
1

2
xC

1 (1 + ξ2). (3.14)

A similar approach leads to the bilinear mapping for an arbitrary shaped straight-sided
quadrilateral where only the vertices need to be prescribed. For the straight-sided quadri-
lateral with vertices labeled as shown in figure 3.15(b) the mapping is:

x1 = χ1(ξ1, ξ2) = xA
1

(1− ξ1)
2

(1− ξ2)
2

+ xB
1

(1 + ξ1)

2

(1− ξ2)
2

+xD
1

(1− ξ1)
2

(1 + ξ2)

2
+ xC

1

(1 + ξ1)

2

(1 + ξ2)

2
. (3.15)

When developing a mapping it is important to ensure that the Jacobian of the mapping
to the standard region is non-zero and of the same sign. To ensure this condition is satisfied

3.1. Polynomial Representation 161

ξ1

ξ2

x1

x2

xi = fi
A(ξ1)

}

}xi = fi
C(ξ1)

}xi = fi
D(ξ2)

}
xi = fi

B(ξ2)

ξ1

ξ2 χi(ξ1,ξ2)

Figure 3.16: A general curved element can be described in terms of a series of parametric functions
fA(ξ1), fB(ξ2), fC(ξ1),and fD(ξ2). Representing these functions as a discrete expansion we can
construct a mapping χi(ξ1, ξ2) relating the standard region (ξ1, ξ2) to the deformed region (x1, x2).
[63].

when using the mappings given above, we require all elemental regions to have internal
corners with angles that are less than 180◦ and so are convex.

To describe a straight-sided region we only need to know the values of the vertex locations.
However, to describe a curved region we need more information. Specifically, as illustrated in
figure 3.16 we need a description of the shape of each edge in terms of a series of parametric
functions which we define as fA

i (ξ1), f
B
i (ξ2), f

C
i (ξ1) and fD

i (ξ2). Since our mapping χi(ξ1, ξ2)
maps the whole of the standard region to the curvilinear quadrilateral domain, the parameter
can be taken as the local coordinate ξ1 or ξ2.

A practical algorithm of doing this is the method of blending function as originally pro-
posed by Gordon and Hall [48]. For the quadrilateral region shown in figure 3.16 the linear
blending function is given by

χi(ξ1, ξ2) = fA(ξ1)
(1−ξ2)

2
+ fC(ξ1)

(1+ξ2)
2

+fD(ξ2)
(1−ξ1)

2
+ fB(ξ2)

(1+ξ1)
2

− (1−ξ1)
2

(1−ξ2)
2

fA(−1)− (1+ξ1)
2

(1−ξ2)
2

fA(1)

− (1−ξ1)
2

(1+ξ2)
2

fC(−1)− (1+ξ1)
2

(1+ξ2)
2

fC(1),

(3.16)

where the vertex points are continuous [for example, fA(−1) = fD(−1)] and so the last
four may also be expressed in terms of fB and fD. The mapping function of a curved-
sided element is constructed by approximating the edge function in terms of the Lagrange

3.1. Polynomial Representation 162

polynomial, that is,
fA

i (ξ1) ≈
∑
p=0

fA
i (ξ1,p)hp(ξ1),

and then using the linear blending function equation (3.16).

3.2. Fourier Series Representation 163

3.2 Fourier Series Representation

In this section, we will consider interpolations based on a basis φk(x) = eikx or cos kx or
sin kx. This is the Fourier representation in terms of complex exponentials, and cosines or
sines, respectively; that is we represent an arbitrary function in terms of pure harmonic
functions. The Fourier method works in the frequency domain (or wavenumber domain) to
provide information in the physical domain. This ability to relate frequency and space or
time domains has made the Fourier transform one of the most useful tools of numerical and
mathematical analysis. With the discovery of a fast algorithm in 1965, which reduces its
computational complexity from O(N2) to O(N log2N), the FFT (Fast Fourier Transform)
is also an extremely effective tool in scientific computing.

3.2.1 Convergence

The main idea of Fourier series is to represent a function y = f(x) with a basis consisting of
sines and cosines or complex exponentials. However, unlike the polynomial approximation,
the convergence of Fourier series is not always guaranteed in the point-wise sense for an
arbitrary function. Here, we will follow the exposition of Lanczos to present the basic
material, see [66].

In general, if the function f(x) satisfies the so-called Dirichlet conditions, it converges, but
such conditions are too restrictive. Specifically, a function satisfies the Dirichlet conditions
if:

• f(x) is defined at every point in the interval x ∈ [−π, π].

• f(x) is single valued, piecewise continuous, and finite; e.g., the function f(x) = log x
is excluded.

• f(x) is of bounded variation, that is f(x) cannot have an infinite number of maxima
and minima.

A function that satisfies the Dirichlet conditions can be expanded into the following
convergent infinite series:

f(x) =
1

2
a0 + a1 cosx+ a2 cos 2x+ . . .+ b1 sin x+ b2 sin 2x+ . . . (3.17)

where the Fourier coefficients are computed from:

ak =
1

π

∫ π

−π
f(x) cos kx dx,

and

bk =
1

π

∫ π

−π
f(x) sin kx dx.

Equivalently, we can use complex exponentials as the basis, to write

f(x) =
∞∑

k=−∞
cke

ikx with ck =
1

2π

∫ π

−π
f(x)e−ikxdx. (3.18)

3.2. Fourier Series Representation 164

Also, the two sets of coefficients are related, i.e.,

ak = ck + c−k (3.19)

bk =
1

i
(ck − c−k). (3.20)

The truncated version of the above series is called discrete Fourier series, and has the
form:

fN(x) =
N−1∑

k=−(N−1)

cke
ikx.

As we will see below, it can be constructed by sampling the function at N equidistant points

xk =
2πk

N
, k = 0, . . .N − 1.

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

x

y

(0, 5.2521)

(0, 10.3451)

N=16
N=32

Figure 3.17: Fourier series of δ(x) for N = 16 and N = 32.

Example: The Fourier coefficients of the Dirac function δ(x) are:

ak =
1

π

∫
δ(x) cos kxdx =

1

π

bk =
1

π

∫
δ(x) sin kxdx = 0

ck =
1

2π

∫
δ(x)eikxdx =

1

2π
.

The Fourier series of δ(x) for N = 16 and N = 32 are shown in figure 3.17. The peak is
sharper at higher values of N . The Dirac function does not satisfy the Dirichlet conditions.

3.2. Fourier Series Representation 165

Dirichlet Kernel

We now return to the question of convergence, and specifically the validity of equations
(3.17) or (3.18). What Dirichlet did was to substitute back into equations (3.17) or (3.18)
the expressions for the Fourier coefficients ak, bk, ck and truncate after N terms; then he let
N →∞ to obtain

fN(x) =
∫ π

−π
f(z)Dn(x− z)dz

where

DN (t) =
sin(N + 1/2)t

2π sin
(

t
2

) , Dirichlet kernel

The Dirichlet kernel contains the partial sum

N∑
−N

eikt = e−iNt
[
1 + eit + e2it + . . .+ e2Nit

]
=
ei(N+1/2)t − e−i(N+1/2)t

ei(1/2)t − e−i(1/2)t

=
sin
(
N + 1

2

)
t

sin 1
2
t

.

The above Dirichlet kernel can be thought as a “lens” that focuses the action at the point
z = x. In order to ensure that limN→∞ fN (x) = f(x), it requires a very strong focusing power
around the point t = 0 of the kernel DN(t). Mathematically, this can be expressed by the
following two conditions, see [66]:

• (A) lim
N→∞

∫ π

ε
|DN(t)|d t = 0

• (B) lim
N→∞

∫ ε

−ε
DN(t)d t = 1

Condition (A) is not satisfied by the Dirichlet kernel because its secondary maxima are
comparable to the primary maximum at t = 0.

Fejer’s Construction

A different path to convergence was suggested by Fejer who proposed an alternative sum-
mation procedure. He only imposed the constraint∫ +π

−π
|f(x)|dx <∞ ,

which states that f(x) is an absolutely integrable function. For example, the function y =
log x is absolutely integrable but the function y = 1/x is not. He then considered the partial
sums

S0 =
1

2
a0,

S1 =
1

2
a0 + a1 cosx+ b1 sin x . . . ,

...

SN =
1

2
a0 + a1 cosx+ . . . aN cos Nx+ b1 sin x+ . . .+ bN sin Nx,

3.2. Fourier Series Representation 166

and constructed the sequence:

f1 = S0, f2 =
S0 + S1

2
, . . . , SN =

s0 + s1 + . . .+ sN−1

N
.

This sequence leads to the kernel

FN(t) =
sin2(Nt/2)

2πN sin2(t/2)
,

which is very focused and satisfies conditions (A) and (B). Unlike the previous case, the
Fejer sequence converges at all points including points of discontinuity, where it converges
at the arithmetic mean of the values at either side of the discontinuity.

3.2.2 Periodic Extension of Functions

Consider now that f(x) is defined in the interval x ∈ [0, π]. We can still represent the function
as a Fourier series by appropriately extend it, i.e., define it in the interval x ∈ [−π, x] as
well by representing it either by an even or an odd function. The Fourier series will then
involve cosines or sines, respectively. If f(x) is not zero at the boundary points the reflection
as an odd function will cause a discontinuity at x = 0, π, which will lead to the so-called
“Gibbs phenomenon.” This is manifested by wiggles around the discontinuity that affect the
solution everywhere. This is avoided for an even function.

An example of a periodic extension for the function y = x/π, where x ∈ [0, π] is shown
in figure 3.18. Both odd and even constructions are shown, with the latter resulting in a C0

continuous extended function.

Let us now assume that f(0) = 0 and also f(π) = 0. Then we should expand f(x) using
a sine series as both the (extended) function and first derivative are continuous. We can
compare the convergence rates of the two representations by performing integration by parts,
i.e., for the cosine series

∫
f(x) cos kx dx =

f(x) sin kx

k
− 1

k

∫
f ′(x) sin kx dx

and the second term gives∫
f ′(x) sin kx dx = −f

′(x) cos kx

k
+

1

k

∫
f

′′
(x) cos kx dx .

Thus, the convergence of ∫ π

0
f(x) cos kx dx

is dictated by the boundary term

(−1)kf ′(π)− f ′(0)

k2
∼ 1

k2
.

In contrast, the sine series representation leads to∫ π

0
f(x) sin kx dx→ f(0)− (−1)kf(π)

k
∼ 1

k
.

3.2. Fourier Series Representation 167

π−π 2π 3π−2π−3π (0,0)

y

x

−1

1

π−π 2π 3π 4π−2π−3π−4π (0,0)

y

x

1

Figure 3.18: Periodic extensions of the function y = x/π, where x ∈ [0, π] using an odd function
extension (upper) and an even function extension (lower).

3.2. Fourier Series Representation 168

Now if

f(0) = f(π) = 0⇒
∫ π

0
f(x) sin kx dx→ f

′′
(x) cos kx

k3
→ (−1)kf

′′
(π)− f ′′

(0)

k3

∼ 1

k3
.

Therefore, we conclude that in this case the sine series converges like 1/k3 versus 1/k2 for
the cosine series, and therefore the former is a better approach.

Some Properties of the Fourier Series

Fourier series have many interesting properties, see for example [62]. Two of the most
important ones that are useful in theoretical work are:

• Bessel’s inequality, which states that projections are smaller than the projected
function, and thus:

∫ π

−π

[
1

2
a0 + a1 cosx+ . . .+ bN sinNx

]2
dx ≤

∫ π

−π
[f(x)]2 dx.

• Parseval’s formula, which is a direct consequence of the above, and states that

π[a2
0 + a2

1 + b21 + a2
2 + b22 + . . .] =

∫ π

−π
[f(x)]2dx.

This is obtained from Bessels’ inequality, which in the limit of N →∞ becomes an equality;
it is simply the definition of the Fourier series. Integrating both sides and using orthogo-
nality we obtain Passeval’s formula. This equation is very useful as it connects a vector of
coefficients to a function in a unique way.

3.2.3 Differentiation and the Lanczos Filter

Taking derivatives of Fourier series of functions which are discontinuous is not a straightfor-
ward matter. Lanczos has devised a clever method in dealing with this, which we explain
next.

Let us consider the truncated Fourier series:

fN (x) =
N−1∑

k=−(N−1)

cke
ikx

and from that the truncation error, which we also call the residual

ηN(x) =
∞∑

k=N

(cke
ikx + c−ke

−ikx) = eiNx
∞∑
k0

cN+ke
ikx

︸ ︷︷ ︸
ρN (x)

+e−iNx
∞∑

k=0

c−N−ke
ikx

︸ ︷︷ ︸
ρ−N (x)

.

3.2. Fourier Series Representation 169

Examining the residual more carefully we observe that it consists of two contributions,
ρN (x) which is slowly varying, and of eiNx which is rapidly varying. Thus, the error in the
Fourier series has the structure of a modulated wave. This will have consequences when we
attempt to take the derivative, the error of which is

η′N(x) = iNeiNxρN(x) + eiNxρ′N (x)− iNe−iNxρ−N (x)e−iNxρ′−N (x).

We see from the above that the differentiation of the high frequency wave produces divergent
terms proportional to N , N →∞.

In order to overcome this difficulty, Lanczos introduced a new differentiation operator
DN so that

DN → d

dx
, N →∞.

It is defined by:

DNf = −f(x+ π/N)− f(x− π/N)

2π/N
.

If we apply, for example, this operator to the function f(x) = eikx we obtain:

DN eikx = i
sin k/N π

π/N
eikx =

(
sin πk

N

k π
N

)
(ik)eikx,

where we recognize the term in parenthesis (ik) being the d/dx derivative of eikx. We can
then write

DN = σk
d

dx

where

σk =
sin πk/N

kπ/N
is the Lanczos filter. (3.21)

A plot of the Lanczos filter is shown in figure 3.19. It has the value σk = 1 around the
origin and it tends to zero for k → N . Therefore, the action of this filter is to attenuate the
contribution of the high frequencies.

We now apply the new differentiation operator to the residual obtained above, i.e.,

DNηN(x) = −eiNxDNρN (x)− eiNxDNρ−N(x).

Both ρN (x) and ρ−N(x) are smooth functions and their differentiation produces bounded
terms. In addition, we observe that there are now no divergent terms (e.g. terms proportional
to N) and thus the residual error for the new differentiation tends to zero, and in fact in the
limit as N →∞ the derivative of f(x) is obtained correctly at all points.

Example 1: We first examine the action of the Lanczos filter in the approximation of f(x)
by a Fourier series. We choose the function shown in figure 3.20 which has a discontinuity
at x = 0 and it is constant at values ±1/2 in the rest of the interval xx ∈ [−π, π].

Its Fourier representation is a sine series of the form

y(x) =
2

π

(
sin x+

sin 3x

3
+

sin 5x

5
+ . . .

)
,

3.2. Fourier Series Representation 170

(0,0)

σ
k

k/N0.5 1

1

Figure 3.19: Plot of the Lanczos filter of equation (3.21).

π

−π

1/2

−1/2

(0,0)

y

x

without filter
σ

k
 filter

Fejer filter

Figure 3.20: Step function and approximations using the Fourier series, the Lanczos-filtered series,
and the Fejer construction; N = 8.

3.2. Fourier Series Representation 171

which we also plot in figure 3.20 for N = 8. We observe the Gibbs phenomenon around the
origin and also around x = ±π, i.e., the loss of convergence, which is not improved for higher
values of N . We also plot the filtered Fourier series, i.e., the modified series where each of
the coefficients has been multiplied by σk; in this case a smooth representation is obtained.
Finally, for comparison we also include the Fejer construction, e.g. the arithmetic mean of
the partial sums. We see that this representation is also smooth but not as accurate as the
Lancozs-filtered function.

We now turn to the question of differentiation of the above function. Clearly

y′(x) = 0,

except at x = 0 where the derivative does not exist. The term-wise standard differentiation
of y = f(x) gives

y′N(x) =
2

π
(cosx+ cos 3x+ cos 5x+ . . .)

which does not converge at any point x, except at x = ±π/2. Thus, the singularity at x = 0
propagates its effect globally!

We then apply the Lanczos recipe, i.e.,

y′N(x) =
2

π

[
sin π

2N

π/2N
cosx+

sin 3π
2N

3π
2N

cos 3x+ . . .

]
.

Now y′(x) converges at all points, except at x = 0, where it grows to∞, so that
∫ ε/2
−ε/2 y

′
N(x)dx⇒

1, which is the δ(x) function!

Example 2: We can also use the Lanczos recipe to construct Fourier series expansions
for functions that are not absolutely square integrable, such as the function y = 1/x. To
this end, we consider the function y = log x, where x ∈ [0, π], which is absolutely square
integrable, and thus its Fourier series converges (recall Fejer). We then use the Lanczos
recipe to take its derivative, and observe that

x−1 =
d

dx
log x

thus the Fourier series of

x−1 =
∑
k

σk
d

dx
[Fourier series of log x].

3.2.4 Trigonometric Interpolation

Trigonometric interpolation is a powerful tool in representing data and does not suffer from
some of the problems we encountered with polynomial interpolation for certain functions,
e.g. the Runge function. In fact, we can argue that generally trigonometric interpolation is
superior to polynomial interpolation for data on equidistant grids.

We now consider the approximation problem, where we have a number m of basis func-
tions involved less than the number of available data equidistant points n. Let us denote the
function values by

yα = f(xα),

3.2. Fourier Series Representation 172

and the representation by

ȳ =
m∑

k=1

ckϕk(x), m ≤ n.

As we have already seen in section 3.1.7, in general yα �= ȳ(α), and thus we try to minimize
the square of this error. This is the method of least squares, which we apply here first for
the case of

ϕk(x) = eikx.

The coefficients ck are then computed using the minimization procedure outlined in section
3.1.7 to get:

ck =
1

γk

N∑
α=1

yαϕ
∗
k(xα)

where ϕ∗
k(x) = e−ikx denotes the complex conjugate of ϕk(x). Also, γk are normalization

factors given by

γk =
N∑

α=1

ϕk(xα)ϕ∗
k(xα) .

The orthonormality condition implies that

N∑
α=1

ȳ2
α = c21 + c22 + . . .+ c2m,

and thus the error in the approximation is

η2 =
N∑

α=1

(yα − ȳα)2 =
N∑

α=1

y2
α − (c21 + c22 + . . .+ c2m).

In summary, assuming that the positions of the data points xα are chosen so that:

xα = α
π

N
, a = −N,−(N − 1), . . . , (N − 1), N

then the trigonometric interpolation problem using the complex exponentials as a basis is
given by: 


ȳ(x) =

∑m
k=−m cke

ikx, m ≤ N

ck = 1
2N

∑N
α=−N yαe

−ikxα

where in the second sum the end-values should be multiplied by 1
2
.

We can also employ a real basis, either sines or cosines, to perform the approximation
depending on the function f(x), i.e., if it is odd or even, respectively.

For example, if the function is odd we employ the sine series:

f(x) ≈ b1 sin x+ b2 sin 2x+ . . .+ bm sinmx

where

bk =
2

N

N−1∑
α=1

yα sin kα
π

N
.

3.2. Fourier Series Representation 173

For m = N we do not have an over-determined problem anymore, and thus we can fit
the data exactly to produce a sine interpolation instead of approximation. We note here,
however, that bN is undetermined in this case as we effectively have only (N−1) data points.
This is because f(π) = 0 in the above approximation since sin kx = 0 at x = π. While the
condition f(0) = 0 is satisfied automatically because of the odd property, the condition
f(π) = 0 may not necessarily be true. This means that a Gibbs phenomenon may develop,
which will limit convergence of the approximation to 1/k. To enhance the convergence rate
we can construct the following function:

g(x) = f(x)− (α + βx),

which satisfies the conditions g(0) = g(π) = 0 if

α = f(0) and β =
f(π)− f(0)

π
.

The sine representation of g(x) now leads to convergence rate dictated by 1/k3.

We can also employ the cosine series to approximate an even function. The expansion
now has the form

f(x) ≈ 1

2
a0 + a1 cos x+ . . .+ am cosmx,

where

ak =
2

N

N∑
α=0

yα cos kα
π

N
.

Here again in the summation above the end-values are multiplied by 1/2. Notice also that to
obtain an interpolation instead of an approximation the last term is replaced by 1/2aN cosNx.

Remark: All the above summations can be executed efficiently using the fast Fourier trans-
forms covered in the next section.

3.2.5 Noisy Data

We can also use the properties of trigonometric interpolation to process noisy data, i.e., to
remove the major part of the noise which is superimposed on our data; we want to clean up
our data! Wavelets is a great way of doing that (see section 3.3) but we can also use Fourier
analysis.

We have seen in the previous section that we can construct a sine Fourier series to
approximate a function, which converges as ∼ 1/n3. On the other hand, any amount of
noise, which can be thought of as a pulse of short duration, would lower the convergence of
the series significantly, most probably to ∼ 1/n.

• The key idea is then to differentiate between good data and noise by looking at the decay
of coefficients, e.g. 1/n3 versus 1/n.

Let us assume that we sample the function f(xk) over an interval L at the points

xk = 0, h, 2h, . . . , Nh.

3.2. Fourier Series Representation 174

Then, as before, we construct a new function g(x) based on

{
g(x) = f(x)− (α + βx)

g(−x) = −g(x)

which leads to

g(x) = f(x)− f(0)− f(L)− f(0)

L
x.

We then expand

g(x) = b1 sin
π

L
x+ b2 sin

2π

L
x+ . . .

where

bk =
2

N

N−1∑
α=1

g(αh) sin kα
π

N
.

From the physical point of view, we may not want any overtones contained in the harmonic
analysis of f(x) beyond a “cutoff” frequency ν0 so we set:

bk = 0, k ≤ m

so that
mπ

L
x = 2πν0x

⇒ m
N

= 2ν0h .

Therefore, we can represent the actual data by

g(x) ≈
m∑

k=1

bk sin k
π

L
x,

up to wavenumber (or frequency) m determined from the equation in the box. In practice,
the lower wavenumbers are also contaminated, i.e., the coefficients bk ≤ m, are also influenced
by noise but not as much as the upper part of the spectrum which is produced entirely by
noise.

3.2.6 Matrix Representation

Let us assume again that the function f(x) is sampled at N equidistant points with spacing
2π
N

between successive neighbors, with the first point at x = 0. The values of the function
represented by the truncated Fourier series are given by

fn =
N−1∑
k=0

cke
ikn 2pi

N , n = 0, 1, . . . , N − 1

Let

w ≡ e
2πi
N

3.2. Fourier Series Representation 175

where wN = e2πi = 1, so w is the N th root of unity. Then:

fn =
N−1∑
k=0

ckw
kn.

We can then determine the Fourier coefficients ck by solving the following linear system

c0 + c1 + c2 + . . .+ cN−1 = f0

c0 + c1w + c2w
2 + . . .+ cN−1w

N−1 = f1

c0 + c1w
N−1 + c

2(N−1)
2 + . . .+ cN−1w

(N−1)2 = fN−1

which we rewrite in matrix form as


1 1 . . . 1

1 w wN−1

...

1 wN−1 w(N−1)2







c0

c1

...

cN−1




=




f0

f1

...

fN−1



.

The coefficients matrix, which we denote by W, has a special structure similar to the
Vandermonde matrix defined in section 3.1.1 of polynomial interpolation. It can be readily
inverted, since:

WW∗ = NI⇒W−1 =
1

N
W∗,

where W∗ is the complex conjugate of matrix W. This can be easily verified by considering
any entry of a matrix resulted by multiplying W with W∗, and use orthogonality of vectors
for the row-column combination.

Note that we can normalize the matrix W to produce a unitary matrix U by a simple
rescaling, i.e.,

U =
W√
N
.

Circulant Matrices

We first give the definition:

• A circulant matrix is a periodic matrix with constant diagonals of the form

C =




c0 cN−1 cN−2 · c1
c1 c0 cN−1 · c2
...

...
...

...
cN−1 cN−2 cN−3 · c0


 .

3.2. Fourier Series Representation 176

There is a special relationship between the circular matrix and the Fourier matrix W. In
general, the matrix C can be factorized as

C = QΛQ−1

where Q contains the eigenvectors of C as columns and Λ is a diagonal matrix containing
the eigenvalues. For a circulant matrix

Q = W,

that is the eigenvectors of the circulant matrix C are the columns of the Fourier matrix W.
This can be shown directly by substituting the columns of W into the eigenproblem

Cx = λx.

3.2.7 The Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) leads to a very smart factorization of the Fourier matrix W
of size N . It produces a product of about O(log2N) matrices with only about O(N log2N)
non-zero entries (total). Therefore, the cost to compute the discrete Fourier transform or its
inverse is O(N log2N) instead of O(N2). The term log2N suggests a fan-in type algorithm
(see section 2.3.2) – this is what we will explain in this section.

We start by considering the system

C = Wf ,

where W is the Fourier matrix of order N×N , f is the vector containing the function values
at N points, and C is the vector of the Fourier coefficients. We recall the Vandermonde
structure of the Fourier matrix, for example for N = 4 we have

W4 =




1 1 1 1

1 w4 w2
4 w3

4

1 w2
4 w4

4 w6
4

1 w3
4 w6

4 w9
4




=




1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i




where w4 = e
2πi
4 = cos 2π

4
+ i sin 2π

4
= i.

The special structure of W4 as well as the properties of the principal roots of unity
suggest that the matrix W8 relates to W4. This is because w2

8 = w4, and in general

w2
N = wM ,

where M = N
2
.

For example, the second row of W8 is

[1 w8 w2
8 w3

8 w4
8 w5

8 w6
8 w7

8] ,

3.2. Fourier Series Representation 177

which we rewrite as

[1 w8 w4 w8w4 w2
4 w8w

2
4 w3

4 w8w
3
4] .

This can be further split into two subvectors of half size. The first one involves only w4, i.e.,

[1 w4 w4
4 w3

4]

formed by taking every other entry, starting with the first one. The second subvector is then:

w8[1 w4 w2
4 w3

4],

and it is the same as the first subvector with a pre-factor w8.

We thus see that the rows of W8 are closely related to W4, and we can derive similar
relations for W10, W32 and so on. This is the key observation that led Cooley & Tukey in
the formulation of FFT in 1965 [17]. It is based on the old idea of divide-and-conquer .
Assuming that we have a Fourier matrix WN where N = 2m, then we can split the matrix
in successive steps to smaller and smaller matrices. This is only part of the job as we still
need to perform matrix-vector multiplies, and finally to compute the Fourier coefficients.

More formally, the nth function value is:

fn =
N−1∑
k=0

wnk
N ck =

M−1∑
k=0

w2nk
N c2k +

M−1∑
k=0

w
(2k+1)n
N c2k+1,

where M = N
2

or

fn =
M−1∑
k=0

wnk
M cek + wn

N

M−1∑
k=0

wnk
M cok (3.22)

since w2
N = wM ; also we have denoted by ce and co the even and odd parts of the vector

c, respectively. Notice that the above formula gives us only the first half of the Fourier
coefficients from n = 0, . . . (M − 1). To obtain the other half we substitute (n+M) instead
of n and use the fact that

w
k(n+M)
M = wnk

M · wkM
M = wnk

M

and also
wn+M

N = wn
N · wM

N = wn
N · e

2πiM
N = wn

N · eπi = −wn
N .

Therefore:

fn+m =
M−1∑
k=0

wnk
M cek − wn

N

M−1∑
k=0

wnk
M cok . (3.23)

The matrix-vector product Wc is then computed from equations (3.22) and (3.23).
The above is the first level of splitting into even and odd parts. However, assuming

N = 2m, we can repeat this process m more times in a recursive fashion. The cost at each
level includes the two matrix-vector multiplies of length M = N/2 plus the multiplication
by the prefactor wk

N in equation (3.22) and (3.23). The basic cost model for this recursion is

C(N) = αC
(
N

2

)
+ β

(
N

2

)
,

3.2. Fourier Series Representation 178

which leads to the estimate
C(N) ∼ O(5N log2N)

versus O(8N2) operations for the direct computation.

Remark 1: Although the FFT is a recursive algorithm, traditional implementations are
based on simple nested loops, which have been proved to be more efficient. However, on
more modern architectures where cache utilization is important, the recursive procedure is
better, see FFTW in section 3.2.8.

Remark 2: In addition to its computational simplicity, the FFT has less round-off error
than the direct summation approach.

Remark 3: For N which has the general form

N = 2α3β4γ5δ6ε,

it is still possible to perform FFTs by splitting into several parts and not only to odd and
even components, see [87]. The corresponding cost is

O
(
N
(
5α+ 9

1

3
β + 8

1

2
γ + 13

3

5
δ + 13

1

3
ε− 6

))
.

Remark 4: The real-to-real transform can be computed in half the number of operations,
e.g., in O

(
5
2
N log2N

)
. This is done by defining

gk = f2k + if2k+1, k = 0, 1, . . .M,

where M = N/2. Then we take an M-length transform of gk and set cm = c0. We extract all
the coefficients from

ck =
1

2
(ag̃k + g̃∗M−k)−

i

2
e

2πik
N [g̃k − g̃∗M−k] k = 0, 1, . . . ,M − 1

where we have denoted the Fourier coefficients of g with g̃, and the star denotes complex
conjugate.

3.2.8 The Fastest Fourier Transform in the West - FFTW

The FFTW is a C subroutine that contains adaptive software for real and complex one-
dimensional and multi-dimensional FFTs. Unlike conventional implementations that use
loops instead of recursion, in the FFTW explicitly recursive implementation is followed
because of theoretical evidence that divide-and-conquer algorithms improve locality.

FFTW is not a new FFT algorithm but it is simply a smart implementation that attempts
to exploit a given processor architecture by interacting with its pipeline and its memory
hierarchy. It derives its name (the Fastest Fourier Transform in the West) from the fact
that in benchmark tests it has proven to be faster than any other publicly available FFT
software. FFTW was developed by Frigo & Johnson at MIT in the late 1990s [40]. It is
similar in spirit with the ATLAS software described in chapter 2. The key idea is that

3.2. Fourier Series Representation 179

the standard Cooley-Tukey algorithm is adapted to the specific hardware employed in the
computation.

In order to adapt to any hardware, FFTW runs several diagnostic tests in a pre-processing
stage. More specifically, the code is divided into two parts:

• The executor, and

• The codelet generator.

The executor computes the transform by first building a plan. This plan consists of
a sequence of instructions that specifies the operation of the executor. The codelets are
highly optimized fragments of C code that the executor uses. What exactly combination
of codelets will be used depends on the plan, which contains diagnostics and measurements
for the particular computer employed. The plan itself is also activated at runtime but it
is determined before the actual computation starts. It employs dynamic programming and
a cost minimization algorithm, which targets the execution time and not the number of
floating point operations.

Therefore, the plan is created first as follows:

fftw_plan fftw_create_plan(int n, fft_direction dir, int flags)

This function creates a plan for computing an one-dimensional Fourier transform. Here
n is the size of the transform, which can be an arbitrary integer, dir = −1 or 1 are
flags that denote direction and can be substituted by the aliases FFTW FORWARD and
FFTW BACKWARD, respectively. Also, flags is a boolean,which provides different op-
tions. For example, the FFTW MEASURE finds the optimal plan by computing several
FFTs and measuring their execution time. Clearly, this takes time so the first time around
when you run FFTW it is expensive. However, the computed plan can be used for subse-
quent runs which are really fast! An alternative is to use the flag FFTW ESTIMATE
which provides a “best-guess” of an optimal plan without actually running any diagnostic
FFTs.

A typical code that uses the complex one-dimensional FFTW looks like:

#include<fftw.h>

...

{

fftw_complex in[N], out[N];

fftw_plan p;

...

p=fftw_create_plan(N,FFTW_FORWARD,FFTW_MEASURE);

...

fftw_one(p,in,out);

...

fftw_destroy_plan(p);

}

3.2. Fourier Series Representation 180

An example of typical performance of the one-dimensional FFTW is provided in figure
3.21 which shows the superior performance of FFTW on the Pentium-4 processor. We also
compare the FFTW MEASURE versus the FFTW ESTIMATE options and show that
even for this relatively small size N of the transform tested, the optimal plan that the former
uses makes a substantial difference.

N

M
ic

ro
-s

ec
o

n
d

s

101 102 103

10-1

100

101

102

FFTW (measure)
FFTW (estimate)
FFTPACK (fortran)
FFTPACK (f2c)

Figure 3.21: Comparisons of FFTW with other FFT implementations on the 1.7GHz Pentium-4
processor. The other FFT implementations are in C and Fortran.

FFTW has also been implemented for parallel environments both for shared memory as
well as distributed memory platforms. In particular, the MPI FFTW routines use distributed
data, with the array divided according to the rows; that is, each processor gets a subset of
the rows of data. FFTW supplies a routine that reports how much data resides on each
processor. A typical name of the MPI FFTW routines is

#include<fftw_mpi.h>

...

fftwnd_mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER);

...

The above uses a complex two-dimensional MPI FFTW.

For details on how to use the FFTW, including the MPI FFTW the reader should consult:

• www.fftw.org,

which is the official internet site maintained by the developers of this adaptive software.

3.3. Wavelet Series Representation 181

3.3 Wavelet Series Representation

Wavelets are an alternative, relatively recent, family of basis functions to represent a function
in the form

f(x) =
∑

djkψ(2jx− k),
where djk are the unknown coefficients. They can be orthonormal or not, smooth or not,
compact or not. They allow a decomposition of a function in such a way that its wavenumbers
depend on the position x. They can also represent segmented functions, e.g., the multi-step
function shown in figure 3.22.

Figure 3.22: Multi-step function.

Such a function is almost impossible to be represented with a Fourier series. However,
using wavelets we can construct a special basis, called the Walsh basis functions, see figure
3.23, which can approximate the multi-step function very accurately. Specifically, the func-
tion shown in figure 3.22 is represented by the first six basis functions of the Walsh family
using the following coefficients (from first to sixth):

0.3200; 0.9601; 0.7266; 0.4120; 0.7446; 0.2679

We note here that the Walsh basis functions are defined in the same interval as the
original function, i.e. the basis is global not local, similar to the Fourier representation. In
contrast, some of the best wavelets, as we will see in the following, have a compact support,
that is they are local.

3.3.1 Basic Relations

There are two basic concepts that are used in this field: the scaling function φ(x) and the
wavelet ψ(x). More specifically, we use the integer translations, i.e.,

φ(x− k) and ψ(x− k), k ∈ Z
and also, their dilations, i.e.,

φ(2jx) and ψ(2jx), j ∈ Z.

3.3. Wavelet Series Representation 182

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.23: First six basis functions of the Walsh family.

3.3. Wavelet Series Representation 183

Almost always we need both translations and dilations, which we obtain by combining the
above concepts, i.e.,

φ(2jx− k) and ψ(2jx− k).
Here, we will refer to 2−j as the scale of level j.

Now using one of the oldest scaling function and wavelets, from the Haar family, we can
construct the entire Walsh family. The basic Haar scaling function is a (positive) constant
pulse, while the Haar basic wavelet is a combined positive-negative pulse – sometimes we
will refer to it as the mother Haar wavelet. In figure 3.24 we show how to construct the first
two Walsh basis functions from the Haar basic units.

0 1 2

=

0 1 2 0 1 2

+

W (x) ϕ(x)
1

ϕ(x−1)

0 1 2

=

0 1 2 0 1 2

+

W (x) Ψ(x)
2

Ψ(x−1)

0

−1

1

0

−1

1

0

−1

1

Figure 3.24: The first Walsh basis function (upper) is expressed in terms of the Haar scaling
function. The second Walsh basis function (lower) is expressed in terms of the Haar wavelet.

In fact, we can generate the entire Walsh family by using the mother wavelet; we only
need the scaling function for the very first Walsh basis. This decomposition of a function
into hierarchical components is known as multi-resolution analysis; we will generalize it to
arbitrary functions later. Actually, the functions cannot quite be arbitrary – they need to
be in L2, that is in the space of absolutely square integrable, similar to the condition that
Fejer considered in his Fourier construction, see section 3.2.1.

In addition to L2, the following two spaces are also very useful in the following:

Vj =




∞∑
k=−∞

cjkφ(2jx− k):
∞∑

k=−∞
|cjk|2 <∞




and

Wj =




∞∑
k=−∞

djkψ(2jx− k):
∞∑

k=−∞
|djk|2 <∞


 .

Based on the above definitions, we have the following important hierarchy of spaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 . . . ⊂ L2.

We conclude that the subspaces for the scaling functions are nested. Schematically, we have,
for example, for the Haar scaling function the picture shown in figure 3.25.

3.3. Wavelet Series Representation 184

0 1

∋V0
ϕ(x)

0

∋V1
ϕ(2x)

10.5

Figure 3.25: Schematic illustration of the spaces V0 and V1.

Using the Haar wavelet we can also infer a relationship between the spaces Vj and Wj .
Let us, for example, consider the scaling function φ(2x− 1), then we can write

φ(2x− 1) =
1

2
φ(x)− 1

2
ψ(x), (3.24)

as shown in the sketch of figure 3.26.

0 0.5 1

=

0 0

−

ϕ(2x−1) 0.5 ϕ(x) 0.5 Ψ(x)

0

−1

1

0

−1

1

0

−1

1

0.5 1 0.5 1

Figure 3.26: Schematic illustration of equation (3.24).

In terms of spaces the above equation can be written as V1 = V0 +W0, but it turns out
that this can be generalized to:

Vj+1 = Vj +Wj , ∀j ∈ Z.

In addition, the Haar scaling function and wavelet are orthogonal, which means that the
corresponding spaces are orthogonal, i.e.,

Vj ⊥Wj .

In general, however, the above orthogonality condition may not be valid for all types of
wavelets, and instead the following condition is satisfied

Vj ∩Wj = ∅ ∀j ∈ Z

that is, the intersection of the scaling function and wavelet spaces is the empty set.
The fact that there is hierarchy in spaces Vj ⊂ Vj+1, and also that Wj ⊂ Vj+1, leads to

the following two fundamental equations, also known as two-scale relations:

φ(x) =
∑
k

pkφ(2x− k) (3.25)

3.3. Wavelet Series Representation 185

and
ψ(x) =

∑
k

qkφ(2x− k). (3.26)

Thus, the wavelet can be obtained from the scaling function. For special cases, e.g. or-
thonormal wavelets, we have

ψ(x) =
∑
k

(−1)kp1−kφ(2x− k), (3.27)

which will be discussed in detail later.

Examples:

• For the Haar wavelet ψ(x) = φ(2x)− φ(2x − 1) where φ(x) is the Haar scaling (box)
function, we have: p0 = 1 and p1 = 1.

• For the hat wavelet, corresponding to hat function N2(x):ψ(x) = φ(2x)− 1
2
φ(2x−1)−

1
2
φ(2x+ 1), the coefficients are: p0 = 1/2, p1 = 1 and p2 = 1/2 from equation (3.27).

3.3.2 Dilation Equation

The nested property of the spaces Vj leads to the two-scale dilation equation of the form

φ(x) =
∑
k

pkφ(2x− k).

For example, for the Haar scaling function, we have that

φ(x) = φ(2x) + φ(2x− 1)

since
p0 = p1 = 1.

pk = 0, |k| > 1.

Let us also consider the new scaling function we introduced above

φ(x) = N2(x) =
∫ 1

0
N1(x− t)dt,

where N1(x) is the box Haar function. Then, the dilation equation is

φ(x) =
1

2
φ(2x) + φ(2x− 1) +

1

2
φ(2x− 2)

since

p0 =
1

2
; p1 = 1; p2 =

1

2

as we have already seen above for the wavelet ψ(x), and

pk = 0, |k| > 2.

3.3. Wavelet Series Representation 186

A

B C
0 1 1.5 20.5

G

F E

H
D

=

B D

F

0.5ϕ(2x)

D C

E

0.5ϕ(2x−2)

+ +

A

G H
ϕ(2x−1)

ϕ(x)

Figure 3.27: Solution of the dilation equation for the hat wavelet N2(x).

Schematically, this can be justified as shown in figure 3.27.

So far we have shown that the coefficients pk form a finite set, typically very small
consisting of the first few non-zero values. This shows compact support, but there are cases
that pk are all non-zeros. How to obtain them is not always easy. Dilation equations are
interesting on their own right, and here we review three different approaches of solving them,
see [85]:

Iteration for Dilation Equation

Here we iterate on the two-scale dilation equation

φn(x) =
∑
k

pkφn−1(2x− k)

where
∑

k pk = 2. This condition is based on the normalization
∫
φ(x)dx = 1 and can be

derived by multiplying the dilation equation by 2 and integrating, i.e.,

2
∫
φdx =

∑
k

pk

∫
φ(2x− k)d(2x− k)⇒∑

k

pk = 2.

To initialize we need to set the value of φ0 for n = 1. For Daubechies wavelets (see below)
we set φ0 equal to the Haar scaling function N1(x). An appropriate initial choice is made
for other families of wavelets.

• If p0 = 2 then pk = 0, |k| > 1 and the iteration above converges to a delta function.

• If p0 = p1 = 1 the iteration converges to the Haar scaling function, i.e., we have
invariance, since φn = φ0.

• If p0 = 1
2
, p1 = 1; p2 = 1

2
we recover the hat function N2(x) as demonstrated in figure

3.27.

• If p0 = 1
8
; p1 = 4

2
; p2 = 2

3
; p3 = 1

2
; p4 = 1

8
the iteration converges to the cubic B-spline

N4(x). This can be written as

N4(x) =
∫ 1

0
N3(x− t)dt,

3.3. Wavelet Series Representation 187

where N3(x) is the quadratic B-spline, which in turn is

N3(x) =
∫ 1

0
N2(x− t)dt

and N2(x) is the hat function of figure 3.27.

Fourier Transform for Dilation Equation

We can also obtain the scaling function by Fourier transforming the two-scale difference
equation, i.e.,

φ̂(z) =
∑
k

pk

∫
φ(2x− k)eizxdx

=
∑
k

pke
ikz/2

∫
φ(2x− k)ei 2x−k

2
z 1

2
d(2x− k)

=

(
1

2

∑
k

pke
i kz

2

)
·
∫
φ(t)eitz/2dt

≡ P
(
z

2

)
· φ̂
(
z

2

)

where

P (z) =
1

2

∑
k

pke
ikz (3.28)

is the transfer function and P (0) = 1. We have thus obtained

φ̂(z) = P
(
z

2

)
· φ̂
(
z

2

)

where also φ̂(0) = 1 =
∫
φ(x)dx by the normalization condition.

Using the above equation for φ̂ we have that:

φ̂
(
z

2

)
= P

(
z

4

)
· φ̂
(
z

4

)

and so on for φ̂
(

z
4

)
, φ̂
(

z
8

)
, etc. Thus,

φ̂(z) = ΠN
n=1P

(
z

2n

)
· φ̂
(
z

2N

)
,

and for

N →∞, z

2N
→ 0⇒ φ̂

(
2

2N

)
→ 1.

Thus

φ̂(z)→ Π∞
n=1P

(
z

2n

)
,

and the inverse transform of φ̂(z) gives the scaling function φ(x).

For example:

3.3. Wavelet Series Representation 188

• Let p0 = 2, then P (z) = 1⇒ φ̂(z) = 1⇒ φ(x) = δ(x), the Dirac function.

• Let p0 = p1 = 1, so P (z) = 1
2
[1 + eiz] . Then

P
(
z

2

)
P
(
z

4

)
P
(
z

8

)
. . . P

(
z

2N

)
=

1

2
(1 + eiz/2)

·1
2
(1 + eiz/4) · 1

2
(1 + eiz/8) . . .

1

2
(1 + e

iz

2N)

⇒ 1− eiz

(−iz) =
∫ 1

0
eizxdx.

The inverse transform then gives φ(x) = N1(x), which is the Haar scaling function.

Recursion for Dilation Equation

The idea here is that we can construct φ(x) numerically, point-by-point. That is, assuming
that we know φ(k) (at the integer points), then we can use the dilation equation to obtain
φ at k

2
, then at k

4
and ultimately at k

2N . The question then becomes how do we obtain the
values φ(k)? These are obtained as solutions of the eigenvalue problem constructed from the
algebraic equations at points

x = 0,±1,±2, . . .

within the range of support. Specifically, we set up an eigensystem

φ = −Pφ

where
φ = [. . . φ(1), φ(2), φ(3) . . .]T

and P is a relatively sparse matrix containing the coefficients pk.
We will demonstrate this approach later for the Daubechies wavelets.

3.3.3 Discrete Wavelet Transform: Mallat’s Algorithm

Let f(x) ∈ L2, and we want to approximate it by

fn(x) ≈ f(x), fn(x) ∈ Vn.

Then, given the hierarchy of spaces and the fact that

Vj+1 = Vj +Wj ,

a unique decomposition of fn(x) in terms of its components gj(x) ∈Wj exists. In particular,
we can write

fn(x) = fn−m(x)︸ ︷︷ ︸
∈Vn−m

+


gn−m(x) + . . .+ gn−1(x)︸ ︷︷ ︸

∈Wn−m ... Wn−1


 , (3.29)

where m is a positive integer that depends on the filter size.

3.3. Wavelet Series Representation 189

That is, the function is decomposed into one component (the “blur” or “DC”) that can
be represented in the space Vn−m of scaling functions plus contributions at various scales that
can be represented by wavelets. This decomposition makes sense as the “blur” represents
the “mean” while the wavelets represent the “fluctuations,” since they have zero mean by
construction. The wavelet contributions correspond to the following wavelet series

gj(x) =
∑
k

djkψjk(x).

Most but not all wavelets are orthogonal, so here we extend the concept of orthogonality
to bi-orthogonality. To this end, we introduce the dual wavelet ψ̃(x) ∈ L2, where the following
inner product expresses the bi-orthogonality condition :

< ψjk(x), ψ̃jk(x) >=
∫ ∞

−∞
ψjk(x)ψ̃

∗
	m(x)dx = δj	δkm,

where the star ∗ denotes complex-conjugate – some wavelets are complex functions. Also,
the following normalization condition is usually employed:

ψjk = 2j/2ψ(2jx− k)

to relate the wavelet basis functions to mother wavelet.

With the above definitions, we can now obtain the discrete wavelet transform in the
general case. To this end, we re-write equation (3.29)

gj(x) = fn(x)− [fj(x) + gn−1(x) + . . .+ gj+1(x)],

and taking the inner product, we get

< gj(x), ψ̃(2jx− k) >=< fn(x), ψ̃(2jx− k) >,

as the rest of the terms drop out due to bi-orthogonality. Thus,

djk = < gj(x), ψ̃jk(x) >=< fn(x), ψ̃jk(x) > (3.30)

= 2j/2
∫ ∞

−∞
fn(x)[ψ̃(2jx− k)]∗dx,

which is the discrete wavelet transform of fn(x).

We now turn to searching for algorithms that enable us to decompose or reconstruct the
approximation fn(x) fast. Using the scaling function as basis, we can write

fn(x) =
∑
k

cnkφ(2nx− k).

Also, from the relation V1 = V0 +W0, we have that

φ(2x−m) =
∑
k

[am−2kφ(x− k) + bm−2kψ(x− k)] ∀m ∈ Z. (3.31)

3.3. Wavelet Series Representation 190

Similarly, from Vn = Vn−1 +Wn−1, we conclude that

fn︸︷︷︸
∈Vn

(x) = fn−1︸ ︷︷ ︸
∈Vn−1

(x) + gn−1(x)︸ ︷︷ ︸
∈Wn−1

,

where

fn−1(x) =
∑
k

cn−1,kφ(2n−1x− k) (3.32)

gn−1(x) =
∑
k

dn−1,kψ(2n−1x− k). (3.33)

The above relations are useful in helping us to obtain the set of coefficients

{cnk} and {dnk} from {cn−1,k} and {dn−1,k}.

Comparing for example, equations (3.31) with (3.32) and (3.33), we obtain:



cn−1,k =

∑
m

am−2kcn,m

dn−1,k =
∑
m

bm−2kcn,m

The above operations represent discrete convolution and can be performed fast. More pre-
cisely, there should be a change sign, between e.g., am−2k → a2k−m; also, only the double-
indexed entries should be sampled. The above procedure is known as the Mallat algorithm
[69]. It can compute all coefficients in O(N) arithmetic operations, i.e., even faster than the
FFT with O(N log2N) arithmetic operations.

This analysis gives the decomposition of fn(x). In terms of reconstruction i.e., to obtain
fn(x) from {fn−1(x) and gn−1(x)}, we start with the two-scale difference equation

φ(x) =
∑
k

pkφ(2x− k)

ψ(x) =
∑
k

qkφ(2x− k)

and thus
cn,k =

∑
m

[pk−2mcn−1,m + qk−2,mdn−1,m],

where again the aforementioned corrections are needed to make the above an exact convo-
lution, which can be computed fast. This is the inverse Mallat’s algorithm.

3.3.4 Some Orthonormal Wavelets

Orthonormal wavelets form a very special class of basis functions. They satisfy the condition
among spaces at different scales

Wi ⊥ Wj, i �= j.

3.3. Wavelet Series Representation 191

Also, the space of finite-energy function L2 can be represented by an orthogonal sum of the
subspaces Wj , which we express as

L2 = ⊕∞
−∞Wj .

It is read as “the direct sum of Wj” and we refer to it as the wavelet decomposition of L2.

The condition of orthonormality is expressed best by the Fourier transform. That is, if

∞∑
k=−∞

|φ̂(ω + 2πk)|2 = 1

then the function φ(x) ∈ L2 is orthonormal, see [16]. One can show that the orthogonality
condition between Wj and Vj, and correspondingly between ψ(x) and φ(x), gives

qk = (−1)kp1−k,

that is, the wavelet coefficients are determined solely by the scaling function coefficients, so

ψ(x) =
∑
k

(−1)kp1−kφ(2x− k). (3.34)

Based on that, the orthogonal decomposition V1 = V0 ⊕W0 leads to:

φ(2x−m) =
∑
k

1

2
[pm−2kφ(x− k) + (−1)mp2k−m+1ψ(x− k)],

which is a decomposition relation of function φ(x) and ψ(x).

Next, we provide some examples of orthonormal wavelets.

Haar Wavelet

The oldest of all is the Haar wavelet, which we have already studied. It corresponds to the
box scaling function with p0 = p1 = 1 and pk = 0 for all the other coefficients (k > 1). Using
equation (3.34), we can write:

ψ(x) = φ(2x)− φ(2x− 1)

= N1(2x)−N1(2x− 1).

Shannon Wavelet

The Shannon wavelet uses the scaling function

φ(x) =
sin πx

πx

3.3. Wavelet Series Representation 192

which is identical to the Lanczos filter, see section 3.2.3. The coefficients of the Shannon
scaling function are

pk =




1, k = 0

(−1)
k−1
2

2

πk
, k = 2m− 1

0, k = 2m

Based on equation (3.34), we then obtain

ψ(x) =
∑
k

(−1)kp1−kφ(2x− k)

which leads to equation

ψ(x) =
sin 2πx− cosπx

π(x− 1
2
)

. (3.35)

A plot of the Shannon wavelet is shown in figure 3.28 .

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.28: Shannon wavelet.

Orthonormal Spline Wavelets

We have discussed splines in section 3.1.6 and here we examine how we can use them as
orthonormal wavelets. In general, the translates of B-splines are not orthogonal, and thus a
special orthonormalization procedure needs to be employed. The result is that the orthonor-
malized splines will no longer be polynomials.

Following Chui [16], we first define the B-splines recursively from

Nm(x) =
∫ ∞

−∞
Nm−1(x− t)N1(t)dt =

∫ 1

0
Nm−1(x− t)dt,

3.3. Wavelet Series Representation 193

where N1(t) is the box function. The two-scale equation for the B-splines is

Nm(x) =
m∑

k=0

2−m+1

(
m
k

)
Nm(2x− k),

and Nm(x) is an (m− 1)-order polynomial with continuity (smoothness)

Nm(x) ∈ Cm−2.

Plots are shown in figure 3.29 for various orders; they are smooth but not orthonormal.

−1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2
m=1
m=2
m=3
m=4
m=5

Figure 3.29: B-splines (cardinal) from first- to fifth-order.

In order to orthonormalize Nm(x) to produce N⊥
m(x), Chui has introduced the complex

conjugate of the reflection of Nm(x), i.e., N∗
m(−x) as the dual function. To this end, we have

N2m(m+ x) =
∫ ∞

−∞
Nm(t)N∗

m(t− x)dt =
1

2π

∫ 2π

0




∞∑
k=−∞

|N̂m(ω + 2πk)|2

 eiωxdω,

where the last term refers to the Fourier transform of Nm(x).
Now defining

Em(z) ≡
m−1∑

k=−m+1

N2m(m+ k)zk

the orthonormalization procedure leads to

N⊥
m(ω) =

N̂m(ω)

[Em(z2)]1/2
, z = e−i ω

2 .

Also, the transfer function can be expressed via Em(z), see [16]:

P (z) ≡ 1

2

∑
k

pkz
k =

(
1 + z

2

)m
[
Em(z)

Em(z2)

]1/2

.

3.3. Wavelet Series Representation 194

Finally, the mth-order orthonormal wavelet, also known as Battle-Lemarié wavelet is
given by

ψm(x) =
∑
k

(−1)kp1−kN
⊥
m(2x− k). (3.36)

In practice, it is more convenient to define the Battle-Lemarié wavelet in terms of its Fourier
transform:

ψ̂m(ω) = −
(

4

iω

)m [
sin2m

(
ω

4

)]
z ·
[

Em(−z)
Em(z)Em(z2)

]1/2

,

where z = e−iω/2.
A plot of the Battle-Lemarié wavelet is shown in figure 3.30 for m = 2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−5

0

5

10

15

Figure 3.30: Battle-Lemarié wavelet of order m = 2 (linear).

The Daubechies Wavelets

The Daubechies wavelets are very special because they are very compact but also orthonor-
mal – no special procedure is needed to orthonormalize them. They can be defined by means
of the transfer function

P (z) =
1

2

N∑
n=0

pnz
n =

(
1 + z

2

)m

SN−m(z),

where SN−m(z) is a polynomial of degree (N −m) and SN−m(1) = 1; the latter implies that
P (1) = 1. How to compute SN−m is not trivial and the interested reader is referred to [22].

The inverse Fourier transform of the product

φ̂m(ω) = Π∞
j=1P

(
e−iω/2j

)
gives the Daubechies scaling function.

3.3. Wavelet Series Representation 195

An alternative way is to use iteration, as discussed earlier, e.g.,

φm;j+1(x) =
N∑

k=0

pkφm;j(2x− k)

starting with φm;0 = N2(x), the linear B-spline, and iterate to a converged solution to obtain
φm(x).

Having obtained the scaling function, the Daubechies wavelets can then be obtained from

ψm(x) =
1∑

k=−N+1

(−1)kp1−kφm(2x− k).

The Daubechies scaling function and wavelet of order m = 4 are shown in figure 3.31, and
of order m = 7 in figure 3.32.

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
φ

D;4
(x)

−3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5
ψD;4(x)

Figure 3.31: Scaling function (left) and wavelet (right) of the Daubechies family; m = 4.

0 2 4 6 8 10 12 14
−1

−0.5

0

0.5

1

1.5

2
φ

D;7
(x)

−6 −4 −2 0 2 4 6 8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
ψD;7(x)

Figure 3.32: Scaling function (left) and wavelet (right) of the Daubechies family; m = 7.

As we see from the plots, the Daubechies wavelets are compact but not very smooth;
in fact, here polynomial smoothness has been sacrificed for compactness! The smoothness

3.3. Wavelet Series Representation 196

of the Daubechies wavelets increases with the order but only by about half derivative each
time; e.g., ψ4 is C0.55, i.e., fractionally continuous. In contrast, we recall that the B-splines
with m = 4 are C2 continuous.

More specifically, the Daubechies wavelet of fourth-order (m = 4) is defined by the
coefficients:

p0 =
1 +
√

3

4
; p1 =

3 +
√

3

4

p2 =
3−√3

4
; p3 =

1−√3

4
.

We can now use these coefficients to construct φ4(x), the scaling function, by recursion, as
discussed earlier. First, we set up an eigenvalue problem by applying the dilation equation
at the integer points x = 1 and x = 2 in the open interval x ∈ (0, 3):

φ4(1) =
1 +
√

3

4
φ4(2) +

3 +
√

3

4
φ(1)

φ4(2) =
3−√3

4
φ4(2) +

1−√3

4
φ4(1).

The eigenvalues of the 2× 2 eigensystem are 1 and 1/2; the former leads to

φ4(1) =
1 +
√

3

2
and φ4(2) =

1−√3

2
.

Having obtained these values, we now set x = 1
2
, 1

22 ,
1
23 and so on at all dyadic points to

compute values of φ4(x) at many other points.
The accuracy of the approximation depends on the order p of zeros of the transfer function

P (z) =
1

2

∑
k

pke
ikz.

This turns out to be equivalent to the following condition for the coefficients pk:∑
(−1)kkmpk = 0, m = 0, 1, . . . , p− 1

Correspondingly, the first p moments of the wavelet ψ(x) are zero, i.e.,∫
xmψ(x)dx = 0, ∀m = 0, . . . p− 1.

The fourth-order Daubechies scaling function φ4(x) has p = 2 in contrast with the cubic
spline which has p = 4. The corresponding error bound is

‖ f(x)−∑ pkφ(2jx− k) ‖≤ C · 2−jp ‖ f (p)(x) ‖

that is, the error is O(hp), where h = 2−j.

3.4. Back to Parallel Computing: Send and Receive 197

3.4 Back to Parallel Computing: Send and Receive

The information that we provided to you in chapter 2 was accurate but incomplete. In
this section we want to supply more information about sending and receiving in MPI. After
this section, throughout the book, we will begin to directly integrate MPI concepts into the
lessons.

Recall from our previous discussion that for each call to MPI Send, there should be
a call to MPI Recv. Below we give the declarations (which can be found in mpi.h on
your parallel computer) for both MPI Send and MPI Recv. Let us investigate each one
separately. Throughout the book, we will use the format below for presenting MPI functions.
The return value and name will be provided followed by the argument list (both variable
type and variable name) and comments denoting whether the variable is intended to act as
input (in) to or output (out) of the function.

• MPI Send

int MPI Send(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */)

The first item in the argument list is the starting address from which the data item
is to be retrieved. You can translate this as “the pointer variable.” The second piece of
information is the count, which is the number of items to send. The third item is the data
type, which can be among the following:

• MPI INT

• MPI FLOAT

• MPI DOUBLE

• MPI CHAR

See Appendix B.2 for a full listing of all the allowable variable types. We only provide here
the four basic types that we have introduced thus far. The fourth argument is the processor
identification number to which the message is to be sent. This processor id is the integer that
is obtained locally on the processor by calling MPI Comm rank() (recall, in the previous
example, we stored the local process number in the variable mynode). The fifth argument is
a tag , which is an integer used to delineate between successive messages. Suppose that you
were going to send messages one right after the other to and from one processor to the next.
Then you would assign two different tag numbers so that you can guarantee the ordering
that the processor will receive the information. The final argument provides information
concerning which processes are within the current communication group. For our purposes,
this argument will always be set to MPI COMM WORLD.

Now, on the receiving side, we have the following:

3.4. Back to Parallel Computing: Send and Receive 198

• MPI Recv

int MPI Recv(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

Again, the first item in the argument list is the starting address into which the data is
to be placed, the second argument is the count, and the third argument identifies the type
of information to be sent. Instead of specifying the destination, the fourth argument is the
source of the information, which is the process identifier of the source of the message to be
received. The fifth and sixth arguments were just discussed above. The final argument is a
special type of variable which supplies status information. Examining status.MPI ERROR
can provide the programmer with error information when something goes wrong. For more
information concerning the content and use of MPI Status, we refer the reader to [73].

Software

 Suite

For the purposes of illustration, let us examine the following
MPI code. We want to create an array on each process, but
to only initialize it on process 0. Once the array has been
initialized on process 0, then it is sent out to each process.

#include<iostream.h>

#include<mpi.h>

int main(int argc, char * argv[]){

int i;

int nitems = 10;

int mynode, totalnodes;

MPI_Status status;

double * array;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

array = new double[nitems];

if(mynode == 0){

for(i=0;i<nitems;i++)

array[i] = (double) i;

3.4. Back to Parallel Computing: Send and Receive 199

}

if(mynode==0)

for(i=1;i<totalnodes;i++)

MPI_Send(array,nitems,MPI_DOUBLE,i,1,MPI_COMM_WORLD);

else

MPI_Recv(array,nitems,MPI_DOUBLE,0,1,MPI_COMM_WORLD, &status);

for(i=0;i<nitems;i++){

cout << "Processor " << mynode;

cout << ": array[" << i << "] = " << array[i] << endl;

}

delete[] array;

MPI_Finalize();

}

We draw your attention to the following:

• We first do the MPI initialization and information gathering calls described in the
previous chapter
(MPI Init, MPI Comm size and MPI Comm rank).

• We then create, on each process, an array using dynamic memory allocation.

• On process 0 only (i.e., mynode == 0), we initialize the array to contain the ascending
index values. Observe that we explicitly cast the integer index value i to a double
precision number to be stored in array[i].

• On process 0, we proceed with (totalnodes-1) calls to MPI Send.

• On all other processes other than 0, we call MPI Recv to receive the sent message.

• On each individual process, we print the results of the sending/receiving pair.

• On each individual process, we deallocate the dynamic memory that we had allocated.

Though this program is simple, it contains most of the necessary components for getting
up and running with MPI.

Let us conclude this section by stating a collection of remarks which will be useful both
in understanding the program above and in understanding MPI programs to follow.

3.4. Back to Parallel Computing: Send and Receive 200

• Whenever you send and receive data, MPI assumes that you have provided non-
overlapping positions in memory. This remark will be extremely relevant when we
study collective routines in the chapters to follow. We will point this fact out again.

• As we pointed out in the previous chapter, MPI COMM WORLD is referred to as a
communicator. In general, a communicator is a collection of processes that can send
messages to each other. MPI COMM WORLD is pre-defined in all implementations
of MPI, and it consists of all MPI processes running after the initial execution of the
program.

• In the send/receive discussions above, we were required to use a tag. The tag variable
is used to distinguish upon receipt between two messages sent by the same process.
The order of sending does not necessarily guarantee the order of receiving. Tags are
used to distinguish between messages. MPI allows the tag MPI ANY TAG which
can be used by MPI Recv to accept any valid tag from a sender. You cannot use
MPI ANY TAG in the MPI Send command, however.

• Similar to theMPI ANY TAGwildcard for tags, there is also anMPI ANY SOURCE
wildcard that can also be used byMPI Recv. By using it in anMPI Recv, a process is
ready to receive from any sending process. Again, you cannot useMPI ANY SOURCE
in the MPI Send command. There is no wildcard for sender destinations.

• When you pass an array to MPI Send/MPI Recv, it need not have exactly the num-
ber of items to be sent – it must have greater than or equal to the number of items
to be sent. Suppose, for example, that you had an array of 100 items, but you only
wanted to send the first ten items. You can do so by passing the array to MPI Send
and only stating that ten items are to be sent.

Throughout the remainder of this book we will building upon the basic foundation in-
troduced here to accomplish more serious tasks of parallel scientific computing.

3.5. Homework Problems 201

3.5 Homework Problems

3.5.1 Homework Problems for Section 3.1

1. In the previous chapter’s exercises, a recursive relationship was given for generating
the Fibonacci sequence. Write a recursively called function which takes as input at
least the maximum number of terms to generate (your function may have more inputs)
and prints the Fibonacci sequence to the screen.

2. The Vandermonde matrix of rank n is defined by

Vn ≡




1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1

...
...

...
...

...

1 xn x2
n . . . xn

n




Prove the following result for its determinant

det Vn = d0 d1 . . . dn−1

where
dk ≡ (xk+1 − xk)(xk+1 − xk−1) . . . (xk+1 − x0).

3. Compute (by hand) the second-order polynomial p2(x) so that

p2(0) = 3, p2(1) = 2, p2(3) = 5,

using the Vandermonde, Newton, and Lagrange approaches.

4. Construct the third-order Lagrange polynomials for the following functions in the in-
terval [x0, xn]

(a) f(x) = ln x, x0 = 1, x1 = 1.1, x2 = 1.3, x3 = 1.4

(b) f(x) = 5 cosx+ 3 sin x, x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 1.0

5. Consider the Runge function with ε = 10−n, where n = 1 (case A) and n = 5 (case B).
How many Chebyshev modes are required to approximate it with 10% (engineering)
or 1% (scientific) accuracy for both cases A and B?

6. Consider the function f(x) = sin 2πx, where x ∈ [−1, 1].

(a) Write a program for computing the interpolating polynomial pn(x) at the points
xn

i = −1+ 2i
n

with i = 0, 1, . . . , n for n = 6, 12, 18, 24 using the Lagrange approach.
Plot the maximum point-wise error versus n.

(b) Do the same as in (a) but use Chebyshev distribution of points to represent f(x).

3.5. Homework Problems 202

(c) Repeat (a) and (b) using the Newton approach.

(d) Write a program which asks the user which approach to use and which distribution
to use. Integers may be used to delineate between approaches and between point
distributions (i.e., Lagrange = 0, Newton = 1, etc.)

7. Estimate the number of multiplications required to compute f(x) =
∑n

k=0 akqk(x),
where qk(x) is a general orthogonal polynomial. Show that if qk(x) is a Chebyshev
polynomial then the number of required multiplications can be reduced to half the
number required in the general case.

8. Modify the class defined for least-squares to be an interpolation class. Encapsulate all
the inner-workings of interpolation into one object.

9. Represent the data in the table below by a function of the form

g(x) = αx−1 + βx2,

using a procedure similar to least-squares. Determine the values of α, β that minimize
the least-squares error.

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g(x) 5 3.8 3.5 3.4 3.3 3.35 3.7 4.0 4.5 5.1 5.5

Note: The resulting system of nonlinear equations may be solved iteratively; for help
visit www.netlib.org.

10. Multi-variate polynomial interpolation

In most problems in simulation science the dependent variable is a function of more
than one independent variable, e.g., y = f(x1, x2) is a bi-variate function. We want to
develop a least-squares multi-variate approximation using the quadratic polynomial

y = c0 + α1x+ β1y + α2x
2 + β2y

2 + c1xy.

Obtain the equation for ci, αi, βi that minimize the least-squares error and formulate
the problem in matrix form.

11. Determine a B-spline that goes through the end-points for the following control points:

x 0 0 1 2 2 4 4
f(x) 0 1 1/2 1/2 2 2 0

3.5. Homework Problems 203

12. Construct a fourth-order polynomial that approximates the function f(x) =
√
x and

goes through the points 0, 1, 2, 3, 4. Also, approximate this function with a cubic
B-spline and compare the average and maximum approximation errors of the two
approaches.

13. As stated in section 3.1.9 - “Exercise Your Programming Skills,” modify the given code
to handle more than just bi-linear interpolation. Given nine points, you should be able
to go up to bi-cubic interpolation. Follow the guidelines provided in the text.

14. Using the MPI Send and MPI Recv functions, write an MPI program which ac-
complishes piecewise Lagrange interpolation. As in the problem above, consider the
function f(x) = sin 2πx where x ∈ [−1, 1]. Write a program which accomplishes the
following:

(a) Partition the interval [−1, 1] based upon the number of processors used.

(b) For each process, use only four interpolation points (third-order polynomial) in
which two of the points are the end-points of the subdomain used for that process.

(c) For each process, evaluate your interpolant at 30 points on its subdomain.

(d) For each process, send all 30 points to process 0 for collection.

(e) Have only process 0 print out the resulting interpolant evaluated at 30*P points
(where P is the number of processes used).

15. Mappings in polynomial approximations: As we have seen in section 3.1.4 regions
of rapid variation in a function may lead to global spurius oscillations. An effective
remedy is to introduce a new coordinate system x = q(s, α), where x is the physical
coordinate and the transformed coordinate satisfies: −1 ≤ s ≤ 1. The parameter α is
associated with the steepness and its location.

Two such mappings have been introduced by [6] that work effectively with Chebyshev
approximations.

The first mapping x �→ s employs:

x = α2 + tan[(s− s0)λ]/α1

where

s0 =
k − 1

k + 1
, k = tan−1[α1(1 + α2)]/ tan[α1(1− α2)]

and
λ = tan−1[α1(1− α2)]/(1− s0).

Here α1 expresses the degree of steepness and α2 the location of rapid variation.

The second mapping has the form:

x = sin−1(α1s)/ sin−1(α1), 0 ≤ α1 ≤ 1.

This mapping expands the boundary regions and compresses the interior regions. As
α1 → 1 the Gauss-Lobatto points become more uniformly spaced.

3.5. Homework Problems 204

Consider the Runge function f(x) = 1/(1 + 25x2) with x ∈ [−1, 1], and use both
mappings to approximate f(x). Systematically vary the values of α1 and α2 to find
optimum values for N = 4, 8, 12, 24 and 32 grid points. Make a log-lin plot of the L2

and L∞ errors versus N and compare your answers to the unmapped case, as in figures
3.3 and 3.4.

16. Construct shape functions for a square domain [−1, 1] × [−1, 1] and a cubic domain
[−1, 1]×[−1, 1]×[−1, 1] for which there are only three nodes per edge (i.e., two vertices
and a middle node) but not an interior node. Repeat for the case where there are four
equidistant nodes per edge but no interior nodes.

17. Construct shape functions for a triangular domain and a tetrahedron domain each with
edges of unit length and with a middle node per edge as well as one interior node.

18. Modify the code for multi-dimensional interpolation presented in section 3.1.9 to handle
more than just bi-linear interpolation. Given nine points, you should be able to go up
to bi-cubic interpolation. Modify the code presented earlier to handle at least four
points, and up to nine points. This implies that your function has to be intelligent
concerning the number of points that it is passed. Let us first examine the things that
will and will not change:

(a) Observe that the argument list itself need not change. Only the information
passed into the function will change.

b) The user will now specify npts to be some value other than (or possibly including)
four. The first thing to change: the static memory allocation of the array. No
longer is an array of four elements sufficient. Should we move to dynamic memory
allocation based on npts? No. Even though it would be perfectly legitimate to
use dynamic memory allocation in this case, it is just as easy to allocate a static
array for the maximum number of elements, which in this case is nine. In this
case, it is “cheaper” to allocate a few extra doubles (in the case that npts is less
than nine) than to both allocate and deallocate memory dynamically.

(a) You must now, of course, change the argument checking. No longer should you
check to see if npts is exactly equal to four, but rather if npts lies between four
and nine (inclusive).

(c) Now you must introduce the interpolation formulas for the various interpolants.
We have already provided the first four formulas.

(d) The final issue is how to check which npts category into which you fall. Did the
user want npts = 4, npts = 5, . . . or npts = 9? Since there are a small number of
possibilities, try using a switch statement. Recall, the layout will look like:

switch(npts)

case 4:

// formulas for npts = 4

break;

3.5. Homework Problems 205

case 5:

// formulas for npts = 5

break;

case 6:

// formulas for npts = 6

break;

case 7:

// formulas for npts = 7

break;

case 8:

// formulas for npts = 8

break;

case 9:

// formulas for npts = 9

break;

default:

//add error statement here for when an

//invalid npts is given

}

One thing that we would like to point out in the example above is that we have
made a programming decision to sacrifice optimality for generality. Experienced
programmers would be quick to point out that the structure above is not optimal,
and that if you were going to be doing thousands or millions of interpolations,
that it would be better for you to write a function for each case separately (hence
eliminating the switch statement, and even the argument checking). The tradeoff
in this case is that we have only one function to maintain. This balance between
generality and optimality is one which you will constantly be confronted with as
a programmer. The balance you reach is almost always application and situation
dependent.

3.5.2 Homework Problems for Section 3.2

1. Let f =
∑
ake

ikx and g =
∑
bke

ikx, and we construct the product fg =
∑
cke

ikx. What
is the relationship between ck and bk, ck?

2. Construct the cosine and sine series of the function f(x) = x3. Do the two series
converge at the same rate? Plot the partial sums for each representation retaining
N = 2, 4, 8, 16, 32 terms. What do you observe?

3. Compute the square of the Fourier matrix W of order N = 1024 using matrix-matrix
multiplication, e.g. dgemm from BLAS3, and also using the discrete fast Fourier trans-

3.5. Homework Problems 206

forms using the fact that this is a product of two circulant matrices. What do you
observe?

4. Consider the function f(x) = 1, x ∈ [0, 1] and f(x) = −1, x ∈ [1, 2]. Obtain its
Fourier coefficients and use the Lanczos filter to improve the approximation. What
is the asymptotic rate of convergence before and after the filtering in the L1 and L2

norms? You can obtain that either analytically or numerically.

5. Use a double Fourier series representation to expand in real double Fourier series the
function

f(x, y) = x+ y x, y ∈ [−π, π].

6. (Chebyshev Transforms)

Derive an algorithm for a fast Chebyshev transform based on the fast Fourier transform.
Write a C++ code for it and obtain timings on your computer for various sizes N . How
does it compare to the matrix-vector multiplication, and specifically at what value of
N we have the break-even point?

3.5.3 Homework Problems for Section 3.3

1. Use the Fourier transform approach to plot the Battle-Lemarié wavelet of order m = 4.

2. Use the iteration approach to plot the Daubechies scaling functions and wavelets of
order m = 5 and 9.

3. Obtain the discrete wavelet transform of the function f using the Daubechies wavelets
of fourth-order.

4. Derive equation 3.35 for the Shannon wavelet.

Chapter 4

Roots and Integrals

In this chapter we apply the approximation theory we presented in chapter 3 to find solutions
of linear and nonlinear equations and to perform integration of general functions. Both
subjects are classical, but they serve as basic tools in scientific computing operations and in
solving systems of ordinary and partial differential equations. With regards to root finding,
we consider both scalar as well as systems of nonlinear equations. We present different
versions of the Newton-Raphson method, the steepest descent method, and the conjugate
gradient method; we will revisit the latter in chapter 9. With regards to numerical integration
we present some basic quadrature approaches, but we also consider advanced quadrature
rules with singular integrands or in unbounded domains.

On the programming side, we first introduce the concept of passing a function to a func-
tion; in the previous chapter we were passing variables. This allows an easy implementation
of recursion, which is so often encountered in scientific computing. We offer several C++
examples from root finding and numerical integration applications that make use of recur-
sion, and show an effective use of classes and overloaded operators. We also address parallel
programming with emphasis on domain decomposition, specifically the concept of reduc-
tion operations. We introduce the MPI commands MPI Reduce and MPI Allreduce for
accomplishing reduction operations among a collection of processes.

207

4.1. Root Finding Methods 208

4.1 Root Finding Methods

There are many problems in scientific computing where we need to find the root of a nonlinear
equation or systems of algebraic equations. For example, a polynomial equation arises in
computing the eigenvalues from the characteristic polynomial, or general transcendental
equations need to be solved to obtain the dispersion relation in wave dynamics problems.
Another example is the computation of a square-root of a number; e.g., the computation
of
√

3 can be turned into finding the root of the equation f(x) = x2 − 3 = 0, and this can
be solved iteratively very fast, starting from an educated guess! For example, for an initial
guess of x0 = 1.5 we substitute in the formula

xn+1 =
1

2
(xn +

3

xn
), n = 1, 2, . . .

and obtain x1 = 1.75 in one iteration versus the exact value 1.7320508. More iterations will
result in predicting accurately more and more digits, in fact, we double the number of correct
digits in each iteration! The above formula comes from the Newton-Raphson algorithm, and
it is often used in mathematical libraries of computers for the square-root function.

Software

 Suite

Below we provide our own implementation of this function and
construct table 4.1 showing the iteration count and associated
error when computing

√
3 using this function.

double SquareRoot(double value, double guess, int iterations){

int i;

double xn = guess;

for(i=0; i<iterations;i++)

xn = 0.5*(xn + value/xn);

return xn;

}

In the function above, observe that upon calculation of the next value xn+1, we immedi-
ately place it in the variable xn. This is because in this iterative scheme, once the new value
is computed, the previous value is not needed. An alternative version of the function is the
following:

double SquareRoot(double value, double guess, double tol){

int i;

int maxit = 100;

double xn2, xn = guess;

for(i=0; i<maxit;i++){

xn2 = 0.5*(xn + value/xn);

4.1. Root Finding Methods 209

if(fabs(xn2-xn)<tol)

return xn2;

xn = xn2;

}

cerr << "Maximum number of iterations reached ";

cerr << "without convergence" << endl;

return xn2;

}

In the function above, instead of inputing the number of iterations, we input a tolerance.
As we calculate updated values, we check to see if the absolute value of the difference between
successive iterates is less than the tolerance. For the code above, we have the following
remarks:

• We do need to separately store the new value (xn2) so that it can be compared with
the old value.

• We have chosen to set a maximum number of iterations instead of using a while loop.

• We use the function fabs, which is a function whose declaration is contained within
math.h, and which takes as input a double precision number and provides back the
double precision absolute value of that number. NOTE: A function abs exists also,
but takes as input integers and returns the integer absolute value. Because of implicit
casting, oftentimes people make the mistake of using abs when they should be using
fabs, and they obtain the wrong result.

• We return directly from the for loop once the tolerance condition has been met. By
using return, we terminate the loop tacitly by exiting the function.

Iteration Root Approximation Error
0 1.50000000 2.32050808e-01
1 1.75000000 1.79491924e-02
2 1.73214286 9.20495740e-05
3 1.73205081 2.44585041e-09
...

Table 4.1: Numerical approximation of
√

3.

We are familiar with root finding methods for the first- and second-order polynomial
equations for which we can derive closed form solutions, and these solutions have been
known for centuries to Egyptians and also to Babylonians for more than forty centuries!
Clearly, we do not need to use a computer to obtain solutions for these equations, but things
become much harder as the order of the polynomial increases, and in fact fifth- or higher
order polynomials cannot be solved in closed form as Lagrange first discovered in the late

4.1. Root Finding Methods 210

eighteen century. For third- and fourth-order polynomial equations, analytical formulas are
available. They were first obtained by the Italian mathematician Ferrari, however they are
very complex and thus not very useful.

In this section, we will study methods and corresponding code fragments to obtain so-
lutions of general nonlinear equations as well as systems of general nonlinear equations, but
it instructive to start with polynomial equations. The methods that we will develop are
iterative and are easy to program but they require good knowledge of the basic theory. We
need to know:

• How fast the algorithms converge,

• When to terminate the iterative process, and

• An initial guess to start the iteration, sometimes an educated guess!

In the following, we show how we can use the approximation theory of the previous chapter
to achieve this.

4.1.1 Polynomial Equations

Cubic Polynomials: Let us first consider a cubic polynomial equation of the form

f(ξ) = ξ3 + aξ2 + bξ − c = 0

where a, b, c are real numbers so that we have at least one real root. Here we will follow the
analysis of Lanczos [66]. The first step is to rescale the above equation in a more convenient
form by introducing the transformation

x = αξ, a1 = αa, b1 = α2b, c1 = α3c

and by substitution we obtain

f(x) = x3 + a1x
2 + b1x− c1 = 0.

By taking α = 1/ 3
√
c we obtain c1 = 1, and therefore

f(0) = −1 < 0 and f(∞) > 0.

We also have that the three roots satisfy

x1 x2 x3 = 1.

Next, we examine the sign of f(x) at x = 1; if f(1) > 0 there exists one real root in the
interval [0, 1], but if f(1) < 0 there must be one real root in the interval [1,∞]. In this case,
we simply introduce another transformation, i.e.,

x̄ =
1

x
,

4.1. Root Finding Methods 211

mapping [1,∞]→ [0, 1]. It is then sufficient to find the real root of a cubic equation in the
interval [0, 1].

Telescoping of a power series by successive reductions is an elegant way of reducing
a high-order polynomial to a lower order by taking advantage of the properties of the Cheby-
shev polynomials discussed in section 3.1.5. In particular, we will use the shifted Chebyshev
polynomials defined by

T ∗
k (x) = Tk(2x− 1), x ∈ [0, 1] (4.1)

which we tabulate in table 4.2. We will make use of the fact that:

• The shifted Chebyshev polynomials have the largest coefficient of the highest power of
x among all polynomials defined in the same interval.

• They are bounded by ±1, just like the standard Chebyshev polynomials.

• They are defined in the interval of interest; here x ∈ [0, 1].

Let us consider, for example, the third-order shifted Chebyshev polynomial T ∗
3 (x) =

32 x3 − 48 x2 + 18 x− 1, then

x3 =
48x2 − 18x+ 1

32
+
T ∗

3 (x)

32
,

and because of the boundness of T ∗
3 (x), we can approximate

x3 ≈ 1.5 x2 − 0.5625 x+ 0.03125 (± 0.03125),

where the term in the parenthesis is the error ±1/32, which in this case is about 3%.

n = 1: 1, 2
n = 2: 1, 8, 8
n = 3: 1,18, 48, 32
n = 4: 1, 32, 160, 256, 128
n = 5: 1, 50, 400, 1120, 1280, 512
n = 6: 1, 72, 840, 3584, 6912, 6144, 2048

Table 4.2: Coefficients of the first six shifted Chebyshev Polynomials T ∗
n(x) . The underlined

numbers correspond to negative coefficients, and the sequence is from the lowest to highest power;
e.g., T ∗

3 (x) = −1 + 18x− 48x2 + 32x3; T ∗
0 (x) = 1.

Example: The following example illustrates the main points discussed so far. Let us consider
the cubic polynomial equation

ξ3 + ξ2 − 1.5ξ − 50 = 0.

We first perform the transformation

α = 1/
3
√

50 ≈ 0.2714⇒ f(x) = x3 + 0.2714x2 − 0.1105x− 1 = 0,

4.1. Root Finding Methods 212

and subsequently, we examine the sign of f(x) at x = 1:

f(1) = 0.1609 > 0⇒ x1 ∈ [0, 1].

The next step is to reduce the cubic equation to a quadratic equation and apply the formula
of Babylonians! To this end, we use the shifted Chebyshev polynomial T ∗

3 (x) and equation
(4.1) to obtain

1.7714 x 2 − 0.673 x− 0.9687 = 0,

which has a positive root x1 = 0.9534 and a negative root, which we disregard. We now
transform back to obtain

ξ1 =
x1

α
=

0.9534

0.2714
= 3.513

The residual is f(3.513) = 0.42, and although this value is not 0, it is relatively small
compared to the constant c = 50; it corresponds to an 0.4% error! The more accurate value
obtained with the Newton-Raphson method is 3.5030. If, however, this is not an acceptable
accuracy, then this “educated” guess can serve as initial value in one of the algorithms that
we will present in this section.

Fourth-Order Polynomials: We can proceed similarly with fourth-order polynomial equa-
tions of the form

x4 + c1x
3 + c2x

2 + c3x+ c4 = 0,

which can be turned into the form

(x2 + αx+ β)2 = (ax+ b)2,

and by taking the square root we reduce this to two quadratic equations. The question is
how to obtain α, β, a and b in terms of ci, i = 1, 2, 3, 4. This is accomplished via a series of
simple transformations:

α = c1/2; A = c2 − α2; B = c3 − αA.

We then form the cubic equation

f(ξ) ≡ ξ3 + (2A− α2)ξ2 + (A2 + 2Bα− 4c4)ξ − B2 = 0,

which has a positive real root since f(0) = −B2 < 0. We now use the previous method
for cubic polynomials to determine the real root, which we call ξ1. Having obtained ξ1, we
determine all the coefficients of the two quadratic equations from

α =
1

2
c1, β =

1

2
(A+ ξ1), a =

√
ξ1, b =

a

2
(α− B/ξ1).

Again, this real root can be used as initial guess to obtain more accurate answers from the
algorithms presented later in this section.

High-Order Polynomials: Obtaining good approximations for the roots of high-order
polynomials is a much more difficult job and may require many function evaluations in

4.1. Root Finding Methods 213

order to locate approximately real roots. However, high-order polynomials have typically
complex roots, so here we review a method first proposed by Bernoulli which provides an
approximation to the absolutely largest root. Let us consider the polynomial

f(x) = xn + a1x
n−1 + . . .+ an = (x− x1)(x− x2) . . . (x− xn),

were xi, i = 1, 2, . . . , n denote the roots of the polynomial f(x). We can then compute the
ratio

−f
′
(x)

f(x)
=

1

x1 − x +
1

x2 − x + . . .+
1

xn − x .

If x0 is an initial guess which happens to be close to one of the roots, say x1, then by
comparing terms in the above expansion we can see that one term dominates, i.e.,

1

x0 − x1

∼ −f
′(x0)

f(x0)
.

Thus, we have managed to isolate one root, and, in fact, we can make this estimate sharper
by taking the derivative (m− 1) times to obtain

− 1

(m− 1)!

[
f

′
(x)

f(x)

](m−1)

=
1

(x1 − x)m
+ . . .+

1

(xn − x)m

⇒ 1

(x1 − x0)m
∼ − 1

(m− 1)!

[
f

′
(x0)

f(x0)

](m−1)

.

By choosing m sufficiently high we can put the “spotlight” on the root x1 with increasing
accuracy. This method, however, requires a lot of work as it involves the computation of
derivatives, although approximate ways have been suggested by Lanczos to do this efficiently;
for example the so-called method of moments. The interested reader should consult Lanczos’s
book [66] for more details.

4.1.2 Fixed Point Iteration

One approach to solving nonlinear equations is by iteration, where the equation f(x) = 0 is
re-arranged as

x = g(x), (4.2)

with f(x) = x− g(x). We can set up a fixed point iteration of the form

xn+1 = g(xn),

which upon convergence (“steady state”) leads to xn+1 → s, and thus equation (4.2) is
satisfied. It turns out that the key to convergence, as we will see in the theorem below, is the
first derivative of g(x). We demonstrate this by a simple example of a quadratic polynomial,
which is used often to model chaos. Let us consider

g(x) = αx(1− x) = αx− αx2,

4.1. Root Finding Methods 214

with α being the bifurcation parameter, the meaning of which will become clear below.

We want to solve:
xn+1 = αxn − αx2

n. (4.3)

We note that the maximum value of g(x) is g(1/2) = α/4, and therefore for α < 4,
xn ∈ [0, 1], i.e. the sequence of numbers produced by the iteration process remains bounded
within the range [0, 1]. Let us consider a specific example, and take α = 2. Then

xn+1 = 2xn − 2x2
n

and in steady state, that is upon convergence, we have that xn → s and also xn+1 → s, so
the fixed or stationary points are given by the equation

s = 2s− 2s2,

which has two roots, the stationary points, at s = 0 and 1
2
.

We then evaluate the first derivative at the stationary points, and if

• |g′
(s)| < 1, the stationary point s is attractive,

• otherwise, it is repulsive.

This can be seen by constructing the graph of g(x) and follow the sequence generated by
the iterative equation. In this case, we have that g

′
(0) = 2, which is a repulsive point, and

g
′
(1/2) = 0, which is an attractive point, and in fact very attractive!

This process can be easily generalized for the simple iteration equation we have considered
to obtain the stationary points s1 = 0 and s2 = (α− 1)/α. At the second point, we have

g
′
(s2) = 2− α and |2− α| < 1⇒ −1 < 2− α < 1⇒ 1 < α < 3.

Therefore, we have found the range within which the bifurcation parameter α results in an
attractive point and thus a convergent iteration process. Similarly, it is easy to show that
g′(s1) = α, so as long as α < 1 we have a convergent iteration process.

We can of course substitute back in equation (4.2) to obtain

g1(x) = g(g(x)) = α(αx− αx2)− α(αx− αx2)2,

which has four stationary points. By proceeding as above and examining the derivative
g′1(s), we find that we have an instability and thus divergence for α > 3.45. In fact, for
higher values of α the system bifurcates even further to a period doubling cascade. The ratio
between the length of one stability window and the next approaches a universal constant
δ = 4.69920166 . . ., which is known as the Feigenbaum’s constant in chaos theory.

Example: Next, we present an example of the iteration process for the quadratic chaos
equation, which converges for some small value of the bifurcation parameter; for larger
values oscillates between different values even at steady state; and for even larger values it
is unstable and diverges. Consider the iteration

xn+1 = (1 + 10α)xn − 10αx2
n, x0 = 0.1. (4.4)

4.1. Root Finding Methods 215

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 4.1: Plot of the values (vertical axis) of the time series versus the iteration number (hori-
zontal axis) produced from the quadratic chaos equation (4.3); α = 0.249. The iteration converges
to four different values at steady state.

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

step size

Figure 4.2: Bifurcation diagram. Plotted are the converged values of the iteration in equation
(4.4) versus the bifurcation parameter (step size) α.

4.1. Root Finding Methods 216

We find that for α = 0.18 the above iteration converges to 1, but for α = 0.23 it jumps
between 1.18 and 0.69. For α = 0.25 it jumps between 1.23, 0.54, 1.16 and 0.70. For the
value α = 0.3 no discernible pattern is displayed; note also a window of order just above
α = 0.28 and then a return to chaos again! The plots in figures 4.1 and 4.2 show schematically
this strange but interesting behavior.

After this introductory example, we are now ready to state the theorem on convergence
of fixed point iteration.

Theorem of Convergence of Fixed Point Iteration: Let s be a solution of x = g(x)
and g has a continuous derivative in some interval I containing s. Then if |g′

(s)| ≤ K < 1
in I, the iteration process xn+1 = g(xn) converges for any initial value x0 in I.

Proof: From the mean value theorem we have that there exists a point t1 ∈ [x, s] : g(x)−
g(s) = g

′
(t1)(x− s). Then

|xn − s| = |g(xn−1)− g(s)| = |g′
(t1)| |xn−1 − s|

≤ K|xn−1 − s|
= K|g(xn−2)− g(s)|
≤ K|g′

(t2)| |xn−2 − s|
≤ K2|xn−2 − s|
...

≤ Kn|x0 − s| → 0 .

Here ti, i = 1, 2, . . . ∈ I as well. Note that g(x) is called a contraction, and in general a
contraction mapping is defined as

|g(u)− g(v)| ≤ K|u− v|, K < 1 .

Round-off: Associated with such an iteration process is round-off errors, which, however,
can be quantified. To this end, consider the iteration

xn = g(xn−1) + δn

where |δn| ≤ δ and δ � 1 denotes the known machine accuracy. We then have

|xn − s| = |g(xn−1)− g(s) + δn|
≤ K|xn−1 − s|+ δ

≤ K(K|xn−2 − s|+ δ) + δ

≤ Kn|x0 − s|+ δ(1 +K +K2 + . . .+Kn−1)

≤ Kn|x0 − s|+ δ

1−K ,

where in the last line we used the limit of a geometric series since K < 1.

4.1. Root Finding Methods 217

Error Estimate: Similarly, we can obtain an error estimate by comparing two successive
approximations:

|xn+1 − xn| = |g(xn)− g(xn−1)|
≤ K|xn − xn−1|
...

≤ Kn|x1 − x0| .
For fixed n and m > n we have

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ . . .+ |xn+1 − xn|
≤ (Km−1 +Km−2 + . . .+Kn)|x1 − x0|
=

Kn

1−K |x1 − x0| .

Since xm → s as m→∞ for convergence, then

|xn − s| ≤ Kn

1−K |x1 − x0| .

We can now define the convergence rate as the ratio of two successive error estimates. Let
en ≡ xn − s and s = g(s), then

en+1 = xn+1 − s = g(s+ en)− g(s) = g
′
(t)en ,

from the mean value theorem, t ∈ [xn, s], and thus in the limit:

lim
n→∞

en+1

en
= g

′
(s) .

If g
′
(s) = 0 and g

′
(x) continuous (as in the case of the very attractive point at s = 0 that

we encountered in the example earlier), then

en+1 = g(s+ en)− g(s) = g
′
(s)en + g

′′
(s)

e2n
2

+ . . .

and therefore

lim
n→∞

en+1

e2n
=

1

2
g

′′
(s)

which shows quadratic convergence, that is at every iteration the number of correct digits
is doubled!

4.1.3 Newton-Raphson Method

We now present the most popular method in rood finding, which was proposed independently
by Newton and Raphson. It combines the ideas of iterative process discussed above and of
approximation presented in section 3.1. Let us consider again the equation

f(x) ≡ x− g(x) and f(s) = 0,

4.1. Root Finding Methods 218

and denote by h the distance between the exact solution s and an initial guess x0. Then, we
use Taylor expansion around x0 to obtain

f(s) = 0 = f(h+ x0) = f(x0) + hf
′
(x0) +

h2

2
f

′′
(x0) + . . .

By neglecting terms higher than second-order in h, we obtain

h0 ≡ h = − f(x0)

f ′(x0)
.

We can now propose an improved guess x1 = x0 + h0, which leads to a hopefully shorter
distance

h1 = − f(x1)

f ′(x1)
,

and so on.

We summarize this iterative process as follows:

xn+1 = x0 + h0 + . . .+ hn

hn = − f(xn)

f ′(xn)
, n = 1, 2, . . .

where x0 is the initial guess that starts the iteration. Alternatively, we can write the above
two equations as a single equation

xn+1 = xn − f(xn)

f ′(xn)︸ ︷︷ ︸
g(xn)

(4.5)

assuming that f
′
(s) �= 0. The convergence rate can then be obtained by examining the first

derivative g′(s):

g
′
(x) = 1− f

′2 − ff ′′

(f ′)2
= f

f
′′

(f ′)2
→ 0 as x→ s.

We also have that

g
′′
(x) =

(ff
′′
)′(f

′
)2 − 2f

′
f

′′
ff

′′

(f ′)4
=
ff

′′′
f

′
+ f

′2f
′′ − 2ff

′′2

(f ′)3
�= 0 as x→ s.

In general, g
′′
(s) �= 0, and therefore the convergence rate of the Newton-Raphson is second-

order (quadratic convergence).

Example: Let us revisit the example of finding the square-root of a positive number that
we discussed in the introduction of this section. We assume that

f(x) = x2 − C and therefore s =
√
C

is the exact answer. We now use the Newton-Raphson formula from above

4.1. Root Finding Methods 219

f
′
(xn)(xn+1 − xn) = −f(xn),

and thus

2xn(xn+1 − xn) = C − (xn)2 ⇒ xn+1 = 1
2

(
xn + C

xn

)
.

Therefore, we compute the square-root
√
C by averaging x and C/x. The convergence is

quadratic, i.e.

xn+1 −
√
C =

1

2xn
(xn −

√
C)2.

At every iteration step the difference (xn −
√
C), which is the error, is squared!

Improved Convergence

We can improve the convergence rate of the Newton-Raphson method by retaining the
second-order term in the Taylor expansion, i.e.,

f(x0) + h[f
′
(x0) +

h

2
f

′′
(x0)] = 0

⇒ h = − f(x0)

f ′(x0) + h
2
f ′′(x0)

.

In the above equation, we can compute a provisional value for h in the denominator, say h∗n,
from the linear Taylor expansion at the previous iteration as

h∗n = − f(xn)

f ′(xn)
⇒ 1

hn
= −f

′
(xn)

f(xn)
+

1

2

f
′′
(xn)

f ′(xn)
.

This two-step approach is a general procedure called predictor-corrector method and is used
very often in scientific computing. The idea is to first predict with a lower order but explicit
method and subsequently to correct the answer with a higher order method.

Multiple Roots

So far we have only treated the case of a single root, but we also need to have fast methods to
compute multiple roots. In such cases, both the function and some of its derivatives vanish
at the root location, depending on the multiplicity.

Let us first examine the case of a double root and consider an initial guess x0; if it
is close to the exact root s then f(x0) → 0 and also f ′(x0) → 0. Therefore, the standard
Newton-Raphson method will converge slowly due to the fact that the term

g
′
(x0) = f(x0)

f
′′
(x0)

[f ′(x0)]2

will be finite or slowly decaying to zero, and

lim
n→∞

en+1

en
= g

′
(s) �= 0 ,

4.1. Root Finding Methods 220

which indicates only first-order convergence for a double root. We can improve convergence
by solving the quadratic equation with respect to h

1

2
f

′′
(x0)h

2 + f
′
(x0)h+ f(x0) = 0 ,

derived from Taylor’s expansion to obtain two roots h± and then set

x1 = x0 ± h±,
and proceed with the iteration.

In the case of a triple root

f(x0)→ 0, f
′
(x0)→ 0, f

′′
(x0)→ 0,

and we need to solve a cubic equation to obtain the proper distance in order to update the
guess, i.e.,

1

6
f

′′′
(x0)h

3 +
1

2
f

′′
(x0)h

2 + f
′
0(x0)h+ f(x0) = 0.

By solving this equation we obtain three values h1, h2, h3, and thus we can update x1 =
x0 + hi, i = 1, 2, 3, and so on for the next iteration.

A better approach in dealing with multiple roots is presented in the following. We assume
that the function f(x) has a root of multiplicity p, so we can write

f(x) = (x− s)ph(x), p > 1, h(s) �= 0,

and

g(x) ≡ x− f(x)

f ′(x)

whose derivative as x→ s determines the convergence rate. We obtain

g′(x) = 1− ph2(x) + (x− s)2(h′(x))2 − (x− s)2h(x)h′′(x)

p2h2(x)
[
1 + (x− s) h′ (x)

ph(x)

]2 .

Upon convergence we have that x→ s, and thus

g
′
(s)→ 1− 1

p
�= 0 for p > 1.

Clearly, |g′
(s)| < 1, and the method converges, but it is only first-order. However, we note

that if we re-define g(s) so that

g(x) ≡ x− p f(x)

f ′(x)
,

we obtain quadratic convergence, as g′(x→ s)→ 0, and we use the theorem of convergence
of the previous section. The iterative process is then

xn+1 = xn − p f(xn)

f ′(xn)
, n = 0, 1, . . .

4.1. Root Finding Methods 221

Yet, another way to obtain second-order convergence for a multiple root is to define the
function

φ(x) =
f(x)

f ′(x)
,

which upon convergence (x→ s) has the simple form

φ(x→ s)→ x− s
p

,

with a single root at x = s, and thus Newton-Raphson will converge quadratically fast.
However, this method requires three function evaluations, i.e. f(x), f ′(x) and f ′′(x), and
thus it is more expensive than the previous one.

• In general, it is impossible to achieve second-order convergence with only one function
evaluation.

The initial guess is very important in starting the iterative process in the Newton-Raphson
algorithm. The following theorem states the proper conditions for convergence:

Theorem of Convergence of Newton-Raphson Method: Suppose that f
′
(x) �= 0, that

f
′′
(x) does not change sign in the interval [a, b], and that f(a)f(b) < 0.

If | f(a)

f ′(a)
| < (b− a) and | f(b)

f ′(b)
| < (b− a)

then the Newton-Raphson method converges from an arbitrary initial approximation x0 ∈
[a, b].

4.1.4 Passing Functions to Functions in C++

One thing that we will find useful throughout this chapter is the concept of passing functions
to functions, just as you pass variables to functions. Why is this useful? When writing
modular code, quite often you write essential library routines once, and compile them once,
and then merely link them to your current program when you compile. Take for example our
Newton-Raphson algorithm above. Notice that the algorithm is described independently of
the particular function with which you are working; it merely relies on the fact that you have
a function f(x) and its derivative f

′
(x). We want to write code in such a way that we can

change our function and its derivative, and never have to change our core Newton-Raphson
implementation. This can be accomplished by passing functions to functions.

Just as in the case of a variable, within the argument of the function to which you are
passing the function, you must provide information as to what is being passed. In the case
of passing a function, the information that is needed is:

• The name that the function is to be called within the routine.

• The argument types of the function that you are passing.

4.1. Root Finding Methods 222

• The return value of the function that you are passing.

This procedure will be made more clear in the examples below.

Software

 Suite
Putting it into Practice

In the following examples, there are two main concepts that we would like to draw your
attention to:

• Passing functions to functions.

• Using different functions with the same name.

We begin with passing functions to functions. The example below is our implementation
of the Newton-Raphson method. Recall that for this algorithm, we require both the function
and its derivative. We thus require two functions, here called “func” and “func der” within
our code to be passed to the NewtonRaphson routine.

double NewtonRaphson(double x0, double (*func)(double),

double (*func_der)(double),

int max_iter, int multiplicity){

double x,p = (double) multiplicity;

const double tolerance = 1.0e-14;

for(int i=0;i<max_iter;i++){

x = x0 - p*func(x0)/func_der(x0);

if(fabs(func(x))<tolerance) break;

x0 = x;

}

return x;

}

Concerning the function above, we have the following remarks:

• Observe how the function above is notified that a function is being passed to it. In the
second argument of the argument list above, we specify as the argument

double (*func)(double)

4.1. Root Finding Methods 223

notifying the function of the return type (in this case double), name of the passed
function to be used within the function (in this case func), and the argument types
of the passed function (in this case double). In the third argument we pass another
function with the same return type and argument list types, but a different name
(func der).

• We wrote the if statement on one line – this is perfectly valid in C++. Since by
definition an if statement executes the next executable statement given that the check
is evaluated to be true, then we can condense an if statement having only one executable
statement to one line. We suggest that if the executable statement which follows the
if is complicated, you do not condense both the if and the next executable statement
to one line.

• We can sacrifice memory for optimization. Notice that within the if statement, we
evaluate func(x). If the tolerance criterion is not met, we set x0 = x and begin
the iteration again, which requires that we evaluate func(x0). If the function func
is expensive to compute, it is advantageous us to save the function evaluation to a
variable which we use both in the if statement and in the case that the tolerance is not
met.

Look at the function below: What is the difference between this function and the one
directly above?

double NewtonRaphson(double x0, double (*func)(double),

double (*func_der)(double), int max_iter){

double x, p = 1; // here, p stands for the multiplicity;

// we assume default p=1

const double tolerance = 1.0e-14;

for(int i=0;i<max_iter;i++){

x = x0 - p*func(x0)/func_der(x0);

if(fabs(func(x))<tolerance) break;

x0 = x;

}

return x;

}

The answer: The second function does not require you to pass the variable “multiplicity.”
The second implementation of the NewtonRaphson function assumes the multiplicity is one.
Why do we point this out? Notice that we used the same function name for both functions.
C++ allows you to have multiple functions with the same name as long as the argument
lists are different. By different, we mean either in number of arguments or in the type of
variable.

4.1. Root Finding Methods 224

Key Concept

• C++ allows multiple functions with the same name as long as
the argument lists are different.

In the example above, the argument list of one function has less variables than the
argument list of the other function, and hence the compiler can distinguish them as two
different functions. This concept is useful in writing general software libraries, in that you can
handle many different function cases by having functions with the same name but different
argument lists.

WARNING Programmer Beware!
• Different return types
does not imply different
functions!

The compiler cannot tell the difference between two functions which have identical names
and arguments, but only different return types!

Also, observe that in the function above we use the keyword const. This identifier should
be used in conjunction with a variable declaration and initialization as follows:

const <type> <variable name> = <constant value>;

where <type> is the variable type, <variable name> is the variable name we have chosen
to use, and <constant value> is a value of the appropriate type which we would like to
remain constant. Once a variable has been declared constant within a function, it cannot
be changed within the function. Using const reinforces that something is meant to be
a constant, and guarantees that the programmer does not accidentally reset the value to
something else (which would imply that the value was not constant!).

We provide another example of the NewtonRaphson routine, now with three functions
being passed to this routine. In this case, we pass a functional implementation of the second
derivative of the function to this routine so that the convergence rate for multiple roots can
be computed.

double NewtonRaphson(double x0, double (*func)(double),

double (*func_der)(double),

double (*func_secondder)(double), int max_iter,

int multiplicity){

double x,p = (double) multiplicity;

const double tolerance = 1.0e-14;

4.1. Root Finding Methods 225

cout << "-----------------------------------" << endl;

cout << "x \t f(x) \t g’(x)" << endl;

for(int i=0;i<max_iter;i++){

cout << x0 << "\t" << func(x0) << "\t" << (1-p) +

p*func(x0)*func_secondder(x0)/pow(func_der(x0),2) << endl;;

x = x0 - p*func(x0)/func_der(x0);

if(fabs(func(x))<tolerance) break;

x0 = x;

}

return x;

}

We can now put into practice what we have learned above. The following program uses
the last NewtonRaphson function to compute the roots of

(x− 2)3(x+ 2) = 0.

#include <iostream.h>

#include "SCchapter4.h"

const double alpha = 2.0; // global constant

double func(double x);

double func_der(double x);

double func_secondder(double x);

int main(int argc, char * argv[]){

int max_iter = 100;

int multiplicity = 1;

double x0 = 1;

double x = NewtonRaphson(x0,func,func_der,func_secondder,

max_iter,multiplicity);

cout << x << " " << fabs(func(x)) <<endl;;

}

double func(double x){

double value = (x-alpha)*(x-alpha)*(x-alpha)*(x+alpha);

return(value);

4.1. Root Finding Methods 226

}

double func_der(double x){

double value = 3*(x-alpha)*(x-alpha)*(x+alpha)+

(x-alpha)*(x-alpha)*(x-alpha);

return(value);

}

double func_secondder(double x){

double value = 6*(x-alpha)*(x+alpha)+6*(x-alpha)*(x-alpha);

return(value);

}

Observe that we declare and define our implementations of the function, derivative func-
tion and second derivative function just as we have always done previously. Now, when it is
time to call the NewtonRaphson routine we place into the argument list the function names
in the appropriate places within the argument list, just as if we were passing these functions
as variables.

4.1.5 Secant Method

The Newton-Raphson method requires that we know the function analytically, so that we can
differentiate it analytically. However, there are instances where we only know the function
values and therefore we need to construct the derivative using finite differences. General
finite difference methods will be covered in detail in sections 5.1 and 6.1, but here we use
the simple backward-difference formula to approximate the first derivative, i.e.,

f
′
(xn) ≈ (∆f)1 ≡ f(xn)− f(xn−1)

xn − xn−1

.

The secant method extrapolates along the chord that connects the points xn and xn−1 instead
of extrapolating along the tangent at xn−1 as the Newton-Raphson method. This is a first-
order, O(h), approximation to the derivative, however the overall convergence rate of the
secant method is about 1.6 instead of 2 of the Newton-Raphson method.

In comparing the secant method with the Newton-Raphson method in situations where
both approaches can be applied, we have a break-even point determined approximately by
the equation of cost in computing

f
′
(x) = θ × (cost of f(x)).

Then if θ > 0.4, it is more efficient to use the secant method. Note that (0.4 = 2 − 1.6)
reflects the difference in convergence rate of the two methods.

4.1. Root Finding Methods 227

Error Analysis of the Secant Method

In the following, we provide a brief proof on the convergence rate of the secant method,
following the derivation in [72].

We use Newton’s interpolating formula presented in chapter 3 and the mean value theo-
rem:

f(x) = f(xn) + (x− xn)(∆f)1 + (x− xn−1)(x− xn)
1

2
f

′′
(ξ),

where we defined earlier

(∆f)1 =
fn − fn−1

xn − xn−1
.

Now xn+1 satisfies the secant method equation: 0 = fn + (xn+1 − xn)(∆f)1.

We also have for the exact solution:

0 = fn + (s− xn)(∆f)1 +
1

2
(s− xn−1)(s− xn)f

′′
(ξ),

and by subtracting, we obtain

(s− xn+1)(∆f)1 +
1

2
(s− xn−1)(s− xn)f

′′
(ξ) = 0.

From the mean value theorem we have that for a special point ξ∗, (∆f)1 = f
′
(ξ∗), and

therefore the error

en+1 =
f

′′
(ξ)

2f ′(ξ∗)︸ ︷︷ ︸
C

enen−1 .

We have assumed in the above that f ′′(x) is continuous, and thus it is bounded, so we can
always find the constant C. Let us now assume that

|εn+1| = K|εn|m,
and substitute in the above to arrive at

K|en|m ≈ C|en| (K−1/m|en|1/m)⇒ m = 1 + 1/m→ m =
1

2
(1±

√
5).

We can only accept the (+) sign and thus we obtain that the convergence rate is m ≈ 1.618
(recall, this value is the golden ratio, which we computed from the Fibonacci sequence in the
exercises in chapter 2).

4.1.6 Systems of Nonlinear Equations

The Newton-Raphson method can be generalized in a straightforward manner to systems of
nonlinear equations by introducing the Jacobian operator. Let us consider the n×n system:

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0
...

fn(x1, . . . , xn) = 0 ,

4.1. Root Finding Methods 228

which we re-write in compact form as

f(x) = 0.

Then, the iterative Newton-Raphson method for the above system is:

Jn(xn+1 − xn) = −f(xn),

where we define the Jacobian operator as

J =
∂fi

∂xj
.

We also note that here the subscripts n, (n + 1), . . . denote iteration number but also com-
ponents of the vector x.

Convergence: Next, we examine the conditions that guarantee that the Newton-Raphson
method for a system converges at a rate similar to the scalar equations, i.e., at quadratic
rate. This is done by examining the partial derivatives of

g(x) ≡ x− J−1f(x)

and by differentiation

∂g(x)

∂xj

=
∂x

∂xj

− ∂

∂xj

[
J−1(x)f(x)

]

=
∂x

∂xj
− J−1(x)

∂f

∂xj
− f(x)

∂J−1(x)

∂xj
.

At the solution x = s, the above expression becomes

∂g(s)

∂xj
= I− J−1(s)J(s)− f(s)

∂J−1(s)

∂xj
→ 0 ,

where I is the identity operator. Furthermore, in order to determine the last term ∂
∂xj

[J−1(x)],

we note that
∂

∂xj
[J−1J] =

∂I

∂x
= 0 = J−1∂J

∂x
+ J

∂J−1

∂x
,

and therefore
∂J−1

∂xj
= −J−1 ∂J

∂xj
J−1.

From the analysis above, we see that we need only require that:

• f(x) have two derivatives, and

• J(x) be non-singular at the solution or root.

4.1. Root Finding Methods 229

Then, the convergence of Newton-Raphson’s method is quadratic, similar to the scalar case.
The theorem below gives the precise conditions for convergence.

Convergence Theorem: Let us assume that

‖ J−1(x0) ‖≤ a and ‖ x0 − x1 ‖≤ b

and also that

n∑
k=1

∣∣∣∣∣∂
2fi(x)

∂xj∂xk

∣∣∣∣∣ ≤ c

n
, ∀ x : ‖ x− x0 ‖ ≤ 2b, i, j = 1, 2, . . . , n

If in addition a b c ≤ 1/2, then the Newton-Raphson iterates are uniquely defined and lie in
the 2b-sphere, i.e.,

‖ xk − x0 ‖ ≤ 2b

lim
k→∞

xk = s, ‖ xk − s ‖≤ 2b

2k
.

The problem with the Newton-Raphson method for systems is that it is computationally
expensive as it requires the solution of a linear system in each iteration to invert the Jacobian
matrix J. It also requires the construction of the n2 entries in the Jacobian matrix, which
are partial derivatives of f(x). To this end, several modifications have been proposed and
many different versions are used in practice, depending on the particular application. Next,
we present two simple popular versions.

Modified Newton: Here the Jacobian is computed only initially and used for all subsequent
iterations, i.e.,

J0(xn+1 − xn) = −f(xn) .

This, however, lowers the convergence to first-order, as can be seen for the scalar example
presented earlier for the square-root (here J0 = 2x0.):

(xn+1 −
√
C) =

[
1− xn +

√
C

2x0

]
(xn −

√
C),

which clearly indicates linear convergence.

Quasi-Newton: Here we use the values from the first two iterations x1,x0 and we define
∆x ≡ x1 − x0 and ∆f ≡ f1 − f0. The idea is to adjust J1 to satisfy J1∆x = ∆f, and thus

J1 = J0 +
(∆f− J0∆x)(∆x)T

(∆x)T (∆x)
,

and then x2 = x1 − J−1f. Convergence is faster than linear but not quite quadratic. An
extension of this approach with modifications to preserve symmetry of J is used in finite
element methods [84].

4.1. Root Finding Methods 230

Continuation Method

We have seen so far through the theorems and through examples how crucial the initial
condition (guess) is for the Newton-Raphson method to converge, and this is especially true
for systems of nonlinear equations. In problems where we have to solve nonlinear equations
many times, e.g. in time-dependent simulations, we can use the solution of the previous
time step. Similarly, assuming that we study the instability of a system which depends on a
bifurcation parameter α, we need to solve

f(x, α) = 0

for several values of α. One approach that is often used in practice is to linearize the
equations for the critical value of the bifurcation parameter, say at αc, e.g. right at the onset
of the bifurcation (instability), and compute the solution to the linear system of equations.
We can then use that solution as a initial guess to obtain a solution for a value of α > αc

but with the difference (α − αc) not too large. This process can continue for a larger value
of α, and so on. This is the so-called continuation method, as we assume that the systems
of equations define dependent variables which are continuously differentiable in α.

If there is no bifurcation parameter explicitly included in the equations, we can still use
the continuation method by introducing a fictitious parameter α and rewrite the system of
equations as

h(x, α) = (1− α)f(x0)− f(x), α ∈ [0, 1]

where x0 is a first solution guess which may or may not satisfy the original system f(x) = 0.
We see that for α = 0 the guess solution is a root for h(x), and for α = 1 we recover the
system we want to solve. This suggests that we can start with the guess solution x0 and
α = 0 and continue in small increments of α up to α = 1.

4.1.7 Solution via Minimization:
Steepest Descent and Conjugate Gradients

In this section we present ways of solving systems of linear and nonlinear algebraic equations
by attempting to obtain the minimum of an appropriately defined functional. We will focus
on two useful methods: Steepest Descent and Conjugate Gradient.

Method of Steepest Descent

We have already mentioned the computational complexity associated with the computation
of the Jacobian J, but even worse, sometimes we may not be able to compute it at all. In
this case, we can still use an approach similar to the secant method in which we replace the
inverse Jacobian with a scalar constant α, as follows

xn+1 − xn = −αf(xn). (4.6)

The step size α is important, but it is the direction of the path that we follow, namely along
the tangent direction −f(xn) that gives this method the name of the steepest descent.

4.1. Root Finding Methods 231

In order to appreciate this, let us introduce the anti-derivative of the system of equations
we try to solve, which is a scalar function

P (x1, . . . , xn) and fi =
∂P

∂xi

= 0.

We can then interpret f(x) as the gradient of the parent function P (x). Obtaining the
solution is equivalent to minimizing the parent function, as we set all its partial derivatives
equal to zero. For example, for a system of linear equations Ax = b, the parent function
that we minimize has the simple quadratic form

P (x) =
1

2
xTAx− xT b

as the location of the minimum coincides with the solution x = A−1b. For nonlinear
equations, however, the parent function is more difficult to obtain.

Since f = ∇P and the gradient operator points towards increasing values of the scalar P ,
that is along paths of steepest ascent, it is clear that −f(xn) points along paths of steepest
descent (see equation (4.6)), and it is perpendicular to iso-contours of P (x). The iso-surfaces
of a positive-definite quadratic P (x) is an ellipsoid centered about the global minimum; the
semi-axes of the ellipsoid are related to the eigenvalues of the corresponding matrix A. If
the eigenvalues of A are all equal, then the iso-surfaces of P would be spheres, and thus the
steepest descent direction would point towards the sphere center. However, the eigenvalues
are typically very different in magnitude; in extreme cases the sphere may be a thin ellipsoid,
in which case convergence to the minimum may be very slow or may even fail. This is
expressed in the following theorem, which is valid for the linear case:

First Theorem of Convergence for Quadratic P: The eigenspectrum of the matrix A
defines the convergence of the steepest descent method as follows:

P (xk) +
1

2
bTA−1b ≤

(
1− 1

κ2(A)

)(
P (xk−1) +

1

2
bTA−1b

)
.

Here

κ2(A) =
λmax

λmin

is the condition number of the positive-definite symmetric matrix A, and if it is large the
convergence is very slow. The condition number expresses the aspect ratio of the ellipsoid,
i.e., the ratio of its two semi-axes.

The step size α can be chosen properly so that a monotonic convergence is guaranteed.
The following theorem presents the appropriate choice for α.

Second Theorem of Convergence for Quadratic P: Consider the vector f ≡ ∇P =
Ax− b. By computing the step size in the steepest descent method from

α =
fT f

fTAf
(4.7)

4.1. Root Finding Methods 232

then
P (x) = P (x− 2αf); and P (x− αf)− P (x) ≤ 0

for an arbitrary vector x.

This theorem simply states that if we move by an amount 2α along the steepest descent,
we will end up on the other side of the ellipsoid formed by the iso-contours of P (x). If we
move only by an amount α, then we guarantee that we get closer to the global minimum.
This is proven by considering:

P (x− 2αf) =
1

2
(x− 2αf)TA(x− 2αf)− (x− 2αf)Tb

which is re-arranged to

P (x− 2αf) = P (x)− 2αfT f + 2α2fTAf,

so by choosing α as suggested by the theorem we prove the first statement. The second
statement is straightforward to prove with this choice of α, and upon substitution we obtain

P (x− αf) = P (x)− 1

2

(fT f)2

fTAf
≤ P (x).

The steepest descent algorithm with adaptive step size α for the linear system f ≡
Ax− b = 0 can then be summarized as follows:

Steepest Descent Algorithm

•Initialize : Choose x0 ⇒ f0 = Ax0 − b.

•Begin Loop : for n = 1, 2, . . .

αn = fT

n fn

fT

nAfn

xn+1 = xn − αnfn
fn+1 = Axn − b

endfor
•End Loop

For nonlinear systems the above algorithm can also be used but the step size αn may not
be optimum and convergence could be slow.

Conjugate Gradient Method - CGM

A more effective method than the steepest descent is one that takes not only adaptive steps
but also turns adaptively in the pursuit of the minimum of the parent function. To this
end, we can improve the search direction so instead of f(xn), we follow the direction of the
steepest descent p, which is conjugate to the previous search directions

pn = −fn + βn−1pn−1 (4.8)

4.1. Root Finding Methods 233

where βn−1 changes in each iteration adaptively and can be computed from the projection

βn−1 =
fTn (fn − fn−1)

fTn−1fn−1

(4.9)

as we will show later. The conjugate gradient formula is then

xn+1 − xn = αnpn, (4.10)

where pn is computed from above and the step size αn could also be computed adaptively.
For nonlinear problems there are no known formulas that can do that but for linear problems
there is a nice theory that we will present next. We note that for βn−1 = 0 we recover the
steepest descent method.

CGM for Linear Systems

We will present several different solution algorithms for linear systems in chapter 9, but CGM
is one of the very best. The success of the conjugate gradient method in obtaining solutions
of systems of nonlinear equations fast is based upon the theory of conjugate gradients for
linear systems of equations and the remarkable properties that are inherent in this method.
In the following, we develop this theory for the linear system

Ax = b⇒ r ≡ b−Ax,

where r is defined as the residual. It is zero exactly when we reach the minimum of the the
quadratic parent function

P (x) =
1

2
xTAx− xTb,

where we assume that A is positive-definite and symmetric.

First, we need to define conjugate directions. In general, the vectors p and q are said to
be conjugate or A-orthogonal if

pTAq = 0.

The idea of the conjugate gradient method is to perform searches in a set of conjugate
directions pi satisfying the A-orthogonality condition, i.e.,

pT
i Apj = 0.

As an example, the eigenvectors of the matrix A satisfy this property since

vT
i Avj = vT

i λvj = λvT
i vj = 0, i �= j.

Let us now assume that we have a symmetric positive-definite matrix A which has size
n× n, then at each iteration (k + 1) we obtain the conjugate direction, that is the solution,
from

xk+1 = xk + αpk,

4.1. Root Finding Methods 234

where α will be chosen to minimize the quadratic functional, and pk will be computed
adaptively, as we will see below. First, we can show that

P (xk+1) = P (xk) +
1

2
α2pT

k Apk − αpT
k rk,

where we have used rk = b−Axk. Next, we minimize the quadratic P with respect to α by
setting

∂P

∂α
= 0,

which leads to

αk ≡ α =
(pk, rk)

(pk,Apk)
.

Here we have defined the inner (dot) product

(a,b) ≡ aTb

to simplify the notation, and we will use that in the following.

Theorem on Conjugate Directions: Let A be a symmetric positive-definite matrix of
size n× n. Then after n conjugate direction searches in the n-dimensional space, we obtain
rn = 0, and thus we reach a minimum of the parent function P (x).

Proof: We will make use of the A-orthogonality property defining the conjugate directions.
First, from the repeated action of the iteration xk = xk−1 + αk−1pk−1 we obtain

xk − x0 =
k−1∑
i=0

αipi (4.11)

where x0 is the initial (arbitrary) guess and

αi =
(pi, ri)

(pi,Api)

as determined from the minimization of the quadratic form.
Let us now consider the (unknown) solution s and express it in terms of the n A-

orthogonal vectors that form the conjugate directions. This is possible as these vectors
are linearly independent due to the A-orthogonality. Specifically, we offset the solution by
the initial guess and then expand it as follows

s− x0 =
n−1∑
j=0

γjpj,

where from the orthogonality again we can compute the coefficients

γj =
(pj ,A(s− x0))

(pj,Apj)
.

4.1. Root Finding Methods 235

Next, we consider the coefficient γk and subtract-off the scalar

(pk,A(xk − x0))

(pk,Apk)
,

which is zero considering equation (4.11). We can then combine the two to get

γk =
(pk,A(s− x0))

(pk,Apk)
− (pk,A(xk − x0))

(pk,Apk)

=
(pk,A(s− xk))

(pk,Apk)

=
(pk, rk)

(pk,Apk)
,

where we have used the definition of the residual, i.e., rk = b−Axk = A(s− xk).
Now by comparing the coefficients γk and αk we see that they are identical and therefore

the n-term expansion of the conjugate direction iteration (xk − x0) is identical to the exact
solution (s− x0). This result is indeed remarkable!

While the above theorem is valid for any set of conjugate directions, efficiency is what
distinguishes the conjugate gradient algorithm. For example, the use of the eigenvectors of A
would be prohibitively expensive as it takes much more computational work to compute the
eigenvectors of the matrix than solving the linear system! Another approach would be to use
the Gram-Schmidt algorithm to obtain conjugate directions but this is also very expensive
and would amount to O(n4) work.

To this end, the idea of Hestenes & Stiefel [55] to compute iteratively the search directions
p is the keystone of this method. It is very efficient and requires the storage of two or three
vectors only. Initially, we set p0 = r0, and then we iterate

pk+1 = rk+1 + βkpk,

where we need to determine the scalar, βk, by using the A-conjugate property of the search
directions pk. For this, we take the inner product of the above equation with pT

k and impose
A-orthogonality on the left-hand-side

0 = (pk,Apk+1) = (pk,Ark+1) + βk(pk,Apk),

and this leads to

βk = −(pk,Ark+1)

(pk,Apk)
= −(rk+1,Apk)

(pk,Apk)
,

which can always be computed since the denominator is guaranteed to be non-zero. The last
equality is valid since A is symmetric.

Next, we prove some useful relationships between the orthogonal directions and the resid-
ual which can be used to reduce even further the computational complexity of the conjugate
gradient algorithm. First, it is clear that using its definition we can compute the residual

4.1. Root Finding Methods 236

iteratively as well, as follows

rk+1 = b−Axk+1

= b−A(xk + αkpk)

= (b−Axk)− αkApk

= rk − αkApk.

Using the above equation we now show that

(ri,pj) = 0, i �= j (4.12)

(ri,pi) = (ri, ri) (4.13)

(ri, rj) = 0, i �= j (4.14)

This is shown by induction, that is assuming that the first equation above is valid we will
also show that (ri+1,pj) = 0. We substitute ri+1 from the iteration equation above and then
it becomes obvious; we proceed similarly for the other two equations.

Based on these relations, we can also prove that βk is the ratio of the square of the
magnitudes of two successive gradients, i.e.,

βk = −(pk,Ark+1)

(pk,Apk)
=

(rk+1, rk+1)

(rk, rk)
.

We now finalize the CG algorithm for linear systems of equations:

Conjugate Gradient Algorithm

•Initialize : Choose x0 ⇒ p0 = r0 = b−Ax0.

•Begin Loop : for k = 1lto n

αk = (rk,rk)

(pk,Apk)

xk+1 = xk + αkpk

rk+1 = rk − αkApk

βk = (rk+1,rk+1)
(rk ,rk)

pk+1 = rk+1 + βkpk

endfor
•End Loop

This code represents the ideal algorithm that terminates after exactly n iterations; it
assumes that the orthogonality of the conjugate directions is preserved independently of the

4.1. Root Finding Methods 237

matrix A, i.e., its size and its structure. In practice, however round-off errors may destroy
such orthogonality resulting in incomplete convergence. The convergence process then is
controlled by the condition number of A as discussed in chapter 9, where preconditioning
techniques for convergence acceleration are also presented.

The simplicity of the CG algorithm both in terms of coding as well as in terms of com-
putational complexity is amazing! We only need to perform one matrix-vector product, i.e.,
Apk, one dot product, and three daxpy’s operations, all of which can be implemented very
efficiently using the BLAS routines discussed in section 2.2.7.

Software

 Suite
Putting it into Practice

Here we provide our implementation of a non-preconditioned ConjugateGradient routine.
We also use a stopping criterion for convergence in anticipation of round-off errors. Our
program can then be terminated before or after n iterations, depending on the matrix A and
the tolerance level we use. For this implementation, we are using classes from the software
suite: namely, SCV ector and SCMatrix.

The beautiful thing about the implementation below is that by using classes (and all the
mechanics that are available for using classes in C++), the CG method can be described
succinctly in a few lines of code. Below, we present our implementation:

SCVector ConjugateGradient(SCMatrix A, SCVector b, SCVector x0){

int dim = x0.Dimension();

const double tolerance = 1.0e-14;

SCVector x(dim),r(dim),v(dim),z(dim);

double c,t,d;

x = x0;

r = b - A*x;

v = r;

c = dot(r,r);

for(int i=0;i<dim;i++){

if(sqrt(dot(v,v))<tolerance){

cerr << "Error in ConjugateGradient: execution "

cerr << "of function terminated" << endl;

break;

}

z = A*v;

4.1. Root Finding Methods 238

t = c/dot(v,z);

x = x + t*v;

r = r - t*z;

d = dot(r,r);

if(sqrt(d) < tolerance)

break;

v = r + (d/c)*v;

c = d;

}

return x;

}

In this function, we have used classes for encapsulating the ideas of a vector and a matrix,
and we have used the idea of overloaded operators to perform the mathematical operations
necessary. Notice that we are using operators like ‘+’, ‘-’ and ‘*’ between variables of type
SCV ector and SCV ector, and between SCMatrix and SCV ector. As we discussed in 3.1.8,
this is accomplished by overloading the operators, that is, extending the definition of these
operators to include operations between our newly created data types.

We now present a simple main driving program which uses the function above.

#include <iostream.h>

#include "SCmathlib.h"

#include "SCchapter4.h"

int main(int argc, char * argv[]){

int dim = 4;

SCVector x(dim),b(dim),x0(dim);

SCMatrix A(dim);

// Set our initial guess

x0(0) = x0(1) = x0(2) = x0(3) = 1.0;

for(int i=0;i<dim;i++){

for(int j=0;j<dim;j++){

A(i,j) = 1+(i+1)*(j+1);

/* We do this to make sure that the symmetric matrix that

we create has a determinant which is non-zero */

if(i==3 && j == 2)

A(i,j) = 12;

if(i==2 && j == 3)

A(i,j) = 12;

4.1. Root Finding Methods 239

}

}

cout << "The Matrix A that we are using: " << endl;

A.Print();

cout << endl;

SCVector y(dim);

y(0) = 2.;

y(1) = -3.;

y(2) = 5.43;

y(3) = -22.56;

cout << "The exact solution is: " << endl;

y.Print();

cout << endl;

b = A*y;

cout << "The right hand side, b, of Ax=b: " << endl;

b.Print();

cout << endl;

x = ConjugateGradient(A,b,x0);

cout << "The approximate solution using CG is: " << endl;

x.Print();

cout << endl;

}

4.2. Numerical Integration Methods 240

4.2 Numerical Integration Methods

Approximate integration of a function is a very old subject. It was first performed rigorously
by Archimedes who used the method of inscribed and circumscribed polygons to obtain lower
and upper bounds for the value of the area of a circle. He also computed the center of mass
and center of buoyancy for many complicated figures, a task that requires accurate integra-
tion. Simpson suggested a very accurate formula in the mid-eighteen century, and Gauss
proposed his famous quadrature rules in the early part of the nineteen century. Numerical
discretization methods such as finite elements and boundary elements, in particular, depend
critically on efficient numerical integration procedures. There exist both simple quadrature
rules as well as more advanced approaches, which we present next. More details on inte-
gration can be found in the books of Davis & Rabinowitz [23] and Ghizzetti & Ossicini
[43].

4.2.1 Simple Integration Algorithms

f(x)

a bh

f(x)

a bh

Figure 4.3: Trapezoid (left) versus midpoint-rectangle (right) rule: The accuracy is of the same
order, O(h2) for both, but surprisingly the midpoint-rectangle wins by a factor of two.

The simplest quadrature formulas are based on either piecewise constant approximations
of a function in the interval of interest

I =
∫ b

a
f(x)dx ,

as shown schematically in figure 4.3 (right) or on piecewise linear approximations (left).
Assuming that h is the size of each of the n equal cells involved in the discretization, we
obtain the approximations:

• Midpoint-Rectangle Rule:

I ≈ R(h) = h
n∑

i=1

fi−1/2 . (4.15)

4.2. Numerical Integration Methods 241

This is implemented in the code below.

Software

 Suite
Putting it into Practice

We present a functional implementation of the Midpoint Rule. Notice that we are
continuing to use the concept of passing functions to functions.

double MidpointRule(int level, double xleft, double xright,

double (*func)(double)){

int i, nsteps = (int) pow(2,level)-1;

double h = (xright-xleft)/pow(2,level);

double sum = 0.0;

for(i=0;i<=nsteps;i++)

sum += func(xleft + (i+0.5)*h);

sum *= h;

return sum;

}

• Trapezoid Rule:

I ≈ T (h) = h[
1

2
f0 + f1 + . . .+ fn−1 +

1

2
fn] . (4.16)

This is implemented in the code below.

Software

 Suite
Putting it into Practice

We present a functional implementation of the Trapezoidal Rule. Observe the use of
short-hand operators in the function below. We are able to short-hand both addition
and multiplication.

4.2. Numerical Integration Methods 242

double TrapezoidRule(int level, double xleft, double xright,

double (*func)(double)){

int i, nsteps = (int) pow(2,level)-1;

double h = (xright-xleft)/pow(2,level);

double sum = 0.0;

for(i=1;i<=nsteps;i++)

sum += func(xleft + i*h);

sum *= 2;

/* Add the first and the last point to the summation */

sum += func(xleft) + func(xright);

sum *= 0.5*h;

return sum;

}

Note that, by definition, the following identity applies

T (h) =
1

2
[T (2h) +R(2h)],

so we can easily relate the two formulas. Intuitively, one would guess that the trapezoid
rule may be more accurate than the midpoint-rectangle because of the higher-order approx-
imation involved, i.e. linear versus constants. However, as we will see below the quadrature
error in the trapezoid rule is twice the quadrature error in the midpoint-rectangle rule!

Quadrature Error

To obtain the quadrature error for the above methods we assume that f ′′(x) is continuous
in [a, b]. We then consider a grid consisting of the (m+ 1) points

[x0, x1, . . . , xm],

and construct the unique polynomial

p(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + . . .+ cm(x− x0)(x− x1) . . . (x− xm−1) (4.17)

so that p(xi) = f(xi), i = 0, 1, . . . , m. This is Newton’s formula of approximating f(x) in
the interval [a, b] where x0 = a and xm = b. Then, if f(x) possesses continuous derivatives
of order at least (m+ 1), we obtain

f(x)− p(x) =
f (m+1)(ξ)

(m+ 1)!
(x− x0)(x− x1) . . . (x− xm) (4.18)

for some point ξ ∈ [a, b]. We can then obtain the quadrature error by simply integrating the
right-hand-side in the above equation and by providing an upper bound for the magnitude

4.2. Numerical Integration Methods 243

of the (m+ 1) derivative.

For the Trapezoid rule we obtain on each cell i:

εTi = Ti(h)−
∫ xi

xi−1

f(x)dx = −
∫ xi

xi−1

f
′′
(ξ)

2
(x− xi−1)(x− xi)dx, ξ ∈ [xi−1, xi]

and thus

εTi ≈ −
1

2
f

′′
(ξi)

∫ xi

xi−1

(x− xi−1)(x− xi)dx.

Let

x = xi−1 + h s, εTi ≈ −
1

2
f

′′
(ξi)

∫ 1

0
h s h(s− 1)h ds =

h3f
′′
(ξi)

12
.

The above is the local quadrature error on the cell i. We can easily obtain the global error
by summing over all the cells i, i.e.

εT =
n∑

i=1

εTi ≈ f
′′
(ξ)

(b− a)h2

12
,

where

b− a =
n∑

i=1

h.

Therefore, the trapezoid rule results in second-order convergence rate O(h2) for the global
error.

For the Midpoint-Rectangle rule we need to expand the function around the midpoint
x0 = (xi−1 + xi)/2 in the cell i :

f(x) ≈ f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2
f ′′(ξ),

where ξ ∈ [a, b]. Then the error for the integral Ri(h) is

εRi = Ri(h)−
∫ xi

xi−1

f(x)dx = −
∫ xi

xi−1

f ′(x0)(x− x0)dx−
∫ xi

xi−1

f
′′
(ξ)

2
(x− x0)

2dx

= f ′′(ξ)
h3

24
.

The above is the local quadrature error on the cell i. We can easily obtain the global error
by summing over all the cells i, i.e.

εR =
n∑

i=1

εRi ≈ f
′′
(ξ)

(b− a)h2

24
.

Comparing now the global quadrature errors εR and εT we see that, surprisingly, the midpoint-
rectangle rule approximates the integral I better, as its corresponding error is half of that
for the trapezoid rule!

4.2. Numerical Integration Methods 244

Better Trapezoid Rules

We present here two efficient ways of improving the second-order accuracy of the trapezoid
rule by

1. Correcting the end-values,

2. Interval subdivision.

First, the corrected trapezoid rule is based on a trigonometric interpolation of the
function, unlike the Newton linear approximation used for the standard trapezoid (equation
(4.17) with m = 1). It adds to the standard trapezoid formula a correction term at the ends,
i.e.

TC(h) = h[
1

2
f0 + f1 + . . .+ fn−1 +

1

2
fn] +

h2

12
[f ′(a)− f ′(b)], (4.19)

with corresponding quadrature error

εTC ≈ h4

720
× [f

′′′
(b)− f ′′′

(a)].

Clearly, for functions which are periodic in the interval [a, b], a very high degree of accuracy
is achieved without the addition of the extra correction terms.

Another efficient method to increase the formal order of accuracy of the trapezoid rule
is Romberg’s method . This method, which is also called extrapolation to the limit, is a
systematic procedure of using subdivision of intervals with the trapezoid rule. It is based on
Richardson’s extrapolation idea which is used most often in numerical differentiation.

Let us define a series of trapezoid sums

T0, T1, T2, . . .

by successively bisecting the interval of integration

T0 =
h0

2
[f(x0) + f(x0 + h0)]

T1 =
h1

2
[f(xo) + 2f(x0 + h1) + f(x0 + 2h1)]

...
...

Tk =
hk

2
[f(x0) + 2

2k−1∑
i=1

f(x0 + ihk) + f(x0 + 2khk)].

Then the error on each grid (k) is: εk = I − Tk, where I is the exact value of the integral.
Because of the quadratic convergence, we have

εk+1 ≈ 1

4
εk.

4.2. Numerical Integration Methods 245

We also have for k = 0, 1, . . .

I = T0 + ε0

I = T1 + ε1 � T1 +
1

4
ε0 = T1 +

1

4
(I − T0)⇒ I � 4T1 − T0

3
.

In general, we have by induction

I1
k =

4Tk − Tk−1

3
,

which defines a one-step correction. Expanding Tk and Tk−1 and substituting in the above
formula we obtain a quadrature error for I1

k which is proportional to h4, competitive with
Simpson’s rule (see below). Thus, the error in successive terms of I1

k is reduced by a factor
of 1/16 and we obtain a two-step correction:

I2
k =

16I1
k − I1

k−1

15
.

Continuing this process (m) times, we get the recurrence formula

Im
k =

4mIm−1
k − Im−1

k−1

4m − 1
, m ≥ 1, k ≥ m. (4.20)

To completely define the recursive process, we also need to specify the initial conditions, i.e.,

I0
k = Tk; I0

k−1 = Tk−1.

The corresponding quadrature error in Romberg’s method is

εmk ∼ h2m+2 · f (2m+2)(ξ).

This method uses a fine grid (k) and a coarse grid (k − 1) and extrapolates the standard
trapezoid rule. The reason why this algorithm works is because we know that the error
structure has the polynomial form

c1h
2 + c2h

4 + c3h
6 + . . .

for the trapezoid rule. So the idea of the method is to use more than one grid, a fine
grid and a coarse grid, and then at the first correction level construct the extrapolant, at the
second correction level construct the extrapolant of the extrapolant, and so on. By weighting
appropriately these successive constructs, we can extrapolate the resulted quadrature values
to higher accuracy.

In theory, Romberg’s method gives arbitrarily high convergence rate but in practice
round-off error slows down convergence and accuracy.

We present a functional implementation of Romberg’s integration. Notice that this im-
plementation consists of two components:

4.2. Numerical Integration Methods 246

Software

 Suite
Putting it into Practice

1. An implementation of the trapezoid rule.

2. A recursive definition for Romberg integration.

In the case below, the stopping condition for the recursion is when the variable m is equal
to zero. When this is true, we execute the trapezoid rule. For all other valid values of m we
recursively call the Romberg function with appropriately changed arguments.

double Romberg(int m, int k, double xleft, double xright,

double (*func)(double)){

double RI,I1,I2;

double coeff = pow(4.0,m);

if(k < m){

cerr << "ROMBERG::Value of k must be >= m; setting k=m\n";

k = m;

}

if(m==0){

RI = TrapezoidRule(k,xleft,xright,func);

}

else{

I1 = Romberg(m-1,k, xleft,xright,func);

I2 = Romberg(m-1,k-1,xleft,xright,func);

RI = (coeff*I1 - I2)/(coeff-1.0);

}

return RI;

}

Simpson’s Rule

The idea in Simpson’s rule of integration is to connect three consecutive ordinates by a
parabola and use Newton’s approximation formula to obtain the quadrature error. The
standard or 1/3 Simpson’s rule employs an even number of cells. For the i cell defined by
[xi−1, xi, xi+1] we obtain∫ i+1

i−1
f(x)dx ≈ Si(h) =

h

3
[fi−1 + 4fi + fi+1], (4.21)

and the Simpson quadrature for the entire interval [a, b] is

S(h) =
h

3
[f0 + 4f1 + 2f2 + . . . 4fm−1 + fm] (4.22)

4.2. Numerical Integration Methods 247

where m is an even number.
To obtain the error in Simpson’s formula we employ equation (4.17) with m = 2, then

εSi = h
∫ 2

0

t(t− 1)(t− 2)

6
h3f ′′′(ξ)dt = 0,

thus the leading term in the error is zero, so we have to integrate the next term

εSi = h
∫ 2

0

t(t− 1)(t− 2)(t− 3)

24
h4f (4)ξ)dt = −h

5

90
f (4)(ξ),

so the local error is O(h5). The global error can be easily obtained by replacing h = (b−a)/2,
i.e.

εS = −(b− a)
2880

h4f (4)(ξ).

It is interesting to note that in Simpson’s rule we obtain O(h4) convergence with a quadratic
polynomial fit as we take advantage of the even number of cells and the corresponding
cancellation in the error terms. In fact, a cubic polynomial fit in equation (4.17) leads to
the 3/8 rule

Si(h) =
3

8
h[fi−1 + 3fi + fi+1]

with an error

εSi = −3h5

80
f (4)(ξ),

which is larger than the local error of the 1/3 Simpson’s rule corresponding to lower order
polynomial approximation. However, this rule is useful when an odd number of cells is
required in the integration, which can be broken up into two subintervals: The first one
consists of 3 cells (3/8 rule), and the second one consists of the rest, which corresponds to
an even number of cells where we apply the standard 1/3 Simpson’s rule.

Example

Software

 Suite

As an example, we put into practice several of the functions
implemented above (see software suite). We are attempting to
approximate the integral of x4 on the interval [0, 1], for which
we know the exact value to be 0.2. In the program, we com-
pute the midpoint rule, trapezoid rule, and Simpson’s rule ap-
proximation for ten levels. The output of the program is the
following table:

Level Midpoint Trapezoidal Simpsons

0 1.375000e-01 3.000000e-01 8.333333e-03

1 3.984375e-02 8.125000e-02 5.208333e-04

2 1.030273e-02 2.070312e-02 3.255208e-05

3 2.597046e-03 5.200195e-03 2.034505e-06

4 6.505966e-04 1.301575e-03 1.271566e-07

5 1.627326e-04 3.254890e-04 7.947286e-09

4.2. Numerical Integration Methods 248

6 4.068837e-05 8.137822e-05 4.967053e-10

7 1.017242e-05 2.034493e-05 3.104406e-11

8 2.543125e-06 5.086255e-06 1.940226e-12

9 6.357825e-07 1.271565e-06 1.212364e-13

From the data presented above, we observe the following:

• The trapezoid rule has, in fact, an error which is about twice that of the midpoint rule,
just as predicted by the theory!

• Both the midpoint rule and the trapezoid rule exhibit second-order convergence, as
predicted by the theory!

• For Simpson’s rule, we obtain fourth-order convergence, as predicted by the theory!

Key Concept

• Theoretical results should be used to test the validity of your
implementation.

4.2.2 Advanced Quadrature Rules

All integration methods in the previous section are based on Newton’s formula and low-
order polynomial approximation. We can extend these methods to high-order polynomial
interpolation using Lagrangian interpolation, see section 3.1. The objective is to maximize
the order of accuracy for a fixed number of points whose locations are allowed to vary. This
leads us to Gauss quadrature. For example, suppose that we want to evaluate the integral

∫ 1

0

1 + x√
x
,

the exact value of which is 8/3. We can only use n = 2 quadrature points and Gauss
integration to compute the above integral exactly!

The important difference with the methods of the previous section is the location of the
quadrature points. These are special points, as we will explain, and typically they are roots
of an appropriate orthogonal polynomial. The Legendre polynomial is the most-often used
but Chebyshev, Laguerre and Hermite polynomials are also used. For the aforementioned
integral, the two special points are determined from the roots of the second-order Legendre
polynomial

P2(s) =
1

2
(3s2 − 1), s ∈ [−1, 1]

4.2. Numerical Integration Methods 249

i.e., s± = ±1/
√

3. These special points need to be mapped in the interval of integration
[a, b], so we obtain

x =
a+ b

2
+
b− a

2
s, where x ∈ [a, b] and s ∈ [−1, 1].

Let us now derive the general Gauss quadrature. We assume that the values

f(x1), f(x2), . . . , f(xn)

cannot provide sufficient information for determining f(x). Let x = xk and correspondingly
yk ≡ f(xk), and determine the polynomial pn−1(x) which fits the coordinates y1, y2 . . . , yn.
We can employ Lagrange’s interpolation by constructing the fundamental polynomial

Fn(x) = (x− x1)(x− x2) . . . (x− xn)

and define

hi(x) =
1

F ′
n(xi)

Fn(x)

x− xi
, i = 1, 2, . . . , n

hi(xk) = 0; hi(xi) = 1 , by construction.

We then obtain the polynomial

pn−1(x) = y1h1(x) + y2h2(x) + . . .+ ynhn(x)

where

pn−1(xk) = yk.

The Gauss integral can then be approximated as :

IG =
∫ +1

−1
pn−1(x)dx =

n∑
k=1

yk

∫ 1

−1
hk(x)dx =

n∑
k=1

ykwk ,

where

wk ≡
∫ +1

−1
hk(x)dx

are the weights of integration, which are independent of the integrand.

Gauss’s idea is then to add an extra point xn+1 without changing xk, k ≤ n or equivalently
the term

hn+1(x) =
Fn(x)

F
′
n+1(xn+1)

,

and thus the (n + 1) weight

wn+1 ∼
∫ 1

−1
Fn(x)dx .

4.2. Numerical Integration Methods 250

Similarly, if we add m new points

xn+1, xn+2, . . . , xn+m︸ ︷︷ ︸
m points

then the (n + 1)th weight is obtained from

wn+1 =
∫ +1

−1
Fn(x)Gi

m−1(x)dx ,

where Gi
m−1(x) is a polynomial of order (m − 1). Now, if we impose that all moments of

Fn(x) up to (m− 1) are zero, i.e.,∫ 1

−1
Fn(x)xkdx, k = 0, 1, . . . , m− 1

then orthogonality leads to ∫ +1

−1
Fn(x)Gi

m−1(x)dx = 0,

since G is a linear combination of powers xk. We can add up to n points to the original
grid, and thus we can effectively double the number of points considered with only half the
weights!

Therefore, the Gauss formula

IG =
n∑

k=1

ykwk

that employs a grid of n points results in quadrature accuracy equivalent to a grid corre-
sponding to 2n coordinates using the simple rules of the previous section.

Jacobi Polynomials

Jacobi polynomials P α,β
n (x) are a family of polynomial solutions to the singular Sturm-

Liouville problem. A significant feature of these polynomials is that they are orthogonal
in the interval [−1, 1] with respect to the function (1 − x)α(1 + x)β (α, β > −1). We have
already presented the Chebyshev polynomials in section 3.1.5 – they are a subset of Jacobi
polynomials for the special case that α = β = −1

2
. A detail account of their properties can

be found in Abramowitz & Stegun ([1]: chapter 22) and also in Ghizzetti & Ossicini ([43]:
chapter 3.4).

Differential Equation

(1− x)(1 + x)
d2y(x)

dx2
+ (β − α− (α+ β + 2)x)

dy(x)

dx
= −λny(x) (4.23)

or

d

dx

[
(1− x)1+α(1 + x)1+β dy(x)

dx

]
= −λn(1− x)α(1 + x)βy(x) (4.24)

λn = n(n + α + β + 1)

y(x) = P α,β
n (x)

4.2. Numerical Integration Methods 251

Special Cases

Legendre Polynomial (α = β = 0) → Pn(x) = P 0,0
n (x)

Chebychev Polynomial (α = β = −1
2
) → Tn(x) = 22n(n!)2

(2n)!
P

− 1
2
,− 1

2
n (x)

Recursion Relations

P α,β
0 (x) = 1

P α,β
1 (x) =

1

2
[α− β + (α + β + 2)x]

a1
nP

α,β
n+1(x) = (a2

n + a3
nx)P

α,β
n (x)− a4

nP
α,β
n−1(x) (4.25)

a1
n = 2(n+ 1)(n+ α + β + 1)(2n+ α+ β)

a2
n = (2n+ α + β + 1)(α2 − β2)

a3
n = (2n+ α + β)(2n+ α+ β + 1)(2n+ α + β + 2)

a4
n = 2(n+ α)(n+ β)(2n+ α + β + 2)

b1n(x)
d

dx
P α,β

n (x) = b2n(x)P α,β
n (x) + b3n(x)P α,β

n−1(x) (4.26)

b1n(x) = (2n+ α+ β)(1− x2)

b2n(x) = n[α− β − (2n+ α + β)x]

b3n(x) = 2(n+ α)(n+ β)

Special Values

P α,β
n (1) =

(
n+ α
n

)
=

(n+ α)!

α!n!
(4.27)

P α,β
n (−x) = (−1)nP β,α

n (x) (4.28)

Orthogonality Relations∫ 1

−1
(1− x)α(1 + x)βP α,β

n (x)P α,β
m (x)dx = 0 n �= m (4.29)

∫ 1

−1
(1− x)α(1 + x)βP α,β

n (x)P α,β
n (x)dx =

2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)

Evaluation of the Zeros of Jacobi Polynomials

The formulas for the weights of the general Jacobi polynomials (see table 4.3 for the
Legendre case) have a closed form in terms of the grid points xi. In general, however, there

4.2. Numerical Integration Methods 252

are no explicit formulas for the grid points. These are defined in terms of the roots of the
Jacobi polynomial such that

xi = xα,β
i,m

P α,β
m (xα,β

i,m) = 0 i = 0, 1, . . . , m− 1.

The zeros xα,β
i,m can be numerically evaluated using an iterative technique, such as the

Newton-Raphson we studied in the previous section 4.1.3. However, we note that the zeros
of the Chebychev polynomial (α = β = −1

2
) do have an explicit form,

x
− 1

2
,− 1

2
i,m = − cos

(
2i+ 1

2m
π
)

i = 0, . . . , m− 1,

and so we can use x
− 1

2
,− 1

2
i,m as an initial guess to the iteration.

To ensure that we find a new root at each search we can apply polynomial deflation or
reduction, where the known roots are factored out of the initial polynomial once they have
been determined. This means that the root finding algorithm is applied to the polynomial

fm−n(x) =
P α,β

m (x)

Πn−1
i=0 (x− xi)

,

where xi (i = 0, . . . , n− 1) are the known roots of P α,β
m (x).

Noting that
fm−n(x)

f
′
m−n(x)

=
P α,β

m (x)

[P α,β
m (x)]′ − P α,β

m (x)
∑n−1

i=0 [1/(x− xi)]
,

a root finding algorithm to determine the m roots of P α,β
m (x) using the Newton-Raphson

iteration with polynomial deflation is

for k = 0, m− 1

r = x
− 1

2
,− 1

2
k,m

if(k > 0) r = (r + xk−1)/2
For j = 1,stop

s =
∑k−1

i=0
1

(r−xi)

δ = − P α,β
m (r)

[P α,β
m (r)]′−P α,β

m (r)s

r = r + δ
if (δ < ε) exit loop

endfor
xk = r

endfor

Here ε is a specified tolerance. Numerically, we find that a better approximation for the

initial guess is given by the average of r = x
− 1

2
,− 1

2
k,m and xk−1. The values of P α,β

m (x) and

[P α,β
m (x)]

′
can be generated using the recursion relationships (4.25) and (4.26).

4.2. Numerical Integration Methods 253

n Abscissas xj Weights wj

2 ±0.577350 = ± 1√
3

1

3 0
8

9

±0.774597
5

9

4 ±0.339981 0.652145

±0.861136 0.347855

5 0 0.568889

±0.538469 0.478629

±0.906180 0.236927

Table 4.3: Zeros of Legendre polynomials Pn(x) and corresponding weights.

In the following, we first use the above formulas to compute the Jacobi polynomials and
its derivatives, and subsequently implement the root finding algorithm given above.

Software

 Suite
Putting it into Practice

Here we present an implementation of the Jacobi polynomials. Observe that our definition
relies on the recursive nature of these polynomials, and that we have specifically implemented
the three-term recurrence relation immediately into code.

double JacobiPoly(int degree, double x, double alpha,

double beta){

double value;

double tmp,degm1;

double a1=0.,a2=0.,a3=0.,a4=0.;

4.2. Numerical Integration Methods 254

switch(degree){

case 0:

value = 1.0;

break;

case 1:

value = 0.5*(alpha-beta+(alpha+beta+2.0)*x);

break;

default:

degm1 = degree-1.0;

tmp = 2.0*degm1+alpha+beta;

a1= 2.0*(degm1+1)*(degm1+alpha+beta+1)*tmp;

a2= (tmp+1)*(alpha*alpha-beta*beta);

a3= tmp*(tmp+1.0)*(tmp+2.0);

a4= 2.0*(degm1+alpha)*(degm1+beta)*(tmp+2.0);

value = ((a2+a3*x)*JacobiPoly(degree-1,x,alpha,beta)-

a4*JacobiPoly(degree-2,x,alpha,beta))/a1;

}

return value;

}

Similarly, for the derivatives of the Jacobi polynomials, we rely on the three-term recur-
rence relation to provide us a fast way of implementing the derivative.

double JacobiPolyDerivative(int degree, double x,

double alpha, double beta){

double value;

double tmp;

double b1,b2,b3;

switch(degree){

case 0:

value = 0.0;

break;

default:

tmp = 2.0*degree+alpha+beta;

b1 = tmp*(1.0-x*x);

b2 = degree*(alpha-beta-tmp*x);

b3 = 2.0*(degree+alpha)*(degree+beta);

value = (b2*JacobiPoly(degree,x,alpha,beta) +

b3*JacobiPoly(degree-1,x,alpha,beta))/b1;

}

4.2. Numerical Integration Methods 255

return value;

}

To compute the zeros of the Jacobi polynomials, we use a reduction technique.
In the code below, you will notice that we use two primary concepts:

• We rely on our previous function definitions for the Jacobi polynomials and their
derivatives (given directly above).

• We rely on using Newton-Raphson iteration for obtaining the root.

void JacobiZeros(int degree, double *z, double alpha,

double beta){

int i,j,k;

const int maxit = 30;

const double EPS = 1.0e-14;

double dth = M_PI/(2.0*degree);

double poly,pder,rlast=0.0;

double sum,delr,r;

double one = 1.0, two = 2.0;

// If the degree of the polynomial is zero (or less),

// then there are no roots

if(degree<=0)

return;

for(k = 0; k < degree; k++){

r = -cos((two*k + one) * dth);

if(k) r = 0.5*(r + rlast);

for(j = 1; j < maxit; ++j){

poly = JacobiPoly(degree,r,alpha,beta);

pder = JacobiPolyDerivative(degree,r,alpha,beta);

sum = 0.0;

for(i = 0; i < k; ++i)

sum += one/(r - z[i]);

delr = -poly / (pder - sum * poly);

r += delr;

if(fabs(delr) < EPS) break;

}

z[k] = r;

rlast = r;

4.2. Numerical Integration Methods 256

}

return;

}

Combining everything that we have done above, we can now implement one function
which, when called, returns the zeros and the weights of the Jacobi polynomial of your
choice. Notice in this function that we assume that both arrays z and w have already been
allocated.

void JacobiZW(int degree, double * z, double *w,

double alpha, double beta){

int i;

double fac, one = 1.0, two = 2.0, apb = alpha + beta;

JacobiZeros(degree, z, alpha, beta);

for(i=0;i<degree;i++)

w[i] = JacobiPolyDerivative(degree,z[i],alpha,beta);

fac = pow(two,apb + one)*GammaF(alpha + degree + one)*

GammaF(beta + degree + one);

fac /= GammaF(degree + one)*GammaF(apb + degree + one);

for(i = 0; i < degree; ++i)

w[i] = fac/(w[i]*w[i]*(one-z[i]*z[i]));

return;

}

We note that the orthogonality conditions are satisfied automatically by the Legendere
polynomials Pn(x). The zeros of these polynomials will then determine the locations of the
special points xj . Some values are shown in table 4.3; these values were computed using the
JacobiZW function presented above with both the alpha and beta arguments set to zero.

Also, the fast convergence in the error in Gauss quadrature is due to the fast convergence
of the Legendre interpolation. In addition, the computational advantage results from the
fact that we employ only half of the (2n) coordinates explicitly. Equidistant interpolation
is not a well-convergent process as we have seen in section 3.1.4, and for functions with
singularities inside the “oval region” (see section 3.1.4) convergence is not guaranteed. The
convergence in Legendre distribution is always guaranteed.

Example: Let us compare the Gauss quadrature with the trapezoid rule for the integral
evaluation ∫ 4

0
xexdx = 3e4 + 1 ∼= 164.79445.

4.2. Numerical Integration Methods 257

Using the trapezoid with rule 9-coordinates equidistant we obtain

T (h) = (1/2)
(

1

2
0 + 0.824361 + . . .+

1

2
218.3926

)
= 170.42826

with error

εT = 5.63381.

Next, we employ Gauss quadrature using 5-coordinates obtained from Legendre’s zeros

xk = 2 + 2sk, sk ∈ [−1, 1]

which in the domain of interest are

2(1± 0.906179846)

2(1± 0.538469310).

Table 4.2.2 contains the 5 coordinates in physical space and also the corresponding
weights which also need to be corrected, as follows

wk × b− a
2

because ∫ b

a
f(x)dx =

b− a
2

∫ 1

−1
f(s)ds.

xk wk

0.18764031 0.47385377
0.9230618 0.95725734

2 1.13777778
3.07693862 0.95725734
3.81235969 0.47385377

Table 4.4: Five Gauss-Legendre coordinates and corresponding weights in the interval x ∈ [0, 4].

The result is:

IG =
5∑
1

ykwk = 1.64794290, with error εG = 1.5981× 10−4 ,

which is four orders of magnitude less than the result obtained with the trapezoid rule. We,
therefore, find that the good interpolation with ninth-order Legendre polynomials leads to
good integration with effectively 9 total coordinates.

4.2. Numerical Integration Methods 258

Gauss Quadrature Error

The error in Gaussian quadrature is relatively difficult to obtain. The standard formula
employs the (2n)th derivative (see Lanczos [66]), i.e.,

εG ∼
[
(n!)2

(2n)!

]2
22n+1

2n+ 1

f (2n)(ξ)

(2n)!
, (4.30)

where ξ ∈ [−1, 1]. However, such an error cannot be easily computed, and also this bound
is not very sharp as it is based on the evaluation of a very high-order derivative.

An alternative estimate proposed by Lanczos is obtained as follows: Let us start with
the identity

∫ 1

−1
[xf(x)]′dx =

∫ 1

−1
xf ′dx+

∫ 1

−1
f(x)dx

= f(1) + f(−1)

Then, if we consider the error ε∗ in the Gauss quadrature of the function (xf ′) we have that
it is equal to the quadrature error of the function (xf)′ minus the quadrature error in f
because (xf)′ = xf ′ + f . Therefore,

ε∗ = f(1) + f(−1)− IG −
n∑

k=1

wkξkf
′(ξk).

In the case of a general interval [a, b] instead of [−1, 1] we have

ε∗ =
b− a

2
[f(b) + f(a)]− IG −

(
b− a

2

)2 n∑
k=1

wkξkf
′(xk).

The next key step relies on the assumption that we integrate a function f(x) which is
relatively smooth, and thus we can assume that the unknown point is at ξ ≈ 0. Then
the term in the Taylor expansion of the error (equation (4.30)) is approximately equal to
the coefficient ξ2n in the Taylor expansion around the origin ξ = 0. On the other hand, the
expansion of (ξf ′(ξ)) is identical to the original expansion except from the shift in coefficients
and thus the a2n coefficient is multiplied by (2n + 1). By comparison then we can obtain
that

εG ≈ 1

2n+ 1
ε∗,

which relates the Gauss quadrature error to the first derivative of the function. If the function
f(x) does not meet the smoothness criterion, the above estimate overpredicts the quadrature
error. If f ′(x) changes sign in the interval [a, b], the above procedure breaks down completely.

Weights and Weighted Moments

Let us consider the grid of figure 4.4.
On this grid, all powers

1, x, x2, . . . , xn−1

4.2. Numerical Integration Methods 259

ξ 1 ξ 2 ξ 3 ξ
n

Figure 4.4: Grid to compute the weights.

are interpolated exactly, and thus the corresponding quadrature associated with all these
powers will also be exact. Let us compute the kth moment

uk =
∫ b

a
ρ(x)xkdx =

n∑
m=1

wmf(ξm),

where ρ(x) is a weight function. Thus, we can obtain the weights from the known moments,
i.e.,

w1 + w2 + . . .+ wn = u0

w1ξ1 + w2ξ2 + . . .+ wnξn = u1

w1ξ
n−1
1 + w2ξ

n−1
2 + . . . wnξ

n−1
n = un−1

by solving the above system. Alternatively, we can compute the weights directly from

wk =
∫ 1

−1
hk(x)dx.

Theorem: The weights wk in the Gauss quadrature are positive.

Proof: The formula is exact for f(x) = h2
k(x), since this is a polynomial of degree 2n. But

hk(xj) = δij , k �= j. Thus,

∫ b

a
(hk(x)

2dx = wk(hk(xk))
2 ⇒ wk =

∫ b

a
[hk(x)]

2dx > 0.

Gaussian Quadrature Over Infinite Intervals

The two general strategies in dealing with such important applications of numerical integra-
tion are:

1. Use knowledge of the integrand to bound the magnitude of the integral from some
finite value to infinity by a positive constant, and then use a quadrature formula for
the remaining finite interval.

2. Use a quadrature formula especially developed for the infinite interval.

Laguerre Integration: Following the second approach here we introduce a weight function
w(x)

w(x) = e−x, x ∈ [0,∞]

4.2. Numerical Integration Methods 260

where we employ the Laguerre polynomial Ln(x) defined by

L0(x) = 1

L1(x) = 1− x
(n+ 1)Ln+1(x) = −xLn(x) + (2n+ 1)Ln(x)− nLn−1(x),

and its derivative defined by

L′
n+1(x) = L′

n(x)− Ln(x).

Software

 Suite

The corresponding quadrature points are defined by the roots
of the Laguerre polynomial (see table 4.2.2 and corresponding
software suite). Specifically, the weights are given by

wj =
(n!)2

L′
n(xj)Ln+1(xj)

.

Then we approximate the integral

∫ ∞

0
e−xf(x) =

n∑
j=1

wjfj + εL,

and the error is

εL =
(n!)2

(2n)!
f (2n)(ξ).

Example: Taking n = 3 we can compute the interval∫ ∞

0
e−xx7dx ∼= (0.711093)(0.415774)7 + (0.278518)(2.294280)7

+(0.010389)(6.289945)7 = 4139.9

using the values of table 4.2.2. The exact value is 5040, and thus substantial errors occur
because f (6)(x) is not bounded. Note, however, that for n = 4 ⇒ f (8)(x) ≡ 0, and thus we
obtain the exact result!

Software

 Suite

In the software suite we present the code necessary to compute
the zeros and the weights of the Laguerre polynomials. Four
functions are provided as enumerated below:

1. The polynomial definition (using recursion) - the function LaguerrePoly.

2. The derivative definition (using recursion) - the function LaguerrePolyDerivative.

3. The computation of zeros (using reduction and Newton-Raphson iteration) - the func-
tion LaguerreZeros.

4.2. Numerical Integration Methods 261

n Abscissas xj Weights wj n Abscissas xj Weights wj

2 0.585786 0.853553 4 4.536620 0.038888
3.414214 0.146447 9.395071 0.000539

3 0.415775 0.711093 5 0.263560 0.521756
2.294280 0.278518 1.413403 0.398667
6.289945 0.010389 3.596426 0.074942

4 0.322548 0.603154 7.085810 0.003612
1.745761 0.357419 12.640801 0.000023

Table 4.5: Zeros of Laguerre polynomials and corresponding weights.

4. Putting it all together to get zeros and weights - the function LaguerreZW .

Hermite Integration: Here the weight function is

w(x) = e−x2

,

and we can use the Hermite polynomials that are associated with this weight to perform this
integration efficiently. We can then compute integrals of the form

∫ ∞

−∞
e−x2

f(x)dx =
n∑

j=1

wjf(xj) + εH ,

with the Hermite polynomial Hn(x) defined by:

H0(x) = 1

H1(x) = 2x

Hn+1(x) = 2xHn(x)− 2nHn−1(x),

and its derivative defined by

H ′
n+1(x) = 2(n+ 1)Hn(x).

The corresponding weights are given by

wj =
2n+1n!

√
π

[H ′
n(xj)]

2 ,

and the error is

εH =
n!
√
π

2n(2n)!
f 2n(ξ) .

4.2. Numerical Integration Methods 262

n Abscissas aj Weights Hj

2 ±0.707107 0.886227

3 0 1.181636
±1.224745 0.295409

4 ±0.524648 0.804914
±1.650680 0.081313

5 0 0.945309
±0.958572 0.393619
±2.020183 0.019953

Table 4.6: Zeros of Hermite polynomials and corresponding weights.

In table 4.2.2 we present the zeros of the Hermite polynomials and corresponding weights
for n up to 5.

Software

 Suite

In the software suite we present the code necessary to compute
the zeros and the weights of the Hermite polynomials. Four
functions are provided as enumerated below:

1. The polynomial definition (using recursion) - the function HermitePoly.

2. The derivative definition (using recursion) - the function HermitePolyDerivative.

3. The computation of zeros (using reduction and Newton-Raphson iteration) - the func-
tion HermiteZeros.

4. Putting it all together to get zeros and weights - HermiteZW .

Gauss-Chebyshev Quadrature

The Gauss-Chebyshev quadrature uses the weight function w(x) = (1−x2)−1/2 in the interval
x ∈ [−1, 1], i.e., ∫ 1

−1

f(x)√
1− x2

dx =
n∑

k=1

wkfk + εC ,

where the quadrature points are the zeros of the Chebyshev polynomial which are obtained
from

Tn(x) = cos(n cos−1 x) = 0

4.2. Numerical Integration Methods 263

and thus

xj = cos
(2j − 1)π

2n
, j = 1, . . . , n

wj =
π

n
.

The corresponding quadrature error is

εC =
2π

22n(2n)!
f (2n)(ξ).

Singular Integrals

We can also follow a weight-function approach to deal with singular integrals, Let us consider
integrands with singularities at the end-points of the interval, and write the general problem
as ∫ b

a
ρ(x)f(x)dx =

k∑
j=1

wkf(xk) + ε

where ρ(x) is a weight function and it may be singular at one end-point or both. Accordingly,
we distinguish the following cases:

Case 1: ρ(x) = (1− x2)1/2 on [−1, 1]. Then, we will employ Chebyshev polynomials of the
second kind Un(x) defined as

Un(x) =
sin[(n+ 1) cos−1 x]

sin(cos−1 x)
,

which gives the following quadrature points

xj = cos
jπ

n+ 1
, j = 1, . . . , n

with corresponding weights

wj =
π

n+ 1
sin2 jπ

n+ 1
.

The error in this quadrature is

ε =
π

22n+1(2n)!
f

(2n)
(ξ) .

Case 2: Here the weight function is ρ(x) = 1/
√
x on [0, 1]. The appropriate polynomial is

defined as
pn(x) = P2n(

√
x),

where P2n is the Legendre polynomial. Then the quadrature points are the roots of pn(x)
and the appropriate weights are twice the weights corresponding to P2n(x).

The quadrature error is

ε =
24n+1[(2n)!]3

(4n+ 1)[(4n)!]
f (2n)(ξ).

4.2. Numerical Integration Methods 264

Example: We now return to the integral we mentioned in the introduction of this section,

i.e., ∫ 1

0

1 + x√
x
dx

and we use n = 2. From table 4.3 we obtain the Legendre points

x1 = (0.339981)2, x2 = (0.861136)2

and
w1 = 1.304290, w2 = 0.695710.

Therefore, ∫ 1

0

1 + x√
x
dx ∼= 2.66666,

which is equal to the exact value (8/3)!

Case 3: Here the weight function is ρ(x) =
√
x on [0, 1]. The appropriate polynomial has

singularities in the derivative and is defined based on the Legendre polynomial

pn(x) =
1√
x
P2n+1(

√
x).

The roots xj of pn(x) determine the quadrature points and they are then related to the roots
of the Legendre polynomial (Xj) by xj = X2

j . Correspondingly, the appropriate weights are

wj = 2WjX
2
j ,

where Wj are the Legendre weights.
The quadrature error is given by

ε =
24n+3[(2n+ 1)!]4

(4n+ 3)[(4n+ 2)!](2n)!
f (2n)(ξ).

Case 4: Here the weight function is ρ(x) = [x/(1 − x)]1/2 on [0, 1]. The appropriate
polynomial is defined in terms of the Chebyshev polynomial, i.e.

pn(x) =
1√
x
T2n+1(

√
x).

This has a singularity at one point and a derivative-singularity at another point. Here the
set of quadrature points, weights, and error, respectively, are given by

xj = cos2 (2j − 1)π

4n + 2

wj =
2π

2n+ 1
Wj

ε =
π

24n+1(2n)!
f (2n)(ξ)

4.2. Numerical Integration Methods 265

where Wj refers to the corresponding Chebyshev weights.

Remark: More details on Gauss quadrature based on Jacobi polynomials, which includes
both Chebyshev and Legendre polynomials, can be found in Ghizzetti & Ossicini [43], and
Karniadakis & Sherwin [63]. In particular, there exist three different approaches in distribut-
ing the quadrature points:

• In Gauss integration the end-points are not included, and the locations of the quadra-
ture points are determined by the zeros of the Jacobi polynomials.

• In Gauss-Lobatto integration both end-points are included and the interior quadrature
points are determined by the zeros of the first derivative of the Jacobi polynomials.

• In Gauss-Radau integration only one point is included and the interior points are
determined by the zeros of the Jacobi polynomials with mixed weights.

4.2.3 Multi-Dimensional Integration

Numerical integration in two- or three-dimensions can be accomplished similarly following
the algorithms presented above, where direction splitting is applied.

We show here how to compute, using Simpson’s rule, a two-dimensional integral over a
rectangular region as well as a more general region. To this end, we consider the integral

Q ≡
∫ XR

1

XL
1

∫ XR
2

XL
2

f(x1, x2)dx1dx2

and subdivide the two directions of integration as follows:

x1 = XL
1 + ih1, i = 0, 1, . . . , 2I

x2 = XL
2 + jh2, j = 0, 1, . . . 2J

where

h1 =
XR

1 −XL
1

2I
and h2 =

XR
2 −XL

2

2J
.

We apply Simpson’s rule direction-by-direction, i.e., we first compute

Q2 ≡
∫ XR

2

XL
2

f(x1, x2)dx2

so

Q2 ≈ h2

3


f(x1, x

0
2) + 2

J−1∑
j=1

f(x1, x
2j
2) + 4

J∑
j=1

f(x1, x
2j−1
2) + f(x1, x

2J
2)


 .

Then, the two-dimensional integral is approximated as

Q ≈ h2

3


∫ XR

1

X2
1

f(x1, x
0
2)dx1 + 2

J−1∑
j=1

∫ XR
1

XL
1

f(x1, x
2j
2)dx1

+ 4
J∑

j=1

∫ XR
1

XL
1

f(x1, x
2j−1
2)dx1 +

∫ XR
1

XL
1

f(x1, x
2J
2)dx1

]
.

4.2. Numerical Integration Methods 266

Next, we need to integrate each one of these terms along the x1-direction using again Simp-
son’s rule. This will give

Q ≈ h1h2

9

{[
f(x0

1, x
0
2) + 2

I−1∑
i=1

f(x2i
1 , x

0
2) + 4

I∑
i=1

f(x2i−1
1 , x0

2) + f(x2I
1 , x

0
2)

]

+ 2


J−1∑

j=1

f(x0
1, x

2j
2) + 2

J−1∑
j=1

I−1∑
i=1

f(x2i
1 , x

2j
2) + 4

J−1∑
j=1

I∑
i=1

f(x2i−j
1 , xj

2)

+
J−1∑
j=1

f(x2I
1 , x

2j
2)




+ 4


 J∑

j=1

f(x0
1, x

2j−1
2) + 2

J∑
j=1

I−1∑
i=1

f(x2j
1 , x

2j−1
2) + 4

J∑
j=1

I∑
j=1

f(x2i−1
1 , x2j−1

2)

+
J∑

j=1

f(x2I
1 , x

2j−1
2)




+

[
f(x0

1, x
2J
2) + 2

I−1∑
i=1

f(x2i
1 , x

2J
2) + 4

I∑
i=1

f(x2i−1
1 , x2J

2) + f(x2I
1 , x

2J
2)

]}
.

The error is additive if the partial fourth-order derivate is continuous along both directions,
thus

εS = −L1L2

18

[
h4

1

∂4f(ξ1, ζ1)

∂x4
1

+ h4
2

∂4f(ξ2, ζ2)

∂x4
2

]
,

where (ξi, ζi) for i = 1, 2 are some unknown points inside the region of integration.

In many applications the region of integration is not rectangular. To this end, we can
either use domain decomposing or employ variable step size integration. For example, if we
consider the above case with XL

2 (x1) and XR
2 (x1) then

Q =
∫
Ω

∫
f(x1, x2)dx1dx2

where Ω is a general, non-cartesian region. In this case, we can proceed as before by allowing
the step size

h2(x1) =
XR

2 (x1)−XL
2 (x1)

2J
.

Therefore, for each fixed x1 location we integrate along x2 with fixed h2 step size, as before.

For Gaussian quadrature, we can also form tensor-product interpolations of the integrand
as was discussed in section 3.1. This is straightforward for cartesian (orthogonal) domains.
For triangular domains the barycentric coordinates (l1, l2, l3) can also be used, and for linear
approximations the following exact relations hold:∫

A
lm1 l

n
2 l

k
3dA = m!n!k!

2A

(m + n+ k + 2)!∫
Le

lm1 l
n
2ds = m!n!

Le

(m+ n + 1)!
,

4.2. Numerical Integration Methods 267

where A is the area of the triangular region, and Le is the length of the edge of the triangle.

For integrals in multiple dimensions (greater than 3) or for integrands which are not very
smooth it is more efficient to resort to Monte Carlo integration. The convergence of this
approach is very slow, e.g. O(N−1/2) compared to O(N−2) for the trapezoid rule or O(N−4)
for the Simpson’s rule, and thus it is very inefficient for one- two- or three-dimensional
integrals. Convergence acceleration is used in practice following standard algorithms such
as importance sampling or control variate, see [15] for more details.

4.3. Back to Parallel Computing: Reduction 268

4.3 Back to Parallel Computing: Reduction

The concept of numerical integration lends itself to a discussion of domain decomposition.
Suppose that you want to integrate a function numerically on multiple processors? From
our knowledge of calculus, we know that we can write an integral over a interval [a, b] as the
sum of the integrals over a disjoint partition of subintervals of [a, b].

For the purposes of this explanation, let us integrate the function f(x) = sin x
x

on the
interval [−50, 50]. This is a very important function often used in computer graphics as a
filtering function – the Lanczos filter, see section 3.2.

Suppose that we have five processors that we can partition this integral operation across.
First, we must partition the problem into five processes so that each is doing roughly the
same amount of work. This step is graphically accomplished in figure 4.5. Notice that we
partition the entire domain [−50, 50] into five equal length subdomains

[−50,−30], [−30,−10], [−10, 10], [10, 30], [30, 50].

−50 −40 −30 −20 −10 0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Processor 0 Processor 1 Processor 2 Processor 3 Processor 4

Figure 4.5: Plot of the Lanczos filter sinx
x , and processor assignment.

As we have expressed before, we can now use our numerical integration routines discussed
previously in this chapter to accomplish the integration on our local interval. Once this is
accomplished, we now want to add up the integral components from each processor. How
can this be accomplished? Recall from our previous discussions that the classical way of
accomplishing this would be for each process to send its result to one process (process 0),
and then for process 0 to accumulate all the results from the individual processes and to
print out a result. This type of operation is so common in scientific computing that MPI
has a function built in to accomplish all of this in one function call!

4.3. Back to Parallel Computing: Reduction 269

Key Concept

• If it seems like a collection of operations is repeatedly done, in
all likelihood a function to accomplish those operations already
exists to simplify your life.

The function is called MPI Reduce and combines the sending of information with one
operation. The admissible operations are given in table 4.3.

Operation Name Meaning
MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum

Table 4.7: Summary of MPI commands for reduction operations.

In our case, we are interested in the MPI SUM operation; that is, we want to take a
piece of information from each processor, and we want the sum of all the pieces to be given
to process zero for printing the result. This type of operation is graphically depicted in figure
4.6.

Here, we present the function syntax, argument list description, usage examples, and
some remarks for both MPI Reduce and MPI Allreduce. The functions are very similar.
MPI Reduce takes information from all processes and sends the result of the MPI operation
to only one process. MPI Allreduce sends the results of the operation back to all processes;
it is useful when all processes need the value of the joint operation.

MPI Reduce:

Function Call Syntax

4.3. Back to Parallel Computing: Reduction 270

0 1 2 3 5 6 74

0

+++++++

Figure 4.6: Reduction (MPI Reduce) combines fanning-in within a single operation.

int MPI Reduce(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
MPI Op operator /* in */,
int root /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• operand - starting address of the send buffer.

• result - starting address of the receive buffer.

• count - number of elements in the send buffer.

• datatype - data type of the elements in the send/receive buffer.

• operator - reduction operation to be executed.

• root - rank of the root process obtaining the result.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units over which

// reduction should occur

int root; // process to which reduction will occur

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

4.3. Back to Parallel Computing: Reduction 271

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * senddata = new double[datasize];

double * recvdata = NULL;

if(mynode == root)

recvdata = new double[datasize];

// Fill in senddata on all processes

MPI_Reduce(senddata,recvdata,datasize,MPI_DOUBLE,MPI_SUM,

root,MPI_COMM_WORLD);

// At this stage, the process root contains the result

// of the reduction (in this case MPI_SUM) in the

// recvdata array

Remarks

• The recvdata array only needs to be allocated on the process of rank root (since root
is the only processor receiving data). All other processes may pass NULL in the place
of the recvdata argument.

• Both the senddata array and the recvdata array must be of the same data type. Both
arrays should contain at least datasize elements.

MPI Allreduce:

Function Call Syntax

int MPI Allreduce(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
MPI Op operator /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• operand - starting address of the send buffer.

• result - starting address of the receive buffer.

4.3. Back to Parallel Computing: Reduction 272

• count - number of elements in the send/receive buffer.

• datatype - data type of the elements in the send/receive buffer.

• operator - reduction operation to be executed.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units over which

// reduction should occur

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * senddata = new double[datasize];

double * recvdata = new double[datasize];

// Fill in senddata on all processes

MPI_Allreduce(senddata,recvdata,datasize,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

// At this stage, all processes contains the result

// of the reduction (in this case MPI_SUM) in the

// recvdata array

Remarks

• In this case, the recvdata array needs to be allocated on all processes since all processes
will be receiving the result of the reduction.

• Both the senddata array and the recvdata array must be of the same data type. Both
arrays should contain at least datasize elements.

Software

 Suite

We present a sample MPI code which accomplishes the inte-
gration of f(x) = sinx

x
on the interval [−50, 50] across multiple

processes, the number of which is specified by the user, i.e.,
totalnodes in the example code below.

4.3. Back to Parallel Computing: Reduction 273

#include<iostream.h>

#include<math.h>

#include<mpi.h>

#include "SCchapter4.h"

double func(double x);

int main(int argc, char * argv[]){

int mynode, totalnodes;

const double global_a = -50.0;

const double global_b = 50.0;

const int levels = 10;

double local_a,local_b,local_sum,answer;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

local_a = global_a + mynode *(global_b-global_a)/totalnodes;

local_b = global_a + (mynode+1)*(global_b-global_a)/totalnodes;

local_sum = MidpointRule(levels, local_a, local_b, func);

MPI_Reduce(&local_sum,&answer,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

if(mynode == 0){

cout << "The value of the integral is: " << answer << endl;

}

MPI_Finalize();

}

double func(double x){

return(sin(x)/x);

}

We would like to draw your attention to the following points:

• Observe that every process has the same global a and global b variable, here defined as a
constant (by using the keyword const in the declaration of the variable), however every
process must maintain its own version of local a and local b. This is a very important
concept to understand: There exists a global domain, which in this case is the interval

4.3. Back to Parallel Computing: Reduction 274

[−50, 50], and each processor must keep track of its “computational responsibility” on
this domain.

• Notice the use of the operator “& .” In this case, you can translate “&” to mean
“the address of.” Hence &local sum is equivalent to saying “the address of local sum.”
Why do we do this? Recall that for this particular argument position, MPI expects
us to provide to it a pointer variable (which, if you recall, is an address variable).
However, we did not allocate an array, we merely had one value. Instead of creating
an array which contained only one element, copying the value of local sum into that
array element, and then passing the pointer variable to MPI Reduce, we used a neat
programming feature of C++. Recall from section 3.1.2 the programming feature “&,”
which is an operator which allows you to obtain the address of a variable (and hence
you can “pass it off” as a pointer). In the example above, you should be mindful that

MPI_Reduce(local_sum,answer,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

is invalid, becauseMPI Reduce will expect pointer (address) variables in the argument
positions for local sum and answer, and hence you must use:

MPI_Reduce(&local_sum,&answer,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

• Each process puts the result of its local integration in the first argument of MPI Reduce,
and immediately following this call on process zero (because in the sixth argument we
have placed a “0”, denoting that process zero is to be the recipient of the reduction)
the variable answer contains the sum of all the information contained in the local sum
variables across all the processes. If we were to do an MPI Allreduce, then we would
not specify which processor the reduction was going to (because all processes would
obtain the result of the reduction), and on each process their local copy of the variable
“answer” would contain the sum of all local sum variables.

4.4. Homework Problems 275

4.4 Homework Problems

4.4.1 Homework Problems for Section 4.1

1. Consider the iteration
xn+1 = axn − ax2

n .

Plot the converged solution for different values of a, i.e., a = 1, 2, 3, 3.3, 3.5, 3.7, 3.8,
etc.

What do you observe?

2. Write a C++ program to compute the first dozen roots of tanx = x.

3. Modify the function NewtonRaphson given in the text so that it does not accomplish
unnecessary re-evaluations of the function (per the remarks made in the text).

4. Write a function similar to NewtonRaphson which implements the secant method.
Your function should allow the user to input an arbitrary function (just as theNewtonRaphson
function does).

5. Find all the intersection points of the function

f(x) = ex and g(x) = 2x2.

What is the convergence rate that you observed?

6. Write a C++ code to find the intersection of the circle with the ellipse

x2 + y2 = 1

x2

4
+ 16y2 = 1

to within double precision (ε = 10−14).

Prove that we can compute
√
C with cubic rate of convergence from the formula:

xn+1 = xn
x2

n + 3C

3x2
n + C

.

7. Let us replace the equation Ax = 0 (which has the trivial solution x = 0) with the
iteration

xn+1 − xn = −Axn where x0 is arbitrary.

(a) What is the appropriate test on the matrix A to check convergence?

(b) We want to apply the steepest descent method to minimize P = x2
1 − x1x2 + x2

2

and we set the step-size α = 1. First, obtain an expression for the vector xn+1. Do the
iterations converge to the bottom point of P (at x = 0)? Sketch the quadratic P (x1, x2)
and follow the first iteration graphically starting from an initial vector x0 = (1, 1) and
x0 = (1,−1).

4.4. Homework Problems 276

8. Use the method of steepest descent to obtain the solutions of the following systems to
within tolerance

(a) ε = 10−2 and (b) ε = 10−5 .

How does the number of iterations scale with the tolerance level?

(i)

x2
1 + x2

2 = 2

− cosh x1 + x2 = 0

(ii)

x3 = ex1 + ex2

x2
2 = 4 + 2x1x3

x1x3 = x3
1 + x2

1x
2 + 6

Can you solve the above using Newton’s method? What is the relative gain in iteration
number versus computational work?

9. Halley’s method: Show that the iteration

xn+1 = xn − fnf
′
n

(f ′
n)2 − (fnf ”

n)/2

finds the roots of f(x) = 0 and estimate the convergence rate. Here fn = f(xn).

Hint: Set φ(x) ≡ f/
√
f ′ and use the Newton-Raphson formula for φ(x).

10. Mueller’s method: In this method a quadratic approximation of the given function is
assumed given three pairs of data points: (x1, y1); (x2, y2); (x3, y3), as follows

f(x) ≈ y3 + y
′
(x− x3) + y

′′
(x− x3)(x− x2)

where

y
′
=
y3 − y2

x3 − x2

, y
′
1 =

y2 − y1

x2 − x1

.

and

y
′′

=
y

′ − y′

x3 − x1
z = y

′
= y

′′
(x3 − x2)

Show that we can solve approximately for the root

s = x3 − 2y3

z + sign(z)
√
z2 − 4y3y

′′
.

In the next update we set
x1 = x2; x2 = x3; x3 = s,

4.4. Homework Problems 277

and so on, until convergence to specified tolerance.

The rate of convergence of Mueller’s method is m ≈ 1.84 and requires only function
evaluations, just like the secant method. It can also be used to find both complex and
real roots.

Practice this method by solving the equation

f(x) = 2x10 − 1 = 0.

11. The natural frequencies of the vibrations of a beam structure depend on the boundary
conditions, i.e., the type of support of the structure.

(a) If the beam is pinned at one end and free at the other end, the eigenfrequencies
are solutions of the equation

tanω − tanhω = 0.

(b) If the beam is clamped at one end and free at the other end, the equation is

tanω − tanhω + 1 = 0.

Here ω is a non-dimensional frequency that depends on the length of the beam,
its density, and its flexural rigidity.

Obtain the eigenfrequencies for both cases for single and double precision and compare
the corresponding computational work for each case.

12. Consider the iteration

yi = xi − f(xi)

f ′(xi)
; xi+1 = yi − f(yi)

f ′(xi)
.

This is the Newton-Raphson iteration with the derivative computed only every second
step.

(a) Show that if the iteration converges,

lim
i→∞

xi+1 − α
(yi − α)(xi − α)

=
f ′′(α)

f ′(α)
as xi → α.

(b) Thus conclude that

lim
i→∞

xi+1 − α
(xi − α)3

=
1

2

[
f ′′(α)

f ′(α)

]2

.

(c) If the cost of computing f(x) is 1 and f ′(x) is C, for what values of C is the method
more efficient than (i) the Newton-Raphson method (ii) the secant method?

4.4. Homework Problems 278

13. Write a C++ program to calculate the wavenumber corresponding to a given angular
frequency for gravity water waves in finite depth, including surface tension effects. Plot
κ versus ω for various depths, assuming that for water

τ = 70mN/m, ρ = 1000kg/m3, g = 9.81m/s2.

The dispersion relation for finite depth, including surface tension is:

(gκ+
τ

ρ
κ3)tanh(κh) = ω2.

14. Write an MPI code to accomplish a parallel conjugate gradient method. Assume that
the matrix is distributed by rows across each process.

(a) Given that the matrix is partitioned by rows across each process, outline the
parallel decomposition of the conjugate gradient algorithm. What operations can
be done concurrently, and when will parallel calls be required?

(b) Determining how many calls toMPI Reduce/MPI Allreduce are necessary. What
operations within the CG algorithm require reduction?

(c) Where will MPI Send/MPI Recv be required? Why?

(d) Define h = 1
N

, µ = h2, and q[i][j] = (8π2 + 1)h2sin(2πhi)sin(2πhj) where i, j =
0, . . . , N − 1.

Let A be of the form given in figure 4.7.

4+µ −1 −1 −1 −1
−1 4+µ −1 −1 −1

 −1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1
−1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1

 −1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1

 −1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1
 −1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1

−1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1
 −1 −1 −1 4+µ −1
 −1 −1 −1 −1 4+µ

u[1][0]
u[2][0]
u[3][0]

u[0][1]
u[1][1]

u[2][1]

u[3][1]

u[0][2]

u[1][2]

u[2][2]

u[3][2]

u[0][3]

u[1][3]
u[2][3]
u[3][3]

u[0][0]

* =

q[1][0]
q[2][0]
q[3][0]

q[0][1]
q[1][1]

q[2][1]

q[3][1]

q[0][2]

q[1][2]

q[2][2]

q[3][2]

q[0][3]

q[1][3]
q[2][3]
q[3][3]

q[0][0]

Figure 4.7: Matrix system Au = q for a N = 4.

Solve the matrix system Au = q for u for both N = 4 and N = 20. Notice
that the definition above uses two-dimensional arrays, which we will go over in
the next chapter. Implement the concept of a two-dimensional array using only
a one-dimensional array construction. What indexing is required?

(e) When you run the program on different numbers of processors, is there a noticeable
difference in the performance time?

4.4. Homework Problems 279

4.4.2 Homework Problems for Section 4.2

1. Ramanujan proposed that the number of numbers between a and b which are either
squares or sums of two squares is given approximately by the integral

0.764
∫ b

a

dx√
logex

Use Gauss quadrature to test numerically this hypothesis for a = 1; b = 30.

2. Evaluate the sine integral Si(x)

Si(x) =
∫ x

0

sinz

z
dz

using Simpson, Romberg and the Gauss method for x = 2. What do you observe?

3. Use Simpson’s formula to find the length of the ellipse

x2

a2
+
y2

b2
= 1.

Plot the error versus the number of quadrature points, and verify the fourth-order
convergence of the method.

Hint : Describe the ellipse parametrically using

x(θ) = a cos θ

y(θ) = b sin θ, θ ∈ [0, 2π]

and obtain the length using the formula∫ √
dx2 + dy2 .

4. Compute the error function

Erf(x) =
2√
π

∫ x

0
e−t2dt

for x = 1/2, 1, 2, and 4 using trapezoid rule, and using the appropriate Gauss quadra-
ture for n = 6 and 12 quadrature points. Using the formula for the error bounds,
obtain an estimate of errors for the two cases.

5. Use a four-level Romberg integration to compute the integral

I =
∫ 5

1

1

x2
dx .

How many quadrature points are required to achieve accuracy of 10−6?

4.4. Homework Problems 280

6. Use Simpson’s rule and Gaussian quadrature to compute the multi-dimensional inte-
grals

(a)
∫ π

0

∫ π

0
(y2 sin x+ x2 cos2 y)dxdy

(b)
∫ 1

0

∫ 1

0

∫ xy

−xy
ex2+y2

dxdydz

with n = 4 quadrature points in each direction.

7. Compute the integrals

(a)
∫ ∞

−∞
dx

1 + x2

(b)
∫ ∞

0
e−x sin xdx

with n = 5 quadrature points, and compute the quadrature error in each case.

Chapter 5

Explicit Discretizations

In this chapter we consider explicit discretizations of space- and time-derivatives. In such
discretizations we can express directly a derivative at one grid point in terms of function
values at adjacent grid points (spatial discretizations) or in terms of previous time levels
(temporal discretizations). This, in turn, implies that there is no implicit coupling, and thus
there is no matrix inversion involved but instead simple daxpy type operations.

The material in this chapter is relatively easy to program both on serial as well as on
parallel computers. It is appropriate for demonstrating fundamental concepts of discretiza-
tion as well as primary constructs of the C++ language and of the MPI library. Specifically,
we will demonstrate the use of loops, arrays, functions and passing functions to functions.
In addition to presenting MPI Send and MPI Recv implementations for finite differences,
we also introduce MPI Sendrecv and MPI Sendrecv replace as alternative advanced MPI
function calls for parallelizing finite differences discretizations.

281

5.1. Explicit Space Discretizations 282

5.1 Explicit Space Discretizations

5.1.1 Basics

The formulation of derivatives based on function values on a set of points, which we call the
grid, dates back to Euler in the beginning of the eighteen century. However, advances have
been made since then! In this section, we will formulate ways to compute first and higher
order derivatives of a function using discrete data points. The key idea is to use Taylor
expansions at a subset of adjacent points of the grid as shown in figure 5.1.

i−1 i i+1
x

y
y=u(x)

u
i−1

u
i

u
i+1

(b)

(c)

(f)

∆ x ∆ x

Figure 5.1: A stencil of two or three points is required to define the discrete first derivative: (c)
corresponds to central difference; (b) corresponds to backward difference; and (f) corresponds to
forward difference.

Assuming that we have an equidistant grid, i.e., the distance ∆x ≡ xi+1 − xi is constant
for every grid point (i), then using Taylor’s expansion for the smooth function u(x) around
the point (i), we obtain

ui±1 = u(x±∆x) = u(x)±∆xux(x) +
∆x2

2
uxx(x)± . . .

Here the x subscript denotes differentiation and the i subscript refers to the index of data
points; also ∆x2 means (∆x)2.

We can now form three types of differences from the above expansions:

•forward : (ux)i =
ui+1 − ui

∆x
+ O(∆x)︸ ︷︷ ︸

−1/2(uxx)i∆x

•backward : (ux)i =
ui − ui−1

∆x
+ O(∆x)︸ ︷︷ ︸

+1/2(uxx)i∆x

(upwind)

•central : (ux)i =
ui+1 − ui−1

2∆x
+ O(∆x2)︸ ︷︷ ︸

−1/6(uxxx)i∆x2

5.1. Explicit Space Discretizations 283

The accuracy of each finite difference approximation depends on the last term. Therefore,
the forward and backward differences are first-order, i.e., O(∆x), while the central difference
is of second-order, i.e. O(∆x2). We also note that the backward and forward differences
are actually of order O(∆x2) approximations to derivatives at the half-point (i ± 1/2),
respectively, e.g.,

(ux)i+1/2 =
ui+1 − ui

∆x
+O(∆x2).

To obtain a second-order accurate formula for the second derivative we simply add the two
Taylor expansions formed at the (i± 1) points

(uxx)i ≈ ui+1 − 2ui + ui−1

∆x2
− 1

12
(uxxxx)i∆x

2.

The basic subset of grid points, the stencil, consists of two or three adjacent points for
these discrete derivatives. From the parallel computing standpoint, this implies that local
computations are involved. In particular, these are explicit formulas, in that the derivative
at a point is computed in terms of function values at adjacent points in the same stencil.
Therefore, there are no other derivatives involved in the discretization besides the derivative
at point i. In chapter 6, we will see implicit formulas in which other derivatives are involved
in the discretization.

Software

 Suite
Putting it into Practice

Explicit formulas are also easy to program. Here we demonstrate with the next C++
example how first derivatives can be approximated for both non-periodic and periodic inter-
vals.

��
��
��
��
��
��

Left End Point Right End Point

�
�
�
�
�

i = 0 i = N−1

i = 1 i = 2 i = N−3 i = N−2

Figure 5.2: Interior and end (boundary) points in an interval.

In this first example, we demonstrate how finite differencing can be done for a non-
periodic interval. Notice that we cannot use the central difference formula to calculate an
approximation of the derivatives at the end-points because we have no information from out-
side the interval! Hence, as in this case, we use what are called “one-sided” approximations,
which use information only from inside the interval. Observe that this requires us to break
the approximation process into three stages:

5.1. Explicit Space Discretizations 284

1. Compute the approximation for the interior points (i = 1, . . . , N − 2).

2. Compute the approximation for the left end-point (i = 0).

3. Compute the approximation for the right end-point (i = N − 1).

void SO_FirstDeriv_1D (int npts, double dx, double *u,

double *u_x){

double two_invdx = 1.0/(2.0*dx);

for(int i=1;i<npts-1;i++)

u_x[i] = (u[i+1]-u[i-1])*two_invdx;

// Forward Differencing

u_x[0] = (-3.0*u[0] + 4.0*u[1] - u[2])*two_invdx;

// Backward Differencing

u_x[npts-1] = (3.0*u[npts-1] - 4.0*u[npts-2] +

u[npts-3])*two_invdx;

return;

}

For periodic boundary conditions, we can use the central approximation for the end-
points; however, care must be taken to properly index the array. Notice that we cannot
access the array at the value -1, and hence we must explicitly treat the end-points so that
the appropriate values are taken. Once again, we break the computation into three stages:

1. Compute the approximation for the interior points (i = 1, . . . , N − 2).

2. Compute the approximation for the left end-point (i = 0).

3. Compute the approximation for the right end-point (i = N − 1).

void SO_FirstDeriv_1Dper (int npts, double dx, double *u,

double *u_x){

double two_invdx = 1.0/(2.0*dx);

for(int i=1;i<npts-1;i++)

u_x[i] = (u[i+1]-u[i-1])*two_invdx;

// Left Endpoint

u_x[0] = (u[1]-u[npts-1])*two_invdx;

// Right Endpoint

u_x[npts-1] = (u[0]-u[npts-2])*two_invdx;

return;

}

5.1. Explicit Space Discretizations 285

Let us point out, at this stage, a small optimization hint that may be of use in the future.
Notice in the examples above that at the beginning of the function we explicitly calculate
the value of the variable two invdx, and then continue to use this variable throughout the
function. We do this because we observed that the value of dx is not changing inside any
of the loops within this function, and hence computing 2.0 ∗ dx needs to be done only once.
Hence, we can do it up front (at the beginning of the function) instead of repeatedly doing it
within the loop. We have chosen to go ahead and do the division because on many machines
division is more expensive than multiplication, and then multiplying within the loop instead
of dividing is the most efficient choice.

Key Concept

• If something is not dependent on the looping variable, then do
not do it in the loop!

5.1.2 Uniform Grids

In the following we show how we can obtain systematically finite difference formulas on
one-dimensional grids, assuming that the spacing between the grid points is constant. The
objective is to develop formulas for high order approximations for interior points as well as
for boundary points.

I. Method of Undetermined Coefficients

The key idea in this method is to consider the Taylor expansions as functions of ∆x and
obtain equations for the weights (unknown coefficients) by equating the coefficients of powers
of ∆x. We demonstrate this by an example.

Example: We want to obtain a one-sided, second-order finite difference for (ux)i, that is

(ux)i =
aui + bui−1 + cui−2

∆x
+O(∆x2)

as shown in the sketch of figure 5.3 in order to handle a boundary condition on the right
end of the computational domain. One approach is to employ phantom or ghost nodes
outside the domain and construct central difference schemes but this would require extra
information about the physics of the problem. The more general approach is to construct
one-sided differences extracting information from the interior of the domain.

As before we expand the function at the different points around the point of interest, to

5.1. Explicit Space Discretizations 286

i i+1 i+2i−1i−2

Domain (Phantom Nodes)

Figure 5.3: Grid at the right boundary of the domain.

obtain:

c : ui−2 = ui − 2∆x(ux)i + 2∆x2(uxx)i − (2∆x)3

6
(uxxx)i + . . .

b : ui−1 = ui −∆x(ux)i +
∆x2

2
(uxx)i − ∆x3

6
(uxxx)i + . . .

a : ui = ui

Upon substitution in the assumed expression for (ux)i we obtain

(∆x)(ux)i = aui + bui−1 + cui−2 +O(∆x3)

= (a+ b+ c)ui −∆x(2c + b)(ux)i +
∆x2

2
(4c+ b)(uxx)i +O(∆x3)

Therefore, solving a 3× 3 system we find the values for the coefficients



a+ b+ c = 0
2c+ b = −1
4c+ b = 0


⇒ a = 3/2, b = −2, c = 1/2,

and the final formula is

(ux)i =
3ui − 4ui−1 + ui−2

2∆x
+O(∆x2).

This is a second-order upwind difference for the first derivative with truncation error T ≈ ∆x2

3
.

In general, a first-order derivative at mesh point (i) can be made of order of accuracy
(p) by an explicit formula involving (p + 1) points. However, this is not true for implicit
discretizations (see next chapter), where on a two-point stencil we can obtain second-order
accuracy for the first derivative.

II. Difference Operators

The method of difference operators is based on symbolic manipulation. We first define the
operators which will be acting on functions assigned to grid points, as follows:

5.1. Explicit Space Discretizations 287

Displacement: Enui ≡ ui+n

Forward: δ+ui ≡ ui+1 − ui ⇒ δ+ = E − 1

Backward: δ−ui ≡ ui − ui−1 ⇒ δ− = 1− E−1

Half-central: δui ≡ ui+1/2 − ui−1/2 ⇒ δ = E1/2 −E−1/2

Central: δ̄ui ≡ 1/2(ui+1 − ui−1)⇒ δ̄ = 1/2(E −E−1)

Average: µui ≡ 1/2(ui+1/2 + ui−1/2)⇒ µ = 1/2(E1/2 + E−1/2)

Derivative: Du ≡ ∂u/∂x

The symbolic manipulations are straightforward, for example

δ+2 = δ+δ+ = (E − 1)(E − 1) = E2 − 2E + 1,

and similarly, µδ = δ̄, etc. We can also write the Taylor expansion in operator form by
considering the expansion

u(x+ ∆x) = u(x) + ∆xux +
∆x2

2!
uxx +

∆x3

3!
uxxx + . . .

The corresponding operator form is

Eu(x) =

[
1 + ∆xD +

(∆xD)2

2!
+

(∆xD)3

3!
+ . . .

]
u(x)

or

Eu(x) = e∆xDu(x)⇒ E = e∆xD ⇒ ∆xD = ln(E) . (5.1)

This last equation is very useful and will be used repeatedly in the following.

• Forward Differences: Starting from equation (5.1) we have

∆xD = ln(E) = ln(1 + δ+) because (δ+ = E − 1)

= δ+ − δ+2

2
+
δ+3

3
− δ+4

4
+ . . . ,

where the first neglected term gives the truncation error. For example, if we keep two terms:

∆x(Du)i = δ+ui − δ+2

2
ui

= (ui+1 − ui)− 1

2
(E2 − 2E + 1)ui

= (ui+1 − ui)− 1

2
(ui+2 − 2ui+1 + ui)

5.1. Explicit Space Discretizations 288

we obtain a one-sided, second-order formula, similar to the one we obtained before using the
method of undetermined coefficients:

Dui = (ux)i =
−3ui + 4ui+1 − ui+2

2∆x
+

∆x2

3
(uxxx)i︸ ︷︷ ︸

truncation error

.

Here the coefficients have the opposite sign compared to the formula before because the
above formula is for the left boundary (downwind difference).

• Backward Differences: Similarly, we can obtain formulas for backward differences starting
from

∆xD = ln(E) = − ln(1− δ−)

or

lnE = δ− +
δ−2

2
+
δ−3

3
+
δ−4

4
+ . . .

• Central Differences: Here we can use either the half-central or the central operators to
derive appropriate formulas. To this end,

δui = ui+1/2 − ui−1/2 = (E1/2 −E−1/2)ui

⇒ δ = e∆xD/2 − e−∆xD/2 = 2 sinh
∆xD

2

⇒ ∆xD = 2 sinh−1 δ/2 = 2


δ/2− 1

2 · 3
(
δ

2

)3

+
1 · 3

2 · 4 · 5 (δ/2)5

− 1 · 3 · 5
2 · 4 · 6 · 7 (δ/2)7 + . . .

]
.

Therefore, we obtain again

∆xD = δ − δ3

24
+

3δ5

640
− 5δ7

7168
+

If we only keep the first term, we derive a second-order formula

Dui =
ui+1/2 − ui−1/2

∆x
− ∆x2

24
(uxxx)i + . . . ,

however, now we need values at ∆x half-integer grid points. This will be suitable for stag-
gered grids where both half-integer and integer grid points are employed.

In order to involve function values at the integer grid points we employ the central
operator

δ̄ =
1

2
(E −E−1) =

1

2
(e∆xDx − e−∆xD) = sinh(∆xD)

⇒ ∆xD = sinh−1 δ̄

= (δ̄ − δ̄3

6
+

3

2 · 4 · 5 δ̄
5 + . . .) .

5.1. Explicit Space Discretizations 289

To achieve second-order accuracy we keep the first term only, i.e.,

Dui = δ̄/∆x =
ui+1 − ui−1

2∆x
− ∆x2

6
(uxxx)i + . . .

i − 2 i − 1 i i + 1 i + 2...

Figure 5.4: A five-point stencil for explicit discretization of the first derivative with fourth-order
accuracy.

To achieve fourth-order we need to also keep the term δ̄3, but this will lead to a relatively long
stencil, that is a seven-point stencil because of the index (i ± 3). In general, a fourth-order
accuracy for approximating the first derivative should not require more than a five-point
stencil, as shown in figure 5.4. In order to achieve this we require to do some extra work by
involving the average operator:

µ2 = 1 + δ2/4⇒ µ(1 + δ2/4)−1/2 = 1

⇒ µ(1− δ2

8
+

3δ4

128
− 5δ6

1024
+ . . .) = 1

However, we have already presented the expansion for the half-central operator above, and
using it we obtain after multiplying both sides by unity

1× [∆xD] =

[
δ − δ3/24 +

3δ5

640
− 5δ7

7168

]
× 1

= µ(δ − 1

3!
δ3 +

1222

5!
δ5 − . . .)

= δ̄(1− δ2

3!
+

22

5!
δ4 − 2232

7!
δ6 + . . .) .

Therefore, the fourth-order formula for the first derivative on a five-point stencil, see figure
5.4, is

(ux)i =
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
+

∆x4

30

(
∂5u

∂x5

)
.

• Higher-Order Derivatives: To compute higher derivatives we proceed in a similar way
except we need to expand symbolically binomials as shown below:

Forward: (
∂nu

∂xn

)
i

= Dnui =
1

∆xn
[ln(1 + δ+)]nui

5.1. Explicit Space Discretizations 290

=
1

∆xn

[
δ+n − n

2
δ+(n+1) +

n(3n+ 5)

24
δ+(n+2)

−n(n + 2)(n+ 3)

48
δ+(n+3) + . . .

]
ui (5.2)

Backward: (
∂nu

∂xn

)
i

= − 1

∆xn
[ln(1− δ−)]nui

=
1

∆xn
(δ− +

δ−2

2
+
δ−3

3
+ . . .)nui

=
1

∆xn
[δ−n +

n

2
δ−(n+1) +

n(3n + 5)

24
δ−(n+2) (5.3)

+
n(n+ 2)(n+ 3)

48
+ δ−(n+3) + . . .]ui (5.4)

Central:

Dnui =

(
2

∆x
sinh−1 δ

2

)n

ui =
1

∆xn

[
δ − δ3

24
+

3δ5

640
− 5δ7

7168
+ . . .

]n

ui

=
1

∆xn
δn
[
1− n

24
δ2 +

n

64

(
22 + 5n

90

)
δ4

− n

45

(
5

7
+
n− 1

5
+

(n− 1)(n− 2)

35

)
δ6 + . . .

]
ui (5.5)

Remark: For n even, function values at integer grid points are required.

Second Derivative: The formulas for the second derivative are simplified as follows

• Forward: (uxx)i = 1
∆x2

(
δ+2 − δ+3 + 11

12
δ+4 − 5

6
δ+5 + . . .

)
ui

• Backward: (uxx)i = 1
∆x2

(
δ−2 + δ−3 + 11

12
δ−4 + 5

6
δ−5 + . . .

)
ui

• Central: (uxx)i = 1
∆x2

(
δ2 − δ4

12
+ δ6

90
− δ8

560
+ . . .

)
ui

Note that because of symmetry, the central discretization leads to higher-order accuracy by
maintaining only the first term.

Example: We can derive useful formulas by keeping only two terms in the expansions, as
follows:

• Forward: (uxx)i = 1
∆x2 (2ui − 5ui+1 + 4ui+2 − ui+3) + 11

12
∆x2

(
∂4u
∂x4

)

5.1. Explicit Space Discretizations 291

• Backward: (uxx)i = 1
∆x2 (2ui − 5ui−1 + 4ui−2 − ui−3)− 11

12
∆x2

(
∂4u
∂x4

)

• Central: (uxx)i = 1
12∆x2 (−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) + ∆x4

90

(
∂6u
∂x6

)
The above two one-sided formulas are important in handling boundary points. In the

code example below, we implement these formulas for the left boundary, the right boundary,
and the interior respectively, assuming the index i runs from left to right.

Software

 Suite
Putting it into Practice

Just as with the first derivative approximations, we break the approximation process into
three stages:

1. Compute the approximation for the interior points (i = 1, . . . , N − 2).

2. Compute the approximation for the left end-point (i = 0).

3. Compute the approximation for the right end-point (i = N − 1).

Here we present the second derivative finite difference approximation for a non-periodic
interval. Observe that at the end-points we use the four-point one-sided approximation
derived above.

void SO_SecondDeriv_1D(int npts, double dx, double *u,

double *u_xx){

int i;

double inv_dx2 = 1.0/(dx*dx);

// Forward differencing

u_xx[0] = (2.0*u[0]-5.0*u[1]+4.0*u[2]-u[3])*inv_dx2;

// Central differencing

for(i=1;i<npts-1;i++)

u_xx[i] = (u[i+1]-2.0*u[i]+u[i-1])*inv_dx2;

// Backward differencing

u_xx[npts-1] = (2.0*u[npts-1]-5.0*u[npts-2]+4.0*

u[npts-3]-u[npts-4])*inv_dx2;

return;

}

5.1. Explicit Space Discretizations 292

As before, for the periodic interval approximation, we can use the central approximation
for every point, being mindful that we must take special care when computing the end-points
to make sure that we do not over-run the arrays.

void SO_SecondDeriv_1Dper (int npts, double dx, double *u,

double *u_xx){

int i;

double inv_dx2 = 1.0/(dx*dx);

u_xx[0] = (u[1]-2.0*u[0]+u[npts-1])*inv_dx2;

// Central differencing

for(i=1;i<npts-1;i++)

u_xx[i] = (u[i+1]-2.0*u[i]+u[i-1])*inv_dx2;

u_xx[npts-1] = (u[0]-2.0*u[npts-1]+u[npts-2])*inv_dx2;

return;

}

How do we use these functions? Below we provide codes for testing both the non-periodic
and periodic first and second derivative approximations. One thing we would like to point
out is our selection of dx. Notice that if we have N points, and that we want points to be
uniformly spaced throughout the interval including the end-points, then we must chose dx
to be the length of the interval divided by (N − 1).

#include <iostream.h>

#include <iomanip.h>

#include "SCchapter5.h"

double func(double x);

double func_first_der(double x);

double func_second_der(double x);

int main(int argc, char * argv[]){

const int levels = 10; //number of levels to test

const double a = 0.0; //left end point of domain

const double b = 1.0; //right end point of domain

int i,j,npts;

double dx,dxp,ux_error,uxx_error;

double *u,*u_x,*u_xx;

cout << "npts\tError (First Deriv)\tError (Second Deriv)\n";

5.1. Explicit Space Discretizations 293

for(i=2;i<levels+2;i++){

npts = (int) pow(2,i); //number of grid points is equal

// to 2^level

dx = 1.0/(npts-1); //set dx based on number of points

// Allocate storage dynamically

u = new double[npts];

u_x = new double[npts];

u_xx = new double[npts];

for(j=0;j<npts;j++)

u[j] = func(j*dx); // set function value

SO_FirstDeriv_1D (npts,dx,u,u_x); //calc. 1st deriv.

SO_SecondDeriv_1D (npts,dx,u,u_xx); //calc. 2nd deriv.

// Computation of the L2 error

ux_error=0.0;

uxx_error=0.0;

for(j=0;j<npts;j++){

ux_error += dx*pow((u_x[j]-func_first_der(j*dx)),2);

uxx_error += dx*pow((u_xx[j]-func_second_der(j*dx)),2);

}

cout << setprecision(10) << setiosflags(ios::scientific);

cout << npts << "\t" << sqrt(ux_error);

cout << "\t" << sqrt(uxx_error) << endl;

//Deallocation of dynamic memory

delete[] u;

delete[] u_x;

delete[] u_xx;

}

}

double func(double x){

return(x*x*x*x);

}

double func_first_der(double x){

return(4*x*x*x);

}

double func_second_der(double x){

5.1. Explicit Space Discretizations 294

return(12*x*x);

}

After compilation and execution of the program above, the following results are printed
by the program.

npts Error (First Deriv) Error (Second Deriv)

4 4.4854079320e-01 2.0041110013e+00

8 6.9622902770e-02 2.4294654992e-01

16 1.3089009760e-02 3.6721619875e-02

32 2.7619740848e-03 6.1646753898e-03

64 6.2730612749e-04 1.1069179087e-03

128 1.4891039346e-04 2.1107879261e-04

256 3.6234744984e-05 4.2896354790e-05

512 8.9342897099e-06 9.2915223897e-06

1024 2.2180019754e-06 2.1242917384e-06

2048 5.5255279205e-07 5.0463557743e-07

According to the theory, both of these methods should be second-order accurate. If this
were true, then doubling the number of grid points used should lead to a reduction in the
error by a factor of four. Notice the convergence rate - just as predicted by the theory! Every
time we increase the number of points by a factor of two, the error decreases by about a
factor of four, hence we have second-order convergence.

The code below is a slight modification of the one above, in which we now demonstrate
the use of the periodic interval functions. Observe that since we have N points, and that we
want points to be uniformly spaced throughout the interval including only the left end-point,
then we must chose dx to be the length of the interval divided by N . Why only the left end-
point? Recall that we want the domain to be periodic. Hence, the last point value should
not be the right-hand end of the domain because this value is periodic with the left-hand
value. So we chose dx to be the length of the interval divided by N and not by (N − 1).
The code below demonstrates the use of the periodic differencing functions.

#include <iostream.h>

#include <iomanip.h>

#include "SCchapter5.h"

double func(double x);

double func_first_der(double x);

double func_second_der(double x);

int main(int argc, char * argv[]){

const int levels = 10; //number of levels to test

const double a = 0.0; //left end point of domain

const double b = 1.0; //right end point of domain

5.1. Explicit Space Discretizations 295

int i,j,npts;

double dx,dxp,ux_error,uxx_error;

double *u,*u_x,*u_xx;

cout << "npts\tError (First Deriv)\tError (Second Deriv)\n";

for(i=2;i<levels+2;i++){

npts = (int) pow(2,i); //number of grid points is equal

// to 2^level

dx = 1.0/(npts); //set dx based on number of points

// Allocate storage dynamically

u = new double[npts];

u_x = new double[npts];

u_xx = new double[npts];

for(j=0;j<npts;j++)

u[j] = func(j*dx); // set function value

SO_FirstDeriv_1Dper (npts,dx,u,u_x); //calc. 1st deriv.

SO_SecondDeriv_1Dper(npts,dx,u,u_xx); //calc. 2nd deriv.

// Computation of the L2 error

ux_error=0.0;

uxx_error=0.0;

for(j=0;j<npts;j++){

ux_error += dx*pow((u_x[j]-func_first_der(j*dx)),2);

uxx_error += dx*pow((u_xx[j]-func_second_der(j*dx)),2);

}

cout << setprecision(10) << setiosflags(ios::scientific);

cout << npts << "\t" << sqrt(ux_error) << "\t";

cout << << sqrt(uxx_error) << endl;

//Deallocation of dynamic memory

delete[] u;

delete[] u_x;

delete[] u_xx;

}

}

double func(double x){

return(sin(2.0*M_PI*x));

}

5.1. Explicit Space Discretizations 296

double func_first_der(double x){

return(2.0*M_PI*cos(2.0*M_PI*x));

}

double func_second_der(double x){

return(-4.0*M_PI*M_PI*sin(2.0*M_PI*x));

}

After compilation and execution of the program above, the following results are printed
by the program.

npts Error (First Deriv) Error (Second Deriv)

4 1.6144558134e+00 5.2880398006e+00

8 4.4288293816e-01 1.4057888067e+00

16 1.1331413699e-01 3.5690383940e-01

32 2.8492869631e-02 8.9570538385e-02

64 7.1335237874e-03 2.2414226421e-02

128 1.7840256502e-03 5.6049069655e-03

256 4.4604671517e-04 1.4013111524e-03

512 1.1151419784e-04 3.5033306453e-04

1024 2.7878706903e-05 8.7583596378e-05

2048 6.9696865656e-06 2.1895920354e-05

Notice the convergence rate - just as predicted by the theory! Just as in the previous
example, every time we increase the number of points by a factor of two, the error decreases
by about a factor of four, hence we have second-order convergence.

5.1.3 MPI Parallel Implementation of Finite Differences

To implement the above differencing functions in MPI, we will first partition our domain
among the processors. Assuming that the domain has been properly partitioned, it is the
responsibility of each processor to compute the finite differences necessary for all points
contained on that processor. Where do we need MPI? On each subdomain, the end-points
of the domain need information that is not resident to the processor, but rather it resides
on a different processor. Hence, we must use MPI Send and MPI Recv to transmit the
information from one processor to another, as demonstrated in figure 5.5.

Software

 Suite

Below we present our implementation of 1D first derivative
finite difference for a non-periodic interval:

• 1D First Derivative Parallel: MPI Send/MPI Recv: Non-periodic Interval

void SO_FirstDeriv_1DP(int npts, double dx, double *u,

5.1. Explicit Space Discretizations 297

Processor 0 Processor 1 Processor 2 Processor 3

Send Receive

SendReceive

Figure 5.5: MPI Send/Receive pattern for finite differencing across processors.

double *u_x, int mynode, int totalnodes){

double two_invdx = 1.0/(2.0*dx);

double mpitemp;

MPI_Status status;

if(mynode == 0)

u_x[0] = (-3.0*u[0] + 4.0*u[1] - u[2])*two_invdx;

if(mynode == (totalnodes-1))

u_x[npts-1] = (3.0*u[npts-1] - 4.0*u[npts-2] +

u[npts-3])*two_invdx;

for(int i=1;i<npts-1;i++)

u_x[i] = (u[i+1]-u[i-1])*two_invdx;

if(mynode == 0){

mpitemp = u[npts-1];

MPI_Send(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD);

MPI_Recv(&mpitemp,1,MPI_DOUBLE,1,1,MPI_COMM_WORLD,

&status);

u_x[npts-1] = (mpitemp - u[npts-2])*two_invdx;

}

else if(mynode == (totalnodes-1)){

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,

MPI_COMM_WORLD, &status);

u_x[0] = (u[1]-mpitemp)*two_invdx;

5.1. Explicit Space Discretizations 298

mpitemp = u[0];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,

MPI_COMM_WORLD);

}

else{

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode-1,1,

MPI_COMM_WORLD, &status);

u_x[0] = (u[1]-mpitemp)*two_invdx;

mpitemp = u[0];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode-1,1,

MPI_COMM_WORLD);

mpitemp = u[npts-1];

MPI_Send(&mpitemp,1,MPI_DOUBLE,mynode+1,1,

MPI_COMM_WORLD);

MPI_Recv(&mpitemp,1,MPI_DOUBLE,mynode+1,1,

MPI_COMM_WORLD, &status);

u_x[npts-1] = (mpitemp-u[npts-2])*two_invdx;

}

return;

}

Observe the following cases that need special attention:

1. Process 0 contains the left end-point, and hence special one-sided differences must be
employed.

2. Process (totalnodes − 1) contains the right end-point, and hence special one-sided
differencing must be employed.

3. For any other process, differencing for interior points can be done, and communication
with neighbors to obtain information concerning adjacent points should be performed.

Care must be taken to guarantee that at the point that one process is sending informa-
tion, that another process is ready to receive information. Notice the careful staggering of
MPI Send and MPI Recv. If two processors were to call MPI Send at the same time,
with messages intended for each other, then we would arrive at what is referred to as a race-
condition , and both processors would sit forever waiting for the other to call MPI Recv!

Key Concept

• Care must be taken to avoid race-conditions. Recall that for every
Send, there must be a Receive ready to accept the information.

5.1. Explicit Space Discretizations 299

One thing you may notice is that in every case in the example above we are “exchanging”
information; that is, every process wants to “swap information” with its adjacent process.
We have implemented the above using a combination of sends and receives, however MPI
provides us with the functions MPI Sendrecv and MPI Sendrecv replace, which can help
to automate this process. We now present the function syntax, argument list, usage examples,
and remarks for MPI Sendrecv and MPI Sendrecv replace.

MPI Sendrecv/MPI Sendrecv replace

Function Call Syntax

int MPI Sendrecv(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
int dest /* in */,
int sendtag /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
int source /* in */,
int recvtag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

int MPI Sendrecv replace(
void* buffer /* in */,
int count /* in */,
MPI Datatype sendtype /* in */,
int dest /* in */,
int sendtag /* in */,
int source /* in */,
int recvtag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

Understanding the Argument Lists

• sendbuf - starting address of the send buffer.

• sendcount - number of elements in the send buffer.

• sendtype - data type of the elements in the send buffer.

• dest - process rank of destination.

5.1. Explicit Space Discretizations 300

• sendtag - send message tag.

• recvbuf - starting address of the receive buffer.

• recvcount - number of elements in the receive buffer.

• recvtype - data type of the elements in the receive buffer.

• source - process rank of source process.

• sendtag - send message tag.

• comm - communicator.

• status - status object.

• buffer - starting address of the send/recv buffer (replace case).

• count - number of elements in the send/recv buffer (replace case).

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be sent/recv

int process1, process2; //process rank of two

// processes to exchange data

int tag1,tag2; // integer message tag

MPI_Status status; // variable to contain status information

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize, process1, process2

double * sendbuffer = new double[datasize];

double * recvbuffer = new double[datasize];

double * buffer = new double[datasize];

if(mynode == process1){

// The call below sends the contents of sendbuffer to

// process2 and obtains from process2 data placed

// into recvbuffer

5.1. Explicit Space Discretizations 301

MPI_Sendrecv(sendbuffer,datasize,MPI_DOUBLE,process2,

tag1,recvbuffer,datasize,MPI_DOUBLE,process2,

tag2,MPI_COMM_WORLD,&status);

// The call below will ’swap’ the contents of buffer with

// process2; note the corresponding call to

// MPI_Sendrecv_replace below

MPI_Sendrecv_replace(buffer,datasize,MPI_DOUBLE,process2,

tag1,process2,tag2,MPI_COMM_WORLD,

&status);

}

if(mynode == process2){

// The call below sends the contents of sendbuffer to

// process1 and obtains from process1 data placed

// into recvbuffer

MPI_Sendrecv(sendbuffer,datasize,MPI_DOUBLE,process1,

tag2,recvbuffer,datasize,MPI_DOUBLE,process1,

tag1,MPI_COMM_WORLD,&status);

// The call below will ’swap’ the contents of buffer

// with process1; note the corresponding call to

// MPI_Sendrecv_replace above

MPI_Sendrecv_replace(buffer,datasize,MPI_DOUBLE,process1,

tag2,process1,tag1,MPI_COMM_WORLD,

&status);

}

// At this point, process1 has in its recvbuffer the contents

// of process1’s sendbuffer, process2 has in its recvbuffer

// the contents of process1’s sendbuffer, and process1

// and process2’s buffer arrays have been exchanged with

// each other.

Remarks

5.1. Explicit Space Discretizations 302

• MPI Sendrecv allows us to send to one process and receive from another process (or
the same process to which we are sending) in one function call. This type of MPI
function is ideal for swapping or shifting information among a collection of processes.

• MPI Sendrecv replace allows us the functionality of MPI Sendrecv with the addi-
tional caveat that the information which is being sent is over-written by the received
information. MPI guarantees that the “sending” is accomplished before the “receiv-
ing”.

• For both MPI Sendrecv and MPI Sendrecv replace, the sending and receiving pro-
cesses do not have to be the same. For instance, process one can send data to process
two while obtaining data from process zero.

• For MPI Sendrecv, MPI Recv can be used on the receiving process to obtain the
information being sent. Similarly, MPI Sendrecv can receive data from a process
sending using MPI Send.

• In most cases the sendtype and recvtype are identical.

• The tag can be any integer between 0-32767.

Software

 Suite

We implement again the finite differencing function given
above, now using MPI Sendrecv replace as opposed to
MPI Send/MPI Recv. Notice that the “race-condition”
problem is handled by MPI, and not by us!

Key Concept

• If you find yourself repeating some pattern of MPI Send and
MPI Recv calls, it is very likely that an MPI function already
exists which combines the pattern into one MPI call!

• 1D First Derivative Parallel: MPI Sendrecv replace: Non-periodic Interval

void SO_FirstDeriv_1DP(int npts, double dx, double *u,

double *u_x,int mynode,

int totalnodes){

double two_invdx = 1.0/(2.0*dx);

double mpitemp;

MPI_Status status;

5.1. Explicit Space Discretizations 303

if(mynode == 0)

u_x[0] = (-3.0*u[0] + 4.0*u[1] - u[2])*two_invdx;

if(mynode == (totalnodes-1))

u_x[npts-1] = (3.0*u[npts-1] - 4.0*u[npts-2] +

u[npts-3])*two_invdx;

for(int i=1;i<npts-1;i++)

u_x[i] = (u[i+1]-u[i-1])*two_invdx;

if(mynode == 0){

mpitemp = u[npts-1];

MPI_Sendrecv_replace(&mpitemp,1,MPI_DOUBLE,1,1,1,1,

MPI_COMM_WORLD, &status);

u_x[npts-1] = (mpitemp - u[npts-2])*two_invdx;

}

else if(mynode == (totalnodes-1)){

mpitemp = u[0];

MPI_Sendrecv_replace(&mpitemp,1,MPI_DOUBLE,mynode-1,

1,mynode-1,1, MPI_COMM_WORLD,

&status);

u_x[0] = (u[1]-mpitemp)*two_invdx;

}

else{

mpitemp = u[0];

MPI_Sendrecv_replace(&mpitemp,1,MPI_DOUBLE,mynode-1,

1,mynode-1,1, MPI_COMM_WORLD,

&status);

u_x[0] = (u[1]-mpitemp)*two_invdx;

mpitemp = u[npts-1];

MPI_Sendrecv_replace(&mpitemp,1,MPI_DOUBLE,mynode+1,

1,mynode+1,1, MPI_COMM_WORLD,

&status);

u_x[npts-1] = (mpitemp-u[npts-2])*two_invdx;

}

return;

}

Software Suite

5.1. Explicit Space Discretizations 304

Software

 Suite

In the software suite we present a C++ program which uses
the MPI differencing functions provided above. It is very sim-
ilar to the scalar programs shown earlier. Also, we use the
MPI Reduce function, which was discussed earlier, for collect-
ing the error information from all the processors and supplying
it to process 0.

We also include several C++/MPI implementations for first and second derivatives on pe-
riodic and non-periodic domains usingMPI Send/MPI Recv and also usingMPI Sendrecv replace.

Variable Coefficient

A situation that arises often in applications is a second-order derivative term with variable
coefficient, which is a function of the location and thus it may vary along the grid points.
To maintain the desired accuracy in this case we have to symmetrize the discretization as
follows:

∂

∂x
[ν(x)

∂

∂x
]ui =

1

∆x2
δ−(νi+1/2δ

+)ui +O(∆x2) =
1

∆x2
δ+(νi−1/2δ

−)ui +O(∆x2) .

Thus,
∂

∂x
[ν(x)

∂

∂x
]ui =

νi+1/2(ui+1 − ui)

∆x2
− νi−1/2(ui − ui−1)

∆x2
+O(∆x2).

Many diffusion problems with space-dependent diffusivity are formulated in this fashion.

5.1.4 Multi-Dimensional Arrays in C++

As the level of complexity of our programs increases, we will increasingly find that single
indexed (one-dimensional) arrays do not fulfill all our programming needs. This is not to
say that we cannot use single-arrays for doing all of our work, but rather that sometimes the
algorithm naturally breaks itself down into what we refer to as multi-dimensional arrays (for
example, matrices, which can be considered an N ×M array). Just as with single-dimension
arrays, there are two ways to allocate multi-dimensional arrays: statically and dynamically.

Static Allocation of Multi-Dimensional Arrays

Just as with single-indexed arrays, we can allocate multi-dimensional arrays statically as
follows: Suppose that we want to declare an array of double which is 20 × 20 in size. We
would use the following array declaration:

double x[20][20];

We have now declared an array x which contains 20× 20 doubles, which can be indexed
i = 0, 19 in the first index, and j = 0, 19 in the second index. Hence if we wanted item (3,4),
we would access x[3][4].

If we want more than two dimensions, we can continue to append dimensions as follows:

5.1. Explicit Space Discretizations 305

double x[20][20][20][20];

which is a 20× 20× 20× 20 array! All of the previous rules introduced with single-indexed
arrays still apply.

Dynamic Allocation of Multi-Dimensional Arrays

Dynamic allocation of multi-dimensional arrays is very similar to that of single dimension
arrays. Suppose, once again, that we now want to dynamically allocate an array of 10× 10
elements. This can be done as follows:

int npts = 10;

double ** x;

x = new double*[npts];

for(i=0;i<npts;i++)

x[i] = new double[npts];

And to delete, we would use the following reversal of the process:

for(int i=0;i<npts;i++)

delete[] x[i];

delete[] x;

The key points to get from this are the following:

• For a single dimension array, we used a double*. For a two-dimensional array, we
use a double**. For a three-dimensional array, we use a double ***, and so on. This
is because at each successive level, we are declaring an “array of arrays”. A two-
dimensional array is an array of one-dimensional arrays. A three-dimensional array is
an array of two-dimensional arrays, which, in turn, are an array of one-dimensional
arrays.

• Observe that when declaring a two-dimensional array, we first must declare the array
of double* variables, and then we assign to each double* variable an allocation of a
single dimensional array. A schematic of this is shown in figure 5.6.

• Creating arrays in this fashion does not create contiguous blocks! This means that
what we have shown you here gives the most freedom to the operating system to
decide how to fit things into memory.

• Observe that when deleting the dynamic allocation, we must reverse the allocation
process. First, we must deallocate the single dimension arrays that we assigned, and
then we must delete the original array.

5.1. Explicit Space Discretizations 306

double **x

double *x[0 ... 9]

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����x[0]

x[4]

x[8]

x[1]

x[3]

x[5]

x[6]

x[7]

x[9]

x[2]

x[0][0] x[0][6]

x[4][6]

x[9][6]

x[4][0]

x[9][0]

Figure 5.6: Diagram showing conceptual picture of two-dimensional array memory allocation.

Dynamic Allocation of Multi-Dimensional Arrays in Contiguous Blocks

In some instances when using BLAS or MPI it may be necessary to allocate multi-dimensional
arrays as a contiguous block of memory, which is different than what was previously shown.
This is because both BLAS and MPI act on contiguous blocks of memory. To create a
two-dimensional array in which the allocation is a continuous block of memory, allocate the
block of memory and index the pointer array ourselves. We will first present a sample code
as to how this is accomplished, and then we will comment on this code.

int N = size; //size is the specified size of the matrix (N x N)

double ** x;

x = new double*[N]; //allocate double* indexing array

x[0] = new double[N*N]; //allocate storage as a

//contiguous block

for(int i=1;i<N;i++)

x[i] = x[0]+i*N;

Observe after allocating our indexing array, we allocate a contiguous block of memory
equal to the total size that we need and then assign the leading address of that block of
memory to the first indexed position of our indexing array. We then loop through the
remainder of the indexing array and assign to each position the appropriately offset amount
as shown in figure 5.7. With this type of memory allocation we are certain that x[0] points
to a contiguous block of memory representing the entire N × N matrix. Hence, in MPI, if
we wanted to send this matrix to another process, we could pass x[0] as the starting pointer
and send N ×N doubles to a receiving process.

5.1. Explicit Space Discretizations 307

double **x

double *x[0 ... 9]

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����x[0]

x[4]

x[8]

x[1]

x[3]

x[5]

x[6]

x[7]

x[9]

x[2]

x[0][0]

x[0][9]

x[1][0]

Figure 5.7: Diagram showing conceptual picture of two-dimensional array memory allocation with
contiguous memory.

Row-Major Order versus Column-Major Order

Previously we mentioned that there is a difference between “row-major order” and “column-
major order”. In this section we will explain the differences between these two orderings and
explain why they are significant.

Multi-dimensional arrays require us to derive a mapping from the multi-dimensional
ordering of the array to a linearly addressable ordering used for accessing memory. In figure
5.8 we present a diagram demonstrating the difference between a row-major ordering and a
column-major ordering.

Observe that in a row-major ordering, we map the array row-by-row into the linearly
addressed memory, whereas in a column-major ordering we map the array column-by-column.
It is important to be mindful row-major ordering and column-major ordering for the following
reasons:

• When using BLAS (or ATLAS), by default matrices are assumed to be stored in
column-major ordering (consistent with FORTRAN) instead of row-major ordering
(consistent with C/C++). You may be required to manually re-order your matrix to
accommodate BLAS. Another option provided by BLAS so that manual reordering is
not necessary is to specify that you are passing the transpose of the matrix (the trans-
pose of a row-major ordered matrix is a column-major ordered matrix). Care must be
taken though when interpreting the results of the BLAS call. The resulting operation
will be in column-major order.

• Whether a matrix is stored in column-major order or row-major order determines
what is the most efficient way to access the array entries. Suppose we needed to print

5.1. Explicit Space Discretizations 308

1 2 3
4 5 6
7 8 9

1

2

3

4

5

6

7

8

9

1

4

7

2

5

8

3

6

9

Column−Major OrderRow−Major Order

L
in

ea
rly

 A
dd

re
ss

ab
le

 M
em

or y

addr 1

addr 2

addr 3

addr 4

addr 5

addr 6

addr 7

addr 8

addr 9

addr 1

addr 2

addr 3

addr 4

addr 5

addr 6

addr 7

addr 8

addr 9

L
in

ea
rly

 A
dd

re
ss

ab
le

 M
em

or y

Figure 5.8: Diagram showing a conceptual picture of row-major order versus column-major order
for the contiguous allocation of a two-dimensional array. Observe that both orderings require the
same quantity of linearly addressable memory, however the distribution of the two-dimensional
array elements differ based upon which ordering is used.

the contents of a matrix, and we wanted to access memory in the most efficient way
possible. Consider the following looping example:

// Optimal for column-major ordering

for(int i=0;i<N;i++)

for(int j=0;j<N;j++)

cout << A[j][i] << endl;

// Optimal for row-major ordering

for(int i=0;i<N;i++)

for(int j=0;j<N;j++)

cout << A[i][j] << endl;

C++ uses row-major ordering; the latter example shows the optimal means of accessing
the contents of the multi-dimensional array A. We design the loops so that the inner-
most loop runs over the outer-most index.

5.1.5 Non-Uniform Grids

We often need to compute derivatives on a non-uniform grid which is present because of steep
gradients in the solution in some regions and smooth variation in other regions. Such solution

5.1. Explicit Space Discretizations 309

behavior is present in boundary layers, but it may also be dictated by the geometry of the
problem or because of semi-infinite or infinite computational domains. Here, we present two
different ways of handling non-uniform grids, first using Lagrangian interpolation and second
using mappings.

Lagrangian Interpolation and Non-Uniform Grids

So far we have obtained discretizations of the first and second derivatives on uniforms
grids. Next, we assume that we have an arbitrary distribution of grid points denoted by
(α0, α1, . . . , αN) as shown in the sketch 5.9. We will look for approximations of the mth-
order derivative on a stencil consisting of n points where n ≥ m. We allow m = 0 which
is the degenerate case for interpolation. This method was first proposed by Fornberg, and
here we have adopted his notation [37].

(N + 1) grid points

α α α ...x ... α α0 1 2 0 ν N

Figure 5.9: The grid points are distinct but arbitrarily distributed in the domain.

Let us consider the function f(x) and look for the approximation of the mth-order derivative
at the point x0

dmf

dxm
|x=x0 =

n∑
ν=0

cmn,νf(αν)
m = 0, 1, . . . ,M
n = m,m+ 1, . . . , N

(5.6)

The question is then how to compute cmn,ν efficiently for any point in the interval x ∈ [α0, αN].
The key idea here is to use Lagrangian interpolation.

For simplicity, let us consider the point x0 = 0. We then define

Fn(x) ≡ Πn
k=0(x− αk),

and thus the nth-degree Lagrangian polynomial is

hn
ν (x) ≡ Fn(x)

F ′
n(αν)(x− αν)

; hn
ν (αk) = δνk.

Then we can perform Lagrangian interpolation for f(x), i.e.,

f(x) ≈
n∑

ν=0

hn
ν (x)f(αν). (5.7)

Now by comparing equation (5.6) and the mth-derivative of the Lagrangian representation
in equation (5.7), we obtain

cmn,ν =
dm

dxm
hn

ν (x)|x=0 .

5.1. Explicit Space Discretizations 310

Inversely, the nth-degree polynomial hn
ν (x) can be expressed using a Taylor expansion of the

form:

hn
ν (x) =

n∑
m=0

cmn,ν

m!
xm.

The next step is to obtain recurrence formulas for hn
ν (x) so that they can be computed

efficiently, and subsequently compute cmn,ν recursively. To this end,

Fn(x) = (x− αn)Fn−1(x)

F
′
n(x) = (x− αn)F

′
n−1(x) + Fn−1(x) .

This recursive function calling is implemented in the example below. We assume that
the array alpha[i] contains the grid coordinates as shown in figure 5.9.

double F(int n, double x, double *alpha){

double answer;

if(n==0)

answer = x - alpha[n];

else

answer = (x-alpha[n])*F(n-1,x,alpha);

return answer;

}

The recursion for the Lagrangian polynomials is then obtained from:

• ν �= n: hn
ν (x) =

Fn(x)

F ′
n(αν)(x− αν)

=
(x− αn)Fn−1(x)

(αν − αn)F
′
n−1(αν)(x− αν)

=
x− αn

αν − αn

Fn−1(x)

F
′
n−1(αν)(x− αν)

=
x− αn

αν − αn
hn−1

ν (x),

• ν = n: hn
n(x) =

Fn−1(x)

Fn−1(αn)
=
Fn−2(αn−1)

Fn−1(αn)
(x− αn−1)h

n−1
n−1(x).

By equating coefficients in the expansion for hn
ν (x) we obtain:

x0 = 0




n �= ν: cmn,ν =
1

αn − αν
(αnc

m
n−1,ν −mcm−1

n−1,ν)

and

n = ν: cmn,n =
Fn−2(αn−1)

Fn−1(αn)
(mcm−1

n−1,n−1 − αn−1c
m
n−1,n−1) .

5.1. Explicit Space Discretizations 311

We can also use
n∑

ν=0

cmn,ν =

{
1, m = 0
0, m �= 0

,

however, this formula should not be used because it may induce round-off error.

Note that for x0 �= 0 we replace

{
αn → (αn − x0)
αn−1 → (αn−1 − x0)

and that there is no restriction on

x0 coinciding with any αν .

Software

 Suite
Putting it into Practice

The code below computes the weights in the Fornberg method and gives us the opportunity
to introduce a triple array, which can be viewed as an array of two-dimensional arrays. Notice
that we use a double ***! The indexing of this array is just as we discussed earlier.

void FornbergWeights(double xi, double *x, int m, int n,

double ***C){

int i,j,k,mn;

double C1,C2,C3;

C[0][0][0] = 1.0;

C1 = 1.0;

for(j=1;j<=n;j++){

if(j<m)

mn = j;

else

mn = m;

C2 = 1.0;

for(k=0;k<=(j-1);k++){

C3 = x[j]-x[k];

C2 = C2*C3;

if(j<=m) C[j][j-1][k]=0.;

C[0][j][k] = (x[j]-xi)*C[0][j-1][k]/C3;

for(i=1;i<=mn;i++)

C[i][j][k] = ((x[j]-xi)*C[i][j-1][k]-i*

C[i-1][j-1][k])/C3;

}

5.1. Explicit Space Discretizations 312

C[0][j][j] = -C1*(x[j-1]-xi)*C[0][j-1][j-1]/C2;

for(i=1;i<=mn;i++)

C[i][j][j] = C1*(i*C[i-1][j-1][j-1]-

(x[j-1]-xi)*C[i][j-1][j-1])/C2;

C1 = C2;

}

return;

}

Remark 1: The triple indexing of the double∗∗∗ array C follows the same rules as previously
discussed for double indexed arrays. A diagram showing a conceptual picture of the three-
dimensional array is given in figure 5.10. The first index i of C[i][j][k] denotes which double∗∗
array is selected. The second index j of C[i][j][k] denotes which double∗ array is selected.
The third index k of C[i][j][k] denotes which double is selected.

double ***C

double **C[0 ... 9]

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����C[0]

C[4]

C[8]

C[1]

C[3]

C[5]

C[6]

C[7]

C[9]

C[2]

double *C[2][0 ... 9]

double *C[7][0 ... 9]

C[2][6][7]

C[2][6][3]

Figure 5.10: Diagram showing conceptual picture of three-dimensional array memory allocation.

Remark 2: Pay careful attention to the required size of the array C. It is the calling
functions responsibility to allocate appropriate space for C. The routine above does allocate
memory; it assumes that the three-dimensional array C has already been declared. By
examining the loops within the routine above, it is possible to deduce a required size for C
given the parameters m and n.

Mappings and Non-Uniform Grids

It is common practice to transform non-uniform grids to uniform grids (if possible), and then
on the uniform grid to compute the discrete derivatives. This is due to the fact that the
formal accuracy (e.g., second-order) of the scheme is maintained on the uniform grid whereas
only first-order accuracy can be achieved on the original (non-uniform) grid. However, the
actual accuracy depends strongly on the transformation between the non-uniform grid [x]i
and the uniform grid [ξ]i, and thus it is not always clear which is the better grid to compute
discrete derivatives. We analyze this next, following the work of Hoffman [58].

Let us assume that the two grids are related by the transformation

x = φ(ξ)⇒ ξ = φ−1(x) . (5.8)

5.1. Explicit Space Discretizations 313

On the uniform grid (ξi) the first derivative of the function u(x) is

ux = uξφ
−1
x ,

and a central difference approximation at point (i) is

(ux)
ξ
i = (φ−1

x)i
ui+1 − ui−1

ξi+1 − ξi−1
.

From Taylor expansion we can also obtain that

(ux)
ξ
i = (φ−1

x)i(uξ)i +O(∆ξ2). (5.9)

It is now clear from equation (5.9) that the approximation of the first derivative on a uniform
grid is of second-order. On the other hand, a central difference formula for the first derivative
on a uniform grid produces a first-order accuracy approximation of the form

(ux)
x
i = (ux)i +

1

2
(uxx)i(∆x+ −∆x−) +O(∆x2

±), (5.10)

where ∆x+ ≡ xi+1 − xi and ∆x− ≡ xi+1 − xi. Thus if ∆x± is halved by doubling the
number of grid points, then the error decreases only by a factor of two, which corresponds to
first-order accuracy. However, it is also possible to redistribute the points during refinement
so that by doubling the number of grid points the term (∆x+ − ∆x−) quarters. In this
case, second-order accuracy is achieved even on a non-uniform grid. A procedure to obtain
this was derived by Hoffman [58] by expanding the coordinate transformation x = φ(ξ) in a
Taylor series

∆x+ −∆x− = φξξ∆ξ
2 +O(∆ξ4).

This equation suggests that if we half the grid spacing on the uniform grid, then the effective
spacing on the non-uniform grid is quartered, and thus we recover second-order type behavior
for the approximation error. The corresponding truncation errors on the two grids are also
related by

(ux)
x
i = (ux)

ξ
i +O(∆ξ2).

In the special case that the transformation φ(ξ) is a polynomial of second-order or less,
the two derivative approximations are identical because the truncation error in the above
equation is identically zero.

Similar conclusions can be drawn for higher derivatives. For example, for the second
derivative the difference in the approximation on the two grids is zero if the transformation
is a first-order polynomial.

Some commonly used mappings are:

• Exponential Stretching:
x = L(eaξ − 1)

with the purpose of increasing resolution around x = 0, where L is the length of the
domain and ξ ∈ [0, 1]. The parameter a determines the exact point distribution.

5.1. Explicit Space Discretizations 314

• Semi-Infinite Domain:

1. Algebraic mapping: x = L
1 + ξ

1− ξ , x ∈ [0,∞]→ ξ ∈ [−1, 1]

2. Logarithmic mapping: x = −L ln

(
1− ξ

2

)
, [0,∞]→ [−1, 1]

• Infinite Domain:

1. Exponential mapping: x = L tanh−1, ξ x ∈ [−∞,∞]→ ξ ∈ [−1, 1]

2. Algebraic mapping: x = L
ξ√

1− ξ2
, x ∈ [−∞,∞]→ ξ ∈ [−1, 1]

5.1.6 One-Dimensional Boundary Value Problem

Next we apply the discretization of the second derivative for the one-dimensional boundary
value problem of the form {

θ′′ = − sin 2πx
θ0 = θN = 0

subject to homogeneous boundary conditions. The exact solution is obtained analytically

Θ(x) =
1

4π2
sin 2πx.

The difference equation is obtained by discretizing the second derivative and apply the
equation at the node (i) neglecting the truncation error:

1

∆x2
(θi−1 − 2θi + θi+1) = − sin 2πxi, θ0 = θN = 0.

The equivalent differential equation is obtained by including on the right-hand-side of
the differential equation the truncation terms, i.e.,

θ̂′′ = − sin 2πx−

Ti︷ ︸︸ ︷
∆x2

12
θ̂(iv) + . . .︸ ︷︷ ︸

truncation error

.

We note that Ti → 0 as ∆x→ 0, and therefore our discretization is consistent as we recover
the original differential equation when the discretization parameter approaches zero. This
condition is called consistency and it is the key to convergence for boundary value problems
(derived from the Lax theorem [77]).

We can now proceed to solve the difference equation analytically by assuming a solution
of the form:

θi = A sin 2πi∆x (i = 0, N ⇒ θi = 0).

5.1. Explicit Space Discretizations 315

Therefore,

A

∆x2
[sin 2π(i− 1)∆x− 2 sin 2πi∆x+ sin 2π(i+ 1)∆x] = − sin 2πi∆x,

or
A

∆x2
sin 2πi∆x(cos 2π∆x− 2 + cos 2π∆x) = − sin 2πi∆x

⇒ A =
∆x2

2(1− cos 2π∆x)
=

∆x2

2[1− (1− (2π)2∆x2

2
+ (2π)4∆x4

24
) + . . .]

=
∆x2

(2π)2∆x2 − (2π)4∆x4

12
+ . . .

=
1

4π2
[
1− (2π)2∆x2

12
+ . . .

]

=
1

4π2

[
1 +

(2π)2∆x2

12
+ . . .

]
.

Finally, the solution of the difference equation is

θi =
1

4π2
sin 2πxi︸ ︷︷ ︸

Θ exact

+
∆x2

12
sin 2πxi + . . .

We have shown directly that the approximation of the second derivative with second-order
accuracy leads to a solution which is second-order accurate.

To solve the equivalent differential equation we use perturbation expansions taking ∆x2

as a small parameter:
θ̂ = θ̂0 + ∆x2θ̂2 + ∆x4θ̂4 + . . .

By matching successive powers of ∆x we obtain:

∆x0:
θ̂
′′
0 = − sin 2πx

θ̂0(0) = θ̂0(1) = 0

}
⇒ θ̂0 = Θ =

1

4π2
sin 2πx

∆x2:
θ̂
′′
2 = − 1

12
θ̂

(iv)
0 = − (2π)4

12(4π2)
sin 2πx

θ̂2(0) = θ̂2(1) = 0


⇒ θ̂2 =

1

12
sin 2πx

so,

θ̂(x) =
1

4π2
sin 2πx+

∆x2

12
sin 2πx+ . . .

Notice that θ̂(xi) = θi, from above, in other words θ̂(x), the solution of the equivalent
differential equation, collocates the solution at the nodes.

• Thus, the numerical solution is an “exact” solution at the nodes of the corresponding
equivalent differential equation but not of the differential equation!

5.1. Explicit Space Discretizations 316

5.1.7 Multi-Dimensional Discretizations

Similar to multi-dimensional interpolation and integration, multi-dimensional differentiation
is obtained by splitting directions, i.e. differentiating one direction engaging points only in
that direction while fixing the other direction, in a Cartesian fashion. For example, we can
use Taylor expansions again to obtain discrete derivatives in a five-point stencil or “molecule”
(see figure 5.11).

x x

o

i

j

o

Figure 5.11: Sketch of the five point molecule.

At the marked points we obtain:

× (ux)ij =
ui+1,j − ui−1,j

2∆x
− ∆x2

12

(
∂4u

∂x4

)

O (uyy)ij =
ui,j+1 − 2uij + ui,j−1

∆y2
− ∆y2

12

(
∂4u

∂y4

)
.

Similarly, we can obtain the discrete Laplacian

∇2uij = (uxx + uyy)ij =
ui−1,j − 2uij + ui+1,j

∆x2
+
ui,j−1 − 2uij + ui,j+1

∆y2︸ ︷︷ ︸
∇2

++O(∆x2,∆y2)

(5.11)

where we have introduced the Cartesian discrete Laplacian operator∇2
+, and thus in symbolic

form we can write

∇2
+uij =

(
δ2
x

∆x2
+

δ2
y

∆y2

)
uij ,

where δx and δy are the central difference operators defined in section 5.1.2.

In the example below we present a C++ code that implements the Laplacian 5-point
molecule for the interior points. We assume that the boundary values of the differentiation

5.1. Explicit Space Discretizations 317

Software

 Suite
Putting it into Practice

are handled elsewhere in the code. The key thing to notice in this example is how easily the
finite difference formulas translate into C++ code once you have a handle on how arrays
work. In this example, we assume that we have already allocated double arrays for both u
and u xx yy; we merely need to index the arrays properly to obtain the desired result.

void CD_SecondDeriv(int npts, double dx, double dy, double **u,

double **u_xx_yy){

double inv_dx2 = 1.0/(dx*dx);

double inv_dy2 = 1.0/(dy*dy);

for(int i=1;i<npts-1;i++)

for(int j=1;j<npts-1;j++){

u_xx_yy[i][j] = (u[i-1][j]-2.0*u[i][j] +u[i+1][j])*inv_dx2

+ (u[i][j-1]-2.0*u[i][j] +u[i][j+1])*inv_dy2;

}

return;

}

1

1

−41 1

Figure 5.12: Five-point molecule and corresponding weights for a uniform grid.

The above formula can be simplified for equidistant grids in both x- and y-directions,
that is for ∆x = ∆y we obtain the simple molecule of figure 5.12. The numbers at the grid
points are the corresponding weights in the discrete Laplacian, and thus

∇2
+uij =

ui−1,j + ui+1,j − 4uij + ui,j−1 + ui,j+1

∆x2
.

5.1. Explicit Space Discretizations 318

Also, using symbolic notation we can derive the consistent second-order discrete Laplacian
with a variable coefficient:

∇ · (ν∇u)ij =
1

∆x2
δ−x (νi+1/2,jδ

+
x)uij +

1

∆y2
δ−y (νi,j+1/2δ

+
y)uij +O(∆x2,∆y2).

1 1

1 1

−4
1/2 x

Figure 5.13: Weights for the diagonal splitting in a uniform grid.

An alternative approach to the Cartesian direction splitting we followed to derive the
discrete operator ∇2

+ is to use diagonal splitting . In this case we derive the following
discrete Laplacian operator

∇2
xuij =

[
(µyδx)

2

∆x2
+

(µxδy)
2

∆y2

]
uij

=
1

4∆x2
[(Ey + E−1

y + 2)(Ex + E−1
x − 2)]uij

+
1

4∆y2

[
(Ex + E−1

x + 2)(Ey + E−1
y − 2)

]
uij ,

which for ∆x = ∆y has the simpler form

⇒∇2
x =

1

2∆x2
[ExEy + E−1

x E−1
y + E−1

x Ey + ExE
−1
y − 4] .

The corresponding stencil is shown diagrammatically in figure 5.13 with the appropriate
weights.

However, there is a problem with diagonal splitting as it leads to two independent stencils
as shown in figure 5.14, which in turn will produce odd-even oscillations in the odd-numbered
and even-numbered grid points.

To overcome this difficulty we define a new operator that combines both approaches, i.e.,
Cartesian and diagonal splitting, using appropriate weights. To this end, we write

∇2
∗uij = (a∇2

+ + b∇2
x)uij; a + b = 1.

5.1. Explicit Space Discretizations 319

x
on one grid

2
x

2

on independent grid

Figure 5.14: Decoupling of the discrete Laplacian operator induced by diagonal splitting.

If we now substitute for ∇2
+ and ∇2

x and also a = 1 − b, assuming also a uniform grid
(∆x = ∆y), we obtain

∇2
∗ =

1

∆x2
(δ2

x + δ2
y) +

b

∆x2
[(µyδx)

2 + (µxδy)
2 − (δ2

x + δ2
y)]

=
1

∆x2

{
(δ2

x + δ2
y) +

b

2

[
2δ2

x(µ
2
y − 1) + 2δ2

y(µ
2
x − 1)

]}

but

2δ2
x(µ

2
y − 1) = 2(Ex + E−1

x − 2)
[
1

4
(Ey + E−1

y + 2)− 1
]

=
1

2
(Ex + E−1

x − 2)(Ey + E−1
y − 2)

=
1

2
δ2
xδ

2
y.

By symmetry the second term is the same, and therefore we have:

∇2
∗ =

1

∆x2

[
(δ2

x + δ2
y) +

b

2
δ2
xδ

2
y

]
= ∇2

+ +
b

2
δ2
xδ

2
y ·

1

∆x2

(a)

1 −2 1

1

−2

−2

−2j
4

1

Stencil for δ δ
2 2
x y

(b) i

1 1 1

1 −8 1

1 1 1

j

Figure 5.15: (a) Stencil for the product δ2
xδ2

y . (b) Stencil for b = 2/3.

It is clear that we can now construct a family of two-dimensional stencils for the discrete
Laplacian by selecting different values for b ∈ (0, 1). In figure 5.15 we first construct the

5.1. Explicit Space Discretizations 320

weights for the product δ2
xδ

2
y , and subsequently we construct a stencil for b = 2/3. This

stencil is similar to a nine-node quadrilateral finite element [59].

1 4 1

4 −20 4

1 4 1

x 1/6

Figure 5.16: Stencil for the Dahlquist-Bjorck stencil.

Another useful construction is the Dahlquist-Bjorck stencil corresponding to b = 1/3
(see figure 5.16). In this case we get

∇2
∗uij = ∇2uij +

∆x2

12



∂4u

∂x4
+
∂4u

∂y2
+ 6 · 1

3

∂4u

∂x2∂y2︸ ︷︷ ︸
truncation error




From this construction and from the definitions above we can derive

∇2
∗uij = ∇2uij +

∆x2

12
∇4u.

This form suggests that in solving the eigenvalue problem ∇2u = λu the truncation error is
−∆x2

12
(λ2u), and thus by ejecting its opposite on the right-hand-side as follows

∇2
∗uij = (λ+

λ2∆x2

12
)u

we obtain a discretization with a fourth-order truncation error although the discrete oper-
ators were all of the second-order. This is called the method of corrected differences, or the
booster method, and it is used often in scientific computing to enhance the formal accuracy
of the method.

We can proceed similarly to discretize mixed derivatives

∂2u

∂x∂y
.

Using symbolic notations and operators defined previously we obtain

uxy =
1

∆x∆y
µxδx

[
(1− δ2

x

6
) +O(∆x4)

]
µyδy

[(
1− δ2

y

6

)
+O(∆y4)

]
uij.

5.1. Explicit Space Discretizations 321

x

x

x

x

−1 1

j x 1/16

1

i

−1

Figure 5.17: Stencil and corresponding weights for a mixed second derivative.

From this we can construct the second-order accurate stencil

uxy =
1

∆x∆y
µxδxµyδyuij +O(∆x2,∆y2),

which is shown also diagrammatically in figure 5.17. More explicitly

(uxy)ij =
1

4∆x∆y
[ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1] +O(∆x2)

and we see that the (ij) point is not employed, i.e., there is no element on the diagonal
corresponding to uij. This will lead to algebraic systems with loss of diagonal dominance
and thus substantial computational complexity.

Software

 Suite
Putting it into Practice

The C++ function example below is an implementation of the above cross-type molecule.
Note that for writing the function, it is better to expand the symbolic operators first, which
leads to an immediate translation into C++ array-indexing. Once again, the key thing to
notice in this example is how easily the finite difference formulas translate into C++ code
once you have a handle on how arrays work. In this example, we assume that we have already
allocated double arrays for both u and u xy, we merely need to index the arrays properly to
obtain the desired result.

void CrossDerivative(int npts, double dx, double dy, double **u,

double **u_xy){

double inv_dxdy = 1.0/(4.0*dx*dy);

5.1. Explicit Space Discretizations 322

for(int i=1;i<npts-1;i++)

for(int j=1;j<npts-1;j++){

u_xy[i][j] = inv_dxdy*(u[i+1][j+1]-u[i+1][j-1]-

u[i-1][j+1]+u[i-1][j-1]);

}

return;

}

(a)

j

i

−1 1

+1 −1

(b)

j

i

−1 1

−1 −1 2

−1

1

Figure 5.18: Stencils for forward (a) and symmetric (b) differentiation of a mixed derivative.

In order to restore diagonal dominance we proceed as follows. We first observe that in
the above formula for the mixed derivative if we omit the average operator µ we loose an
order of accuracy, i.e.,

(uxy)ij =
1

4∆x∆y
(µxδxδ

+
y)uij +O(∆x2,∆y) .

Therefore, a first-order accurate stencil in both ∆x,∆y is:

(uxy)ij =
1

∆x∆y
δ+
x δ

+
y uij +O(∆x,∆y).

This is a forward differencing for the mixed derivative, see figure 5.18(a). Similarly, we can
construct a backward difference stencil. We can then combine the two stencils to produce a
symmetric stencil, see figure 5.18(b), with a non-zero coefficient in the diagonal. This has
the form

(uxy)ij =
1

2∆x∆y
[δ+

x δ
+
y + δ−x δ

−
y],

and this symmetric stencil is now of second-order on a uniform grid.

5.2. Explicit Time Discretizations 323

5.2 Explicit Time Discretizations

In this section we apply finite difference operations to discretize the time variable in time-
dependent differential equations. To this end, we consider the initial value problem (IVP)

dU

dt
= F(U, t), (5.12)

with prescribed initial conditions U(t = 0) = U0. If F(U) only, that is the right-hand-side
does not depend explicitly on time, then this is an autonomous ordinary differential equation
for which very efficient algorithms can be constructed. In order to analyze the stability of
various discretizations it is convenient to employ the corresponding eigenvalue model problem

dU

dt
= λU, λ ∈ C, Re(λ) < 0, (5.13)

that is λ is a complex number with negative real part.

5.2.1 Multi-Step Schemes

In this discretization there are several time steps involved, and the discrete analog of equation
(5.12) has the general form

Un+1 − Un−k

(k + 1)∆t
= F(t, Un+1, Un, Un−1, . . .) for k ≥ 0, (5.14)

where Un ≡ U(n∆t). An implicit scheme corresponds to right-and-side F that depends on
Un+1, otherwise it is explicit. A multi-step scheme has F depending on several previous
time levels of the solution, i.e. Un, Un−1, Un−2, etc. The simplest member of the class
of discretization derived from equation (5.14) is the Euler-forward, which is one-sided
backward finite difference, i.e.

Un+1 − Un

∆t
= F(t, Un)⇒ Un+1 = Un + ∆tF(t, Un) .

Another example is the leap-frog scheme, which is a two-step explicit scheme. For the
model eigenvalue problem it has the form:

Un+1 − Un−1

2∆t
= λUn.

Clearly, it is of second-order accuracy since the first-derivative is represented by central
differencing.

More generally, multi-step schemes can be either explicit or implicit. The general
formula for a k-step scheme is:

k∑
j=0

ajU
n+1−j = ∆t

k∑
j=0

βjFn+1−j,

5.2. Explicit Time Discretizations 324

where α0 = 1 for normalization, and β0 = 0 corresponds to an explicit scheme. The physical
analog is a “recursive digital filter.”

Example: The Adams Family

The first member of the family is the Euler-forward scheme. The other two (explicit)
members are:

• Second-order Adams-Bashforth: Un+1−Un

∆t
= 3

2
Fn − 1

2
Fn−1.

• Third-order Adams-Bashforth: Un+1−Un

∆t
= 23

12
Fn − 16

12
Fn−1 + 5

12
Fn−2 .

Multi-steps schemes require lower order schemes in the first few steps; this may affect
their accuracy. In the C++ code below we implement first-, second- and third-order Adams-
Bashforth schemes. As mentioned previously, we are confronted with the decision between
optimality and generality. In this case, we choose to be general; that is, we have created a
function which uses a switch statement to interpret which order Adams-Bashforth scheme
the user wants to employ.

One additional thing we would like to point out in this example is the use of the default
within the switch statement. Notice in the example below that the default is Euler-forward,
which is also the case one option. Instead of printing an error and terminating if someone
were to ask for an Adams-Bashforth scheme which were of higher order than three, we
default to first-order. These types of decisions are constantly being made by programmers:
how will the function respond if given unexpected input? In this case, if order is not given
as either one, two or three, then the action is still well defined: the function will “default”
to first-order integration.

5.2. Explicit Time Discretizations 325

Software

 Suite
Putting it into Practice

Below we present a C++ function for accomplishing time integration using the Adams-
Bashforth methods. This function takes as arguments the order, the old value, the time step
and the saved right-hand-sides (stored in an array called RHS).

double AdamsBashforth(int order, double u_old,

double dt, double * RHS){

double answer;

switch(order){

case 1: /* 1st Order Adams-Bashforth -- Euler-forward */

answer = u_old + dt*RHS[0];

break;

case 2: /* 2nd Order Adams-Bashforth */

answer = u_old + dt*(1.5*RHS[0] - 0.5*RHS[1]);

break;

case 3: /* 3rd Order Adams-Bashforth */

answer = u_old + dt*((23./12.)*RHS[0] - (4./3.)*

RHS[1] + (5./12.)*RHS[2]);

break;

default: /* default is Euler-forward */

answer = u_old + dt*RHS[0];

}

return answer;

}

Remark 1: Observe that we use a switch statement to differentiate between the different
cases. We have written the switch statement so that the default case is Euler-forward, which
is first order.

Remark 2: Observe that this function can easily be modified to handle an array of points
to integrate in time (such as would be used for time marching a finite difference scheme).

5.2. Explicit Time Discretizations 326

Key Concept

• As programmers, we are always confronted with the following
balance: Generality versus Optimality.

5.2.2 Convergence: Consistency and Stability

There exists a connection between consistency and convergence for boundary value problems,
as we have briefly discussed in the previous section. This condition, first proposed by Lax, is
necessary but not sufficient for initial value problems, and we need to introduce the concept
of stability, as we will do next. However, we first need to show that the explicit multi-
step schemes are consistent, and to this end we need to consider the equivalent differential
equation for the initial value problem given by equation (5.12). For simplicity, let us consider
the Euler-forward scheme. From Taylor’s expansion we obtain:

(
dUn

dt
− Fn

)
= ∆t

(
−1

2

d2Un

dt2

)

+ ∆t2
(
−1

6

d3Un

dt3

)
+ . . .

Clearly, it satisfies the consistency requirement as the right-hand-side is zero as ∆t → 0,
and thus we recover the original initial value problem. We can also obtain the accuracy of
the method by examining the truncation error, which is the forcing term in the equivalent
differential equation. From the leading error term in the above equation we see that the
Euler-forward scheme is first-order.

Unlike boundary value problems (BVP) for which consistency is sufficient to prove con-
vergence, in initial value problems (IVP) we also need to prove stability. This is explained
graphically in figure 5.19. With time integration there may be an accumulation of error
which will eventually lead to catastrophic instabilities!

Next, we introduce the concept of stability by defining the error as

ε ≡ Un
ex − Un.

We define

• General stability if

|εn| < f(tn),

where tn = n∆t. In other words, errors are bounded at a fixed time by a function that
may depend on time! (tn = fixed, ∆t→ 0, n→∞).

5.2. Explicit Time Discretizations 327

Numerical Solution Exact Solution

BVP

Time

U(t)

Exact Solution

Numerical
 Solution

IVP

Figure 5.19: Comparison of boundary value (BVP) and initial value (IVP) problems.

• Absolute stability if
|εn+1| ≤ |εn|.

Here the equal sign implies weak stability whereas the non-equal sign implies strong
stability. The interpretation here is that for absolute stability all components of error
should be uniformly bounded.

Example: Let us examine the stability of the Euler-forward scheme for the eigenvalue model
problem dU

dt
= λU, λ < 0.

Then, the error satisfies: εn+1 = εn(1 + λ∆t). But

|1 + λ∆t| < |1− λ∆t| < e−λ∆t,

thus
|ε(n+1)| < e−λ∆t|εn| ≤ (e−λ∆t)n|ε0| ⇒ |ε| < e−λ(n∆t)|ε1|.

According to the above definition for general stability, this scheme is then stable! However,
consider the counter example for the IVP:

dU

dt
= −U, U(0) = 1

with Uex = e−t. Then, for ∆t = 3 we obtain Un+1 = −2Un, and we produce the sequence:

(1,−2, 4,−8, 16 . . .)

which obviously does not converge to e−t for t = 12!

General stability is limited in practice, and instead we need to apply the concept of absolute
stability. Proceeding as above we need to bound the error, so we impose

|1 + λ∆t| ≤ 1⇒ ∆t ≤ −2/λ.

5.2. Explicit Time Discretizations 328

Notice that we have violated this condition in our example by taking ∆t = 3.

The key points to remember are:

• General stability is useful for short-time integration only.

• Stability is the property of a difference equation and not of the differential equation.

Lax’s Equivalence Theorem: If a (linear) difference equation is consistent with a differ-
ential equation and stable, its solution will converge as ∆t → 0 to that of the differential
equation.

This condition is sufficient as well as necessary [77]. The equivalence theorem of Lax shows
that in order to analyze an initial value problem, two tasks have to be performed:

(1) Analysis of the consistency condition: This leads to determining the order of accuracy
of the scheme and the corresponding truncation error.

(2) Analysis of the stability condition: This leads to determining the frequency distribution
of the error (e.g., eigenvalue-type analysis).

Remark: A stronger version of this theorem was developed by Dahlquist [20]. It applies
to both linear and nonlinear initial value problems, and it states that a multi-step scheme
is convergent if and only if it is consistent and stable. The Lax equivalence theorem, which
was formulated for partial differential equations, requires linearity.

5.2.3 Stability and Characteristic Polynomials

A very effective method for studying the stability of time discretizations is to examine the
properties of their corresponding characteristic polynomials. To this end, we propose a
construction by associating two polynomials ρ(z) and σ(z) to the k-step scheme

k∑
j=0

αjU
n+1−j = ∆t

k∑
j=0

βjFn+1−j.

For the left-hand-side we have

ρ(z) =
k∑

j=0

αjz
k−j ,

and for the right-hand-side we have

σ(z) =
k∑

j=0

βjz
k−j .

The degree of the polynomial ρ(z) is k, and the degree of the polynomial σ(z) ≤ k, with the
equal sign valid for implicit schemes (see chapter 6). We can normalize the coefficients by
imposing that

k∑
j=0

βj = 1.

5.2. Explicit Time Discretizations 329

Examples:

• The Leap-frog scheme: ρ(z) = z2−1
2

; σ(z) = z, is explicit since σ(z) is a linear
polynomial but ρ(z) is quadratic.

• The Crank-Nicolson scheme, which is an implicit scheme, see section 6.2, has: ρ(z) =
z − 1; σ(z) = 1

2
(z + 1). Both polynomials are linear.

Based on the characteristic polynomials several properties of multi-step schemes can be
deduced, and the interested reader should consult the book by Gear [42].

Rational Approximation Theorem: A multi-step scheme with σ(1) �= 0 has order of
accuracy p if and only if:

As z → 1

ρ(z)

σ(z)
= log z +O((z − 1)p+1)

= [(z − 1)− 1

2
(z − 1)2 +

1

3
(z − 1)3 − . . .]

+ O((z − 1)p+1) .

It is a consistent scheme if and only if{
ρ(1) = 0 (⇒ p ≥ 0)
ρ′(1) = σ(1) (⇒ p ≥ 1).

Example 1: The Crank-Nicolson is a consistent scheme since

σ(1) =
1

2
(z + 1)|z=1 �= 0, ρ(1) = (z − 1) = 0, ρ′(1) = 1 = σ(1).

To examine its accuracy we consider the ratio:

ρ(z)

σ(z)
=

z − 1
1
2
(z + 1)

=
z − 1

1 + 1
2
(z − 1)

= (z − 1)

[
1− z − 1

2
+

(z − 1)2

4
− . . .

]

= (z − 1)− (z − 1)2

2
+

(z − 1)3

4
− . . .

Note that the last term is not equal to (z−1)3

3
(as in the log expansion), and thus it represents

the truncation error. Therefore, we conclude that p = 2 and the Crank-Nicolson scheme is
second-order accurate.

Example 2: Let ρ(z) = z2 − z and k = 2, then

σ(z) =
z2 − z
log z

+O((z − 1))3) =
z(z − 1)

(z − 1)− 1
2
(z − 1)2 + 1

3
(z − 1)3

+O((z − 1)3)

5.2. Explicit Time Discretizations 330

=
z

1− 1
2
(z − 1) + 1

3
(z − 1)2 . . .

+O((z − 1)3)

= z
[
1 +

1

2
(z − 1)− 1

3
(z − 1)2 +

1

4
(z − 1)4)

]
+O(. . .)

=
5

12
z2 +

8

12
z − 1

12
= σ(z) .

Thus, we obtain the third-order (implicit) Adams-Moulton scheme (see also section 6.2).

Example 3: Consider a multi-step formula based purely on extrapolation of previous values,
e.g.,

Un+1 = 2Un − Un−1

for which ρ(z) = (z−1)2 and σ(z) = 0. We have that ρ(1) = 0 and ρ′(1) = σ(1) = 0. Notice
that we need σ(1) �= 0 to satisfy the rational approximation theorem. Obviously, such a
formula cannot converge because we do not use at all any differential equation!

Root Condition for Stability: A multi-step scheme is stable if and only if all the roots of
ρ(z) satisfy |z| ≤ 1, and any root with |z| = 1 is simple.

Proof: The polynomial ρ(z) has a total of k roots for which we can write (if they are
distinct):

Un = zn,

where on the left-hand-side n denotes superscript while on the right-hand-side it denotes an
exponent. For stability we require that the entire sequence

{Un, n = 1, 2, . . . , }
be bounded, and thus |z| ≤ 1. However, for multiple roots, say of multiplicity m, we have
the roots

Un = nzn, n2zn, . . . , nm−1zn.

In this case the requirement for boundness of the sequence Un is |z| < 1.

An alternative proof can be formulated based on matrices as follows:


Un+2−k

Un+3−k

...

Un+1




=




0 1
0 1
. . .

. . .

1
−αk −α2 −α1




︸ ︷︷ ︸
A




Un+1−k

Un+2−k

...

Un




or
Un+1 = AUn.

Notice that the eigenvalues of A are roots of the polynomial ρ(z). Thus, for boundness of
Un+1, we require that the eigenvalues of A be smaller than 1 and those equal to 1 be simple.
A rigorous proof requires to transform A to its Jordan canonical form, e.g. see [42].

5.2. Explicit Time Discretizations 331

Example 1: Let us consider an Adams-Bashforth scheme of k-order:

ρ(z) = zk − zk−1 = zk−1(z − 1)

with roots {1, 0, 0, . . .}. Therefore, this scheme is stable.

Example 2: We can construct the most accurate two-step explicit scheme corresponding to
p = 3 from

Un+1 = −4Un + 5Un−1 + ∆t(4Fn + 2Fn−1).

Therefore, ρ(z) = z2 + 4z − 5 with roots {1,−5}, which according to the root condition
it corresponds to an unstable scheme! Note that this scheme violates the first Dahlquist
Stability Barrier theorem, see section 6.2.1, that states that the order of accuracy p of any
explicit multi-step scheme (k steps) cannot exceed the number of steps, i.e. p ≤ k.

Example 3: Similarly, we can construct a three-step scheme from

(2) Un+1 = −3

2
Un + 3Un−1 − 1

2
Un−2 + 3∆t · fn

with corresponding polynomial

ρ(z) = 2z3 + 3z3 − 6z + 1 = (z − 1)(2z2 + 5z − 1),

which has the roots 1.0, 0.186 and -2.686. Therefore, this scheme is unstable!

Example 4: Based on the root condition, we can also prove that all one-step methods of
the form

Un+1 = Un + ∆tFn

are stable because ρ(z) = z − 1. Therefore, the root is 1 and simple, and thus the root
condition for stability is satisfied.

Remark: We note here that in all the examples above stability was interpreted according to
the general definition. In the following, we introduce the requirements for absolute stability.
According to the Second Dahlquist Stability Barrier theorem, see section 6.2.1, an
explicit multi-step scheme cannot be absolutely stable for arbitrary values of the time step
∆t.

Stability Regions and Absolute Stability

Let us consider the linear ordinary differential equation

dU

dt
= λU + q(t), λ ∈ C, Re(λ) < 0.

The corresponding error, εn, at the time level (n∆t) satisfies the equation

k∑
j=0

(αj −∆tλβj)ε
k−j = 0,

5.2. Explicit Time Discretizations 332

independently of the inhomogeneity q(t).

To compute the solution of the above difference equation, we introduce εn = zn (where n
on the left-hand-side denotes superscript but on the right-hand-side denotes an exponent),
and thus:

k∑
j=0

(αj −∆tλβj)z
k−j = 0.

Therefore, the z are roots of the polynomial

Π(z) ≡ ρ(z)− λ∆t · σ(z) = 0 ,

which we denote as zj .
If all the roots are distinct, then the general solution for the error εn is:

εn =
k∑

j=1

cjz
n
j ,

(assuming k roots). If zj is an m-fold root, then the term

(cj + cj+1n + cj+2n
2 + . . .+ cj+m−1n

m−1)zm
j

is present. Therefore, for any |zj| ≥ 1, disturbances are amplified irrespective of ∆t, and the
corresponding scheme is unstable.

−∆ t* 0 ∆ t*
()

Figure 5.20: Sketch showing the neighborhood around 0.

In general, the roots depend on ∆t, i.e., zj = zj(λ∆t). Therefore, if

|zj(0)| < 1⇒ ∃∆t∗: |zj(λ∆t)| ≤ 1

in the neighborhood around 0 with radius ∆t∗ (see sketch in figure 5.20). Expanding zj(λ∆t)
in a Taylor series around 0 we obtain:

zj(λ∆t) = zj(0) +O(∆tλ).

Thus,
|zn

j (λ∆t)| ≤ |zj(0) + C∆t|n ≤ |1 + C∆t|n ≤ eCn∆t ≤ eCt

i.e., if |zj(0)| ≤ 1 then the roots of Π(z) are less than 1, which implies stability. This explains
also how the roots of ρ(z) = Π(0) are related to stability of the scheme (see previous theorem
on root condition). For strong stability we require that the roots of Π(z) are ≤ 1 in absolute
value, i.e., we have to find:

λ∆t : |zj(λ∆t)| ≤ 1,

5.2. Explicit Time Discretizations 333

Figure 5.21: Stability diagrams for the first three members of the (explicit) Adams-Bashforth
family.

and this constraint determines the regions of absolute stability of a time discretization scheme.
We illustrate this in the following examples.

Example 1 - Euler-forward: We first construct the polynomial

ΠEF = (z − 1)− λ∆t · 1 = z − (1 + λ∆t),

and obtain the roots : z = 1 + λ∆t. We now require that

−1 ≤ 1 + λt ≤ 1⇒ |λ∆t− (−1)| ≤ 1⇒

∆t ≤ −2/λ , λ ∈ C, Re(λ) < 0.

Note that for physical stability, we have also considered that λ∆t ≤ 0 for the exact modes to
decay. The region of stability in the complex plane is shown in figure 5.21 for J = 1. Note
that it touches the imaginary axis (which represents advection) only at one point, and thus
this scheme is only marginally stable for advection problems.

Example 2 - Leap-frog: We construct the polynomial

ΠLF = z2 − 2λ∆tz − 1,

and obtain the two roots whose product is z1 · z2 = 1. Therefore, we have that

|z1| ≤ 1, |z2| ≥ 1.

For stability the only possibility is |z1| = |z2| = 1, and thus the region of stability is the region
on the imaginary axis between (−i, i). Therefore, the leap-frog scheme is a good candidate for

5.2. Explicit Time Discretizations 334

problems with purely imaginary eigenvalues, e.g., advection in a periodic domain, discretized
by a non-dissipative scheme. Even slight dissipation, however, will introduce real eigenvalues
which will lead to instabilities.

In general, to obtain the stability regions of multi-step schemes we construct the curve

λ∆t =
ρ(z)

σ(z)
,

with z = eiθ, θ ∈ [0, 2π] in the complex λ∆t plane. Using this approach we have obtained the
stability regions for the (explicit) Adams family and the results ares shown in figure 5.21.
Note that the third-order scheme has stability region with a substantial intersection with
the imaginary (advection) axis.

5.2.4 Runge-Kutta Methods

Unlike the Adams family, Runge-Kutta methods, developed by Runge (1895), Heun (1900)
and Kutta (1901), are a single-step methods, and in particular they are multi-stage methods.
The basic idea is to create a weighted sum of corrections ∆Uk to the solution at several
stages within the same time step, i.e.,

Un+1 = Un + C1∆U
1 + C2∆U

2 + C3∆U
3 + . . .

The coefficients Ck are determined by matching the above expansion with the corresponding
expansion by Taylor series. Other parameters are also introduced to accommodate different
stages, e.g.,

∆U1 = ∆tFn(tn, Un) (Euler-forward)

∆U2 = ∆tF(tn + α∆t, Un + β∆U1)
...

Runge-Kutta methods tend to be non-unique due to the large number of parameters
introduced. In modern versions the objective has been to minimize storage levels as shown
in the following examples. For hyperbolic systems it is important to produce Runge-Kutta
schemes which are total variation diminishing (TVD) or total variation bounded (TVB) –
see for example [50]. TVD and TVB schemes do not allow any spurious oscillation to appear
in the numerical solution, and this is a highly desirable property. In the following, we present
representative algorithms of some of the most popular versions.

(1) Second-Order (RK2) with Two Levels of Storage

Set:

X = Un

Y = F(U, tn)

5.2. Explicit Time Discretizations 335

Compute:

X = X + α ·∆tY
Y = aY + F(X, tn + α∆t)

Update: Un+1 = X + ∆t
2α
Y

where a = −1 + 2α− α2

Note that for α = 1/2 we obtain the modified Euler method and for α = 1 we obtain
the classical Heun method.

(2) Classical Fourth-Order (RK4)

Compute:

X1 = F(Un, tn)

X2 = F(Un +
1

2
X1∆t, t

n +
1

2
∆t)

X3 = F(Un +
1

2
X2∆t, t

n +
1

2
∆t)

X4 = F(Un +X3∆t, t
n + ∆t)

Update:

Un+1 = Un +
1

6
∆t[X1 + 2X2 + 2X3 +X4]

An alternative implementation requires only three levels of storage, as follows (due to

Blum [9]) .

Stage I: X = Un;Y = X;Z = F(X, tn)

Stage II: X = X + 1
2
∆tZ;Y = Z;Z = F(X, tn + 1

2
∆t)

Stage III: X = X + 1
2
∆t(Z − Y);Y = 1

6
Y ;Z = F(X, tn + 1

2
∆t)

−1
2
Z

Stage IV: X = X + ∆tZ;Y = Y − Z;Z = F(X, tn + ∆t) + 2Z

Update:

Un+1 = X + ∆t
(
Y +

1

6
Z
)

We provide below a C++ implementation of these algorithms. Notice that we are re-
using two previously discussed concepts: that of passing a function to a function, and

5.2. Explicit Time Discretizations 336

Software

 Suite
Putting it into Practice

that of using static declaration of an array. In this function, we pass the rkfunc function
(which is the right-hand-side of our ODE) into the Runge-Kutta function so that it
can be evaluated (in this case, being evaluated four times). We store the intermediate
stages within the statically allocated array hold, which we explicitly declare to contain
four values since there are four stages to this method.

One key issue to point out is that it would be perfectly legitimate for us to dynamically
allocate the space for the array hold. However, in this case, it is more efficient to allocate
the space for hold statically at the beginning of the function. A convenience of static
allocation in this case is that deallocation is handled automatically! Recall that there
is no need to explicitly deallocate the static declaration. All of this is possible because
we know ahead of time the number of items that hold will need to contain (in this
case, four items), and hence we can explicitly declare how much memory we will need
to properly implement this function.

double RungeKutta4(double uold, double time, double dt,

double (*rkfunc)(double,double)){

int i;

double unew, hold[4];

hold[0] = rkfunc(uold,time);

hold[1] = rkfunc(uold+0.5*hold[0],time+0.5*dt);

hold[2] = rkfunc(uold+0.5*hold[1],time+0.5*dt);

hold[3] = rkfunc(uold+hold[2],time+dt);

unew = uold + (1.0/6.0)*(hold[0]+2.0*(hold[1]+

hold[2])*hold[3]);

return unew;

}

(3) Autonomous ODE

It is defined by the right-hand-side being

F = F(U)

only.

The following version is due to Jameson et al. [60], and it produces a Runge-Kutta
method of order p with only 3 levels of storage.

5.2. Explicit Time Discretizations 337

Set: X = Un

For k = p, 1,−1

X = Un +
1

k
∆tF(X)

End For

Update: Un+1 = X

Software

 Suite
Putting it into Practice

The algorithm presented above is implemented in the example code below. Here we
show how this method easily translates into a C++ function. We want to draw your
attention to one particular item within this function: notice the looping index. In
previous examples, we have started at a value for the incrementor, and have consistently
added to that value. In this example, we decrement! Careful attention should be placed
on the stopping condition. Notice that we want the value of k to start at order and to
decrement to k = 1 inclusive.

double RungeKutta(int order, double dt, double uold,

double (*rkfunc)(double)){

double unew = uold;

for(int k=order;k>=1;k--)

unew = uold + (dt/k)*rkfunc(unew);

return unew;

}

WARNING Programmer Beware!
• Think carefully about
your loop ending condition!

5.2. Explicit Time Discretizations 338

−3 −2 −1 0 1
−3

−2

−1

0

1

2

3

λ
r
 ∆ t

λ i ∆
 t

J=4

J=3

J=2

J=1

Stable

Figure 5.22: Stability diagrams for the Runge-Kutta methods of order one to four.

5.2.5 Stability of Runge-Kutta Methods

As an example let us consider the equation

dU

dt
= λU

and examine the stability of RK4. We compute:

X1 = λUn

X2 = λ(Un +
1

2
λUn∆t)

...

and therefore

Un+1 = Un +
1

6
∆t[X1 +X2 + 2X3 +X4]

or

Un+1 = Un

[
1 + λ∆t+

λ2∆t2

2
+
λ3∆t3

6
+
λ4∆t4

24

]

5.2. Explicit Time Discretizations 339

The growth factor is then

G =

[
1 + . . .+

λ4∆t4

24

]

and we require
|G| ≤ 1.

By setting µ ≡ λ∆t, we solve:

1 + µ+
µ2

2
+
µ3

6
+
µ4

24
= eiθ, θ ∈ [0, 2π]

and determine (numerically) µ(θ). In figure 5.22 we plot the stability regions of the Runge-
Kutta methods. We notice that unlike the multi-step methods, in Runge-Kutta methods the
stability regions increase with order!

5.3. Homework Problems 340

5.3 Homework Problems

1. Use the method of undetermined coefficients to obtain a third-order finite difference ap-
proximation for an one-sided (upwind-type) first and second (one-dimensional) deriva-
tives.

2. Use the half-central and the central difference operators to derive approximations of
second- and fourth-order of accuracy approximations for the fourth (one-dimensional)
derivative.

3. Finite differencing as we have presented it can be formulated as a matrix multiplication
operation. Each explicit finite difference operator yields a differentiation matrix which
can be formed during a pre-processing stage before computations are accomplished.
Each time differentiation is needed, pre-multiplication by the differentiation matrix
yields an approximation of the derivative.

(a) Formulate an one-dimensional second-order first derivative differentiation matrix
and an one-dimensional second-order second derivative differentiation matrix as-
suming a periodic domain.

(b) What is the bandwidth of the matrix?

(c) Write C++ functions which generate these matrices (individual functions per
matrix).

(d) Write a C++ function which implements differentiation by matrix multiplication.
The function should take as input the size of the differentiation matrix, the differ-
entiation matrix (as a double ** array), an array containing the values on which
to operate and an array for storing the result.

(e) Verify your routines by comparing results with the functions
SO FirstDeriv 1Dper and SO SecondDeriv 1Dper.
Demonstrate second-order convergence as shown in the text.

4. Write a C++ function to implement a five-point stencil for explicit discretization of
the first derivative. Assume that the domain is periodic. Verify that you obtain fourth-
order convergence.

5. Write an MPI program using MPI Sendrecv which implements a parallel version of
the previous function just described. For number of processors P = 2, 4, and 6, verify
that you obtain the same convergence rate as the previous function.

6. Write an MPI program using MPI Sendrecv replace which implements a parallel
version of the previous function just described. Compared with the previous program,
how many MPI function calls are necessary? For number of processors P = 2, 4, and
6, verify that you obtain the same convergence rate as the previous program.

7. Obtain numerical solutions to the the ordinary differential equation

dy

dt
= 2
√
y

5.3. Homework Problems 341

in the interval [0, 1], with initial conditions:

y = 0.1; y = 0.01; y = 0.001; y = 0.0001; y = 0.

Compare the Runge-Kutta scheme of second-order to the Adams-Bashforth scheme of
second-order. What do you observe?

8. (Period doubling and chaos)

Sometimes numerical instabilities appear as numerical chaos, similar to the physical
response that we encounter in dynamical systems. This is demonstrated here with the
ordinary differential equation

dy

dt
= 10y(1− y), y(0) = 0.1.

(a) Solve analytically the above problem and show that y(t)→ 1 as t→∞.

(b) Show that using the Euler-forward method with step side h = ∆t we obtain

yn+1 = (1 + 10h)yn − 10h(yn)2, y0 = 0.1.

(c) For h = 0.18, 0.23, 0.25 and 0.3 show that the first 40 iterations of the Euler-
forward scheme appear to: converge to 1; jump between 1.18 and 0.69; jump
between 1.23, 0.54, 1.16 and 0.70; and display no discernible pattern, respectively
for all cases. Produce a plot yn versus h for n = 1001 to 2000 and h = 0.1 to 1.

(d) Approximate now the solution with the fourth-order Runge-Kutta scheme and
compute the first 60 iterations using h = 0.3. Repeat with h = 0.325 and h = 0.35.
Which values of h, if any, give the correct approximation to the solution and why?

Note: The transitions from convergence to jumping between two numbers, to four
numbers, and so on, are called period doubling while the phenomenon exhibited when
h = 0.3 is chaos!

9. Obtain the stability curves of figures 5.21 and 5.22 for the Adams-Bashforth and the
Runge-Kutta methods, respectively.

10. (Evolution of an ecosystem)

In this problem we model and solve competition between different species in an attempt
to quantify Darwin’s thoughts! Vito Volterra, an Italian mathematician, was the first
to do this in the 1920s.

Consider an ecological system that contains a predator and a prey species. Prey,
whose concentration is denoted by x, multiplies autonomously but is consumed by the
predator whose concentration is denoted by y. The evolution of the population of the
prey follows the ODE

dx

dt
= ax−Axy, (5.15)

5.3. Homework Problems 342

where a is positive birth rate constant (determined by the societal norms), and A
is another positive constant that expresses how often predator catches prey. The
evolution of the predator, on the other hand, follows the differential equation.

dy

dt
= −by + Aεxy, (5.16)

where b is a death constant due to starvation, and ε is a share constant that indicates
how many individual predators are necessary to eat up one individual prey.

The two equations above comprise the Lotka-Volterra system. There are two obvious
steady state solutions (fixed points), denoted by (x∗, y∗). The trivial one (x∗, y∗) =
(0, 0), and a nontrivial one, which is found by setting the right-hand-side of the above
equations equal to zero and solving the resulting system of nonlinear algebraic equations
for x and y.

Consider a system with ε = 1, a = 0.400, b = 0.450, A = 0.50. Calculate the
nontrivial steady concentrations (x∗, y∗), and then integrate the Lotka-Volterra system
using the explicit third-order Adams-Bashforth method subject to the initial conditions
x(t = 0) = 0.10; y(t = 0) = 0.20. Carry the integration for a long enough time so that
you can assess the asymptotic behavior of the system at very long times. Plot x(t)
versus y(t) and discuss the trajectories of this solution as t→∞.

11. (Stochastic ODE)

Consider the first-order linear ODE:

dy

dt
= −ky with y (t = 0) = y0 and t ∈ [0, T] , (5.17)

where k is a stochastic process of second order such that:

k = k + ν (t, ω) . (5.18)

Here k is the mean value of k and ν (t, ω) represents a random variable depending on
time and random space. We assume that the probability distribution function (PDF)
remains the same for all k′s and takes the form of a Gaussian distribution with constant
variance. The PDF of k at time t is:

f (k (t)) =
1

σ
√

2π
e−

1
2

(k(t)−k)
2

σ2 , (5.19)

where k is the mean value of k and σ2 is the variance of k.

Random values of k, generated in time every ∆ts, can be mutually independent, par-
tially correlated or fully correlated. To this end, we consider the following cases:

Case 1: The PDF of the solution for the mutually independent case takes the form:

f (y (t)) =
1

σy
√

2πt∆ts
e
− 1

2

(ln
y
y0

−kt)
2

σ2t∆ts (5.20)

5.3. Homework Problems 343

Case 2: The PDF of the solution for the partially correlated case takes the form:

f (y (t)) =
1

σ∆tsSy
√

2π
e
− 1

2

(ln
y

y0
−kt)

2

(σ∆tsS)2 , ∆ts � T (5.21)

and

S =

(
N

(1 + C)

(1− C)
− 2C

(1− CN)

(1− C)2

) 1
2

(5.22)

where C = e−
∆ts
A , N = T

∆ts
and A is the correlation length of the random process.

Case 3: In the fully correlated case, the random process k becomes a random variable
and the PDF of the solution takes the form:

f (y (t)) =
1

σty
√

2π
e
− 1

2

(ln
y

y0
−kt)

2

(σt)2 (5.23)

An easy way to write the first moment (i.e., mean) in a general form for all cases is to
express it in a logarithmic form:

ln

(
E (y)

y0

)
= −kt+

1

2
σ2Γ (5.24)

where Γ = t∆ts for Case 1, Γ = t2 for Case 3 and Γ = ∆ts
(
t (1+C)
(1−C)

−2C∆ts
(1−CN)
(1−C)2

)
for

Case 2.

Second moment (i.e., variance) for all cases can be obtained from the expressions of
the mean.

E
(
y2
)

=
(
eσ2Γ − 1

)
E2 (y) (5.25)

where Γ = t∆ts for Case 1, Γ = t2 for Case 3 and Γ = t∆ts
(
t (1+C)
(1−C)

−2C∆ts
(1−CN)
(1−C)2

)
for Case 2.

(a) Use a multi-step or a multi-stage ODE solver of various orders to obtain solutions
and corresponding errors for the mean and variance response corresponding to
k̄ = 0; σ = 1, and final time of integration T = 1. To do this you need to
follow a Monte Carlo approach where ν(t, ω) is obtained from a Gaussian PDF
corresponding to σ = 1. The correlation length for Case 2 is assumed to be
A = 0.1.

(b) Does the accuracy of the numerical solutions you obtained increases with the
formal solver of the time-stepping scheme you used as expected? Explain.

12. We presented in the text a function for time marching using Adams-Bashforth one
single ODE. Modify the function to handle a system of ODEs.

5.3. Homework Problems 344

(a) What changes to the arguments must occur?

(b) Which is more efficient, looping over the switch or placing loops within the switch
statement? Verify your answer with an example and corresponding with timings.

Chapter 6

Implicit Discretizations

In this chapter we consider implicit discretizations of space- and time-derivatives. Unlike
the explicit discretizations presented in the previous chapter, here we express a derivative
at one grid point in terms of function values as well as derivative values at adjacent grid
points (spatial discretization) or in terms of previous and current time levels (temporal dis-
cretization). This, in turn, implies that there is implicit coupling, and thus matrix inversion
is required to obtain the solution.

The material of this chapter serves to introduce solutions of tridiagonal systems and
correspondingly parallel computing of sparse linear systems using MPI. We also introduce
two new MPI functions: MPI Barrier, used for synchronizing processes, and MPI Wtime,
used for obtaining the wallclock timing information.

345

6.1. Implicit Space Discretizations 346

6.1 Implicit Space Discretizations

The discretizations we present here are appropriate for any order spatial derivative involved in
a partial differential equation, but they are particularly useful when high-order accuracy and
locality of data is sought. The explicit finite differences could also lead to high accuracy but
at the expense of long stencils, and this, in turn, implies coupling involving many grid points
and consequently a substantial communications overhead. On the contrary, the implicit finite
differences employ very compact stencils and guarantee locality, which is the key to success of
any parallel implementation. We only consider discretizations on uniform (i.e., equidistant)
grids, as we assume that a mapping of the form presented in the previous chapter is always
available to transform a non-uniform grid to a uniform one. We also present discretizations
only for one-dimensional grids since multi-dimensional discretizations are accomplished using
directional splitting, as before.

6.1.1 Difference Operators

We can employ the same difference operators defined in the previous chapter to obtain
compact formulas for first- and higher order derivatives.

First Derivative

We begin with the expansion

∆xD = µ(δ − δ3

3!
+

1222

5!
δ5 − . . .),

and for fourth-order accuracy we truncate as follows

∆xD = µδ(1− δ2

6
) +O(∆x5).

What makes the implicit approach different than the explicit one is the treatment of the
operator in parentheses for the first term on the right-hand-side. To this end, we approximate
it as a geometric series expansion employing the so-called Padé approximation to obtain

∆xD ≈ µδ

1 + δ2

6

+O(∆x5),

which we re-write as

(1 + δ2/6)D =
µδ

∆x
+O(∆x4). (6.1)

We can further simplify the term on the right-hand-side

µδui = µ[ui+1/2 − ui−1/2] =
1

2
[ui+1 + ui − ui − ui−1] ,

and therefore the right-hand-side of equation (6.1) is equal to

RHS =
1

2

ui+1 − ui−1

∆x
+O(∆x4).

6.1. Implicit Space Discretizations 347

Similarly, we can work on the left-hand-side of equation (6.1):

(
1 +

δ2

6

)
Dui =

[
(ux)i +

1

6
(E + E−1 − 2)(ux)i

]

= (ux)i +
1

6
[(ux)i+1 + (ux)i−1 − 2(ux)i]

=
1

6
[(ux)i+1 + 4(ux)i + (ux)i−1] .

Upon substitution in equation (6.1), we obtain

1

6
[(ux)i+1 + 4(ux)i + (ux)i−1] =

ui+1 − ui−1

2∆x︸ ︷︷ ︸
2nd−order

+O(∆x4). (6.2)

(a) i−1 i i+1

(b) i−1 i i+1 i+2i−2

Figure 6.1: (a) Three-point stencil for implicit discretization of the first derivative with fourth-
order accuracy. (b) Corresponding five-point stencil for explicit discretization.

Equation (6.2) indicates that we need to employ a three-point stencil (figure 6.1(a)) to
discretize the first derivative with fourth-order accuracy. In contrast to obtain fourth-order
accuracy with explicit discretization we need to employ a five-point stencil as follows (see
figure 6.1(b))

(ux)i =
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
+

∆x4

30

∂5u

∂x5
.

The graphical comparison of figure 6.1 of the two stencils involved in the implicit and explicit
discretization indicates the locality of the computations in implicit approaches.

This derivation of the first derivative on a three-point stencil can be represented by the
general scheme

β(ux)i−1 + α(ux)i + β(ux)i+1 =
ui+1 − ui−1

2∆x
+O(∆xp)

and can be extended to a longer stencil to match any order (p). In other words, on the left-
hand-side we have a linear symmetric coupling of the derivative approximated at the points of
the grid and on the right-hand-side we have a lower order (here second-order) approximation.
In the next section we will discuss methods for computing the weights (coefficients α, β and
γ) more systematically. Notice that equation (6.2) is implicit and requires the solution of a
tridiagonal linear system.

6.1. Implicit Space Discretizations 348

One of the useful properties of implicit discretizations as we have discussed above is its
compactness. This is demonstrated clearly with the two-point stencil for discretizing the
first derivative. We begin again with

∆xD = lnE = ln(1 + δ+)

or

∆xD = δ+ − δ+2

2
+
δ+3

3
− δ+4

4︸ ︷︷ ︸
O(∆x3)

+ . . .

= δ+

(
1− δ+

2

)
+O(∆x3)

= δ+ 1

1 + δ+

2

+O(∆x3),

where in the last equation we employ the geometric series approximation. We then proceed
as follows (

1 +
δ+

2

)
D =

δ+

∆x
+O(∆x2),

or

{(ux)i +
1

2
[(ux)i+1 − (ux)i]} =

ui+1 − ui

∆x
+O(∆x2),

which leads to a second-order formula for the first derivative, i.e.,

1

2
[(ux)i+1 + (ux)i] =

ui+1 − ui

∆x
+O(∆x2). (6.3)

This formula is also implicit but one-sided, and it involves the solution of a linear bidiagonal
system.

Second Derivative

The method to compute second or higher order derivatives is similar as above. The starting
point here is to employ the appropriate expansion given by the expansion of Dnui, see
equations (5.2,5.4,5.5), and subsequently to use Padé approximation in the truncation of
the series. For example, we can apply this approach to obtain a fourth-order accuracy
approximation for the second derivative using central differencing, as follows

(uxx)i =
1

∆x2

[
δ2 − δ4

12
+
δ6

90
− δ8

560
+ . . .

]
ui

=
δ2

∆x2

[
1− δ2

12

]
ui +O(∆x4)

=
1

∆x2

δ2ui

1 + δ2/12
+O(∆x4).

6.1. Implicit Space Discretizations 349

From this we obtain (
1 +

δ2

12

)
(uxx)i =

1

∆x2
δ2ui +O(∆x4),

which leads to the formula

1

12
[(uxx)i+1 + 10(uxx)i + (uxx)i−1] =

1

∆x2
[ui+1 − 2ui + ui−1] +O(∆x4). (6.4)

We thus obtained fourth-order accuracy on the three-point stencil unlike the explicit dis-
cretization which leads to second-order accuracy on the same stencil. The price to pay here
is that we need to obtain the derivative values at the grid points by solving the tridiagonal
system

1

12




. . .
. . . O

1 10 1

O . . .
. . .


 [(uxx)i]

with a known right-hand-side given by the function values at the grid points.

6.1.2 Method of Undetermined Coefficients

We now present a more general approach to constructing compact implicit finite difference
schemes on uniform grids for first-, second-, third-, and fourth-order derivatives. It is based
on the method of undetermined coefficients that we first encountered in the previous chapter,
see section 5.1. However, unlike the explicit constructions, in the implicit approach we employ
two different grids. Here, we follow the derivations of Lele [68].

First Derivative

i i+2i−2

i−1 i i+1 i+2i−2 i+3i−3

5/7 Stencil:

LHS

RHS

i−1 i+1

c cb ba a

β βα α

Figure 6.2: Two grids employed for the implicit discretization of the first derivative.

We consider two grids and appropriate corresponding stencils for the discretization ex-
pressed by the following equation

β(ux)i−2 + α(ux)i−1 + (ux)i + α(ux)i+1 + β(ux)i+2

= c
ui+3 − ui−3

6∆x
+ b

ui+2 − ui−2

4∆x
+ a

ui+1 − ui−1

2∆x
.

6.1. Implicit Space Discretizations 350

The key idea here is to approximate the left-hand-side of this equation on the grid and
corresponding five-point stencil shown in figure 6.2 (upper) and the right-hand-side on the
seven-point stencil of figure 6.2 (lower). In particular, on the former we assign derivative
values at the grid points whereas on the latter we form explicit central differences on sub-
stencils formed by the entire stencil. These explicit differences are of lower order (here
second-order) accuracy.

The unknowns on the above equation are the weight coefficients on both sides, i.e., a
total of five unknowns

{α, β, c, b, a}.
Note that if β = 0 then the computational complexity of obtaining the derivative values
at the grid points is equivalent to solving a tridiagonal system, whereas if β �= 0 then we
have to solve a pentadiagonal system. Therefore, β defines the implicit stencil related to
the right-hand-side. Similarly, the extent of the right-hand-side stencil is dictated by the
coefficients a, b and c, and this selection is important for parallel computations as it dictates
locality of data.

The method to obtain these unknown coefficients is similar to the one presented in the
previous chapter, and it based on matching the Taylor expansions for (ux)i±1, ui±1, etc.
The difference, however, is that now we need to expand both the function as well as the
first derivative around the central point (i). The first unmatched coefficient will give the
truncation error.

Based on this matching we obtain the following constraints:

a+ b+ c = 1 + 2α + 2β, O(∆x2)

a+ 22b+ 32c = 2
3!

2!
(α+ 22β), O(∆x4)

a+ 24b+ 34c = 2
5!

4!
(α+ 24β), O(∆x6)

a+ 26b+ 36c = 2
7!

6!
(α+ 26β), O(∆x8)

...

We first consider Tri-Diagonal Schemes corresponding to (β = 0) and requiring (5N)
operations, where N is the number of the grid points in the grid. In such triagonal schemes
we can have either 3/5 stencils or 3/7 stencils corresponding to c = 0 and c �= 0, respectively.
Here the first number (3) refers to the bandwidth of the stencil of the first grid, and the
second number (5 or 7) to the bandwidth of the stencil of the second grid.

In the 3/5 stencil, see figure 6.3, we employ only two equations, and thus the truncation
error is O(∆x4). We also have that

c = 0⇒ a =
2

3
(α + 2), b =

1

3
(4α− 1).

6.1. Implicit Space Discretizations 351

i−1 i i+1

i−1 i i+1 i+2i−2

3/5 Stencil:

LHS

RHS

Figure 6.3: The 3/5 dual stencil for discretizing the first derivative.

Specifically, the truncation error is

T
′
3/5 =

4

5!
(3α− 1)∆x4

(
∂5u

∂x5

)
i

,

which is a function of the free parameter α that can be chosen arbitrarily.

Therefore, we can construct an α-family of schemes, with some typical members of the
α-family corresponding to:

• α = 1/4⇒ b = 0, and therefore this is a 3/3 stencil, the most compact scheme of the
family. It is often called the Padé scheme, and it is of O(∆x4) accuracy although it
uses an identical three-point stencil as its explicit counterpart of order O(∆x2).

• α = 1/3. This choice leads to cancellation of the leading term in the truncation error,
and thus it produces an O(∆x6) scheme.

• α→ 0. Here we recover the explicit central difference of O(∆x2).

To construct a 3/7 stencil we employ three constraints and obtain schemes of (at least)
sixth-order accuracy. The corresponding stencils are shown in figure 6.4.

i−1 i i+1

i−1 i i+1 i+2i−2 i+3i−3

3/7 Stencil:

LHS

RHS

Figure 6.4: The 3/7 dual stencil for discretizing the first derivative.

The corresponding coefficients are obtained from

a =
1

6
(α + 9); b =

1

15
(32α− 9); c =

−3α + 1

10
,

so again we have an α-family of schemes. We can obtain eighth-order accuracy, i.e., O(∆x8),
by setting α = 3/8 which zeroes out the leading term in the truncation error. This scheme
provides the highest order of the α-family.

Next, we consider Penta-Diagonal Schemes corresponding to (β �= 0) and requiring
(11N) operations, where N is the total number of grid points. This reflects the computational
complexity of inverting a penta-diagonal matrix using Gaussian elimination, see section 9.1.

6.1. Implicit Space Discretizations 352

A 5/5 stencil, see figure 6.5, can be obtained by setting c = 0 with corresponding sixth-
order accuracy. All coefficients are then defined in terms of α as follows:

a =
2

9
(8− 3α); β =

−1 + 3α

12
; b =

−17 + 57α

18
,

and the corresponding truncation error is

T
′
5/5 =

4

7!
(9α− 4)∆x6

(
∂7u

∂x7

)
.

5/5 Stencil:
i−1 i i+1 i+2i−2

i−1 i i+1 i+2i−2

i−1 i i+1 i+2i−2

i−1 i i+1 i+2i−2 i+3i−3

5/7 Stencil:

Figure 6.5: Stencils for penta-diagonal schemes in approximating the first derivative.

Similarly, on a 5/7 stencil, see figure 6.5, where c �= 0, we can obtain eighth-order accuracy
from the set of coefficients

a =
12− 7α

6
; b =

568α− 183

150
; β =

−3 + 8α

20
; c =

9α− 4

50
.

We can even obtain tenth-order accuracy for the proper choice of α:

T
′
5/7 =

144

9!
(2α− 1)∆x8∂

9u

∂x9
,

if we set α = 1/2. This is the highest possible order of accuracy in this family.

We note that in contrast the corresponding explicit difference scheme would require an
eleven-point stencil!

Second Derivative

Here we employ a general dual symmetric stencil of the 5/7 type as shown in figure 6.6.

6.1. Implicit Space Discretizations 353

i i+2i−2

i−1 i i+1 i+2i−2 i+3i−3

5/7 Stencil:

LHS

RHS

i−1 i+1

Figure 6.6: A 5/7 dual stencil for implicit discretization of the second derivative.

The general form of the discretization is

β(uxx)i−2 + α(uxx)i−1 + (uxx)i + α(uxx)i+1 + β(uxx)i+2

= a
ui+1 − 2ui + ui−1

∆x2
+ b

ui+2 − 2ui + ui−2

4∆x2
+ c

ui+3 − 2ui + ui−3

9∆x2
.

We use Taylor expansions for the terms on both sides, and upon substitution in the above

equation we obtain the constraints:

a + b+ c = 1 + 2α + 2β, O(∆x2)

a+ 22b+ 32c =
4!

2!
(α + 22β), O(∆x4)

a+ 24b+ 34c =
6!

4!
(α + 24β), O(∆x6)

a+ 26b+ 36c =
8!

6!
(α + 26β), O(∆x8)

a+ 28b+ 38c =
10!

8!
(α + 28β), O(∆x10)

...

or in general form, for truncation error up to (∆xp):

a+ 2p−2b+ 3p−2c =
p!

(p− 2)!
(α+ 2p−2β), p = 4, 6, . . .

As before, we can now construct either a 3/5 and a 5/7 stencil, the former corresponding to
one-parameter family of schemes while the latter to a two-parameter family.

For the 3/5 stencil we have that c = β = 0 and for fourth-order accuracy we employ the
first two constraints to obtain

a =
4

3
(1− α); b =

1

3
(−1 + 10α),

with the truncation error

T
′′
3/5 = − 4

6!
(11α− 2)∆x4∂

6u

∂x6
.

We thus have an α-family of schemes with typical members:

• α = 1/10; this leads to b = 0 which corresponds to the classical 3/3 Padé scheme.

6.1. Implicit Space Discretizations 354

• α = 2/11; this leads to truncation error of order O(∆x6).

• α→ 0, this recovers the explicit central difference scheme.

The longer 5/7 stencil leads to a two-parameter family for schemes of sixth-order accuracy
O(∆x6), with free parameters α and β. Specifically, the truncation error has the form

T
′′
5/7 = − 8

8!
(9− 38α+ 214β)∆x6∂

8u

∂x8
,

and the coefficients of the right-hand-side are

a =
6− 9α− 12β

4
; b =

−3 + 24α− 6β

5
; c =

2− 11α+ 124β

20
.

If we require accuracy O(∆x8), then we will employ four constraints while the unknowns
are five, and thus a one-parameter family of schemes is obtained, the α-family. The corre-
sponding coefficients are:

β =
38α− 9

214
; a =

696− 1191α

428
; b =

2454α− 294

530
,

with truncation error

T
′′
5/7 =

899α− 334

2696400
∆x8∂

10u

∂x10
.

Therefore, we can obtain very high-order accuracy, i.e., O(∆x10), for α = 334/899!

Third Derivative

i−1 i i+1

i−1 i i+1 i+2i−2 i+3i−3

3/7 Stencil:

LHS

RHS

Figure 6.7: A 3/7 stencil for implicit discretization of the third derivative.

In order to approximate the third derivative with fourth-order accuracy on a 3/7 stencil,
see figure 6.7, we need second-order approximations at both the integer and half grid points.
On the integer grid points we have

(uxxx)i =
1

2∆x3
(ui+2 − 2ui+1 + 2ui−1 − ui−2)− 1

4
∆x2(u(iv)),

while on the half grid points we have

(uxxx)i =
1

∆x3
(ui+3/2 − 3ui+1/2 + 3ui−1/2 − ui−3/2)− ∆x2

8
(u(v)).

6.1. Implicit Space Discretizations 355

We then employ the equation

α(uxxx)i−1 + (uxxx)i + α(uxxx)i+1 = b
ui+3 − 3ui+1 + 3ui−1 − ui−3

8∆x3

+a
ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3

to obtain the coefficients

a = 2; b = 2α− 1,

with truncation error

T
′′′
3/7 =

42

7!
(16α− 7)∆x4∂

7u

∂x7
.

We can now deduce some special members of this α-family:

• For α = 1/2, we obtain b = 0, which shows that the 3/5 is the most compact O(∆x4)
scheme.

• For α = 7/16 the leading term in the truncation error is zero, and thus we obtain
O(∆x6), which gives the highest possible accuracy for this family.

Fourth Derivative

i−1 i i+1

i−1 i i+1 i+2i−2 i+3i−3

3/7 Stencil:

LHS

RHS

Figure 6.8: A 3/7 stencil for the implicit discretization of the fourth derivative.

From the many possible variations, here we present only the 3/7 stencil shown in figure
6.8. The corresponding matching of Taylor expansions leads to

αuiv
i−1 + uiv

i + αuiv
i+1 = b

ui+3 − 9ui+1 + 16ui − 9ui−1 + ui−3

6∆x4

+ a
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4
.

For a fourth-order accurate scheme we obtain the coefficients:

a = 2(1− α); b = 4α− 1,

with the best members

• For α = 1/4, we obtain the most compact (3/5) stencil of O(∆x4).

• For α = 7/26, the leading term of the truncation error is zero and we obtain accuracy
of O(∆x6).

6.1. Implicit Space Discretizations 356

Boundary Conditions

Next we obtain one-sided formulas for implicit discretization of the first- and second deriva-
tive on a five-point stencil as shown in figure 6.9.

1 2 3 4 5

left boundary

Figure 6.9: A five-point stencil for implicit discretization of the first and second derivatives.

For the first derivative, the equation generating the coefficients is

(ux)1 + α(ux)2 =
1

∆x
(au1 + bu2 + cu3 + du4),

and depending on the required accuracy we can construct a specific formula or a family of
schemes, as follows:

• O(∆x2): a = −3+α+2d
2

; b = 2 + 3d; c = 1−α+6d
2

.

• O(∆x3): a = −11+2α
6

; b = 6−α
2

; c = 2α−3
2

; d = 2−α
6
.

• O(∆x4): α = 3, a = −17/6; b = 3/2; d = −1/6 .

For the second derivative we obtain similarly as before:

(uxx)1 + 11(uxx)2 =
1

∆x2
(13u1 − 27u2 + 15u3 − u4) +

∆x3

12

(
∂5u

∂x5

)
1

,

which is of third-order accuracy. It is instructive, to compare this with the corresponding
explicit one-sided formula:

(uxx)1 =
1

∆x2

(
35

12
u1 − 26

3
u2 +

19

2
u3 − 14

3
u4 +

11

12
u5

)
+

5

6
∆x3

(
∂5u

∂x5

)
1

.

We see that the truncation error of the explicit difference is ten times larger than the corre-
sponding third-order compact scheme!

Remark: We note here that in applications it is often possible to mix the order of dis-
cretization accuracy in the interior and at the boundary with the latter being of lower order.
This may be required for stability of the approximation, e.g. in hyperbolic systems, or for
computational efficiency, e.g. in elliptic problems. Theoretical justification for this can be
obtained by a theorem, e.g. see [65].

6.1. Implicit Space Discretizations 357

θ

0 1 2 3 ... N

θ0 N

Figure 6.10: Grid for the one-dimensional boundary value problem.

6.1.3 One-Dimensional Boundary Value Problem

Let us revisit the one-dimensional boundary value problem (BVP) that we first encountered
in section 5.1.6: {

θ
′′

= q(x)
θ0 = θN = 0

We will apply different discretizations to this simple problem on the grid of figure 6.10 in
order to illustrate the computational complexity involved in each approach.

We start with explicit second-order, O(∆x2), differencing:

1

∆x2
(θi+1 − 2θi + θi−1) = qi, i = 1, . . . , N − 1.

We can cast these equations into matrix form as follows - recall that each equation is a row
in the matrix: 



1

1/∆x2 −2/∆x2 1/∆x2 0
. . .

. . .
. . .

0 1/∆x2 −2/∆x2 1/∆x2

1︸ ︷︷ ︸
A







θ0
θ1
...

θN−1

θN︸ ︷︷ ︸
theta




=




q0
q1
...

qN−1

qN︸ ︷︷ ︸
q




We can also write this in compact form

A θ = q ,

where A is a sparse tridiagonal matrix.

We now employ matrix condensation to impose Dirichlet boundary conditions for this system.
Assuming that the columns of matrix A are denoted by ai then

N−1∑
i=1

θiai = q− θ0a0 − θNaN .

This is an efficient approach as it effectively reduces the rank of the matrix we need to invert.

Remark: Note here that it will be extremely inefficient to obtain the solution by multiplying
the right-hand-side by the inverse of matrix A, as the inverse is a full matrix! This can be

6.1. Implicit Space Discretizations 358

heuristically justified by a physical analog. Consider, for example, that we solve a steady-
state heat equation on a rod, which is governed by the above one-dimensional BVP. Let us
now denote the columns of A−1 by b−1

i ; then the solution can be written as

θ = A−1q⇒ θ =
N∑

i=0

qib
−1
i .

Now consider that we apply a discrete unit heat source at node (i), i.e.,

qi = 1; qj = 0, j �= i ,

then:
θ = b−1

i .

In other words the elements of the column-vector b−1 are the temperature values at the
nodes due to a unit heat source at node i. Thus, they should be non-zero because of the
ellipticity property and the fact that we imposed zero values at the end-points.

θ

i − 1 i i + 1

q, equidistant

Figure 6.11: Dual 3/3 stencil for discretization of the second-derivative in the BVP.

Next we employ a compact scheme on a 3/3 stencil (figure 6.11) for the discretization of the
one-dimensional BVP. We could write down directly the discretization but here we repeat
the derivation of the formulas using Taylor expansions and the method of undetermined
coefficients. To this end, we have to expand

θi±1 = θi ±∆x2θ
′
i +

∆x2

2
θ
′′
i ±

∆x4

24
θiv

i + . . .

and use the model

αθi−1 + βθi + αθi+1 = aqi−1 + bqi + aqi+a + Ti.

Notice here that instead of expanding the second derivative we expand the right-hand-side.
However, we have that

θ
′′

= q ⇒ qi±1 = qi ±∆xq
′
i +

∆x2

2
θ(iv) +O(∆x4).

Proceeding as before, we obtain the coefficients

α =
1

∆x2
; β = −2/∆x2

a =
1

12
; b =

5

6
.

6.1. Implicit Space Discretizations 359

Thus, upon substitution in the BVP we obtain

1

∆x2
(θi−1 − 2θi + θi+1) =

1

12
(qi−1 + 10qi + qi+1) +O(∆x4).

This rather simple example helps us to understand what is the difference between the explicit
and the implicit discretization. Specifically, here following the implicit discretization we
have effectively modified the right-hand-side (RHS) through a mass matrix, that is we have
distributed the forcing around the node of interest, just like in finite element methods (e.g.,
see [59]). Therefore, for the RHS we have:

RHS :
1

12




. . .
. . . O

1 10 1

O .. .
. . .︸ ︷︷ ︸

Mass Matrix







...
qi−1

qi
qi+2

...




Note that what we have obtained by expanding the RHS in this particular BVP is identical
to the most compact scheme of O(∆x4) for α = 1/10, i.e.,

1

10
(θxx︸︷︷︸

qi−1

)i−1 + (θxx︸︷︷︸
qi

)i +
1

10
(θxx︸︷︷︸

qi+1

)i+1 =
12

10

θi+1 − 2θi + θi+1

∆x2
+O(∆x4).

This formula is exactly what we have derived previously in equation (6.4).

6.1.4 Thomas Algorithm for Tridiagonal Systems

Three-point stencils lead to second-order accuracy and fourth-order accuracy for explicit and
implicit discretizations of second-order boundary value problems, respectively. As we have
seen from the example above, solution of such BVPs reduces to solving the linear system

Ax = q ,

where the matrix A is tridiagonal if the boundary conditions are Dirichlet. In the following,
we demonstrate how to solve this system using the Thomas algorithm, which is a special
case of Gaussian elimination, see also section 9.1. This method consists of three main steps:

• The LU decomposition of matrix A, that is its factorization into a lower triangular
matrix L and an upper triangular matrix U. Note that this factorization maintains
the bandwidth, and therefore both matrices L and U are bidiagonal.

• The forward substitution where the matrix L is involved, and

• The final backward substitution, where the matrix U is involved.

6.1. Implicit Space Discretizations 360

More specifically, we have:




a1 c1
b2 a2 c2 0

b3 a3 c3
. . .

. . .
. . .

0 bN aN︸ ︷︷ ︸
A




=




1
�2 1 0

�3 1
. . .

. . .

0 �N 1︸ ︷︷ ︸
L







d1 u1

d2 u2 0
d3 u3

0
. . .

. . .

dN︸ ︷︷ ︸
U




Step 1: (LU Decomposition) A = LU.
We determine the elements of matrices L and U in three stages, separating the end-points

from the interior points as follows:

d1 = a1, u1 = c1

ith



�idi−1 = bi ⇒ �i = bi/�idi−1, (N multiplications)
�iui−1 + di = ai ⇒ di = ai − �iui−1 (N multiplications, N additions)
ui = ci

N th

{
�NdN−1 = bN ⇒ �N = bN/dN−1

�NuN−1 + dN = aN ⇒ dN = aN − �NuN−1

Therefore, from the above we see that the total computational complexity for an LU decom-
position of a tridiagonal matrix corresponds to 2N multiplications and N additions.

Step 2: (Forward Substitution) Ly = q The intermediate vector y is determined from




1
�2 1

�3 1
. . .

. . .

�N 1







y1

y2

y3
...
yN




=




q1
q2
q3
...
qN



⇒
{
y1 = q1
�iyi−1 + yi = qi ⇒ yi = qi − �iyi−1

Here the operation count is N multiplications and N additions.

Step 3: (Backward Substitution) Ux = y
In the final step we have



d1 u1

d2 u2

d3 u3

0
. . .

. . .

dN







x1

x2

x3
...
xN




=




y1

y2

y3
...
yN




6.1. Implicit Space Discretizations 361

and the final solution is obtained from:{
xN = yN/dN

dixi + uixi+1 = yi ⇒ xi = (yi − uixi+1)/di, i = N − 1, . . . , 1

The corresponding operation count is 2N multiplications and N additions.

We can now summarize the operation count:

1) LU: 2N multiplications, N additions
2) Forward: N multiplications, N additions
3) Backward: 2N multiplications, N additions

Total: 5N multiplications, 3N additions

Remark: It can be shown that the above algorithm will always converge if the tridiagonal
system is diagonally dominant, i.e.,

|ak| ≥ |bk|+ |ck|, k = 2, . . . , N − 1

|a1| > |c1| and |aN | > |bN | .

Also, if a, b, c are matrices instead of scalars we will have a block-tridiagonal system and the
same algorithm can be applied.

WARNING Programmer Beware!
• Think carefully about
indexing. Simple mistakes
can cause major headaches!

Software

 Suite
Putting it into Practice

Below we present a serial C++ implementation of the Thomas algorithm presented above.

void ThomasAlgorithm(int N, double *b, double *a, double *c,

double *x, double *q){

int i;

double *l,*u,*d,*y;

l = new double[N];

u = new double[N];

d = new double[N];

6.1. Implicit Space Discretizations 362

y = new double[N];

/* LU Decomposition */

d[0] = a[0];

u[0] = c[0];

for(i=0;i<N-2;i++){

l[i] = b[i]/d[i];

d[i+1] = a[i+1] - l[i]*u[i];

u[i+1] = c[i+1];

}

l[N-2] = b[N-2]/d[N-2];

d[N-1] = a[N-1] - l[N-2]*u[N-2];

/* Forward Substitution [L][y] = [q] */

y[0] = q[0];

for(i=1;i<N;i++)

y[i] = q[i] - l[i-1]*y[i-1];

/* Backward Substitution [U][x] = [y] */

x[N-1] = y[N-1]/d[N-1];

for(i=N-2;i>=0;i--)

x[i] = (y[i] - u[i]*x[i+1])/d[i];

delete[] l;

delete[] u;

delete[] d;

delete[] y;

return;

}

Common Programming Trick: Notice that every time that we call the above routine
we must allocate and deallocate memory. Suppose that we are calling this routine over and
over, and using the same size allocation each time. We are wasting a lot of time just allocating
and deallocating! What can be done? One common trick is to use static. When a variable
is declared static, it is allocated each once (in the static part of a program’s memory), and
remains throughout the duration of the program. Hence, if you declare a pointer variable as
static within the routine, and allocate an array of memory the first time that the routine is
called, then you can dispense with allocating/deallocating each time. This is demonstrated
in the following modified code.

void ThomasAlgorithm(int N, double *b, double *a, double *c,

double *x, double *q){

int i;

static double *l=NULL,*u=NULL,*d=NULL,*y=NULL;

6.1. Implicit Space Discretizations 363

if(l == NULL){

l = new double[N];

u = new double[N];

d = new double[N];

y = new double[N];

}

/* LU Decomposition */

d[0] = a[0];

u[0] = c[0];

for(i=0;i<N-2;i++){

l[i] = b[i]/d[i];

d[i+1] = a[i+1] - l[i]*u[i];

u[i+1] = c[i+1];

}

l[N-2] = b[N-2]/d[N-2];

d[N-1] = a[N-1] - l[N-2]*u[N-2];

/* Forward Substitution [L][y] = [q] */

y[0] = q[0];

for(i=1;i<N;i++)

y[i] = q[i] - l[i-1]*y[i-1];

/* Backward Substitution [U][x] = [y] */

x[N-1] = y[N-1]/d[N-1];

for(i=N-2;i>=0;i--)

x[i] = (y[i] - u[i]*x[i+1])/d[i];

return;

}

Remark: In the example we show above, the pointer variables are declared static, and are
initialized to NULL the first time that the routine is run. Since the pointer is NULL, the
memory is allocated the first time the routine is run; however, for all subsequent calls, the
value of the pointer l is not NULL (it contains some address value), and hence memory is not
allocated. Of course, in this implementation we have assumed that the value of N is always
less than or equal to the first value of N passed to this routine. More complex schemes
can be devised to make allocate/deallocate only when the size changes. This methodology
is a common trick - valid with respect to the language, but despised by many as unclean
programming!

6.1. Implicit Space Discretizations 364

Key Concept

• You need not recompute things that do not change!

Instead of using static allocations, one preferred way of increasing code re-use is to move
the memory allocation outside of the Thomas Algorithm routines and to break the algorithm
into two functions:

1. ThomasAlgorithmLU - accomplishes the LU decomposition of the matrix A. This rou-
tine needs to be called only once per matrix A.

2. ThomasAlgorithmSolve - accomplishes the forward and back substitution. This routine
needs to be called every time the right-hand-side value b changes.

The memory allocation is moved outside of these functions; the calling function is responsible
for memory allocation. We now present both the functions described above.

void ThomasAlgorithmLU(int N, double *b, double *a, double *c,

double *l, double *u, double *d){

int i;

/* LU Decomposition */

d[0] = a[0];

u[0] = c[0];

for(i=0;i<N-2;i++){

l[i] = b[i]/d[i];

d[i+1] = a[i+1] - l[i]*u[i];

u[i+1] = c[i+1];

}

l[N-2] = b[N-2]/d[N-2];

d[N-1] = a[N-1] - l[N-2]*u[N-2];

return;

}

void ThomasAlgorithmSolve(int N, double *l, double *u, double *d,

double *x, double *q){

int i;

double *y = new double[N];

/* Forward Substitution [L][y] = [q] */

y[0] = q[0];

for(i=1;i<N;i++)

6.1. Implicit Space Discretizations 365

y[i] = q[i] - l[i-1]*y[i-1];

/* Backward Substitution [U][x] = [y] */

x[N-1] = y[N-1]/d[N-1];

for(i=N-2;i>=0;i--)

x[i] = (y[i] - u[i]*x[i+1])/d[i];

delete[] y;

return;

}

Remark: Notice that the function which accomplishes the forward solve and the back solve
does not require the matrix arrays a, b and c; it requires only the l, u and d arrays which
contain the LU decomposition of A. Once the LU decomposition has been accomplished, and
if the matrix A is not needed for any other purpose, the arrays a, b, and c can be deallocated.

1

N + 1

N

2

3

Figure 6.12: Domain for solving the steady heat equation in a ring.

Thomas Algorithm for Periodic Tridiagonal Systems

The boundary value problem we considered in the example above employed Dirichlet bound-
ary conditions, but often periodic boundary conditions are required. This could be a case for
example, where an infinite domain is simulated or the physics of the problem dictates it, as
in solving an elliptic problem on a ring (see figure 6.12). In this case, despite the sparsity of
the matrix resulting from the discretization and its almost tridiagonal form everywhere, the
bandwidth is actually equal to the order of the matrix in the form shown below:




a1 c1 b1
b2 a2 c2 0

. . .
. . .

. . .
. . .

. . . cN
cN+1 0 bN+1 aN+1







x1

x2
...
xN

xN+1




=
[
q
]

where we assume that b1 and cN+1 are coefficients corresponding to the periodic boundary
conditions, (e.g., equal to 1 in the example above).

6.1. Implicit Space Discretizations 366

We can solve this system by first “condensing” the matrix, that is eliminating the last
row and the last column, to arrive at:




a1 c1
b2 a2 c2 0

. . .
. . .

cN−1

0 bN aN




︸ ︷︷ ︸
Ac




x1

x2
...

xN




= q−




b1
0
...
0
cN



xN+1 .

Now we use the linear property and propose a superposition of the form

x = x(1) + x(2) · xN+1 ,

where x(1) and x(2) are solutions of the tridiagonal “condensed” system with N unknowns,
i.e.,

Acx(1) = q

Acx(2) =




−b1
0
...
0
−cN



.

We finally compute xN+1 from the last equation in the original system by back substitution,
i.e.,

cN+1(x
(1)
1 + xN+1x

(2)
1) + bN+1(x

(1)
N + xN+1x

(2)
N) + aN+1xN+1 = qN+1

and we solve for xN+1:

xN+1 =
qN+1 − cN+1x

(1)
1 − bN+1x

(1)
N

aN+1 + cN+1x
(2)
1 + bN+1x

(2)
N

.

Software

 Suite
Putting it into Practice

Below we present a serial C++ implementation of the Thomas Algorithm for periodic
systems. As was discussed above, the Thomas Algorithm for periodic systems requires us to
accomplish LU solves on condensed systems. Note that we accomplish this by re-using the
Thomas algorithm functions that we previously presented on the condensed system.

6.1. Implicit Space Discretizations 367

void ThomasAlgorithm_per(int N, double *b, double *a, double *c,

double *x, double *q){

int i;

double *x1,*x2,*q2;

x1 = new double[N-1];

x2 = new double[N-1];

q2 = new double[N-1];

/* Prepare secondary q */

for(i=0;i<N-1;i++)

q2[i] = 0.0;

q2[0] = -b[N-1];

q2[N-2] = -c[N-2];

ThomasAlgorithm(N-1,b,a,c,x1,q);

ThomasAlgorithm(N-1,b,a,c,x2,q2);

x[N-1] = (q[N-1] - c[N-1]*x1[0] - b[N-2]*x1[N-2])/

(a[N-1] + c[N-1]*x2[0] + b[N-2]*x2[N-2]);

for(i=0;i<N-1;i++)

x[i] = x1[i] + x2[i]*x[N-1];

delete[] x1;

delete[] x2;

delete[] q2;

}

Key Concept

• Code re-use is important. If you have already invested the time
to make sure that a routine is well-written and correctly imple-
mented, then you can use the routine as a component in new
routines.

6.1.5 Parallel Algorithm for Tridiagonal Systems

In seeking a parallelization strategy for solving triagonal systems, we will once again examine
the structure of the LU decomposition as we did in formulating the Thomas algorithm. By ex-
ploiting the recursive nature of the LU decomposition, we will devise a full-recursive-doubling

6.1. Implicit Space Discretizations 368

procedure for solving for the unknown LU coefficients. For a more detailed description of
the algorithm which follows we refer the reader to [24].

As before, we seek an LU decomposition of the tridiagonal matrix A as follows:




a1 c1
b2 a2 c2 0

b3 a3 c3
. . .

. . .
. . .

0 bN aN︸ ︷︷ ︸
A




=




1
�2 1 0

�3 1
. . .

. . .

0 �N 1︸ ︷︷ ︸
L







d1 u1

d2 u2 0
d3 u3

0
. . .

. . .

dN︸ ︷︷ ︸
U



.

Upon examination of the expression above, we see that we can formulate recurrence
relations for the unknown coefficients dj, uj, and lj as follows:

a1 = d1 (6.5)

cj = uj (6.6)

ak = dk + lkuk−1 (6.7)

bk = lkdk−1 (6.8)

where j = 1, . . . , N and k = 2, . . . , N . Given equation (6.6), we can immediately solve for
all the unknown coefficients uj. To solve for dj and lj, we rely on the recursive nature of
these equations. Substituting equations (6.6) and (6.8) into equation (6.7) and rearranging
terms yields the following rational recursion relationship for the unknown coefficient dj:

dj = aj − ljuj−1

= aj − bj
dj−1

uj−1

=
ajdj−1 − bjcj−1

dj−1 + 0
.

We can then inductively solve for the all coefficients dj , and use this information along
with equation 6.8 to solve for lj .

To parallelize this procedure, we make use of a full-recursive-doubling procedure on the
sequence of 2× 2 matrices given by:

R0 =

[
a0 0
1 0

]

and

Rj =

[
aj −bjcj−1

1 0

]

6.1. Implicit Space Discretizations 369

for j = 1, . . . , N . Using the Möbius transformations

Tj = RjRj−1 . . .R0

we have that

dj =

(
1
0

)t

Tj

(
1
1

)
(

0
1

)t

Tj

(
1
1

)
.

To explain how this information can be used for parallelization, we will examine a specific
example. Suppose that we are given a tridiagonal matrix A of size 40, and that we want to
solve the problem using 8 processes. Assume that all processes have a copy of the original
matrix A. We first partition the matrix such that each process is responsible for five rows:
process P0 is responsible for rows 0-4, P1 is responsible for rows 5-9, etc. We then accomplish
the following steps:

1. On each process Pj form the matrices Rk, where k corresponds to the row indices for
which the process is responsible, and ranges between k min and k max.

2. On each process Pj form the matrix Sj = Rk maxRk max−1 . . .Rk min.

3. Using the full-recursive-doubling communication pattern as given in table 6.1, dis-
tribute and combine the Sj matrices as given in table 6.2.

4. On each process Pj calculate the local unknown coefficients dk (k min ≤ k ≤ k max)
using local Rk and matrices obtained from the full-recursive-doubling.

5. For processes P0 through P6, send the local dk max to the process one process id up
(i.e., P0 sends to P1; P1 sends to P2; etc.).

6. On each process Pj calculate the local unknown coefficients lk (k min ≤ k ≤ k max)
using the local dk values and the value obtained in the previous step.

7. Distribute the dj and lj values across all processes so that each process has all the dj

and lj coefficients.

8. On each process Pj perform a local forward and backward substitution to obtain the
solution.

Software

 Suite
Putting it into Practice

6.1. Implicit Space Discretizations 370

Stage 1 Stage 2 Stage 3
P0 → P1 P0 → P2 P0 → P4

P1 → P2 P1 → P3 P1 → P5

P2 → P3 P2 → P4 P2 → P6

P3 → P4 P3 → P5 P3 → P7

P4 → P5 P4 → P6

P5 → P6 P5 → P7

P6 → P7

Table 6.1: Full-recursive-doubling communication pattern. The number of stages is equal to the
log2 M where M is the number of processes. In this case, M = 8 and hence there are three stages
of communication.

Process Stage 0 Stage 1 Stage 2 Stage 3
P0 S0

P1 S1 S1S0

P2 S2 S2S1 S2S1S0

P3 S3 S3S2 S3S2S1S0

P4 S4 S4S3 S4S3S2S1 S4S3S2S1S0

P5 S5 S5S4 S5S4S3S2 S5S4S3S2S1S0

P6 S6 S6S5 S6S5S4S3 S6S5S4S3S2S1S0

P7 S7 S7S6 S7S6S6S4 S7S6S5S4S3S2S1S0

Table 6.2: Distribution and combination pattern of the Sj matrices for each stage. The interpre-
tation of the table is as follows: Given the communication pattern as given in table 6.1, in stage
one P0 sends S0 to P1, which P1 combines with its local S1 to form the product S1S0. Similarly
in stage one, P1 sends S1 to P2, etc. In stage two, P0 sends S0 to P2, which P2 combines with its
local product S2S1 to form S2S1S0. Similarly P1 sends S1S0 to P3 which is then combined on P3

to form S3S2S1S0. In stage three, the final communications occur such that each process j stores
locally the product SjSj−1 . . . S0.

6.1. Implicit Space Discretizations 371

We now present a parallel Thomas algorithm function which uses the full-recursive-
procedure discussed above. This function assumes that the MPI initialization has already
been accomplished by the calling function, and it requires that the number of processes used
is a power of two. It takes as input its process id number, the total number of processes
being used, the size of the matrix, the matrix A stored in the arrays a, b, and c as before,
and the right-hand-side vector q stored in the array q. The output of this function on all
processes is the solution vector contained within the array x. We first present the function
definition and then present some remarks on the code.

void ThomasAlgorithm_P(int mynode, int numnodes, int N, double *b,

double *a, double *c, double *x, double *q){

int i,j,k,i_global;

int rows_local,local_offset;

double S[2][2],T[2][2],s1tmp,s2tmp;

double *l,*d,*y;

MPI_Status status;

l = new double[N];

d = new double[N];

y = new double[N];

for(i=0;i<N;i++)

l[i] = d[i] = y[i] = 0.0;

S[0][0] = S[1][1] = 1.0;

S[1][0] = S[0][1] = 0.0;

rows_local = (int) floor(N/numnodes);

local_offset = mynode*rows_local;

// Form local products of R_k matrices

if(mynode==0){

s1tmp = a[local_offset]*S[0][0];

S[1][0] = S[0][0];

S[1][1] = S[0][1];

S[0][1] = a[local_offset]*S[0][1];

S[0][0] = s1tmp;

for(i=1;i<rows_local;i++){

s1tmp = a[i+local_offset]*S[0][0] -

b[i+local_offset-1]*c[i+local_offset-1]*S[1][0];

s2tmp = a[i+local_offset]*S[0][1] -

b[i+local_offset-1]*c[i+local_offset-1]*S[1][1];

S[1][0] = S[0][0];

S[1][1] = S[0][1];

S[0][0] = s1tmp;

6.1. Implicit Space Discretizations 372

S[0][1] = s2tmp;

}

}

else{

for(i=0;i<rows_local;i++){

s1tmp = a[i+local_offset]*S[0][0] -

b[i+local_offset-1]*c[i+local_offset-1]*S[1][0];

s2tmp = a[i+local_offset]*S[0][1] -

b[i+local_offset-1]*c[i+local_offset-1]*S[1][1];

S[1][0] = S[0][0];

S[1][1] = S[0][1];

S[0][0] = s1tmp;

S[0][1] = s2tmp;

}

}

// Full-recursive doubling algorithm for distribution

for(i=0; i<=log2(numnodes);i++){

if(mynode+pow(2,i) < numnodes)

MPI_Send(S,4,MPI_DOUBLE,int(mynode+pow(2,i)),0,

MPI_COMM_WORLD);

if(mynode-pow(2,i)>=0){

MPI_Recv(T,4,MPI_DOUBLE,int(mynode-pow(2,i)),0,

MPI_COMM_WORLD,&status);

s1tmp = S[0][0]*T[0][0] + S[0][1]*T[1][0];

S[0][1] = S[0][0]*T[0][1] + S[0][1]*T[1][1];

S[0][0] = s1tmp;

s1tmp = S[1][0]*T[0][0] + S[1][1]*T[1][0];

S[1][1] = S[1][0]*T[0][1] + S[1][1]*T[1][1];

S[1][0] = s1tmp;

}

}

//Calculate last d_k first so that it can be distributed,

//and then do the distribution.

d[local_offset+rows_local-1] = (S[0][0] + S[0][1])/

(S[1][0] + S[1][1]);

if(mynode == 0){

MPI_Send(&d[local_offset+rows_local-1],1,MPI_DOUBLE,

1,0,MPI_COMM_WORLD);

}

else{

MPI_Recv(&d[local_offset-1],1,MPI_DOUBLE,mynode-1,0,

MPI_COMM_WORLD,&status);

if(mynode != numnodes-1)

6.1. Implicit Space Discretizations 373

MPI_Send(&d[local_offset+rows_local-1],1,MPI_DOUBLE,

mynode+1,0,MPI_COMM_WORLD);

}

// Compute in parallel the local values of d_k and l_k

if(mynode == 0){

l[0] = 0;

d[0] = a[0];

for(i=1;i<rows_local-1;i++){

l[local_offset+i] = b[local_offset+i-1]/

d[local_offset+i-1];

d[local_offset+i] = a[local_offset+i] -

l[local_offset+i]*c[local_offset+i-1];

}

l[local_offset+rows_local-1] = b[local_offset+rows_local-2]/

d[local_offset+rows_local-2];

}

else{

for(i=0;i<rows_local-1;i++){

l[local_offset+i] = b[local_offset+i-1]/

d[local_offset+i-1];

d[local_offset+i] = a[local_offset+i] -

l[local_offset+i]*c[local_offset+i-1];

}

l[local_offset+rows_local-1] = b[local_offset+rows_local-2]/

d[local_offset+rows_local-2];

}

/***/

if(mynode>0)

d[local_offset-1] = 0;

// Distribute d_k and l_k to all processes

double * tmp = new double[N];

for(i=0;i<N;i++)

tmp[i] = d[i];

MPI_Allreduce(tmp,d,N,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

for(i=0;i<N;i++)

tmp[i] = l[i];

MPI_Allreduce(tmp,l,N,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

delete[] tmp;

6.1. Implicit Space Discretizations 374

if(mynode ==0){

/* Forward Substitution [L][y] = [q] */

y[0] = q[0];

for(i=1;i<N;i++)

y[i] = q[i] - l[i]*y[i-1];

/* Backward Substitution [U][x] = [y] */

x[N-1] = y[N-1]/d[N-1];

for(i=N-2;i>=0;i--)

x[i] = (y[i] - c[i]*x[i+1])/d[i];

}

delete[] l;

delete[] y;

delete[] d;

return;

}

Remark 1: Since we know that we are dealing with 2 × 2 matrices, we have chosen to
allocate the 2 × 2 S array statically. It is important to note that when static allocation
of arrays is used, the memory allocation is contiguous and in row-major order as shown in
figure 6.13. We can use the contiguousness of the block of memory to our advantage when
using MPI. Since S is stored as one contiguous block in memory, we can send the entire
array in one MPI call instead of having to send the array row by row (as in the case where
each row was dynamically allocated using the new command).

S
00

S
01

S
10

S
11

Conceptual Layout Memory Layout

S
00

S
01

S
10

S
11

Figure 6.13: Memory layout of the matrix S. The double indexed array S is stored in a contiguous
block of memory in row-major order.

Remark 2: Sometimes it becomes advantageous to use the reduction operator to mimic a
gathering operation. We pictorially demonstrate how this can be accomplished in figure 6.14.
In the code above, we use this trick to gather all the dj and lj values across all processors.

6.1. Implicit Space Discretizations 375

+

+

+

a b

c d

e f

g h

0 0 0 0 0 0

0 00 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a b c d e f g h

Figure 6.14: How to use the reduction operator to mimic the gathering process. In this example,
we have four processes, each of which has two unique items to contribute. On each process, all
other entries in the array are zeroed and then a sum is performed. The result is that the data is
gathered into one array.

MPI Implementation Issues

In the sections above, we presented a serial and a parallel version of the Thomas algo-
rithm. How can we time our parallel program to examine the speed-up due to adding more
processes? MPI provides two functions which allow us to accomplish this task: MPI Wtime
and MPI Wtick . We will now present for these two functions the function call syntax, ar-
gument list explanation, usage example and some remarks.

Function Call Syntax

double MPI Wtime(void);

double MPI Wtick(void);

Understanding the Argument Lists

• MPI Wtime and MPI Wtick take no arguments.

Example of Usage

int mynode, totalnodes;

double starttime, finaltime, precision;

6.1. Implicit Space Discretizations 376

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

precision = MPI_Wtick();

starttime = MPI_Wtime();

// Execution of commands here

finaltime = MPI_Wtime();

if(mynode == 0){

cout << "The execution time was : " << finaltime-starttime;

cout << " sec. with a precision of " << precision;

cout << " sec." << endl;

}

Remarks

• These commands are very useful both for determining the parallel speed-up of your
algorithm and for determining the components of your program which are using the
most time.

• These commands provide to you the wallclock time (the physical time which has
elapsed), not specifically the CPU time or communication time.

One question you may ask is how do I know that all the processes are exactly at the same
point (assuming that I am doing the timing only on process 0)? MPI provides a function for
synchronizing all processes calledMPI Barrier. WhenMPI Barrier is called, the function
will not return until all processes have called MPI Barrier. This functionality allows you
to synchronize all the processes, knowing that all processes exit the MPI Barrier call at
the same time. We will now present the function call syntax, argument list explanation,
usage example and some remarks.

MPI Barrier

Function Call Syntax

int MPI Barrier(
MPI Comm comm /* in */,

Understanding the Argument Lists

• comm - communicator

6.1. Implicit Space Discretizations 377

Example of Usage

int mynode, totalnodes;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

MPI_Barrier(MPI_COMM_WORLD);

// At this stage, all processes are synchronized

Remarks

• This command is a useful tool to help insure synchronization between processes. For
example, you may want all processes to wait until one particular process has read in
data from disk. Each process would call MPI Barrier in the place in the program
where the synchronization is required.

6.2. Implicit Time Discretizations 378

6.2 Implicit Time Discretizations

Unlike the explicit time discretizations of the previous chapter, here the solution at the
current level cannot be expressed in terms of information from previous only time levels.
Instead, the right-hand-side for the first-order initial value problem (IVP)

dU

dt
= F(U, t), U(t = 0) = U0, (6.9)

is also evaluated at the current time level resulting in an implicit expression for the solution.

The most popular schemes are derived from the θ-family, which are one-step schemes:

Un+1 − Un

∆t
= θF(Un+1, tn+1) + (1− θ)F(Un, tn) . (6.10)

• For θ = 1, we obtain the Euler-backward scheme, while

• For θ = 1/2, we obtain the Crank-Nicolson scheme.

We note that θ can take any value in the range [0, 1], and for θ = 0 we obtain the
Euler-forward method, an explicit scheme we encountered in section 5.2.

The θ-family produces a consistent discretization of the IVP we consider, in the form

(
dUn

dt
− Fn

)
= ∆t

(
θ
dFn

dt
− 1

2

d2Un

dt2

)

+ ∆t2
(
θ

2

d2Fn

dt2
− 1

6

d3Un

dt3

)
+ . . .

As ∆t→ 0, the right-hand-side of the above discretization goes to zero and thus we recover
the original initial value problem of equation (6.9). Specifically, for θ = 1 or θ = 1/2 the trun-
cation error (right-hand-side) asymptotes to zero with first- and second-order convergence
rate, correspondingly. This convergence rate, which expresses the first- and second-order ac-
curacy of the Euler-backward and Crank-Nicolson scheme, is consistent with the results on
spatial discretization, as they correspond to one-sided and central-differencing, respectively.

We now examine the stability of these schemes following the definitions established in the
previous chapter. For a general θ-scheme we solve the linear eigenproblem

dU

dt
= λU, Re(λ) < 0 , (6.11)

which is discretized as follows

Un+1 − Un

∆t
= θλUn+1 + (1− θ)λUn .

6.2. Implicit Time Discretizations 379

The solution error also satisfies the above equation and thus

εn+1(1− θλ∆t) = εn[1 + (1− θ)λ∆t]

so

εn+1 = εn
1 + (1− θ)λ∆t

1− θλ∆t
.

The scheme is absolutely stable if

|1 + (1− θ)λ∆t| ≤ 1− θλ∆t, (Re(λ) < 0)

or 


0 ≥ λ∆t ∀ ∆t ≥ 0

−1 + θλ∆t ≤ 1 + (1− θ)λ∆t

⇒ −(1− 2θ)λ∆t ≤ 2

• For 0 ≤ θ < 1/2⇒ ∆t ≤ −2
(1−2θ)λ

, which implies conditional stability.

• For θ ≥ 1/2 we obtain unconditional stability. Therefore, both the Crank-Nicolson
(θ = 1/2) and the Euler-backward (θ = 1) are unconditionally stable schemes. The
Euler-backward scheme converges monotonically and damps high frequency compo-
nents rapidly whereas the Crank-Nicolson scheme converges in an oscillatory manner.

1

IM

λ ∆ t−plath

+ Re λ ∆ t−plane

Figure 6.15: Regions of stability for the Euler-backward (left) and Crank-Nicolson (right) schemes.

The stability regions of both the Euler-backward and Crank-Nicolson schemes include
the entire half-left plane in the complex plane, and such schemes are referred to as A-stable.
This region can also be obtained using the theory of characteristic polynomials of section
5.2 in the previous chapter. For example, for the Crank-Nicolson scheme, we construct the
polynomial:

ΠCN = (z − 1)− λ∆t

2
(z + 1) = (1− 1

2
λ∆t)z − (1 +

1

2
λ∆t)

or

z =
1 + 1/2λ∆t

1− 1/2λ∆t
=

2 + λ∆t

2− λ∆t
.

6.2. Implicit Time Discretizations 380

For Re(λ) ≤ 0, we obtain absolute stability in the entire half-left plane as shown in figure
6.15.

Forward versus Backwards Differentiation

In implicit temporal discretizations, it is possible either to construct the backwards dif-
ference of the left-hand-side of equation (6.9) or to expand its right-hand-side over several
time levels. This is demonstrated in the next two examples:

• Third-order Backwards Differentiation method:

Un+1 − 1
11

(18Un − 9Un−1 + 2Un−2)

∆t
=

6

11
Fn+1.

Here the left-hand-side is expanded backwards in time whereas the right-hand-side is
evaluated at the current time level. In section 6.2.2 we will see that such schemes have
very interesting stability properties.

• Third-order Adams-Moulton method:

Un+1 − Un

∆t
=

5

12
Fn+1 +

8

12
Fn − 1

12
Fn−1.

Here, the right-hand-side is formed by evaluating it at the current as well as at previous
time levels. Typically, the coefficients of the Adams-Moulton method are smaller than
the coefficients of the Adams-Bashforth method that we presented in section 5.2. This,
in turn, means that they correspond to a lower truncation error as well as round-off
error. Also, for the same accuracy the Adams-Moulton family employs fewer points
than the Adams-Bashforth family, but it is implicit and thus computationally more
complex.

Figure 6.16: Stability diagrams for the first three members of the (implicit) Adams-Moulton family.
Note that J = 1 corresponds to the Euler-backward discretization.

6.2. Implicit Time Discretizations 381

The region of stability for the implicit Adams-Moulton can be constructed using the
characteristic polymonials, see section 5.2. By comparison of the plots in figure 6.16 with
the plots in figure 5.21 we see that the stability regions of the Adams-Moulton family is
larger by a factor of about ten than that of the Adams-Bashforth family.

6.2.1 Fundamental Theorems for Multi-Step Methods

We summarize here without proof two basic theorems of multi-step methods originally pro-
posed by Dahlquist [20]. They relate accuracy, stability, and number of steps:

I. First Dahlquist Stability Barrier

The order of accuracy p of a stable k-step (linear) multi-step formula satisfies

p ≤


k + 2, k even
k + 1, k odd
k, explicit form




For example, the four-step Adams-Moulton formula corresponds to sixth-order accuracy.
Similarly, the Crank-Nicolson one-step method is of second-order accuracy, and the explicit
three-step Adams-Bashforth method is of third-order accuracy. Notice that the highest order
accuracy obtainable with a k-step method is 2k, however, such a method is unstable.

II. Second Dahlquist Stability Barrier

The order of accuracy of an explicit A-stable multi-step formula satisfies p ≤ 2. An
explicit multi-step formula cannot be A-stable.

Notice that of all second-order A-stable methods, the one with the smallest truncation error
is the Crank-Nicolson scheme. It is also possible to get around the restriction p ≤ 2 for A-
stability by use of Richardson’s extrapolation, which is a similar to the Romberg procedure
discussed in section 4.2.

6.2.2 Stability of Stiff ODEs

A “stiff” equation has a slowly varying solution combined with rapidly decaying transients.
Typically, of interest is the long term (asymptotic) solution, however the initial transients
cause severe problems in stability. There are a plethora of physical problems that such
behavior is encountered, e.g., in most coupled-domain problems, such as aero-acoustics,
combustion, flow-structure interactions, electric circuits, etc. We illustrate this behavior
with the following example

dU

dt
= −1000(U − t3) + 3t2, U(0) = 1,

which has the exact solution
Uex(t) = e−1000t + t3,

plotted in figure 6.17. Notice that the boundary layer term is important only initially.

6.2. Implicit Time Discretizations 382

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

log(t)

U
ex

(t
) ~e−1000 t ~t3

Figure 6.17: Stiff solution of an ordinary differential equation. A boundary layer of thickness 0.001
is present. Notice the logarithmic horizontal scale.

Let us first attempt to employ the Euler-forward explicit scheme

Un+1 = Un − 1000∆t[Un − (tn)3] + 3∆t(tn)2

with error
εn+1 = εn(1− 1000∆t).

If
∆t = 0.1⇒ εn+1 = 99εn,

thus we loose two decimal points in each time step, yet the scheme is generally stable ac-
cording to the corresponding definition, i.e.,

εn = (1− 1000∆t)nε0 < e1000∆tn|ε0|
or

εn < e1000t|ε0|, ∀∆t.

However, the error bound constant is e1000t, which is so large at t = 1 that this discretization
is totally impractical even though it is stable!

For useful results we require absolute stability, i.e.,

|1− 1000∆t| < 1⇒ ∆t = 0.002,

that is we require a very small ∆t to resolve the transient e−1000t rather than the long-term
solution t3.

If we now employ the implicit Euler-backward scheme we obtain

Un+1 = Un − 1000∆t(Un+1 − (tn+1)3) + 3∆t(tn+1)2

with error
εn+1 = εn/(1 + 1000∆t).

6.2. Implicit Time Discretizations 383

k 2 3 4
β0 2/3 6/11 12/25
α1 4/3 18/11 48/25
α2 -1/3 -9/11 -36/25
α3 – 2/11 16/25
α4 -3/25

Table 6.3: Weights for the first four stiffly stable schemes.

If ∆t = 0.1 then
εn+1 = εn/101.

Therefore, the error in the Euler-backward scheme decreases as rapidly as it increases for
the Euler-forward method. For large values of ∆t the boundary layer is inaccurate but
we capture the long-term solution. Clearly, an A-stable scheme would solve the stiffness
problem, however it is too restrictive. Ideally, for these problems we require (see figure
6.18):

• Absolute stability for the transient behavior.

• General stability for the long-term behavior.

λ ∆ t−plane

Figure 6.18: Required region of stability for discretizations of stiff equations.

To this end, following the work of Gear [42], we introduce a general stiffly stable scheme of
order kth of the form

Un+1 =
k∑

j=0

αj+1U
n−j + ∆tβ0Fn+1

for the general initial value problem described by equation (6.9). The coefficients are obtained
by matching appropriate Taylor expansions and are given in table 6.3.

For stiffly stable schemes stability studies are more complicated as the ρ(z) polynomials
are non-trivial. For example the third-order scheme corresponds to:

ρ(z) =
1

11
(11z3 − 18z2 + 9z − 2)

σ(z) =
6

11
z3.

6.2. Implicit Time Discretizations 384

They are stable for order 1 ≤ k ≤ 6 and generally unstable for 6 < k < 12 (with some
exceptions); they are definitely unstable for k ≥ 12 (see proof in [53]). Typical stability
regions for the first three members of the family are plotted in figure 6.19.

0 2 4 6 8

-4

-2

0

2

4

Figure 6.19: Region of stability for stiffly stable schemes for the first three members. Note that
the first member corresponds to the Euler-backward scheme.

6.2.3 Second-Order Initial Value Problems

Next we consider second-order initial value problems of the form

Utt(t) = F(t, U(t), Ut(t)), U(0) = U0, Ut(0) = Z0, (6.12)

where U0 and Z0 are given. Such problems are encountered in flow-structure interactions,
wave propagation, etc. They can be reduced to a first-order system by the simple substitution

Ut = Z, Zt = F(t, U, Z),

and thus one of the explicit or implicit algorithms that we have presented previously can be
used for the above system.

A particularly successful approach is the Newmark method, which is second-order
accurate and unconditionally stable for certain values of its parameters. We explain this
method further, starting with the Taylor expansion of Un+1 ≡ U(t+ ∆t), i.e.,

Un+1 = Un + ∆tUn
t + ∆t2

(
βUn+1

tt + (
1

2
− β)Un

tt

)
+O(∆t3),

where β is a parameter that determines the degree of implicit dependence. Upon substitution
from equation (6.12), we obtain

Un+1 = Un + ∆tUn
t + ∆t2

(
βFn+1 + (

1

2
− β)Fn

)
+O(∆t2).

6.2. Implicit Time Discretizations 385

We also expand similarly the first derivative Un+1
t ≡ Ut(t+∆t) and substitute from equation

(6.12) to arrive at

Un+1
t = Un

t + ∆t
(
γFn+1 + (1− γ)Fn

)
+O(∆t2),

where again γ is a parameter that determines the degree of implicit dependence.

We can now make the substitution

Z(t) = Ut(t)

to obtain the first-order system

Un+1 = Un + ∆tZn + ∆t2
(
βFn+1 + (

1

2
− β)Fn

)
+ ∆tTu

Zn+1 = Zn + ∆t
(
γFn+1 + (1− γ)Fn

)
+ ∆tTz

The leading terms in the (local) truncation errors Tu and Tz are

Tu = (
1

6
− β)∆t2Un

ttt +O(∆t3)

Tz = (
1

2
− γ)∆tUn

ttt +O(∆t2).

Therefore, it is clear that in order to obtain a second-order accurate scheme we need to
choose

γ =
1

2
.

If γ �= 1
2

then we have a first-order only scheme. The choice of the parameter β will depend
on the stability of the scheme. In particular, by considering the corresponding second-order
linear oscillator

Utt + ω2U = 0,

we can obtain the stability requirements which for γ = 1
2

reduce to:

β ≥ 1

4
.

Finally, we can combine the two equations of the system above to write a single statement

for the Newmark scheme for the special case γ = 1
2

and β = 1
4

:

Un+2 − 2Un+1 + Un = ∆t2
(

1

4
Fn+2 +

1

2
Fn+1 +

1

4
Fn
)
.

In practice, it is more convenient to use the Newmark scheme in a system form instead
of the single statement above.

6.2. Implicit Time Discretizations 386

6.2.4 How to March in Time

We summarize here some of the most important features of the explicit and implicit time
discretizations, based on which we can decide what specific time-integrator to use in appli-
cations:

• The Rung-Kutta method is the easiest to use and is often a good choice, although
somewhat inefficient. Low storage and TVB (Total Variation Bounded) schemes are
useful in practice. Boundary conditions at intermediate stages may be an issue as they
may affect accuracy.

• Multi-step methods (e.g., Adams-Bashforth) are often used in discretizing convective
contributions. They require a lot of memory, but they are efficient. The high-order
versions exhibit very low dispersion errors. In an unstable multi-step time integration
the error has oscillatory form.

• Leap-frog schemes are good for problems with complex eigenvalues.

• Predictor-corrector methods are good except when it is necessary to change the step
size. It is also easy to estimate time errors. They are less stable than implicit.

• Stiff equations require implicit methods. For efficiency, stiffly stable methods (i.e.,
backwards differentiation) are recommended.

• The truncation error of a k-order stiffly stable method is (1/k) compared to the corre-
sponding Adams-Moulton method.

• Typical instabilities appear in a spontaneous (explosive) way – it only takes a few time
steps for the solution to blow up!

6.3. Homework Problems 387

6.3 Homework Problems

1. Consider a 3-point one-dimensional stencil, consisting of the points (i) and (i ± 1).
Construct the highest order difference formula of the second derivative at the point
(i), which does not involve any other second-order derivatives. You may include first-
order derivatives, however, as well as function values at the three points. Also, compute
the truncation error. What is the computational work to compute such a derivative
on an N-point grid with periodic boundary conditions?

2. Write a C++ program to compute first-order and second-order derivatives with high-
accuracy (greater than two) using the implicit formulas. More specifically, design a
computer library of one-dimensional implicit formulas according to the text in section
6.1.2. For the families of different orders allow the user to input the proper parameter
in order to select different members of the family.

3. Solve numerically the elliptic Helmholtz equation in the square domain [−1, 1]×[−1, 1],
i.e.,

∇2U − λU = sin
πx

2
sin

πy

2
; λ = 1000

using the Padé scheme of fourth-order. First use a uniform grid of 50× 50 grid points
and then an appropriate non-uniform grid of 25×25 grid points and 50×50 grid points.
Compare the errors in the three solutions. What do you observe? Also, justify your
particular selection of the non-uniform grid.

4. Solve numerically the elliptic Helmholtz equation in the wedge-domain of figure 6.20,
i.e.,

∇2U − λU = F (x, y), λ = 1

U = 1

00

x

y

Figure 6.20: Wedge domain.

(a) First, using second-order finite difference explicit differentiation.

(b) Second, using fourth-order finite difference implicit differentiation. Consider dif-
ferent functions F (x, y) and plot your results in terms of iso-contours of U(x, y).

5. (Sherman-Morrison formula)

6.3. Homework Problems 388

Prove that for a non-singular matrix T

(T− a1a
T
2)−1 = T−1 − b−1T−1a1a

T
2 T−1,

where

b = 1 + aT
2 T−1a1 �= 0.

Now consider the Thomas algorithm for the problem with periodic boundary conditions
(values c and d) and write

A = T + a1a
T
2 ,

where T is the tridiagonal submatrix and a1 = ce1 + de2 and also a2 = e1 + e2.

(a) Use the Sherman-Morrison formula to obtain the solution to Ax = b using only
tridiagonal solvers. What is the dominant cost to invert such matrices A?

(b) Write the forward substitution and backward substitution using full-recursive dou-
bling – which will reduce the cost to O(log n) for the solves.

6. Formulate a penta-diagonal solver using the same methodology as used for the Thomas
algorithm.

(a) Write a C++ function to solve Ax = b where A is penta-diagonal.

(b) Solve the one-dimensional heat equation

d2T

ds2
= sin 2πs, s ∈ [0, 1]

with u(0) = u(1) = 0.0 using a five-point explicit stencil.

Use more than one grid and compare convergence rates as well as computational
times.

7. Add timing to the parallel Thomas algorithm function. Using the three-point stencil
to approximate second derivatives, formulate the matrix A and use it to perform the
following tests:

(a) For N = 10, 20, 30, and 100 compute the timings when using the serial version.

(b) Repeat this experiment using P = 2, 4, 8 processes.

(c) What is the parallel speed-up? Does it change depending on the number of points
(N) used? Please explain your answer.

8. Find the parameter η for which the multi-step implicit time-stepping scheme

Un+1 + ηUn − (1 + η)Un−1

∆t
=

1

2
[−ηFn+1 + (4 + 3η)Fn]

is of second-order and A-stable discretization to dU/dt = F .

6.3. Homework Problems 389

9. Employ a third-order stiffly stable scheme to solve the system

dx

dt
= −1000x+ y

dy

dt
= 999x− 5y

assuming that x(0) = 1 and y(0) = 0. Is your solution stable for long-time integration
for any ∆t?

10. (Period doubling and chaos)

Consider the homework problem of section 5.3 for period doubling and chaos and use the
Crank-Nicolson method with step size h = 0.3, 1 and 5 to obtain numerical solutions.
Do you obtain the correct approximation to the solution for all the above values of h?
Please justify your answer.

11. Employ the method of undetermined coefficients that we studied in sections 5.1.2 and
6.1.2 for deriving finite differences, to obtain the fourth-order Adams-Bashforth scheme

Un+1 − Un

∆t
=

1

24
[55Fn − 59Fn−1 + 37Fn−2 − 9Fn−3],

and also the fourth-order Adams-Moulton scheme

Un+1 − Un

∆t
=

1

24
[9Fn+1 + 19Fn − 5Fn−1 + Fn−2].

12. Plot the stability region of the fourth-order Adams-Bashforth scheme and compare it
with the stability region of the fourth-order Adams-Moulton scheme. What do you
observe?

13. Plot the stability regions for stiffly-stable schemes of order p = 1 to 6 and contrast
them against the stability diagrams of Runge-Kutta for order p = 1 to 4.

14. (Evolution of an ecosystem)

In this problem we revisit the Lotka-Volterra equations for the evolution of an ecosys-
tem that we considered in section 5.3 using explicit methods.

Can you solve this system by using an implicit scheme, e.g. Crank-Nicolson? What
do you observe? Please compare and discuss your answers and also comment on the
computational complexity of the implicit versus explicit approaches.

Chapter 7

Relaxation: Discretization
and Solvers

In this chapter we present discretizations for mixed initial value/boundary value problems
(IVP/BVP) as well as relaxation iterative solvers associated with such discretizations. The
analogy between iterative procedures and equations of evolution, especially of parabolic
type (diffusion), was realized about two centuries ago, but a rigorous connection was not
established until the mid 1950s.

In the following, we first consider various mixed discretizations, and subsequently we
derive some of the most popular iterative solvers. Our emphasis will be on parallel com-
puting: A good algorithm is not simply the one that converges faster but also the one that
is parallelizable. The Jacobi algorithm is such an example; forgotten for years in favor of
the Gauss-Seidel algorithm, which converges twice as fast for about the same computational
work, it was re-discovered in the last two decades as it is trivially parallelizable, and to-
day is used mostly as a preconditioner for multigrid methods. The Gauss-Seidel algorithm,
although faster on a serial computer, is not parallelizable unless a special multi-color algo-
rithm is employed, as we explain in section 7.2.4. Based on these two basic algorithms, we
present the multigrid method that exploits their good convergence properties but in a smart
adaptive way.

On the parallel computing side, we introduce three new commands: MPI Gather,
MPI Allgather, and MPI Scatter. Both MPI Gather and MPI Allgather are used for
gathering information from a collection of processes. MPI Scatter is used to scatter data
from one process to a collection of processes. In addition to providing syntax and usage infor-
mation, we present the applicability of the gathering functions in the parallel implementation
of the Jacobi method.

390

7.1. Discrete Models of Unsteady Diffusion 391

7.1 Discrete Models of Unsteady Diffusion

We introduce here unsteady diffusion, a physical process, in order to model relaxation to
equilibrium and thus convergence to a steady-state, i.e., a fixed point. Let us consider the
one-dimensional parabolic equation




∂Θ

∂t
= κ

∂2Θ

∂x2
; 0 ≤ x ≤ 1

Θ(0, t) = Θ(1, t) = 0

Θ(x, 0) = sin πx = Θ0(x)

(7.1)

Here we specify both initial conditions as well as boundary conditions since this is a mixed
initial value-boundary value problem (IVP/BVP). The dependent variable Θ(x, t) may rep-
resent the temperature and correspondingly κ can be interpreted as the thermal diffusivity.
For the sinusoidal initial solution form specified, we can obtain the exact solution using
separation of variables, i.e.,

Θ(x, t) = e−κπ2t sin πx.

This solution decays to a steady state, which, in this particular case in the absence of any
heat sources, is zero. This is shown graphically in the sketch of figure 7.1.

∞ steady state
(no heat source)

decaying solution

Θ(x,0)
10 x

t

Figure 7.1: The initial solution specified at t = 0 decays exponentially to zero (equilibrium state).

We are dealing, therefore, with a continuous diffusion model that produces a solution
which relaxes exponentially to the equilibrium state, i.e. the steady-state. Next, we will
construct corresponding discrete models.

7.1. Discrete Models of Unsteady Diffusion 392

7.1.1 Temporal and Spatial Discretization

We first discretize the differential equation in time while keeping the spatial derivative con-
tinuous. Following a multi-step discretization we obtain

Θn+1 −Θn

θ∆t
= F

(
∂2Θn+1

∂x2
,
∂2Θn

∂x2
,
∂2Θn−1

∂x2
, . . .

)
.

Here F represents a linear combination of its arguments, and its form is determined by the
time-stepping methods as in the discretization of ODEs in sections 5.2 and 6.2. For example,
following the θ-method we obtain the semi-discrete equation

Θn+1 −Θn

κ∆t
= θ

∂2Θn+1

∂x2
+ (1− θ)∂

2Θn

∂x2
.

Next, we can discretize each spatial derivative at all required time levels on the right-hand-

side of the equation above, to obtain

Θn+1
j −Θn

j

κ∆t
= θ∆xxΘ

n+1
j + (1− θ)∆xxΘ

n
j , j = 1, . . . , N − 1 (7.2)

Θn+1
0 = 0 = Θn+1

N (7.3)

Θ0
j = sin πxj . (7.4)

Specifically, we have employed the second-order three-point stencil

∆xxΘj ≡ 1

∆x2
(Θj+1 − 2Θj + Θj−1)

to approximate the second derivatives. The notation we adopt is as follows:

• Superscripts denote time levels, and

• Subscripts denote spatial location, unless otherwise stated explicitly.

Conditionally−stable

t
n

n+1

Unconditionally−stable

t

t

t

Figure 7.2: Space-time explicit (left) and implicit (right) stencils.

In the above discretization, we can obtain two fundamentally different time-space dis-
cretization stencils. Specifically,

7.1. Discrete Models of Unsteady Diffusion 393

• For θ = 0 we obtain a fully parallel but conditionally stable scheme, see figure 7.2 (left).

• For θ = 1, we obtain a partially parallel but unconditionally stable scheme, see figure
7.2 (right).

Next, we will examine in some detail the properties of these and similar time-space stencils;
we start with accuracy.

7.1.2 Accuracy of Difference Equation

We will denote the convergence rate and correspondingly the accuracy of the time-space
stencils using the notation

O(∆tp,∆xq)

where p corresponds to temporal accuracy order and q to spatial accuracy order.

We re-write the difference equation in the form

Θn+1
j −Θn

j

κ∆t
− θ∆xxΘ

n+1
j − (1− θ)∆xxΘ

n
j = 0,

and we expand the time-derivative using Taylor series

Θn+1
j −Θn

j

∆t
=
∂Θn

j

∂t
+

1

2
∆t
∂2Θn

j

∂t2
+O(∆t2).

Next, we expand the space-derivatives at time levels n and (n+ 1).

∆xxΘ
n
j =

∂2Θn
j

∂x2
+

∆x2

12

∂4Θn
j

∂x4︸ ︷︷ ︸
O(∆x2)

+O(∆x4)

∆xxΘ
n+1
j = ∆xxΘ

n
j + ∆t∆xx

∂Θn
j

∂t
+O(∆t2)

=
∂2Θn

∂x2
+

∆x2

12

∂4Θn
j

∂x4
+ ∆t

∂2

∂x2

∂Θn
j

∂t
+O(∆t∆x2) +O(∆x4)

Assuming it is permissible to perform the following operation

∂Θ

∂t
= κ

∂2Θ

∂x2
⇒ ∂2Θ

∂t2
= κ

∂2

∂x2

∂Θ

∂t
= κ

∂4Θ

∂x4
,

and also setting κ = 1 for simplicity, we obtain the difference equation

∂Θn
j

∂t
+

1

2
∆t
∂4Θn

j

∂x4
+O(∆t2)− θ∂

2Θn
j

∂x2
− θ∆x2

12

∂4Θn
j

∂x4
− θ∆t∂

4Θn
j

∂x4
+O(∆t2) +O(∆t3)

−(1− θ)∂
2Θn

j

∂x2
− (1− θ)∂

4Θn
j

∂x4

∆x2

12
+O(∆x4) +O(∆t∆x2) = 0.

7.1. Discrete Models of Unsteady Diffusion 394

We can now collect all terms and substitute in the difference equation to obtain the equivalent
differential equation:(

∂Θn
j

∂t
− ∂2Θn

j

∂x2

)
−∆t(θ − 1/2)

∂4Θn
j

∂x4︸ ︷︷ ︸
T n

j =truncation error

+
O(∆x2) +O(∆t2) +O(∆x2,∆t2)
+O(∆t∆x2) = 0︸ ︷︷ ︸

H.O.T.

.

(where H.O.T. denotes higher order terms). For consistency we require that the truncation
error

T n
j → 0, for ∆t, ∆x→ 0,

which is true for this difference equation. The truncation error also reveals the order of
accuracy. Specifically:

• For θ = 0 or 1 the truncation error is

T ∼ O(∆t,∆x2),

as expected since this corresponds to the Euler-forward and Euler-backward time-
stepping scheme, respectively.

• For θ = 1/2 the truncation error is

T ∼ O(∆t2,∆x2),

which corresponds to a second-order (Crank-Nicolson) time-stepping scheme.

7.1.3 Stability of Difference Equation

The Lax Equivalence Theorem for linear partial differential equations (PDEs) states that if
a difference equation is consistent with a PDE, i.e.,

‖ T n
i ‖2→ 0, ∆t,∆x→ 0,

then stability of the difference equation is a sufficient and necessary condition for convergence.

We have already seen in section 5.2 that for the difference equation resulting from an
ODE of the form

dU

dt
= λU,

we need to march with a time step smaller than a critical value, i.e.

∆t < ∆tc(λ),

where here in equation (7.1), λ corresponds to the eigenvalues of the Laplacian operator
since we can write

∂2Θ

∂2x
= λΘ, and in general ∇2Θ = λΘ.

7.1. Discrete Models of Unsteady Diffusion 395

TW

δ

Figure 7.3: Propagation of heat in a semi-infinite medium.

These eigenvalues depend on the spatial discretization parameter ∆x, so we expect that for
conditional stability we would have

∆t < F(∆x) .

The specific form of the above right-hand-side will depend on the spatial differential operator.

We can also use physical intuition to justify the constraint ∆t < F(∆x). To this end,
let us consider a semi-infinite plate of thermal diffusivity κ and model the heat propagation
through this medium by equation (7.1). By performing dominance balance on this equation
assuming a characteristic spacing ∆x and characteristic time scale ∆tc we obtain

Θ

∆tc
∼ κ

Θ

∆x2
⇒ ∆tc ∼ ∆x2

κ
.

In order to resolve that time scale we require that

∆t < ∆tc ⇒ ∆t < C
∆x2

κ

where C ∼ O(1), that is C is a constant of order one. This inequality can be re-written as

D ≡ κ∆t

∆x2
< C , (7.5)

which simply states that the non-dimensional left-hand-side, termed diffusion number, should
be less than a constant of order unity for proper temporal resolution of the heat propagation
in this isotropic medium.

In the following, we will demonstrate three different ways of obtaining the exact stability
constraint, that is, the value of the constant C. We will start from the more intuitive
perturbation method, and we will proceed with the classical von Neumann analysis, and a
more general method based on matrices.

7.1. Discrete Models of Unsteady Diffusion 396

Discrete Perturbation Stability Analysis

This method is based on the physics of propagation of perturbation. A discrete perturbation
in Θ(x, t) is introduced into the equation at an arbitrary point, and its effect is followed in
time. Stability is indicated if the perturbation dies out [78].

To demonstrate this approach we employ for simplicity the Euler-forward time-stepping
scheme. Let us introduce a disturbance ε into the difference equation at time level n at grid
point i, and follow its evolution in time, i.e.,

Θn+1
i − (Θn

i + ε)

∆t
= κ︸︷︷︸

thermal diffusivity

Θn
i+1 − 2(Θn

i + ε) + Θn
i−1

∆x2
.

Let us also assume that at time level (n) we have Θn
i = 0, and thus

Θn+1
i − ε
∆t

= −2
κ ε

∆x2
.

The initial disturbance at time level (n) is shown schematically in figure 7.4.

i−1 i + 1i

Figure 7.4: Initial disturbance introduced at time level n.

The disturbance distribution at the next time level is determined by

Θn+1
i = ε(1− 2D)

where D is the diffusion number, see equation (7.5). We note here that Θn+1
i represents the

evolving disturbance (since Θn
i = 0) of the initial disturbance ε. We now require that∣∣∣∣∣Θ

n+1
i

ε

∣∣∣∣∣ ≤ 1⇒ −1 ≤ 1− 2D ≤ 1 (7.6)

and therefore
D ≤ 1 .

If we require that no overshoots or undershoots appear in the solution, that is we want to
prevent spurious oscillations, we will need to impose the same sign constraint, i.e.,

Θn+1
i /ε ≥ 0 ,

which in turn leads to a more strict upper limit for the diffusion number, i.e.,

D ≤ 1/2.

7.1. Discrete Models of Unsteady Diffusion 397

At the (n + 1) time level we can obtain the new perturbation at all grid points from the
difference equation: Θn+1

i±1 = εD, thus

Θn+2
i = Θn+1

i +D[Θn+1
i+1 + Θn+1

i−1 − 2Θn+1
i]

= ε(1− 2D) +D[εD + εD − 2ε(1− 2D)] ,

and therefore
Θn+2

i = ε(1− 4D + 6D2) .

We require also at this time level that disturbances do not grow, that is we impose∣∣∣∣∣Θ
n+2
i

ε

∣∣∣∣∣ ≤ 1⇒ −1 ≤ 1− 4D + 6D2 ≤ 1 ,

which is satisfied for
D ≤ 2/3 .

n = 0

n = 1

+ε

−ε
n

’

’

Figure 7.5: Evolution of disturbance at different time levels.

Graphically, the evolution of disturbance for the first few time steps is described in figure
7.5, and after many time steps the asymptotic spreading of a single perturbation approaches
a 2∆x wave. Therefore, the most dangerous disturbance is produced asymptotically and
corresponds to an amplitude ε′. The difference equation then gives

Θn+1
i = ε′ +D(−ε′ − 2ε′ − ε′) = ε′(1− 4D).

For stability we require that ∣∣∣∣∣Θ
n+1
i

ε′

∣∣∣∣∣ ≤ 1⇒ −1 ≤ 1− 4D ≤ 1,

and from this we deduce that
D ≤ 1/2 .

If we now compare this constraint on the diffusion number derived from the asymptotic
spreading of the disturbance with the initial requirement of preventing spurious oscillations
we conclude that:

• The long-time stability requirement is equivalent to the requirement for zero overshoots
for an isolated disturbance.

7.1. Discrete Models of Unsteady Diffusion 398

The von Neumann Stability Analysis

This approach was developed by John von Neumann in the early 1940s at Los Alamos, and
it is the most popular method. It assumes that the domain is infinite in extent or periodic
and employs the discrete analog of Fourier series expansions in the form

Θn
j =

N−1∑
k=1

an
k sin πkxj

with Θn
0 = Θn

N = 0 and xj = j ·∆x; an
k are the Fourier-sine coefficients.

The main idea is to reduce the difference equation for Θn
j into an uncoupled ordinary differ-

ence equation for an
k , and subsequently require that

|an+1
k | ≤ |an

k |
in order to guarantee absolute stability.

To proceed we use the general identity

Θj−1 − 2Θj + Θj+1 =
N−1∑
k=1

ak[sin πk∆x(j − 1)− 2 sin πk∆xj + sin πk∆x(j + 1)]

=
N−1∑
k=1

ak sin πk∆xj(2 cos πk∆x− 2)

= −
N−1∑
k=1

σkak sin πk∆xj,

where ∆x = 1/N and

σk ≡ 2(1− cos πk∆x) where 0 < σκ < 4 .

We analyze the time-space stencil corresponding to the θ-method again, and upon substitu-
tion in the difference equation (7.2) we obtain

Θn+1
j −Θn

j = θD(Θn+1
j−1 − 2Θn+1

j + Θn
j+1) +D(1− θ)(Θn

j−1 − 2Θn
j + Θn

j+1),

and therefore

N−1∑
k=1

(an+1
k − an

k) sin πkxj = Dθ
N−1∑
k=1

−σka
n+1
k sin πkxj +D(1− θ)

N−1∑
k=1

−σka
n
k sin kπxj

or
an+1

k − an
k = −Dθσka

n+1
k −D(1− θ)σka

n
k

and finally

an+1
k = an

k

(
1−D(1− θ)σk

1 +Dθσk

)
. (7.7)

We can now obtain specific forms for the three main members of the family:

7.1. Discrete Models of Unsteady Diffusion 399

• θ = 0 corresponds to Euler-forward scheme. We obtain

an+1
k = an

k(1−Dσk)⇒ |1−Dσk| ≤ 1⇒ D ≤ 2/σk, ∀k
since maxσk = 4, ∀ k, we have that D ≤ 1/2, as before.

• θ = 1/2 corresponds to Crank-Nicolson scheme. Here we obtain

an+1
k =

1− Dσk

2

1 + Dσk

2

an
k .

This is an unconditionally stable scheme. It damps high-frequency components very
weakly, although these components may (physically) decay very rapidly. However, for
θ = 1/2+α∆t, where α is a small positive constant, all components of the solution are
damped and the method is still formally second-order accurate in time, i.e., O(∆t2).

• θ = 1 corresponds to Euler-backward scheme. We have

an+1
k =

an
k

1 +Dσk

.

This is also an unconditionally stable scheme, and it damps high-frequency components
very rapidly.

The structure of the instability can be studied by examining the most dangerous mode,
which corresponds to

k = N − 1⇒ σk,max = 4,

and therefore
ε ∼ sin π(N − 1)x

with wavelength
2π

π(N − 1)
∼ 2

N
= 2∆x .

Therefore, the error has a “sawtooth” form with wavelength 2∆x, as our previous perturba-
tion analysis also showed.

Matrix Methods for Stability Analysis

This is the most general method and is suitable for studying the effect of boundary conditions
on the stability of the difference equation. The main idea is to follow the method of lines,
where we discretize the space derivatives first while we keep the time derivatives continuous.
For example, for the heat equation (7.1) we obtain the vector equation

dΘj

dt
= AΘj,

where A is the discrete operator

A =
κ

∆x2
(E− 2I + E−1)

7.1. Discrete Models of Unsteady Diffusion 400

defined in terms of the displacement operator E, see section 5.1. In this form, we can examine
the eigenspectrum of the matrix obtained from the operator A to determine the stability of
the difference equation.

Before we treat the effect of boundary conditions, however, we revisit the heat equation with
periodic boundary conditions, and in this context we introduce the matrix stability analysis.
To this end, we obtain the fully-discrete form of equation (7.1)

Θn+1
j = CΘn

j , C = I + ∆t ·A = I +D(E− 2I + E−2),

where D is the diffusion number. This form corresponds to the Euler-forward scheme (θ = 0)
as before. We can recover the von Neumann analysis here by introducing a single harmonic
perturbation

Θn
j = Θ̂neijφ where φκ = φ = k

π

N
.

Upon substitution, we obtain

Θ̂n+1 = G(φ)︸ ︷︷ ︸
Amplification Matrix

Θ̂n = [G(φ)]nΘ̂1.

For stability [G(φ)]n has to be bounded, and thus the von Neumann necessary condition for
stability is

ρ(G) = max
k
|λk| ≤ 1,

where ρ(G) is the spectral radius of the matrix G. (Actually, the more precise condition
is ≤ 1 + O(∆t), see [77]). If G is a normal matrix (i.e., it commutes with its Hermitian
conjugate), then the condition ρ(G) ≤ 1 is also a sufficient condition.

Example 1 - The Euler-forward scheme: We can clarify this matrix further by con-
sidering the Euler-forward scheme, which we have already analyzed with the previous two
methods. We first introduce a single harmonic in the equation

Θn+1
j = Θn

j +
κ∆t

∆x2
(Θn

j+1 − 2Θn
j + Θn

j−1),

and we have also defined D ≡ κ∆t
∆x2 . Here we have a scalar equation, and the amplification

factor is

eijφG(φ) = eijφ +
κ∆t

∆x2
(ei(j+1)φ − 2eijφ + ei(j−1)φ)

⇒ G(φ) = 1 +D(eiφ − 2 + e−iφ)

⇒ G(φ) = 1− 4D sin2 φ/2 .

Thus, we require that
|G(φ)| ≤ 1⇒ 0 ≤ D ≤ 1/2,

and we recover the condition derived previously with the other two methods.

7.1. Discrete Models of Unsteady Diffusion 401

For the Euler-forward scheme we can also use the amplification factor G(φ) to analyze the
nature of the error. The exact solution we obtained can be re-written as

Θn = e−iω(n∆t) · eikj∆x ·Θ∗
0(k),

where Θ∗
0(k) is the harmonic corresponding to initial data, so

Θn = (e−iω∆t)neikj∆xΘ∗
0(k) = Gneikj∆xΘ∗

0(k).

Thus, G = e−iω∆t is the exact amplification factor, where ω = ω(k) defines the exact
dispersion relation . Let

ω = ωr + iωi,

then

G = eωi∆t · e−iωr∆t = |G|e−iΦ

where Φ = ωr∆t and |G| = eωi∆t. In order to compare the error in amplitude, we define

εD =
|G|
eωi∆t

, for numerical dissipation.

Similarly, to compare the error in phase, we define

εφ =
Φ

ωr∆t
, for numerical dispersion.

Specifically, for the Euler-forward time-discretization of equation (7.1) we have

ω = −iκk2 = −iD φ2

∆t
, where φ =

kπ

N
= k∆x.

Therefore, the dissipation error is

εEF
D =

1− 4D sin2 φ/2

e−Dφ2 =
1−Dφ2 +Dφ4/12 + . . .

1−Dφ2 + (D2φ4/2) + . . .

or

εEF
D ≈ 1− D2φ4

2
+
Dφ4

12
+ . . . ≈ 1− κ2k4∆t2

2
+
κk4

12
∆t∆x2 −

Clearly, for low frequencies (φ ≈ 0) there are only small errors, and specifically for D = 1/6
we obtain a high-order scheme, i.e., O(∆t2,∆x4)!

Example 2 - The DuFort-Frankel scheme: This is an example of an inconsistent scheme,
which sometimes converges and sometimes does not, and this is a very dangerous practice.
It involves two previous time levels so the amplification factor is now a matrix and not a
scalar as before. We first apply the leap-frog scheme to equation (7.1), i.e.,

Θn+1
j −Θn−1

j = 2D(Θn
j+1 − 2Θn

j + Θn
j−1).

7.1. Discrete Models of Unsteady Diffusion 402

Then, we average in time the term Θn
j on the right-hand-side to obtain 1

2
[Θn+1

j + Θn−1
j], and

upon substitution into the expression above, we have

Θn+1
j −Θn−1

j = 2D(Θn
j+1 −Θn+1

j −Θn−1
j + Θn

j−1)

or
Θn+1

j (1 + 2D) = Θn−1
j (1− 2D) + 2D(Θn

j+1 + Θn
j−1).

Let us now introduce a new variable zn = Θn−1, and recast the above into the system:

Θn+1
j =

1− 2D

1 + 2D
zn +

2D

1 + 2D
(Θn

j+1 + Θn
j−1)

zn+1
j = Θn

j .

In matrix form, if we set W =

[
Θn

j

zn
j

]
, we have:

Wn+1 = CWn where C =




2D(E+E−1)
1+2D

1−2D
1+2D

1 0


 .

The corresponding amplification matrix becomes

G =




2D(eiφ+e−iφ)
1+2D

1−2D
1+2D

1 0


 =




4D cos φ
1+2D

1−2D
1+2D

1 0




with eigenvalues

λ± =
2D cosφ±

√
1− 4D2 sin2 φ

1 + 2D
,

and for
D > 0⇒ |λ± | < 1 ∀φ.

This result, which implies unconditional stability for an explicit scheme, is suspicious! It
clearly violates the second stability barrier of Dahlquist, see section 6.2.1. To analyze this,
we need to examine convergence, and thus we need to consider the consistency of this scheme.
To this end, we obtain the equivalent differential equation

Θt − κΘxx = −∆t2

6
Θtt + κ

∆x2

12

(
∂4Θ

∂x4

)
+
κ∆x4

360

(
∂6Θ

∂x6

)

−κ∆t2

∆x2
Θtt − κ∆t4

12∆x2

(
∂4Θ

∂t4

)
+ . . .

In the limit as ∆t,∆x→ 0 at the same rate the ratio ∆t/∆x is constant, and thus we solve
a modified differential equation and not the original equation (7.1). Specifically, we solve

∂Θ

∂t
+ κ

(
∆t

∆x

)2 ∂2Θ

∂t2︸ ︷︷ ︸
extra term

= κ
∂2Θ

∂x2
.

We have a clear violation of the consistency condition! However, in practice one can take the
diffusion number D = κ∆t

∆x2 to be constant, and then the DuFort-Frankel scheme is almost
consistent since ∆t→ 0 faster than ∆x.

7.1. Discrete Models of Unsteady Diffusion 403

7.1.4 Spectrum of the Diffusion Operator

Next, we examine the eigenspectrum of the matrix

A =
κ

∆x2
(E− 2I + E−1)

corresponding to different types of boundary conditions. Specifically, we consider:

• Dirichlet Boundary Conditions: Let us assume that Θ0(0) = a; ΘN = b. Then the
equations for the end-points are

dΘ1

dt
=

κ

∆x2
(a− 2Θ1 + Θ2),

and
dΘN−1

dt
=

κ

∆x2
(b− 2ΘN−1 + ΘN−2).

The corresponding linear system is

dΘ

dt
=

κ

∆x2




−2 1
1 −2 1

1 −2 1
. . .

. . .

1 −2







Θ1
...
...
...

ΘN−1




+




κa
∆x2

...
0
...
κb

∆x2



.

• Neumann Boundary Conditions: We assume that ∂Θ
∂x
|0 = a and ΘN = b. For the

boundary point with the Neumann condition we have

1

∆x
(Θ1 −Θ0) = a⇒ Θ0 = Θ1 − a∆x,

and thus
dΘ1

dt
=

κ

∆x2
(Θ0 − 2Θ1 + Θ2) =

κ

∆x2
(−Θ1 + Θ2 − a∆x).

The corresponding linear system is

dΘ

dt
=

κ

∆x2




−1 1
1 −2 1

1 −2 1
. . .

1 −2







Θ1
...
...

ΘN−1




+




− κa
∆x
...
0
...
κb

∆x2



.

• Periodic Boundary Conditions: We assume that

{
Θ0 = ΘN

Θ−1 = ΘN−1

7.1. Discrete Models of Unsteady Diffusion 404

The equations for the boundary points are

dΘ0

dt
=

κ

∆x2
(ΘN−1 − 2Θ0 + Θ1)

dΘN−1

dt
=

κ

∆x2
(Θ0 − 2ΘN−1 + ΘN−2)

then:

dΘ

dt
=

κ

∆x2




−2 1 1
1 −2 1

1 −2 1
. . .

1 1 −2







Θ0...
...
...

ΘN−1




It can be shown (see section 7.3) that the eigenvalues of a general tridiagonal matrix B(a, b, c)
of rank N determined from the condition det |B(a, b− λ, c)| = 0 are given by

λj = b+ 2
√

(ac) cos
jπ

N + 1
, j = 1, . . . , N

while the corresponding eigenvectors are:

φ(j)
m = Cj

(
a

c

)(m−1)/2

sinm
(

jπ

N + 1

)
, m = 1, . . . , N.

Notice that the eigenvectors do not depend on the diagonal element b and that Cj is arbitrary,
and it is determined by normalization conditions.

Similarly, for the periodic case we have:

λj = b+ ae−i2πj/N + cei2πj/N

φj
m = Cje

i(2πj/N)m, where m = 1, . . . , N

which can be obtained directly from the properties of a circulant matrix.

Specifically now for the Diffusion operator we have:

• Dirichlet boundary conditions:

λj =
−4κ

∆x2
sin2

(
πj

2(N + 1)

)
, j = 1, . . . , N.

• Periodic boundary conditions:

λj =
−4κ

∆x2
sin2

(
πj

N

)
.

• Neumann/Dirichlet boundary conditions:

λj =
−4κ

∆x2
sin2 (2j − 1)π

(2N + 1)2
.

7.1. Discrete Models of Unsteady Diffusion 405

The important conclusion from inspecting these eigenvalues is that they grow as N2 since
∆x ∼ 1/N . We also note that for the Euler-forward scheme we recover again

∆t < 2/|λ| ⇒ D ≤ 1/2

as before. Finally, we observe that all type of boundary conditions lead to stable discretiza-
tions, unlike the discrete convection equation, see chapter 8. Stability here is satisfied if
Re(λj) ≤ 0, ∀ j. In addition, if λj = 0 it has to be a simple eigenvalue.

Experiments with Euler-forward and Euler-backward

We will now consider both an Euler-forward and an Euler-backward time integration com-
bined with the second-order finite difference spatial differentiation operator.

Software

 Suite

First, we present a C++ function which incorporates a central
finite difference scheme with the Euler-forward time integration
scheme. The function takes as input the number of points in
the grid, the diffusion number DN , an array containing the
current value of the solution uold, and an array unew into
which to place the solution at the new time. Observe that
we only update the interior points 1, . . . , N − 2, leaving the
boundary conditions to be handled separately.

void Diffusion_EF_CentralDifference(int N, double DN,

double *uold, double *unew){

for(int i=1;i<N-1;i++)

unew[i] = uold[i] + DN*(uold[i+1] - 2.0*uold[i] + uold[i-1]);

return;

}

Observe that this function is fully explicit, both in space and in time. Given the current
value of the solution at a particular time, the solution at the next time step is obtained
by finite differencing and explicit time marching. Compare this with the Euler-backward
implementation, which uses implicit time-marching.

7.1. Discrete Models of Unsteady Diffusion 406

Software

 Suite

We now present a C++ function which incorporates a central
finite difference scheme with the Euler-backward time integra-
tion scheme. The function takes as input the number of points
in the grid, the diffusion number DN , an array containing
the current value of the solution uold, and an array unew into
which to place the solution at the new time. To solve the Euler-
backward problem, we use our Thomas Algorithm tridiagonal
solver. The tridiagonal system is formed by the second-order
finite difference operator. Observe that we only update the in-
terior points 1, . . . , N−2 (by passing only (N−2) points to the
ThomasAlgorithm function), leaving the boundary conditions
to be handled separately.

void Diffusion_EB_CentralDifference(int N, double DN,

double *uold, double *unew){

ThomasAlgorithm(N-2,-DN,1.0+2.0*DN,-DN,&unew[1],&uold[1]);

return;

}

Programming Note

• Notice the use of ’&’ in the code above. Recall what this means –
the ’&’ operator gives us “the address of.” So, in the expression
above, we are passing to the ThomasAlgorithm routine the address
of the second entry of the uold and the unew array. In figure 7.6,
we show the memory addressing for the unew array and how
the “&” operator can be used to obtain memory addresses for
elements of the unew array.

As a model problem for the Euler-forward and Euler-backward implementations presented
above, we will examine the problem of finding the solution Θ(x, t) of equation (7.1) on the
interval [0, 1] with the boundary conditions Θ(0, t) = Θ(1, t) = 0.0. We present a total
of three numerical experiments, two cases using Euler-forward and one case using Euler-
backward.

Experiment 1 – Euler-forward with D = 0.7: For this experiment, we use the pa-
rameters as given in table 7.1. The results are presented in figure 7.7. This choice of the

7.1. Discrete Models of Unsteady Diffusion 407

unew[0]

unew[1]

unew[2]

unew[3]

unew[4]

unew[5]

&unew[0] = unew
&unew[1] = unew + 1
&unew[2] = unew + 2
....

Array Indexing Memory Indexing

Figure 7.6: Memory addressing for the array unew.

parameter D is clearly above the D ≤ 0.5 necessary for stability. Observe in figure 7.7 the
2∆x instability that renders the computation useless in very few iterations.

Parameter Value

Method Euler-forward Central Difference
Interval [0, 1]
N 21
∆t 0.00175
D 0.7

Initial Condition u(x, 0) = sin(πx)
Boundary Conditions u(0, t) = u(1, t) = 0

Table 7.1: Parameters used for the simulations presented in figure 7.7.

Experiment 2 – Euler-forward with D = 0.4: For this experiment, we use the pa-
rameters as given in table 7.2. The results are presented in figure 7.8. This choice of the
parameter D is clearly below the D ≤ 0.5 necessary for stability. Observe in figure 7.8
that the solution remains stable and agrees quite well with the exact solution for the three
different times presented.

Experiment 3 – Euler-backward with D = 1.0: For this experiment, we use the
parameters as given in table 7.3. The results are presented in figure 7.9. Because we now
use an implicit method for the time integration, we are no longer bound by the D ≤ 0.5
limit imposed for Euler-forward. Observe in figure 7.9 that the solution remains stable and

7.1. Discrete Models of Unsteady Diffusion 408

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

After 50 steps
0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

After 60 steps
0 0.5 1

0

2

4

6

8

10

After 70 steps

Exact Solution
Approximate Solution

Figure 7.7: Euler-forward/central difference versus exact solution at different times for D = 0.7.

Parameter Value

Method Euler-forward Central Difference
Interval [0, 1]
N 21
∆t 0.001
D 0.4

Initial Condition u(x, 0) = sin(πx)
Boundary Conditions u(0, t) = u(1, t) = 0

Table 7.2: Parameters used for the simulations presented in figure 7.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Exact Solution
Approximate Solution

After 100 Iterations

After 200 Iterations

After 300 Iterations

Figure 7.8: Euler-forward/central difference versus exact solution at different times for D = 0.4.

7.1. Discrete Models of Unsteady Diffusion 409

agrees quite well with the exact solution for the three time instances presented. Because of
the use of a larger D, however, fewer iterations are necessary than in the Euler-forward case.

Parameter Value

Method Euler-Backward Central Difference
Interval [0, 1]
N 21
∆t 0.0025
D 1.0

Initial Condition u(x, 0) = sin(πx)
Boundary Conditions u(0, t) = u(1, t) = 0

Table 7.3: Parameters used for the simulations presented in figure 7.9.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Exact Solution
Approximate Solution

After 50 Iterations

After 100 Iterations

After 150 Iterations

Figure 7.9: Euler-backward/central difference versus exact solution at varying times for D = 1.0.

7.1.5 Multi-Dimensional Time-Space Stencils

We now turn to two-dimensional domains to demonstrate how we obtain discrete models of
diffusion. Let us consider the unsteady diffusion equation in a domain Ω, see figure 7.10,
with heat sources q(x, t), i.e.,

∂Θ

∂t
= ∇2Θ + q (7.8)

Θ(x, y, t) = 0 on ∂Ω (7.9)

Θ(x, y, 0) = Θ0(x, y) inΩ. (7.10)

7.1. Discrete Models of Unsteady Diffusion 410

ΩΩ

0
0

1

1

x

y

Figure 7.10: Two-dimensional domain.

We have assumed that we have homogeneous boundary conditions and that Θ0(x, y) is a
known function. We employ the θ-method to discretize this in time first, i.e.,

Θn+1 −Θn

∆t
= θ(∇2Θn+1 + qn+1) + (1− θ)(∇2Θn + qn).

We now use the Cartesian five-point stencil (see section 5.1) to discretize in space

Θn+1
ij −Θn

ij

∆t
= θ

[
Θn+1

i+1,j − 2Θn+1
ij + Θn+1

i−1,j

∆x2
+

Θn+1
i,j+1 − 2Θn+1

ij + Θn+1
i,j−1

∆y2

]

+ (1− θ)
[
Θn

i+1,j − 2Θn
ij + Θn

i−1,j

∆x2
+

Θn
i,j+1 − 2Θn

ij + Θn
i,j−1

∆y2

]

+ θqn+1
ij + (1− θ)qn

ij .

The accuracy of this discretization can be obtained by examining the truncation error, and
as expected is

• For θ = 0 or θ = 1, the overall accuracy is O(∆t,∆x2,∆y2).

• For θ = 1/2, the overall accuracy is O(∆t2,∆x2,∆y2).

Directional Splitting Method

We consider again the diffusion equation (7.1) with κ = 1. One of the most economical
approaches in solving this problem is to split directions and perform one-dimensional solves
on corresponding and equivalent PDEs. The key to successful implementation of this idea is
the construction of the new approximate equations. In the following, we demonstrate a few
different ways of accomplishing this task.

1. Alternating-Direction-Implicit (ADI) Method

In two-dimensions, the Alternating-Direction-Implicit (ADI) method solves implicitly
along the x-direction first, and subsequently it solves implicitly along the y-direction. This
is done in two steps as follows

7.1. Discrete Models of Unsteady Diffusion 411

Pass I:
Θ∗

i,j −Θn
i,j

∆t
= Θ∗

xx + Θn
yy

Pass II:
Θn+1

i,j −Θ∗
i,j

∆t
= Θ∗

xx + Θn+1
yy .

From pass I we obtain Θ∗ and from pass II we obtain the final solution Θn+1. To avoid bias
towards one direction, we can alternate the order in the x − y directions every step. This
method is O(∆t2,∆x2,∆y2), and it is unconditionally stable. However, in the presence of
time-dependent boundary conditions the two substeps introduce boundary errors of different
orders, i.e., O(∆t),O(∆t2) to the solution.

2. Approximate Factorization

We consider the time-discrete equation

Θn+1
ij −Θn

ij

∆t
=

(
∂2

∂x2
+

∂2

∂y2

)
Θn+1

ij

which is re-written in Helmholtz operator form{
1−∆t

(
∂2

∂x2
+

∂2

∂y2

)}
Θn+1

ij = Θn
ij.

We then approximate this by the product of two one-dimensional operators:(
1−∆t

∂2

∂x2

)(
1−∆t

∂2

∂y2

)
Θn+1

ij ≈ Θn
ij,

which can be solved in two passes

Pass I: (
1−∆t

∂2

∂y2

)
Θ∗

i,j = Θn
i,j.

Pass II: (
1−∆t

∂2

∂x2

)
Θn+1

ij = Θ∗
ij .

Multiplying the two one-dimensional Helmholtz operators we obtain


1−∆t

(
∂2

∂x2
+

∂2

∂y2

)
+ ∆t2

(
∂2

∂x2

∂2

∂y2

)
︸ ︷︷ ︸

extra term




Θn+1
ij = Θn

ij .

Therefore, the factorization has introduced an extra term which is O(∆t2) and is equal to
the local error of the Euler-backwards discretization.

7.1. Discrete Models of Unsteady Diffusion 412

Example: ADI Factorization versus Crank-Nicolson

We consider discretizations over a time interval of 2∆t. We first construct a Crank-Nicolson
time-discretization

Θn+2 −Θn =
2∆t

2

{(
Θn+2

xx + Θn+2
yy

)
+
(
Θn

xx + Θn
yy

)}

⇒
{

1−∆t

(
∂2

∂x2
+

∂2

∂y2

)}
Θn+2 =

{
1 + ∆t

(
∂2

∂x2
+

∂2

∂y2

)}
Θn

and an approximate factorization:(
1−∆t

∂2

∂x2

)
Θn+1 =

(
1 + ∆t

∂2

∂y2

)
Θn

(
1−∆t

∂2

∂y2

)
Θn+2 =

(
1 + ∆t

∂2

∂x2

)
Θn+1

where we have assumed that all these linear operators are commutative. Therefore, for the
factorization we obtain(

1−∆t
∂2

∂x2

)(
1−∆t

∂2

∂y2

)
Θn+2 =

(
1 + ∆t

∂2

∂x2

)(
1 + ∆t

∂2

∂y2

)
Θn

and expanding further we obtain{
1−∆t

(
∂2

∂x2
+

∂2

∂y2

)
+ ∆t2

(
∂2

∂x2

∂2

∂y2

)}
Θn+2

=

{
1 + ∆t

(
∂2

∂x2
+

∂2

∂y2

)
+ ∆t2

(
∂2

∂x2

∂2

∂y2

)}
Θn .

Comparing this ADI form and the Crank-Nicolson form we see that there is an extra term
in the factorization, namely

A = ∆t2
(
∂2

∂x2

∂2

∂y2

)(
Θn+2 −Θn

)
.

We can approximate

∂Θn

∂t
=

Θn+2 −Θn

2∆t
+O(∆t)⇒ A ≈ 2∆t3

(
∂2

∂x2

∂2

∂y2

)
∂Θn

∂t
,

which is an O(∆t3) term and thus consistent with the local error in the Crank-Nicolson
approximation. Therefore, the accuracy between the two approaches is comparable, but in
the approximate factorization only one-dimensional solves are involved.

3. ADI for Stationary Problems

7.1. Discrete Models of Unsteady Diffusion 413

ADI methods can also be used to solve the system resulting from a stationary elliptic
equation, i.e.,

Θxx + Θyy = q.

Assuming that we discretize with the three-point central difference in each direction we
obtain

[Ax + Ay]Θ = q (7.11)

where Ax, Ay are the discrete operators in x- and y-directions, respectively. In the following,
we present algorithms for two-dimensional and three-dimensional discretizations.

Peaceman-Rachford Algorithms for Two-Dimensions

The idea here is to combine ADI with convergence acceleration tricks, i.e.,

(Ax + ρnI)Θ
∗ = (ρnI−Ay)Θ

n + q

(Ay + ρnI)Θ
n+1 = (ρnI−Ax)Θ

∗ + q,

where ρn, n = 1, . . . is a sequence of positive acceleration parameters. Also, I is the identity
operator.

For positive-definite systems, Ax and Ay have real eigenvalues and several theoretical
results hold, see [89]. For example, if Ax, Ay are positive-definite and symmetric, any
sequence ρn = C > 0 will produce a convergent iteration. The rate of convergence of ADI
can be greatly enhanced by a sequence ρn in cyclic order.

Douglas-Rachford Algorithm for Three-Dimensions

Here we consider the three-dimensional analog of equation (7.11) and split in three di-
rections as follows

(Ax + ρnI)Θ
∗ = −(Ax + 2Ay + 2Az − ρnI)Θ

n + 2q

(Ay + ρnI)Θ
∗∗ = −(Ax + Ay + 2Az − ρnI)Θ

n −AxΘ
∗ + 2q

(Az + ρnI)Θ
∗∗∗ = −(Ax + Ay + Az − ρnI)Θ

n −AxΘ
∗ −AyΘ

∗∗ + 2q

We note here that convergence is not always guaranteed for ρn = C > 0.

Stability Analysis

We can apply von Neumann analysis similarly to the one-dimensional case, i.e.,

Θn
ij =

∑
k

∑
	

an
k	 sin kπxi sin �πyj.

We then substitute this expression into the homogeneous difference equation to obtain the
uncoupled recursion for an

k	:

an+1
k	 = an

k	

1−D(1− θ)σk	

1 +Dθσk	

σk	 = 2[(1− cos kπ∆x) + δ2(1− cos �π∆y)] > 0

7.1. Discrete Models of Unsteady Diffusion 414

where δ = ∆x
∆y

and D = ∆t
∆x2 is the diffusion number. For the specific members of the θ-family

we have:

• For θ = 1/2, 1 unconditional stability.

• For θ = 0 explicit time-discretization, thus

−1 ≤ 1−Dσk	 ≤ 1⇒ D ≤ 2

σk	

where
max

k,	
σk	 = 4(1 + δ2).

Therefore, D ≤ 1
2(1+δ2)

and thus

∆t ≤ 1

2

1

2
(

1
∆x2 + 1

∆y2

) .
If ∆x = ∆y then

∆t ≤ ∆x2

4
.

This condition is more restrictive than in the one-dimensional case where ∆t ≤ ∆x2

2
!

Remark 1: In three-dimensions the diffusion number limit is 1/8 (obtained by similar
analysis). Therefore, if we double the resolution in one-dimensional problems the cost is
increased eight times whereas if we double the resolution in three-dimensional problems the
cost is increased 32 times!

Remark 2: Implicit time-discretization requires the solution of a stationary elliptic equation
of the Helmholtz type, since

Θn+1 −Θn

∆t
= ∇2Θn+1 + qn+1

and by re-arranging we obtain

(
∇2 − 1

∆t

)
Θn+1 = −Θn

∆t
− qn+1,

which is an A-stable scheme.

We can also apply matrix methods as in the one-dimensional case to analyze the sta-
bility of multi-dimensional difference equations. For example, for two-dimensional problems
with periodic boundary conditions we consider a single harmonic component eiφxeiφy , then
discretizing with the θ-family we obtain

G− 1 = θDG[(eiφx + e−iφx − 2) + δ2(eiφy + e−iφy − 2)]

+ (1− θ)D[(eiφx + e−iφx − 2) + δ2(eiφy + e−iφy − 2)] ,

7.1. Discrete Models of Unsteady Diffusion 415

and therefore

G =
1− 4D(1− θ)[sin2 φx

2
+ δ2 sin2 φy

2
]

1 + 4Dθ[sin2 φx

2
+ δ2 sin2 φy

2
]

,

where δ ≡ ∆x
∆y
. For the specific members of the family:

• For θ = 0, we obtain

|1− 4D(sin2 φx

2
+ δ2 sin2 φy

2
)| ≤ 1,

which for ∆x = ∆y leads to: D ≤ 1
4

or ∆t ≤ ∆x2

4κ
, as before.

• For θ = 1, 1/2 we have unconditional stability ∀D > 0.

7.2. Iterative Solvers 416

7.2 Iterative Solvers

Discretization of the diffusion equation leads us naturally to iterative solutions of elliptic
problems of the form

∇2Θ + q = 0 on Ω, Θ(x, y) = 0 on ∂Ω (7.12)

where Ω and ∂Ω are the domain and the boundary of the domain, respectively (see figure
7.11). Here we assume homogeneous boundary conditions for clarity in the presentation.

Ω

Ω
Figure 7.11: General two-dimensional domain Ω.

This connection becomes more clear by introducing a pseudo-time derivative to obtain

∂Θ

∂t
= ∇2Θ + q on Ω, Θ(x, y) = 0 on ∂Ω. (7.13)

We then compute the sequence

Θ0
ij, Θ1

ij, Θ2
ij , . . . , Θn−1

ij , Θn
ij . . . , Θ∞

ij

from equation (7.13) in the limit of many iterations. Therefore, Θ∞
ij is the steady-state

solution, which is different than the exact solution due to spatial discretization error. Any
other member of the sequence differs from the exact solution by the spatial discretization
error as well as the solver convergence error; we will analyze the latter in the following.

7.2.1 Jacobi Algorithm

We now demonstrate how we can derive the algorithm for perhaps the oldest iterative solver,
the Jacobi iterative method. We apply Euler-forward discretization to the diffusion equation
(7.13) assuming that we have a two-dimensional domain Ω (such as in figure 7.12 (left)) and
taking ∆x = ∆y. We also assume that we are given some function q defined on the domain
(such as in figure 7.12 (right)). We then have

Θn+1
ij −Θn

ij

∆t
= qij +

1

∆x2
(Θn

i+1,j + Θn
i,j+1 − 4Θn

ij + Θn
i,j−1 + Θn

i−1,j)

or:
Θn+1

ij = ∆t · qij +D(Θn
i+1,j + Θn

i,j+1 − 4Θn
ij + Θn

i−1,j + Θn
i,j−1) + Θn

ij,

7.2. Iterative Solvers 417

where D = ∆t
∆x2 is the diffusion number defined in equation (7.5). In order to determine the

rate of convergence, we write
Θn

ij = Θ∞
ij + εnij

where εnij is the deviation from the fixed point, i.e., the steady-state.
It is also clear that Θ∞

ij satisfies the difference equation

1

∆x2
(Θ∞

i+1,j + Θ∞
i,j+1 − 4Θ∞

ij + Θ∞
i−1,j + Θ∞

i,j−1) + qij = 0.

By subtracting the two difference formulas above we obtain an equation for the convergence
error

εn+1
ij = εnij +D(εni+1,j + εni,j+1 − 4εnij + εni−1,j + εni,j−1).

Convergence is obtained if |εn| → 0, which is implied by absolute stability. Therefore, we
require that D ≤ 1/4 and specifically we take D = 1/4 for the fastest possible convergence.

Given the above analysis we can now write the Jacobi algorithm for solving equation
(7.12) in the form

Θn+1
ij =

1

4
(Θn

i+1,j + Θn
i,j+1 + Θn

i−1,j + Θn
i,j−1 + ∆x2qij)

for all the interior points. Appropriate modifications with one-sided differences may be
required to construct similar equations applied at the boundary.

ΩΩ

0
0

1

1

x

y

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Figure 7.12: Example domain (left) and function q(x, y) (right) used to demonstrate the Jacobi
algorithm.

Software

 Suite
Putting it into Practice

7.2. Iterative Solvers 418

We now present a C++ implementation of the algorithm previously discussed. This
function takes as input the number of points N , the grid spacing dx, the δt, the matrix A
as a double ∗ ∗ array, the right-hand-side vector q, and a stopping tolerance.

int Diffusion_Jacobi(int N, double dx, double dt,

double **A, double **q, double abstol){

int i,j,k;

int maxit = 100000;

double sum;

double ** Aold = CreateMatrix(N,N);

double D = dt/(dx*dx);

for(i=1; i<N-1; i++)

for(j=1;j<N-1;j++)

Aold[i][j] = 1.0;

/* Boundary Conditions -- all zeros */

for(i=0;i<N;i++){

A[0][i] = 0.0;

A[N-1][i] = 0.0;

A[i][0] = 0.0;

A[i][N-1] = 0.0;

}

for(k=0; k<maxit; k++){

for(i = 1; i<N-1; i++){

for(j=1; j<N-1; j++){

A[i][j] = dt*q[i][j] + Aold[i][j] +

D*(Aold[i+1][j] + Aold[i][j+1] - 4.0*Aold[i][j] +

Aold[i-1][j] + Aold[i][j-1]);

}

}

sum = 0.0;

for(i=0;i<N;i++){

for(j=0;j<N;j++){

sum += (Aold[i][j]-A[i][j])*(Aold[i][j]-A[i][j]);

Aold[i][j] = A[i][j];

}

}

if(sqrt(sum)<abstol){

DestroyMatrix(Aold,N,N);

return k;

7.2. Iterative Solvers 419

}

}

cerr << "Jacobi: Maximum Number of Interations Reached \n";

DestroyMatrix(Aold,N,N);

return maxit;

}

Remark: Remember to free dynamically allocated memory when exiting a routine. Often
programmers forget to free things when they exit a function after a particular tolerance is
found. Observe in the code above that if the tolerance is reached, we first free the dynamically
allocated memory, and then return the value k.

Programming Note

• You must often decide which resource is more valuable - memory
or computation. In this example, we expend extra memory to
store boundary conditions, which are zero, so that the computa-
tional algorithm is simple. If we had to save memory, then we
would need to explicitly write code, which takes into account the
modification of the differencing stencil when we are computing
along the edges and corners of the domain.

Convergence Rate

The convergence error εn satisfies the same equation as the an
k	 modes in the von Neumann

equation (7.7) of the previous section, i.e.,

εn+1
k	 = εnk	

{
1− 1

4
(1− θ)σk	

1 + θ
4
σk	

}

where we set θ = 0 for Euler-forward discretization and δ = 1 since ∆x = ∆y. Therefore

εn+1
k	 = εnk	(1−

1

4
σk)

where

σk	 = 2[(1− cos kπ∆x) + (1− cosπ�∆y)].

7.2. Iterative Solvers 420

The minimum of σk	 corresponds to the most “resistant” error in decaying. This occurs for
(k = � = 1), and thus we obtain for an error estimate

εn+1 = εn
[
1− 1

2
[(1− cosπ∆x) + (1− cosπ∆x)]

]
or

εn+1 = εn[1− (1− cosπ∆x)],

which can be approximated as

εn+1 ≈ εn
(

1− π2∆x2

2

)
.

We now define the convergence rate zJ of the Jacobi method

zJ ≡ εn+1

εn
=

(
1− π2∆x2

2

)
,

therefore
εn = zn

J ε
0

where n on zn
J is an exponent, whereas elsewhere denotes iteration level.

In order to reduce εn to e−d, that is to obtain accuracy defined by zn
J = e−d, we have

n ln zJ = −d⇒ −nπ
2∆x2

2
∼ −d ⇒ n ∼ 2

π2

d

∆x2
iterations .

Here ∆x = 1
N

, and d is roughly equal to the number of correct digits in the solution.
Therefore, the number of iterations is proportional to the total number of grid points, in a
two-dimensional grid N ×N , i.e.,

n ∼ O(N2).

The corresponding computational work is

zJ ∗ O(N2) ≈ O(N4)

since we need at least one operation for each grid point. This corresponds to more work than
O(N3) required for a backsolve in Gaussian elimination, although to factorize the matrix
by LU requires O(N4) (see section 9.1). These estimates assume that we solve the elliptic
problem (7.12) on a grid N ×N with center-differencing resulting in a matrix with order N2

and bandwidth m = N . The number of backsolve operations in the Gaussian elimination is
then O(mN2) = O(N3).

In the above analysis, we considered specifically the discrete diffusion equation to derive
the Jacobi iteration algorithm. However, this is not necessary, and the Jacobi iteration can
be employed to solve general linear systems of the form

Ax = b .

7.2. Iterative Solvers 421

To this end, we decompose the matrix A as

A = L︸︷︷︸
(strictly lower)

+ D︸︷︷︸
(diagonal)

+ U︸︷︷︸
(strictly upper)

Denoting by n the iteration number, we formulate the following iteration procedure

Dxn+1 = b− (L + U)xn.

This is the general Jacobi algorithm which does not requires matrix inversion as the diagonal
matrix is trivially inverted, that is

D−1 =
1

D
,

assuming non-zero diagonal entries.
As an example, we can recover the Jacobi algorithm specific to diffusion equation from:

−4

∆x2
Θn+1

ij = −qij − 1

∆x2
(Θn

i+1,j + Θn
i,j+1 + Θn

i−1,j + Θn
i,j−1)

or

Θn+1
ij =

1

4
(Θn

i+1,j + Θn
i,j+1 + Θn

i−1,j + Θn
i,j−1 + ∆x2qij)

as before.

The general Jacobi iteration converges if matrix A is strictly row-diagonally dominant.
This means that the absolute value of each diagonal element of A is greater than the sum of
absolute values of all the other entries in that row. However, this condition does not apply
to the discrete diffusion equation considered here. Instead, a weaker condition is applied, by
requiring that the matrix A is weakly row-diagonally dominant. This simply implies that
some of the diagonal elements may be equal to the sum in each row, but greater on at least
one row. This condition needed to be strengthened with the condition of irreducibility.

Th irreducibility condition is related to the directed graph of the matrix, which consists
of a sequence of nodes with arrows connecting the non-zeros entries of a matrix. If each node
in the graph is accessible by any other node, then this is a strongly-connected graph and
the corresponding matrix is irreducible. Together the two conditions of weak row-diagonal
dominance and of irreducibility guarantee that the Jacobi method will converge for systems
resulting from central difference discretizations of the diffusion equation. Note that the cross-
directional splitting of section 7.1.5 leads to a matrix with a corresponding graph which is
not strongly connected.

Programming Note

• What tolerance should you use? This depends on the problem
you are trying to solve. If the modeling error for your problem
is O(10−4), there may not be a need to converge your solution to
O(10−14). The bottom line know and understand the problem
that you are trying to solve!

7.2. Iterative Solvers 422

Software

 Suite

In the software suite we implement the Jacobi algorithm again
but this time taken into account the pre-specified tolerance.

7.2.2 Parallel Jacobi Algorithm

In our implementation of parallel Jacobi, we will use an MPI command not previously
discussed: MPI Allgather. MPI Gather and MPI Allgather provide us the ability to
assemble (gather) data from a collection of processes and combine it either on one specific
process (MPI Gather) or on all processes (MPI Allgather). MPI also provides an inverse
operation called MPI Scatter, which distributes data from one process to a collection of
processes. We will now present for these three functions the function call syntax, argument
list explanation, usage example and some remarks.

MPI Gather:

Function Call Syntax

int MPI Gather(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
int root /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• sendbuf - starting address of the send buffer.

• sendcount - number of elements in the send buffer.

• sendtype - data type of the elements in the send buffer.

• recvbuf - starting address of the receive buffer.

• recvcount - number of elements for any single receive.

• recvtype - data type of the elements in the receive buffer.

• root - rank of the root process obtaining the result.

• comm - communicator.

7.2. Iterative Solvers 423

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be gathered

// from each process

int root; // process to which the data is gathered

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * senddata = new double[datasize];

double * recvdata = NULL;

if(mynode == root)

recvdata = new double[datasize*totalnodes];

// Fill in senddata array for each process

MPI_Gather(senddata,datasize,MPI_DOUBLE,recvdata,datasize,

MPI_DOUBLE,root,MPI_COMM_WORLD);

// At this point, process root has received from each

// process the contents of senddata and stored them

// in recvdata according to the process ordering

Remarks

• MPI Gather allows us to “gather” to one specified process information from all pro-
cesses with the communicator. This collection function allows us to retrieve from all
processes information that may need to be acted upon in an assembled form. In figure
7.13 we present a schematic demonstrating the results of a gather operation from all
processes to process zero.

• The array recvbuf is only relevant on the process of rank root. All other processes may
pass NULL in place of the argument for recvbuf.

• In most cases the sendtype and recvtype are identical, and the value of sendcount and the
value of recvcount are identical. MPI requires that the amount of data sent (sendcount
times the size in bytes of the datatype sendtype) equals the amount of data received
(recvcount times the size in bytes of the datatype recvtype) per process/root pair.

• The allocated size of recvbuf should be equal to at least the value of recvtype times the
number of processes (totalnodes).

7.2. Iterative Solvers 424

Process 0

senddata recvdata

x00 x01

Process 1 x10 x11

Process 2 x20 x21

x00 x01 x10 x11 x20 x21

Figure 7.13: MPI Gather schematic demonstrating a gather to process zero of two data objects
from each process.

MPI Allgather:

Function Call Syntax

int MPI Allgather(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• sendbuf - starting address of the send buffer.

• sendcount - number of elements in the send buffer.

• sendtype - data type of the elements in the send buffer.

• recvbuf - starting address of the receive buffer.

• recvcount - number of elements for any single receive.

• recvtype - data type of the elements in the receive buffer.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be

7.2. Iterative Solvers 425

// gathered from each process

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * senddata = new double[datasize];

double * recvdata = new double[datasize*totalnodes];

// Fill in senddata array for each process

MPI_Allgather(senddata,datasize,MPI_DOUBLE,recvdata,datasize,

MPI_DOUBLE,MPI_COMM_WORLD);

// At this point, each process has received from every other

// process the contents of senddata and stored them

// in recvdata according to the process ordering

Remarks

• MPI Allgather allows us to “gather” to all processes information from all processes
with the communicator. The action of “all gather” is as if we were to gather to one
process using MPI Gather, and then send from that process to all other processes
the assembled information. In figure 7.14 we present a schematic demonstrating the
results of an “all gather” operation.

• Both the sendbuf and recvbuf arrays are relevant on all processes in the communicator.

• In most cases the sendtype and recvtype are identical and the value of sendcount, and the
value of recvcount are identical. MPI requires that the amount of data sent (sendcount
times the size in bytes of the datatype sendtype) equals the amount of data received
(recvcount times the size in bytes of the datatype recvtype) per process/root pair.

• The allocated size of recvbuf should be at least equal to the value of recvtype times the
number of processes (totalnodes).

MPI Scatter:

7.2. Iterative Solvers 426

Process 0

senddata recvdata

x00 x01

Process 1 x10 x11

Process 2 x20 x21

x00 x01 x10 x11 x20 x21

x00 x01 x10 x11 x20 x21

x00 x01 x10 x11 x20 x21

Figure 7.14: MPI Allgather schematic demonstrating an allgather to all processes of two data
objects from each process.

int MPI Scatter(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
int root /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• sendbuf - starting address of the send buffer.

• sendcount - number of elements in the send buffer.

• sendtype - data type of the elements in the send buffer.

• recvbuf - starting address of the receive buffer.

• recvcount - number of elements for any single receive.

• recvtype - data type of the elements in the receive buffer.

• root - rank of the root process obtaining the result.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be scattered to each process

int root; // process from which the data is scattered

MPI_Init(&argc,&argv);

7.2. Iterative Solvers 427

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * senddata = NULL;

if(mynode == root)

senddata = new double[datasize*totalnodes];

double * recvdata = new double[datasize];

// Fill in senddata array on process root

MPI_Scatter(senddata,datasize,MPI_DOUBLE,recvdata,datasize,

MPI_DOUBLE,root,MPI_COMM_WORLD);

// At this point, each process has received from root

// process the part of the contents of senddata which

// it is to receive (based on the process ordering)

Remarks

• MPI Scatter allows us to “scatter” from one specified process information to all pro-
cesses with the communicator. This function allows us to distribute partitioned data
to all processes. In figure 7.15 we present a schematic demonstrating the results of a
scatter operation from process zero to all processes within the communicator.

• The array sendbuf is only relevant on the process of rank root. All other processes may
pass NULL in place of the argument for sendbuf.

• In most cases the sendtype and recvtype are identical, and the value of sendcount and the
value of recvcount are identical. MPI requires that the amount of data sent (sendcount
times the size in bytes of the datatype sendtype) equals the amount of data received
(recvcount times the size in bytes of the datatype recvtype) per process/root pair.

• The allocated size of sendbuf should be at least equal to the value of sendtype times
the number of processes (totalnodes).

• Each recvdata array should contain at least datasize elements.

We now present a parallel implementation of the Jacobi method. This function assumes
that the MPI initialization has already been accomplished by the calling function. It takes

7.2. Iterative Solvers 428

Process 0

senddata recvdata

x00 x01

Process 1 x02 x03

Process 2 x04 x05

x00 x01 x02 x03 x04 x05

Figure 7.15: MPI Scatter schematic demonstrating a scatter from process zero of two data objects
to each process.

Software

 Suite
Putting it into Practice

as input its process id number, the total number of processes being used, the size of the
matrix, the matrix A as a double∗∗ array, an array x into which the solution is to be stored,
an array b containing the right-hand-side, and a stopping tolerance. On all processes other
than the root process, the pointers A, x, and b should be NULL; process zero distributes the
matrix and right-hand-side among the processes, and only process zero returns the solution
vector x. We first present the function definition and then present some remarks on the
code.

int Jacobi_P(int mynode, int numnodes, int N, double **A,

double *x, double *b, double abstol){

int i,j,k,i_global;

int maxit = 100000;

int rows_local,local_offset,last_rows_local;

int *count,*displacements;

double sum1,sum2,*xold;

double error_sum_local, error_sum_global;

MPI_Status status;

rows_local = (int) floor(N/numnodes);

local_offset = mynode*rows_local;

if(mynode == (numnodes-1))

rows_local = N - rows_local*(numnodes-1);

/*Distribute the Matrix and R.H.S. among the processors */

if(mynode == 0){

for(i=1;i<numnodes-1;i++){

for(j=0;j<rows_local;j++)

7.2. Iterative Solvers 429

MPI_Send(A[i*rows_local+j],N,MPI_DOUBLE,i,j,

MPI_COMM_WORLD);

MPI_Send(b+i*rows_local,rows_local,MPI_DOUBLE,i,

rows_local, MPI_COMM_WORLD);

}

last_rows_local = N-rows_local*(numnodes-1);

for(j=0;j<last_rows_local;j++)

MPI_Send(A[(numnodes-1)*rows_local+j],N,MPI_DOUBLE,

numnodes-1,j,MPI_COMM_WORLD);

MPI_Send(b+(numnodes-1)*rows_local,last_rows_local,

MPI_DOUBLE,numnodes-1,last_rows_local,

MPI_COMM_WORLD);

}

else{

A = CreateMatrix(rows_local,N);

x = new double[rows_local];

b = new double[rows_local];

for(i=0;i<rows_local;i++)

MPI_Recv(A[i],N,MPI_DOUBLE,0,i,MPI_COMM_WORLD,&status);

MPI_Recv(b,rows_local,MPI_DOUBLE,0,rows_local,

MPI_COMM_WORLD,&status);

}

xold = new double[N];

count = new int[numnodes];

displacements = new int[numnodes];

//set initial guess to all 1.0

for(i=0; i<N; i++){

xold[i] = 1.0;

}

for(i=0;i<numnodes;i++){

count[i] = (int) floor(N/numnodes);

displacements[i] = i*count[i];

}

count[numnodes-1] = N - ((int)floor(N/numnodes))*

(numnodes-1);

for(k=0; k<maxit; k++){

error_sum_local = 0.0;

for(i = 0; i<rows_local; i++){

i_global = local_offset+i;

sum1 = 0.0; sum2 = 0.0;

7.2. Iterative Solvers 430

for(j=0; j < i_global; j++)

sum1 = sum1 + A[i][j]*xold[j];

for(j=i_global+1; j < N; j++)

sum2 = sum2 + A[i][j]*xold[j];

x[i] = (-sum1 - sum2 + b[i])/A[i][i_global];

error_sum_local += (x[i]-xold[i_global])*

(x[i]-xold[i_global]);

}

MPI_Allreduce(&error_sum_local,&error_sum_global,1,

MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

MPI_Allgatherv(x,rows_local,MPI_DOUBLE,xold,count,

displacements,MPI_DOUBLE,MPI_COMM_WORLD);

if(sqrt(error_sum_global)<abstol){

if(mynode == 0){

for(i=0;i<N;i++)

x[i] = xold[i];

}

else{

DestroyMatrix(A,rows_local,N);

delete[] x;

delete[] b;

}

delete[] xold;

delete[] count;

delete[] displacements;

return k;

}

}

cerr << "Jacobi: Maximum Number of Interations Reached\n";

if(mynode == 0){

for(i=0;i<N;i++)

x[i] = xold[i];

}

else{

DestroyMatrix(A,rows_local,N);

delete[] x;

delete[] b;

}

delete[] xold;

delete[] count;

delete[] displacements;

7.2. Iterative Solvers 431

return maxit;

}

Remark 1: The rows are distributed across processes as shown in figure 7.16. Notice that
in this routine we do not require that the number of processes equally divide the number of
rows. This fact is taken into account using the variable length feature in MPI as discussed
in the next remark.

P

P

P

0

2

1

A

b

P0

P
2

P
1

Figure 7.16: Distribution of matrix A across processes.

Remark 2: Observe in the code above that we use a slight modification to MPI Allgather,
MPI Allgatherv. The function MPI Allgatherv allows us to specify per process how much
information is expected. Recall that in the standard MPI Allgather it is assumed that each
process is sending the same amount of data.

Remark 3: As you can see, other than the initial distribution of the matrix A and the
right-hand-side vector b, the Jacobi method is highly parallelizable. Only two MPI calls
are needed per iteration - MPI Allreduce to compute the error and MPI Allgatherv to
distribute the updated solution vector at the conclusion of an iteration.

7.2.3 Gauss-Seidel Algorithm

This algorithm is usually twice as fast as the Jacobi algorithm but not as easily parallelizable.
It is based on the observation that convergence usually is improved if we compute implicitly,
hence in the Gauss-Seidel algorithm we use the most recently computed values. To illustrate

7.2. Iterative Solvers 432

this algorithm, we use the matrix version of the Jacobi algorithm, where instead of the
diagonal on the left-hand-side we employ the lower triangular matrix, i.e.,

(L + D)xn+1 = b−Uxn.

X

X

ij

x − known information
 because of sweep
 direction!

Figure 7.17: Horizontal sweeping of the grid from left to right.

We now apply this algorithm to the diffusion equation

1

∆x2
(Θn+1

i−1,j + Θn+1
i,j−1 − 4Θn+1

ij) = −qij − 1

∆x2
(Θn

i+1,j + Θn
i,j+1)

or

Θn+1
ij =

1

4
(Θn

i+1,j + Θn
i,j+1 + Θn+1

i−1,j + Θn+1
i,j−1 + ∆x2qij) .

We note that although on the right-hand-side we use values at the (n + 1) time level, these
values are already known because of the “sweep” process we choose, from left to right in the
grid of figure 7.17. Therefore, we use the newly computed information sooner than in the
Jacobi method where we wait for a full cycle!

The serial Gauss-Seidel method is better than the serial Jacobi iteration as the conver-
gence criteria are similar but the convergence rate is twice as large, i.e.,

zGS = z2
J

in most cases (always when we have consistent ordering, see [95]).
We can also use overwriting Θn+1

ij ↔ Θn
ij to save in memory. However, the overall work is

still O(N4) on a grid with N×N points, so we have simply reduced the number of iterations
by half but not the scaling with respect to the number of grid points. On a parallel computer,
however, we need to use a special ordering of the unknowns on the grid in order to obtain
an efficient algorithm as the standard Gauss-Seidel algorithm is inherently serial.

Software

 Suite

In the software suite we present implementations of the Gauss-
Seidel algorithm for the diffusion equation and as a general
iterative solver for the system Ax = b.

When examining the functions Diffusion GaussSeidel and GaussSeidel, we draw your
attention to the following:

7.2. Iterative Solvers 433

• Observe that the function definitions forDiffusion GaussSeidel andGaussSeidel are
very similar to the definitions for Diffusion Jacobi and Jacobi, respectively. Recall
from our previous discussion that the only modification necessary to transform the
Jacobi method into the Gauss-Seidel method is to modify the updating pattern, as
seen in these coding examples.

• Observe that although in Gauss-Seidel we could directly update the solution array with
the new values, we still maintain an “old” and “new” solution array. We do this so
that at the end of one sweep we can compare the two solutions to determine when the
solution has converged.

In figure 7.18, we present the number of iterations necessary to converge to the solution
for difference mesh sizes using our Jacobi and Gauss-Seidel implementations for the diffusion
equation example previously given. Observe that when solving for the same mesh size, the
Gauss-Seidel method requires half the number of iterations to converge as the Jacobi method,
just as the theory discussed above predicted.

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Mesh Points

Ite
ra

tio
ns

Jacobi
Gauss−Seidel

Figure 7.18: Comparison of the convergence rate for the Jacobi and Gauss-Seidel algorithms.

7.2.4 Parallel (Black-Red) Gauss-Seidel Algorithm

The computational complexity of the Gauss-Seidel iteration

xn+1 = (L + D)−1[−Uxn + b]

consists of

• Matrix-vector products for computing Uxn,

• Solution of the triangular system for (L + D)−1.

In particular, the solution of the triangular system can cause limitations with respect to
parallelism, see chapter 9. However, we can apply a proper re-ordering of the difference
equations in order to introduce more parallelism. This can be accomplished by a multi-
coloring scheme, the simplest version of which is the red-black algorithm.

7.2. Iterative Solvers 434

19 20 21 22 23 24

13 14 15 16 17 18

 7 8 9 10 11 12

1 2 3 4 5 6

Normal
Ordering Corresponding Matrix

1 13 2 14 3 15

16 4 517 18 6

7 19 8 20 9 21

22 10 24 12

Black− Red

Red

Black

23 11

◆

◆
◆

◆
◆

◆
◆

◆◆
◆◆

◆

◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

◆◆

◆ ◆
◆◆

◆
◆

◆

◆
◆

◆
◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆
◆

◆
◆

◆

◆
◆

◆

◆
◆

◆
◆

◆
◆

◆
◆

◆

◆
◆

◆ ◆
◆ ◆

◆ ◆
◆ ◆

◆
◆
◆ ◆

◆
◆ ◆

◆ ◆
◆ ◆

◆ ◆
◆

◆
◆ ◆

◆ ◆
◆ ◆

◆ ◆
◆

◆
◆

◆ ◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆ ◆

◆ ◆
◆ ◆

◆

◆

◆ ◆

Figure 7.19: Ordering for standard Gauss-Seidel (top) and for black-red Gauss-Seidel (bottom).

Figure 7.20: Typical black (solid line) and red (dashed line) stencils for the parallel Gauss-Seidel
algorithm.

7.2. Iterative Solvers 435

The key idea is to group the grid points into two groups, identified as black and red
nodes, and observe that for Cartesian differencing the black nodes are surrounded by black
nodes only, and the red nodes are surrounded by red nodes only. This is shown schematically
in figures 7.19 and 7.20 along with the corresponding matrices A. Using this grouping and
denoting with subscripts (b) and (r) the black and red nodes, respectively, we can decompose
the system as follows [

Dr U
L Db

] [
xr

xb

]
=

[
br

bb

]

and using the Gauss-Seidel iteration, we obtain:[
Dr 0
L Db

](
xn+1

r

xn+1
b

)
=

[
0 −U
0 0

](
xn

r

xn
b

)
+

(
br

bb

)

or 


xn+1
r = D−1

r [−Uxn
b + br]

xn+1
b = D−1

b [−Lxn+1
r + bb]

.

Thus, we do not have to invert a triangular system any more. Instead, we need to perform

matrix-vector products and vector scaling operations.

An alternative way is to eliminate the red unknowns and solve for the black nodes first,
i.e.,

(Db −UD−1
r U)xb = bb + UD−1

r br,

with half as many unknowns. However, we need to solve a triangular system, which we can
precondition with the diagonal for faster convergence, see chapter 9.

Remark 1: In general, the convergence rate depends on ordering unless it is a consistent
ordering, see [95]. There have also been efforts to assign chaotic ordering (also known as
chaotic iteration) but such schemes are not guaranteed that they will converge! A matrix
A = L + D + U is consistently-ordered if the eigenvalues of the matrix

D−1(α−1L + αU)

do not depend on α for any α �= 0. A different definition was introduced by Young based on
the permutations of the matrix A [95]. Specifically, the matrix is termed 2-cyclic if there is a
perturbation matrix P such that PAPT can be written as a 2× 2 matrix with the diagonal
matrices being diagonal. For example, every block tridiagonal matrix with non-singular
diagonal blocks is consistently-ordered and 2-cyclic.

Remark 2: The black-red Gauss-Seidel algorithm can be implemented in two parallel steps:
one for updating the red points, and one for the black points. This is equivalent to two
parallel Jacobi steps per iteration. Therefore, the total number of parallel steps between the
Jacobi algorithm and the black-red Gauss-Seidel algorithm is the same given that the latter
converges twice as fast as the former. However, the black-red algorithm operates on half the
number of points. Overall, communications and latency are the factors that will ultimately
determine if there is a substantial speed-up factor using the black-red algorithm. A better
approach is to use the black-red coloring idea with an overelaxation method, as we discuss
next.

7.2. Iterative Solvers 436

7.2.5 Successive Acceleration Techniques - SOR

The convergence of the Gauss-Seidel method can be effectively accelerated if we introduce a
relaxation procedure of the form

Θn+1
ij = Θn

ij + ωdn
ij, dn

ij ≡ Θ̂n+1
ij −Θn

ij (7.14)

where Θ̂n+1
ij is predicted by the standard Gauss-Seidel method. This intermediate answer is

then corrected to obtain Θn+1
ij ; such a method is called predictor-corrector. The displacement

dn
ij is given by

dn
ij =

1

4
(Θn

i+1,j + Θn
i,j+1 − 4Θn

ij + Θn+1
i,j−1 + Θn+1

i−1,j + ∆x2qij).

Upon substitution in equation (7.14), the corrected value is

Θn+1
ij =

ω

4
(Θn

i+1,j + Θn
i,j+1 + Θn+1

i,j−1 + Θn+1
i−1,j + ∆x2qij) + (1− ω)Θn

ij .

This method converges for 0 < ω < 2 assuming that the corresponding matrix A is positive-
definite and symmetric.

• For ω = 1, we recover the standard Gauss-Seidel;

• For ω > 1, we have over-relaxation (SOR), and

• For ω < 1 we have under-relaxation.

The latter is not used often in practice because of its slow convergence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

ω

z

ω
opt

Z
opt

Figure 7.21: Convergence rate versus relaxation parameter for SOR.

For the diffusion equation (7.12) we can obtain the optimum relaxation parameter that
maximizes the convergence rate. For central differencing we have:

ωopt =
2

(1 +
√

1− z2
J)

and zopt =
z2

J

(1 +
√

1− z2
J)2

,

7.2. Iterative Solvers 437

where zJ is the convergence rate of the Jacobi method for the same discretization. In
particular, for ∆x = ∆y the Jacobi convergence rate is zJ = cosπ∆x, and thus we obtain

ωopt =
2

1 + sin π∆x
≈ 2(1− π∆x),

and correspondingly

zopt =
cos2 π∆x

(1 + sin π∆x)2
≈ 1− 2π∆x .

This approximation provides an estimate for the number of iterations to reach convergence
with accuracy of about d correct digits, thus

Number of SOR(ω) iterations: n ∼ −d
ln zopt

∼ N

since ∆x = 1/N . This implies, that for SOR(ωopt) we have that n ∼ O(N) and thus the
computational work is O(N3) versus O(N4) for the standard Gauss-Seidel iteration assuming
an N × N grid. We will revisit the issue of convergence rate of over-relaxation methods in
section 7.2.8.

Remark: For general matrices A an estimate of the form ωopt = 2 − O(∆x), where ∆x
is the spacing is a good initial guess. Subsequent numerical experiments can provide more
refined values of the optimum relaxation parameter by comparing corresponding values of
the convergence rate z and searching for a local minimum. Unfortunately, the minimum
occurs over a quite narrow range in ω, as it is shown in figure 7.21.

Software

 Suite
Putting it into Practice

We now present a function SOR which performs successive over-relaxation to obtain the
solution x to the system Ax = b. The function takes as input the relaxation parameter
omega, the size of the system N , a double** array containing the matrix A, an array x
into which the solution is to be placed, the right-hand-side stored in the array b, and the
convergence tolerance abstol.

void SOR(double omega, int N, double **A, double *x,

double *b, double abstol){

int i,j,k;

int maxit = 10000;

double sum1,sum2;

double * xold = new double[N];

7.2. Iterative Solvers 438

//set initial guess

for(i=0; i<N; i++){

x[i] = 1.0e0;

xold[i] = 1.0e0;

}

for(k=0; k<maxit; k++){

for(i = 0; i<N; i++){

sum1 = 0.0; sum2 = 0.0;

for(j=0; j < i; j++)

sum1 = sum1 + A[i][j]*x[j];

for(j=i+1; j < N; j++)

sum2 = sum2 + A[i][j]*xold[j];

x[i] = (1.0-omega)*xold[i] + omega*

(-sum1 - sum2 + b[i])/A[i][i];

}

if(sqrt(dot(N,x,xold))<abstol){

delete[] xold;

return;

}

for(i=0; i<N; i++)

xold[i] = x[i];

}

cerr << "SOR: Maximum Number of Interations Reached\n";

delete[] xold;

return;

}

7.2.6 Symmetric Successive Acceleration Techniques - SSOR

The standard SOR method assumes a preferential direction as it sweeps the domain from left
to right. This bias may cause error accumulation but in addition the amplification matrix G
of the SOR may have complex eigenvalues. This may not be desirable as certain acceleration
schemes, e.g. Chebyshev acceleration that we study next, require real eigenvalues. The idea
of the symmetric SOR (SSOR) is then to sweep the domain in two passes, one from the
left to right and subsequently from right to left. To this end, we write the standard SOR
presented above in matrix form

(D + ωL)x̂n+1 = [(1− ω)D− ωU]xn + ωb,

7.2. Iterative Solvers 439

to obtain the intermediate solution x̂n+1.
The SOR iteration in the reverse direction is

(D + ωU)xn+1 = [(1− ω)D− ωL]x̂n+1 + ωb,

to obtain the final solution xn+1 at the (n+1) iteration. The optimum relaxation parameter
for SSOR is different than the ωopt of SOR and it is not known exactly. An approximation
proposed in [95] is

ωopt ≈ 2

1 +
√

2[1− ρ(G)]
,

which leads to twice the convergence rate of the one-directional SOR, however the number
of operations is also doubled. For the diffusion model that we consider we then have that

zSSOR ≈ 1− π∆x ≈ 1− π

N
.

The corresponding amplification matrix is symmetric and has real eigenvalues with spectral
radius

ρSSOR(G) = 1− π

N
.

We will make use of this property of SSOR in the following section.

7.2.7 SSOR with Chebyshev Acceleration

What we have done so far is to convert the system Ax = b to a fixed point iteration of the
form

xn+1 = Gxn + c.

It is often the case, and we have seen that in the multi-step schemes for temporal discretiza-
tion, that a linear combination of the iterates {xn} converges faster than the last iterate.
This is the idea of Chebyshev acceleration, and in the following we will see how Chebyshev
polynomials come into play in this context; we will basically exploit their minimax property
(see section 3.1.5). Let us define the linear combination

yn =
n∑

q=0

γq
nx

q

and form the error with respect to the exact solution x

yn − x =
n∑

q=0

γq
n(x

q − x) =
n∑

q=0

γq
nG

q(x0 − x) = pn(G)(x0 − x) .

Here we have defined the polynomial pn of degree n with pn(1) = 1 since the interpolation
coefficients satisfy

n∑
q=0

γq
n = 1.

In order to minimize the computational work we should choose the polynomial pn care-
fully. We know (using the spectral mapping theorem) that the eigenvalues of pn(G) are

7.2. Iterative Solvers 440

given by pn(λ(G)). We then need to minimize these eigenvalues, or even simpler we need
to minimize the maximum eigenvalue (spectral radius ρ). The polynomials that best satisfy
this requirement are the Chebyshev polynomials due to their minimax property. We have
also assumed in the above that the eigenvalues of the amplification matrix G are real.

Let us then assume that x ∈ [−ρ, ρ] and define the polynomial

pn(x) ≡ Tn(x/ρ)

Tn(1/ρ)
=
Tn(x/ρ)

Cn
,

where the last equation defines the normalization constant Cn. We will now use the three-
term recursive property of Chebyshev polynomials to obtain yn recursively and construct
the convergence acceleration algorithm. Note that Cn can also be obtained recursively in a
similar way, i.e.,

Cn =
2

ρ
Cn−1 − Cn−2 .

For the error (yn − x) we have

yn − x = pn(G)(x0 − x)

= C−1
n Tn(G/ρ)(x0 − x)

= C−1
n [2 ·G/ρ · Tn−1(G/ρ)(x

0 − x)− Tn−2(G/ρ)(x
0 − x)]

= C−1
n [2 ·G/ρ · Cn−1pn−1(G/ρ)(x

0 − x)− Cn−2pn−2(G/ρ)(x
0 − x)]

= C−1
n [2 ·G/ρ · Cn−1(y

n−1 − x)− Cn−2(y
n−2 − x)].

We can now write the recursive relation

yn = 2
Cn−1

Cn

G

ρ
yn−1 − Cn−2

Cn

yn−2 + Dn (7.15)

where we have defined

Dn =
2

ρ

Cn−1

Cn
c

and we recall the iteration xn+1 = Gxn + c.
We now have a recursion relation but we still need to initialize the first guess and the

normalization constants. From the definition we have that C0 = 1 and C1 = 1/ρ, and we set
y1 = Gx0 + c.

We can also estimate the number of iterations by observing that in the above algorithm
the error is multiplied in each iteration by the inverse of

Cn ≡ Tn(1/ρ).

For the SSOR algorithm we have that ρ ≈ 1 − π
N

and thus 1/ρ ≈ 1 + π
N

. Now, from the
Chebyshev properties we have that

Tn(1 + π/N) ≥ 1

2
(1 + n

√
2π/N).

7.2. Iterative Solvers 441

In order to multiply the error by a factor less than one, from the above we need

2

1 + n
√

2π/N
≤ 1,

and thus the number of iteration n scales as n ∝ O(
√
N). The total computational work for

the SSOR with Chebyshev acceleration is therefore:

O(N5/2) versus O(N3) for SOR.

We see that SSOR with Chebyshev acceleration beats even the direct solver, i.e. Gaussian
elimination, which is is O(N3) for the backsolve.

7.2.8 Convergence Analysis of Iterative Solvers

Basic Analysis

We have already discussed some of the conditions necessary for convergence of the basic
iterative algorithms presented in this chapter. In general, if the coefficient matrix A is
symmetric and positive-definite the Gauss-Seidel iteration converges to a unique solution for
any initial vector x0 although for the Jacobi iteration a stronger condition is needed. We
have also seen the relation between the time-space stencils for diffusion and the iteration
algorithms. In this section, we provide some more details on the convergence of the basic
iterative solvers.

We start by re-stating the analogy between iterative procedures and equations of evo-
lution. This analogy was formulated rigorously by Garabedian [41], who considered the
following equation

K
∂Θ

∂t
= κ

∂2Θ

∂x2
− U ∂Θ

∂x
, (7.16)

which is an advection-diffusion equation. By exploiting the properties of this PDE one can
obtain information about the convergence of the discrete iterative algorithms. It can be
shown, for example, that the smaller K is the more rapid the convergence is. Here, K
depends on the specific iterative procedure considered. Convergence to steady solution is
equivalent to existence of solutions of the PDE. A necessary condition for convergence is
that equation (7.16) be parabolic for t > 0. This condition implies that

• For Jacobi: KJ = 2κ ∆t
∆x2 > 0.

• For Gauss-Seidel: KGS = κ∆t
∆x2

(
1− U∆x

2κ

)
> 0, (U∆x < 2κ).

• For SOR: KSOR = κ∆t
∆x2

(
2−ω

ω
− U∆x

2κ

)
> 0.

However, K > 0 is not sufficient for convergence as we need to have a stable scheme too.

The case of U �= 0 will be studied in the next chapter. Here by setting U = 0 we obtain

KJ = 2KGS, and ωKSOR = (2− ω)KGS.

7.2. Iterative Solvers 442

For the SOR iteration, convergence is obtained if

0 <
2− ω
ω

< 1⇒ 2− ω < ω ⇒ ω > 1 and ω < 2.

We now generalize the iteration algorithms by introducing the concept of preconditioner.
Let us consider the system

AΘ = q,

where A is a stiffness matrix, e.g. the discrete Laplacian as before. Then, we define the
convergence (vector) error:

εn = Θn −Θ∞,

which we will analyze in the following. We split the spatial discretization matrix

A = M + N

and set up the iteration

MΘn+1 = q−NΘn

or

M∆Θn = −rn , r ≡ AΘ− q

where r is the residual. The above equation is derived from

∆Θn ≡ Θn+1 −Θn ⇒M(Θn+1 −Θn) = qn − (M + N)Θn︸ ︷︷ ︸
−rn

.

We can recover all the schemes presented earlier by the proper choice of the preconditioner
M, i.e.,

• Jacobi: M = D .

• Gauss-Seidel: M = D + L .

• SOR: M = D + ωL .

• SSOR: M = (D + ωL)D−1(D + ωU) .

Next, we obtain the error equation by subtracting the equations

MΘn+1 = qn −NΘn

(M + N)Θ∞ = q

to get

Mεn+1 = −Nεn.

7.2. Iterative Solvers 443

This leads us to the definition of the amplification matrix, which we have already used earlier
, i.e.

εn+1 = −M−1Nεn = (−M−1N)nε1

= (I−M−1A)n︸ ︷︷ ︸
G: amplification matrix

ε1.

Therefore

εn+1 = Gn+1ε0. (7.17)

For stability we require that the spectral radius of the amplification matrix be less than one,
i.e. ,

ρ(G) ≤ 1

since ρ(A) ≤‖ A ‖ for any matrix norm.

This condition can be applied effectively as it may be sufficient to know the eigenvalues of
the matrices that compose the original matrix A. For example, for the Jacobi iteration we
have

GJ = I−M−1A⇒ λJ = 1− (1/dj)λj(A),

where dj are the diagonal elements of matrix D, and we have made use of the spectral
mapping theorem.

We can now derive the error-residual relationship by subtracting the equations

rn = −qn + (M + N)Θn

0 = −qn + (M + N))Θ∞

where the second equation is valid in steady-state. Upon subtraction we obtain

rn = Aεn ,

which is a very useful equation relating the error and the residual.

Remark 1: When the residual rn is reduced to machine accuracy it does not mean that the
solution Θn is within machine accuracy, because we still have to account for the discretization
error.

Remark 2: To compute the matrix-vector products in the iterations we can use either of
two ways suggested by the equations

w = M−1Av = M−1(M + N)v = v + M−1Nv .

That is, we compute w from

(I).

{
r = Av
w = M−1r

7.2. Iterative Solvers 444

or from

(II).




r = Nv
w = M−1r
w = v + w

It is more efficient to use approach (II) as it involves matrix-vector multiplies with matrices,
which are substantially less dense than the original matrix A.

Fourier Representation of Convergence Error

We can decompose the convergence error into normal modes by considering the eigenstruc-
ture of the matrix A. For clearer illustration of the main points, we will assume that the
amplification matrix G shares eigenvectors with the coefficient matrix A. This is true,
for example, for the Jacobi algorithm on a discrete Laplacian but not for the Gauss-Seidel
iteration. With this assumption we can represent the convergence error as

εn =
∑
j

λn
j ε

0
jΦj , (7.18)

where ε0j is the initial error distribution, and λj ,Φj are associated with the matrices G and
A, respectively. In particular, Φj are the eigenvectors of the discrete diffusion operator.
This representation is possible because the error behaves like the homogeneous part of the
solution. The eigenvectors Φj are also eigenvectors of G only for special cases, e.g., periodic
boundary conditions and Jacobi iteration, but not for Gauss-Seidel, as stated above.

As n increases, the low λj (corresponding to high frequencies) will decay faster. Asymp-
totically, after a few iterations, we are left with the highest λj which correspond to low
frequencies. The convergence history of these methods would then have the form shown in
figure 7.22: a very fast decay is obtained initially followed by an extremely slow decay.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Typical Iterative Solver

|rn |

Number of Iterations

High−Frequency

Low−Frequency

Figure 7.22: Typical convergence history of basic iterative solvers.

We can use equation (7.18) for the error to obtain a measure of convergence of the
iterative solvers. To this end, we recall the error-residual relationship and substitute the

7.2. Iterative Solvers 445

Fourier representation for the error

rn =
∑
j

λn
j (G)ε0jAΦj =

∑
j

λn
j (G)ε0j λj(A)︸ ︷︷ ︸

eigenvalues of A

Φj .

If Φj are orthonormal eigenvectors, then we can obtain a simple expression for the L2-norm
of the residual, i.e.,

‖ rn ‖L2=
[∑

(λn
j (G)λj(A)ε0j)

2
]1/2

.

This scalar residual is typically used as a measure of convergence of iterative solvers.

We can also use the eigenvalues of the amplification matrix to gain more insight into the
convergence rate of individual modes (frequencies) for the iterative methods we presented.
For example, in the Jacobi iteration

λ(GJ) = 1− (sin2 φx/2 + sin2 φy/2) =
1

2
(cosφx + cosφy) , (7.19)

which is obtained from

GJ = I−M−1A, J = k + (�− 1)N, where �,m = 1, . . . , N − 1

and φx = kπ/N, φy = �π/N .
From equation (7.19) we see that at low frequencies, φx � 0, φy � 0, the damping rate

(i.e., convergence rate) is very poor as λ ∼ 1. At intermediate frequencies (k, � ∼ N/2)
damping is very strong, and at high frequencies (k, � → N), damping is very weak again.
Specifically, the most resistant error corresponds to k = � = 1 thus

ρ(GJ) = cos
π

N
⇒ ρ(GJ) ∼= 1− π2

2N2
.

This analysis suggests that the number of iterations is proportional to O(N2), as we have
already seen earlier.

Following a similar analysis, we obtain that for the Gauss-Seidel iteration we have

λ(GGS) =
1

4
(cosφx + cosφy)

2 = λ2(GJ), (7.20)

which shows that the Gauss-Seidel iteration converges twice as fast compared to the Jacobi
iteration.

7.2.9 Relaxed Jacobi and Gauss-Seidel

We can also apply the above analysis to relaxation or weighted methods. Let us first intro-
duce the relaxed Jacobi algorithm:

Θn+1
ij =

ω

4
(Θn

i+1,j + Θn
i,j+1 + Θn

i,j−1 + Θn
i−1,j + qn

ij) + (1− ω)Θn
ij.

7.2. Iterative Solvers 446

Thus, the new amplification matrix is

GJ(ω) = (1− ω)I + ωGJ ,

and its corresponding eigenvalues are

λ(GJ(ω)) = (1− ω) + ωλ(GJ). (7.21)

For convergence we require that

ρ(GJ(ω)) ≤ |1− ω|+ ωρ(GJ) < 1

or

|1− ω| < 1− ωρ(GJ)⇒ −[1− ωρ(GJ)] < 1− ω < 1− ωρ(GJ),

and thus

0 < ω <
2

1 + ρ(GJ)
.

Therefore, in order to damp high frequencies we should select ω < 1 and ω towards λmin. To
damp low frequencies we should select ω > 1 and ω towards λmax.

0 20 40 60 80 100 120 140
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.23: Jacobi algorithm with initial condition (Φ2 + Φ32)/2. The curves correspond to the
initial condition (large oscillations); results after 10 iterations (small oscillations); and results after
100 oscillations (smooth curve); ω = 2/3.

In order to better understand this selective damping of the Fourier components of the
error for the Jacobi method, we perform one-dimensional experiments. To this end, we
revisit the Dirichlet problem

−Θj−1 + 2Θj −Θj+1 = 0, 1 ≤ j ≤ N − 1

Θ0 = ΘN = 0

so the corresponding matrix A is tridiagonal with elements (−1, 2, −1). The eigenvalues of
this matrix are

λk(A) = 4 sin2(
kπ

2N
), 1 ≤ k ≤ N − 1, (7.22)

7.2. Iterative Solvers 447

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

wavenumber k
N

um
be

r
of

 It
er

at
io

ns

ω=1
ω=2/3
ω=1/3

Figure 7.24: Number of Jacobi iterations to reduce the error 100 times for different values of ω.
The initial condition is a single Laplace mode with wavenumber k.

and the corresponding eigenvectors for the grid points 0 ≤ j ≤ N are:

Φk
j (A) = sin(

jkπ

N
), 1 ≤ k ≤ N − 1. (7.23)

We have already seen these results in section 7.1.4 earlier in this chapter.

For the relaxed Jacobi algorithm we can derive from equation (7.21) the following

λk(GJ(ω)) = 1− ω

2
λk(A) ,

and thus

λk(GJ(ω)) = 1− 2ω sin2(
kπ

2N
), 1 ≤ k ≤ N − 1 . (7.24)

We can now examine what is the best value for ω, i.e., the one that obtains

|λk(GJ(ω))| = minimum, ∀ 1 ≤ k ≤ N − 1.

By inspection we can see that the smooth components of the error, i.e., the modes corre-
sponding to 1 ≤ j ≤ N/2, are affected very little by ω. In contrast, the damping of the
rough components corresponding to N/2 ≤ k ≤ N − 1 are affected significantly. We thus
seek an optimum value of ω for the rough modes by limiting the above minimization to the
upper half of the spectrum, i.e., N/2 ≤ k ≤ N − 1. This minimum is achieved if

λN(GJ(ω)) = −λ(N/2)(GJ(ω)) ,

which gives the optimum ω = 2/3 for the one-dimensional problem, The corresponding
reduction of the error is

λk(ω = 2/3) = 1/3 ,

which means that the rough components will be reduced by a factor of three in each Jacobi
iteration.

7.2. Iterative Solvers 448

The effectiveness of this choice is shown in the next two figures. In figure 7.23 we plot the
evolution of the solution from the relaxed Jacobi algorithm starting from the initial condition

1

2
(Φ2 + Φ32)

after 10 and also after 100 iterations with the relaxed Jacobi algorithm and ω = 2/3. We see
that the initially very rough solution relaxes to the smooth mode two, which remains nearly
the same. The correct solution is Θj = 0, j = 1, . . . , N , since we solve the homogeneous
one-dimensional Laplace’s equation with zero Dirichlet conditions. A more comprehensive
picture is shown in figure 7.24 where we record the number of relaxed Jacobi iterations to
reduce the mean error by a factor of 100. Specifically, the initial condition here is a single
Fourier mode, which coincides with the eigenmode of the Laplacian and the eigenmode of
the relaxed Jacobi iteration matrix GJ(ω). The choice of ω = 1 is most effective for the
intermediate range of modes while the choice ω = 2/3 damps effectively the upper half of
the spectrum. The actual number of iterations for the low modes is much higher than 100,
in fact of the O(1000), but here we set a maximum 100 iterations for clarity of the plot.

Next we analyze the Gauss-Seidel over-relaxation method. We use the matrix form

(D + ωL)∆Θn = −ωrn ,

so the corresponding amplification matrix is

GSOR(ω) = I− ω(D + ωL)−1A

or
GSOR(ω) = (D + ωL)−1︸ ︷︷ ︸

triangular

[(1− ω)D− ωU︸ ︷︷ ︸
triangular

].

Since GSOR(ω) is a product of triangular matrices, its determinant is the product of its
diagonal element. Thus

detGSOR(ω) = det(I + ωD−1L)−1 det[(1− ω)I− ωD−1U]

= 1 · det[(1− ω)− ωD−1U]

= (1− ω)N

But
detGSOR(ω) = ΠN

i=1λi ≤ ρN(GSOR(ω))

so
|1− ω| ≤ ρ(GSOR(ω)) < 1 ,

and so for stability we recover the result 0 < ω < 2, as before.

Remark 1: For general symmetric A matrices we have that

λ(ω) = 1− ω + ωλ1/2(ω) · λ(GJ),

and for ω = 1⇒ λ(ω = 1) = λ2(GJ), as before.

7.2. Iterative Solvers 449

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

wavenumber k
N

um
be

r
of

 It
er

at
io

ns

Laplace Modes
Gauss−Seidel Modes

Figure 7.25: Number of Gauss-Seidel iterations to reduce the error 100 times for different initial
conditions corresponding to single Laplace modes (dash line) and single Gauss-Seidel modes (solid
line).

Remark 2: Unlike the Jacobi method, the Gauss-Seidel method does not share the same
eigenvectors with the Laplacian matrix A. Specifically, the eigenfunctions of the Gauss-
Seidel iteration matrix GGS are

Φk
j = [cos(

kπ

N
)]j sin(

jkπ

N
), 1 ≤ k ≤ N − 1 .

It is interesting to observe that the Gauss-Seidel method damps the Laplacian modes
in a similar fashion to the relaxed Jacobi method, i.e. the rough components are damped
faster. In contrast, the Gauss-Seidel eigenmodes are damped in a similar fashion as in the
unrelaxed Jacobi method. This behavior is demonstrated in figure 7.25, where the number
of iterations to reduce the mean error by a factor of 100 is recorded.

The selective damping achieved by the Jacobi and Gauss-Seidel methods is a typical
property of all relaxation schemes. The Fourier error modes are determined by the grid
spacing or equivalently the number of grid points. Therefore, a rough mode on a fine grid
may appear as smooth mode on a coarse grid. This simple observation along with the selective
damping of relaxation schemes is exploited in the multigrid method, one of the most effective
solvers, that we present next.

7.2.10 The Multigrid Method

The multigrid method is not really a new algorithm, but rather a procedure to make the
relaxation algorithms effective at all wavenumbers, including the low wavenumbers. The
main idea of the multigrid procedure is based on the observation that the classical iterations
rapidly kill high frequency (or wavenumber) errors but are slower for the low frequency, i.e.,
largest eigenvalues. Since this is all determined by the grid spacing, the idea of multigrid is
to change the grid so that low frequencies on the fine grid look higher on the coarser grid.
Conversely, errors that are invisible on the coarse grid are no problem on the fine grid. Figure

7.2. Iterative Solvers 450

7.23 illustrates how the initial error consisting of both high (rough) and low (smooth) modes
relaxes after a few iterations with a single grid discretization. The remaining low mode will
appear as an intermediate or high mode in a discretization with a coarser grid. Relaxation
on the new grid will effectively damp this mode as well.

The above discussion also suggests that the relaxation scheme will be more effective
if we employ an initial condition that does not include smooth components. This can be
accomplished by first solving the problem in a coarse grid and subsequently transfer the
solution to the finer grid. Alternatively, we can start on a fine grid and subsequently transfer
the solution into a coarser grid.

However, there is a further complication in these inter-grid transfers that we have to
take into account. When we transfer from a fine grid to a coarse grid, the smooth modes
become rough modes, but also the initially rough modes, although reduced in amplitude,
are transformed (at least some of them) into smooth modes. This is the phenomenon of
aliasing, which results in misrepresentation of the rough modes in the coarse grid after a
fine-to-coarse grid transfer.

To make the above ideas more concrete let us introduce some notation. We will denote by
h the fine grid and by H the coarse grid, and (in most cases) we will imply that we coarsen
the grid by halving the number of points leading to grid spacing H = 2h. The question on
how to start the inter-grid transfers, i.e., from a coarse or fine grid, that we posed above is
also related to what exactly we should transfer from one grid to the other. Should that be

• The system AΘ = q that we want to solve, or

• The residual r = AΘ− q that we want to minimize?

Both ideas have been explored in multigrid research and have been used in practice for
different problems.

The idea of transferring the original system is combined with the use of the coarse grid
solution as an initial start, and it is called nested iteration. It consists of the following steps:

Nested Iteration Algorithm:

1. Relax AHΘH = qH on a coarse grid to obtain an initial solution.

2. Transfer the solution ΘH to the fine grid to obtain an initial condition Θ0
h.

3. Relax AhΘh = qh using the initial condition Θ0
h.

4. Test for convergence. If needed go to step 1 and continue.

In the above algorithm there can be several relaxation sweeps. Also, in each new execution
of the algorithm the old fine grid is overwritten with the new coarse grid.

A second approach involves transferring the residual from one grid to the next starting
with the fine grid. This is the correction method and it consists of the following steps:

Correction Algorithm:

7.2. Iterative Solvers 451

1. On the fine grid, relax AhΘh = qh.

2. Transfer the residual rh to the coarser grid to obtain rH .

3. Obtain the correction δΘH by solving AH(δΘH) = rH at a reduced computational
cost.

4. Transfer the correction to the fine grid in order to generate a new update Θh ←
Θh + δΘH .

5. Test for convergence. If needed go to step 1 and continue.

Similar to the nested iteration, in this algorithm also several coarser grids can be involved.

The above two algorithms make use of three important operations in multigrid:

• Relaxation of the solution or correction (Smoother).

• Transfer to coarse grid (Restriction).

• Transfer to fine grid (Proplongation).

In order to define a specific multigrid method we need to specify the corresponding three
operators named in the above list (inside the parenthesis). We give details for each operators
below.

The Smoother

To evaluate the smoothing properties of the relaxation method employed, e.g. relaxed
Jacobi or Gauss-Seidel or any other variant, we need to examine the eigenspectrum of the
amplification matrix G. We have already seen in the previous section that we cannot really
affect the low modes, and the best we can do is to come up with a good choice on how to
most effectively damp the upper half of the eigenspectrum of G. With this in mind, we
define the smoothing factor as

µ = max|λ(G(φ))|, π

2
≤ |φ| ≤ π . (7.25)

Here φ = kπ/N ; in multi-dimensions we have to extend this definition to account for φx, φy

and φz which will depend on the resolution in x, y, and z, respectively.
Values of |φ| close to zero correspond to low wavenumbers while values of |φ| close to

π correspond to high wavenumbers. In order to appreciate this correspondence between
the angular variable φ and the spacing in the physical domain we sketch in figure 7.26 the
one-dimensional discretization for a fine/coarse grid combination.

We have seen in the previous section that for the relaxed Jacobi method the eigenvalues
are

λk(GJ(ω)) = 1− 2ω sin2(φ/2) ,

and thus the smoothing factor for the one-dimensional problem is

µ = λ(π/2) = 1/3 and ω = 2/3 .

7.2. Iterative Solvers 452

h: ∆x = L/N ϕ ∋[π/Ν,π]

H: 2∆x ϕ ∋[π/Ν,π/2]

ϕ
π/Ν π/2 π

coarse grid

Figure 7.26: Fine/coarse grids in one-dimensional domain.

high−frequecy domain

low−frequency

π

π ϕ
x

__π−
2

−π

ϕ y

Figure 7.27: Frequency domain for estimating the Smoother.

In the two-dimensional case we also have to separate the domain into the high frequency
(wavenumber) and low frequency (wavenumber) and formulate a minimax problem for the
Smoother in the domain as shown diagrammatically in figure 7.27. We first note that the
standard Jacobi algorithm has an eigenvalue of −1 at φx = φy = π (in the high-frequency
domain), and thus it is not a good smoother! However, the relaxed Jacobi can be used to
damp high frequencies, as in the one-dimensional case.

In the high-frequency domain, the extreme eigenvalues of Jacobi are

λ(GJ)

{ −1 at (π, π)
+1/2 at (π/2, 0)

.

Then

λ(GJ(ω)) = [(1− ω) + ωλ(GJ)]

and

λ(GJ(ω)) =

{
1− ω + ω/2 = 1− ω/2
1− ω − ω = 1− 2ω

.

This minimax problem can be solved graphically as shown in figure 7.28; we obtain for the
optimum ω = 4/5 = 0.8, with the corresponding smoothing factor

µJ = minmax {|1− ω/2|, |1− 2ω|} = 0.6 .

7.2. Iterative Solvers 453

λ

1.0

1 − 2 ω
ω

0.8

(1 − −−)ω
2

Figure 7.28: Estimation of the Smoother for the two-dimensional Jacobi method.

Remark 1: The total reduction of the error during the smoothing substep is proportional
to µn1 where n1 is the number of relaxation sweeps.

Remark 2: A similar but more elaborate analysis for Gauss-Seidel gives µGS = 0.5 [92].
Therefore, the Gauss-Seidel Smoother achieves an order of magnitude reduction in the high
frequency error after only three iterations.

Remark 3: In multi-dimensions we can relax by points, lines, or planes or by alternating
directions and parallel versions such as the red-black coloring can be employed.

The Coarse-Grid Correction (CGC)

h H

Figure 7.29: Two-grid transfer. The fine grid spacing is denoted by h and the coarse grid spacing
is denoted by H.

The coarse-grid correction stage (CGC) is a very important operation and has to be done
accurately and efficiently. To identify the main operations during this stage we define two
grids, as shown in figure 7.29. Assuming that on the fine grid we have obtained

P (δΘh) = rh

where P is an operator to be determined later, we perform the following steps in CGC:

• Transfer residual to coarse grid via the Restriction Operator, IH
h , i.e.,

rH = IH
h rh .

7.2. Iterative Solvers 454

• Solve: AH(δΘH) = rH at low cost.

• Transfer correction δΘH to fine mesh via the Prolongation Operator, Ih
H , i.e.,

δΘh = Ih
H(δΘH) .

We have outlined the above multigrid substeps at a high level, and we now need to
define the restriction and prolongation operators more precisely. We do that for simple finite
difference representations following the two-grid model.

The Restriction Operator involves a projection from N points to N/2 points. The finite
difference expressions for the residuals on the fine and coarse grids, respectively, are

rh,i =
1

h2
(Θi+1 − 2Θi + Θi−1)− qi

rH,k =
1

4h2
(Θk−1 − 2Θk + Θk+1)− qk

where i = 2k.

2k − 1 2k 2k + 1

"full−weighting"− 1 D

1D−fine mesh

1D − coarse mesh

1/4 1/4 1/2 1/4 1/4

Figure 7.30: One-dimensional restriction operator (full-weighting).

Based on these residuals we can define a restriction operator that accomplishes the trans-
fer; it is shown schematically in figure 7.30. This projection is referred to as full-weighting
in contrast to a simpler projection by injection, which would imply that ΘH

k = Θh
i . We can

define more precisely the full-weighting restriction operator for the one-dimensional case in
matrix form as follows:

IH
h =

k − 1
k

k + 1

∣∣∣∣∣∣∣∣∣
2k − 1 2k 2k + 1

1/4 1/2 1/4
1/4 1/2 1/4

1/4 1/2 1/4

∣∣∣∣∣∣∣∣∣
,

which is an (N/2)×N matrix. The coarse grid residual is then obtained from

rH = IH
h rh .

7.2. Iterative Solvers 455

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.31: Action of a full weighting restriction operation on a smooth mode (N = 16; k = 4).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.32: Action of a full weighting restriction operation on a rough mode (N = 16; k = 12).

7.2. Iterative Solvers 456

Next, we explain how the restriction operator acts on the k modes of the Laplacian Ah;
these modes are given by

Φh
k,j = sin(

jkπ

N
) , 0 ≤ j ≤ N .

In particular, the result is different depending on the mode, that is if it is a smooth or a
rough mode. In the one-dimensional case for smooth modes we have that

IH
h Φh

k = cos2(
kπ

2N
) ΦH

k , 1 ≤ k ≤ N/2 .

This equation simply states that the projected kth mode remains the kth mode on the coarse
grid. An example is shown in figure 7.31 where the k = 4 mode is projected onto a grid with
8 grid points from a grid of 16 points.

In contrast, for the high rough modes aliasing may transform them to smooth modes on
the coarse grid according to

IH
h Φh

k = − sin2(
kπ

2N
) ΦH

N−k, N/2 < k ≤ N .

This is shown schematically in figure 7.32 where the k = 12 mode is projected onto a grid with
8 grid points from a grid of 16 points. It is clear that the projected mode is a (16− 12) = 4
mode, i.e., a smooth mode in the coarse grid.

H

X

X X X

XX

XX

X

1

X XX

X X

X X X

4

"Injection"
"Full−weight"

2

2

1

2

1

2

1/16 x

1

X X X

X X

X X X
1/6 x

1
1

1
2 1

Figure 7.33: Three different schemes of restriction from fine to coarse grids. The full-weighting is
the most popular choice.

In two- or three-dimensions, several choices for the restriction operator are possible repre-
senting different ways of weighting the contribution from the fine grid nodes to the coarse grid
nodes. Examples are shown in figure 7.33. The full-weighting is the most popular choice as it
leads to the following important property between the restriction and prolongation operators

IH
h = C Ih

H ,

which means that the restriction and interpolation operators are transpose of each other
apart from a constant C.

We now examine some of the properties of the interpolation or Prolongation Operator
that we need to define in order to transfer quantities, e.g. the correction, from the coarse to
fine grid.

7.2. Iterative Solvers 457

Fine
2k

I h
H

Coarse

1/2 1
1/2

Figure 7.34: Schematic for the one-dimensional prolongation operation.

1

4 2
1

21

1
1

1

12
2

1/4 x

Figure 7.35: Schematic for the two-dimensional prolongation operation.

The one-dimensional prolongation operation is defined as shown in figure 7.34, while the
two-dimensional prolongation operation is sketched in figure 7.35. They both involve linear
interpolation, which is effective if the solution error is relatively smooth. A more accurate
prolongation operator based on cubic interpolation has also been found to be very effective.

For the one-dimensional problem the prolongation matrix is defined as follows:

Ih
H =

∣∣∣∣∣∣∣∣∣
k − 1 k k + 1

. . . 0 1/2 1/2 . . .
0 0 1 0

1/2 1/2

∣∣∣∣∣∣∣∣∣
2k − 1

2k
2k + 1

In order to understand the action of the prolongation operator for the one-dimensional
case, we examine how the modes of the Laplacian on the coarse grid are interpolated onto
the fine grid. Specifically, we find that

Ih
HΦH

k = [cos2(
kπ

2N
)]Φh

k − [sin2(
kπ

2N
)]Φh

N−k .

This equation provides a lot of insight into the coarse-to-fine grid transfer. It states that
the k mode is not preserved but is mixed up with the complimentary mode (N − k), so the
smooth mode picks up some rough component as it is transferred onto the fine grid! This, in
turn, suggests that after we transfer the correction δΘh to the fine grid we need to perform
additional relaxation sweeps to get rid of this unwanted component. Fortunately, the rough
component is of smaller magnitude compared to the smooth component as indicated from

7.2. Iterative Solvers 458

Rh

PCGC

A H ∆θΗ = RΗ Coarse Grid

Figure 7.36: Schematic of the coarse-grid correction stage.

the approximation to the above equation, i.e.,

Ih
HΦH

k = [1−O(
k2

N2
)]Φh

k − [O(
k2

N2
)]Φh

N−k ,

which is valid for k � N/2.

We now return to the coarse-grid correction operator PCGC , which we will define by the
following “backwards” analysis. We begin with the correction at the fine grid and trace it
back to the two-grid correction, see figure 7.36, as follows:

δΘh = Ih
H(δΘH)

= Ih
HA−1

H rH

= Ih
HA−1

H IH
h rh

⇒ (Ih
HA−1

H IH
h)−1︸ ︷︷ ︸

PCGC

δΘh = rh .

The corresponding amplification matrix or two-grid correction operator is then

GCGC = I−P−1
CGCAh

= I− Ih
HA−1

H IH
h Ah .

It is interesting again to examine what this operator does to the Laplacian modes, both
smooth and rough. Combining the properties of the restriction and prolongation operators,
we obtain

GCGCΦk = [sin2(
kπ

(2N)
)]Φk + [sin2(

kπ

(2N)
)]ΦN−k

GCGCΦN−k = [cos2(
kπ

(2N)
)]Φk + [cos2(

kπ

(2N)
)]ΦN−k .

The above equations simply state that the coarse-grid correction operator mixes up the
modes irrespective of the mode (smooth or rough) to which it is applied, unlike, for example,
the restriction operator. However, the amplitudes are different depending on whether the
original mode is smooth or rough, and this is really what saves the day for multigrid! In

7.2. Iterative Solvers 459

particular, when GCGC operates on smooth modes the amplitudes of the resulted smooth
and rough modes are proportional to O(k2/N2) (for k � N/2), in contrast with the high
modes whose resulted modes have amplitudes of O(1).

The above analysis is useful as it also suggests the potential benefits of relaxation. To
this end, we recall that most of the relaxation solvers do not mix up the modes. Assuming,
for example, that we employ the relaxed Jacobi method as smoother, and we perform n1

relaxation sweeps then the amplification matrix is

GCGC ·Gn1

J(ω) .

The corresponding action of this operator to the Laplacian modes is then given by

GCGC ·Gn1

J(ω) · Φk = [sin2(
kπ

(2N)
)]λn1

k Φk + [sin2(
kπ

(2N)
)]λn1

k ΦN−k

GCGC · ΦN−k = [cos2(
kπ

(2N)
)]λn1

N−kΦk + [cos2(
kπ

(2N)
)]λn1

N−kΦN−k ,

where λk are the eigenvalues of the Jacobi amplification matrix GJ(ω), which are, of course,
all less than one. Therefore, relaxation reduces significantly the already small amplitudes of
the smooth modes, but the more significant effect is on the rough modes, since λN−k < λk

for small wavenumbers.

Multigrid Algorithm

We now have all the ingredients required in order to write the complete multigrid algo-
rithm. Two popular choices of multigrid algorithms are shown schematically in figure 7.37,
corresponding to a V-cycle and a W-cycle. They both start with a fine grid and transfer the
residual down to the coarsest grid and then they interpolate back to a fine grid. The path
of return to fine grid is different for the V-cycle and the W-cycle, as illustrated in the figure.

n1 n 2

V−cycle

n n

W−cycle

1 2

Figure 7.37: Schematic of typical V-cycle and W-cycle multigrid algorithms.

For the V-cycle, in particular, we provide all the steps of the algorithm :

• Perform n1 relation sweeps with smoother S1 on solution Θn
h (n1 ∼ 2− 4).

• Perform coarse-grid correction, Θn+1
h = Θn

h + δΘh.

• Perform n2 relaxation sweeps with smoother S2 on solution Θn+1
h (n2 ∼ 2− 4).

7.2. Iterative Solvers 460

The total amplification factor is then:

Gh,H = Gn2
S2
·GCGC ·Gn1

S1
.

Remark 4: In the above we have implemented the V-cycle for the correction scheme; it
transfers the residual between grids. A similar algorithm can be obtained using nested
iteration; it transfers the linear system from one grid to the other, starting from the coarse
grid solution. This is the so called Full Multigrid cycle; for more details, the reader is referred
to [11, 10, 92].

Convergence and Computational Cost

The question of computational complexity of the multigrid method is related to the
convergence rate of the method. The storage requirements are relatively simple to estimate.
They are less than twice the storage required on the fine grid in either one-dimensional or
multi-dimensional problems.

The convergence rate of multigrid is defined by the spectral radius of the total amplifica-
tion matrix which is less than one, i.e.,

ρ(Gh,H) < 1 .

Asymptotically, the multigrid algorithm is particularly effective for large-scale problems,
since ρ is (in most cases) independent of the spacing h or equivalently the number of grid
points N . The major cost is due to smoother as the intergrid transfers cost about 15% of
the entire cycle.

We can provide an estimate for the work required for a V-cycle assuming that we only
perform one relaxation sweep per grid that costs δtr. Assuming also that we employ m
coarse grids, and since we visit twice each grid, then the total work is

WV = 2[1 + 2−d + 2−2d + . . .+ 2−md]δtr =
2

1− 2−d
δtr

where d denotes space dimension. For example, in three-dimensions (d = 3) we have that
the work for the entire V-cycle, WV , is slightly more than twice the work (time) required for
one relaxation sweep, δtr.

Next, we can estimate the number of required sweeps per level n1 and n2. For simplicity,
we assume that n1 = n2 = n and that the spectral radius ρ(Gh,H) is indeed independent
of h. The multigrid V-cycle should reduce the algebraic error from O(1) to (at least) the
level of the discretization error O(hp) = O(N−p), where p is the order of the finite difference
discretization accuracy, e.g. p = 2. This condition implies that

ρ(Gh,H)n = O(N−p)⇒ n ≈ O(logN).

The total cost of the V-cycle is then

WV ≈ n×O(Nd) ≈ O(Nd logN)

where O(Nd) is the minimum number of operations for the Nd grid points involved in d
space dimensions. In most problems the value of n ∼ O(1), for example n = 4 and thus,

7.2. Iterative Solvers 461

for two-dimensions the optimum cost is O(N2) versus O(N3) for direct solvers and O(N4)
for the Jacobi or the Gauss-Seidel solvers. These estimates assume an N × N grid. For
preconditioned conjugate gradients (see section 9.4) the work is O(N5/2). Therefore, the
multigrid is indeed a very efficient method!

Remark 5: We have presented here only the main elements of multigrid for linear sys-
tems. For more in-depth study of multigrid including applications to nonlinear systems the
reader should consult the references [11, 92, 10]. A very good online resource is the site
www.MGNet.org.

Remark 6: The computational efficiency of the multigrid method depends critically on the
parallel implementation of the smoother and the solution of the system on the coarse grid.
Modern implementations of multigrid exploit the memory hierarchies of the processors and
in particular the L2 and L1 cache, see [34]. In terms of available parallel multigrid software,
the free C/MPI package ParMGridGen from the University of Minnesota generates an
optimum sequence of successive coarse grids which are suitable for the multigrid algorithm.

7.3. Homework Problems 462

7.3 Homework Problems

1. Use von Neumann analysis to show that leap-frog time differencing combined with
central differencing to discretize

∂u

∂t
=
∂2u

∂x2

leads to an unstable scheme. Verify your results with heuristic arguments using the
corresponding equivalent differential equation.

2. Write a C++ code to implement the DuFort-Frankel scheme for solving

∂u

∂t
=
∂2u

∂x2
, x ∈ [−1, 1]

with

u(−1, t) = 0; u(1, t) = 1 and u(x, 0) = −(x+ 1)/2.

Consider two grids with number of points N = 20 and N = 40, and advance the
solution to time t = 1:

(a) First, using a constant diffusion number D, and

(b) Second, using a timestep ∆t that scales linearly with ∆x.

What do you observe?

3. Show that the eigenvalues of the one-dimensional diffusion matrix obtained from second-
order central differencing with Dirichlet boundary conditions are:

λj = − 4

∆x2
sin2

(
jπ

2(N + 1)

)
,

and the corresponding eigenvectors are

φj = [sin(
jπ

2(N + 1)
), sin(

2jπ

2(N + 1)
), . . . , sin(

Njπ

2(N + 1)
)]T .

4. Show that the eigenvalues of the partial differential equation

∂2u

∂x2
+ δ2∂

2u

∂y2
= λu

with homogeneous Dirichlet boundary conditions are given by

−4 sin2(
iπ

2(N + 1)
)− 4δ2 sin2(

jπ

2(N + 1)
) with i, j = 1, . . . , N.

We also assume that the discretization is second-order central differencing and that
∆x = ∆y = 1.

7.3. Homework Problems 463

5. Consider the diffusion equation with the “wrong sign” (negative diffusion)

∂u

∂t
= −∂

2u

∂x2

with
u(−1, t) = u(1, t) = 0 and u(0, 0) = 1 .

(a) What is the solution u(x, t) after time t = 0.1; 1 and also t→∞.

(b) Use explicit time-stepping to advance the solution and observe a numerical insta-
bility developing. Is the physical solution stable?

6. Solve the nonlinear parabolic equation

∂u

∂t
+ u+ u3 =

∂2u

∂x2
+ cos(πx)

with
u(0, t) = u(t, 1) = 0 and u(x, 0) = sin(πx) .

(a) First, using an explicit method to obtain empirically an equivalent diffusion num-
ber for stability.

(b) Second, implicitly using also Newton’s method for the nonlinear equation.

7. Solve the one-dimensional heat equation

d2T

ds2
= sin 2πs, s ∈ [0, 1]

with periodic boundary conditions using

(a) The Thomas algorithm.

(b) The serial Jacobi method.

(c) The parallel Jacobi method.

Use more than one grid and compare convergence rates as well as computational times.

8. Consider the Helmholtz equation

∂2u

∂2x
+
∂2u

∂y2
− λ2u = 0

where (x, y) ∈ [−1, 1]× [−1, 1] and

u(−1, y) = 0; u(1, y) = 0; u(x,−1) = 0; u(x, 1) = 1.

Discretize this equation using central differencing and solve the corresponding algebraic
system using the Jacobi and SOR methods. Experiment with Nx = Ny = 10, 50, 100
grid points.

Is convergence of these iterative solvers guaranteed for all values of λ2?

What is the optimum value of the relaxation parameter ω?

7.3. Homework Problems 464

9. Consider the 2× 2 matrix with a constant value a in the main diagonal and b and −b
in the cross-diagonal. Determine the relationship between a and b so that the Jacobi,
Gauss-Seidel, and SOR methods are guaranteed to converge.

10. Discretize the equation ∇2u = f with the exact solution

u(x, y) = cos(πx) sin(πy), (x, y) ∈ [−1, 1]× [−1, 1]

using the fourth-order compact (Padè) scheme. Use the ADI and Peaceman-Rachford
methods to obtain the numerical solutions and determine the convergence rate of the
solver as well as the spatial accuracy of the discretization.

What do you observe?

11. Show that in the relaxed Jacobi algorithm, when ω is chosen to damp the smooth
modes, then the rough modes are amplified.

12. Write a C++ code for the one-dimensional relaxed Jacobi and SOR. Then experiment
with different initial modes and compare against the Laplacian modes.

13. Show that the prolongation operator (with linear interpolation) and the restriction
operator (with full-weighting) satisfy the transpose property, i.e.,

Ih
H = C(IH

h)T

where C is a scaling constant.

14. Implement the multigrid V-cycle in two dimensions for the unsteady diffusion equa-
tion using second-order central differencing. Consider first a square domain and sub-
sequently a rectangle with aspect ratio 25. Use a relaxed Jacobi for smoother and
full-weighting for the restriction operator.

What is the convergence rate for the square domain and what is it for the large aspect
ratio domain?

15. Implement an MPI version of the SOR algorithm. Solve the one-dimensional heat
equation

d2T

ds2
= sin 2πs, s ∈ [0, 1]

with periodic boundary conditions using:

(a) The relaxation parameter chosen so that the method becomes a Gauss-Seidel
solver.

(b) Using an optimal relaxation parameter.

Use more than one grid and compare convergence rates as well as computational times.
Compare computational timing results (using MPI Wtime) for these two methods
against parallel Jacobi for P = 2, 4, and 8 processes.

7.3. Homework Problems 465

16. Consider ∇2u = Asin(2πx)sin(2πy) on the unit square. Solve for A = 1.0, 2.0, 3.0, 5.0
and A = 10.0 using:

(a) The serial Jacobi method.

(b) The serial SOR method.

(c) The parallel Jacobi method.

Use more than one grid and compare convergence rates as well as computational times.
If you fix the number of grid points per direction to 20 and examine the number of
iterations that each methods takes to converge, does this number of iterations vary as
you change the value of A?

Chapter 8

Propagation: Numerical Diffusion and
Dispersion

In this chapter we continue with mixed discretizations for initial value problems (IVP) and
boundary value problems (BVP), but our emphasis is on advection equations and wave
propagation with and without dissipation. Specifically, we introduce two important non-
dimensional numbers that define the accuracy and the stability of discretizations we present:
The Courant number or CFL condition first proposed by Courant in 1928, and the (grid)
Peclet number for advection-diffusion systems. We also provide C++ functions and corre-
sponding results that illustrate the effects of numerical diffusion and numerical dispersion in
pure advection and in advection-diffusion systems.

On the parallel computing side, we introduce the concept of non-blocking communica-
tions, specifically the use of MPI Isend and MPI Irecv. Non-blocking communications
may lead to a reduction in the computational time by allowing the programmer to appro-
priately intertwine computation and communication.

466

8.1. Advection Equation 467

8.1 Advection Equation

We consider as a prototype problem the linearized wave or advection equation

∂Θ

∂t
+ U

∂Θ

∂x
= 0

(
or
DΘ

Dt
= 0

)
, (8.1)

which expresses the (passive) advection of heat or a species in one-dimension by the flow with
transport velocity U(x, t). For a constant U this is a deceptively “simple-looking” equation,
but it is perhaps one of the most difficult equations to resolve in scientific computing. The
reason is that, as we will see below, it exhibits no physical diffusion or dispersion. However,
there is no practical numerical method for the solution of equation (8.1) that does not
introduce at least some amount of either numerical diffusion or dispersion! This equation is
therefore a good yardstick by which we can measure these two fundamental properties of a
numerical method.

x = 0 x = 1

Figure 8.1: Domain for the one-dimensional linear advection equation.

Let us assume that we have periodic boundary conditions, i.e., Θ(0, t) = Θ(1, t), and
that the initial conditions are Θ(x, 0) = Θ0(x) = sin 2πx, then the exact solution is Θ =
Θ0(x−Ut) = sin 2π(x−Ut), which is a traveling wave of constant amplitude that propagates
to the right in figure 8.1, with constant velocity U . The exact solution can be verified by
direct substitution in equation (8.1). Any initial waveform (see figure 8.2) is simply advected
to the right without diffusion or dispersion.

t = t1 t = t2
t

U = 1 U = 1

Figure 8.2: A waveform advected with constant velocity to the right is described by equation (8.1).

8.1.1 Dispersion and Diffusion

We explain next the concepts of dispersion and diffusion that a partial differential equation
may exhibit as we need to distinguish these from the numerically induced ones. We can use
complex arithmetic to write the solution of equation (8.1) as

Θ = Re
{(
ei2πkx

) (
e−i2πωt

)}
= Re

{
ei2πk(x−ω

k
·t)}

8.1. Advection Equation 468

of constant amplitude; here, ω is the eigenvalue and it is related to the frequency of the
wave. The definition of phase speed is suggested by the above expression

Cφ = ω/k,

and for the linear advection equation it is obtained upon substitution of the assumed solution
into equation (8.1), i.e.,

∂Θ

∂t
= −i2πωΘ

−U ∂Θ
∂x

= −2πkiΘU



⇒ ω = kU ⇒ ω

k
= Cφ = U.

Thus, the waveforms are not dispersed as time progresses, as the phase speed is equal to the
constant transport velocity U ; they are also non-dissipative, and thus we obtain solutions as
sketched in figure 8.2.

In contrast, in the diffusion equation

∂Θ

∂t
=
∂2Θ

∂x2
, (8.2)

and assuming a solution of the form

Θ = Re{eσteiπ2kx},

where σ is the eigenvalue, we obtain upon substitution in equation (8.2)

∂Θ

∂t
= σΘ = −(2πk)2Θ =

∂Θ

∂x2
.

Therefore, we have dissipation of the waveform, and σ is the attenuation factor, i.e., the
solution Θ(x, t) is dissipative.

U=1

0 0

t = t0 t = t + n ∆t0

Figure 8.3: Dispersion leads to short waves leading the wave form.

Similarly, we consider a third-order equation

∂Θ

∂t
=
∂3Θ

∂x3
(8.3)

8.1. Advection Equation 469

and assuming a solution of the form

Θ = Re{ei2πkxe−i2πωt}.

Upon substitution in equation (8.3), we obtain

∂Θ

∂t
= −i2πωΘ = −i(2πk)3Θ =

∂3Θ

∂x3

and therefore
ω

k
= Cφ = (2πk)2.

This is the dispersion equation for the third-order partial differential equation with periodic
boundary conditions. It shows that the phase speed depends on the wave number, with short
waves traveling quadratically faster. Each wave corresponding to wave number k travels
at a speed proportional to the square of its wavenumber, and we obtain solutions which
graphically look like the sketch in figure 8.3.

In summary, we have seen that the order of spatial derivative determines if a PDE exhibits
dispersion or diffusion. Specifically,

(i) Θt = −Θx leads to non-dissipative, non-dispersive solutions.

(ii) Θt = Θxx leads to dissipative solutions.

(iii) Θt = Θxxx leads to non-dissipative but dispersive solutions.

(iv) Θt = −Θxxxx leads to dissipative solutions (similar justification as above).

Therefore, the odd derivatives (higher than first) are associated with dispersion, whereas
the even derivatives are associated with dissipation. We will use this fact in the following
in order to determine the numerical properties of a specific discretization by examining its
corresponding equivalent differential equation.

8.1.2 Other Advection Equations

Burgers Equation

The nonlinear advection equation has the form

∂Θ

∂t
+

1

2
Θ
∂Θ

∂x
= 0. (8.4)

It has been introduced by the fluid mechanist J.M. Burgers [12] to model quadratic nonlin-
earities that appear in many physical phenomena including turbulence and shock waves. In
particular, the initial conditions are very important in determining the structure of solutions
to this inviscid Burgers equation. The basic discretizations employed for the solution of
equation (8.1) can also be used to solve equation (8.4) with appropriate treatment of the
nonlinear terms.

8.1. Advection Equation 470

Second-Order Wave Equation

The advection equation (8.1) is first-order and admits one-directional wave solutions. Its
second-order analogue has the form

∂2Θ

∂t2
= c2

∂2Θ

∂x2
, (8.5)

and admits left- and right-traveling waves with velocity c. This equation can be reduced to
a system of first-order linear advection equations, similar to equation (8.1), as follows

∂v

∂t
= c

∂Θ

∂x
;

∂Θ

∂t
= c

∂v

∂x
.

Stochastic Advection Equation: We assume that the transport velocity is a stochastic
variable that can be decomposed into its mean and a fluctuation component as follows
U = Ū + u. If the fluctuation component follows a Gaussian distribution with variance σ2,
its probability distribution function has the form

f(u) =
1√

2πσ2
exp[− u2

2σ2
].

An exact expression can be obtained for the mean solution, i.e.,

Θ̄ = Θ0(x− Ūt)exp[−π2αt].

Here, Θ0(x) is the initial (deterministic) condition, and α is an effective diffusivity due to
random fluctuations given by

α =
σ2τ

2
,

where τ is a time scale that determines the sampling rate. For example, if the initial dis-
tribution u is not updated during the time integration, then τ = t, but if the fluctuation is
updated every, say, 10 time steps, then τ = 10∆t. Note that numerical discretizations of
equation (8.1) can be employed for different distributions of u in order to obtain a statisti-
cally converged solution, which will be an approximation to the above solution. This is the
so-called Monte Carlo method, the efficiency of which depends on the efficiency of numerical
solutions for the deterministic equation (8.1).

In the following, we consider first- and second-order discretizations of the linear advection
equations. For the other type of advection equations the same scheme apply.

8.1.3 First-Order Discrete Schemes

Most explicit schemes for the advection equation are conditionally stable and depend on
a non-dimensional number, i.e., the Courant or CFL number. In the following, we first
introduce some first-order schemes, which are useful for short-term integration only, and
subsequently we present second-order schemes that are suitable for both short-term and
long-term time integration.

8.1. Advection Equation 471

j j+1j−1
Figure 8.4: The EF/CD schemes employs a three-point stencil.

Euler-Forward/Center-Difference Scheme (EF/CD)

This is a straight-forward discretization for equation (8.1) on the stencil of figure 8.4, it is not
as useful in practice, but it brings out the subtleties associated with the numerical solution
of hyperbolic equations. For simplicity, let us assume that U = 1 and we also define the
first-order central difference

∆xΘj ≡ Θj+1 −Θj−1

2∆x
.

The discrete EF/CD scheme is

Θn+1
j −Θn

j

∆t
+

Θn
j+1 −Θn

j−1

2∆x
= 0, j = 1, . . . N

with periodic boundary conditions

Θn
0 = Θn

N

and initial conditions given by

Θ0
j = sin 2πxj .

The total truncation error is obtained by Taylor-expanding all terms to obtain

Tj =
∆t

2

∂2Θn

∂t2
+O(∆t2,∆x2) =

∆t

2
· ∂
∂x

(
∂Θ

∂x

)
+O(∆t2,∆x2).

Clearly, this is a consistent scheme of first-order accuracy in time and second-order accuracy
in space as expected. The equivalent differential equation is obtained by the differential
equation (8.1) enhanced with the truncation term, i.e.,

∂Θ̂

∂t
+
∂Θ̂

∂x
+ Tj = 0⇒ ∂Θ̂

∂t
+
∂Θ̂

∂x
= −∆t

2

∂2Θ̂

∂x2
+O(∆t2,∆x2).

Therefore, we see that the equivalent differential equation introduces a second-order deriva-
tive, which according to the previous discussion, indicates numerical dissipation. Moreover,
the coefficient is negative, i.e., the numerical diffusivity is negative, which in turn implies
exponential growth. Based on this heuristic argument we expect that this scheme is unstable
at least for long-term integration.

A more rigorous analysis can be obtained based on the von Neumann stability method.
Let us assume that

Θn
j =

∞∑
k=−∞

an
ke

2πikxj

8.1. Advection Equation 472

and form the difference

Θj+1 −Θj−1 =
∑

ake
2πikxj(e2πik∆x − e−2πik∆x)

=
∑

ake
2πikxj · 2i sin 2πk∆x .

Upon substitution in the EF/CD scheme we obtain

∑
k

(an+1
k − an

k)e2πikxj = −C
2

∑
k

(2i sin 2πk∆x) · an
ke

2πikxj

where

C ≡ U∆t

∆x
. (8.6)

This non-dimensional number above is the Courant number or CFL number or condition,
and it was first introduced in the work of Courant, Friedrich & Lewy (1928) [18].

We can now obtain the amplification factor of EF/CD from the magnitudes of the am-
plitudes

an+1
k = an

k(1− iC sin 2πk∆x)

or

|an+1
k | = |an

k ||1 + C2 sin2 2πk∆x|1/2.

This equation shows that the amplitudes grow in time, and thus the EF/CD scheme is
absolutely unstable, irrespective of the value of the Courant number C, i.e., irrespective of
the time step!

It is interesting to note, however, that the EF/CD scheme is conditionally stable in the
general stability sense. Let us examine the magnitude of the amplitude

|an+1
k | ≤ |an

k |(1 + C2)1/2 ≤ |an
k |eC2/2

≤ |a0
k|enC2/2

Thus,

|an
k | ≤ |a0

k|e(
∆t

2∆x2)(n∆t)

and this inequality indicates general stability. In practice, this means that for (n ·∆t) fixed
we can get a stable result for: 


∆t

∆x2
< constant

∆t,∆x→ 0


 .

This condition is in fact as restrictive as the condition for diffusion analyzed in the previous
chapter. For U �= 1 the above condition is equivalent to

D =
U∆t

∆x2
< O(1),

8.1. Advection Equation 473

which is a condition on the diffusion number D! Clearly, this is not a practical scheme as
the solution blows up after a few time periods as shown in figure 8.5. However, it can be
used as a starter in multi-step stable high-order explicit schemes.

It is also instructive to examine the stability of this scheme by investigating how the eigen-
spectrum of the advection operator fits into the stability region of the Euler-forward scheme,
which is a unit circle on the left complex plane (see section 5.2). The eigenvalues are obtained
from

an+1
k − an

k

∆t
=

(−i sin 2πk∆x

∆x

)
︸ ︷︷ ︸

λ

an
k ,

and are purely imaginary. This means that there is only one point of contact between the
stability region of EF and the eigenvalues, and thus the EF/CD is an unstable scheme.
A successful scheme, however, would be one that employs leap-frog time integration, (see
section 5.2), as its stability region is the imaginary axis. Thus, for C ≤ 1 the leap-frog/CD
scheme is absolutely stable.

Software

 Suite
Putting it into Practice

Below we present a C++ implementation of the advection equation using central differ-
encing in space and Euler-Forward in time. This function takes as input the number of grid
points, the CFL number, and the values at the current time level stored in the array uold.
This function updates the array unew with the new values at the next time level.

void EF_CentralDifference(int N, double CFL, double *uold,

double *unew){

for(int i=1; i<N-1; i++){

unew[i] = uold[i] - 0.5*CFL*(uold[i+1]-uold[i-1]);

}

unew[0] = uold[0] - 0.5*CFL*(uold[1]-uold[N-1]);

unew[N-1] = uold[N-1] - 0.5*CFL*(uold[0]-uold[N-2]);

}

8.1. Advection Equation 474

Parameter Value

Method Euler-Forward Central Difference
Interval [0, 1]
N 20
∆t 0.005
C 0.1

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.1: Parameters used for the solution shown in figure 8.5.

Key Concept

• Often boundary conditions are handled separately from interior
points for looping simplicity.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

T = 0.75
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

T = 1.50

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

T = 2.25
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

T = 3.00

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

T = 3.75
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

T = 4.50

Exact Solution
Approximate Solution

Figure 8.5: Euler-forward/central difference versus exact solution at various times T for the pa-
rameters listed in table 8.1.

8.1. Advection Equation 475

x

t

n

n+1

A B

P

CP PL R

x x

Figure 8.6: Time-space discretization in an explicit scheme. The lines PPL and PPR are the
characteristics emanating from the point P .

Propagation and the CFL Condition

The Courant number or CFL condition C has a physical meaning and a geometric interpre-
tation that we present next. From an order of magnitude analysis of equation (8.1) we have
that

∆Θ

∆t
∝ U

∆Θ

∆x
or C =

U∆t

∆x
∝ O(1).

For the geometric interpretation we refer to figure 8.6 and make use of the properties of
characteristics, i.e. lines along which information is propagated. In our case the characteristic
lines are defined by

dX

dt
= U,

and they are straight lines for constant velocity U . In the figure we plot characteristics for
both U and −U for the point P . The points PL and PR are the locations of point P at time
level (n∆t) if the wave was advected with velocity U and −U , respectively. By definition
the lengths (PLB) and (PRB) are equal to the magnitude U∆t, and the region (PPLPR) is
the domain of influence of the differential equation. We have already seen that C ≤ O(1)
and this simply means that the domain of dependence of the differential equation should be
contained within the domain of dependence of the difference equation, the latter defined in
figure 8.6 by the region (PAC).

Euler-Forward/Upwind-Differencing Scheme (EF/UD)

The EF/CD scheme is inconsistent with the physics of the problem, which suggests that
information is propagating from left to right. However, in the previous scheme we used
information from the node (j + 1), which is downstream of node (j). Here, we present a
scheme consistent with the physics of the problem and employ an upwind derivative for
spatial discretization. The discrete EF/UD scheme is

Θn+1
j −Θn

j

∆t
+

Θn
j −Θn

j−1

∆x
= 0, j = 1, . . . , N

8.1. Advection Equation 476

which can be re-written as

Θn+1
j = Θn

j −
C

2

(
Θn

j+1 −Θn
j−1

)
+
C

2

(
Θn

j+1 − 2Θn
j + Θn

j−1

)
.

In this form, we can see that the EF/UD scheme is similar to the EF/CD with the addition
of an extra term on the right-hand-side. This term is the discrete central difference second-
order derivative, and thus it represents numerical diffusion added to the difference equation.
Correspondingly, the equivalent differential equation is

∂Θ̂

∂t
+
∂Θ̂

∂x
=

1

2
(∆x− U∆t)

∂2Θ̂j

∂x2
+O(∆x2,∆t2)︸ ︷︷ ︸

Tj

.

We note that if ∆x = ∆t then the Courant number is C= 1 and the above scheme is exact,
that is Θn+1

j = Θn
j−1! This is because all high-order terms have the factor (∆x− U∆t).

With regards to stability, if :

• C < 1 : U∆t ≤ ∆x, and the equivalent differential equation has a positive numerical
diffusivity, which in turn implies stability. However, the scheme is of first-order, i.e.,
O(∆t,∆x).

• C > 1: then an instability occurs due to negative diffusivity and associated exponential
growth as before.

These results are confirmed from von Neumann stability analysis. Specifically, we obtain
for the amplitude

an
k = an

k

[
1− C(1− e−2πik∆x)

]
and taking its magnitude

|an+1
k | = |an

k ||1− C(1− e−2πik∆x)|
= |an

k |
[
1 + 2(C2 − C)(1− cos 2πk∆x)

]1/2
.

For stability, we need to have attenuation of the amplitude, and thus we require

2C2 − 2C ≤ 0⇒ C ≤ 1,

which is the same condition for stability as given by the equivalent differential equation.

We can also examine the region of stability in the complex plane by identifying the eigen-
spectrum for the UD scheme, i.e.,

an+1
k − an

k

∆t
= −1− e−2πik∆x

∆x︸ ︷︷ ︸
λ complex

an
k ,

8.1. Advection Equation 477

and thus we obtain

λ∆t = −C(1− e−2πik∆x)

= −C(1− cos 2πk∆x)− iC sin 2πk∆x.

In the complex λ∆t plane, the curves described above are circles enclosed within the unit
circle for C ≤ 1, and thus stability is ensured (see figure 8.7). In contrast to the EF/CD
scheme, here the damping due to upwinding brings the λ∆t into the stability region of the
Euler scheme (the C = 1 curve).

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Re(λ ∆t)

Im(λ ∆t)

C = 1.0

C = 0.5

C = 0.33

Figure 8.7: Stability region of the EF/UD scheme.

Therefore, with regards to stability the EF/UD is the opposite of the EF/CD, in fact it is
too stable! This is suggested by re-examining the equivalent differential equation and write
it in the form

∂Θ̂

∂t
+ U

∂Θ̂

∂t
= νeff

∂2Θ̂

∂x2
+ . . .

where

νeff =
U∆x

2
(1− C) ∼ U∆x .

The numerical solution will be so damped in time that the initial waveform will disappear
after some time. This is shown in figure 8.8, where the parameters as of table 8.2 are used,
similar to the parameters for the EF/CD method listed in table 8.1.

Below we present a C++ implementation of the advection equation using first-order
upwinding in space and Euler-forward in time. This function takes as input the number of
grid points, the CFL number, and the values at the current time level stored in the array
uold. This function updates the array unew with the new values at the next time level.

8.1. Advection Equation 478

Parameter Value

Method Euler-Forward Upwind Difference
Interval [0, 1]
N 20
∆t 0.005
C 0.1

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.2: Parameters used for the solution shown in figure 8.8.

void EF_FirstOrderUpwind(int N, double CFL, double *uold,

double *unew){

int i;

for(int i=1; i<N; i++)

unew[i] = uold[i] - CFL*(uold[i]-uold[i-1]);

unew[0] = uold[0] - CFL*(uold[0]-uold[N-1]);

}

Programming Note

• A sign mistake can make all the difference. Take for instance
this upwind scheme. The sign of the last term (CFL*(uold[i]-
uold[i-1])) determines which way the wave is moving. If the sign
is correct for upwinding, then the scheme is stable. If not, your
code will blow up. Bottom line check your signs carefully.

Remark: Numerical discretization of propagation problems should have the so-called trans-
portive property according to Roache [78]. This means that the effect of a perturbation is
advected only in the direction of the velocity. Therefore, the upwind scheme is transportive
but the centered difference scheme is non-transportive. For a variable transport velocity U
the following algorithm has been suggested by Roache:

1. First-order:
∂Θ

∂t
+ U

∂Θ

∂x
⇒ ∆Θj

∆t
= −UjΘj − Uj−1Θj−1

∆x
.

8.1. Advection Equation 479

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 0.75
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 1.50

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 2.25
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 3.00

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 3.75
0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

T = 4.50

Exact Solution
Approximate Solution

Figure 8.8: Euler-forward/upwind difference versus exact solution at various times T for the
parameters listed in table 8.2.

Software

 Suite
Putting it into Practice

This scheme is transportive but not conservative when U changes sign.

2. Second-order: If the spatial derivative is discretized as

−URΘR − ULΘL

∆x

where

UR =
1

2
(Uj+1 + Uj); UL =

1

2
(Uj−1 + Uj)

ΘR = Θj, UR > 0

ΘL = Θj−1, UL > 0

then this scheme is transportive, conservative, and (almost) second-order.

Lax-Friedrichs Scheme (LF) and Tadmor’s Correction

The idea of the LF scheme is to stabilize the EF/CD scheme by replacing the contribution
from node j, i.e. the value Θn

j by its average as shown in figure 8.9. Thus, the discrete

8.1. Advection Equation 480

n + 1

n

j − 1 j j + 1

Figure 8.9: Time-space stencil for the Lax-Friedrichs scheme.

scheme is

Θn+1
j =

1

2
(Θn

j+1 + Θn
j−1)︸ ︷︷ ︸

average for Θn
j

−C
2

(Θn
j+1 −Θn

j−1). (8.7)

This can be considered as a correction to the unstable EF/CD scheme as can be seen by
re-writing the above as

Θn+1
j −Θn

j =
1

2
(Θn

j+1 − 2Θn
j + Θn

j−1)︸ ︷︷ ︸
fixed dissipation

−C
2

(Θn
j+1 −Θn

j−1).

The von Neumann analysis shows that

an+1
k = an

k [cos 2πk∆x− iC sin 2πk∆x],

and thus stability is obtained for C ≤ 1. For C = 1 we obtain |an+1| = |an|, which implies
that there are no dissipation errors. In general, however, this scheme is overly dissipative, in
fact more dissipative than the first-order upwind scheme. This is shown from the analysis of
the equivalent differential equation

∂Θ̂

∂t
+ U

∂Θ̂

∂x
=

∆x2

2∆t
(1− C2)Θ̂xx +

U∆x2

3
(1− C2)Θ̂xxx + . . .

The numerical viscosity is

νeff =
U

2C
∆x(1− C2)

=
U∆x

2
(1− C)

(1 + C)

C
.

Therefore, the diffusion of this scheme is higher than the numerical viscosity of UD/CD by

the factor
(

1+C
C

)
.

The phase errors are measured by

εφ ≡ ω/k

U
, φ = 2πk∆x,

8.1. Advection Equation 481

the exact value of which is εφ = 1 for equation (8.1). For C = 1 there are no dispersion
errors but in general

εφ =
ω/k

U
≈ 1 +

φ2

3
(1− C2) +O(∆x4) ,

and since εφ > 1 we have leading phase errors.

The Lax-Friedrichs scheme is of first-order, but a second-order version has been proposed
more recently by Tadmor, see [71]. It employs piecewise linear interpolation instead of
constant values within the cell for the standard Lax-Friedrichs scheme. For the nonlinear
case the scheme can be written as a predictor-corrector procedure (see homework problems),
but for the linear advection equation we consider here, it can be performed in a single step
as follows:

Θn+1
j =

1

2
[Θn

j+1 + Θn
j−1] +

1− C2

4
[Θ′

j−1 −Θ′
j+1]−

C

2
[Θn

j+1 −Θn
j−1] . (8.8)

The Tadmor correction therefore introduces the extra (middle) term in the above equation.
Here, the first derivatives are computed properly so that they are of second-order accuracy,
but they also satisfy non-oscillatory reconstruction procedures. To this end, we have

Θ′
j = MinMod[∆Θn

j+1/2,∆Θn
j−1/2] ,

where we define

MinMod[x, y] =
1

2
[sgn(x) + sgn(y)]Min[|x|, |y|]

and also
∆Θn

j+1/2 ≡ Θn
j+1 −Θn

j .

The above is just one of several possible ways of computing Θ′
j . An alternative way that

may lead to crisper discontinuities has also been suggested in [71]; it has the form

Θ′
j = MinMod[α∆Θn

j+1/2,
1

2
(Θn

j+1 −Θn
j−1), α∆Θn

j−1/2]. (8.9)

The free parameter α is chosen so that a steeper slope near discontinuities is obtained. It
is in the range α ∈ [1, 4) in order to satisfy the CFL condition and monotonicity constraints.

Example:

Software

 Suite

To demonstrate the difference between the Lax-Friedrichs
scheme and Tadmor’s correction, we have implemented both
equation (8.7) and equation (8.8) with Θ′

j defined as in equa-
tion (8.9). The implementations can be found in the software
suite. For this experiment, we will compare the exact solu-
tion versus the Lax-Friedrichs (LF) scheme, LF with Tadmor’s
correction using α = 1, and LF with Tadmor’s correction us-
ing α = 3. The parameters used for these experiments are
presented in table 8.3 with a parabola as initial condition.

8.1. Advection Equation 482

Parameter Value

Method Lax-Friedrichs/Tadmor’s Correction
Interval [0, 1]
N 1000
∆t 0.0005
C 0.5

Steps N 10000
Final Time T 5.0

Initial Condition u(x, 0) =

{
100(x-0.4)(0.6-x) if 0.4 ≤ x ≤ 0.6
0 otherwise

Boundary Conditions Periodic

Table 8.3: Parameters for the solutions shown in figure 8.10.

In figure 8.10, we present the results of our numerical experiments. The exact solution to
this problem is for the initial condition to be advected with speed one through the periodic
domain. Observe that although the Lax-Friedrichs solution has reasonably maintained the
correct phase, the numerical solution is highly dissipated compared to the exact solution.
Using Tadmor’s correction with α = 1, we see a significant improvement in the dissipation
error. By setting α = 3, we see slight improvement over the α = 1 case; however, this
improvement is at the cost of the solution being slightly more dispersive. Observe that for
α = 3 we see slight trailing wiggles in the solution indicating the dominance of the dispersion
error over the dissipation error.

In the following, we present other high-order schemes suitable for propagation problems.

8.1.4 High-Order Discrete Schemes

Second-Order Upwind Scheme (EF/UD2)

This scheme was introduced by Warming & Beam [91] in order to correct the first-order
upwind scheme EF/UD. It has the form

Θn+1
j = Θn

j − C(Θn
j −Θn

j−1)︸ ︷︷ ︸
1st-order upwind

+
1

2
C(C − 1) (Θn

j − 2Θn
j−1 + Θn

j−2)︸ ︷︷ ︸
dissipation at (j−1)

.

Therefore, it adds to the upwind node (j − 1) positive or negative dissipation depending on
the value of C. The corresponding equivalent differential equation

Θ̂t + UΘ̂x =
U

6
∆x2(1− C)(2− C)Θ̂xxx

− C

8
∆x3(1− C)2(2− C)

(
∂4Θ̂

∂x4

)
+ . . .

8.1. Advection Equation 483

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Lax−Friedrichs

Tadmor Correction
 α = 1

Exact Solution

Tadmor Correction
 α = 3

Figure 8.10: Comparison of exact solution (solid), Lax-Friedrichs scheme (dotted), Lax-Friedrichs
with Tadmor correction, α = 1 (dot-dashed), and Lax-Friedrichs with Tadmor correction, α = 3
(dashed). Details of the numerical experiment are given in the text; the parameters are listed in
table 8.3.

shows that there is no second-order derivative and therefore dissipation is reduced compared
to first-order upwind.

jj−1j−2

U

Figure 8.11: Stencil for second-order upwind scheme

The precise stability condition is determined from von Neumann analysis as follows:

an+1
k = an

k

{
1− 2C[1− (1− C) cosφ] sin2 φ/2 − iC sinφ[1 + 2(1− C) sin2 φ/2]

}
.

and we can obtain ∣∣∣∣∣a
n+1
k

an
k

∣∣∣∣∣
2

= 1− 4C(1− C2)(2− C) sin4 φ/2.

For stability, we require that C ≤ 2.

Analysis of phase errors shows that

εφ =
ω/k

U
≈ 1 +

1

6
(1− C)(2− C)φ2 +O(φ4),

which suggests that the phase errors are leading errors for C < 1, and lagging error for
C > 1. This is demonstrated in figure 8.12; the parameters for the solution are in table 8.4.

8.1. Advection Equation 484

Software

 Suite
Putting it into Practice

Below we present a C++ implementation of the advection equation using second-order
upwinding in space and Euler-forward in time. This function takes as input the number of
grid points, the CFL number and the values at the current time level stored in the array
uold. This function updates the array unew with the new values at the next time level.

void EF_SecondOrderUpwind(int N, double CFL, double *uold,

double *unew){

for(int i=2; i<N; i++){

unew[i] = (1.0e0 - CFL*((3.0/2.0) - CFL/2.0))*uold[i] +

CFL*(2.0-CFL)*uold[i-1] +

(CFL/2.0)*(CFL-1.0)*uold[i-2];

}

unew[0] = (1.0 - CFL*((3.0/2.0) - CFL/2.0))*uold[0] +

CFL*(2.0-CFL)*uold[N-1] +

(CFL/2.0)*(CFL-1.0)*uold[N-2];

unew[1] = (1.0 - CFL*((3.0/2.0) - CFL/2.0))*uold[1] +

CFL*(2.0-CFL)*uold[0] +

(CFL/2.0)*(CFL-1.0)*uold[N-1];

}

Remark: Unlike in previous examples, second-order upwinding, due to its stencil, requires
us to handle the first two values (unew[0] and unew[1]) separately instead of the two end-
points of the domain (unew[0] and unew[N − 1]).

Lax-Wendroff Scheme (EF/LW)

This is a second-order scheme as well as the previous EF/UD2. In fact, these two schemes are
the only single-step schemes that achieve second-order accuracy on a three-point stencil. The
key idea is somewhat different: instead of substituting the Taylor expansions of all derivatives
in the equation (8.1), we first expand in time the numerical solution and subsequently replace
the time derivatives with the first- and second-order wave equations. To wit, we present this

8.1. Advection Equation 485

Parameter Value

Method Euler-forward Second-Order Upwind Difference
Interval [0, 1]
N 30
∆t 0.01667 and 0.05
C 0.5 and 1.5
T 10.0

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.4: Parameters used for the solutions of figure 8.12.

derivation below. We start with

Θn+1
j = Θn

j + ∆t(Θt)j +
∆t2

2
(Θtt)

n
j +O(∆t3)

and replace the first-order time derivative from equation (8.1) and also the second-order time
derivative from

Θtt = U2Θxx (second-order wave equation)

thus,

Θn+1
j = Θn

j − U∆t(Θx)j +
U2∆t2

2
(Θxx)j +O(∆t3)

or

Θn+1
j = Θn

j −
C

2
(Θn

j+1 −Θn
j−1) +

C2

2
(Θn

j+1 − 2Θn
j + Θn

j−1)︸ ︷︷ ︸
dissipation

.

The last term is a high-order numerical dissipation contribution as it scales with C2, i.e.,
with (∆t)2.

The corresponding equivalent differential equation is

Θ̂t + UΘ̂x = −U
6

∆x2(1− C2)Θ̂xxx − U∆x3

8
· C(1− C2)Θ̂xxxx +O(∆x4),

which shows predominantly phase errors since the dominant term in the truncation error is
a third-order derivative.

The von Neumann stability analysis shows that

an+1
k = an

k [1− iC sin 2πk∆x− C2(1− cos 2πk∆x)],

and thus for stability we require that C ≤ 1.

The phase errors are lagging in this scheme since

εφ ≈ 1− 1

6
(1− C2)φ2 +O(φ4)

8.1. Advection Equation 486

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Exact Solution
Approximate Solution C = 0.5
Approximate Solution C = 1.5

C = 1.5

C = 0.5

Figure 8.12: Euler-forward/second-order upwind difference versus exact solution at T = 10.0 for
C=0.5 and C = 1.5; the parameters are listed in table 8.4.

with the largest phase errors present at high frequencies. This behavior of the Lax-Wendroff
scheme is demonstrated in figure 8.13 which is obtained based on the parameters of table
8.5.

Software

 Suite
Putting it into Practice

Below we present a C++ implementation of the advection equation using the Lax-
Wendroff scheme. This function takes as input the number of grid points, the CFL number,
and the values at the current time level stored in the array uold. This function updates
the array unew with the new values at the next time level. The following code was used to
produce the results shown in figure 8.13.

void LaxWendroff(int N, double CFL, double *uold, double *unew){

for(int i=1; i<N-1; i++){

unew[i] = uold[i] - (CFL/2.0)*(uold[i+1]-uold[i-1])+

(CFL*CFL/2.0)*(uold[i+1]-2.0*uold[i]+uold[i-1]);

}

unew[0] = uold[0] - (CFL/2.0)*(uold[1]-uold[N-1])+

(CFL*CFL/2.0)*(uold[1]-2.0*uold[0]+uold[N-1]);

8.1. Advection Equation 487

Parameter Value

Method Lax-Wendroff
Interval [0, 1]
N 30
∆t 0.01667 and 0.0333
C 0.5 and 1.0
T 10.0

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.5: Parameters used for the solutions of figure 8.13.

unew[N-1] = uold[N-1] - (CFL/2.0)*(uold[0]-uold[N-2])+

(CFL*CFL/2.0)*(uold[0]-2.0*uold[N-1]+uold[N-2]);

}

Remark 1: Grouping terms to reduce operations can increase computational efficiency.
Take the example here. Observe that uold[i + 1] is used twice on the right-hand-side ex-
pression. The scheme below could be re-written as unew[i]= c1*uold[i] +c2*uold[i+1] +
c3*uold[i-1] * where c1 = 1.0 − CFL ∗ CFL, c2 = CFL(−1.0 + CFL)/2.0 and c3 =
CFL(1.0 + CFL)/2.0. Since c1, c2, c3 do not change with respect to i, we can compute
them ahead of time and merely use them within the loop. A good compiler will attempt to
optimize this for you, but the programmer should always be mindful of such things. The
bottom line if you can save the computer time by thinking a little, then you should try
thinking a little.

Remark 2: Given that the EF/UD2 and EF/LW schemes have leading and lagging errors,
respectively, in the range 0 < C ≤ 1, we can construct hybrid schemes by combining the
two second-order schemes to obtain fourth-order accuracy in the phase properties. This is
important especially for long-time integration.

Adams-Bashforth/Center Differencing Scheme (AB/CD)

So far we have considered single-step explicit schemes but higher order schemes can be easily
achieved using either multi-stage schemes such as Runge-Kutta or multi-steps schemes such
as Adams-Bashforth. Here we present results for the latter; specifically first we present
a second-order Adams-Bashforth scheme and subsequently a third-order Adams-Bashforth
scheme. The previous stable single-step schemes can be employed in the initial steps.

8.1. Advection Equation 488

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Exact Solution
Approximate Solution C = 0.5
Approximate Solution C = 1.0

C = 0.5

C = 1.0

Figure 8.13: Lax-Wendroff versus exact solution at T = 10.0 for C=0.5 and C = 1.0; parameters
are listed in table 8.5.

The second-order scheme is

Θn+1
j −Θn

j

∆t
+

3

2
∆xΘ

n
j −

1

2
∆xΘ

n−1
j = 0,

with corresponding equivalent differential equation

∂Θ̂

∂t
+
∂Θ̂

∂x
=

(
5∆t2

12
− ∆x2

6

)
∂3Θ̂

∂x3
+

The term on the right-hand-side indicates that the dominant errors are phase errors. Note
that unlike the previous cases, here the terms Θxxxx,Θvi, . . . are not all zero, and thus we
have amplitude errors as well but they are subdominant.

The von Neumann stability analysis leads to

an+1
k + an

k

(
−1 +

3

2
iC sin 2πk∆x

)
+ an−1

k

(
−iC

2
sin 2πk∆x

)
= 0.

Let us define

µ ≡ an+1
k

an
k

⇒ µ2 + µ
(
−1 +

3

2
i sin 2πk∆x

)
+
(−iC

2
sin 2πk∆x

)
= 0,

where µ is complex. For C � 1 we can obtain approximate expressions for the two roots:
The larger one

µ+ = 1− iC sin 2πk∆x− C2

2
sin2 2πk∆x− 1

4
iC3 sin3 2πk∆x− 1

8
C4 sin4 2πk∆x+ . . .

8.1. Advection Equation 489

Parameter Value

Method 2nd order Adams-Bashforth/Central Difference
Interval [0, 1]
N 30
∆t 0.003333
C 0.1

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.6: Parameters used for the solutions of figure 8.14.

corresponds to the physical mode because it is approximately 1, while the smaller root

µ− = −1

2
iC sin 2πk∆x+

1

2
C2 sin2 2πk∆x+ . . .

is a spurious (numerical) mode.

Note that both roots µ+, µ− depend on the initial conditions, and that the numerical mode
is damped relatively to the physical mode. For C small we have that → |µ−| � 1.

The root corresponding to the physical mode can be bounded from above as shown below
by performing leading order analysis:

|µ+| =
(
1 +

1

2
C4
)1/2

+O(Cn)

|an
k | ≈ |a0

k|(1 +
1

2
C4)n/2

≤ |a0
k|e

C4n
4 = |a0

k|e
∆t3(n·∆t)

4∆x4 .

The last inequality shows that the AB2/CD is a generally stable scheme. More specifically,
the scheme is similar to EF/CD, but here the growth is proportional to C4 not C2 and
requires only ∆t3 < ∆x4 and not ∆t < ∆x2 as in the EF/CD scheme.

Therefore, we see that this is a stable scheme in practice, so we have the case of an
unstable scheme, which however is usable for C small. The phase errors for this scheme are
shown in figure 8.14, which are large for long time integration.

A better scheme is the third-order Adams-Bashforth/CD scheme

Θn+1 −Θn
j

∆t
+

23

12
∆xΘ

n
j −

16

12
∆xΘ

n−1
j +

5

12
∆xΘ

n−2
j = 0.

Its corresponding equivalent differential equation is

∂Θ̂2

∂t
+
∂Θ̂

∂x
=
−∆x2

6

∂3Θ̂

∂x3︸ ︷︷ ︸
dispersive

+O(∆t3)
∂4Θ̂

∂x4︸ ︷︷ ︸
diffusive

+ . . .O(∆t∆x2).

8.1. Advection Equation 490

0 0.5 1

−1

−0.5

0

0.5

1

T = 1.0
0 0.5 1

−1

−0.5

0

0.5

1

T = 10.0

0 0.5 1

−1

−0.5

0

0.5

1

T = 100.0
0 0.5 1

−1

−0.5

0

0.5

1

T = 1000.0

Exact Solution
Approximate Solution

Figure 8.14: Second-order Adams-Bashforth/central difference versus exact solution at various
times T; parameters are listed in table 8.6.

Therefore, the phase errors are second-order, and if high-order spatial discretization is used
this scheme will exhibit very small dispersion. It is conditionally stable, and the Courant
number limit is given by considering the imaginary eigenvalues

λ∆t = −iC sin 2πk∆x < 0.723i .

For stability, we require that C ≤ 0.723.
In the homework problems we investigate the phase errors for short-time as well as long-

time integration.

Crank-Nicolson/Center-Differencing Scheme (CN/CD)

We now study an implicit scheme to discretize equation (8.1), the Crank-Nicolson scheme as
follows

Θn+1
j −Θn

j

∆t
+

1

2
∆xΘ

n+1
j +

1

2
∆xΘ

n
j = 0.

The von Neumann stability analysis leads to

an+1
k =

(
1− iC

2
sin 2πk∆x

1 + iC
2

sin 2πk∆x

)
an

k ⇒ |an+1
k | = |an

k | ∀C, k

so we have neutral stability, more specifically absolute but weak stability. The eigenvalues

λ∆t =
−C2

4
sin2 2πk∆x− iC

2
sin 2πk∆x

1− C2

4
sin2 2πk∆x

8.1. Advection Equation 491

Parameter Value

Method Crank-Nicolson/Central Difference
Interval [0, 1]
N 30
∆t 0.0333
C 1.0
T 10.0

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Periodic

Table 8.7: Parameters used for the solutions of figure 8.15.

are on the left half-plane for any positive value of C.

Although there are no amplitude errors there are phase errors, which are determined from
the equivalent differential equation

∂Θ̂

∂t
+
∂Θ̂

∂x
=
(
− 1

12
∆t2 − 1

6
∆x2

)
∂3Θ̂

∂x3

where all Θxx,Θxxxx, and so on vanish. Let us now assume that

Θ̂ = Re
{
e2πikxe−2πiωt

}
then we can obtain the approximate dispersion relationship

−2πiω = −2πik −
(

1

12
∆t2 +

1

6
∆x2

)
(−i)(2πk)3 ,

and therefore

εφ = 1−
(

1

12
∆t2 +

1

6
∆x2

)
(2πk)2

︸ ︷︷ ︸
phase error

.

Thus, the phase errors are ∆φ = −
(

1
12

∆t2 + 1
6
∆x2

)
(2πk)2, which lead to errors in period

and peak as shown in figure 8.16; the parameters used in the solution are listed in table 8.7.
In general, the largest errors correspond to high wave numbers but for k = N/2 in

particular, we have that

Θ ∼ Re
{
e2πik∆x·j} = Re

{
e2πi N

2
j
N

}
= Re

{
eπij

}
.

and thus
Θj+1 −Θj−1

2∆x
= 0.

Therefore, this mode never moves although it should be traveling with speed Cφ = 1! Instead,
it develops a standing wave with wave length 2∆x as shown in figure 8.16.

8.1. Advection Equation 492

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T = 10.0

Exact Solution
Approximate Solution

∆φ = 0.1

Figure 8.15: Crank-Nicolson/central difference versus the exact solution at T=10.0; parameters
are listed in table 8.7.

Figure 8.16: Stationary mode develops a 2 ∆x wave pattern for the CN/CD scheme.

Below we present a C++ implementation of the advection equation using central differ-
encing in space and Crank-Nicolson in time. This function takes as input the number of grid
points, the CFL number and the values at the current time level stored in the array uold.
This function updates the array unew with the new values at the next time level.

void CrankNicolson_CentralDifference(int N, double CFL,

double *uold, double *unew){

double c = 0.25*CFL;

double *q = new double[N];

for(int i=1; i<N-1; i++)

q[i] = uold[i] - 0.25*CFL*(uold[i+1]-uold[i-1]);

q[0] = uold[0] - 0.25*CFL*(uold[1]-uold[N-1]);

q[N-1] = uold[N-1] - 0.25*CFL*(uold[0]-uold[N-2]);

ThomasAlgorithm_per(N,-c,1.0e0,c,unew,q);

delete[] q;

8.1. Advection Equation 493

Software

 Suite
Putting it into Practice

}

Key Concept

• Re-use of code is important. Notice how easily Crank-Nicolson
can be implemented once we know that we have our Thomas
Algorithm tridiagonal solver?

Remark: The computational complexity of this algorithm is determined from the work
required in solving the linear system, i.e. the implicit part, which includes the terms

1

∆t
Θn+1

j +
1

4∆x
(Θn+1

j+1 −Θn+1
j−1).

This is a triadigonal system and it requires linear work if no pivoting is required. This is
guaranteed if we have diagonal dominance, which here means that

1

4∆x
+

1

4∆x
<

1

∆t
,

and this condition is satisfied if
C < 2.

• In other words for stability any value of C leads to a stable scheme for CN/CD, however
for linear work we should have C < 2 otherwise pivoting is required which may lead
to quadratic or even cubic work!

8.1.5 Effects of Boundary Conditions

So far we have considered periodic boundary conditions, essentially avoiding complications
in the discretization due to boundaries. In general, hyperbolic equations like equation (8.1)
are very sensitive to boundary conditions, compared, for example, to parabolic equations
that we studied in the previous chapter.

To illustrate this effect, let us revisit the linear advection problem but enforce Dirichlet
boundary conditions on the left boundary, i.e.,

8.1. Advection Equation 494

∂Θ

∂t
+ U

∂Θ

∂x
= 0; Θ(x, t = 0) = sin 2πx (8.10)

0 < x < 1; Θ(x = 0, t) = − sin 2πt . (8.11)

Physically, we have that the left boundary located at x = 0 generates the information that
is then propagated through the domain. Note that no boundary conditions are needed at
the right boundary (outflow) located at x = 1.

"Phantom" Nodex = 0

j = 0 1 N−1 N N+1

Figure 8.17: An extra node is added at the outflow in order to compute the derivative at the node
N .

To proceed, we first consider the Crank-Nicolson scheme, which for the periodic case was
absolutely stable. The new discretization should include the boundary conditions as follows

Θn+1
j −Θn

j

∆t
+

1

2

(
Θn+1

j+1 −Θn+1
j−1

2∆x
+

Θn
j+1 −Θn

j−1

2∆x

)
= 0, j = 1, . . . , N − 1

Θn+1
0 = − sin 2πtn+1; Θ0

j = sin 2πxj .

In the above we have excluded node j = N , as we cannot write the central difference for the
first-order spatial derivative. To this end, we add a fictitious node at j = N + 1, see figure
8.17, and obtain ΘN+1 by linear extrapolation as follows

ΘN+1 = ΘN + ∆x
ΘN −ΘN−1

∆x
= 2ΘN −ΘN−1 ,

which can be re-written as
ΘN+1 −ΘN

∆x
=

ΘN −ΘN−1

∆x
,

so at the outflow node we employ a first-order, one-sided derivative. This will affect the
accuracy locally, but overall we still obtain O(∆x2) as errors are advected to the left and
are propagated outside the domain. Therefore, at node j = N we have

Θn+1
N −Θn

N

∆t
+

1

2

(
Θn+1

N −Θn+1
N−1

∆x
+

Θn
N −Θn

N−1

∆x

)
= 0.

The addition of the upwind derivative does not influence adversely the stability of the CN
scheme as it produces eigenvalues in the left half-plane.

In contrast, if we consider explicit schemes the outflow condition influences very strongly
their stability. For example, the EF/CD scheme which was unstable in the periodic case now
becomes stable due to the dissipation of the upwind derivative at this outflow that makes
the corresponding eigenvalues land in the left half-plane instead of the imaginary axis as in

8.1. Advection Equation 495

the periodic case. Let us examine what happens with the second-order Adams-Bashforth
scheme we presented earlier. The discrete equation at the outflow node j = N is

Θn+1
N −Θn

N

∆t
+

3

2

(
Θn

N −Θn
N−1

∆x

)
− 1

2

(
Θn−1

N −Θn−1
N−1

∆x

)
︸ ︷︷ ︸

dissipative

= 0.

In the following we first implement the above equation and subsequently we perform
numerical experiments to study its behavior.

Software

 Suite
Putting it into Practice

Below we present a C++ implementation of the advection equation using central differ-
encing in space and 2nd-order Adams-Bashforth in time. This function takes as input the
number of grid points, the CFL number, and the values at the current time level stored in
the array uold. This function updates the array unew with the new values at the next time
level.

void AB2_CentralDifferenceNP(int N, double CFL, double **uold,

double *unew){

for(int i=1; i<N-1; i++){

unew[i] = uold[0][i] - 0.75*CFL*(uold[0][i+1]-uold[0][i-1]) +

0.25*CFL*(uold[1][i+1]-uold[1][i-1]);

}

unew[N-1] = uold[0][N-1] - 1.5*CFL*(uold[0][N-1]-uold[0][N-2]) +

0.5*CFL*(uold[1][N-1]-uold[1][N-2]);

}

Remark: The function above assumes that the left-hand boundary condition (unew[0]) is
handled by the calling function. For the numerical results presented below, the exact solution
was used at the inflow. We have obtained numerical results for C = 0.1, which are shown in
figure 8.18. There is some small error at the outflow, however we obtain a stable result.

We now turn to the Leap-frog scheme which was a stable scheme for the periodic case, but
it now becomes unstable due to the effects of dissipation at the outflow node. The scheme

8.1. Advection Equation 496

Parameter Value

Method 2nd order Adams-Bashforth/Central Difference
Interval [0, 1]
N 40
∆t 0.005
C 0.1
T 40.0

Initial Condition u(x, 0) = sin(2πx)
Boundary Conditions Non-periodic

Table 8.8: Parameters used for the solutions of figure 8.18.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

T=40

Exact Solution
Approximate Solution

Figure 8.18: Second-order Adams-Bashforth/central difference at T=40.0 for C = 0.1, N = 20;
parameters are listed in table 8.8.

is given by
Θn+1

j −Θn−1
j

2∆t
+

Θn
j+1 −Θn

j−1

2∆x
= 0, j = 1, . . . , N − 1

Θn+1
N −Θn−1

N

2∆t
+

Θn
N −Θn

N−1

∆x
= 0.

This is an unstable scheme as we ask you to verify in the homework problems.

8.2. Advection-Diffusion Equation 497

8.2 Advection-Diffusion Equation

We now introduce physical dissipation by including a second-order derivative (in space) to
the linearized advection equation (8.1). The initial waveform is both advected and diffused
at the same time as shown in figure 8.19.

U

a

0 0

t = t0 t = t + n ∆t0

δ

Initial Condition

Figure 8.19: Advection and diffusion of an initial waveform by a uniform airstream.

This simple model describes, for example, advection and diffusion of dye by a uniform stream,
and has the form

∂Θ

∂t
+ U

∂Θ

∂x
= α

∂2Θ

∂x2
, −∞ < x <∞ (8.12)

where α is the diffusion coefficient and depends on the material.

The ratio
UΘx

αΘxx

∼ U ∆Θ
a

α · ∆Θ
a2

∼ U · a
α

= Pe

is defined as the (physical) Peclet number of the process, and expresses the relative impor-
tance of advection compared to diffusion. Here a is the characteristic length scale of the
problem.

In practice, we need to truncate the domain to finite limits and thus the interval of interest
is

−LI (inflow) ≤ x ≤ LO (outflow).

Later, we will discuss how to choose the size of the truncated domain defined by LI and LO,
and what are the appropriate boundary conditions to impose there.

8.2.1 Discrete Schemes

We present next representative discretizations of fully implicit, fully explicit, semi-implicit as
well as semi-Lagrangian schemes. By this we refer to the time-stepping algorithms involved
in handling the advection and diffusion terms, which may or may not be identical for each
contribution.

8.2. Advection-Diffusion Equation 498

Fully Implicit Discretization

A typical second-order fully implicit scheme is one based on Crank-Nicolson time stepping
with central differencing in space. Defining the central discrete first and second derivative
operators ∆x and ∆xx respectively, as before, we have

Θn+1
j −Θn

j

∆t
=

1

2
(α∆xxΘ

n+1
j − U∆xΘ

n+1
j) +

1

2
(α∆xxΘ

n
j − U∆xΘ

n
j) ,

which can recast in a form that leads more easily to constructing the algebraic system(
∆xx − U

α
∆x − 2

α∆t

)
Θn+1

j = − 2

α∆t
Θn

j −
(
∆xx − U

α
∆x

)
Θn

j .

From von Neumann analysis we obtain the amplitude relation

an+1
k = an

k

(
1− λ∆t

2

1 + λ∆t
2

)
,

where the eigenvalues are complex

λ = −i sin 2πk∆x · U
∆x

− α

σk︷ ︸︸ ︷
(1− cos 2πk∆x)

∆x2
.

Combining the above two equations, we can conclude that the scheme is stable with no
amplitude errors but it suffers from dispersion (phase) errors as we have seen before in the
previous section.

Fully Explicit Discretization

Here we use an Euler-forward time stepping algorithm combined with central difference; a
higher order scheme for time discretization could be employed in practice, e.g. third-order
Adams-Bashforth. However, the issue of stability associated with explicit discretization for
an advection-diffusion system are more clearly demonstrated with the first-order scheme

Θn+1
j −Θn

j

∆t
= α∆xxΘ

n
j − U∆xΘ

n
j .

This scheme has the following equivalent differential equation

∂Θ̂

∂t
+ U

∂Θ̂

∂x
=
(
α− 1

2
∆t · U2

)
∂2Θ̂

∂x2
+ . . .+O(∆t2,∆x2) · ∂

3Θ̂

∂x3
.

For stability we require that the modified diffusion coefficient be positive, and thus

1

2
∆t · U2 ≤ α⇒ ∆t <

2α

U2
.

Remark: For α = 1
2
∆t · U2, we recover the Lax-Wendroff scheme presented in the previous

section for the linear advection equation (8.1).

8.2. Advection-Diffusion Equation 499

λ ∆ t

Im

Re

Figure 8.20: Stability diagram and eigenvalues of the EF/CD scheme for the advection-diffusion
equation.

A more rigorous von Neuman stability analysis leads to

an+1
k − an

k

∆t
= λan

k

with complex eigenvalues

λ =
−i sin 2πk∆xU

∆x
− σkα

∆x2
,

where σk = 2(1− cos 2πk∆x) as before. It is clear that as ∆x→ 0, the second term (due to
diffusion) dominates, and thus we require that

∆t ≤ ∆x2

2α

or

∆tλdiff > −2⇒ − σkα

∆x2
·∆t > −2 . . . ,

so we recover the limit for the diffusion number, i.e., D ≤ 1
2

as before. We note here that
the highest derivative “governs” the stability of the advection-diffusion equation, which is
true for other systems as well.

In summary, we have obtained two independent upper limits for the maximum allowable
time step in order to guarantee stability of the EF/CD scheme, i.e.,




∆t ≤ ∆x2

2α
and

∆t ≤ 2α

U2


 .

The question then becomes which of the two limits we should use. If we assume that

∆x2

2α
<

2α

U2

8.2. Advection-Diffusion Equation 500

then we obtain that

Peg ≡ U∆x

α
< 2.

The above equation defines the grid Peclet number, which should be less than 2 in order to
obtain a stable explicit scheme if we only satisfy the diffusion limit.

This statement is not equivalent to the previous two conditions, i.e., it is not a necessary
condition, but it is sufficiently restrictive. In fact, it imposes a restriction on the mesh size
(for stability) independent of the time step ∆t, which is somewhat strange! The condition
Peg ≤ 2 has been used for a long time in simulations although it does not present the true
stability limit for advection-diffusion as we will see next. However, because the numerical
solution develops spatial oscillations for Peg > 2, it was assumed that it was the right
stability criterion.

We now re-examine more carefully the stability of the the EF/CD scheme for equation
(8.12) by following the analysis presented in [56].

If we re-write the amplitude equation from the von Neumann analysis in terms of the Courant
(C) and Diffusion (D) numbers, we have

an+1
k = an

k [1 + 2D(cosφ− 1)− iC sinφ].

We can now construct the polar plot in the complex plane shown in figure 8.21.

C

Im
a

n+1
k

an
k

() η,

(an+1
k

a
k
n), ξ

4D

Figure 8.21: Polar plot in the complex plane of the EF/CD scheme.

By inspection of the plot, from first glance we see that stability is obtained if the ellipse is
within the unit circle of stability, i.e.,

C ≤ 2D ≤ 1.

However, this is not quite correct, and in fact we recover the same condition as before, i.e.,
the overly restrictive limit on the grid Peclet number! The correct analysis computes exactly
the possible intersection points of the ellipse with the circle [56]. We first write the equations
for each curve, i.e.,

8.2. Advection-Diffusion Equation 501

Circle: ξ2 + η2 = 1

Ellipse:
[ξ − (1− 2D)]2

4D2
+
η2

C2
= 1

In order to ensure that we have stability, i.e., |an+1
k

an
k
| ≤ 1 we have to ensure that there is

no intersection next to the point (1,0). To this end, we compute the (hypothetical) second
intersection point from 


ξ =

(1− 4D)C2 + 4D2

C2 − 4D2

η2 = 1− ξ2

In order to avoid intersection inside the circle and next to the point (1,0), we require that
ξ ≥ 1. This leads to the condition

C2 ≤ 2D,

which is different than the previous condition, i.e., C ≤ 2D. Note that we still need to
satisfy the diffusion limit, i.e., 2D ≤ 1, and thus finally we have

C2 ≤ 2D ≤ 1⇒ C ≤ Pe

2
≤ 1

C
or C ≤ 2

Pe
≤ 1

C
.

This is the necessary and sufficient condition for stability. It is equivalent to what we derived
heuristically initially using the equivalent differential equation.

Remark: Note that as α→ 0 we recover the unconditionally unstable scheme for convection
as before. Thus, diffusion (physical here) stabilizes the difference EF/CD equation leading
to conditional stability.

Don’t Suppress the Wiggles!

We now demonstrate that for Peg > 2, the numerical solution develops spatial oscillations
although we may have a stable scheme, and thus convergence, if the aforementioned two
stability criteria are satisfied. To proceed, we need to introduce a more general type of
analysis that examines amplification both in time and space. In particular, we can use
the time-space normal mode analysis introduced by Godunov & Ryabenkii to analyze the
advection-diffusion equation [44]. Similar to having a time amplification factor z, we now
have a space amplification factor κ. We write

Θn
j = Θ̃znκj

where the tilde variable denotes amplitude. When introduced into a numerical scheme,
including the boundary conditions, we obtain a quadratic equation for κ with two solutions
κ1, κ2, i.e.,

Θn
j = Θ̃zn(Aκj

1 +Bκj
2).

The constants A and B are determined from the boundary conditions, and thus we can also
investigate the effects of boundary conditions on the stability.

8.2. Advection-Diffusion Equation 502

To examine the effect of Peg > 2 in the advection-diffusion equation, we consider the

stationary problem

(
∂

∂t
= 0

)

U
∂Θ

∂x
= α

∂2Θ

∂x2
, 0 ≤ x ≤ L

Θ(0) = Θ0, x = 0

Θ(L) = ΘL, x = L .

The corresponding difference equation is

U
Θj+1 −Θj−1

2∆x
= α

Θj+1 − 2Θj + Θj−1

∆x2

or
(2− Pe)Θj+1 − 4Θj + (2 + Pe)Θj−1 = 0.

We now introduce the mode Θj = κj and obtain the quadratic algebraic equation

(2− Pe)κ2 − 4κ+ (2 + Pe) = 0

with roots

κ1 = 1 and κ2 =
2 + Pe

2− Pe ,
with the general solution

Θj = Aκj
1 +Bκj

2

or

Θj = A+B
(

2 + Pe

2− Pe
)j

.

From the boundary conditions we determine that

A =
Θ0κ

n
2 −ΘL

κN
2 − 1

and B =
ΘL −Θ0

κN
2 − 1

,

where N is the total number of grid points, and thus the solution is

Θj = Θ0 + (ΘL −Θ0)
κj

2 − 1

κN
2 − 1

.

We note that for U > 0 then κ2 < 0 for Pe > 2. Therefore, the numerical solution will
alternate in sign from one grid point to the next producing an oscillatory behavior. If it is
stable, the amplitude of the oscillation will be decreasing as ∆x→ 0.

In terms of accuracy, the exact solution is given by

Θex(x) = Θ0 + (ΘL −Θ0)
ePe x

L − 1

ePe − 1

and so the numerical solution is a second-order approximation to it.

8.2. Advection-Diffusion Equation 503

Semi-Implicit Discretization

Semi-implicit discretizations allow us to treat the advection contribution differently than the
diffusion terms. Specifically, since the diffusion limits the time step more severely than the
advection, we will treat the former implicitly while we will treat the latter explicitly. To
show this, let us integrate equation (8.12) in time with t ∈ [tn, tn+1], i.e.,

∫ tn+1

tn
dΘ +

∫ tn+1

tn
U
∂Θ

∂x
dt =

∫ tn+1

tn
α
∂2Θ

∂x2
dt.

It is clear that we can approximate the above integrals differently. Here we choose to use
Adams-Bashforth of second-order to compute the second integral on the left while we use
Euler-backward to compute the integral on the right-hand-side. It is more convenient to do
this in two steps by splitting this equation, i.e.,

(StepI :)
Θ̄n+1

j −Θn
j

∆t
= −3

2
U∆xΘ

n
j +

1

2
∆xΘ

n−1
j (8.13)

(StepII :)
Θn+1

j − Θ̄j
n+1

∆t
= α∆xxΘ

n+1
j (8.14)

The above discretization is O(∆t2) in the advection but only O(∆t) in the diffusion term,
but a Crank-Nicolson scheme can be employed in the second substep, if uniform second-order
convergence is desired. However, it is useful to have a high-order (e.g. third-order Adams-
Bashforth or fourth-order Runge-Kutta) in the convection scheme to reduce phase errors
which are crucial in propagation phenomena, whereas second-order accuracy for amplitude
errors may suffice. With regards to stability, a semi-implicit scheme has typically the same
stability characteristics as the explicit scheme employed. This is true if the implicit step for
diffusion is up to second-order, and thus unconditionally stable. For higher order treatment
of the diffusion, however, the time step limit of the semi-implicit scheme is determined as
the minimum of the two limits for advection and diffusion. A useful criterion in practice in
this case is

∆t ≤ 1
1

∆tconv
+ 1

∆tdiff

,

which is an empirical rule.

Semi-Lagrangian Discretization

This scheme, which has been used very effectively in metereology simulations, allows the use
of a very large time step as it bypasses, in effect, the CFL limit by introducing a variable
stencil defined by the characteristics of wave propagation. It is a semi-implicit scheme with
the diffusion treated implicitly but with the advection handled in semi-Lagrangian manner.
The Lagrangian form of equation (8.12) in multi-dimensions is

DΘ

Dt
= α∇2Θ

Dx

Dt
= U(x, t).

8.2. Advection-Diffusion Equation 504

The idea of a true Lagrangian scheme is to solve the first equation above along the character-
istics defined by the second equation. This leads to an effective decoupling of the advection
and diffusion terms and an unconditionally stable scheme. However, a moving grid is involved,
which, if distorted substantially, may lead to great inaccuracies. To this end, re-gridding is
typically performed but that may me a substantial overhead to the computation.

The idea of a semi-Lagrangian scheme is to use a fixed grid with the arrival points (along
the characteristics) coinciding with the grid points. The departure points are obtained by
backwards extrapolation, and they typically do not coincide with the grid points; instead,
they are obtained by interpolation. The second-order Crank-Nicolson semi-Lagrangian form
for the multi-dimensional advection-diffusion equation is

Θn+1 −Θn
d

∆t
= α∇2(

Θn+1 + Θn

2
)

Dx

Dt
= U(x, t), xn+1 = xa .

Here Θn
d denotes the numerical solution at the departure point xd while xa is the location of

the arrival point, which is a grid point. The characteristic equation is solved backward to
obtain xn

d given the initial condition xn+1 = xa.

The backward integration could be either explicit or implicit as we show next for second-
order accuracy. First, we use a predictor-corrector method to obtain

x̂ = xa − ∆t

2
U(xa, t

n)

xd = xa −∆tU(x̂, tn +
∆t

2
).

By defining

β ≡ xa − xd

we can re-write the above explicit scheme as

β = ∆tU(xa − ∆t

2
U(xa, t

n), tn +
∆t

2
).

If instead we employ implicit integration we obtain

x̂ = xa − ∆t

2
U(x̂, tn +

∆t

2
),

and finally for the difference β we have

β = ∆tU(xa − β

2
, tn +

∆t

2
).

Although both the explicit and implicit integration algorithms shown above are of second-
order, better results have been achieved with the implicit scheme, which can be solved using
the Newton-Raphson method.

8.2. Advection-Diffusion Equation 505

This semi-Lagrangian scheme requires extra searching and interpolation algorithms to
obtain the departure points and that may be expensive in multi-dimensional computations.
However, it is stable for any time step, and it has accuracy

O(∆k +
∆xp+1

∆t
)

where k is the time-integration order (e.g., here k = 2) and p is the spatial discretization
(e.g., for standard central differencing p = 2). For small time steps the second contribution
to the overall error typically dominates, but for larger time steps the first term dominates.
These two competing contributions create a plateau in the error versus time step, which can
be exploited in practice to perform computations with large time step while maintaining
high accuracy.

8.2.2 Effects of Boundary Conditions

In advection-diffusion systems the solution is advected while at the same time its amplitude is
decreasing. Therefore, the concept of periodic boundary conditions cannot be employed here.
Instead, boundary conditions that allow the solution to leave the domain without upstream
effects are required. In general, we have proper boundary conditions, i.e., mathematically
required physical boundary conditions at a physical boundary. However, in a simulation
we may also need artificial boundary conditions, which are introduced by discretization and
the domain truncation but not required by the continuous mathematics or physics. Such
boundary conditions are application-specific, but some generalizations can be made. Let us
revisit the advection-diffusion problem of advecting a Gaussian waveform to the right in the
sketch shown in figure 8.22.

a

δ

δ = α t

Figure 8.22: Advection-diffusion of a Gaussian waveform. Here a is the initial width and δ is the
width after time t.

From an energy balance budget assuming an initial amplitude of unity and width of a,
we can obtain the amplitude at time t = tf :

• Initial 1 · a
• Later Θ · δ
δ ∼ √αt


⇒ Θ =

1√
αt
.

8.2. Advection-Diffusion Equation 506

The waveform is advected in time t by d = Ut. For the mean temperature to decay to
Θ = 0.1 (say) it takes

tf ∼ δ2

α
=

(10a)2

α
= 100

a2

α

df = 100
Ua2

α

and thus
df

a
∼ 100Pe.

From this simple analysis we see that for high Peclet number, which implies faster advection,
the required domain should be larger. In general, we first need to obtain such estimates based
on conservation laws in order to decide on the extent of the domain.

In addition to selecting the size of the domain, we need to provide boundary conditions at
the truncated boundaries consistent with the physics of the problem. However, imposing
Dirichlet boundary conditions leads to artificial normal boundary layers that may render
the solution erroneous. Instead, weaker boundary conditions that do not affect the solution
substantially are preferable, e.g. Neumann boundary conditions or radiation-type boundary
conditions, as we explain next.

We revisit the steady-state advection-diffusion problem that we encountered earlier and
obtained the following exact solution for Dirichlet boundary conditions

Θ1(x) = Θ0 + (ΘL −Θ0)
ePe x

L − 1

ePe − 1
.

Next, we assume that on the right boundary we impose a Neumann boundary condition, i.e.,

∂Θ

∂x
(x = L) = Θ′

L

with corresponding exact solution

Θ2(x) = Θ0 + eP e Θ′
LL

Pe
[ePe x

L − 1].

By examining the two solutions above, we see that the left (Dirichlet) boundary condition
affects the solution independent of Pe. However, for small Peclet number, i.e., Pe << 1,
the right boundary condition affects the entire solution, whereas for Pe >> 1, it affects the
solution in a region proportional to O(L/Pe) for the Dirichlet case and only O(1/Pe) for
the Neumann case. In other words, the normal boundary layer developed at the downstream
boundary due to truncation of the domain can be minimized at high Peclet number if a
Neumann boundary condition is employed there.

For propagation problems, specifically, a radiation type boundary condition is similar to
the linearized advection equation, i.e.,

∂Θ

∂t
+ c

∂Θ

∂x
= 0

8.2. Advection-Diffusion Equation 507

which leads to Θ(x, y, t) = Θ(x−ct, y). In two-dimensional problems it works effectively; it is
important, however, to choose the advection velocity c properly. This can be done following,
for example, a mass-conservation principle, locally. However, even this boundary condition
has been shown to reflect waves especially oblique waves in the x− y plane. To this end, it
has been found in [35] that when solving

Θtt = c2[Θxx + Θyy], t, x ≥ 0,

where at the x = 0 boundary the boundary condition

c
∂2Θ

∂x∂t
− ∂2Θ

∂t2
+

1

2
c2
∂2Θ

∂y2
= 0

is employed, reflections are substantially reduced. For example, it was reported that the
amplitude of the reflections were reduced from 17% to only 3% of a 45 degrees incidence
angle wave.

Example: We present the results from the CN/CD discretization presented earlier with
Dirichlet and Neumann boundary conditions employed downstream for two different trun-
cations of the domain:

I.C.

Θt + Θx =
1

100
Θxx

Θ(x, t = 0) = e−2x2

Θ(−3, t) = 0;
∂Θ

∂x
(L0, t) = 0




outflow errors

The discrete parameters are described in tables 8.9 and 8.10, and the corresponding
results are shown in figures 8.23 and 8.24 for a short domain and a longer domain. We
verify that in the latter case more accurate results are produced as the outflow errors do not
influence the results as much.

Software

 Suite
Putting it into Practice

Below we present a C++ implementation of the advection-diffusion equation using central
differencing in space and Crank-Nicolson in time. This function takes as input the number
of grid points, the CFL number, the diffusion number, and the values at the current time
level stored in the array uold. This function updates the array unew with the new values at
the next time level.

8.2. Advection-Diffusion Equation 508

Parameter Value

Method Crank-Nicolson/Central Difference
Interval [−3, 3]
N 31
∆t 0.2
C 1.0
D 0.05

Initial Condition Θ(x, 0) = e−2x2

Boundary Conditions Θ(−3, t) = 0; ∂Θ
∂x

(3, t) = 0

Table 8.9: Parameters for the solutions of figure 8.23.

void CrankNicolson_CentralDifference_AdvectionDiffusion(int N,

double CFL,double DN, double *uold, double *unew){

double c1 = 0.25*CFL - 0.5*DN,

c2 = -0.25*CFL - 0.5*DN;

double *q = new double[N-1];

for(int i=1; i<N-1; i++)

q[i-1] = uold[i] - 0.25*CFL*(uold[i+1]-uold[i-1])

+ 0.5*DN*(uold[i+1] - 2.0*uold[i] + uold[i-1]);

ThomasAlgorithm_per(N-1,c2,1.0e0+DN,c1,&unew[1],q);

unew[N-1] = unew[N-2];

delete[] q;

}

Remark: Notice the use of ’&’ in the code above. Recall what this means – the ’&’ operator
gives us “the address of.” Hence, in the expression above, we are passing to the ThomasAl-
gorithm per routine the address of the second entry of the unew array. The following would
have been equally valid:

ThomasAlgorithm_per(N-1,c2,1.0e0+DN,c1,unew+1,q);

which would use pointer arithmetic to pass the address held by unew incremented by one
addressable unit, which is the address of unew[1].

8.3. MPI: Non-Blocking Communications 509

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Θ

t=0.0
t=1.0

t=2.0

Figure 8.23: Crank-Nicolson/central difference at various times t for the parameters of table 8.9
(short domain).

Parameter Value

Method Crank-Nicolson/Central Difference
Interval [−3, 6]
N 46
∆t 0.2
C 1.0
D 0.05

Initial Condition Θ(x, 0) = e−2x2

Boundary Conditions Θ(−3, t) = 0; ∂Θ
∂x

(6, t) = 0

Table 8.10: Parameters for the solutions of figure 8.24.

8.3 MPI: Non-Blocking Communications

In chapter 5 we presented MPI implementations for finite-differencing similar to the central
differencing function presented above. To accomplish the parallel implementation, we used
either MPI Send/MPI Recv or MPI Sendrecv replace commands to exchange informa-
tion. As was discussed, these functions require some level of synchronization for associ-
ating the corresponding sends and receives on the appropriate processes. MPI Send and
MPI Recv are blocking communications, which means that they will not return until it is
safe to modify or use the contents of the send/recv buffer respectively. MPI also provides
non-blocking versions of these functions called MPI Isend and MPI Irecv, where the “I”
stands for immediate. These functions allow a process to post that it wants to send to or
receive from a process, and then later is allowed to call a function (MPI Wait) to complete
the sending/receiving. These functions are useful in that they allow the programmer to
appropriately stagger computation and communication to minimize the total waiting time
due to communication.

8.3. MPI: Non-Blocking Communications 510

−3 −2 −1 0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Θ

t=0.0
t=1.0

t=2.0
t=3.0

t=4.0

Figure 8.24: Crank-Nicolson/central difference at various times t for the parameters of table 8.10
(long domain).

The basic idea behind MPI Isend and MPI Irecv is as follows. Suppose process 0
needs to send information to process 1, but due to the particular algorithms that these
two processes are running, the programmer knows that there will be a mismatch in the
synchronization of these processes. Process 0 initiates an MPI Isend to process 1 (posting
that it wants to send a message), and then continues to accomplish things which do not
require the contents of the buffer to be sent. At the point in the algorithm where process
0 can no longer continue without being guaranteed that the contents of the sending buffer
can be modified, process 0 calls MPI Wait to wait until the transaction is completed. On
process 1, a similar situation occurs, with process 1 posting via MPI Irecv that it is willing
to accept a message. When process 1 can no longer continue without having the contents of
the receive buffer, it too calls MPI Wait to wait until the transaction is complete. At the
conclusion of the MPI Wait, the sender may modify the send buffer without compromising
the send, and the receiver may use the data contained within the receive buffer; see figure
8.25 for a diagram of this process.

To further expand on these two functions, we will now present the function call syntax,
argument list explanation, usage examples and some remarks.

MPI Isend/MPI Irecv/MPI Wait

Function Call Syntax

8.3. MPI: Non-Blocking Communications 511

int MPI Isend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

int MPI Irecv(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

int MPI Wait(
MPI Request* request /* in/out */
MPI Status* status /* out */)

Understanding the Argument Lists

• message - starting address of the send/recv buffer.

• count - number of elements in the send/recv buffer.

• datatype - data type of the elements in the send buffer.

• source - process rank to send the data.

• dest - process rank to receive the data.

• tag - message tag.

• comm - communicator.

• request - communication request.

• status - status object.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be sent/recv

int sender; // process number of the sending process

8.3. MPI: Non-Blocking Communications 512

int receiver; // process number of the receiving process

int tag; // integer message tag

MPI_Status status; // variable to contain status information

MPI_Request request; // variable to maintain

// isend/irecv information

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize

double * databuffer = new double[datasize];

// Fill in sender, receiver, tag on sender/receiver processes,

// and fill in databuffer on the sender process.

if(mynode==sender)

MPI_Isend(databuffer,datasize,MPI_DOUBLE,receiver,tag,

MPI_COMM_WORLD,&request);

if(mynode==receiver)

MPI_Irecv(databuffer,datasize,MPI_DOUBLE,sender,tag,

MPI_COMM_WORLD,&request);

// The sender/receiver can be accomplishing various things

// which do not involve the databuffer array

MPI_Wait(&request,&status); //synchronize to verify

// that data is sent

// Send/Recv complete

Remarks

• In general, the message array for both the sender and receiver should be of the same
type and both of size at least datasize.

• In most cases the sendtype and recvtype are identical.

8.3. MPI: Non-Blocking Communications 513

MPI_Isend

T
im

e

Process 0 Process 1

MPI_Irecv

MPI_Wait MPI_Wait

Post Send

Post Recv

Figure 8.25: MPI Isend/MPI Irecv schematic demonstrating the communication between two pro-
cesses.

• After the MPI Isend call and before the MPI Wait call, the contents of message
should not be changed.

• After the MPI Irecv call and before the MPI Wait call, the contents of message
should not be used.

• An MPI Send can be received by an MPI Irecv/MPI Wait.

• An MPI Recv can obtain information from an MPI Isend/MPI Wait.

• The tag can be any integer between 0-32767.

• MPI Irecv may use for the tag the wildcard MPI ANY TAG. This allows anMPI Irecv
to receive from a send using any tag.

• MPI Isend cannot use the wildcard MPI ANY TAG. A specific tag must be specified.

• MPI Irecv may use for the source the wildcard MPI ANY SOURCE. This allows an
MPI Irecv to receive from a send from any source.

• MPI Isend must specify the process rank of the destination. No wildcard exists.

8.4. Homework Problems 514

8.4 Homework Problems

1. Use von Neumann analysis to demonstrate that leap-frog time differencing combined
with central-differencing of

∂Θ

∂t
+
∂Θ

∂x
= 0

(with periodic boundary conditions) leads to a conditionally stable scheme. Can you
draw the same conclusion from the corresponding equivalent differential equation?

2. Use von Neumann analysis to analyze the stability of leap-frog time differencing com-
bined with upwind-differencing of

∂Θ

∂t
+
∂Θ

∂x
= 0

(with periodic boundary conditions). Compare your findings with heuristic arguments
derived from the corresponding differential equation.

3. Use a third-order Adams-Bashforth/Central Difference scheme with parameters similar
to the ones in table 8.6 but with N = 30 as well as N = 100 points to obtain solutions
to the one-dimensional linear advection equation. Compare your solutions with the
solutions of figure 8.14 corresponding to the second-order Adams-Bashforth/Central
Difference scheme.

4. Use a leap-frog/Central Difference scheme with C = 0.2 and N = 30 to obtain a
solution of the one-dimension advection equation for periodic as well as non-periodic
boundary conditions. Are both solutions stable?

5. Solve numerically the one-dimensional advection-diffusion equation

Θt + Θx =
1

100
Θxx

I.C. : Θ(x, t = 0) = e−2x2

B.C. : Θ(−3, t) = 0

∂Θ

∂x
(L, t) = 0

for L = 3 and L = 10.

Use center-differencing for spatial derivatives and Euler explicit in time. You can
choose your grid so that

(a) ∆x = 0.01,

(b) ∆x = 0.1.

Compare your solutions at time t = 2 and time t = 5.

8.4. Homework Problems 515

6. Nonlinear Lax-Friedrichs scheme and Tadmor’s correction: In this problem we are
interested in solving the inviscid Burgers equation

∂Θ

∂t
+
∂F (Θ)

∂x
= 0,

where here F (Θ) = 1
2
Θ2(x, t) and the initial conditions are

Θ(x, 0) = sin(πx), x ∈ [−1, 1].

The solution of this problem develops a shock discontinuity at time ts ≈ 0.31, and we
are interested in comparing the numerical solutions obtained with the Lax-Friedrichs
scheme and the Tadmor correction before and after the shock is formed at times t = 0.2
and t = 0.4, respectively. Specifically, we want to obtain both the L1-norm and the
L2-norm of errors for grids with N = 50, 100, 200 and 400 points.

The nonlinear versions of the above schemes are given below.

The standard Lax-Friedrichs scheme for the above nonlinear hyperbolic law is:

Θn+1
j =

1

2
(Θn

j+1 + Θn
j−1)−

C

2
[F (Θn

j+1)− F (Θn
j−1] .

The second-order version introduced in [71] consists of a predictor

Θ
n+1/2
j = Θn

j −
1

2
CF ′

j (predictor)

and a corrector

Θn+1
j =

1

2
[Θn

j+1 + Θn
j−1] +

1

4
[Θ′

j−1 −Θ′
j+1]−

C

2
[F (Θ

n+1/2
j+1)− F (Θ

n+1/2
j−1)] .

In section 8.1.3 we have defined all quantities except the derivative of the flux which
is chosen so that the scheme is free of spurious oscillations. This is given by

F ′
j =

∂F

∂x
|jΘ′

j .

We ask you to obtain the convergence rate for each scheme and identify the free pa-
rameter α, see section 8.1.3, which gives the best results in the aforementioned norms.

7. Re-write theEF FirstOrderUpwind function to be a parallel function usingMPI Isend
and MPI Irecv. Verify your code by replicating the numerical example given in the
text. Modify your function to solve ut + aux = 0 where a is a non-zero constant which
can be positive or negative. What must change in your MPI code if the direction of the
wave propagation changes (i.e., should things change based on whether a is positive or
negative)?

8.4. Homework Problems 516

8. Modify the CrankNicolson CentralDifference function so that instead of Crank-
Nicolson it uses Euler-backward. Repeat the example from table 8.7 for the new
Euler-backward routine and compare results with Crank-Nicolson.

9. Create a new Crank-Nicolson C++ function which uses a fourth-order compact scheme
for the space differentiation (instead of the second-order central difference scheme pre-
sented in the text). Repeat the example from table 8.7. How much of a difference does
the extra accuracy in space make?

10. (Gaussian-cone problem) Consider the advection-diffusion equation with spatially vary-
ing advection velocity given by

u = +y, v = −x,
and initial condition

u(x, y, 0) = e−[(x−x0)2+(y−y0)2]/2λ2

.

The exact solution is

u(x, y, t) =
λ2

λ2 + 2νt
e−[x̂2+ŷ2]/2(λ2+2νt),

where
x̂ = x− x0 cos t− y0 sin t, ŷ = y + x0 sin t− y0 cos t.

The constants are fixed at λ = 1
8
; ν = 10−4; and (x0, y0) = (−1

2
, 0).

Consider second-order central differencing on a grid consisting of 100×100 grid points,
and perform time-integration for one revolution corresponding to t = 2π.

(a) Obtain a numerical solution following the Eulerian approach and Adams-Bashforth/Crank-
Nicolson time-stepping (second-order). Use Courant number C = 0.01 and diffu-
sion number D = 0.5.

(b) Repeat the above using a semi-Lagrangian approach with backward integration
based on the explicit mid-point rule.

(c) Repeat (b) but with time step ∆t ten and twenty times larger, and compare the
new results with the results in (b). What do you observe?

11. Repeat the previous problem but with a new initial condition, i.e.,

u(x, y, t = 0) =

{ −16
[
r2
0 − 1

16

]
if r0 <

1
4

0 elsewhere
,

where r2
0 = (x− x0)

2 + (y − y0)
2 and (x0, y0) is the initial center position of the cone.

The transport velocity field is the same as used in the previous example. The initial
condition is a parabolic cone, which has a discontinuity in the derivatives, unlike the
previously tested smooth Gaussian cone.

Compare the results from the Eulerian and semi-Lagrangian approaches in terms of
contour plots and in terms of the L2 error. What do you observe?

Chapter 9

Fast Linear Solvers

We have already discussed how to solve tridiagonal linear systems of equations using
direct solvers (the Thomas algorithm) in chapter 6 and some iterative solvers (Jacobi, Gauss-
Seidel, SOR and multigrid) in chapter 7. We have also discussed solutions of nonlinear and
linear systems and have introduced the conjugate gradient method in chapter 4. In the
current chapter we revisit this subject and present general algorithms for the direct and
iterative solution of large linear systems. We start with the classical Gaussian elimination
(which is a fast solver!) and then proceed with more sophisticated solvers and preconditioners
for symmetric and non-symmetric systems.

In parallel computing, we introduce the broadcasting command MPI Bcast, and demon-
strate its usefulness in the context of Gaussian elimination. In addition, we reiterate the use
of MPI Send, MPI Recv, MPI Allgather, and MPI Allreduce through example imple-
mentations of algorithms presented in this chapter.

517

9.1. Gaussian Elimination 518

9.1 Gaussian Elimination

Gaussian elimination is one of the most effective ways to solve the linear system

Ax = b.

The Thomas algorithm, see section 6.1.4, is a special case of Gaussian elimination for tridi-
agonal systems.

The computational complexity of Gaussian elimination is associated with the size and
structure of the n × n matrix A, and so is its accuracy. It is based on the “superposition
principle” for linear systems, i.e., the fact that we can replace equations of the original system
with equivalent equations formed as linear combinations of the rows of A and corresponding
values of b. In its simplest form it states:

• Take each row and subtract a multiple of it from subsequent rows in order to zero out
the element of A below the diagonal.

We demonstrate this by the following example.

Example: Consider the 3× 3 system

x1 +
1

2
x2 +

1

3
x3 = 3 (9.1)

1

2
x1 +

1

3
x2 +

1

4
x3 = 2 (9.2)

1

3
x1 +

1

4
x2 +

1

5
x3 = 1 (9.3)

We will solve this (3× 3) system in two stages of elimination.

Stage 1: In the first stage we target the first term placed in a box in the equation above. To
this end, we select the pivot a11 = 1 and also the multipliers:

�
(1)
21 =

a21

a11
=

1/2

1
= 1/2 and �

(1)
31 =

a31

a11
=

1

3
.

We then multiply equation (9.1) by �
(1)
21 and subtract it from equation (9.2). We also

multiply equation (9.1) by �
(1)
31 and subtract it from equation (9.3). The resulting two

new equations replace (9.2) and (9.3), i.e.,

x1 +
1

2
x2 +

1

3
x3 = 3

1

12
x2 +

1

12
x3 = 1/2 (9.4)

1

12
x2 +

4

45
x3 = 0 (9.5)

9.1. Gaussian Elimination 519

Stage 2: Next, we target the x2 term, and choose a new pivot and new multipliers, respectively,
as:

a
(1)
22 =

1

12
; �

(2)
32 =

1/12

1/12
= 1,

and proceed as before by multiplying equation (9.4) by �
(2)
32 and subtracting it from

equation (9.5), we obtain

x1 +
1

2
x2 +

1

3
x3 = 3

1

12
x2 +

1

12
x3 =

1

2
(9.6)

1

180
x3 = −1

2
(9.7)

We now see that the system of equations (9.1), (9.6) and (9.7) can be solved easily by
back substitution starting from equation (9.7), then equation (9.6) and finally equation
(9.1), to obtain:

x3 = −90

x2 = 12
[
1

2
− 1

12
(−90)

]
= 96

x1 = 3− 1

2
(96)− 1

3
(−90) = −15

In matrix form, the system of equation (9.7) is


1 1
2

1
3

0 1
12

1
12

0 0 1
180







x1

x2

x3


 =




3

1
2

−1
2




so the coefficient matrix is upper triangular; we will denote this matrix by U. We also collect
all the multipliers �

(k)
ij we have calculated to form the following lower triangular matrix L

L =


 1 0 0

1
2

1 0
1
3

1 1


 ,

where we have places 1’s in the diagonal. We can verify that

A =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 =




1 0 0

1
2

1 0

1
3

1 1







1 1
2

1
3

0 1
12

1
12

0 0 1
180


 = L ·U

9.1. Gaussian Elimination 520

Therefore, the two first stages of Gaussian elimination resulted in the factorization of
A into an LU product. Both L and U are special matrices, and this leads to substantial
reduction in computational complexity.

Remark: The matrix A employed in this example is a special matrix that has elements
aij = 1

i+j−1
so the nth row is the vector

(
1

n
,

1

n + 1
,

1

n + 2
, . . . ,

1

2n− 1

)T

.

For n large, e.g., n = 1000, the entries of the last row are about three orders of magnitude
smaller than the entries of the first row. This large disparity leads to many difficulties
because of the ill-conditioning of this matrix. This matrix was first introduced by the famous
mathematician David Hilbert, and it is called the Hilbert matrix; it is an example of an ill-
conditioned matrix. Its condition number is large, e.g., greater than 105 for n ≥ 5.

9.1.1 LU Decomposition

We now generalize the Gaussian elimination procedure to an n× n system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2

...
...

...
...

an1x1 + an2x2 + . . . + annxn = bn .

In the general case we need (n − 1) stages of elimination in order to arrive at the upper

triangular system. We will assume that all the pivots at every stage k are a
(k)
(ii) �= 0, but we

will remove this constraint later when we discuss algorithms that involve row and/or column
pivoting.

The first stage of elimination leads to

a11x1 + a12x2 + . . . + a1nxn = b1

a
(1)
22 x2 + . . . + a

(1)
2nxn = b

(1)
2

...
...

...

a
(1)
n2 x2 + . . . + a(1)

nnxn = b(1)n .

Here the intermediate coefficients a
(1)
ij are defined by

a
(1)
ij = aij − a1j�

(1)
i1 ; �

(1)
i1 =

ai1

a11

9.1. Gaussian Elimination 521

and the entries on the right-hand-side are

b
(1)
i = bi − b1 ai1

a11

.

Similarly, the second stage of elimination produces a
(2)
ij and b

(2)
i , and so on, until the (n−1)th

stage, where we obtain a(n−1)
nn and b(n−1)

n .
This procedure is the forward substitution and gives both matrices L and U. In partic-

ular, we replace Ax = b by
L Ux︸︷︷︸

y

= b⇒ Ly = b,

where
Ux = y .

We can now summarize the solution procedure, which consists of three main steps, as follows:

1. LU decomposition: A = L ·U
2. Forward Solve for y: Ly = b

3. Backward Solve for x: Ux = y

The pseudo-code for steps (1) and (2) is:

for k = 1, n− 1
for i = k + 1, n

�ik =
aik

akk

(assuming akk �= 0)

for j = k, n
aij = aij − �ikakj

endfor
bi = bi − �ikbk
endfor

endfor

Computational Cost: The operation count for the above code is obtained by considering
first the innermost loop j, then the loop i, and finally adding operations from all elimination
stages: k = 1 to n− 1. Thus, we have

WLU = 2
n−1∑
k=1

(n− k) · (n− k) = 2
n−1∑
m=1

m2 = 2
(n− 1)n(2n− 1)

6
≈ 2

3
n3,

where the factor 2 accounts for one addition and one multiplication. If only multiplications
are counted then

WLU ≈ n3

3
,

9.1. Gaussian Elimination 522

which is the operation count often quoted in the literature.

The third step in the solution is the backward substitution, which yields first

xn =
b(n−1)
n

a
(n−1)
nn

and marching backward all the way to the first entry, we have

x1 =
b1 − a12x2 . . .− a1nxn

a11
.

The following pseudo-code represents this back solve:

for k = n, 1 (reverse ordering)
xk = bk (initialization)
for i = k + 1, n

xk = xk − akixi

endfor
xk = xk/akk

endfor

We conclude from the above that the operation count for the backward/forward substi-
tution is O(n2).

Remark 1: In the pseudo-code above, steps (1) and (2) are accomplished together for
computational efficiency. Solving for y amounts to adding the (bi = bi − �ikbk) line in the
appropriate place. At the conclusion of this algorithm, the matrix A has been over-written
with the upper triangular matrix U, and the vector b has been over-written with the solution
of Ly = b. All that remains is to accomplish the backsolve for Ux = y.

Remark 2: Note that in both pseudo-codes above we have attempted to minimize the
required memory by over-writing onto the same memory locations. However, this should
be avoided in cases where we are interested in using the matrix A again somewhere else
in our program. In the codes above both the entries of matrix A and the entries of the
right-hand-side are over-written.

Remark 3: We have already discussed the Thomas algorithm in section 6.1.4, which is a
subcase of the LU decomposition presented here with bandwidth m = 1. In general for a
banded matrix with order n and (semi-) bandwidth m the operation count is

• LU decomposition: O(m2n), m� n

• Back Solve: O(mn), m� n

Remark 4: The Gram-Schmidt QR factorization of a matrix presented in chapter 2 produces
an upper triangular matrix R but the Q matrix is an orthogonal full matrix. The Gram-
Schmidt algorithm costs O(2n3) (including addition and multiplications), i.e., it is three
times more expensive than the LU algorithm. However, the QR decomposition can also be

9.1. Gaussian Elimination 523

achieved by the Householder method which is only twice as expensive, i.e., it costs O(4
3
n3),

see section 9.3 below.

Remark 5: (Cramer versus Gauss) We compare here the cost for solving Ax = b using the
Cramer method of determinants (time tC) which is O(n!) versus the Gaussian elimination

method (time tG) which is O
(

2n3

3

)
. We assume that we use a processor with sustained speed

of 1 Gflops1.

n = 3 :

tC ≈ 3!

109
seconds ≈ 6 nanoseconds

tG ≈ 2

3

33

109
seconds ≈ 18 nanoseconds

n = 10 :

tC ≈ 10!

109
seconds ≈ 3 milliseconds

tG ≈ 2103

3 · 109
seconds ≈ 0.6 microseconds

n = 20 :

tC ≈ 10!

109
seconds ≈ 675, 806 hours ≈ 28, 1585 days ≈ 80 years

tG ≈ 2

3

203

109
seconds ≈ 5 microseconds

Clearly, Gauss wins by years! In figure 9.1 we plot the growth in computational work of
Cramer’s method versus the Gaussian elimination method.

Remark 6: The Gaussian elimination offers an efficient way of computing the determinant
of A, since

det(A) = det(L) det(U)

= 1 · [u11 · u22 . . . unn]

where uii, i = 1, . . . , n are the diagonal elements of the upper triangular matrix U. We recall
that the determinant of any triangular matrix is simply the product of its diagonal elements.

Remark 7: The Gaussian elimination can be used to explicitly construct the inverse A−1

by setting the columns of the identity matrix I = AA−1 as

bi = (0 . . . 0 1︸︷︷︸
index i

0 . . . 0)T

with only the ith entry being non-zero, and solve

Axi = bi, i = 1, . . . , n.

The solution vector xi forms the column ith of the inverse A−1. Note that this involves only
one LU decomposition and n back solves of O(n2) and the total cost is still O(n3) .

1The TeraHertz processor is already in the horizon; it will consist of about one billion transistors!

9.1. Gaussian Elimination 524

0 2 4 6 8 10 12 14 16 18 20 22
10

−5

10
0

10
5

10
10

10
15

10
20

n

n!

2n3/3

Figure 9.1: Comparison of the growth of computational work in Cramer’s method, n!, versus
Gaussian elimination method, 2

3
n3.

9.1.2 To Pivot or Not to Pivot?

So far we have conveniently assumed that all the pivoting elements are non-zero, i.e.,

a
(k)
ii �= 0

but this is not guaranteed for all problems! In practice, these pivots may be zero or very small
numbers so that the multiplies �

(k)
ij can potentially be very large numbers. To understand

the effect of this, let us consider the 2× 2 matrix

A =

[
ε 1
1 1

]

where ε � 1. The condition number of A is κ2(A) → 2.6180 as ε → 0 so this is a well
conditioned matrix. We now obtain the LU decomposition of A :

The L matrix is

L =

[
1 0
ε−1 1

]

and the U matrix is

U =

[
ε 1
0 1− ε−1

]
.

For ε sufficiently small, 1− ε−1 ≈ −ε−1 and thus

U ≈
[
ε 1
0 −ε−1

]
,

9.1. Gaussian Elimination 525

so

L ·U =

[
ε 1
1 0

]
,

which is different than the original matrix A in the (2, 2) entry, since

A =

[
ε 1
1 1

]
.

We note that for any value of a22 �= 1 (of order one) we get the same answer, which is
obviously wrong! This is an example of a numerical instability. It is due to the fact that the
condition number of L and U is extremely large unlike the condition number of the matrix
A which is order one. This problem can be avoided if we simply reverse the order of the
equations, i.e., interchange the rows, and work with the re-ordered matrix

A =

[
1 1
ε 1

]

as now the multiplier is ε < 1.

We can generalize the result above and apply row interchange, which is also called partial
pivoting, to obtain multipliers

|�ij| < 1 .

The following pseudo-code describes Gaussian elimination with partial pivoting. It is an
extension of the code we described earlier in the forward solve.

for k = 1, n− 1
|amk| = max{|akk|, |ak+1k|, . . . |ank|}
p = m
for q = k, n

c = akq

akq = apq

apq = c
endfor
for i = k + 1, n

�ik = aik/akk

for j = k + 1, n
aij = aij − �ikakj

endfor
endfor

endfor

We note that for the system Ax = b we also need to interchange appropriately the right-
hand-side. Unlike the standard Gauss elimination, in the partial pivoting case we have

A �= LU

but A = P−1LU is true, where P is a permutation matrix describing the partial pivoting.

9.1. Gaussian Elimination 526

While partial (row-pivoting) works effectively in practice, there are a few pathological
cases where even this may breakdown. In these cases, we can perform an additional similar
pivoting by columns, searching for a maximum pivot along both rows and columns. In
general, indications of an ill-conditioned matrix are provided by the small magnitude of the
pivot or the large magnitude of the solution compared to the right-hand-side, although there
are matrices which do not have these properties but they are still ill-conditioned.

Remark 1: For bounded matrices, (e.g., the tridiagonal systems involved in Thomas al-
gorithms; see section 6.1.4), partial pivoting and complete pivoting result in increasing the
bandwidth and even producing full matrices. Therefore, the computational work instead of
being linear as in the Thomas algorithm may become O(n2) or O(n3) for row or row/column
pivoting, respectively.

Software

 Suite
Putting it into Practice

The function below is an implementation of both the pivot and non-pivot versions of
Gaussian elimination by LU decomposition. Three arguments are required: the matrix A,
the vector b, and an integer parameter pivotflag denoting whether the pivoting should be
enabled (zero for no-pivoting and one for pivoting).

void GaussElimination(SCMatrix &A, SCVector &b, int pivotflag){

int pivot;

int N = A.Rows();

/* NOTE: The values contained in both the matrix A and

the vector b are modified in this routine. Upon

returning, A contains the upper triangular matrix

obtained from its LU decomposition, and b contains

the solution of the system Ax=b*/

// Steps (1) and (2) (decomposition and solution of Ly = b)

switch(pivotflag){

case 1: // Case in which pivoting is employed

for(int k=0; k < N-1; k++){

pivot = A.MaxModInColumnindex(k,k);

A.RowSwap(pivot,k);

Swap(b(pivot),b(k));

for(int i=k+1;i<N;i++){

double l_ik = A(i,k)/A(k,k);

for(int j=k;j<N;j++)

A(i,j) = A(i,j) - l_ik*A(k,j);

b(i) = b(i) - l_ik*b(k);

9.1. Gaussian Elimination 527

}

}

break;

case 0: // Case 0/default in which no pivoting is used

default:

for(int k=0; k < N-1; k++){

for(int i=k+1;i<N;i++){

double l_ik = A(i,k)/A(k,k);

for(int j=k;j<N;j++)

A(i,j) = A(i,j) - l_ik*A(k,j);

b(i) = b(i) - l_ik*b(k);

}

}

}

// Step (3) (backsolving to solve Ux=y)

b(N-1) = b(N-1)/A(N-1,N-1);

for(int k=N-2;k>=0;k--){

for(int j=k+1;j<N;j++)

b(k) -= A(k,j)*b(j);

b(k) = b(k)/A(k,k);

}

}

Remark 2: In the implementation above we use a switch statement to partition the different
cases. Two advantages are: code readability and the ease of adding another condition.
Suppose that we decided to implement a new pivoting algorithm; within the current function
we could merely add another case to denote the new pivoting functionality.

Notice that it is not required that case ‘0’ go before case ‘1’. Recall that the switch
statement evaluates the validity of the switch in the order given in the code, hence in this
case the switch statement first checks to see if case ‘1’ is valid, and if not checks for case ‘0’.
Also notice that we use a ‘default’ case. If neither a zero or a one is given in the switch input,
the default will be executed. In this example, the default case and case ‘0’ are identical.

Remark 3: In the code above, we utilize two Matrix class methods:

1. Matrix::MaxModInColumnindex(. . .), and

2. Matrix::Rowswap(. . .).

The first method implements the maximum modulus in a column operation needed for
pivoting. The second method swaps two rows of the matrix A. The advantage of using these
two methods is that from this level in the code the implementation details of how these two
functions are accomplished are not our concern. At the level of this code we merely need to
know the input, output, and contract for the methods.

9.1. Gaussian Elimination 528

Remark 4: Notice that in the code above we both declare and initialize the iterating value
(such as int k=0) within the for loops. Recall that C++ does not require us to declare all
variables at the beginning of the function. In this function we have made liberal use of this
ability by declaring and initializing each iterating value with its respective for loop.

The need for pivoting is dictated by the properties of the matrix A. There are two special
categories of matrices for which we do not need to pivot. These matrices are:

• Diagonally-dominant, or

• Positive-definite.

A strictly diagonally-dominant matrix has the property

|aii| >
n∑

j=1

|aij |, i = 1, . . . , n; j �= i

and it is guaranteed to be non-singular.
A positive-definite matrix is defined by the condition

∀x �= 0, xTAx > 0,

which guarantees that the matrix A is non-singular. In addition, the above properties
guarantee that there will be no numerical instabilities in systems where such matrices are
involved.

Fortunately, many of the algebraic systems resulting from PDEs that describe physical
phenomena (presented in chapters 6 and 7) have these desirable properties. In particular,
the matrix obtained from the discretization of d2u/dx2 (see chapter 6) is tridiagonal with
diagonals (1,−2, 1). Although it does not satisfy strictly the diagonal dominance condition,
it is an irreducible matrix, i.e., its associated directed graph is strongly connected, and this
condition is equivalent to diagonal dominance.

The special matrices we have described are guaranteed to be non-singular but they are
also far from being even approximately singular. Clearly, if a matrix A is singular, then
Gaussian elimination cannot be applied as A−1 does not exist. However, in practice many
matrices are almost singular, and this is the condition we should investigate, as it leads to
numerical instabilities. The value of the determinant, if the matrix is scaled properly, can
give us an indication if the matrix is almost singular or ill-conditioned. However, computing
determinants is costly and at least equivalent in computational complexity to an LU decom-
position, the stability of which we investigate in first place! Only for special matrices the
computation of determinant may be employed.

Another approach is to employ the condition number κ(A) for matrix A, i.e.,

κ(A) ≡‖ A ‖ · ‖ A−1 ‖ .
As we have seen in chapter 2 it relates the perturbation of data to the changes in the solution,
i.e.,

‖ Ax ‖
‖ x ‖ ≤ κ(A)

‖ Ab ‖
‖ b ‖ .

9.1. Gaussian Elimination 529

The condition number is always computed with respect to some norm. We will use the
notation κi(A) to denote the condition number of A with respect to the ‖ · ‖i norm. When
no subscript is given, we assume that the ‖ · ‖2 norm is used. We can define relationships
between different norm-based condition numbers using the equivalence relations between the
norms.

By definition the condition number κ(A) is greater or equal to one, but we are interested
in extremely large values of κ(A), as it acts as an amplifier in the propagation of disturbance
(noise) from the input to output (solution).

For symmetric matrices we have that

κ2(A) =
|λmax|
|λmin| ,

and we have computed the eigenvalues λi for several cases in chapter 6; see also chapter 10.
For general matrices, however, it is difficult to compute the condition number economically
so approximate estimation algorithms are employed. Here we will present the estimator
proposed by Hager [52]; see also [26]. The algorithm2 obtains a lower bound on the inverse
matrix in the one-norm. However, we note that A−1 is not constructed explicitly as this is
costly, in fact it requires an O(n3) operation! Instead, the matrix-vector products A−1x are
computed on-the-fly:

Initialize: x : ‖ x ‖1= 1

Begin Loop : y = A−1x
z = sign(y)
q = (A−1)Tz
if ‖ q ‖∞≤ qTx return ‖ y ‖1

elseif x = ejsign(qj) with |qj| =‖ q ‖∞
endif

End Loop

Here ej = (0, 0, . . . , 1, . . . 0)T is the jth column of the identity matrix. The condition number
is then estimated from

κ ≈‖ A ‖1 · ‖ y ‖1 .

We note that ‖ y ‖1 is a local maximum to ‖ A−1x ‖1, and that this method is based on
computing the gradient of f(x) ≈‖ A−1x ‖1; for a detailed explanation of the algorithm see
[52].

Remark 5: The accuracy degradation of the solution, if the condition number is large,
can be estimated as follows: Assuming that the condition number is κ(A) ≈ 10p, then the
number of accurate digits in the solution is (q − p) if the solution is computed in q-digit
arithmetic.

2This algorithm is available in LAPACK, routines sgesvx and slacon.

9.1. Gaussian Elimination 530

9.1.3 Parallel LU Decomposition

The efficient parallel implementation of decomposing a non-singular matrix A into its LU
factorization requires that we address two main issues:

1. How to split the matrix A among the processors.

2. How to organize the triple loop so that efficient BLAS operations can be employed.

We consider here distributed memory computers so only parts of the matrix A are stored
in each processor. The obvious ways to split the matrix A are by rows or by columns, but
it may also be beneficial to split it in blocks. A better layout, often used in practice, is
interleaved storage either by row or by column. We examine these different cases in some
detail in the following.

With regards to organizing the triple nested loop – recall that we deal with an O(n3)
operation – there are six ways of permutating the indices (ijk), just like in matrix-matrix
multiply that we discussed in chapter 2. In table 9.1 we present all six versions and basic
operations involved.

We have defined the basic operation in table 9.1 as the operation involved in the innermost
loop. In four versions this is a daxpy operation (i.e., double a (scalar) x (vector) plus y
(vector), while in the other two versions (ijk and jik) it is a ddot (i.e., double dot product).
These are both BLAS1 operations and cannot easily take advantage of cache blocking or data
re-use, see section 2.2.6. Thus, appropriate modifications of these basic loops are required
to be able to employ BLAS2 and BLAS3 routines. This will depend on the specific way we
layout the matrix A in order to also maximize parallel efficiency. We examine this issue in
more detail next.

Access By Rows

Let us first assume that the matrix A is accessed by rows as in the (kij) loop of table 9.1;
see figure 9.2 for a schematic explanation. Let us also assume that the first processor P1

holds the first row aT
1 , P2 holds aT

2 and so on.

During the first elimination stage, the processor P1 needs to send its row to all other
processors so that processors P2 . . . Pn will simultaneously update their columns. Therefore,
the operations

�i1 = ai1

a11

aij = aij − �i1a1j

}
j = 2, . . . n
P2, . . . Pn

can be performed in parallel. During this first stage, processor P1 remains essentially idle
after it communicates with the rest of the processor.

The second stage also starts with a communication step as P2 needs to broadcast its new
row to all other processors P3 . . . Pn. It too remains idle after that, while P3 . . . Pn update
their rows in parallel, and so on for the remaining stages. The computations of the multiplies
as well as the updates are done in parallel but after the kth stage, k processors (P1 . . . Pk)
remain idle. This approach reduces significantly the parallel efficiency.

9.1. Gaussian Elimination 531

1. ijk Loop: A - by column (ddot) 2. ikj Loop: A- by row (daxpy)
for i = 2, n

for j = 2, i
�i,j−1 = ai,j−1/aj−1,j−1

for k = 1, j − 1
aij = aij − �ikakj

endfor
endfor
for j = i+ 1, n

for k = 1, i− 1
aij = aij − �ikakj

endfor
endfor

endfor

for i = 2, n
for k = 1, i− 1

�ik = aik/akk

for j = k + 1, n
aij = aij − �ikakj

endfor
endfor

endfor

3. jik Loop: A - by column (ddot) 4. jki Loop: A - by column (daxpy)
for j = 2, n

for p = j, n
�p,j−1 = ap,j−1/aj−1,j−1

endfor
for i = 2, j

for k = 1, i− 1
aij = aij − �ikakj

endfor
endfor
for i = j + 1, n

for k = 1, j − 1
aij = aij − �ikakj

endfor
endfor

endfor

for j = 2, n
for p = j, n

�p,j−1 = ap,j−1/aj−1,j−1

endfor
for k = 1, j − 1

for i = k + 1, n
aij = aij − �ikakj

endfor
endfor

endfor

5. kij Loop: A - by row (daxpy) 6. kji Loop: A - by column (daxpy)

for k = 1, n− 1
for i = k + 1, n

�ik = aik/akk

for j = k + 1, n
aij = aij − �ikakj

endfor
endfor

endfor

for k = 1, n− 1
for p = k + 1, n

�pk = apk/akk

endfor
for j = k + 1, n

for i = k + 1, n
aij = aij − �ikakj

endfor
endfor

endfor

Table 9.1: Six different ways of writing the LU triple loops.

9.1. Gaussian Elimination 532

P1 P2 P3 Pn

P1

Idle Computing in Parallel

Stage 1a

Stage 1b

Stage 2a

Stage 2b

Stage (n−1) a

Stage (n−1) b

Pn−1

P2 P3 PnPn−1

P1 P2 P3 Pn

P1

Idle Computing in Parallel

Pn−1

P2 P3 PnPn−1

P1 P2 P3 Pn

P1

Idle Computing in Parallel

Pn−1

P2 P3 PnPn−1

Figure 9.2: Schematic of communication (a) and computation (b) pattern when a matrix is parti-
tioned such that each processor contains one row.

Some improvements can be made by overlapping communication with computation. For
example, the broadcasting of the row of processor Pk can be done immediately after it is com-
puted, so that the other processors receive it while they are updating their rows during the
kth stage of elimination. This overlapping of computation and communication is called send-
ahead operation and it is quite common in distributed memory parallel computers. Another
improvement would come about if we manage to increase the work done in parallel relative
to communications. In general, the parallel efficiency improves as the ratio of computations
to communications becomes larger. Thus, for given required communication the local work
is increased as many rows are stored in each processor, so we have one, say, send-ahead
operation every 100 rows on a P = 10 processor system and a matrix of n = 1000.

Blocked Layout

The row-blocked layout of the matrix A suggests that the practical way of storing A is by
rows, and it extends also to a column-blocked layout, e.g., in the kji algorithm described
in table 9.1. In this case, the multiplies �ij are computed on the processor Pj (or its cor-
responding number for blocked storage), and then �ij are broadcasted to all other (active)
processors.

9.1. Gaussian Elimination 533

Partial pivoting in either the row-blocked or column-blocked parallel versions is handled
differently. In the latter version, a search for the maximum pivot is performed within the
processor while in the former (kij loop) the searching is across processors; this requires a
fan-in algorithm for the max operator, as discussed in chapter 2.

Another improvement of the row-blocked or column-blocked layout schemes is to intro-
duce a cyclic or interleaved layout, see figure 9.3. For example, assuming that we have
available k = 10 processors for a 100× 100 matrix A, then we pursue the following storage
scheme:

P1: rows 1, 11, 21, . . . , 91
P2: rows 2, 12, 22, . . . , 92
...

P10: rows 10, 20, . . . , 100

and similarly in a column-oriented storage scheme. Examining figure 9.3, we observe that
during stage 1a processor one communicates row one to all other processors, and then in stage
1b all processors are active accomplishing row reduction. In comparison to the previous block
setup in which rows one through ten would be assigned to processor one, rows 11 through 20
to processor two, etc., row two is now located on processor two. Hence in stage 2a, processor
two communicates row two to all other processors, and in stage 2b all processors accomplish
row reduction concurrently. In this manner, for the first m = 90 stages all the processors
remain active both in communication and computation. Some inefficiencies may occur during
the last few stages, however, as the final row assigned to a processor is eliminated, hence
retiring the processor from service for the elimination.

An even better option is to employ a block of rows (or columns) and assign these blocks
in a cyclic or interleaved manner. The advantages of this approach are that no processor
retires early and that BLAS2 and BLAS3 routines can be used because of the blocking. All
processors see roughly the same amount of work, proportioned to 1/P , although the first
processors work less, e.g., after they compute their first block.

Finally, a combination of row and column block interleaved storage of matrix A can be
pursued. In this case we can imagine a mapping of b size blocks of A in a cyclic manner (of
cycle length C) onto a mesh-type parallel computer consisting of P = Pr × Pc processors.
Schematically, this arrangement is shown in figure 9.4.

This mapping can be established by setting

Si = F (i, b) and Sj = F (j, b),

with i = 0, . . . , n − 1 and j = 0, . . . , n − 1 (N being the size of A) where the value of the
(Si, Sj) pair defines the processor in the mesh architecture. The function F is defined as

function F (i, b)
floor (i/b) modulo C

return;

where we assume that we deal with a square matrix and that C2 = P . In the example of
figure 9.4, we have P = 4 and C = 2. We have also assumed here for simplicity that the
computer (mesh array) is symmetric but that may not be advantageous in practice, i.e, we

9.1. Gaussian Elimination 534

P1 P2 P3 Pk

P1

Computing in Parallel

Stage 1a

Stage 1b

Stage 2a

Stage 2b

Stage m−th a

Stage m−th b

Pk−1

P2 P3 PkPk−1

P1 P2 P3 Pk

P1

Computing in Parallel

Pk−1

P2 P3 PkPk−1

P1 P2 P3 Pk

P1

Computing in Parallel

Pk−1

P2 P3 PkPk−1

Figure 9.3: Schematic of communication (a) and computation (b) pattern when a matrix is
partitioned with an interleaved layout.

may want to have Pr > Pc, that is more rows than columns. The advantage of this approach,
in addition to its good parallel performance, is that it can make use of the BLAS3 routines,
which provide high efficiency. The main steps of computing pivots, send-ahead, and parallel
work on each processor that we presented earlier are also utilized here.

The plot of figure 9.5 shows a graphical representation of LU decomposition using BLAS3.
The new entries to be computed are in the shaded area in the right lower corner of the matrix
A. The submatrix As that is currently shown to be computed has a size b× b, i.e., the size
of the block of rows and columns. This implementation is included in ScaLAPACK software
for distributed computers, see

www.netlib.org/scalapack

9.1.4 Parallel Back Substitution

We first present an ideal algorithm for parallel back substitution that provides a lower bound
for its computational complexity. Although the lower bound may be unattainable given hard-
ware constraints, it provides us with the “best-case” scenario that the algorithm can provide
given unrestricted resources. By understanding the concept which yields the lower bound

9.1. Gaussian Elimination 535

1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4

Figure 9.4: 2D block interleaved mapping of a 16× 16 matrix on P = 4 processors; here b = 2 and
C = 2, and the processor id used above is given by Si + 2Sj + 1. Here Si and Sj have the values 0
or 1.

result, we hope that after incorporating relevant constraints we will obtain a reasonable al-
gorithm. The ideal algorithm for parallel back substitution is based on a divide-and-conquer
algorithm for inverting triangular matrices.

Let us consider the lower triangular matrix L, which we decompose into submatrices of
half size L1 L2 and L3 as follows

L =

[
L1 0
L2 L3

]
.

We assume that n = 2k and that k is an integer. This is shown schematically in the plot of
figure 9.6.

It is clear that L1 and L2 are themselves lower triangular matrices. We can prove that

L−1 =


 L−1

1 0

−L−1
3 L2L

−1
1 L−1

3


 ,

and take advantage of this equation to set up a divide-and-conquer algorithm for inverting
the matrix L of size n.

The main steps are shown in the following pseudo-code:

9.1. Gaussian Elimination 536

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

As

L done

U done

b

b

To be computed next

Figure 9.5: LU decomposition of a matrix A using 2D block interleaved storage. BLAS2 and
BLAS3 can be effectively employed in this algorithm.

Function InvTriangular(L)
If size(L)= 1 return 1/L
Else

Set L1 top triangular part of L
Set L2 square part of L
Set L3 bottom triangular part of L

InvL1 =InvTriangular(L1)
InvL3 =InvTriangular(L3)
UpdateL2 = - InvL3 * L2 * InvL1

return L =

∣∣∣∣∣∣∣
InvL1 0

UpdateL2 InvL3

∣∣∣∣∣∣∣
Endif

We can perform the inversion of L1 and L2 in parallel, so the cost C is

C[InvTriangular(n)] = C[InvTriangular(n/2) + C[mxm(n/2)],

where by mxm we denote the matrix-multiply. The ideal time for this matrix-multiply (as-
suming we employ n3 processors) is O(log n), and thus the ideal cost for inverting triangular
matrices is O(log2 n). Unfortunately, this cost is impossible to realize in practice.

9.1. Gaussian Elimination 537

0L
1

L
2

L
3

Figure 9.6: Decomposition of a lower triangular matrix L. Matrices L1 and L3 are also lower
triangular.

The O(log2 n) time estimate is based on the equation

t(n) = t(n/2) +O(logn).

We set k = log2 n, and thus

t(k) = t(k − 1) +O(k)

= t(k − 2) +O(k) +O(k − 1)

= t(1) +O(k) +O(k − 1) + . . .+ 1

≈ k(k − 1)

2
∼ O(k2/2) ∼ O(log2 n) .

Note that the O(log n) ideal estimate for matrix multiply is based on the fact that all entries
of the product matrix can be computed in parallel on P = n3 processors, and then summed
up using a fan-in algorithm which is O(log n). This is of course unattainable at the moment
since the n = 1000 size (ideally parallel) matrix-multiply would require more than one billion
processors, more than what we currently have on this planet!

We now discuss how the back substitution step Ux = y, which is also a triangular system,
can be performed in parallel. The algorithm proceeds by computing first

xn =
b(n−1)
n

a
(n−1)
nn

while all other unknowns are computed from

∀ i = n− 1, . . . 1 :

xi =
b
(i−1)
i − a(i−1)

ii xi+1

ai−1
i,i

=
bi − ui,i+1xi+1 − ui,i+2xi+2 − . . . uinxin

uii

,

9.1. Gaussian Elimination 538

where uij denote entries of the matrix U.

The most obvious implementation of this is the following:

for j = n, 1
for j = i+ 1, n

bi = bi − uijxj

endfor
xi = bi/uii

endfor

This assumes that U is stored by rows, which are accessed in the innermost loop j. More
specifically, the matrix U is stored in blocks of rows assigned to each processor. The cor-
responding operation employs the BLAS1 ddot routine, which implements the inner (dot)
product of the innermost loop. However, if U is stored in blocks of columns per processor,
then the (ij) loop of the ddot product implementation above has to be reversed as follows

for j = n, 1
xj = bj/ujj

for i = 1, j − 1
bi = bi − uijxj

endfor
endfor

Here the innermost loop (i) generates updates of the numerators for the final answer xj

while the outer loop (j) sweeps the matrix U by columns starting from right to left. This
is sometimes referred to as left-looking access of U, and it involves daxpy operations in the
innermost loop.

Software

 Suite
Putting it into Practice

Prior to presenting a parallel implementation of Gaussian elimination, we will first discuss
one new MPI function not introduced previously: MPI Bcast. This function allows us to
distribute to all processes within the communicator an identical piece of data. In the case of
Gaussian elimination, MPI Bcast will allow us to “broadcast” to all processes a particular
row being used in the elimination. We will now present the function call syntax, argument
list explanation, usage example and some remarks.

MPI Bcast:

Function Call Syntax

9.1. Gaussian Elimination 539

int MPI Bcast(
void* buffer /* in/out */,
int count /* in */,
MPI Datatype datatype /* in */,
int root /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• buffer - starting address of the send buffer.

• count - number of elements in the send buffer.

• datatype - data type of the elements in the send buffer.

• root - rank of the process broadcasting its data.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be broadcast

int root; // process which is broadcasting its data

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize and root

double * databuffer = new double[datasize];

// Fill in databuffer array with data to be broadcast

MPI_Bcast(databuffer,datasize,MPI_DOUBLE,root,MPI_COMM_WORLD);

// At this point, every process has received into the

// databuffer array the data from process root

Remarks

• Each process will make an identical call of the MPI Bcast function. On the broad-
casting (root) process, the buffer array contains the data to be broadcast. At the
conclusion of the call, all processes have obtained a copy of the contents of the buffer
array from process root, see figure 9.7.

9.1. Gaussian Elimination 540

Process 0

databuffer databuffer

x00 x01

Process 1

Process 2

x00 x01

x00 x01

x00 x01

Figure 9.7: MPI Bcast schematic demonstrating a broadcast of two data objects from process
zero to all other processes.

We now present a parallel implementation of Gaussian elimination with back substitution.
As a model problem, we solve for the interpolating polynomial of the Runge function (see
section 3.1.4) by forming a Vandermonde matrix based on the Chebyshev points. Recall that
the goal is to find the polynomial coefficients by solving the system Ax = b where A is the
Vandermonde matrix and b is the function of interest evaluated at the interpolation points.

To better explain the code, we have broken the entire program into six parts, labeled
part one through part six. The six parts break down the code as follows:

1. Part 1 - MPI initialization/setup and initial memory allocations.

2. Part 2 - Generation of the matrix rows local to each process.

3. Part 3 - Gaussian elimination of the augmented matrix.

4. Part 4 - Preparation for back substitution.

5. Part 5 - Back substitution to find the solution.

6. Part 6 - Program finalization and clean-up.

For each part, we will first present the code and then present a collection of remarks
elucidating the salient points within each part.

Part 1 - MPI initialization

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

#include "SCchapter3.h"

#include<mpi.h>

void ChebyVandermonde(int npts, double *A, int row);

9.1. Gaussian Elimination 541

// Global variable to set size of the system

const int size = 10;

int main(int argc, char *argv[]){

int i,j,k,index;

int mynode, totalnodes;

double scaling;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

int numrows = size/totalnodes;

double **A_local = new double*[numrows];

int * myrows = new int[numrows];

Remark 1: Notice that for this program we use a global constant variable to denote the
size of the matrix system. By placing the variable declaration outside of the main function,
the declaration is global to all functions (including the main function).

Remark 2: We have made the assumption that the size of the matrix is evenly divisible by
the number of processors we are using. If this were not the case, we would have to properly
take this into account by having different numbers of rows per processor.

Part 2 - Generation of matrix rows

/* PART 2 */

double * xpts = new double[size];

ChebyshevPoints(size,xpts);

for(i=0;i<numrows;i++){

A_local[i] = new double[size+1];

index = mynode + totalnodes*i;

myrows[i] = index;

ChebyVandermonde(size,A_local[i],index);

// Set-up right-hand-side as the Runge function

A_local[i][size] = 1.0/(1.0+25.0*xpts[index]*xpts[index]);

}

delete[] xpts;

double * tmp = new double[size+1];

double * x = new double[size];

9.1. Gaussian Elimination 542

Remark 1: Notice that we allocate for each row (size+1) columns. Recall that in Gaussian
elimination it is necessary for us to act on the right-hand-side (the vector b) as we do the
row reduction. We can eliminate the extra communication cost that would come by handling
the right-hand-side separately by forming an augmented matrix as shown in figure 9.8.

N

N+1

A b

Figure 9.8: The augmented matrix consists of the original matrix A with the right-hand-side
vector b appended as an additional column.

As you will see in the next section, all row reduction steps will be accomplished on
(size + 1) columns so that both the matrix and right-hand-side are updated properly.

Remark 2: To keep track of which rows a processor possesses, we store the indices of the
rows in an array named myrows. This array contains numrows entries, each entry denoting
for which rows in the matrix the processor is responsible.

Part 3 - Gaussian elimination

/* PART 3 */

/* Gaussian Elimination of the augmented matrix */

int cnt = 0;

for(i=0;i<size-1;i++){

if(i == myrows[cnt]){

MPI_Bcast(A_local[cnt],size+1,MPI_DOUBLE,

mynode,MPI_COMM_WORLD);

for(j=0;j<size+1;j++)

tmp[j] = A_local[cnt][j];

cnt++;

}

else{

MPI_Bcast(tmp,size+1,MPI_DOUBLE,i%totalnodes,

MPI_COMM_WORLD);

}

9.1. Gaussian Elimination 543

for(j=cnt;j<numrows;j++){

scaling = A_local[j][i]/tmp[i];

for(k=i;k<size+1;k++)

A_local[j][k] = A_local[j][k] - scaling*tmp[k];

}

}

Remark 1: We use the integer variable cnt to keep track of how many rows on each processor
have been reduced. Recall that each processor has its own copy of the variable cnt, and hence
on each processor it can be used to keep track of what is the active row.

Remark 2: We have chosen the cyclic distribution discussed earlier. A schematic of the
communication and computation pattern for a four processor run executed on a size = 12
system is shown in figure 9.9.

Part 4 - Preparation for back substitution

/* PART 4 */

/* On each processor, initialize the value of x as equal to

the modified (by Gaussian elimination) right-hand-side if

that information is on the processor, otherwise initialize

to zero.

*/

cnt = 0;

for(i=0;i<size;i++){

if(i==myrows[cnt]){

x[i] = A_local[cnt][size];

cnt++;

}

else

x[i] = 0;

}

Remark: To accomplish the back substitution, we first initialize the solution by setting
the array entry x[i] equal to the last column of the augmented matrix (which contains the
modified right-hand-side) for those rows for which a processor is responsible, and equal to
zero for all rows for which a particular processor is not responsible.

Part 5 - Back substitution

/* PART 5 */

/* Backsolve to find the solution x */

cnt = numrows-1;

for(i=size-1;i>0;i--){

9.1. Gaussian Elimination 544

0

4

8

1

5

9

2

6

10

3

7

11

P
0

P
1

P
2

P
3

Broadcast Row 0

0

4

8

1

5

9

2

6

10

3

7

11

i

c

c

c

c

c

c

c

c

c

c

c

0

4

8

1

5

9

2

6

10

3

7

11

Broadcast Row 1

0

4

8

1

5

9

2

6

10

3

7

11

i

c

c

i

c

c

c

c

c

c

c

c

Processors

i=0

i=1

0

4

8

1

5

9

2

6

10

3

7

11

Broadcast Row 9

0

4

8

1

5

9

2

6

10

3

7

11

i

i

i

i

i

i

i

i

c

i

i

c

i=9

Figure 9.9: Schematic of the communication and computation pattern for a four processor run
executed on a size = 12 system. Iterations i = 0, i = 1, and i = 9 are shown. The letter i denotes
an idle row, while a c denotes a computing row.

9.1. Gaussian Elimination 545

if(cnt>=0){

if(i == myrows[cnt]){

x[i] = x[i]/A_local[cnt][i];

MPI_Bcast(x+i,1,MPI_DOUBLE,mynode,MPI_COMM_WORLD);

cnt--;

}

else

MPI_Bcast(x+i,1,MPI_DOUBLE,i%totalnodes,MPI_COMM_WORLD);

}

else

MPI_Bcast(x+i,1,MPI_DOUBLE,i%totalnodes,MPI_COMM_WORLD);

for(j=0;j<=cnt;j++)

x[myrows[j]] = x[myrows[j]] - A_local[j][i]*x[i];

}

if(mynode==0){

x[0] = x[0]/A_local[cnt][0];

MPI_Bcast(x,1,MPI_DOUBLE,0,MPI_COMM_WORLD);

}

else

MPI_Bcast(x,1,MPI_DOUBLE,0,MPI_COMM_WORLD);

Remark 1: Observe that the variable cnt is initialized to (numrows−1) and is decremented
in this loop. Recall that we want to traverse back up the rows (hence the name back
substitution). As a processor computes the solution for a row for which it is responsible, it
then broadcasts the result to all the other processors.

Remark 2: Why do we check for cnt ≥ 0? If you examine this loop carefully, you will
notice that at some point the variable cnt is equal to −1. This occurs when all the solution
components on a processor have been computed. We must verify that cnt ≥ 0 prior to
attempting to access myrows[cnt], otherwise we are performing an illegal memory access,
and hence the process may fail. We know, however, that once a processor’s value of cnt is
equal to −1 it merely needs to obtain the updated values from other processors, and hence
we can immediately proceed to an MPI Bcast call to obtain the solution from another
processor.
Remark 3: Observe in the MPI Bcast arguments that we use pointer arithmetic for up-
dating the address which is passed to the function. Recall that x is a pointer (and hence has
as its value an address). The expression (x+ i) is equivalent to the expression &x[i], which
can be read as “the address of the array element x[i].”

Part 6 - Program finalization

/* PART 6 */

if(mynode==0){

9.1. Gaussian Elimination 546

for(i=0;i<size;i++)

cout << x[i] << endl;

}

delete[] tmp;

delete[] myrows;

for(i=0;i<numrows;i++)

delete[] A_local[i];

delete[] A_local;

MPI_Finalize();

}

void ChebyVandermonde(int npts, double *A, int row){

int i,j;

double * x = new double[npts];

ChebyshevPoints(npts,x);

for(j=0;j<npts;j++)

A[j] = pow(x[row],j);

delete[] x;

}

Remark: We conclude the program by printing the solution from the first processor (mynode =
0). If we were not to put the if statement there, all processors would print the solution.

9.1.5 Gaussian Elimination and Sparse Systems

Many linear systems that arise from discretization of partial differential equations, as we
have seen in chapters 6 and 7, are sparse and more specifically bandeded. Assuming that we
deal with symmetrically banded systems of (semi)-bandwidth m, we can modify accordingly
the (ijk) loops of table 9.1 to account for this sparsity. For example, the kij loop is modified
as follows:

for k = 1, n− 1
for i = k + 1, min(k +m,n)

�ik = aik/akk

for j = k + 1, min(k +m,n)
aij = aij − �ikakj

endfor
endfor

endfor

9.1. Gaussian Elimination 547

The computational complexity of this algorithm is significantly less on a serial computer
than on a parallel computer. The operation count for LU decomposition is about O(nm2)
for an n × n matrix with bandwidth m and for the backsolve is O(nm). However, on a
parallel computer a straightforward implementation of the above algorithm would result in
large inefficiencies. For example, the row- (column-) blocked interleaved scheme discussed
earlier becomes very inefficient when m < P , where P is the total number of processors as
only m processors are effectively used. Clearly, the case with m = 1, i.e., the tridiagonal
system, is the most difficult case and needs to be handled differently; we study this case
next.

9.1.6 Parallel Cyclic Reduction for Tridiagonal Systems

Several algorithms have been developed over the years for the parallel solution of tridiagonal
linear systems including recursive doubling [82], cyclic reduction [13], domain decomposition
[90], and their many variants. Here we present the cyclic reduction method, which has been
one of the most successful approaches.

The main idea of cyclic reduction is to group the unknowns in even and odd-numbered
entries, just like in black/red Gauss-Seidel (see section 7.2.4), and successively eliminate the
odd-numbered entries. Most of the operations in this process can be done in parallel. We
present here some details by considering a specific small system in order to illustrate how
we manipulate the equations.

Let us consider the tridiagonal system

aixi−1 + bixi + cixi+1 = Fi, i = 1, . . . , n (9.8)

where ai, bi, ci, and Fi are given, and we also assume that n = 2p− 1. If n �= 2p− 1 then we
add additional trivial equations of the form xi = 0, i = n + 1, . . . , 2p − 1.

The key idea is then to combine linearly the equations in order to eliminate the odd-
numbered unknowns

x1, x3, x5, . . . , xn

in the first stage. We then re-order (i.e., re-number) the unknowns and repeat this process
until we arrive at a single equation with one unknown. Upon solution of that equation, we
march backwards to obtain the rest of the unknowns. To do this we combine the equations
in triplets.

Next, we demonstrate this for the case of n = 7 = 23 − 1 unknowns for which we have
three triplets. We start by forming the first triplet from the first three equations. To this
end, we multiply by the parameters α2, β2, γ2 to get

α2b1x1 + α2c1x2 = α2F1

β2a2x1 + β2b2x2 + β2c2x3 = β2F2

γ2a3x2 + γ2b3x3 + γ2c3x4 = γ2F3.

In order to eliminate x1 and x3, we add the equations and choose:

β2 = 1

9.1. Gaussian Elimination 548

α2b1 + β2a2 = 0

β2c2 + γ2b3 = 0.

The resulted equation (sum of the above three equations) is

(α2c1 + β2b2 + γ2a3)︸ ︷︷ ︸
b̂2

x2 + γ2c3︸ ︷︷ ︸
ĉ2

x4 = α2F1 + β2F2 + γ2F3︸ ︷︷ ︸
F̂2

.

Similarly, combining again equations, i.e., the third, fourth and fifth equations obtained from
equation (9.8) we form the second triplet from which we obtain

α4a3︸ ︷︷ ︸
â4

x2 + (α4c3 + β4b4 + γ4a5)︸ ︷︷ ︸
b̂4

x4 + γ4c5︸ ︷︷ ︸
ĉ4

x6 = a4F3 + β4F4 + γ4F5︸ ︷︷ ︸
F̂4

,

and α4, β4 and γ4 are determined from

β4 = 1

α4b3 + β4a4 = 0

β4c4 + γ4b5 = 0.

Finally, for the third triplet we obtain, as before, the only surviving equation

â6x4 + b̂6x6 = F̂6,

where the parameters α6, β6, γ6 involved in the definition of â6, b̂6 and F̂6 are determined
by solving

α6b5 + β6a6 = 0

β6c6 + γbb7 = 0.

We see that the three resulted equations also form a tridiagonal system, i.e.,

b̂2x2 + ĉ2x4 = F̂2 (9.9)

â4x2 + b̂4x4 + ĉ4x6 = F̂4 (9.10)

â6x4 + b̂6x6 = F̂6. (9.11)

We can repeat the same elimination process as before, i.e., first multiply by α
′
4, β

′
4 and γ

′
4

respectively the above equations and choose

α
′
4b̂2 + β

′
4â4 = 0

β
′
4ĉ4 + γ

′
4b̂6 = 0

that leads to only one equation
α∗

4x4 = F ∗
4 .

Using back substitution, after we obtain x4 from above, we can compute x2 from the reduced
equation (9.9) and x6 from equation (9.11). Finally, we use the original equations to obtain
x1, x3, x5 and x7.

In summary, we perform the following steps:

9.1. Gaussian Elimination 549

1. Compute
(α2, β2, γ2)

(α4, β4, γ4)

(α6, β6, γ6)

2. Compute
(b̂2, ĉ2, F̂2)

(â4, b̂4, ĉ4, F̂4)

(â6, b̂6, F̂6)

3. Compute
(α

′
4, β

′
4, γ

′
4)

(a∗4, F
∗
4)

4. Solve for x4, x2, x6, x1, x3, x5 and x7.

Remark: There exist non-singular matrices for which the above method will terminate early
with the solution. The number of levels used above is the worst-case scenario. For some
matrices, the depth of reduction can be truncated due to the solution being obtained for one
of the variables. Immediately back-substitution can begin.

The operation count is O(13n) multiplications compared to O(5n) for the standard LU
decomposition. However, this is the serial work but many of the above computations can be
done in parallel. For example, let us assume that we have

P =
n− 1

2

processors and we store each triplet on one processor. The work for eliminating the odd-
numbered unknowns can be done in parallel, and at the end of this stage each processor holds
one reduced equation. To proceed, the processors need to exchange data. This can be done
by nearest neighbor communications, e.g., P2 will receive data from P1 and P3, P4 will receive
data from P3 and P5, and so on. This implies that about half of the processors (e.g., all the
odd-numbered P1, P3 . . .) will remain idle. After (p− 1) reduction stages (where n = 2p− 1)
only one processor will solve the final equation. However, the rest of the processors are not
quite retired yet, as in the back substitution they will all be called on duty again!

Software

 Suite
Putting it into Practice

We now present implementations of cyclic reduction for tridiagonal systems. Due to the
complex nature of the indexing involved, we will present both the serial and then the parallel
version. As pointed out earlier, the serial version of this algorithm is rarely used because it

9.1. Gaussian Elimination 550

is actually more expensive than standard LU; we present it however because it is easier to
understand the complex indexing in the serial setting without the additional complexity of
the parallelization.

As a model problem, we solve for the system given in figure 9.10. Notice that the matrix
A is of the form found in discretizations of the Laplace’s equation with second-order finite
difference schemes.

 −2 1
 1 −2 1

 1 −2 1

 1 −2
 1 −2 1

0

0

 1 −2 1

x =

 0
 1
 2
 3

N−1

N

N

A x = b

Figure 9.10: Tridiagonal system used as a model problem for cyclic reduction.

To better explain the code, we have broken the entire program into multiple parts. The
serial code is broken down into three parts as follows:

1. Part 1 - Memory allocation and generation of the matrix A.

2. Part 2 - Cyclic reduction stages.

3. Part 3 - Cyclic reduction back substitution to recover the solution.

For each part, we will first present the code and then present a collection of remarks eluci-
dating the salient points within each part.

Serial

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

const int size = 15;

void main(){

int i,j,k;

int index1,index2,offset;

double alpha,gamma;

9.1. Gaussian Elimination 551

Part 1 - Memory allocation and generation of matrix

/* Part 1 */

double * x = new double[size];

for(i=0;i<size;i++)

x[i] = 0.0;

double * F = new double[size];

double ** A = new double*[size];

for(i=0;i<size;i++){

A[i] = new double[size];

for(j=0;j<size;j++)

A[i][j] = 0.;

F[i] = (double)i;

}

A[0][0] = -2.0; A[0][1] = 1.0;

A[size-1][size-2] = 1.0; A[size-1][size-1] = -2.0;

for(i=1;i<size-1;i++){

A[i][i] = -2.0;

A[i][i-1] = 1.0;

A[i][i+1] = 1.0;

}

Remark 1: Observe that in this program we use more memory than necessary. Because we
know that we are operating on a tridiagonal system, the memory required is greatly reduced
from that which would be needed in A were full. Here we allocate memory as if A is a full
matrix; we leave it as an exercise to modify this program to use only the necessary amount
of memory.

Part 2 - Cyclic reduction

/* Part 2 */

for(i=0;i<log2(size+1)-1;i++){

for(j=pow(2,i+1)-1;j<size;j=j+pow(2,i+1)){

offset = pow(2,i);

index1 = j - offset;

index2 = j + offset;

alpha = A[j][index1]/A[index1][index1];

gamma = A[j][index2]/A[index2][index2];

for(k=0;k<size;k++){

9.1. Gaussian Elimination 552

A[j][k] -= (alpha*A[index1][k] + gamma*A[index2][k]);

}

F[j] -= (alpha*F[index1] + gamma*F[index2]);

}

}

Remark 2: In the above code section, the first for loop (over i) iterates through the levels
of reduction which occur, while the second for loop (over j) indexes which rows at each level
are to be acted upon. Notice that both loops and the variables index1 and index2 are based
on powers of two.

Part 3 - Back substitution

/* Part 3 */

int index = (size-1)/2;

x[index] = F[index]/A[index][index];

for(i=log2(size+1)-2;i>=0;i--){

for(j=pow(2,i+1)-1;j<size;j=j+pow(2,i+1)){

offset = pow(2,i);

index1 = j - offset;

index2 = j + offset;

x[index1] = F[index1];

x[index2] = F[index2];

for(k=0;k<size;k++){

if(k!= index1)

x[index1] -= A[index1][k]*x[k];

if(k!= index2)

x[index2] -= A[index2][k]*x[k];

}

x[index1] = x[index1]/A[index1][index1];

x[index2] = x[index2]/A[index2][index2];

}

}

for(i=0;i<size;i++){

cout << x[i] << endl;

}

delete[] x;

delete[] F;

for(i=0;i<size;i++)

delete[] A[i];

9.1. Gaussian Elimination 553

delete[] A;

}

Remark 3: Once the full reduction has occurred, we must traverse back up the reduction
tree. Note that the two for loops accomplish this traversal.

Parallel

We now present the parallel version of the serial code presented above. We assume that
given P processors, we will accomplish cyclic reduction on a matrix of size 2log2 (P+1)+1 − 1.
This amounts to associating three rows per processor during the first stage. The parallel
code is broken down into four parts as follows:

1. Part 1 - MPI initialization and both memory allocation and generation of the matrix
A.

2. Part 2 - Parallel cyclic reduction stages.

3. Part 3 - Parallel cyclic reduction back substitution to distribute necessary information.

4. Part 4 - Solution for the odd rows for which each process is responsible.

For each part, we will first present the code and then present a collection of remarks eluci-
dating the salient points within each part.

Part 1 - MPI initialization

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

#include<mpi.h>

int main(int argc, char *argv[]){

int i,j,k,size,index;

int index1,index2;

int mynode, totalnodes;

double alpha,gamma;

const int numrows = 5;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

size = (int) pow(2,log2(totalnodes+1)+1)-1;

9.1. Gaussian Elimination 554

double ** A = new double*[numrows];

for(i=0;i<numrows;i++){

A[i] = new double[size+1];

for(j=0;j<size+1;j++)

A[i][j] = 0.0;

}

if(mynode==0){

A[0][0] = -2.0; A[0][1] = 1.0;

A[1][0] = 1.0; A[1][1] = -2.0; A[1][2] = 1.0;

A[2][1] = 1.0; A[2][2] = -2.0; A[2][3] = 1.0;

}

else if(mynode==(totalnodes-1)){

index = 2*mynode;

A[0][index-1] = 1.0; A[0][index] = -2.0;

A[0][index+1] = 1.0;

index = 2*mynode+1;

A[1][index-1] = 1.0; A[1][index] = -2.0;

A[1][index+1] = 1.0;

A[2][size-2] = 1.0; A[2][size-1] = -2.0;

}

else{

for(i=0;i<3;i++){

index = i + 2*mynode;

A[i][index-1] = 1.0;

A[i][index] = -2.0;

A[i][index+1] = 1.0;

}

}

for(i=0;i<3;i++)

A[i][size] = 2*mynode+i;

int numactivep = totalnodes;

int * activep = new int[totalnodes];

for(j=0;j<numactivep;j++)

activep[j] = j;

for(j=0;j<size+1;j++){

A[3][j] = A[0][j];

A[4][j] = A[2][j];

}

9.1. Gaussian Elimination 555

Remark 1: Just as in the parallel Gaussian elimination code, we augment the matrix A
with the right-hand-side (appending A with an extra column). This helps to minimize the
communication by allowing us to communicate both the row and right-hand-side information
simultaneously.

Part 2 - Cyclic reduction

/* Part 2 */

for(i=0;i<log2(size+1)-1;i++){

for(j=0;j<numactivep;j++){

if(mynode==activep[j]){

index1 = 2*mynode + 1 - pow(2,i);

index2 = 2*mynode + 1 + pow(2,i);

alpha = A[1][index1]/A[3][index1];

gamma = A[1][index2]/A[4][index2];

for(k=0;k<size+1;k++)

A[1][k] -= (alpha*A[3][k] + gamma*A[4][k]);

if(numactivep>1){

if(j==0){

MPI_Send(A[1],size+1,MPI_DOUBLE,activep[1],0,

MPI_COMM_WORLD);

}

else if(j==numactivep-1){

MPI_Send(A[1],size+1,MPI_DOUBLE,activep[numactivep-2],

1,MPI_COMM_WORLD);

}

else if(j%2==0){

MPI_Send(A[1],size+1,MPI_DOUBLE,activep[j-1],

1,MPI_COMM_WORLD);

MPI_Send(A[1],size+1,MPI_DOUBLE,activep[j+1],

0,MPI_COMM_WORLD);

}

else{

MPI_Recv(A[3],size+1,MPI_DOUBLE,activep[j-1],0,

MPI_COMM_WORLD,&status);

MPI_Recv(A[4],size+1,MPI_DOUBLE,activep[j+1],1,

MPI_COMM_WORLD,&status);

}

}

}

9.1. Gaussian Elimination 556

}

numactivep = 0;

for(j=activep[1];j<totalnodes;j=j+pow(2,i+1)){

activep[numactivep++]=j;

}

}

Remark 2: The communication is accomplished through a series ofMPI Send andMPI Recv
calls. Each processor is communicating (either sending or receiving) from at most two other
processors. To keep track of whom is to be sending/receiving, we maintain an active pro-
cessor list within the integer array activep. A communication schematic for cyclic reduction
using seven processors is given in figure 9.11.

P0 P1PP P2 P3P P4 P5 P6

P1PP P3P P5

P3P

Figure 9.11: Cyclic reduction communication pattern for seven processor case.

Part 3 - Back substitution

/* Part 3 */

double * x = new double[totalnodes];

for(j=0;j<totalnodes;j++)

x[j] = 0.0;

if(mynode==activep[0]){

x[mynode] = A[1][size]/A[1][(size-1)/2];

}

double tmp;

9.1. Gaussian Elimination 557

for(i=log2(size+1)-3;i>=0;i--){

tmp = x[mynode];

MPI_Allgather(&tmp,1,MPI_DOUBLE,x,1,MPI_DOUBLE,

MPI_COMM_WORLD);

numactivep = 0;

for(j=activep[0]-pow(2,i);j<totalnodes;j=j+pow(2,i+1)){

activep[numactivep++]=j;

}

for(j=0;j<numactivep;j++){

if(mynode == activep[j]){

x[mynode] = A[1][size];

for(k=0;k<totalnodes;k++){

if(k!=mynode)

x[mynode] -= A[1][2*k+1]*x[k];

}

x[mynode] = x[mynode]/A[1][2*mynode+1];

}

}

}

tmp = x[mynode];

MPI_Allgather(&tmp,1,MPI_DOUBLE,x,1,MPI_DOUBLE,

MPI_COMM_WORLD);

Remark 3: A schematic for the backward solve communication is given in figure 9.12. Notice
that is varies slightly from that of the forward part of the reduction. After a processor has
found the solution for its row and has communicated that information to the appropriate
processors, it is no longer active. This can be observed in figure 9.12 - observe that processor
P3 no longer has things to compute in the second and third levels.

Remark 4: We use the MPI Allgather command so that at any given level all the proces-
sors have the available solution up to that point. This all inclusive communication could be
replaced by MPI Send/MPI Recv pairs where only those processors requiring particular
information would be updated.

Part 4 - Solving for odd rows

/* Part 4 */

for(k=0;k<totalnodes;k++){

A[0][size] -= A[0][2*k+1]*x[k];

A[2][size] -= A[2][2*k+1]*x[k];

}

A[0][size] = A[0][size]/A[0][2*mynode];

A[1][size] = x[mynode];

9.1. Gaussian Elimination 558

P1PP

P0 P4 P6

P5

P2

P3P

Figure 9.12: A schematic for the backward solve communication when seven processors are used.

A[2][size] = A[2][size]/A[2][2*mynode+2];

delete[] activep;

for(i=0;i<numrows;i++)

delete[] A[i];

delete[] A;

delete[] x;

MPI_Finalize();

}

Matrix Row 1

Matrix Row 2

Matrix Row 3

Matrix Row 4

Matrix Row 5

Assigned to Processor 0

Assigned to Processor 1

Figure 9.13: Overlap in row solutions for two processor case.

9.2. Cholesky Factorization 559

Remark 5: The program concludes with each processor computing the solution for the odd
rows for which it was responsible. If the total solution vector were needed on all processors,
MPI Allgather could be used to collect the solution on each processor. Note that some
additional logic would be necessary to properly take into account the overlap in row dis-
tribution (i.e., both processor zero and processor one solve for the solution of matrix row
number three) as shown in figure 9.13.

9.2 Cholesky Factorization

A special case of the LU decomposition for a symmetric positive-definite matrix A can be
obtained in the form

A = L LT .

Here, the matrix U is equal to the transpose of L due to symmetry. There are many
possibilities for L but this factorization is unique if we require that all diagonal elements of
L be positive. We note that in this case L is different than the matrix we obtain in the LU
decomposition, where all diagonal elements are equal to one.

Instead of following the standard LU decomposition, we can obtain explicitly the elements
�ij of L by setting:



a11 a12 . . . a1n
...
...
...
an1 ann




=




�11 O
�12 �22
...

...
. . .

...
...

. . .

�n1 �n2 . . . �nn







�11 �21 . . . �n1

�22 �n2

. . .
...

O . . .

�nn




Next, we equate elements on both sides to obtain

ai1 = �i1�11 and a2
11 = �211

for the entire first column (i = 1, . . . , n), and similarly for the other columns. The following
pseudo-code summarizes the Cholesky algorithm:

for j = 1, n

�ij =

√√√√aij −
i−1∑
k=1

�2jk

for i = j + 1, n

�ij =
aij −∑j−1

k=1 �ik�jk
�jj

endfor
endfor

9.3. QR Factorization and Householder Transformation 560

Remark 1: The Cholesky factorization algorithm is stable and thus it does not require
pivoting [25].

Remark 2: The Cholesky algorithm requires about half the memory and about half the
operations of the LU decomposition.

Remark 3: The positive-definite property is important in obtaining the �ij without partial
pivoting. In fact, partial pivoting can destroy the symmetry of a matrix A.

Remark 4: In some cases an incomplete or approximate Cholesky decomposition is required,
e.g. as a preconditioner in accelerating the convergence of iterative solvers, see section 9.4.2.
This is achieved by simply filling in with zeros the entries of L, which have corresponding
zero entries in the original (presumably sparse) matrix A.

9.3 QR Factorization

and Householder Transformation

The LU factorization is not the only way of factorizing a matrix A. The Householder
transformation we present here is the basis of an efficient factorization of a general matrix

A = QR ,

where Q is an orthogonal matrix and R is an upper triangular matrix. We have already
studied in section 2.2.9 how to achieve such a QR decomposition by orthogonalizing vectors
via the Gram-Schmidt procedure, but the procedure we present here is always stable and
much more efficient.

We start by considering the following important operation in scientific computing:

• How to take a full vector and produce a special vector with only one of its entries
non-zero.

This is accomplished efficiently in terms of the (orthogonal) Householder matrix, which is
defined by

H = I− 2
wwT

wTw
∀w �= 0.

Of particular interest is the vector

αe1 = (α, 0, 0, . . . 0)T

which can be created from an arbitrary vector x if the vector w is computed appropriately.
To this end, we set w such that:

H x =

(
I− 2

wwT

wTw

)
x =




α
0
0
...
0




= αe1 .

9.3. QR Factorization and Householder Transformation 561

The solution to this problem is simple, and it is given by

w = x + sign(x1) · ||x||2e1,

where x1 is the first entry of the vector x. This transformation from H x→ (α, 0, 0, . . . , 0)T

is called Householder transformation.

First, we summarize the algorithm that describes the Householder transformation in the
following pseudo-code:

xm = max {|x1|, |x2|, . . . , |xn|}
for k = 1, n
wk = xk/xm

endfor
α = sign(w1)[w

2
1 + w2

2 + . . .+ w2
n]1/2

w1 = w1 + α
α = −αxm

Then, the desired vector is (α, 0, 0, . . .0)T . The number of operations is proportional to
O(n), that is it takes linear work only to accomplish this important operation.

Example: Consider the vector

x =


 1

2
−3


 ,

then xm = 3, and the intermediate values of the components of w are:

w1 =
1

3
; w2 =

2

3
; w3 = −1.

Also, the intermediate value of α is:

α = +

√
1

32
+

22

32
+ (−1)2 = 1.2472.

The updated values are then

w1 =
1

3
+ 1.2472 = 1.5805; w2 =

2

3
; w3 = −1

and
α = −1.2472 · 3 = −3.7416

while the desired vector is

Hx =


 −3.7416

0
0


 .

Remark 1: The matrix-vector product with a Householder matrix

H = I− 2
wwT

wTw

9.3. QR Factorization and Householder Transformation 562

is only an O(n) operation compared to the O(n2) for a general matrix-vector product. This
can be achieved from the relation

H x = x− βw(wTx),

where β−1 = wTw/2 is a scalar. We note that the right-hand-side is computed within one
loop

xi = xi − β · γ · wi, i = 1., . . . , n

where γ = wTx is also scalar.
Clearly, we do not need to construct explicitly H in this case – that cost would lead to

an O(n2) operation!

To accomplish the QR factorization of a square general n × n matrix A, we consider
its columns and apply successively the Householder transformation in order to zero out
the subdiagonal entries of each column. We do this in (n − 1) stages, just like in LU
decomposition.

Stage 1: We consider the first column of A and determine a Householder matrix H1 so
that:

H1



a11

a21
...
an1


 =



α1

0
...
0


 .

To determine H1 we simply need to apply the Householder transformation algorithm to
obtain w1 of length n. After the first stage we overwrite A by A1 where

A1 =



α1 a∗12 . . . a∗1n

0 a∗22
...

...
0 a∗n2 . . . a∗nn


 = H1A,

which has all new elements (denoted by star) after the first column.

Stage 2: Next we consider the second column of the updated matrix

A ≡ A1 = H1A

and take only the part below the diagonal, to obtain

H∗
2



a∗22
a∗32
...
a∗n2


 =



α2

0
...
0


 ,

which yields a vector w2 of length (n − 1). This vector defines uniquely the Householder
matrix

H∗
2 = I− 2

w2w
T
2

wT
2 w2

.

9.3. QR Factorization and Householder Transformation 563

Unlike H1, here we first need to “inflate” H∗
2 to H2 and then overwrite A by H2A1, where

H2 =

(
1 . . . 0
0 H∗

2

)
.

Stage k: In the k-stage of the QR procedure we produce a vector wk of length (n− k + 1)
by solving

H∗
k




a∗kk

a∗k+1,k
...
a∗nk


 =



αk

0
...
0


 .

Here again, we overwrite A by
Ak = HkAk−1 ,

and subsequently we “inflate” H∗
k as

Hk =

[
Ik−1 0
0 H∗

k

]
.

Remark 2: The efficiency of the Householder algorithm is based on the efficient multipli-
cation

Ak+1 = Hk+1 ·Ak ,

which should not be performed explicitly but rather using the O(n) matrix-vector product
algorithm we presented above; that is we compute

(I− βwn−kw
T
n−k)[akj]

where
β−1 = wT

n−k ·wn−k/2,

and akj denotes the columns of Ak with j = k + 1, . . . , n − k. The determination of H∗
k

requires (n− k) operations because the unknown vector w is of (n− k) length.
Throughout the following section, the subscript for the vector w will denote the current

size of the vector; hence wn−k denotes the vector of size (n − k). In the algorithm to be
presented, the notation wij denotes the ith entry of the vector wj .

After a total of (n − 1) stages we obtain an upper triangular matrix R with diagonal
elements the αk (k = 1, . . . , n) and the other entries computed from:

rij = aij − γwik

where n ≥ i, j ≥ k, and

γ = β
n∑

i=k

wikaij

β−1 = (wT
n−k+1 ·wn−k+1)/2.

9.3. QR Factorization and Householder Transformation 564

We note that the above formulas compute all the entries above the diagonal but also the rnn

entry.
Then, the matrix R is:

R =




α1 r12 r13 r1n

α2 r23 r2n

α3 r3n

. . .

O αn−1

rnn



.

This matrix can be constructed by forming an equivalent Householder matrix Hk of size n
at each stage from the H∗

k which has order (n− k + 1). To this end, we simply set

Hk =

[
Ik−1 O
O H∗

k

]
,

and we also compute:
Ak = HkAk−1

with
A1 ≡ A

The upper triangular matrix is then

R = An−1 = Hn−1An−2 = . . . = Hn−1Hn−2 . . .H1A .

We can invert the above equation if we set

QT = Hn−1Hn−2 . . .H1 ,

then
Q−1 = QT

because Hk are all orthogonal. Thus, Q ·R = QQTA ⇒ A = QR . We can now compute
the orthogonal matrix Q, i.e., Q = HT

1 HT
1 . . .H

T
n−1 .

We have thus obtained a QR decomposition of an n× n matrix A, similar to the Gram-
Schmidt procedure but at reduced cost, since we are operating with shorter and shorter
vectors in each stage. We first provide the pseudo-code for the Householder QR decompo-
sition and then we will compute the exact operation count. The pseudo-code below returns
only the value of R. The matrix Q can be formed from the above equation using the matrix
Hi formed by its vector w from the Householder transformation.

Householder Algorithm

Begin Loop: k = 1, . . . , n− 1 (number of stages)

•Solve H∗
k




a∗kk

a∗k+1,k
...
a∗nk


 =



αk

0
...
0


 (Obtain wn−k+1)

9.3. QR Factorization and Householder Transformation 565

•rkk = αk

•Compute β−1 = wT
n−k+1 ·wn−k+1/2

Zero aik: i = k + 1, . . . , n

Begin Loop: j = k + 1, . . . , n

γj = 0

Begin Loop: q = k, . . . n

γj = γj + βwqkaqj

End Loop

Begin Loop: i = k, . . . , n

rij = aij − γjwik

aij = rij

End Loop
End Loop

End Loop

Example: Let us consider the 3× 3 Hilbert matrix

A =




1
1

2

1

3

1

2

1

3

1

4

1

3

1

4

1

5




and apply the Householder QR algorithm.

• In the first stage (k = 1) we solve

H1




1

1

2

1

3




=




α1

0

0



⇒ w1 =




2.1666

0.5

0.3333




9.3. QR Factorization and Householder Transformation 566

and also r11 = α1 = −1.1666 and

β =
2

wT
1 w1

= 0.3956 .

Then, for j = 2, we calculate:

γ2 = β[w11a12 + w21a22 + w31a32] = 0.5274

and thus

a12 := r12 = a12 − γ2w11 = −0.6429

a22 := r22 = a22 − γ2w21 = 0.0696

a32 := r32 = a32 − γ2w31 = 0.0795 .

In the next iteration, j = 3, we calculate similarly:

γ3 = β[w1a13 + w2a23 + w3a33] = 0.3615

and thus

a13 := r13 = a13 − γ3w11 = −0.4500

a23 := r23 = a23 − γ3w21 = 0.0692

a33 := r33 = a33 − γ3w31 = 0.0795 .

Also, we have that a21 = a31 = 0.

• In the second stage (k = 2) we solve

H∗
2

[
0.0696
0.0795

]
=

[
α2

0

]
⇒ w2 =

[
2.3095
1.0000

]
.

Also, r22 = α2 = −0.1017, and

β = 2/(wT
2 ·w2) = 0.315759 .

Then, for j = 3, we calculate:

γ3 = β[w22a23 + w32a33] = 0.0756

r23 = a23 − γ3w22 = −0.1053

r33 = a33 − γ3w32 = 0.0039 ,

where we note that a23 and a33 are the updated values, which were modified in the first
stage.

At the conclusion of this example, we now have the resulting R matrix of the QR
decomposition, and we also have the Householder transformation vectors w from which we
can form Q.

9.3. QR Factorization and Householder Transformation 567

Computational Cost: The computational complexity of the QR decomposition, as de-
scribed above, is determined by the cost of computing the matrix H∗

k which is O(n−k), and
also of computing Ak from Ak = HkAk−1 which requires O((n− k)2) operations. Thus, the
combined cost is

n−1∑
k=1

(n− k) +
n−1∑
k=1

(n− k)2 =
(n− 1)(n)

2
+

(n− 1)(n)(2n− 1)

6
≈ n3

3
.

Calculating more carefully the constant factor and accounting for both additions and multi-
plications we have

O
(

4

3
n3
)

QR versus O
(

2

3
n3
)

LU decomposition .

Remark 3: After we obtain the QR factorization of A we can solve a linear system Ax = b
as follows

Ax = b⇒ QRx = b⇒ QTQRx = QTb⇒ Rx = QT b,

which is an upper triangular system and can be solved by back substitution.

Remark 4: It can be shown that the QR decomposition based on the Householder trans-
formation is always stable, see [47].

Remark 5: The QR-Householder decomposition is about twice as expensive as the LU
decomposition and it also expands the bandwidth of a sparse matrix A. In contrast, the LU
decomposition preserves the bandwidth but it may be susceptible to numerical instabilities
as demonstrated earlier. However, even with partial pivoting the LU decomposition is more
efficient than the QR decomposition for large matrices A.

Remark 6: (Givens Rotations) A third way of obtaining the QR decomposition of a matrix
A (in addition to Gram-Schmidt and Householder) is to employ the Givens rotation matrix

R(θ) ≡
[

cos θ sin θ
− sin θ cos θ

]
,

which is orthonormal. By setting

R(θ) ·
[
x
y

]
=

[
(x2 + y2)1/2

0

]

we obtain
cos θ =

x√
x2 + y2

; sin θ =
y√

x2 + y2
.

Based on this idea we construct a general rotation matrix

R(θ; i, j) =




1
. . .

cos θ sin θ O

− sin θ cos θ

O . . .

1




9.3. QR Factorization and Householder Transformation 568

that can be employed to zero out one entry in each iteration cycle instead of a column as
in the Householder transformation. However, the Givens rotation is twice more expensive
than the Householder and four times more expensive than the LU. It is not used in solving
square linear systems but it is used in solutions of least squares linear systems and also in
eigensolvers.

Remark 7: The stability of the Householder method (also the Givens rotation) is due to
the fact that the Q matrix is a product of orthogonal matrices, which have condition number
equal to one.

9.3.1 Hessenberg and Tridiagonal Reduction

We now consider the transformation of a matrix A to an upper triangular which also has
the first lower diagonal non-zero. Specifically, this matrix has the form

He ≡




∗ ∗ ∗ . . . ∗
∗ . . . ∗

. . .
. . .

...
∗ ∗

O ∗ ∗



,

and it is called upper Hessenberg matrix.
The Householder transformation procedure can also be used to obtain this for general

matrices. If the matrix is also symmetric then the resulted matrix is tridiagonal.
The reduction algorithm involves (n− 2) stages of elimination. We want to obtain

He = H ·A ·HT ,

where the matrix H = Hn−2 · Hn−1 . . .H1. These are Householder matrices, which are
computed from zeroing out sub-columns of A and its updated versions, i.e.,

H1 =

[
I1 0
0 H∗

1

]
,

where

H∗
1



a21

a31
...
an1


 =



α1

0
...
0


 ,

and

A1 = H1AHT
1

and so on . . .
Clearly, A has a new first column with a11 �= 0 and a21 �= 0 but all other entries are equal

to zero.

9.3. QR Factorization and Householder Transformation 569

Example: We consider again the 3× 3 Hilbert matrix

A =




1
1

2

1

3

1

2

1

3

1

4

1

3

1

4

1

5




which we transform into an upper Hessenberg matrix in one (3-2) stage. Since A is also
symmetric we expect a tridiagonal matrix He.
• In the first stage (k = 1) we solve

H∗
1




1

2

1

3


 =



α

0




which gives

w2 =

[
2.2019
0.6666

]

and α = −0.6009.

We then obtain the new entries of A using aij = aij − γiwj :

He = H1AHT
1 =




1 0 0

0 −0.8321 −0.5547

0 −0.5547 0.8321







1
1

2

1

3

1

2

1

3

1

4

1

3

1

4

1

5







1 0 0

0 −0.8321 −0.5547

0 −0.5547 0.8321




=




1.0 −0.6009 0.0

−0.6009 0.5231 −0.0346

0.0 −0.0346 0.0103



.

Remark 1: The solution of the Hessenberg linear system

He · x = b

9.3. QR Factorization and Householder Transformation 570

Software

 Suite
Putting it into Practice

can be obtained with Gaussian elimination with partial pivoting, and it is guaranteed to be
stable [94]. The computational complexity of this is O(n2) including the partial pivoting
cost.

We now present a function for computing the upper Hessenberg matrix given a matrix A.
The function takes as input the matrix A and upon completion returns the upper Hessenberg
matrix in place of the matrix A.

void Hessenberg(SCMatrix &A){

int i,j,k,q;

double beta,gamma;

int N = A.Rows();

SCVector *x = new SCVector(N),

*w = new SCVector(N);

for(k=0;k<N-2;k++){

A.GetColumn(k,*x,k+1);

A(k+1,k) = HouseholderTrans(*x,*w);

beta = 2.0/dot(N-k-1,*w,*w);

for(i=k+2;i<N;i++)

A(i,k) = (*w)(i-k);

for(j=k+1;j<N;j++){

gamma = 0.0;

for(q=k+1;q<N;q++)

gamma += beta*(*w)(q-k-1)*A(q,j);

for(i=k+1;i<N;i++){

A(i,j) = A(i,j) - gamma*(*w)(i-k-1);

}

}

for(i=0;i<N;i++){

gamma = 0.0;

for(q=k+1;q<N;q++)

gamma += beta*(*w)(q-k-1)*A(i,q);

for(j=k+1;j<N;j++){

A(i,j) = A(i,j) - gamma*(*w)(j-k-1);

}

}

}

delete x;

delete w;

9.3. QR Factorization and Householder Transformation 571

}

Remark 2: Observe that we pass the reference to the matrix A (denoted by the “SCMatrix
&A” in the argument list.) We do this because we want to replace the values in A with
the new upper Hessenberg matrix. If we were to omit the “&” and hence pass by value, the
modifications made to the matrix A within the function would be lost when the function
returns to the calling program.

Remark 3: Inside the function, we dynamically allocate two new SCVectors and assign
them to the two pointers w and x. To use the “()” operator associated with the SCVector
class, we first use the unitary operator ‘*’ to retrieve the object to which the pointer points.
Hence, the expression (*w) yields the object to which the pointer w points. The extra
parentheses around this expression are used to guarantee that the ‘*’ is carried out before
the “()” operator.

9.4. Preconditioned Conjugate Gradient Method - PCGM 572

9.4 Preconditioned Conjugate Gradient Method - PCGM

9.4.1 Convergence Rate of CGM

We have already introduced the Conjugate Gradient Method (CGM) in section 4.1.7 for the
linear system

Ax = b.

By defining the residual of the kth iteration

rk ≡ b−Axk,

the solution and search directions are computed from

xk+1 = xk + αkpk (9.12)

pk+1 = rk+1 + βkpk (9.13)

while the residual can also be computed iteratively, i.e.,

rk+1 = rk − αkApk. (9.14)

We can derive a three-term recurrence formula by substituting in equation (9.12) the vector
pk from equation (9.13) and also using the residual definition, to obtain

xk+1 = (1 + γk)xk + αk(b−Axk)− γkxk−1

where we have defined

γk ≡ αkβk−1

αk−1
.

This is sometimes referred to as the Rutishauser formula. Symmetry and orthogonality to-
gether lead to the familiar three-term magic formula as we have seen many times in this book!

We have mentioned in section 4.1.7 that the CG method is equivalent to minimizing a
properly defined quadratic form. In fact, it can be proved that if s is the exact solution, then
the conjugate gradient iterate xk minimizes the norm ||s− x||A over the Krylov subspace of
dimension k. This space is defined based on powers of A with the orthogonal directions, i.e.,

Kk(A,p) = span {p,Ap,A2p . . . , Ak−1p} .
The Rutishauser formula is similar to the Lanczos three-term formula, see section 10.3.6,

and so CGM and Lanczos are related - they both use the same Krylov subspace and have
three-term recurrence formulas. More specifically, a tridiagonal matrix Tj can be constructed
for CGM from

Tj = PTAP.

Here P = RD−1, where D is a diagonal matrix containing the magnitudes of residuals. Also,
R is the product of two matrices, the first formed by the columns of the orthogonal search
directions pj while the second is a bidiagonal matrix with 1’s in the diagonal and the scalars
βj above the main diagonal.

9.4. Preconditioned Conjugate Gradient Method - PCGM 573

With regards to convergence, Reid [76] has observed that in practice CGM produces
very good answers even before the total number of iterations reaches n, where n × n is the
size of the symmetric positive-definite matrix A. We recall that the fundamental theorem
on conjugate directions, stated in section 4.1.7, guarantees that the exact solution will be
achieved after n iterations. More specifically, if matrix A has only m ≤ n distinct eigenvalues
then convergence will be achieved in m iterations. Round-off and corresponding loss of
orthogonality is responsible for deviation from the theory, although round-off is not as severe
as in the Lanczos method, as we discuss in section 10.3.6.

In practice, we always use a stopping criterion for convergence instead of having a loop
with n iterations. To this end, it is important that the tolerance ε in the convergence test be
proportional to the relative reduction of the initial residual or in some cases to be normalized
with the right hand-side, e.g.,

‖ rk+1 ‖2 ≥ ε ‖ b ‖2 .
Here ε ≈ 10−d where d is the number of digits of desired accuracy. The computation of
‖ rk+1 ‖2= (rk+1, rk+1) requires no extra work as this quantity is used in the numerator
of the formula for βk. Also, we note that the residual ‖ rk+1 ‖2 may not be decreasing
monotonically although the solution error ‖ s − xk ‖2 decreases monotonically. This is
because in the minimization procedure the error of the solution is targeted directly but
not the residual. Direct minimization of the residual is more common in solvers for non-
symmetric systems, as we discuss in section 9.5. However, the A−1-residual norm, (rTA−1r),
decreases monotonically.

Because of finite arithmetic, the convergence rate of CGM is controlled by the condition
number of matrix A, which we denote by κ2(A). Specifically, the following estimate holds,
(see [26, 46])

‖ s− xk ‖2
‖ s− x0 ‖2 ≤ 2γk

√
κ2(A) ,

where

κ2(A) =
λmax

λmin

and γ =

√
κ2(A)− 1√
κ2(A) + 1

.

For large values of κ2 we have that γ → 1, and thus the number of iterations for conver-

gence of CGM is proportional to
√
κ2(A). For example, for the Poisson equation discretized

on an N -by-N grid using second-order finite difference discretization (see chapter 6) we have
that κ2(A) ∝ N2, and thus the number of iterations is proportional to N . The computa-
tional cost of CGM is then similar to SOR assuming for the latter an optimum relaxation
parameter.

9.4.2 Preconditioners

In order to accelerate the convergence of CGM we employ preconditioners, see also 7.2.8.
That is, we transform the linear system Ax = b to

M−1Ax = M−1b

by multiplying by the preconditioner (non-singular) matrix M. We have already seen in
section 7.2.8 some of the desired properties of the preconditioner: It should be:

9.4. Preconditioned Conjugate Gradient Method - PCGM 574

• Spectrally close to matrix A so that the condition number

κ2(M
−1A)� κ2(A)

and also,

• Inexpensive to invert since the solution of Mx = b will be required.

In addition, since we consider here a symmetric positive-definite matrix A, then M has to
also be symmetric and positive-definite.

The objective is to modify the original CG algorithm only slightly in order to “correct”
the search directions but not to increase the computational complexity significantly. To this
end, we first need to symmetrize the preconditioned system as M−1A is not a symmetric
matrix. We then express M in terms of its eigenvectors and eigenvalues, i.e.,

M = VΛVT ⇒M1/2 ≡ VΛ1/2VT .

Next we multiply M−1Ax = M−1b by M1/2 to arrive at

(M−1/2AM−1/2) (M1/2x) = M−1/2b

⇒ By = f, where B ≡M−1/2AM−1/2 ,

and,

y ≡M1/2x and f ≡M−1/2b .

The above defines the new system (i.e., B,y, f) to be solved using the original CGM. We
note that

M−1/2BM1/2 = M−1/2(M−1/2AM−1/2)M1/2 = M−1A

and thus B and M−1A are similar so they have the same eigenvalues.

The following PCG algorithm is derived by applying the standard CG algorithm to the
new system

By = f,

as defined above. The important thing is that we do not need to explicitly take the square
root of M – this would have been costly!

Preconditioned Conjugate Gradient Algorithm

• Initialize:

– Choose x0 ⇒ r0 = b−Ax0

– Solve Mr̃0 = r0 ⇒ p0 = r̃0

9.4. Preconditioned Conjugate Gradient Method - PCGM 575

• Begin Loop: for k = 1, . . .

αk =
(r̃k, rk)

(pk,Apk)
xk+1 = xk + αkpk

rk+1 = rk − αkApk

Mr̃k+1 = rk+1

If (r̃k+1, rk+1) ≤ ε

If (rk+1, rk+1) ≤ ε

return

βk =
(r̃k+1, rk+1)

(r̃k, rk)

pk+1 = r̃k+1 + βkpk

endfor

• End Loop

Remark 1: The stopping criterion is based on the actual residual r and not on the modified
residual r̃. However, checking the latter first saves some computational time as it is readily
available while the former requires explicit calculation.

The question is still open as to what is the best preconditioner since in most cases it is
problem-dependent. For matrices with diagonal elements that are very different in magni-
tude, using

M = diag(a11, a22, . . . , ann)

is very effective as it reduces the condition number of B by a factor of n of its minimum
value [26]. This is called diagonal scaling and corresponds to Jacobi preconditioning. An
extension of this idea is to build M as a block-diagonal matrix out of block submatrices
of A. Similarly, the Gauss-Seidel method can be used as preconditioner but it needs to be
symmetrized first. To this end, the symmetric SOR (SSOR) we presented in section 7.2.6
can be a more effective block preconditioner.

Diagonal scaling fails if all diagonal elements are equal such as in the matrices resulted
from finite difference discretization of diffusion problems on uniforms grids, see chapter 7,
or other Toeplitz type matrices (see next section). One of the most effective and popular
preconditioners for such problems is based on the incomplete Cholesky factorization of
the matrix A. We have already presented the Cholesky factorization of A in section 9.2,
which is feasible for symmetric positive-definite matrices, like the ones we consider here. The
problem with Cholesky is that it fills-in the zero entries of A in the LLT decomposition, and
in some cases it may totally destroy the possible sparsity initially present in A.

To obtain an incomplete Cholesky factorization of A we can simply suppress the fill-in
entries, i.e., zeroing out the entries corresponding to the zero entries of the original ma-
trix. Alternatively, to avoid computing these entries in L and simply place zeros at the
corresponding locations, we can modify the Cholesky algorithm so that

• if aij �= 0, compute lij ,

9.4. Preconditioned Conjugate Gradient Method - PCGM 576

• elseif lij = 0.

We note that the two approaches are not the same as can be easily verified in the following
example. Let us consider the (4× 4) matrix

A =




4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4


 .

We first perform a standard Cholesky decomposition, which yields the following triangular
matrix

Lc =




2.0000 0 0 0
−0.5000 1.9365 0 0
−0.5000 −0.1291 1.9322 0

0 −0.5164 −0.5521 1.8516


 .

We note that the (3,2) entry which was initially zero in A has become non-zero in Lc. The
first version of incomplete Cholesky would then be:

Li1 =




2.0000 0 0 0
−0.5000 1.9365 0 0
−0.5000 0 1.9322 0

0 −0.5164 −0.5521 1.8516


 .

However, the second version, where we don’t compute the lij at all if the corresponding
aij = 0, is

Li2 =




2.0000 0 0 0
−0.5000 1.9365 0 0
−0.5000 0 1.9365 0

0 −0.5164 −0.5164 1.8619


 ,

which is different than Li1 in the entries (3,3), (4,3) and (4,4).

In practice, we can replace the second code statement above by setting a threshold value
on the Cholesky entry as follows

• elseif |lij| ≤ ε then lij = 0 ,

so that only significantly large entries are retained. Clearly, the incomplete Cholesky decom-
position can be performed only initially, i.e., before the iteration loop, and store M = LLT

or simply store L.

Remark 2: While Cholesky factorization of a symmetric positive-definite matrix is always
feasible, incomplete factorization may not be possible in some cases. This complication may
manifest itself as a square root of a negative number to compute the lii. In this case, a
positive large number should over-write the appropriate element, which can be chosen either
arbitrarily or as a sum of the adjoint diagonal entries or even as a sum of absolute values of
the rest of the entries in the row; the latter will ensure diagonal dominance.

9.4. Preconditioned Conjugate Gradient Method - PCGM 577

Remark 3: Domain decomposition is another way of preconditioning partial differential
equations. The idea is to break up the domain of interest to subdomains, which can also
overlap, and subsequently solve the PDE approximately but fast in each of the subdomains.
This can be also done independently for each domain in an embarrassingly parallel fashion.
The preconditioner matrix M is constructed by piecing together the solutions to subproblems
leading to a block diagonal M if the subdomains do not overlap or a product of block diagonal
submatrices if the subdomains overlap.

9.4.3 Toeplitz Matrices and Circulant Preconditioners

A special preconditioner is very effective for Toeplitz matrices, the circulant matrix. Topeplitz
matrices have constant diagonals and are encountered in signal processing and in a wide range
of other problems which are invariant in time and space. A circular matrix C is a Toeplitz
matrix but it is entries also satisfy

ck = ck+n

where n× n is the size of the matrix C.
A general Toeplitz matrix has (2n−1) independent entries, which are determined by the

first row and column. A general circulant matrix on the other hand has only n independent
entries. Assuming symmetry, then a Toeplitz matrix has n independent entries (the first
column) whereas a circulant matrix has [n/2] + 1. More clearly, the differences between a
general Toeplitz and a general circulant matrix are shown below.

A =




a0 a−1 . . a1−n

a1 a0 a−1 . .
. a1 a0 . .
. . . . a−1

an−1 . . a1 a0


 ,

and

C =




c0 cn−1 . . c1
c1 c0 cn−1 . .
. c1 c0 . .
. . . . cn−1

cn−1 . . c1 c0


 .

Assuming we want to solve the system Ax = b where A is a symmetric Toeplitz matrix,
the suggestion, first proposed in [83], is to precondition it with a corresponding circulant
matrix. To this end, we recall that in most applications the main diagonal and its neighbors
are strongly dominant and thus we can use them to construct an appropriate circulant
preconditioner C. The entries c1 = a1 appear both next to the main diagonal but also in
the extreme corners as shown above. It turns out that these relatively large entries control
the eigenspectrum of C−1A, which in turn controls the convergence rate of PCGM. The rest
of the eigenvalues are clustered around one; this is demonstrated in homework problems,
see 10.7. Typically, we copied a few of the main diagonals from the Toeplitz matrix onto
the circulant matrix but of course not all! In the homework problems of section 9.8 we ask

9.4. Preconditioned Conjugate Gradient Method - PCGM 578

you to experiment with different circulant preconditioners. As you can see, the speed-up is
substantial!

9.4.4 Parallel PCGM

The parallelization of the preconditioned conjugate gradient is fairly straight-forward. As-
suming that the matrix A has been distributed by rows across processes, the conjugate
gradient component of the algorithm can be accomplished with only four MPI calls: three
calls to MPI Allreduce to accomplish dot products, and one call to MPI Allgather. We can
eliminate one of the reduction calls if we decide to use the dot product of the residual with
the modified residual for the stopping criterion. Depending on the choice of preconditioner,
however, additional MPI calls may be required to accomplish the preconditioning. In the
case of a diagonal preconditioner, no MPI calls are necessary since diagonal preconditioning
can be accomplished locally on all rows contained in a process. Other preconditioners such
as incomplete Cholesky may require additional MPI calls, the cost of which should be con-
sidered when determining what preconditioner to use. In figure 9.14 we provide a schematic
of the iterative part of the parallel PCG algorithm with annotations denoting what BLAS
and MPI operations should be used. Note that in figure 9.14 we use the modified residual
for the stopping criterion, and hence we only have three MPI calls.

for(k=0;k<dim(A);k++){

 z = Ap

 α= c /dot(p,z)

 x = x + α*p

 r = r − α*z

 Solve M r = r for r

 d = dot(r,r)

 if(sqrt(d) < tolerance) break;

 β = d/c

 p = r + β*p

 gather(p)

 c = d
}

BLAS ddot Operations

Parallel Vector Dot Product

BLAS daxpy Operation

BLAS daxpy Operation

Parallel Vector Dot Product

BLAS daxpy Operation

Solve Matrix System
��������������
��������������
��������������
��������������

������������
������������
������������
������������

���������
���������
���������

Parallel Gather

~ ~

~

~

Figure 9.14: Iterative part of the preconditioned conjugate gradient (PCG) algorithm.

Software

 Suite

We now present an MPI program demonstrating the precon-
ditioned conjugate gradient method with a diagonal precondi-
tioner. As a sample problem, we will solve (using second-order
finite differences) the following equation:

d2u(x)

dx2
− c2ec1(x−0.5)2u(x) = −sin(2πx)(4π2 − c2ec1(x−0.5)2) (9.15)

9.4. Preconditioned Conjugate Gradient Method - PCGM 579

in the interval x ∈ [0, 1] with boundary conditions u(0) = u(1) = 0 and constants c1 = 20.0
and c2 = 1000.0. The exact solution is u(x) = sin(2πx).

We have chosen the constants c1 and c2 so that there is a large disparity in the values
along the diagonal. This will allow us to see the difference between conjugate gradient
(CGM) and preconditioned conjugate gradient (PCGM) with a diagonal preconditioner.

Since we have chosen to use a second-order finite difference method to approximate the
derivative operator, we expect that the error should decrease by a factor of four when we
double the number of grid points used. In figure 9.15 we show a log-log plot of the L2

error versus the number of grid points used. The magnitude of the slope of the line is
approximately two, consistent with the fact that our approximation is second order.

10
1

10
2

10
−7

10
−6

10
−5

10
−4

Number of Grid Points

L
2 E

rr
or |slope| ~ 2.0

Figure 9.15: L2 error versus the number of grid points for the PCGM example defined in equation
(9.15).

In figure 9.16 we plot the inner product of the residual (r, r) for both the CGM and the
PCGM. As predicted, PCGM converges much faster than the standard CGM.

0 10 20 30 40 50 60
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration

(r
,r

) CGM

PCGM

Figure 9.16: Inner product of the residual for both the CG and PCG methods applied to
the PCGM example defined in equation (9.15).

9.4. Preconditioned Conjugate Gradient Method - PCGM 580

To better explain the code, we have broken the entire program into four parts, labeled
part one through part four. The four parts are as follows:

1. Part 1 - MPI initialization, initial memory allocation, and generation of grid and right-
hand-side vector.

2. Part 2 - Memory allocation and generation of the matrix A.

3. Part 3 - PCGM initialization.

4. Part 4 - PCGM main iteration loop.

For each part, we will first present the code and then present a collection of remarks eluci-
dating the salient points within each part.

Part 1 - MPI initialization

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

#include<mpi.h>

const int rows_per_proc = 40;

const double c1 = 20.0;

const double c2 = 1000.0;

const double tol = 1.0e-14;

int main(int argc, char *argv[]){

int i,j,k;

int mynode, totalnodes, totalsize, offset;

MPI_Status status;

double sum,local_sum,c,d,alpha,beta;

double ** A, *q, *x, *grid;

double *p,*z,*r,*mr;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

totalsize = totalnodes*rows_per_proc;

p = new double[totalsize];

z = new double[rows_per_proc];

r = new double[rows_per_proc];

mr = new double[rows_per_proc];

9.4. Preconditioned Conjugate Gradient Method - PCGM 581

x = new double[rows_per_proc];

q = new double[rows_per_proc];

grid = new double[rows_per_proc];

double dx = 1.0/(totalsize+1);

for(i=0;i<rows_per_proc;i++){

grid[i] = dx*(1+rows_per_proc*mynode+i);

q[i] = -dx*dx*sin(2.0*M_PI*grid[i])*

(-4.0*M_PI*M_PI - c2*exp(c1*(grid[i]-0.5)*(grid[i]-0.5)));

x[i] = 1.0;

}

Remark 1: We have four global variables in this program. The variable rows per proc gives
the number of rows per processor. In this program we have decomposed the matrix by
associating rows to processors. The two constants c1 and c2 are specific to the problem we
are solving. The last global constant variable tol specifies the tolerance to which we should
converge.

Remark 2: Observe that with the exception of the array p all other arrays need only be
of size rows per proc and not of size totalsize. Each processor need only maintain its part
of the residual, modified residual and solution vector; however, each processor must have a
copy of the entire p vector.

Part 2 - Memory allocation and generation of matrix

/* Part 2 */

A = new double*[rows_per_proc];

for(i=0;i<rows_per_proc;i++){

A[i] = new double[totalsize];

for(j=0;j<totalsize;j++)

A[i][j] = 0.0;

}

if(mynode==0){

A[0][0] = 2.0 + dx*dx*c2*exp(c1*(grid[0]-0.5)*(grid[0]-0.5));

A[0][1] = -1.0;

for(i=1;i<rows_per_proc;i++){

A[i][i] = 2.0 + dx*dx*c2*exp(c1*(grid[i]-0.5)*

(grid[i]-0.5));

A[i][i-1] = -1.0;

A[i][i+1] = -1.0;

}

}

9.4. Preconditioned Conjugate Gradient Method - PCGM 582

else if(mynode == (totalnodes-1)){

A[rows_per_proc-1][totalsize-1] = 2.0 +

dx*dx*c2*exp(c1*(grid[rows_per_proc-1]-0.5)*

(grid[rows_per_proc-1]-0.5));

A[rows_per_proc-1][totalsize-2] = -1.0;

for(i=0;i<rows_per_proc-1;i++){

offset = rows_per_proc*mynode + i;

A[i][offset] = 2.0 + dx*dx*c2*exp(c1*(grid[i]-0.5)*

(grid[i]-0.5));

A[i][offset-1] = -1.0;

A[i][offset+1] = -1.0;

}

}

else{

for(i=0;i<rows_per_proc;i++){

offset = rows_per_proc*mynode + i;

A[i][offset] = 2.0 + dx*dx*c2*exp(c1*(grid[i]-0.5)*(grid[i]-0.5));

A[i][offset-1] = -1.0;

A[i][offset+1] = -1.0;

}

}

Remark 3: We break the matrix setup into three cases. We have to carefully handle the
first and last processors because they contain the first and last rows, respectively.

Part 3 - PCGM initialization

/* Part 3 */

offset = mynode*rows_per_proc;

for(i=0;i<totalsize;i++)

p[i] = 1.0;

for(i=0;i<rows_per_proc;i++){

r[i] = q[i] - dot(totalsize,A[i],p); //calculation of residual

mr[i] = r[i]/A[i][offset+i]; //calculation of modified residual

}

local_sum = dot(rows_per_proc,mr,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,

MPI_COMM_WORLD);

c = sum;

MPI_Allgather(mr,rows_per_proc,MPI_DOUBLE,p,rows_per_proc,

9.4. Preconditioned Conjugate Gradient Method - PCGM 583

MPI_DOUBLE,MPI_COMM_WORLD);

Remark 4: We have chosen our initial vector as the vector of all ones. Because we have
to calculate the initial residual, we require that all processors have the entire initial guess.
Notice that we temporarily use the p array to accomplish this instead of allocating a new
vector. Because p is not in use until after the modified residual is calculated, we can use the
allocated space with no adverse effect.

Part 4 - PCGM main iteration loop

/* Part 4 */

for(k=0;k<totalsize;k++){

for(i=0;i<rows_per_proc;i++)

z[i] = dot(totalsize,A[i],p);

local_sum = dot(rows_per_proc,z,p+offset);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,

MPI_COMM_WORLD);

alpha = c/sum;

for(i=0;i<rows_per_proc;i++){

x[i] = x[i] + alpha*p[offset+i];

r[i] = r[i] - alpha*z[i];

}

/* Preconditioning Stage */

for(i=0;i<rows_per_proc;i++)

mr[i] = r[i]/A[i][offset+i];

local_sum = dot(rows_per_proc,mr,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,

MPI_COMM_WORLD);

d = sum; //contains inner product of

//residual and modified residual

local_sum = dot(rows_per_proc,r,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,

MPI_COMM_WORLD);

9.4. Preconditioned Conjugate Gradient Method - PCGM 584

//sum now contains inner product of residual and residual

if(mynode == 0){

cout << k << "\t" << "dot(mr,r) = " << d << "\t";

cout << "dot(r,r) = " << sum << endl;

}

if(fabs(d) < tol) break;

if(fabs(sum) < tol) break;

beta = d/c;

for(i=0;i<rows_per_proc;i++)

z[i] = mr[i] + beta*p[i+offset];

MPI_Allgather(z,rows_per_proc,MPI_DOUBLE,p,rows_per_proc,

MPI_DOUBLE,MPI_COMM_WORLD);

c = d;

}

delete[] p;

delete[] z;

delete[] r;

delete[] mr;

delete[] x;

delete[] q;

delete[] grid;

for(i=0;i<rows_per_proc;i++)

delete[] A[i];

delete[] A;

MPI_Finalize();

}

Remark 5: Observe that we only require four MPI calls: three MPI Allreduce and one
MPI Allgather. The three reductions are used to obtain the inner product across all pro-
cessors; the Allgather is used so that all processors have the updated value of p.

Remark 6: Because we are using diagonal preconditioning, no additional communication is
required for the preconditioner. If we were to use incomplete Cholesky as a preconditioner,
additional communication similar to what was accomplished in the parallel Gaussian elim-
ination solver would have to be used. The factorization would be accomplished before the

9.5. Non-Symmetric Systems 585

iteration loop, and only the cost of two parallel back solves would be incurred within the
iteration loop.

9.5 Non-Symmetric Systems

The conjugate gradient algorithm assumes that the matrix A is symmetric and positive-
definite. To deal with the non-symmetric system

Ax = b

we need to come up with new solvers or transform the non-symmetric system into a sym-
metric one as follows

ATAx = AT b (CGNR) .

Clearly, this transformation produces a symmetric positive-definite matrix B ≡ ATA and
thus we can apply PCGM to it. This is called the CGNR (conjugate gradient normal residual)
algorithm and it is an acceptable method for matrices which are well-conditioned, although
we have to pay extra to include matrix-vector multiplies with both AT and A. On the other
hand, the condition number of B is the square of the condition number of A and thus for
ill-conditioned matrices an extremely large number of iterations is required for convergence.

We now compare the CG and CGNR algorithms by considering what quantity is that we
minimize in these minimization-based solvers. We have already seen in section 4.1.7 that
the solution with CG is equivalent to minimizing the quadratic form

PCG(x) =
1

2
(x,Ax)− (b,x).

We can re-write the above form in terms of the error e ≡ x−s, where s is the exact solution,
as follows

2PCG(x) = (x,Ax)− 2(x,As) + (s,As)

= eTAe

= ||e||A.
The above simply states that searching for the solution using the CG algorithm is equiv-

alent to minimizing the error in the A-norm. In contrast, the CGNR algorithm minimizes
the residual in the L2-norm, and thus the corresponding quadratic form is

2PCGNR(x) = ||b−Ax||2
= (b−Ax,b−Ax)

= (Ax,Ax)− 2(b,Ax) + (b,b).

Therefore, the minimization of PCGNR corresponds to applying CG to the system

Bx = f

where B = ATA and f = ATb.

9.5. Non-Symmetric Systems 586

There are several conjugate residual algorithms in the literature, which are based on
the minimization of the residual in different forms. A significant difference between such
algorithms and the CG for symmetric systems is that the loss of symmetry results in the loss
of the three-term magic recurrence formula, which keeps things sparse and leads to efficiency
both in memory and cost. Instead of two or three vectors, in the non-symmetric conjugate
algorithms we typically need to store the entire sequence of conjugate directions, which is
prohibitively expensive for very large n. However, in practice a subset of the last k vectors
may work or a restart of the algorithm after k steps can also be used.

In the following, instead of presenting all variants of conjugate gradient residual algo-
rithms we concentrate on one that makes use of an iterative procedure to simplify the original
matrix, namely the Arnoldi iteration. Based on this procedure, we can solve, relatively effi-
ciently, non-symmetric systems as we demonstrate below. We can also compute eigenvalues
of non-symmetric matrices, as we discuss in section 10.5 in the next chapter.

9.5.1 The Arnoldi Iteration

The Arnoldi method is an orthogonal projection onto a Krylov subspace Km for non-
symmetric matrices A(n×n); usually m� n. It reduces the matrix A to a Hessenberg form,
that is it accomplishes what Householder does for the entire matrix A but here we have the
option of only going half-way. Arnoldi, who introduced this algorithm in the early 1950s [3],
suggested that it leads to good approximations for some of the eigenvalues of A even if we
terminate prematurely! In practice, it is a useful technique for obtaining the eigenvalues of
large sparse matrices. It is useful to think of this as an extension of Lanczos method (see
section 10.3.6) to non-symmetric matrices. It has the same iterative and approximate form
- although a separate version of Lanczos exists for non-symmetric matrices [79].

Let us begin by considering the similarity transformation

A = VTHV,

where we define the matrix V or Vm with orthonormal columns

Vm = [v1 |v2 | . . . |vm],

and Hm is the Hessenberg matrix (m × m). We also define the extended matrix H̃m of
dimension (m+ 1)×m, as follows:

H̃m =




h11 h12 . . . h1m

h21 h22 . . . h2m

. . .
. . .

...
hm,m−1 hmm

hm+1,m



,

and we can write
H̃m = Hm + hm+1,mvm+1e

T
m,

where vm+1, defined as orthonormal, i.e., it has unit norm.

9.5. Non-Symmetric Systems 587

The Arnoldi iteration process satisfies:

AVm = Vm+1H̃m , (9.16)

and correspondingly, the mth column of this equation reads:

Avm = h1mv1 + h2mv2 + . . .+ hmmvm + hm+1,mvm+1,

which is an (m+1)-term recurrence formula, instead of the three-term formula in symmetric
systems.

The basic algorithm of Arnoldi iteration implements the above formula in a straightfor-
ward manner, as follows:

Basic Arnoldi Algorithm

Initialize: Choose a vector x0 ⇒ v1 = x0

‖x0‖

Begin Loop: for j = 1, 2, . . .m

for i = 1, . . . , j

hij = (Avj ,vi)

endfor

wj = Avj −∑j
i=1 hijvi

hj+1,j =‖ wj ‖2

vj+1 = wj/hj+1,j

End Loop: endfor

The above algorithm is basically the standard Gram-Schmidt orthogonalization procedure
applied to the Krylov space Km.

We note that in each iteration we compute the entire j column, including the entry hj+1,j

below the main diagonal. In particular, if hj+1,j = 0 then the Arnoldi iteration stalls, but
that is in fact good news! This is because such a breakdown usually implies that we have
achieved convergence and the iteration should be terminated. If we want to continue, we can
restart the process with a new orthonormal vector vj+1, which can be selected arbitrarily.

The implementation of the Arnoldi algorithm given above although straightforward it
suffers from round-off errors, just as is the case of the basic Gram-Schmidt algorithm. To
this end, we can apply the more stable modified Gram-Schmidt orthogonalization procedure
to the Krylov space to come up with a better code for the Arnoldi iteration, as follows:

Modified Arnoldi Algorithm

9.5. Non-Symmetric Systems 588

Initialize: Choose x0 ⇒ v1 = x0

‖x0‖2
.

Begin Loop: for j = 1, . . . , m

w = Avj

for i = 1, . . . , j

hij = (w,vi)

w = w − hijvi

endfor

hj+1,j =‖ w ‖2

vj+1 = w/hj+1,j

End Loop: endfor

This is a much more stable algorithm but even this version needs further treatment
sometimes, so an extra orthogonalization may be required occasionally. For robustness, we
can apply the Householder algorithm periodically for extra orthogonalization.

Software

 Suite
Putting it into Practice

Below we present a function for computing the Arnoldi decomposition using the modified
algorithm presented earlier. The function takes four arguments: the integer value m denoting
the dimension of the Krylov space on to which we are projecting, a SCMatrix A of size N×N
on which the decomposition is to be accomplished, and two SCMatrix variables H and V for
storing the resulting H̃ and Ṽ from the decomposition. Note that H must be a SCMatrix
of size (m + 1) ×m and V must be a SCMatrix of size N × (m + 1). The initial direction
vector x defaults to the first unit vector.

void ModifiedArnoldi(int m, const SCMatrix &A, SCMatrix &H,

SCMatrix &V){

SCVector v(A.Rows()),w(A.Rows());

v.Initialize(0.0);

v(0) = 1.0;

V.PutColumn(0,v);

for(int j=0;j<m;j++){

9.5. Non-Symmetric Systems 589

w = A*v;

for(int i=0;i<=j;i++){

V.GetColumn(i,v);

H(i,j) = dot(w,v);

w = w - H(i,j)*v;

}

H(j+1,j) = w.Norm_l2();

v = w/H(j+1,j);

V.PutColumn(j+1,v);

}

}

Remark 1: Once again we pass all three SCMatrix variables by reference (denoted by the
‘&’ symbol) as opposed to by the default case of passing by value. For the variables H and
V, the reason is as before - we want to change the values within the matrices, and we want
those changes to remain valid after the function has returned (i.e., not be lost in the “pass by
value” copy of the variable discarded when the function returns). However, in the case of the
matrix A, this is not the case. We do not want to modify the values of A. Why then do we
pass by reference as opposed to passing by value? In this case, we do so because we assume
that A is very large, and therefore we do not wish to allocate space for a copy of A when the
function is called. We instead pass the matrix by reference so that no additional memory
must be allocated; the original memory from the calling function is used. We do, however,
want to guarantee that the matrix A does not change within the function, hence why we
add the const in the appropriate place within the argument list. The “const SCMatrix &A”
allows us to pass the matrix A by reference, but not to update its values within the function
ModifiedArnoldi.

Remark 2: We introduced two new SCMatrix methods:

1. SCMatrix::PutColumn(int col, const SCVector &v), and

2. SCMatrix::GetColumn(int col, SCVector &v).

The first function copies the contents of the vector v into the col column of the matrix.
The second function copies the contents of the col column from the matrix into the vector v.

Example: As an example of the use of the code above, we revisit our old friend the Hilbert
matrix of size three:

A =


 1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5


 .

The goal is to find the decomposition when m = 2. We input into our function m = 2,
the Hilbert matrix A as given above, and two SCMatrix variables H and V which are of size
3× 2 and 3× 3 respectively. As output we obtain H̃ and Ṽ contained within the SCmatrix
variables H and V respectively. The decomposition for the 3× 3 Hilbert matrix given above
is:

9.5. Non-Symmetric Systems 590

Ṽ =


 1.0000 0.0000 0.0000

0.0000 0.8321 −0.5547
0.0000 0.5547 0.83205




and

H̃ =


 1.00000 0.60093

0.60093 0.52308
0.00000 0.03462


 .

9.5.2 GMRES

GMRES stands for “generalized minimum residual” and is one of the most effective solvers
for non-symmetric systems

Ax = b ,

where A is an n×n square but non-symmetric matrix; it is also assumed non-singular since
we look for the solution A−1b.

The main idea of GMRES is to minimize the residual ‖ b−Axm ‖2 at the mth iteration.
Specifically, xm is a vector in the Krylov space

Km = {v,Ab, . . . ,Am−1b}
and it can be determined by solving a least-squares problem; here m < n. At the point
m = n we are attempting to minimize the residual ‖ b − Axn ‖2 and hence obtain the
solution x.

Such a minimization is equivalent to performing a QR decomposition to the matrix of
least-squares coefficients C (see section 3.1.7). We illustrate this point next.

Let us assume that in matrix form we seek to find

‖ Ca− f ‖2= minimum

with respect to a. Then, we need to QR-decompose C which is a non-square matrix p× q,
p > q.

The idea is to apply Householder transformation to the extended matrix C of p× p but
stop when we have completed zeroing out the entries in the first q columns. We then write:

C = Q

[
R
0

]
,

where R is a q × q upper triangular matrix. Since ‖ Q ‖=‖ Q−1 ‖= 1, we also have

‖ Ca− f ‖2=‖ Q−1(Ca− f) ‖2=‖ R̃a− f̃ ‖2,

where we have defined R̃ =

[
R
0

]
and also f̃ = Q−1f .

But

R̃a− f̃ =

[
R
0

]
a−

[
f̃1
f̃2

]
=

[
Ra− f̃1
−f̃2

]

9.5. Non-Symmetric Systems 591

where we split f̃ in f̃1 of length q and f̃2 of length (p− q). Then,

‖ Ca− f ‖22=‖ Ra− f̃1 ‖22 + ‖ f̃2 ‖22 .

Therefore, the least-squares problem is equivalent to solving

Ra = f̃1,

which minimizes the entire residual, since f̃2 is fixed with respect to a.

The problem, however, in applying directly this QR procedure to

‖ Axm − b ‖2= minimum

involved in GMRES is that it leads to numerical instabilities. This is exactly where the
Arnoldi iteration comes in! The idea is to replace

xm = Vmy

and seek to find
‖ AVmy− b ‖2= minimum.

Here Vm is the matrix containing as columns the orthonormal vectors produced by the
Arnoldi iteration. Notice that we still use the Krylov iteration but we basically orthonor-
malize them first via Arnoldi.

We can simplify the above problem since AVm = Vm+1H̃m, where H̃m is the extended
Hessenberg matrix we have encountered before. Therefore, we seek to find

‖ Vm+1H̃my − b ‖2= minimum

and after multiplying by VT
m+1 (whose norm is unity), we have

‖ H̃my −VT
m+1b ‖2= minimum.

Finally, since VT
m+1b =‖ b ‖2 e1 by construction of the first orthogonal vector v1, the

minimization problem is:

‖ H̃my− ‖ b ‖2 e1 ‖2= minimum.

Applying QR to this problem now involves the Hessenberg matrix H̃m, so

QmH̃m = R̃m =

[
Rm

0

]
,

where Rm is an m×m upper triangular matrix, and Qm is an (m+1)× (m+1) orthogonal
matrix.

We can exploit the structure of the Hessenberg matrix and use Givens rotations for
accomplishing the decomposition. Recall that the Hessenberg matrix contains an off-diagonal

9.5. Non-Symmetric Systems 592

below the main diagonal. This set of entries can easily by modified to zero by the appropriate
Givens rotations yielding an upper-triangular matrix R.

Following the discussion above on least-squares, we can compute ym from

Rmy =‖ b ‖ q1 ,

where q1 is the first column of Qm excluding the last entry, i.e., q1 is a vector of length m.
Finally, we compute xm from

xm = Vmy.

For convergence purposes we need to compute the residual rm. This is done efficiently as
follows:

‖ rm ‖2 = ‖ H̃my− ‖ b ‖2 e1 ‖2

= ‖ Qm(H̃my− ‖ b ‖2 e1) ‖2

= ‖ Rmy− ‖ b ‖ q̃1 ‖2

= ‖ (Rmy− ‖ b ‖ q1)︸ ︷︷ ︸
0

+ ‖ b ‖ (q1 − q̃1) ‖2

= ‖ b ‖ ×(last entry of|q̃1|) ,
where q̃1 is the extended (m + 1) vector produced by Arnoldi. This formula then gives a
very inexpensive way to compute the residual and check convergence.

Remark 1: Unlike CGM, in GMRES the residuals decrease monotonically, i.e.,

‖ rm+1 ‖2<‖ rm ‖2
because the corresponding Krylov spaces are nested and the residual is minimized directly.
We recall that in CGM the error is minimized instead, and thus reduction of the residual in
the L2-norm is not guaranteed.

Remark 2: From Arnoldi, we can check the value of hm+1,m to tell us when the iteration
can be terminated. When the condition hm+1,m = 0 is satisfied, we know that the solution
x lies within the Krylov space Km. This being the case, the least-squares problem over the
Krylov space will produce the exact solution.

Example: We now present an example to demonstrate the GMRES process. Consider the
following matrix

A =


 1.0 2.0 3.0

2.0 5.0 7.0
3.0 8.0 9.0




and right-hand-side vector

9.5. Non-Symmetric Systems 593

b =


 0.0

1.0
2.0


 .

We will assume that our initial guess x0 = 0. Using our modified Arnoldi solver with
m = 3 we obtain the extended Hessenberg matrix

H̃m =




14.2000 4.8652 −0.8305
4.3081 1.0414 0.3855
0.0000 0.3855 −0.2414
0.0000 0.0000 0.0000




and corresponding matrix

Vm+1 =


 0.0000 0.8305 0.5571 0.4082

0.4472 0.4983 −0.7428 0.8165
0.8944 −0.2491 0.3714 0.4082


 .

Both of these matrices will be used. A linear combination of the first three columns of
Vm+1 will be used to form the solution. To determine what the proper combination is, we
now want to solve the following problem:

‖ H̃my− ‖ b ‖2 e1 ‖2= minimum.

where H̃m is the matrix above and ‖ b ‖2 e1 = (
√

5 0 0 0)T .
To solve the minimization problem, we accomplish QR decomposition using Givens ro-

tations. For this problem, the three rotation matrices G0, G1 and G2 are given below:

G0 =




0.0645 0.0196 0 0
−0.0196 0.0645 0 0

0 0 1.0000 0
0 0 0 1.0000




G1 =




1.0 0.0 0.0 0.0
0.0 −0.1876 2.5802 0.0
0.0 −2.5802 −0.1876 0.0
0.0 0.0 0.0 1.0000




G2 =




1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 −16.4509 0.0
0.0 0.0 0.0 −16.4509


 .

Each successive Givens rotation matrix is formed based upon the updated matrix. Hence,
G0 is formed based upon the entries of H̃m, G1 is formed based upon the entries of G0H̃m,
and G2 is formed based upon the entries of G1G0H̃m. Applying the Givens rotations to
both the right- and left-hand-sides yields a modified matrix

9.5. Non-Symmetric Systems 594

Rm =


 1.0000 0.3341 −0.0460

0.0000 1.0000 −0.6305
0.0000 0.0000 1.0000




and a modified right-hand-side vector

z =


 0.1442

0.0082
−1.8569


 .

Here we have omitted the last row of both the matrix and right-hand-side vector because all
the entries are zero as expected. We now solve the system Rm y = z using back substitution.
We obtain the vector

y =


 0.4472
−1.1626
−1.8569


 ,

which provide us with the coefficients for the linear combination of the vectors of Vm+1.
Taking the linear combination of the first three columns of Vm+1 (since m = 3), we obtain:

0.4472


 0.0000

0.4472
0.8944


− 1.1626


 0.8305

0.4983
−0.2491


− 1.8569


 0.5571
−0.7428

0.3714


 =


 −2.000

1.000
0.000


 ,

which is the exact solution.

9.5.3 GMRES(k)

The problem with the GMRES is that it requires storing all the vectors vm, which can become
very expensive. To save storage and also computational cost we can run the GMRES process
only for k steps and subsequently restart it with the vector xk as an initial guess. This is the
so-called GMRES(k) version of the generalized minimum residual method. The choice of k
is crucial, as a value too small may lead to divergence while a large value results in extra
computations.

Software

 Suite
Putting it into Practice

Below we present a serial implementation of GMRES(m). This function takes as in-
put the integer m denoting the size of the Krylov subspace to be used, the matrix A, the
right-hand-side vector b, and the result vector x. We automatically set the initial direc-
tion to (1, 0, . . . , 0)T . Two constants can be found in the function: maxit which specifies
the maximum number of iterations before terminating and tol which specifies the stopping
tolerance.

9.5. Non-Symmetric Systems 595

void GMRES(int m, const SCMatrix &A, const SCVector &b,

SCVector &x){

int i,j,k,ll,nr;

int N = A.Rows();

SCMatrix H(m+1,m),V(N,m+1);

SCVector w(N),r(N),y(m+1),z(N);

double * c = new double[m+1];

double * s = new double[m+1];

const int maxit = 1000;

const double tol = 1.0e-7;

double delta,rho,tmp;

x.Initialize(0.0);

r = b - A*x;

for(j=0;j<maxit;j++){

y.Initialize(0.0);

y(0) = r.Norm_l2();

r.Normalize();

ModifiedArnoldi(m,r,A,H,V);

/* Givens Rotation to accomplish QR factorization */

for(i=0;i<m;i++){

for(k=1;k<=i;k++){

tmp = H(k-1,i);

H(k-1,i) = c[k-1]*H(k-1,i) + s[k-1]*H(k,i);

H(k,i) = -s[k-1]*tmp + c[k-1]*H(k,i);

}

delta = sqrt(H(i,i)*H(i,i)+H(i+1,i)*H(i+1,i));

c[i] = H(i,i)/delta;

s[i] = H(i+1,i)/delta;

H(i,i) = c[i]*H(i,i) + s[i]*H(i+1,i);

for(k=i+1;k<m+1;k++)

H(k,i) = 0.0;

y(i+1) = -s[i]*y(i);

y(i) = c[i]*y(i);

rho = fabs(y(i+1));

if(rho < tol){

nr = i;

9.5. Non-Symmetric Systems 596

break;

}

}

/* Backsolve to obtain coefficients */

z.Initialize(0.0);

if(i>=(m-1)){

nr = m;

z(nr-1) = y(nr-1)/H(nr-1,nr-1);

}

for(k=nr-2;k>=0;k--){

z(k) = y(k);

for(ll=k+1;ll<nr;ll++)

z(k) -= H(k,ll)*z(ll);

z(k) = z(k)/H(k,k);

}

/* Linear combination of basis vectors

of the Krylov space */

for(i=0;i<nr;i++){

V.GetColumn(i,r);

x = x + z(i)*r;

}

if(rho<tol)

break;

r = b - A*x;

}

delete[] c;

delete[] s;

}

Remark 1: Observe that this function requires the storage of both H and V, both of which
may be of the same size as the original matrix A. This fact is one of the primary motivations
for introducing the restart parameter so that smaller Krylov spaces (and hence less storage)
can be used.

Remark 2: Instead of forming the Givens matrices explicitly as we did in the example
above, we can take advantage of the structure of the matrices so that we need not store the
rotation matrices. Instead, we can loop through the appropriate positions, updating as we
go.

9.5. Non-Symmetric Systems 597

9.5.4 Preconditioning GMRES

GMRES is used in practice when the matrix A is not well-conditioned. This means that
convergence is typically slow and appropriate preconditioners should be employed. Similar to
preconditioning of symmetric matrices where incomplete Cholesky was found to be effective,
here we use incomplete LU (ILU). Specifically, we employ the preconditioner

M = LU

where L and U are the lower and upper triangular matrices corresponding to A but with
no fills-in at the entries aij = 0. Note that the preconditioner should not be constructed
explicitly but rather be incorporated in the Arnoldi iteration process. To this end, we need
to insert the following code

...

My = vj

w = Ay

for i = 1, . . . , j

hij = (w,vi)

w = w− hijvi

...

in the modified Arnoldi iteration algorithm presented above.

Remark: GMRES employs long vectors to obtain orthogonality unlike the three-term re-
currence formula associated with symmetric systems. For non-symmetric systems it is also
possible to use three-term recurrence formula as done in the Biconjugate Gradient (BiCG)
method, employing two mutually orthogonal sequences of vectors. A more stable version
of BiCG is the Quasi-Minimal Residual (QMR) method which avoids possible break-downs
and converges faster, i.e., as fast as GMRES [39]. Both BiCG and QMR solve tridiagonal
systems corresponding to the three-term recurrence sequences. Details of implementation
for both methods can be found in [5].

9.5.5 Parallel GMRES

One immediate complication when attempting to parallelize the serial algorithm previously
presented is attempting to parallelize the modified Arnoldi component. The brute-force
implementation leads to very poor scalability. Similar to the parallel PCG algorithm, we
can also use blocked operations to increase the efficiency and parallelism. One way proposed
in [64] is to first produce the following basis for the Krylov space

v1,Av1, . . . ,A
kv1

and subsequently to orthogonalize the entire set. In contrast, in the standard GMRES
method each new vector is immediately orthogonalized to all previous vectors. This approach
increases significantly data locality.

9.6. What Solver to Choose? 598

Another approach is to employ BLAS2 routines as much as possible in GMRES instead
of the obvious BLAS1, which is the least efficient. An algorithm proposed in [79] is to
replace the modified Gram-Schmidt with the standard Gram-Schmidt but apply it twice.
The double orthogonalization has been shown to reduce the numerical instability associated
with the classical Gram-Schmidt method. In the context of more efficient computation, we
can now compute all the dot products in parallel.

9.6 What Solver to Choose?

The question of what solver and what preconditioner to choose is a complex one, and in
many cases there are more than one good candidates. From the algorithmic point of view,
we have to consider the properties of the matrix A, and examine if :

• A is symmetric or non-symmetric.

• A is positive-definite.

• Both A and AT are available.

• A is sparse.

• A is ill-conditioned or not.

• Good preconditioner exists.

In addition, we have to consider the computational requirements and resources, namely:

• Parallel or serial computation.

• Vector or scalar processor.

• Multi-threading.

• Re-use of data in cache.

• Indirect addressing.

• Memory size.

The above lists are indicative but not exhaustive of the issues that need to be considered
in the decision regarding the choice of solver. What is obviously a faster code for serial
computations is not necessarily faster on a parallel computer. In table 9.2 we list the main
operations in terms of BLAS routines of the iterative solvers we studied in this book. Al-
gorithms that employ dgemv, i.e., the matrix-vector multiply, are typically more efficient as
this operation can be done efficiently both in a serial and in a parallel environment.

For problems involving differential equations, the type of differential equation we have
to deal with and the corresponding discretization we choose defines the linear system we
solve. For Poisson and Helmholtz equations we obtain symmetric systems. A typical order-
of-magnitude cost in computational work and storage for various direct and iterative solvers

9.6. What Solver to Choose? 599

Method ddot daxpy dgemv Storage
Jacobi 1 3n
SOR 1 1 2n
CGM 2 3 1 6n

GMRES j + 1 j + 1 1 (j + 5)n
QMR 2 12 2 16n

Table 9.2: Main operations and storage for iterative solvers; n is the matrix order and j denotes
the iteration number. The storage shown does not include the matrix storage.

Method Direct/Iterative Work Storage
Multigrid I n n

SSOR/Chebyshev I n5/4 n

SOR I n3/2 n

CGM I n3/2 n
Gauss-Seidel I n2 n

Jacobi I n2 n

Gauss Elimination/sparse D n3/2 n · log n
Gauss Elimination/dense D n3 n2

Table 9.3: Computational work and storage for solution of a Poisson equation on a N-by-N finite
difference grid; n = N2. I stands for iterative and D for direct solver.

is shown in table 9.3. The lower bound is of the same order of magnitude as the multigrid
method. This clear advantage of multigrid, however, can easily be lost on a parallel computer
as very sparse systems that need to be solved at the coarsest level of multigrid are not
easily parallelizable. Hence, multigrid is not necessarily the fastest and Jacobi is not the
slowest as the estimate for the serial work suggests. Similarly, the most effective (in terms
of its spectrum and serial cost) preconditioner may not be the best overall preconditioner.
Typically, the more sophisticated preconditioners are more complex and simplicity is the rule
in parallel computing.

For large size problems the associated memory considerations suggest the use of iterative
solvers. A possible decision tree for this case is as follows, see figure 9.17:

• If the matrix is symmetric and positive-definite then preconditioned conjugate gradient
may be the best candidate. The question then becomes which preconditioner is the
best – that is problem-dependent and computer-dependent.

• If A is not positive-definite use CGNR assuming the condition number is reasonable.

• On the other hand, if A is not symmetric then the first choice should be GMRES or
GMRES(k) if memory is at a premium.

9.6. What Solver to Choose? 600

Is A Symmetric?

No Yes

Is A Available? Is A Positive−DefiniteT

QMR Algorithm GMRES or
GMRES(k)

Try CGNR PCG

No NoYes Yes

Figure 9.17: Decision tree for which algorithm to use based upon the properties of A.

• However, if AT is not available then the QMR algorithm which is quite robust and as
fast as GMRES would be a good candidate – it works effectively even for ill-conditioned
matrices.

This is just one of the many possible scenarios – what makes this field interesting is that
the choices are not unique!

9.7. Available Software for Fast Solvers 601

9.7 Available Software for Fast Solvers

The basic algorithms we have presented in this chapter are relatively easy to program but
more sophisticated versions with respect to preconditioning, restarts, orthogonalization, and
parallel implementation are available in free software at:

• www.netlib.org

The direct solvers are part of ScaLAPACK and LAPACK++ while the iterative solvers are
part of the Templates package [5].

Specifically in ScaLAPACK/LAPACK++, for LU type operations the routine SGETRF
performs LU factorization with pivoting based on the BLAS3 routines and therefore it is very
efficient. A similar routine SGETF2 is based on BLAS2 routines, and it is also efficient. For
the specific implementations involved see [26]. For symmetric positive-definite matrices the
routines SPOTRF and SPOTRS perform Cholesky factorization of a matrix and solve a
linear system, respectively. Finally, the routine SPTTRF performs an LDLT factorization
of a symmetric positive-definite matrix.

Also in ScaLAPACK/LAPACK++, for QR type operations the routine SGEQRF per-
forms QR factorization and the routine SGEQPF performs QR factorization with column
pivoting. The routine SGERQF performs RQ factorization while the routine SGEHRD
reduces a general matrix to upper Hessenberg form.

The cpptemplates files available at www.netlib.org contain implementations of all the
iterative solvers presented in this chapter for matrix-vector classes. In particular, the rou-
tines declared in cg.h and cheby.h implement the conjugate gradient method and the pre-
conditioned Chebyshev method, respectively, for symmetric positive-definite systems. The
routines declared in cgs.h, gmres.h, qmr.h and bicg.h are suitable for non-symmetric
systems and their names indicate the corresponding algorithms.

9.8. Homework Problems 602

9.8 Homework Problems

1. Find the condition number of the matrices

A =

[
0.001 1

1 1

]
and B =

[
7 6.990
4 4

]

2. Let A = L DLT be a symmetric positive-definite matrix, and D = diag (dii). Then,
show that

κ2(A) ≥ max(dii)

min(dii)
,

where κ2(A) is the condition number of A in the L2-norm.

3. For what values of ε the matrix [
1 ε
ε 1

]

is ill-conditioned? How will you results be affected if you are to compute in single or
double precision?

4. Let us assume that the matrix A is strictly diagonally dominant, i.e.,∑
i�=j

|aij| < |aii| .

Show that if you apply the LU factorization procedure to A with partial pivoting, it
has no effect on the rows, that is no actual row exchange occurs. This proves what we
discussed in section 9.1.2 that no pivoting is required for a strictly diagonally-dominant
matrix.

5. (Almost triangular matrix - Hessenberg)

This matrix is defined by

aij = 0, i > j + 1

aij �= 0, i ≤ j + 1

Estimate the operation count for the LU factorization and the backward solve for this
matrix.

6. Consider the matrix A written in a block 2× 2 form with submatrices Aij, i, j = 1, 2
of equal size m×m. Show that the Schur complement defined as

S ≡ A22 −A21A
−1
11 A12

overwrites the matrix A22 after m steps of Gaussian elimination without pivoting.

7. Apply Hager’s algorithm (by-hand calculation) to a (3× 3) matrix whose rows (ri, i =
1, 2, 3) are: ri = i+ j− 1, j = 1, 2, 3. Compute also the exact condition number in the
L1-norm and compare the two values.

9.8. Homework Problems 603

8. Apply Hager’s algorithm to estimate the condition number of the Hilbert (n×n) matrix
defined by

hij =
1

i+ j − 2

for n = 4, 16, 32. (Use the LAPACK routines or any other available routines). What
do you observe ?

9. In the parallel LU program, we did not implement row pivoting. Modify the code given
in the text to accomplish row pivoting.

10. Using the parallel LU program as a guide, implement an MPI program to accomplish
Cholesky Factorization.

11. Apply the incomplete Cholesky factorization to the tridiagonal matrix (−1, 4, −1).
Compare the results with the results from the standard Cholesky factorization. Does
your conclusion hold for any banded matrix?

12. In the cyclic reduction code presented in this chapter, the matrix A is allocated as if
it were a full matrix. Modify both the serial and the parallel code so that only the
necessary amount of memory is used to store the tridiagonal matrix A.

13. Consider the following system:

−2x1 + x2 = F1

x1 − 2x2 + 2x3 = F2

x2 − 2x3 + 2x4 = F3

x3 − 2x4 + 2x5 = F4

x4 − 2x5 + 2x6 = F5

x5 − 2x6 + 2x7 = F6

x6 − 2x7 = F7

Solve this system by hand using cyclic reduction. At what level does this system
terminate, and with what equation? Is there sufficient information at the point of
termination to obtain the solution? If so, accomplish the back substitution to obtain
the answer.

14. Use the Householder transformation to show that if He is a Hessenberg matrix and
He = QR then the matrix H∗

e = RQ is also a Hessenberg matrix.

15. The flop count for solving the overdetermined system Ax = b where A is of size m×n
is (choose one)

(a)
mn2

2
+
n3

6
for normal equations and

mn2

2
− n3

6
for the Householder QR method.

(b) The reverse of (a).

(c) None of the above.

9.8. Homework Problems 604

16. The flop count for QR factorization of an n×n matrix with column pivoting using the
Householder method is (choose one)

(a)
5

3
n3.

(b)
5

4
n3.

(c)
4

5
n2.

17. The number of additions and multiplications in Cholesky factorization is roughly half
that of LU factorization.

(a) True.

(b) False.

18. The QR method conserves the bandwidth of a matrix (choose one)

(a) Always true.

(b) In some cases.

(c) Never.

19. The QR factorization of a matrix A is (choose one)

(a) Always unique.

(b) Unique if A is non-singular.

(c) Not unique.

20. The most efficient way of distributing a matrix on a parallel machine is by (choose
one)

(a) Rows.

(b) Columns.

(c) Depends on the problem one is trying to solve.

21. Define h = 1
N

, µ = h2, and q[i][j] = (8π2 + 1)h2sin(2πhi)sin(2πhj) where i, j =
0, . . . , N − 1. Let A be of the form given in figure 9.18.

Solve the matrix system Au = q for u using the following for methods:

(a) Serial Jacobi.

(b) Parallel Jacobi.

(c) Serial Conjugate Gradient.

(d) Serial Preconditioned Conjugate Gradient, preconditioned using incomplete Cholesky.

9.8. Homework Problems 605

4+µ −1 −1 −1 −1
−1 4+µ −1 −1 −1

 −1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1
−1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1

 −1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1

 −1 4+µ −1 −1 −1
 −1 −1 4+µ −1 −1
 −1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1

−1 −1 4+µ −1 −1
 −1 −1 −1 4+µ −1
 −1 −1 −1 4+µ −1
 −1 −1 −1 −1 4+µ

u[1][0]
u[2][0]
u[3][0]

u[0][1]
u[1][1]

u[2][1]

u[3][1]

u[0][2]

u[1][2]

u[2][2]

u[3][2]

u[0][3]

u[1][3]
u[2][3]
u[3][3]

u[0][0]

* =

q[1][0]
q[2][0]
q[3][0]

q[0][1]
q[1][1]

q[2][1]

q[3][1]

q[0][2]

q[1][2]

q[2][2]

q[3][2]

q[0][3]

q[1][3]
q[2][3]
q[3][3]

q[0][0]

Figure 9.18: Matrix system Au = q for N = 4.

(e) Parallel Conjugate Gradient.

(f) Parallel Preconditioned Conjugate Gradient, preconditioned using incomplete Cholesky.

Solve for both N = 4 and N = 20. Here N denotes the number of points used
in both the x and y directions (hence the total number of grid points is N2 points,
which corresponds to the rank of the matrix for which we are solving). For the serial
algorithms, provide a graphical plot of the solution u[i][j] at the points (hi, hj) (either
a contour or surface plot). For the parallel algorithms, show the parallel speed-up using
different number of processors (this will require you to use the MPI Wtime function
to time your runs).

22. Solve the Poisson equation on a three-dimensional grid N × N × N using a second-
order finite difference discretization with Dirichlet boundary conditions. Employ the
following (serial) algorithms:

(a) Conjugate Gradients.

(b) Conjugate Gradients with incomplete Cholesky as preconditioner.

(c) SSOR with Chebyshev acceleration.

(d) Jacobi.

Estimate the computational work in terms of O(nα), that is find α. Verify these
estimates by solving for n = N3 = 643 and timing your codes on the same computer.

23. In the text we presented a QR factorization example using the Hilbert matrix. At the
conclusion of the example, we had constructed the matrix R. From the values of w
found in the example, compute the matrix Q and show that indeed A = QR.

Hint: Recall that the Householder matrix is given by

H = I− 2
wwT

wTw
.

Construct H1 and H2 and use them to construct Q by the expressions given in the
text.

9.8. Homework Problems 606

24. Modify the QR routine in the text so that it computes the value of Q. You will need to
modify the input arguments of the function to accept a SCMatrix Q which you should
fill in with the appropriate values.

25. Write a serial function which accomplishes QR decomposition of a tri-diagonal ma-
trix using Givens rotations. The function should have at least the following three
arguments: the matrix A as input and the matrices Q and R as output.

26. Create a function which solves the system Ax = b for tridiagonal matrices A, and
uses the QR code you wrote previously. What property of both Q and R can we use
to accomplish this efficiently?

27. Write a parallel program which accomplishes QR decomposition of a tri-diagonal matrix
using Givens rotations. Partition the matrix A by rows across the processors. Design
your program so that each processor has the rows of Q and R which correspond to the
rows of A which reside on the processor.

28. Consider five symmetric Toeplitz matrices A with entries given by (k = 1, . . . , n)

a
(1)
k = 1/k; a

(2)
k = 1/

√
k; a

(3)
k = 1/k2; a

(4)
k = k; a

(5)
k = cos k/k ,

and an arbitrary non-zero vector b. Use PCGM to solve the systems Ax = b with
circulant preconditioners and experiment with different types (i.e., number of Toeplitz
diagonals employed). Compare your results without CG preconditioning in terms of
the number of iterations for sizes up to n = 100 and tolerance levels just above single
machine accuracy.

29. Estimate the operation count for GMRES(k) for fixed k and compare it with GMRES
assuming a large value of the order n of matrix A. Does GMRES(k) converge for any
value of k?

30. For the GMRES example problem given in the text, use the function provided to
attempt GMRES(2). Add cout statements to keep report the residual. Try a variety
of different initial guesses x0 and plot the residual versus iteration for each case. Is the
convergence rate the same?

31. Consider the linear advection-diffusion equation

∂u

∂t
+
∂u

∂x
= ν

∂2u

∂x2

where ν is the diffusion coefficient, in the domain

x ∈ [0, 10] and t ∈ [0, 5].

We also assume periodic boundary conditions and that the initial conditions are:

u(0 ≤ x ≤ 1; 0) = x(1− x) and u(1 ≤ x ≤ 10; 0) = 0 .

9.8. Homework Problems 607

Employ a second-order upwind for the advection and a central finite difference scheme
for the diffusion (with a Crank-Nicolson in time) to discretize this problem. Invert
the resulted system using GMRES(k) and experiment with different values of k to
minimize the solution time. Use n = 128 points for the discretization. Does the value
of optimum k depends on the time step ∆t. Is this method unconditionally stable?

Chapter 10

Fast Eigensolvers

In this chapter we introduce methods for solutions of the standard eigenvalue problem

Ax = λx

as well as for generalized eigenproblems; A is a square n × n matrix. The main theory is
based on the solvers of the previous chapter for linear systems. Unlike, however, the methods
of the previous chapter where both direct and iterative approaches are effective, in eigenvalue
problems only iterative solvers are efficient. We start with the simple power method and
its variants, and we proceed with more sophisticated methods including a method for non-
symmetric eigenproblems using the Arnoldi iteration. We classify the different eigensolvers
as local or global if they are typically used to compute one or two eigenvalues or the entire
spectrum, respectively.

We introduce one new MPI function, MPI Alltoall, and demonstrate its use through
some of the algorithms presented in this chapter. In addition, we reiterate the use of
MPI Allgather and MPI Allreduce through example implementations of algorithms pre-
sented in this chapter.

608

10.1. Local Eigensolvers 609

10.1 Local Eigensolvers

We have already seen in chapter 2 that computing the eigenvalues accurately from the
determinant may not always be possible. The Newton-Raphson method of chapter 4 is
an accurate method of computing the roots of the characteristic polynomial, but it can
be extremely inefficient for large systems. In the following, we present a simple method to
compute iteratively the maximum and minimum eigenvalues and corresponding eigenvectors.
We can also compute any other eigenvalue for which we have a good initial guess.

10.1.1 Basic Power Method

This is a very simple method to obtain the maximum eigenvalue. The main idea is to obtain
iterates from

xk+1 = cAxk,

where c is a normalization constant that prevents xk+1 from becoming too large. After
many iterations (k → ∞), xk+1 will converge to the eigenvector v1 of A corresponding
to the maximum eigenvalue λ1. Here, we assume that there exists an eigenvalue λ1 which
dominates, i.e.,

|λ1| > |λ2| ≥ |λ3| . . . ≥ |λn|.
We can initialize this iteration by an arbitrary (non-zero) vector x0.

To see why this process converges and at what rate we project the initial guess x0 to the
space spanned by all the eigenvector vi of A, i.e.,

x0 = c1v1 + c2v2 . . .+ . . .+ cnvn

and thus
xk = Axk−1 = . . . = Akx0 = c1λ

k
1v1 + . . .+ cnλ

k
nvn .

Now, we see that

xk

c1λ
k
1

= v1 +
c2
c1

(
λ2

λ1

)k

v2 + . . .+
cn
c1

(
λn

λ1

)k

vn

converges to v1 because all factors

(
λi

λ1

)k

, i �= 1

are less than one and tend to zero for k →∞.
The convergence rate is determined by the relative magnitude of the second largest to

the largest term, i.e., the ratio
|λ2|
|λ1| ,

which represents the most resistive contribution to the error. The smaller this ratio is the
faster the convergence is.

The following pseudo-code summarizes the algorithm:

10.1. Local Eigensolvers 610

Initialize: x0

Begin Loop: for k = 1, 2, . . .

x̂k = Axk−1

xk =
x̂k

max(x̂k)
endfor

End Loop:

In the above pseudo-code, the operator max(y) of a vector y returns the entry of y with
the maximum modulus. Hence if y = (4.32, −9.88, 2.9)T , max(y) = −9.88 since | − 9.88| >
|4.32| > |2.9|. This operation is used merely for normalization of the eigenvector. Upon
termination of the loop, max(x̂k)→ λ1 and xk → v1.

Example: Let us consider the 3× 3 Hilbert matrix

A =




1
1

2

1

3

1

2

1

3

1

4

1

3

1

4

1

5




to which we will apply the power method to find its maximum eigenvalue. Starting with an
initial guess of (1, 1, 1)T , we obtain the sequence of eigenvalue iterates listed in table 10.1.
The iteration terminates when the absolute difference between successive iterates is less than
10−7.

Iteration Eigenvalue Iterate
0 1.833333333
1 1.437878788
2 1.410835968
3 1.408537172
4 1.408337881
5 1.408320573
6 1.40831907
7 1.40831894
8 1.408318928

Table 10.1: Sequence converging to the largest eigenvalue of the 3× 3 Hilbert matrix.

In the algorithm above the value of λ1 is estimated from the maximum component of xk.

10.1. Local Eigensolvers 611

However, any other norm can be used, e.g., the L2 norm

λ1 =
‖ xk+1 ‖
‖ xk ‖ =

‖ Axk ‖
‖ xk ‖ ,

or alternatively the eigenvalue can be computed via the Rayleigh quotient. This is defined
by

R(A, xk) =
(xk)TAxk

‖ xk ‖2 .

If x = v1, i.e., the first eigenvector, then obviously R(A,v1) = λ1. In general, if A is a
symmetric matrix and x is a close approximation to the eigenvector v1, the Rayleigh quotient
is close to the corresponding eigenvalue λ1. This can be seen by projecting x =

∑n
i=1 civi, as

before, where vi are orthonormal due to symmetry of A, and vT
i vi = 1. Then

R(A, x) =
xTAx

xT x
=

(c1v1 + . . .+ cnvn)TA(c1v1 + . . .+ cnvn)

c21 + c22 + . . .+ c2n

=
λ1c

2
1 + λ2c

2
2 + . . .+ λnc

2
n

c21 + c22 + . . .+ c2n

= λ1


1 +

(
λ2

λ1

) (
c2
c1

)2
+ . . .+

(
λn

λ1

) (
cn

c1

)2

1 +
(

c2
c1

)2
+ . . .+

(
cn

c1

)2


 .

Due to our assumption that x ≈ v1 we have that c1 � ci, ∀i �= 1, and thus, the quantity in
brackets tends to 1, and correspondingly R(A,x) tends to λ1.

The convergence of the power method can be enhanced by shifting the eigenvalues, so
instead of multiplying the initial guess by powers of A we multiply by powers of (A − σI)
which has eigenvalues (λi − σ) while the eigenvectors remain the same. The corresponding
convergence rate is then estimated by

∣∣∣∣∣λ2 − σ
λ1 − σ

∣∣∣∣∣ .
We can exploit this to enhance convergence by carefully choosing σ to significantly reduce
the fraction above. It turns out that if all the eigenvalues are real, the best shift is either

σ =
1

2
(λ2 + λn) or σ =

1

2
(λ1 + λn−1)

if (λ1 − λ2) or (λn−1 − λn) is larger, respectively.

Remark: If the eigenvalue λ1 is complex the power method fails unless complex arithmetic
is used with an initial complex vector x0.

10.1. Local Eigensolvers 612

10.1.2 Inverse Shifted Power Method

In order to compute selectively the minimum eigenvalue we can apply again the power
method by multiplying by powers of the inverse, i.e., A−1. Thus, the iteration procedure
here is

Axk+1 = cxk,

where again c is a normalization constant. This method is most effective with a proper shift,
so the modified iteration is

(A− σI)xk+1 = cxk,

and the solution will converge to the smallest shifted eigenvalue |λn−σ| and the corresponding
eigenvector, assuming that the shift σ is close to λn (the smallest eigenvalue). The rate of
convergence is now

|λn − σ|
|λn−1 − σ| ,

so if σ is close to λn, the above ratio is very small and convergence is very fast. Clearly,
if σ is close to any other eigenvalue λi the corresponding contribution dominates and then
we obtain the eigenpair (λi,vi). Hence, if we have a collection of approximations σi to the
true eigenvalues λi, we can use the inverse shifted power method to obtain all the eigenpairs
(λi,vi).

The following pseudo-code summarizes the algorithm:

Initialize: Choose x0

Choose σ
Factorize A− σI = LU

Begin Loop: for k = 1, 2, . . .

x̂k = U−1L−1xk−1

xk =
x̂k

max(xk)

if |R(A, xk)− R(A, xk−1)| < ε

return
endfor

Upon termination (after the tolerance ε is reached), xk converges to the desired eigenvector,
and the corresponding eigenvalue can be computed from the Rayleigh quotient.

Remark 1: Note that we do not actually compute explicitly the inverse A−1 or (A− σI)−1

but we simply perform an LU factorization only once outside the loop. The computational
complexity of this algorithm is O(n2) times the number of iterations plus the initial O(2n3/3)
cost for the LU factorization.

10.1. Local Eigensolvers 613

Remark 2: If an iterative solver is used instead of the LU factorization for the linear solver,
then a slightly more stringent tolerance can be used for the linear solver compared to the
desired accuracy in eigenvalue. This idea can be used when A is sparse and may result in
big savings.

Remark 3: To accelerate convergence, we can start with a few iterations using the standard
power method, obtain a first good guess and corresponding shift σ via the Rayleigh quotient,
and then switch to the inverse iteration method.

Remark 4: The matrix (A−σI) is ill-conditioned, however in practice the error associated
with this seems to favor the inverse iteration as it grows toward the direction of the desired
eigenvector. Therefore, the inverse shifted power method is a stable method.

We can modify the inverse shifted power method and enhance convergence even more (to
third-order) if we update the value of the shift adaptively using the Rayleigh quotient.

The following algorithm presents this modification :

Initialize: Choose x0

Compute σ0 =
(x0)TAx0

(x0)Tx0

Begin Loop: for k = 0, 1, . . .

LkUk = A− σkI

x̂k+1 = (Uk)−1(Lk)−1xk

xk+1 =
x̂k+1

max(x̂k+1)

σk+1 =
(xk+1)TAxk+1

(xk+1)Txk+1

if |σk+1 − σk| < ε

return

endfor
End Loop

Remark 5: While this algorithm triples the number of correct digits in each iteration
it requires O(n3) work at each iteration because the matrix (A − σkI) changes in each
iteration. A more economical approach is to “freeze” σk for a few iterations so that the LU
decomposition is not employed in each iteration. The resulted convergence rate is then less
than cubic but overall this is a more efficient approach.

10.1. Local Eigensolvers 614

Software

 Suite
Putting it into Practice

Below we present an implementation of the inverse shifted power method with Rayleigh
quotient adaptation. This function takes two inputs: the matrix A for which we are inter-
ested in finding an eigenvalue and eigenvector, and a vector x containing the initial guess
x0. This function has as its return value an eigenvalue of A, and places the corresponding
eigenvector associated with the eigenvalue in the vector x.

double ISPowerMethod(SCMatrix &A, SCVector &x){

const int maxit = 100;

const double tol = 1.0e-7;

double tmp,sigma1,sigma2;

SCMatrix Amod(A.Rows());

SCVector y(A.Rows());

// Calculation of the Rayleigh Quotient

y = A*x;

sigma1 = dot(y,x)/dot(x,x);

for(int k=0;k<maxit;k++){

Amod = A;

for(int i=0;i<Amod.Rows();i++)

Amod(i,i) = Amod(i,i) - sigma1;

// Use LU solver from Chapter 9 to obtain solution x

GaussElimination(Amod, x, 1);

// Normalize with the element of maximum modulus

tmp = x.ElementofMaxMod();

x = x/tmp;

y = A*x;

sigma2 = dot(y,x)/dot(x,x);

if(fabs(sigma1-sigma2) < tol)

return sigma2;

sigma1 = sigma2;

10.1. Local Eigensolvers 615

}

cout << "ISPowerMethod - Max number of iterations reached\n";

return sigma2;

}

Remark 6: A downside of this implementation is that we require storage of an additional
matrix MatAmod having the same size as A. We have chosen to do this because we want to
be able to re-use the LU solver we implemented in Chapter 9. If memory were at a premium,
we could re-write the LU solver to take into account the modification to the diagonal entry,
and hence we would not need to store an additional matrix.

Example: Let us consider the 3× 3 Hilbert matrix

A =




1
1

2

1

3

1

2

1

3

1

4

1

3

1

4

1

5




and use the inverse shifted power method to solve for the maximum eigenvalue. Using the
program above, if we take the initial eigenvector guess to


 1.0

1.0
1.0


 ,

we obtain the eigenvalue 1.40832 and corresponding eigenvector


 1.0

0.556033
0.390908


 .

Observe that this is the same maximum eigenvalue which we found before using the power
method (as it should be!). If, however, we take the initial eigenvector guess to be


 0.4
−0.4
−0.4




we obtain the eigenvalue 0.122327 and corresponding eigenvector


 −0.843517

0.813998
1.0


 .

10.2. Householder Deflation 616

As was pointed out earlier, the inverse shifted power method allows us to pick up different
eigenvalues (other than just the minimum) based upon the initial eigenvector guess. In this
case, our initial guess provided us with the second largest eigenvalue of the Hilbert matrix.

10.2 Householder Deflation

The Householder transformation is very useful in “deflating” a matrix, A, i.e., reducing its
size from n× n to (n− 1)× (n− 1). This is often needed in eigensolvers, especially in con-
junction with local and semi-direct methods. The objective is to compute the subdominant
eigenvalues after we compute the maximum or minimum eigenvalue with the power method
or inverse power method, respectively.

Let us assume that we have computed the maximum eigenvalue λ1 and the corresponding
eigenvector v1. Recall from section 9.3 that we can then obtain a Householder matrix H by

Hv1 =



α
0
...
0


 = αe1.

We now construct the matrix G ≡ HAHT and investigate its structure. Since (λ1,v1)
is an eigenpair it satisfies

Av1 = λ1v1 ⇒ HAv1 = λ1Hv1

⇒ HA · I · v1 = λ1Hv1 ⇒ HA · (HTH) · v1 = λ1Hv1

⇒ H ·A ·HT (Hv1) = λ1(Hv1),

where we recall that H is orthonormal and thus I = HT ·H. We also have by definition that

Hv1 = αe1

so by substituting in the above, we obtain

H ·A ·HT (αe1) = λ1αe1 ⇒ Ge1 = λ1e1 =



λ1

0
...
0


 .

Therefore, the matrix G has the form

G =



λ1 ∗ ∗ ∗ ∗ ∗
... An−1

0




where An−1 is a submatrix (n−1)×(n−1) which has the same (n−1) remaining eigenvalues
of A. This can be seen by computing

det(G− λI) = (λ1 − λ) · det(An−1 − λI) = 0.

10.2. Householder Deflation 617

To compute the first subdominant eigenvalue of A we then need to apply the power method
to An−1, repeat the process once more, and so on.

We now recapitulate the basic algorithm:

1. Compute the maximum eigenvalue λ1 and the corresponding eigenvector v1 using the
power method or shifted inverse power method.

2. Obtain the Householder matrix H using the eigenvector v1.

3. Form the matrix G = HAHT .

4. Extract the eigenvalue at G11.

5. Define An−1 ≡ G2:n,2:n.

6. Repeat process on the newly defined matrix An−1.

The deflation procedure can be applied efficiently if we want to compute two to three
eigenvalues. For a larger number of eigenvalues we need to switch to global eigensolvers, see
section 10.3.

Remark: Another deflation procedure is to subtract off from the matrix A the contribution
λ1v1v

T
1 , so the new matrix

A1 ≡ A− λ1v1v
T
1

has eigenvalues 0, λ2, λ3, . . . , λn. However, this procedure could sometimes be unstable unlike
the Householder deflation which is always stable.

Software

 Suite
Putting it into Practice

We will now present a program for accomplishing one iteration of the algorithm just
recapitulated above. To accomplish the algorithm presented, we must introduce a new MPI
function, MPI Alltoall. This function allows a “scatter” from each process simultaneously,
see figure 10.1. We will now present the function call syntax, argument list explanation,
usage example and some remarks.

MPI Alltoall:

Function Call Syntax

10.2. Householder Deflation 618

int MPI Alltoall(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

Understanding the Argument List

• sendbuf - starting address of the send buffer.

• sendcount - number of elements in the send buffer.

• sendtype - data type of the elements in the send buffer.

• recvbuf - starting address of the receive buffer.

• recvcount - number of elements for any single receive.

• recvtype - data type of the elements in the receive buffer.

• comm - communicator.

Example of Usage

int mynode, totalnodes;

int datasize; // number of data units to be sent/recv

// from each process

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Determine datasize

double * senddata = new double[datasize*totalnodes];

double * recvdata = new double[datasize*totalnodes];

// Fill in senddata array for each process

MPI_Alltoall(senddata,datasize,MPI_DOUBLE,recvdata,datasize,

MPI_DOUBLE,MPI_COMM_WORLD);

// At this point, each process has received from each

// process the contents of senddata and stored them

// in recvdata according to the process ordering

10.2. Householder Deflation 619

Remarks

• MPI Alltoall is a collective operation (i.e., it should be called by all processes within
the communicator).

• Both the sendbuf and recvbuf arrays are relevant on all processes in the communicator.

• In most cases the sendtype and recvtype are identical and the value of sendcount and the
value of recvcount are identical. MPI requires that the amount of data sent (sendcount
times the size in bytes of the datatype sendtype) equals the amount of data received
(recvcount times the size in bytes of the datatype recvtype) per process/root pair.

• The allocated size of both the sendbuf and recvbuf arrays should be at least equal to
the value of recvtype times the number of processes (totalnodes).

Process 0

senddata

Process 1

Process 2

x00 x01 x02 x03 x04 x05

x10 x11 x12 x13 x14 x15

x20 x21 x22 x23 x24 x25

recvdata

x00 x01 x10 x11 x20 x21

x02 x03 x12 x13 x22 x23

x04 x05 x14 x15 x24 x25

Figure 10.1: MPI Alltoall schematic demonstrating data distribution to all processes of two data
objects from each process.

We now present an MPI program to accomplish one iteration of the previously presented
Householder deflation algorithm. In this program, we assume that the size of the matrix is
divisible by the number of processes used. For the purpose of this example, we will once again
use the Vandermonde matrix formed at the Chebyshev points. It will be distributed by rows
across the processes (each process forming only those rows which it needs). Observe that
we will once again use MPI Allreduce and MPI Allgather (as part of the power method
algorithm), and that we introduce the use of MPI Alltoall. We now present the source code
for this program, and will provide some remarks following it.

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

#include "SCchapter3.h"

#include<mpi.h>

void ChebyVandermonde(int npts, double *A, int row);

// Global variable to set size of the system

const int size = 10;

10.2. Householder Deflation 620

int main(int argc, char *argv[]){

int i,j,k,index,cnt;

int mynode, totalnodes;

double tmps1,tmps2,sum,total;

const int maxit = 1000; //maximum number of iterations

//for the power method

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

int numrows = size/totalnodes;

double **A_local = new double*[numrows];

double **A_local_t = new double*[numrows];

double * xold = new double[size];

double * xnew = new double[numrows];

double * tmparray = new double[size];

for(i=0;i<numrows;i++){

A_local[i] = new double[size];

A_local_t[i] = new double[size];

index = mynode*numrows + i;

ChebyVandermonde(size,A_local[i],index);

}

/**/

/* Use the power method to obtain the first eigenvector */

/**/

// Initialize starting vector to 1.0

for(i=0;i<size;i++)

xold[i] = 1.0;

for(int it=0;it<maxit;it++){

// Matrix-vector multiplication

for(i=0;i<numrows;i++)

xnew[i] = dot(size,A_local[i],xold);

// Compute Euclidian norm of new vector

sum = 0.0;

for(i=0;i<numrows;i++)

sum += xnew[i]*xnew[i];

MPI_Allreduce(&sum,&total,1,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

total = sqrt(total);

10.2. Householder Deflation 621

// Scale vector by its norm

for(i=0;i<numrows;i++)

xnew[i] = xnew[i]/total;

// Gather (Allgather) new vector to all processors

MPI_Allgather(xnew,numrows,MPI_DOUBLE,tmparray,numrows,

MPI_DOUBLE,MPI_COMM_WORLD);

// Compute difference between old and new vector

sum = 0.0;

for(i=0;i<size;i++){

sum += (xold[i]-tmparray[i])*(xold[i]-tmparray[i]);

xold[i] = tmparray[i]; //replace old with new

}

if(sqrt(sum) < 1.0e-7) //termination condition

break;

}

// Modify eigenvector per Householder transformation

xold[0] = xold[0] + Sign(xold[0]);

/**/

/* Compute S = A*H (S is a temporary state */

/* stored in A_local) */

/**/

tmps1 = dot(size,xold,xold);

for(i=0;i<numrows;i++){

tmps2 = dot(size,A_local[i],xold);

for(j=0;j<size;j++)

A_local[i][j] = A_local[i][j] - 2.0*tmps2*xold[j]/tmps1;

}

/******************************/

/* Transpose temporary state S */

/******************************/

for(i=0;i<numrows;i++){

MPI_Alltoall(A_local[i],numrows,MPI_DOUBLE,tmparray,

numrows, MPI_DOUBLE,MPI_COMM_WORLD);

cnt = 0;

for(k=0;k<totalnodes;k++)

10.2. Householder Deflation 622

for(j=0;j<numrows;j++)

A_local_t[j][i+k*numrows] = tmparray[cnt++];

}

/***************************/

/* Compute G = H*S = H*A*H */

/***************************/

tmps1 = dot(size,xold,xold);

for(i=0;i<numrows;i++){

tmps2 = dot(size,A_local_t[i],xold);

for(j=0;j<size;j++)

A_local_t[i][j] = A_local_t[i][j] -

2.0*tmps2*xold[j]/tmps1;

}

/**/

/* Transpose G so that it is stored by rows across the */

/* processors, just as the original A was stored */

/**/

for(i=0;i<numrows;i++){

MPI_Alltoall(A_local_t[i],numrows,MPI_DOUBLE,tmparray,

numrows, MPI_DOUBLE,MPI_COMM_WORLD);

cnt = 0;

for(k=0;k<totalnodes;k++)

for(j=0;j<numrows;j++)

A_local[j][i+k*numrows] = tmparray[cnt++];

}

for(i=0;i<numrows;i++){

delete[] A_local[i];

delete[] A_local_t[i];

}

delete[] A_local;

delete[] A_local_t;

delete[] tmparray;

delete[] xold;

delete[] xnew;

MPI_Finalize();

}

10.3. Global Eigensolvers 623

void ChebyVandermonde(int npts, double *A, int row){

int i,j;

double * x = new double[npts];

ChebyshevPoints(npts,x);

for(j=0;j<npts;j++)

A[j] = pow(x[row],j);

delete[] x;

}

Remark 1: Because of the particular form of the Householder matrix, we do not have to form
it explicitly. By taking advantage of this form, we can accomplish the matrix multiplication
of A ∗ H in O(n2) operations instead of the normal O(n3) operations necessary for an
arbitrary matrix-matrix multiplication.
Remark 2: Observe that we use the MPI Alltoall function to transpose the intermediary
stage A∗H so that we can accomplish pre-multiplication by H again. Examine the indexing
carefully following the MPI call. After receiving the array tmparray, we must now partition
it properly across the rows which a processor holds.
Remark 3: In general, the MPI Alltoall function call is one of the most taxing commu-
nication calls because it requires the exchange of information from each process to all other
processes. Because of this fact, the MPI Alltoall function is often used in benchmarking
the communication capability of parallel machines.

10.3 Global Eigensolvers

Unlike local eigensolvers global methods for eigenproblems do not require a good initial guess
for an eigenvalue. In addition, they provide the entire eigenspectrum. We will discuss two
such approaches that are based on two different concepts: the QR method and the Lanczos
method. The first one is semi-direct and general while the second one is iterative and suitable
for symmetric sparse eigensystems.

10.3.1 The QR Eigensolver

The main idea of this method is to construct a sequence of similar matrices A1,A2, . . . ,Ak,
where A1 = A, and Ak approaches an upper triangular matrix, as k →∞, of the form

Ak →




λ1 ∗ ∗ . . . ∗
λ2 ∗ . . . ∗

λ3 . . .
...

. . .

O λn



.

10.3. Global Eigensolvers 624

The Schur triangulization theorem [46] guarantees that this triangular matrix exists if
an orthonormal matrix Q is involved in the similarity transformation. If the matrix A is
symmetric, we know that all the eigenvalues are real; the scalar entries in the diagonal corre-
spond to those real eigenvalues. If the matrix is non-symmetric, however, we may encounter
complex eigenvalues, which manifest themselves as 2× 2 submatrices on the diagonal in the
form

Ak →




λ1 ∗ ∗ ∗ ∗
0 a22 a23 ∗ ∗
0 a32 a33 ∗ ∗
0 0 0 λ4

...
... λ5

. . .

0 λn



.

These 2 × 2 submatrices, as shown above, appear also for double eigenvalues and they are
sometimes referred to as bumps. The eigenvalues λ2 and λ3 can then be obtained by simply
solving the second-order characteristic polynomial of the 2× 2 submatrix.

We now present the basic QR iteration:

Initialize: A0 = A and A0 = Q0R0

Begin Loop: A1 = R0Q0 and A1 = Q1R1

A2 = R1Q1 and A2 = Q2R2
...

Remark: The key observation in the algorithm above is that we alternate between QiRi

decompositions and RiQi products.

To prove that all matrices in the sequence are similar, we first examine

A1 = R0Q0 = (QT
0 A0)Q0

and since QT
0 Q0 = I we conclude that A1 is similar to A0 = A.

This applies to iteration k as well, i.e.

Ak = Rk−1Qk−1 = (QT
k−1Ak−1)Qk−1.

The method converges if all eigenvalue have different magnitude, and the sequence of the
diagonal will be

|λ1 > |λ2| > . . . > |λn|,
see [94]; the rate of convergence is

|λi+1|
|λi| .

10.3. Global Eigensolvers 625

We note here that a similar sequence can be generated with about the same or even less
computational cost by using the LU decomposition, instead of the QR factorization, the
so-called LR method. However, no pivoting can be employed as this will destroy the upper
triangular structure and may change the eigenvalues (e.g., sign); thus the LU procedure
will be unstable. We also note that the QR decomposition can be applied to a singular
matrix unlike the LU factorization. So overall, the QR eigensolver is definitely the preferred
solution. However, a case for which the LU factorization may be used over the QR is when
we have a banded and diagonally dominant matrix A. The reason is that LU preserves the
bandwidth unlike the QR approach, which fills in the (initially) zero off-diagonal elements
at the rate of one additional diagonal on each side per iteration. The diagonal dominance of
A guarantees that no pivoting is needed for stability, so overall the LR eigensolver will be a
faster method in this case.

10.3.2 The Hessenberg QR Eigensolver

The basic QR method has two main disadvantages:

1. It requires QR factorization in each step which costs

O
(

4n3

3

)

i.e., twice as much as an LU decomposition.

2. It also diverges if two eigenvalues have the same magnitude.

Fortunately, both problems have been solved!

With regards to the cost, the main idea is to first transform the matrix A to an upper
Hessenberg matrix, i.e.,

A −→ H

(see section 9.3.1), and subsequently perform QR factorization on H. The method works
because all subsequent matrices maintain the Hessenberg form as can be verified with an
example! The initial cost to perform the Hessenberg reduction is

O
(

5

3
n3
)
,

however the QR factorization of a Hessenberg matrix is O(n2), and this is the cost we incur
in every iteration. Therefore, the Hessenberg QR eigensolver is an O(n) more efficient than
the basic QR eigensolver.

10.3.3 Shifted QR Eigensolver

The convergence rate is at most linear for the QR eigensolver, i.e., the error in every iteration
is

εk+1 ∼ Cεk

10.3. Global Eigensolvers 626

where εk ≡ λn − (ann)k.
This is dictated by the ratio

|λi+1|
|λi| ,

which we want to make as small as possible. We can employ the idea of a shift similar to
what we did in the power method (see section 10.1.1).

Let us first assume that we have only real and simple eigenvalues. Instead of applying the
QR factorization to H we will apply it to (H−σI), thereby shifting the entire eigenspectrum
by σ to (λi − σ).

Specifically, we choose σ such that the element in the position (n, n−1) converges to zero,
i.e. hn,n−1 → 0 as rapidly as possible.1 Upon convergence, the entry in the position (n, n)
(after we subtract the shift σ) will be the desired eigenvalue. Clearly, the closest estimate
to λn we have is h(k)

nn of the matrix Hk.

The modified algorithm to generate the sequence is then

Perform QR factorization:
Hk − h(k)

nnI = QkRk

Obtain New Iterate:
Hk+1 = RkQk + h(k)

nnI

and so on.

Then Hk+1 is similar to Hk because

Hk+1 = QT
k QkRkQk + σI

= QT
k (QkRk)Qk + σI

= QT
k [QkRk + σI]Qk

= QT
k HkQk .

• The convergence of the shifted method is quadratic in general but increases to cubic if
the original matrix A is symmetric.

For double or complex eigenvalues the shift strategy has to change in order to deal effec-
tively with the “bumps” in the diagonal of the Ak matrix, as discussed earlier. Specifically,
we modify the algorithm so that each iteration has two substeps. We can use the eigenvalues
λ2 and λ3 of the submatrix to obtain the iterates as follows

H1 − λ2I = Q1R1

H2 = R1Q1 + λ2I

1A convergence criterion used in practice is to take |h(k)
i,i−1| < C[|h(k)

ii |+ |hk
i−1,i−1|] .

10.3. Global Eigensolvers 627

H2 − λ3I = Q2R2

H3 = R2Q2 + λ3I
...

and so on, for subsequent iterations.
This method requires complex arithmetic because λ2 and λ3 may be a complex pair -

this is certainly a disadvantage. However, Wilkinson [94] has come up with another method
that avoids complex arithmetic and is based on the sum (λ2 + λ3) and the product λ2 · λ3 of
the complex pair.

Remark: After the last eigenvalue λn has been obtained, deflation of the Hessenberg matrix
can be applied to find the next one at reduced computational cost. In general, it takes about
two to three QR iterations to compute one eigenvalue. The total cost is about O(10n3) but
such an operation count is approximate and problem dependent.

10.3.4 The Symmetric QR Eigensolver: Wilkinson Shift

Symmetric matrices are special, first because they have only real eigenvalues but also because
the Hessenberg transformation reduces the matrix to a symmetric tridiagonal matrix. The
QR iteration maintains this property for the entire sequence. The other good news is that
the QR factorization of a symmetric tridiagonal matrix costs only O(n), instead of O(n2)
for the Hessenberg matrix. Therefore, the computational cost in this case is O(n) times the
number of iterations to converge to all eigenvalues.

Wilkinson [94] has suggested that instead of using the h(k)
nn as the shift σ to accelerate

convergence, a more effective way is to use the eigenvalue of the 2× 2 matrix[
hn−1,n−1 hn,n−1

hn,n−1 hnn

]

which is closer to the entry hnn. Convergence of the symmetric QR eigensolver is cubic and
the operation count is O(n2) but there is an O(2

3
n3) cost associated with the reduction of A

to a tridiagonal matrix.

10.3.5 Parallel QR Eigensolver: Divide-and-Conquer

A fully parallel algorithm for the symmetric eigenvalue problem was developed by Dongarra
& Sorensen [32]. It is based on the QR iteration and the divide-and-conquer approach we
have encountered many times in this book, i.e. we split the problem into two subproblems,
each of which is further split into two subproblems, and so on.

First, by reducing A to its Hessenberg form (recall section 9.3.1), we tridiagonalize the
full symmetric matrix A→ T, where the latter has the form

T =




a1 b1
b1 a2 b2 O

. . .
. . .

. . .

bn−2 an−1 bn−1

O bn−1 an



.

10.3. Global Eigensolvers 628

We then divide T into two symmetric tridiagonal matrices of half size as follows:

T1 =




a1 b1
b1 a2 b2 O

. . .
. . .

. . .

bk−2 ak−1 bk−1

O bk−1 ak −bk




and

T2 =




(ak+1 − bk) bk+1

bk+1 ak+2 bk+2 O
. . .

. . .
. . .

bn−1

O bn−1 an




so that

T =

[
T1 0
0 T2

]
+ bkzz

T ,

where

z =




0
...
0
1
1
...
0



← k
← k + 1

.

Next, we can diagonalize both T1 and T2 using appropriate orthogonal matrices Q1 and Q2

as follows

T1 = Q1D1Q
T
1 and T2 = Q2D2Q

T
2

where

D1 ≡



d1

d2 O
. . .

O dk


 and D2 ≡



dk+1

dk+2 O
. . .

O dn




and

D ≡
[

D1 0
0 D2

]
.

Based on this definition and by introducing

ξ =

[
Q1 0
0 Q2

]T

z

10.3. Global Eigensolvers 629

we can re-write the matrix T as follows

T =

[
Q1 0
0 Q2

]{[
D1 0
0 D2

]
+ bkξξT

}[
Q1 0
0 Q2

]T

which shows that the matrix T is similar to the matrix

G ≡ D + bkξξT .

It turns out that the eigenvalues λi of G are given by the following equation

1 + bk
n∑

i=1

ξ2
i

di − λ = 0, (10.1)

where ξi are the elements of the vector ξ. Observe that the problem has been reduced to the
root finding problem:

• Find λ such that f(λ) = 0 where f(λ) = 1 + bk
∑n

i=1
ξ2
i

di−λ
.

The equation for f(λ) is known as the secular equation. In [26] several approaches
in solving equation (10.1) are presented. Having computed the eigenvalues λi of G, which
are also eigenvalues of A, we can now compute the eigenvectors. First, the corresponding
eigenvectors of G are (see [26, 32])

yi = (D− λiI)
−1ξ.

Finally, the eigenvectors of the original matrix A are given by

vi =

[
Q1 0
0 Q2

]
yi.

Clearly, this is the first level of dividing the problem. We can now repeat recursively this
process for T1 and T2, which are also tridiagonal and half in size compared to the original
matrix. These, in turn can be further divided into two, and so on.

Software

 Suite
Putting it into Practice

We now present a parallel implementation of the parallel QR eigensolver just discussed.
This program solves for a very simple symmetric tridiagonal matrix consisting of the values
0.5, 1.5, . . . on the diagonal and the value 0.3 on the off diagonals. This matrix was chosen for
two reasons: first, it is diagonally dominant similar to most matrices which we encountered
when using finite difference discretizations, and secondly, all the eigenvalues of this matrix

10.3. Global Eigensolvers 630

 50

25 25

 25

12 13

 25

12 13

 12

6 6

 13

6 7

 12

6 6

 13

6 7

P0

P0

P0

P4

P4P2 P6

P0 P1 P2 P3 P4 P5 P6 P7

Figure 10.2: Computational partitioning of a matrix of size 50. This partitioning is explained in
the text.

are simple (i.e., the multiplicity of each eigenvalue is exactly one). The rationale behind the
second point will be presented in the remarks following the program.

For simplicity, we assume that the number of MPI processes used is a power of two. This
being the case, an example partitioning of a matrix of size 50 is presented in figure 10.2.

Figure 10.2 is to be understood as follows. Suppose that we have eight processes P0, . . . , P7

on which to solve for a matrix A of size 50. First, traversing down the tree, we see that using
the algorithm described above, we continuously subdivide the problem until each processor
has assigned to it some subproblem to solve. In this case, P0 solves a subproblem of size 6,
P1 solves a subproblem of size 6, etc. Each of these subproblems is solved in parallel by each
individual process. When all the subproblems have been solved, a fan-in style algorithm is
employed to complete the computation. Traversing back up the partitioning tree, we see that
process P0 and P1 combine their subproblems, each of size 6, into one subproblem of size
12 which is now solved on process P0. In this implementation, P1 remains idle throughout
the remainder of the computation. Similarly, other processes combine their subproblems
pairwise until finally the original problem of size 50 is solved.

We now present a C++/MPI code to accomplish the parallel QR eigensolver procedure
just described. We present the commented code, and then will conclude with some remarks
about the code.

#include <iostream.h>

#include <iomanip.h>

#include "SCmathlib.h"

#include "SCchapter10.h"

#include<mpi.h>

// Global variable to set size of the system

const int size = 50;

10.3. Global Eigensolvers 631

int main(int argc, char *argv[]){

int i,j,k,ll,m,isum,ioffset,cnt,N1,N2;

int mynode, totalnodes;

MPI_Status status;

double bn,*tmpd,**tmpdd;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

// Set up storage on each process

double * a = new double[size];

double * b = new double[size];

double * lambda = new double[size];

double ** Q = CreateMatrix(size,size);

double ** Q1 = CreateMatrix(size,size);

double ** Q2 = CreateMatrix(size,size);

double * xi = new double[size];

double * d = new double[size];

int ** index = ICreateMatrix(totalnodes,totalnodes);

double ** adjust = CreateMatrix(totalnodes,totalnodes);

//Form the Matrix A

for(i=0;i<size;i++){

a[i] = i+1.5;

b[i] = 0.3;

}

//Set up recursive partitioning of the matrix.

//Each process will solve for some subset of the problem

index[0][0] = size;

for(i=0;i<log2(totalnodes);i++){

isum = 0;

for(j=0;j<pow(2,i);j++){

index[i+1][2*j] = index[i][j]/2;

index[i+1][2*j+1] = index[i][j] - index[i+1][2*j];

isum += index[i+1][2*j];

adjust[i][j] = b[isum-1];

a[isum-1] = a[isum-1] - b[isum-1];

a[isum] = a[isum] - b[isum-1];

isum += index[i+1][2*j+1];

}

10.3. Global Eigensolvers 632

}

// Each process solves recursively for its subpart of

// the problem.

ioffset = (int) log2(totalnodes);

isum = 0;

for(k=0;k<mynode;k++)

isum += index[ioffset][k];

TDQREigensolver(index[ioffset][mynode],&a[isum],

&b[isum],d,Q1);

// Fan-in algorithm to finish solving system

for(i=0;i<log2(totalnodes);i++){

isum = 0; cnt = 0;

for(j=0;j<totalnodes;j+=(int)pow(2,i)){

if(mynode == j){

if(isum%2==0){

MPI_Recv(d+index[ioffset][isum],index[ioffset][isum+1],

MPI_DOUBLE, j+(int)pow(2,i),1,MPI_COMM_WORLD,

&status);

for(k=0;k<index[ioffset][isum+1];k++)

MPI_Recv(Q2[k],index[ioffset][isum+1],MPI_DOUBLE,

j+(int)pow(2,i),1,MPI_COMM_WORLD, &status);

N1 = index[ioffset][isum];

N2 = index[ioffset][isum+1];

bn = adjust[ioffset-1][cnt++];

}

else{

MPI_Send(d,index[ioffset][isum],MPI_DOUBLE,

j-(int)pow(2,i),1,MPI_COMM_WORLD);

for(k=0;k<index[ioffset][isum];k++)

MPI_Send(Q1[k],index[ioffset][isum],MPI_DOUBLE,

j-(int)pow(2,i),1,MPI_COMM_WORLD);

}

}

isum++;

}

for(j=0;j<totalnodes;j+=(int)pow(2,i+1)){

if(mynode == j){

10.3. Global Eigensolvers 633

cnt = 0;

for(k=0;k<N1;k++)

xi[cnt++] = Q1[N1-1][k];

for(k=0;k<N2;k++)

xi[cnt++] = Q2[0][k];

// Solve for the secular equation to

// obtain eigenvalues

SolveSecularEq(bn,N1+N2,d,xi,lambda);

// Form the Q matrix from Q1 and Q2

for(k=0;k<N1;k++){

for(ll=0;ll<N1+N2;ll++){

Q[k][ll] = 0.0;

for(m=0;m<N1;m++)

Q[k][ll] += Q1[k][m]*xi[m]/(d[m]-lambda[ll]);

}

}

for(k=0;k<N2;k++){

for(ll=0;ll<N1+N2;ll++){

Q[N1+k][ll] = 0.0;

for(m=0;m<N2;m++)

Q[k+N1][ll] += Q2[k][m]*xi[N1+m]/

(d[N1+m]-lambda[ll]);

}

}

// Normalize the Q matrix so that each eigenvector

// has length one

double sum;

for(k=0;k<N1+N2;k++){

sum = 0.0;

for(ll=0;ll<N1+N2;ll++)

sum+= Q[ll][k]*Q[ll][k];

sum = sqrt(sum);

for(ll=0;ll<N1+N2;ll++)

Q[ll][k] = Q[ll][k]/sum;

}

// Swap d and lambda arrays for use in the

// next part of the fan-in algorithm

tmpd = d;

d = lambda;

lambda = tmpd;

10.3. Global Eigensolvers 634

// Swap Q and Q1 for use in the

// next part of the fan-in algorithm

tmpdd = Q1;

Q1 = Q;

Q = tmpdd;

}

}

ioffset = ioffset - 1;

}

if(mynode==0){

cout << "The eigenvalues are: " << endl;

for(k=0;k<size;k++)

cout << d[k] << endl;

}

MPI_Barrier(MPI_COMM_WORLD);

delete[] a;

delete[] b;

delete[] lambda;

delete[] xi;

delete[] d;

DestroyMatrix(Q,size,size);

DestroyMatrix(Q1,size,size);

DestroyMatrix(Q2,size,size);

DestroyMatrix(adjust,totalnodes,totalnodes);

IDestroyMatrix(index,totalnodes,totalnodes);

MPI_Finalize();

}

Remark 1: Each process initially solves its assigned subproblem using the recursive routine
TDQREigensolver, which can be found in the software suite. Observe that the parallel code
resembles the serial TDQREigensolver solver – understanding the serial code will greatly
help in interpreting the parallel code.

Remark 2: To solve the secular equation we use a routine SolveSecularEq which can be
found in the software suite. This routine implements a very simple bisection algorithm for
finding the roots of the secular equation. One assumption of this routine is that all the
roots are distinct. More complicated methodologies which handle a wider variety of cases

10.3. Global Eigensolvers 635

can be found in [26]. Commonly, a modified Newton-Raphson method is used for solving
such problems.

Remark 3: It should be pointed out that solving for the eigenvectors using the equation

yi = (D− λiI)
−1ξ,

is not always numerically stable because two values of λi very close to each other will produce
nearly parallel eigenvectors. In [26], several alternative method which are more numerically
stable are presented.

Remark 4: In [32], a discussion is provided as to how one might keep all processors busy
during the fan-in procedure. In the example code given above, when a process has completed
its subproblem and if it is not involved in the fan-in process, it will remain idle. However, as
pointed out in [32], the idle processes could be called back into service to work on solving the
secular equation or for accomplishing parts of the matrix multiplications that are required.
This will enhance the parallel efficiency.

10.3.6 The Lanczos Eigensolver

This algorithm, developed by Lanczos in the 1950s, is particularly useful for large symmetric
matrices which are sparse. The QR method can also be used for such systems, but it does
not maintain the sparsity of the new matrices in each iteration and thus becomes inefficient.

The key idea in Lanczos’s approach is to make use of all the previous iterates

v,Av,A2v, . . .Ak−1v

produced in a power method iteration. These k vectors form the so-called Krylov space:

Kk(A,v) = span {v,Av,A2v . . . ,Ak−1}
of dimension k. In principle, after n iterations assuming that all

v, Av, . . . , An−1v

are linearly independent, we can express any vector x in terms of the basis formed by the
vectors generated by that sequence. However, this sequence is not computationally friendly,
and there is a bias towards the maximum eigenvalues of A. The idea is then to orthogonalize
these vectors but do it fast, that is do not use Gram-Schmidt or QR but something new!
The new orthonormalization will be based on the magic three-term recurrence formula! We
have already seen how to use recurrence relations in the context of orthogonal polynomials
(see section 3.1) and also in the conjugate gradient method (see 4.1.7).

Assuming that we have produced the orthonormal vectors from the above sequence

q1, q2, . . . , qk

then we can construct the orthornormal matrix Q by employing qi as its columns. We also
recall that

QTQ = I,

10.3. Global Eigensolvers 636

which is the condition of orthonormality.
We can then transform A to its similar matrix T using the similarity transformation, i.e.

QT AQ = T or AQ = QT

Clearly, the eigenvalues of A are the same as the eigenvalues of the matrix T. The latter is
a tridiagonal matrix of the form

Tk =




α1 β1

β1 α2 β2 O
. . .

. . .
. . .

O βk−1 αk βk


 .

The tridiagonal structure of T is a consequence of the three-term magic formula, so the
columns of Q satisfy

Aqi = βi−1qi−1 + αiqi + βiqi+1, i = 1, 2, . . .

We can compute now the coefficients αi and βi from the orthonormality conditions. First,
multiplying the above equation by qT

i we obtain

qT
i Aqi = βi−1q

T
i qi−1 + αiq

T
i qi + βiq

T
i qi+1,

where qT
i qi = 1; also qT

i qi−1 = 0 and qT
i qi+1 = 0, due to the orthonormality condition.

Therefore, from this equation we obtain

αi = qT
i Aqi.

Conversely, assuming that αi is obtained from the above formula we can prove that qi+1 ⊥ qi

by induction.
The coefficient βi is also obtained from the recurrence formula

ri ≡ βiqi+1 = Aqi − αiqi − βi−1qi−1

if we further assume that
βi �= 0⇒ βi =‖ ri ‖2

and
qi+1 =

ri

βi
.

All vectors qi+1 generated by the three-term sequence are orthogonal to all qk, k < i
given the symmetry of the matrix A. This can be proved by induction as follows. First, we
assume that

qi+1 ⊥ qi and qi+1 ⊥ qi−1

and also that from the previous step (of the induction process) we have already that the
condition

qi ⊥ qk, k < i

10.3. Global Eigensolvers 637

is valid. We will then prove that qi+1 ⊥ qk but first we prove that the vectors qk and qi are
A-orthogonal. For this, we multiply the three-term recurrence formula by qk (k ≤ i− 2)

qT
k Aqi = (qT

k AT)qi = (Aqk)
Tqi (due to symmetry)

= [βk−1qk−1 + αkqk + βkqk+1]
T qi

= βk−1q
T
k−1qi + αkq

T
k qi + βkq

T
k+1qi

= 0 + 0 + 0

⇒ qT
j (Aqi) = 0.

Now, multiplying the three-term formula again we have

βiq
T
k qi+1 = qT

k Aqi − αiq
T
k qi − βiq

T
k qi−1 = 0 + 0 + 0,

so we have proved by induction that qi+1 is orthogonal to all previous qi. We note here that
each induction step has two substeps, as presented above, first to show the A-orthogonality
and second to obtain the final result.

In practice, the problem is that the orthogonality is not preserved. In fact, as soon as
one eigenvalue converges all the basis vectors qi pick up perturbations biased toward the
direction of the corresponding eigenvector and orthogonality is lost. This has been analyzed
in detail by Paige [74] who found that a “ghost” copy of the eigenvalue will appear again
in the tridiagonal matrix T. The straightforward remedy is to fully re-orhonormalize the
sequence by using Gram-Schmidt or even QR. However, either approach would be expensive
if the dimension of the Krylov space is large, so instead a selective re-orthonormalization is
pursued. More specifically, the practical approach is to orthonormalize half-way i.e., within
half machine-precision

√
εM , see [4].

The following algorithm presents an orthogonalized version of the basic Lanczos algorithm
for symmetric matrices.

Lanczos Algorithm

10.4. Generalized Eigenproblems 638

Initialize: choose q0 = 0; arbitrary r �= 0; and β0 =‖ r ‖2
Begin Loop: for j = 1, . . .

qj =
r

βj−1

r = Aqj

r = r− qj−1βj−1

αj = qT
j r

r = r− qjαj

Orthogonalize if necessary
βj =‖ r ‖2
Compute approximate eigenvalues ofTj

Test for convergence
endfor

End Loop

Remark 1: The algorithm can be implemented using a single matrix-vector product per
iteration and BLAS1 routines, i.e. ddot and daxpy. Only three vectors need to be stored at
any given time, that is r, qj and qj−1 although there are also algorithms that require only
two stores but are more difficult to implement.

Remark 2: We note that if we have n iterations in the above loop we will obtain the entire
eigenspectrum of T and therefore of A. This can be done with a standard QR method
operating on a tridiagonal matrix, which requires linear work only. However, we can stop at
any iteration j < n and the resulted matrix Tj will have approximate values for the first j
eigenvalues of the matrix A. Hence, this method is both local in that we can obtain a subset
of the eigenvalues but also global since we can obtain the entire eigenspectrum.

Remark 3: If the eigenvalues of A are not well separated, then we can use a shift and
employ the matrix

(A− σI)−1 ,

following the shifted inverted power method to generate the appropriate Krylov subspaces.

Remark 4: The Lanczos algorithm can be extended to non-symmetric systems – see mod-
ified algorithms in references [79], [4].

10.4 Generalized Eigenproblems

So far we have dealt with linear eigenvalue problems but in applications we often encounter
problems of the form

A(λ)v = 0,

where A(λ) is a matrix function of λ. The general problem can be, in theory, solved using
the Newton-Raphson method for systems. However, we have (n+ 1) unknowns λ, xi . . . ,xn

and only n equations. To close the system we introduce the condition of normalization which
provides the (n + 1)th equation.

10.4. Generalized Eigenproblems 639

Other special forms of the generalized eigenproblem can be handled with more efficient
approaches. We demonstrate a few examples next.

In its simplest form the generalized eigenproblem may be written as

Av = λBv.

Assuming that B is not singular, then the above can be turned to

(B−1A)v = λv,

which is similar to the standard eigenproblem presented earlier. However, there is still
concern if B is not singular but nearly singular. The algorithm in the next section deals
with this case.

10.4.1 The QZ Eigensolver

When the matrix B is almost singular, it is not accurate to construct B−1A explicitly to
find its eigenvalues. Instead, we transform A and B simultaneously to simpler forms and
then compute the eigenvalues. This is accomplished in two steps.

In the first step, we pre- and post-multiply A and B by two orthonormal matrices Q and
Z as follows to achieve:

A∗ = QTAZ upper Hessenberg matrix

B∗ = QTBZ upper triangular matrix

In the second step, we apply QR to the matrix pair A∗ and B∗ to reduce them further
to an upper triangular form.

The eigenvalues of the generalized problem Av = λBv after triangulization of A are
given by

λi =

{
a∗ii/b

∗
ii if b∗ii �= 0

∞ if b∗ii = 0 and a∗ii �= 0.

For details on the algorithm we refer the reader to [70] and [21, 79].

10.4.2 Singular Eigenproblems

Many interesting applications involve a singular matrix B; for example, the Orr-Sommerfeld
equation in fluid dynamics [80]. In this case we can employ a local iteration procedure similar
to the inverse power method. To this end, we solve the original system along with its adjoint,
i.e.,

[A− (λk − σ)B]uk+1 = σBuk

[A− (λk − σ∗)B]T vk+1 = σBTvk ,

where σ and σ∗ are normalization constants. We assume that we have some good initial
guesses λ1, u0 and v0. If A and B are symmetric the above two equations are identical. For
non-symmetric systems this formulation with the adjoint accelerates convergence.

10.5. Arnoldi Method: Non-Symmetric Eigenproblems 640

The eigenvalue is obtained through a generalized Rayleigh quotient of the form

λk+1 =
vT

k Auk

vT
k Buk

,

which will also be used in the next iteration. The convergence rate of this local method is
third-order.

10.4.3 Polynomial Eigenproblems

We now consider the second-order polynomial eigenproblem of the form

[Aλ2 + Bλ+ C]v = 0,

where A is non-singular. By setting x = v and y = λv, the equation above can be re-written
as

Aλy + By + Cx = 0,

which can be recast into
G2y + G1x = λy,

with G2 = −A−1B and G1 = −A−1C. Finally, we put it in block matrix form[
0 I

G1 G2

] [
x
y

]
= λ

[
x
y

]
.

The solution of the above eigenproblem is a linear 2n× 2n system and can be solved using
any local or global eigensolvers from the previous section.

10.5 Arnoldi Method:

Non-Symmetric Eigenproblems

In the previous chapter we presented the Arnoldi iteration which transforms a non-symmetric
matrix A to a Hessenberg matrix H. In fact, the Arnoldi iteration can go part way; if the
matrix A has order n then the matrix H can have order m with m < n, and we denote it
by Hm.

We now address the question of how exactly we locate the eigenvalues of A? We need to
find first the eigenvalues of Hm – that is why we bothered with this Hessenberg reduction. To
this end, we can employ a QR iteration for Hm to find the eigenpairs (λ

(m)
i ,y

(m)
i). However,

these eigenvalues are only approximations to eigenvalues of A. The accuracy increases as m
increases, and the convergence rate is (approximately) linear for this method although not
always; rigorous analysis is difficult to perform, see [79].

To assess the convergence of the method we need the residual. A good and cheap way to
compute the residual is to consider the magnitude of the last component of the eigenvector
y

(m)
i , or more specifically the quantity

hm+1,m|eT
my

(m)
i | =‖ (A− λ(m)

i I)r
(m)
i ‖2 (10.2)

10.6. Available Software for Eigensolvers 641

where r
(m)
i is the so-called Ritz approximate eigenvector defined by

r
(m)
i = Vmy

(m)
i .

The above equality is based on the equation

(A− λ(m)
i I)r

(m)
i = hm+1,meT

my
(m)
i vm+1,

which is derived from the fundamental Arnoldi relationship, namely

AVm = VmHm + hm+1,mvm+1e
T
m.

Multiplying the above by y
(m)
i and utilizing the fact that Hmy

(m)
i = λ

(m)
i ym

i , we have that

AVmy
(m)
i︸ ︷︷ ︸

r
(m)
i

−λ(m)
i Vmy

(m)
i︸ ︷︷ ︸

r
(m)
i

= hm+1,mvm+1e
T
my

(m)
i .

Taking the L2 norm of both sides and using the fact that ‖ vm+1 ‖2= 1 we obtain equation
(10.2).

10.6 Available Software for Eigensolvers

The basic algorithms we have presented in this chapter are relatively easy to program but
more sophisticated versions with respect to preconditioning, restarts, orthogonalization, and
parallel implementation are available in free software in

• www.netlib.org

Here we briefly mention some of the most popular packages.

• For reduction of a dense matrix to a tridiagonal form using Householder transforma-
tions, the routines xSYTRD and HETRD for real and complex matrices are avail-
able in LAPACK. The corresponding routines in ScaLAPACK are PxSYTRD and
PxHETRD.

• For various QR eigensolvers the routines xSTEQR and xSTERF are available in
LAPACK.

• The parallel divide-and-conquer eigensolver we presented in this chapter is implemented
in the routine xSTEVD of LAPACK. It is much faster than xSTEQR but requires
more memory.

• The Lanczos algorithm is available in packages implemented by various authors. For
example, the code LANCZOS presented in [19] implements the version without or-
thogonalization; the code LANZ in [61] involves partial orthogonalization; and the
codes LANSO and PLANSO for the serial and parallel version, respectively pro-
duced by researchers at UC Berkeley involve periodic orthogonalization.

10.6. Available Software for Eigensolvers 642

• For Arnoldi eigensolvers the package ARPACK, which stands for ARnoldi PACKage,
is available in both Fortran as well as in C++; the latter is called ARPACK++.
Specifically, ARPACK++ has a good C++ interface to the original ARPACK codes
so that the C++ users do not have to deal with the reverse communication interface
problem that characterize the Fortran routines of ARPACK.

• For generalized eigenproblems, a simple driver routine xSYGV exists in LAPACK
that is based on the QR method. A more sophisticated version xSYGVX chooses
from a number of eigensolvers based on efficiency for a particular problem. For the
parallel divide-and-conquer method the routine xSYGVD exists which is based on
the simple driver of LAPACK.

10.7. Homework Problems 643

10.7 Homework Problems

1. Show that the matrix A = LU, where L is a unit lower triangular and U is upper
triangular, has the same eigenvalues with the matrix B = UL.

2. The power method to finding eigenvalues is applicable to (choose one)

(a) Symmetric matrices.

(b) Symmetric, positive-definite matrices.

(c) General matrices.

3. Write a C++ code to test the convergence rate of the inverted shifted power method
applied to the matrix resulted from the two-dimensional discretization of :

(a) ∇2u = λu (symmetric)

(b) ∇2u− ux − uy = λu (non-symmetric)

on a square domain [0, 1]× [0, 1] with second-order finite differences. We assume that
the boundary conditions are all homogeneous. Plot the error in predicting the minimum
eigenvalue versus the iteration number to estimate the convergence rate.

4. Prove that the QR iteration maintains the Hessenberg structure, which is a key step
in applying efficiently the QR algorithm.

5. Show that the eigenvalues of the tridiagonal matrix defined by

dii = 2, i = 1, . . . , n

di,i−1 = −1, i = 2, . . . , n

di−1,i = −1, i = 2, . . . , n

are given by
λj = 2− 2 cos(jπ/(n+ 1))

with corresponding eigenvectors

vj = [sin(jπ/(n+ 1), sin(2jπ/(n+ 1), . . . , sin(njπ/(n+ 1)]T .

Then, use the power method and the inverse power method to compute the maximum
and minimum eigenvalues for n = 50. What is the convergence rate of the two methods
for this problem?

6. Construct a QR eigensolver for a symmetric positive definite matrix A using the
Cholesky decomposition. Estimate the operation count and write a C++ code for
the matrix resulted from the discretization of

∇2u− u = λu, in [0, 1]× [0, 1].

Is your theoretical estimate consistent with what you find experimentally by timing
your solver. (Use a sufficiently large number of grid points, e.g. a grid of 100× 100.)

10.7. Homework Problems 644

7. Consider a symmetric Toepliz matrix with entries ak = 1/k, k = 1, . . . , n. We want to
apply Rayleigh quotient iteration to it. First, show that the shifted matrix (A− σkI),
where σk is the Rayleigh quotient remains a Toepliz matrix. Then compute the largest
three and the smallest three eigenvalues of A for n = 25, 50 and 100. What is the
convergence rate you observe?

8. Consider five symmetric Toeplitz matrices A with entries given by (k = 1, . . . , n)

a
(1)
k = 1/k; a

(2)
k = 1/

√
k; a

(3)
k = 1/k2; a

(4)
k = k; a

(5)
k = cos k/k ,

and construct corresponding circulant matrices C employing different number of Toeplitz
diagonals. Compute the three largest and three smaller eigenvalues of the matrix C−1A
and compare with the corresponding eigenvalues of A. Use n = 20, 30, . . . , 100. What
do you observe?

9. Consider the finite difference discretization of the Helmholtz eigenvalue problem

∇2u− 4u = λu

in the domain [0, 1] × [0, 1]. Apply the QR and LR (based on LU) eigensolvers and
compute the CPU time required to obtain the entire eigenspectrum. Consider a grid
with N ×N and N = 128, 256 and 512.

10. Let T be a block-tridiagonal matrix of order n2×n2 with A of order n×n in the diagonal
and B also of order n × n in the two off-diagonals. Assuming that we decompose A
and B as follows

QAQT = diag(a1, a2, . . . , an)

QBQT = diag(b1, b2, . . . , bn) ,

then find analytical expressions for the n2 eigenpairs of T in terms of ai, bi and Q.

11. Consider the n× n matrix A the entries of which are computed from

aij =
ij

(i+ j)2
.

Compute the eigenvalues and eigenvectors of this matrix using the Lanczos algorithm
for n = 5, 10 and 20, at different levels of accuracy.

12. Prove that the Householder matrix is symmetric.

13. Show how a Householder matrix H of size n × n times a vector x of size n can be
accomplished in O(n) operations. Explain how this implies that an n × n matrix A
can be pre-multiplied by H in O(n2) operations.

14. Using the MPI program presented in this chapter, write an MPI program which ac-
complishes the full Householder deflation to obtain all the eigenvalues.

10.7. Homework Problems 645

(a) First explain how the rows of the matrix A should be partitioned to maximize
parallel performance (block partitioning, cyclic partitioning, etc)? Show diagram-
matically why one partitioning is preferable over another.

(b) For a 6× 6 system and 2 processes, show by diagram the communication pattern
that you would use for the full deflation.

Hint: You will need to use the variable length versions ofMPI Allgather andMPI AlltoAll
(MPI Allgatherv and MPI Alltoallv).

15. Write a simple MPI program using MPI Alltoall to transpose a matrix A of size N .
Using the MPI Wtime function, perform the following timings:

(a) For a fixed number of processes, P = 2 and P = 4, plot the time to transpose
matrices of size n = 10, 20, 30, 40 and 100. What scaling do you see? Document
the machine on which you were running, the number of processors the machine
has, etc.

(b) For a fixed matrix size n = 100, plot the time to transpose a matrix on P = 2, 4
and 8 processors. What scaling do you encounter?

16. In the parallel QR eigensolver presented in the text, each process requires storage for
full Q, Q1 and Q2 arrays. Modify the program so that only the minimal amount of
memory is used.

17. Write an C++/MPI program which solves the secular equation in parallel.

18. In the parallel QR eigensolver presented in the text, a fan-in algorithm was used to
combine the solved subproblems. Suppose, however, that instead of using a fan-in
algorithm, we solve the problem as follows: Let a master node partition the problem
into P subproblems, having each process solve its subproblem (just as in the program
we presented). Instead of fan-in, have the master node be in charge of the combination
effort, using the other processes to solve in parallel the secular equation and the matrix
multiplications.

(a) Implement the algorithm just described.

(b) Which algorithm is faster, the fan-in or the newly proposed algorithm? For ma-
trices of size 50 and 100, perform timing tests on 2,4, and 8 processors. What can
you conclude?

Appendix A

A. C++ Basics

A.1 Compilation Guide

For the purposes of this compilation example, we will assume that we are using the GNU g++
compiler to compile a C++ program we have written contained within the file myprog.cpp.
In the following examples, the argument following the ‘-o’ flag designates the file name to be
used for the output. If no ‘-o’ option is specified, most compilers default to using the name
“a.out”. We now present several different programming scenarios:

• No user-defined libraries or user-defined header files are needed, and no special system
libraries (such as those associated with math.h are needed):

g++ -o myprog myprog.cpp

• No user-defined libraries or user-defined header files are needed, but the special system
library corresponding to math.h is needed:

g++ -o myprog myprog.cpp -lmath

• User-defined libraries, user-defined header files, and the special system library corre-
sponding to math.h are needed:

g++ -o myprog myprog.cpp -I/users/kirby/includes -L/users/kirby/libs

-lSCmathlib -lmath

The string following the ‘-I’ flag designates the location of the user-defined header
files to be included. The string following the ‘-L’ flag designates the location of the
user-defined libraries to be included. The string ‘-lSCmathlib’ links the program with
the user-defined library we created, and the string ‘-lmath’ links the program with the
system math library corresponding to math.h.

646

A.2. C++ Basic Data Types 647

A.2 C++ Basic Data Types

C++ has a set of standard data types representing the most common basic storage units of
the language. They can be partitioned as follows:

1. A Boolean type (bool)

2. Integer types (such as int)

(a) int

(b) unsigned int

(c) signed int

(d) short int (short-handed declaration is short)

(e) long int (short-handed declaration is long)

3. Floating-point types (such as float)

(a) float (single precision)

(b) double (double precision)

(c) long double (extended double precision)

4. Character types (such as char)

(a) char

(b) unsigned char

(c) signed char

5. A type void which represents the absence of information

6. Types constructed from the above types

(a) Pointer types (such as int∗)
(b) Reference types (such as int&)

(c) Array types (such as int[])

We refer the reader to [86] for a complete description and usage explanation of the data
types listed above.

A.3 C++ Libraries

A.3.1 Input/Output Library – iostream.h

Below we present three additional operations found within the C++ iostream system library
which were not discussed previously. For more information about the contents of iostream.h,
we refer the reader to [86].

A.3. C++ Libraries 648

• cin.get(ch) - allows the user to obtain from standard input the next character (in-
cluding white space and the end-of-line character). This function takes in its argument
list a variable of type char, into which it places the character obtained from standard
input (i.e. this variable is passed by reference).

• cin.eof() - returns non-zero (true) if end-of-file has been encountered in the standard
input stream.

• cout.put(ch) - allows the user to print to standard output a single character. This
function takes in its argument list a variable of type char, the contents of which are
printed to standard output.

A.3.2 Input/Output Manipulation Library – iomanip.h

Below is a list of a few of the input/output manipulation operations which can be found in
the C++ iomanip system library. For more information about the contents of iomanip.h,
we refer the reader to [86].

• cout << setiosflags(ios::flag) - sets/resets the I/O flag. The designator flag may
be one of the following:

1. fixed - floating-point output will be printed in fixed format (not using scientific
notation).

2. scientific - floating-point output will be printed in scientific notation.

3. showpoint - enforces that decimal points and trailing zeroes are displayed.

• cout << setprecision(i) - sets the number of decimal places of accuracy to be used
when printing floating point (float/double) values. This function takes as input an
integer variable representing the number of digits to be used.

• cout << setw(i) - sets the field width to be used for the next item printed. This
function takes as input an integer variable which designates the number of characters
used to determine the field width.

• cout << endl - indicates the ending of one line of output, and the initiation of a new
line of output.

A.3.3 Mathematics Library – math.h

Below is a list of some of the mathematical operations which can be found in the C++ math
library. For more information about the contents of math.h, we refer the reader to [86].

A.4. Operator Precedence 649

sin(x) sine of x
cos(x) cosine of x
tan(x) tangent of x
asin(x) sin−1(x) in range [−π/2, π/2], x ε [−1, 1].
acos(x) cos−1(x) in range [0, π], x ε [−1, 1].
atan(x) tan−1(x) in range [−π/2, π/2].
atan2(y, x) [tan−1(y/x) in range [−π, π].
sinh(x) hyperbolic sine of x
cosh(x) hyperbolic cosine of x
tanh(x) hyperbolic tangent of x
exp(x) exponential function ex

log(x) natural logarithm ln(x), x > 0.
log 10(x) base 10 logarithm log10(x), x > 0.
pow(x, y) xy. A domain error occurs if x = 0 and y ≤ 0, or if

x < 0 and y is not an integer.
sqrt(x)

√
x, x ≥ 0.

cdil(x) smallest integer not less than x, as a double.
floor(x) largest integer not greater than x, as a double.
fabs(x) absolute value |x|
ldexp(x, n) x · 2n

frexp(x, int *exp) splits x into a normalized fraction in the interval
[1/2, 1], which is returned, and a power of 2, which is
stores in *exp. If x is zero, both parts of the result
are zero.

modf(x, double *ip) splits x into integral and fractional parts, each with the
same sign as x. It stores the integral part in *ip, and
returns the fractional part.

fmod(x, y) floating-point remainder of x/y, with the same sign as
x. If y is zero, the result is implementation-defined.

A.4 Operator Precedence

Table A.1 provides the C++ convention used for operator precedence. This list is ordered
from highest to lowest precedence.

A.5 C++ and BLAS

Many of the C++ programs presented in this book can be re-programmed to use BLAS for
almost all of the mathematics operations. We did not originally program things using BLAS
for pedagogical reasons; we attempted to use every programming example to expand the
reader’s familiarity with C++ constructs.

When combining C++ and BLAS, the reader should consult the following website:

http://www.netlib.org/blas/

A.5. C++ and BLAS 650

OPERATIONS ASSOCIATIVITY
() [] → . left to right
! ∼ ++ - - + − ∗ & (type) sizeof right to left
∗ / % left to right
+ − left to right
<< >> left to right
< <= > >= left to right
= = != left to right
& left to right
ˆ left to right
| left to right
& & left to right
| | left to right
?: right to left
= + = − = ∗ = /= %= & = =̂ | = <<= >>= right to left
, left to right

Table A.1: Unary +, -, and * have higher precedence than the binary forms.

which contains explicit documentation for linking C programs to BLAS. One modification
that C++ requires is that BLAS function declarations should be done as follows:

extern "C" {

void daxpy_(int*, double*, double *, int*, double *, int*);

}

which notifies the compiler to use the C programming language function name convention.

Appendix B

B. MPI Basics

B.1 Compilation Guide

For the purposes of this compilation example, we will assume that we are using the GNU g++
compiler to compile a C++ program we have written contained within the file myprog.cpp.
We will also assume that the machine on which you are trying to compile is a parallel machine
with some version of MPI installed. You will need to contact your system administrator to
find out the exact version of MPI that is available and the paths on your local architecture.
In the following examples, the argument following the ‘-o’ flag designates the file name to be
used for the output. If no ‘-o’ option is specified, most compilers default to using the name
“a.out”. We now present several different programming scenarios:

• No user-defined libraries or user-defined header files are needed, and no special sys-
tem libraries (such as those associated with math.h are needed) other than the MPI
libraries:

g++ -o myprog myprog.cpp -lmpi

• No user-defined libraries or user-defined header files are needed, but the special system
library corresponding to math.h is needed along with the MPI libraries:

g++ -o myprog myprog.cpp -lmath -lmpi

• User-defined libraries, user-defined header files and the special system library corre-
sponding to math.h are needed along with the MPI libraries:

g++ -o myprog myprog.cpp -I/users/kirby/includes -L/users/kirby/libs

-lSCmathlib -lmath -lmpi

The string following the ‘-I’ flag designates the location of the user-defined header
files to be included. The string following the ‘-L’ flag designates the location of the
user-defined libraries to be included. The string ‘-lSCmathlib’ links the program with
the user-defined library we created, and the string ‘-lmath’ links the program with
the system math library corresponding to math.h. The string ‘-lmpi’ links the MPI
libraries.

651

B.2. MPI Commands 652

You will need to contact your system administrator to verify the exact command used on
your computing architecture to run an MPI program. In general, most architectures execute
MPI programs in a fashion similar to the following:

mpirun -np 4 myprog

where mpirun is a special program used for starting execution on the parallel machine, ‘-np
4’ indicates the number of processes requested, and myprog denotes the program executable
compiled as discussed above.

B.2 MPI Commands

Below we present an extended list of the MPI datatypes, MPI reduction operations, and
MPI function declarations.

B.2.1 Predefined Variable Types in MPI

MPI datatype C datatype
MPI CHAR signed char
MPI SHORT singed short int
MPI INT signed int
MPI LONG singed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

B.2. MPI Commands 653

B.2.2 Predefined Reduction Operators in MPI

Operation Name Meaning
MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum

B.2.3 MPI Function Declarations

• MPI Get count

int MPI Get count(
MPI-Status* status /* in */,
MPI Datatype datatype /* in */,
int* count /* out */)

• MPI Recv

int MPI Recv(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

• MPI Send

int MPI Send(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */)

• MPI Bsend

B.2. MPI Commands 654

int MPI Bsend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */)

• MPI Rsend

int MPI Rsend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */)

• MPI Ssend

int MPI Ssend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */)

• MPI Buffer attach

int MPI Buffer attach(
void* buffer /* in */,
int size /* in */)

• MPI Buffer detach

int MPI Buffer detach(
void* buffer address /* out */,
int size ptr /* out */)

• MPI Ibsend

int MPI Ibsend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

B.2. MPI Commands 655

• MPI Irecv

int MPI Irecv(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Irsend

int MPI Irsend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Isend

int MPI Isend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Issend

int MPI Isend(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Request free

int MP Request free(
MPI Request* request /* in/out */)

• MPI Test

B.2. MPI Commands 656

int MP Test(
MPI Request* request /* in/out */
int* flag /* out */,
MPI Status* status /* out */)

• MPI Testall

int MP Testall(
int array size /* in */,
MPI Request* requests[] /* in/out */
int* flag /* out */,
MPI Status statuses[] /* out */)

• MPI Testany

int MP Testany(
int array size /* in */,
MPI Request requests[] /* in/out */
int* completed index /* out */,
int* flag /* out */,
MPI Status* status /* out */)

• MPI Testsome

int MP Testsome (
int array size /* in */,
MPI Request requests[] /* in/out */
int* completed count /* out */,
int indices[] /* out */,
MPI Status statuses[] /* out */)

• MPI Wait

int MPI Wait(
MPI Request* request /* in/out */
MPI Status* status /* out */)

• MPI Waitall

int MP Waitall(
int array size /* in */,
MPI Request requests[] /* in/out */,
MPI Status statuses[] /* out */)

• MPI Waitany

int MP Waitany(
int array size /* in */,
MPI Request requests[] /* in/out */,
int* completed index /* out */,
MPI Status* status /* out */)

B.2. MPI Commands 657

• MPI Waitsome

int MP Waitsome(
int array size /* in */,
MPI Request requests[] /* in/out */,
int* completed count /* out */,
int indices[] /* out */,
MPI Status statuses[] /* out */)

• MPI Cancel

int MP Cancel(
MPI Request* request /* in */)

• MPI Iprobe

int MP Iprobe(
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
int* flag /* out */,
MPI Status* status /* out */)

• MPI Probe

int MPI Pobe(
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

• MPI Test cancelled

int MPI Test cancelled(
MPI Status* status /* in */,
int* flag /* out */)

• MPI Bsend init

int MPI Bsend init(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Recv init

B.2. MPI Commands 658

int MPI Recv init(
void* message /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Rsend inti

int MPI Rsend init(
void* message /* in */,
int count /* in (/,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Send int

int MPI Send init(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Ssend init

int MPI Ssend init(
void* message /* in */,
int count /* in */,
MPI Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI Comm comm /* in */,
MPI Request* request /* out */)

• MPI Start

int MPI Start(
MPI Request *request /* in/out */)

B.2. MPI Commands 659

• MPI Startall

int MPI Startall(
int array size /* in */,
MPI Request requests[] /* in/out */)

• MPI Sendrecv

int MPI Sendrecv(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
int dest /* in */,
int sendtag /* in */,
void* recvbuf /* out */,
int recvcount /* in */,
MPI Datatype recvtype /* in */,
int source /* in */,
MPI Datatype recvtag /* in */,
MPI Comm comm /* in */,
MPI Status* status /* out */)

• MPI Address

int MPI Address(
void* location /* in */,
MPI Aint* address /* out */)

• MPI Get elements

int MPI Get elements(
MPI Status* status /* in */
MPI Datatype datatype /* in */
int* count /* out */)

• MPI Type commit

int MPI Type commit(
MPI Datatype datatype /* in/out */)

• MPI Type contiguous

int MPI Type contiguous(
int count /* in */,
MPI Datatype oldtype /* in */
MPI Datatype* newtype /* out */)

• MPI Type extent

int MPI Type extent(
MPI Datatype datatype /* in */
MPI Aint* extent /* out */)

B.2. MPI Commands 660

• MPI Type free

int MPI Type free(
MPI Datatype datatype /* in/out */)

• MPI Type hindexed

int MPI Type hindexed(
int count /* in */,
int blocklengths[] /* in */,
MPI Aint displacements[] /* in */,
MPI Datatype oldtype /* in */
MPI Datatype* newtype /* out */)

• MPI Type hvector

int MPI Type hvector(
int count /* in */,
int blocklength /* in */,
MPI Aint stride /* in */,
MPI Datatype oldtype /* in */
MPI Datatype* newtype /* out */)

• MPI Type indexed

int MPI Type indexed(
int count /* in */,
int blocklength[] /* in */,
int displacements[] /* in */,
MPI Datatype oldtype /* in */
MPI Datatype* newtype /* out */)

• MPI Type 1b

int MPI Type 1b(
MPI Datatype datatype /* in */
MPI Aint* displacement /* out */)

• MPI Type size

int MPI Type size(
MPI Datatype datatype /* in */
int* size /* out */)

• MPI Type struct

int MPI Type stuct(
int count /* in */,
int blocklengths[] /* in */,
MPI Aint displacements[] /* in */,
MPI Datatype types[] /* in */
MPI Datatype* newtype /* out */)

B.2. MPI Commands 661

• MPI Type ub

int MPI Type ub(
MPI Datatype datatype /* in */
MPI Aint* displacement /* out */)

• MPI Type vector

int MPI Type vector(
int count /* in */,
int blocklength /* in */,
int stride /* in */,
MPI Datatype oldtype /* in */
MPI Datatype* newtype /* out */)

• MPI Pack

int MPI Pack(
void* inbuf /* in */,
int incount /* in */,
MPI Datatype datatype /* in */
void* pack buf /* out */,
int pack buf size /* in */,
int* position /* in/out */,
MPI Comm comm /* in */)

• MPI Pack size

int MPI Pack size(
int incount /* in */,
MPI Datatype datatype /* in */
MPI Comm comm /* in */,
int* size /* out */)

• MPI Unpack

int MPI Unpack(
void* pack buf /* in */,
int pack buf size /* in */,
int* position /* in/out */
void* outbuf /* out */,
int outcount /* in */,
MPI Datatype datatype /* in */,
MPI Comm comm /* in */)

• MPI Barrier

int MPI Barrier(
MPI Comm comm /* in */)

• MPI Bcast

B.2. MPI Commands 662

int MPI Bcast(
void* buffer /* in/out */,
int count /* in */,
MPI Datatype datatype /* in */,
int root /* in */
MPI Comm comm /* in */)

• MPI Allgather

int MPI Allgather(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

• MPI Allgatherv

int MPI Allgatherv(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcounts[] /* in */
int displacements[] /* in */,
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

• MPI Alltoall

int MPI Alltoall(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

• MPI Alltoallv

B.2. MPI Commands 663

int MPI Allgatherv(
void* sendbuf /* in */,
int sendcounts[] /* in */,
int send displacements[] /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcounts[] /* in */
int recv displacements[] /* in */,
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

• MPI Gather

int MPI Gather(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcounts /* in */
MPI Datatype recvtype /* in */,
MPI Comm comm /* in */)

• MPI Gatherv

int MPI Gatherv(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcounts[] /* in */
int displacements[] /* in */,
MPI Datatype recvtype /* in */,
int root /* in */,
MPI Comm comm /* in */)

• MPI Scatter

int MPI Scatter(
void* sendbuf /* in */,
int sendcount /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */
MPI Datatype recvtype /* in */,
int root /* in */,
MPI Comm comm /* in */)

• MPI Scatterv

B.2. MPI Commands 664

int MPI Scatterv(
void* sendbuf /* in */,
int sendcounts[] /* in */,
int displacements[] /* in */,
MPI Datatype sendtype /* in */,
void* recvbuf /* out */,
int recvcount /* in */
MPI Datatype recvtype /* in */,
int root /* in */,
MPI Comm comm /* in */)

• MPI Allreduce

int MPI Allreduce(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
MPI Op operator /* in */,
MPI Comm comm /* in */)

• MPI Op create

int MPI Op create(
MPI User function* function /* in */,
int commute /* in */,
MPI Op operator /* out */)

• MPI Op free

int MPI Op free(
MPI Op* operator /* in/out */)

• MPI Reduce

int MPI Reduce(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI Op operator /* in */,
int root /* in */,
MPI Comm comm /* in */)

• MPI Reduce Scatter

int MPI Reduce scatter(
void* operand /* in */,
void* recvbuf /* out */,
int recvcounts[] /* in */,
MPI Datatype datatype /* in */,
MPI Op operator /* in */,
MPI Comm comm /* in */)

B.2. MPI Commands 665

• MPI Scan

int MPI Scan(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI Datatype datatype /* in */,
MPI Op operator /* in */,
MPI Comm comm /* in */)

• MPI Comm group

int MPI comm group(
MPI Comm comm /* in */,
MPI Group* group /* out */)

• MPI Group compare

int MPI Group compare(
MPI Group group1 /* in */,
MPI Group group2 /* in */,
int* result /* out */)

• MPI Group difference

int MPI Group difference(
MPI Group group1 /* in */,
MPI Group group2 /* in */,
MPI Group* newgroup /* out */)

• MPI Group excl

int MPI Group excl(
MPI Group group /* in */,
int n /* in */,
int ranks[] /* in */,
MPI Group* newgroup /* * out */)

• MPI Group free

int MPI Group free(
MPI Group* group /* in/out */)

• MPI Group incl

int MPI Group incl(
MPI Group group /* in */,
int n /* in */,
int ranks[] /* in */,
MPI Group* newgroup /* * out */)

B.2. MPI Commands 666

• MPI Group intersection

int MPI Group intersection(
MPI Group group1 /* in */,
MPI Group group2 /* in */,
MPI Group* newgroup /* out */)

• MPI Group range excl

int MPI Group range excl(
MPI Group group /* in */,
int n /* in */,
int ranges[][3] /* in */,
MPI Group* newgroup /* * out */)

• MPI Group range incl

int MPI Group range incl(
MPI Group group /* in */,
int n /* in */,
int ranges[][3] /* in */,
MPI Group* newgroup /* out */)

• MPI Group rank

int MPI Group rank(
MPI Group group /* in */,
int* rank /* out */)

• MPI Group size

int MPI Group size(
MPI Group group /* in */,
int* size /* out */)

• MPI Group translate ranks

int MPI Group translate ranks(
MPI Group group1 /* in */,
int n /* in */,
int ranks[] /* in */,
MPI Group* group2 /* in */,
int ranks2[] /* out */)

• MPI Group union

int MPI Group union(
MPI Group group1 /* in */,
MPI Group* group2 /* in */,
MPI Group* newgroup /* out */)

B.2. MPI Commands 667

• MPI Comm compare

int MPI Comm compare(
MPI Comm comm1 /* in */,
MPI Comm comm2 /* in */,
int* result /* out */)

• MPI comm create

int MPI Comm create(
MPI Comm comm1 /* in */,
MPI Group new group /* in */,
MPI Comm* new comm /* out */)

• MPI Comm dup

int MPI Comm dup(
MPI Comm comm /* in */,
MPI Comm* new comm /* out */)

• MPI Comm free

int MPI Comm free(
MPI Comm* comm /* in/out */)

• MPI Comm rank

int MPI Comm rank(
MPI Comm comm /* in */,
int* result /* out */)

• MPI Comm size

int MPI Comm size(
MPI Comm comm /* in */,
int* size /* out */)

• MPI Comm split

int MPI Comm split(
MPI Comm old comm /* in */,
int split key /* in */,
int rank key /* in */,
MPI Comm* new comm /* out */)

• MPI Comm remote group

int MPI Comm remote group(
MPI Comm comm /* in */,
MPI Group* group /* out */)

• MPI Comm remote size

int MPI Comm remote size(
MPI Comm comm /* in */,
int* size /* out */)

B.2. MPI Commands 668

• MPI Comm test inter

int MPI Comm test inter(
MPI Comm comm /* in */,
int* flag /* out */)

• MPI Intercomm create

int MPI Intercomm create(
MPI Comm loca comm /* in */,
int local leader /* in */,
MPI Comm peer comm /* in */),
int remote leader /* in */,
int tag /* in */,
MPI Comm* intercomm /* out */)

• MPI Intercomm merge

int MPI Intercomm merge(
MPI Comm intercomm /* in */,
int high /* in */,
MPI Comm* intracomm /* out */)

• MPI Attr delete

int MPI Attr delete(
MPI Comm comm /* in */,
int keyval /* in */)

• MPI Attr get

int MPI Attr get(
MPI Comm comm /* in */,
int keyval /* in */,
void* attribte ptr /* out */,
int* flag /* out */)

• MPI Attr put

int MPI Attr put(
MPI Comm comm /* in */,
int keyval /* in */,
void* attribute /* in */)

• MPI Keyval create

int MPI Keyval create(
MPI Copy function* copy fn /* in */,
MPI Delete function* delete fn /* in */,
int* keyval /* out */,
void* extra arg /* in */)

B.2. MPI Commands 669

• MPI Keyval free

int MPI Keyval free(
int* keyval /* in/out */,

• MPI Topo test

int MPI Topo test(
MPI Comm comm /* in */,
int* top type /* out */)

• MPI Cart coords

int MPI Cart coords(
MPI Comm comm /* in */,
int rank /* in */,
int max dims /* in */,
int coords[] /* out */)

• MPI cart create

int MPI Cart create(
MPI Comm old comm /* in */,
int ndims /* in */,
int dims[] /* in */,
int periods[] /* in */,
int reorder /* in */,
MPI Comm* cart comm /* out */)

• MPI Cartdim get

int MPI Cartdim get(
MPI Comm comm /* in */,
int* ndims /* out */)

• MPI Cart get

int MPI Cart get(
MPI Comm comm /* in */,
int max dims /* in */,
int dims[] /* out */,
int periods[] /* out */,
int coords[] /* out */)

• MPI Cart map

int MPI Cart map(
MPI Comm comm /* in */,
int ndims /* in */,
int dims[] /* in */,
int periods[] /* in */,
int* newrank /* out */)

B.2. MPI Commands 670

• MPI Cart rank

int MPI Cart rank(
MPI Comm comm /* in */,
int coords[] /* in */,
int* rank /* out */)

• MPI Cart shift

int MPI Cart shift(
MPI Comm comm /* in */,
int direction /* in */,
int displacement /* in */,
int* rank source /* out */,
int* rank dest /* out */)

• MPI Cart sub

int MPI Cart sub(
MPI Comm comm /* in */,
int free coords[] /* in */,
MPI Comm* newcomm /* out */)

• MPI Dims create

int MPI Dims create(
int nnodes /* in */,
int ndims /* in */,
int dims[] /* in/out */)

• MPI Graph create

int MPI Graph create(
MPI Comm old comm /* in */,
int nnodes /* in */,
int index[] /* in */,
int edges[] /* in */,
int reoder */ in */,
MPI Comm graph comm /* out */)

• MPI Graphdims get

int MPI Graphdims get(
MPI Comm comm /* in */,
int* nnodes /* out */,
int* edges /* out */)

• MPI Graph get

B.2. MPI Commands 671

int MPI Graph get(
MPI Comm comm /* in */,
int max index /* in */,
int max edges /* in */,
int index[] /* out */,
int edges[] /* out */)

• MPI Graph map

int MPI Graph map(
MPI Comm comm /* in */,
int nnodes /* in */,
int index[] /* in */,
int edges[] /* in */,
int* newrank /* out */)

• MPI Graph neighbors

int MPI Graph neighbors(
MPI Comm comm /* in */,
int rank /* in */,
int max neighbors /* in */,
int neighbors[] /* out */)

• MPI Graph neighbors count

int MPI Graph neighbors count(
MPI Comm comm /* in */,
int rank /* in */,
int* nneighbors /* out */)

• MPI Get processor name

int MPI Get processor name(
char* name /* out */,
int* resultlen /* out */)

• MPI Errhandler create

int MPI Errhandler create(
MPI Handler function* function /* in */,
MPI Errhandler* errhandler /* out */)

• MPI Errhandler free

int MPI Errhandler free(
MPI Errhandler* errhandler /* in/out */)

• MPI Errhandler get

int MPI Errhandler get(
MPI Comm comm /* in */,
MPI Errhandler* errhandler /* out */)

B.2. MPI Commands 672

• MPI Errhandler set

int MPI Errhandler set(
MPI Comm comm /* in */,
MPI Errhandler* errhandler /* in */)

• MPI error class

int MPI Error class(
int errorcode /* in */,
int* errorclass /* out */)

• MPI Error string

int MPI Error string(
int errorcode /* in */,
char* string /* out */,
int* resultlen /* out */)

• MPI Wtick

doube MPI Wtick(void)

• MPI Wtime

doube MPI Wtime(void)

• MPI Abort

doube MPI Abort(
MPI comm comm /* in */,
int error code */ in */)

• MPI Finalize

int MPI Finalize(void)

• MPI Init

int MPI Init(
int* argc ptr /* in/out */,
char** argv ptr[] /* in/out */)

• MPI Initialized

int MPI Initialized(
int* flag /* out */)

B.2.4 MPI Constants and Definitions

• Error Classes

B.2. MPI Commands 673

MPI SUCCESS
MPI ERR BUFFER
MPI ERR COUNT
MPI ERR TYPE
MPI ERR TAG
MPI ERR COMM
MPI ERR RANK
MPI ERR REQUEST
MPI ERR ROOT
MPI ERR GROUP
MPI ERR OP
MPI ERR TOPOLOGY
MPI ERR DIMS
MPI ERR ARG
MPI ERR UNKNOWN
MPI ERR TRUNCATE
MPI ERR OTHER
MPI ERR INTERN
MPI PENDING
MPI ERR IN STATUS
MPI ERR LASTCODE

• Assorted Constants

MPI BOTTOM
MPI PROC NULL
MPI ANY SOURCE
MPI ANY TAG
MPI UNDEFINED
MPI BSEND OVERHEAD
MPI KEYVAL INVALID

• Error Handling Specifiers

MPI ERRORS ARE FATAL
MPI ERRORS RETURN

• Maximum Sizes for Strings

MPI MAX PROCESSOR NAME
MPI MAX ERROR STRING

• Basic Datatypes

B.2. MPI Commands 674

MPI CHAR
MPI SHORT
MPI INT
MPI LONG
MPI UNSIGNED CHAR
MPI UNSIGNED SHORT
MPI UNSIGNED
MPI UNSIGNED LONG
MPI FLOAT
MPI DOUBLE
MPI LONG DOUBLE
MPI BYTE
MPI PACKED
MPI LONG LONG INT /* optional */

• Datatypes for Reduction Functions

MPI FLOAT INT
MPI DOUBLE INT
MPI LONG INT
MPI 2INT
MPI SHORT INT
MPI LONG DOUBLE INT

• Datatypes for Building Derived Types

MPI UB
MPI LB

• Predefined Communicators

MPI COMM WORLD
MPI COMM SELF

• Results of Communicator and Group Comparisons

MPI IDENT
MPI CONGRUENT
MPI SIMILAR
MPI UNEQUAL

• Attrbute Keys for Implementation Information

MPI TAG UB
MPI IO
MPI HOST
MPI WTIME IS GLOBAL

• Collective Reduction Operations

B.2. MPI Commands 675

MPI MAX
MPI MIN
MPI SUM
MPI PROD
MPI MAXLOC
MPI MINLOC
MPI BAND
MPI BOR
MPI BXOR
MPI LAND
MPI LOR
MPI LXOR

• Null Handles

MPI GROUP NULL
MPI COMM NULL
MPI DATATYPE NULL
MPI REQUEST NULL
MPI OP NULL
MPI ERHANDLER NULL

• Empty Group

MPI GROUP EMPTY

• Topologies

MPI GRAPH
MPI CART

• Type Definitions

The following type definitions are in the file mpi.h.

• Opaque Types

MPI Aint
MPI Status

• Handles to Assorted Structures

MPI Group
MPI Comm
MPI Datatype
MPI Request
MPI Op

• Prototypes for User-Define Functions

B.2. MPI Commands 676

typedef int MPI Copy function(
MPI Comm oldcomm,
int keyval,
void* extra arg,
void* attribute val in,
void* attribute val out,
int flag)

typedef int MPI Delete function(
MPI Comm comm,
int keyval,
void* attribute val
void* extra arg)

typedef void MPI Handler function(
MPI Comm* comm,
int* error code,

...)

typedef void MPI User function(
void* invec,
void* inoutvec,
int* len,
MPI Datatype* datatype)

Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover, 1972.

[2] G. Amdahl. The validity of the single processor approach to achieving large scale
computing capabilities. In AFIPS Conf. Proc., vol. 30, pp. 483-485, 1967.

[3] W. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue
problem. Quart. Appl. Math., 9:17–29, 1951.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
Solution of Alebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, PA,
2000.

[5] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Comine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994.

[6] A. Bayliss and E. Turkel. Mappings and accuracy of Chebyshev pseudo-spectral ap-
proximation. J. Comp. Phys., 101:349–359, 1992.

[7] D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawake, and C.V. Packer.
BEOWULF: A parallel workstation for scientific computation. In Proceedings of Inter-
national Conference on Parallel Processing, pages 11-14, 1995.

[8] A. Bjorck. Numerics of Gram-Schmidt orthogonalization. Lin. Alg. Appl., 197:297–316,
1994.

[9] E.K. Blum. A modification of the Runge-Kutta fourth-order method. Math. Comput.,
16:176–187, 1962.

[10] A. Brandt. Multigrid Techniqus: Guide with Applications to Fluid Dynamics. GMD-
Studien, Nr. 85, Gesellschaft fur Mathematik and Datenver-arbeitung, St. Augustin,
Bonn, 1984.

[11] W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM, second
edition, 2000.

[12] J.M. Burgers. A mathematical model illustrating the theory of turbulence. Adv. Appl.
Mech., 1:171–199, 1948.

677

BIBLIOGRAPHY 678

[13] B. Buzbee, G. Golub, and C. Nielsen. On direct methods for solving Poisson’s equation.
SIAM J. Numer. Anal., 7:627–656, 1970.

[14] H. Casanova and J.J. Dongarra. Applying NetSolve’s network enabled server. IEEE,
Computing in Science & Engineering, 5(3):57–66, 1998.

[15] M.-H. Chen, Q.-M. Shao, and J.G. Ibrahim. Monte Carlo Methods in Bayesian Com-
putation. Springer, 2000.

[16] C.K. Chui. Wavelets: A Mathematical Tool for Signal Analysis. SIAM, 1997.

[17] J.W. Cooley and J.W. Tukey. An algorithm for the machine computation of Fourier
series. Math. Comp., 19:297–301, 1965.

[18] R. Courant, K.O. Friedrichs, and H. Lewy. Uber die partiellen differenzengleichungen
der mathematischen. Math. Ann., 100:32, 1928.

[19] J.K. Cullum and R.A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations. Volume 1, Theory. Birkhauser, Boston, 1985.

[20] G. Dahlquist. Convergence and stability in the numerical integration of ordinary differ-
ential equations. Math. Scand., 4:33–53, 1956.

[21] B.N. Datta. Numerical Linear Algebra. Brooks/Cole Publishing Company, 1995.

[22] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, 1992.

[23] P.J. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press,
second edition, 1984.

[24] E.F. Van de Velde. Concurrent Scientific Computing. Springer-Verlag: Texts in Applied
Mathematical Sciences Series, 1994.

[25] J.W. Demmel. On floating point errors in Cholesky. Technical report, LAPACK Work-
ing Notes, Department of Computer Science, University of Tennessee at Knoxville, 1989.

[26] J.W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[27] D. Dodson and J. Lewis. Issues relating to extension of the Basic Linear Algrebra
Subprograms. ACM SIGNUM Newsletter, 20 (1):2–18, 1985.

[28] J.J. Dongarra. Performance of various computers using standard linear equations soft-
ware in a fortran environment. Computer Science Technical Report CS-89-85, University
of Tennessee, March, 1990.

[29] J.J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw., 16:1–17, 1990.

[30] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Numerical Linear
Algebra for High-Performance Computers. SIAM, 1998.

BIBLIOGRAPHY 679

[31] J.J. Dongarra, F. Gustavson, and A. Karp. Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine. SIAM Review, 26:91–112, 1984.

[32] J.J. Dongarra and D.C. Sorensen. A fully parallel algorithm for the symmetric eigenvalue
problem. SIAM J. Sci. and Stat. Comp., 8:S139–S154, 1987.

[33] J.J. Dongarra and F. Sullivan. Top ten algorithms of the century. IEEE, Computing in
Science & Engineering, January/February, 2000.

[34] C.G. Douglas, J. Hu, U. Rude, and M. Bittencourt. Cache based multigrid on unstruc-
tured two dimensional grids. In Proceedings of Tenth GAMM Workshop on Parallel
Multigrid Methods, Bonn, Germany, 1998.

[35] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical solution
of waves. Math. Comp., 31:629–651, 1977.

[36] M. Flynn. Very high speed computing systems. Proc. IEEE, 54:1901–1909, 1966.

[37] B. Fornberg. Generation of finite difference formulas on arbitrary spaced gris. Math.
Comput., 51:699–706, 1988.

[38] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufman, 1998.

[39] R. Freund and N. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian
linear systems. Num. Math., 60:315–339, 1991.

[40] M. Frigo and S.G. Johnson. FFTW: An adaptive software architecture for the FFT. In
Proceeding ICASSP Conference, vol. 3, pp. 1381-1384, 1998.

[41] P.R. Garabedian. Estimation of the relaxation factor for small mesh size. Math. Tables
Aids Comput., 10:183–185, 1956.

[42] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Pren-
tice Hall, 1971.

[43] A. Ghizzetti and A. Ossicini. Quadrature Formulae. Academic Press, 1970.

[44] S.K. Godunov and V.S. Ryabenkii. The Theory of Difference Schemes. North Holland,
1964.

[45] G. Golub and J.M. Ortega. Scientific Computing: An Introduction with Parallel Com-
puting. Academic Press, 1993.

[46] G. Golub and C.F. van Loan. Matrix Computations. Johns Hopkins University Press,
2nd ed., Baltimore, 1989.

[47] G. Golub and J.H. Wilkinson. Note on the iterative refinement of least squares solution.
Numer. Math., 9:139–148, 1966.

BIBLIOGRAPHY 680

[48] W.J. Gordon and C.A. Hall. Transfinite element methods: Blending function interpo-
lation over arbitrary curved element domains. Num. Math., 21:109, 1973.

[49] D. Gottlieb and S.A. Orszag. Numerical Analysis of Spectral Methods: Theory and
Applications. SIAM-CMBS, Philadelphia, 1977.

[50] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability preserving high order time
discretizations. SIAM Review, 43:89–112, 2001.

[51] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message-Passing Interface. MIT Press, second edition, 1999.

[52] W.W. Hager. Condition estimators. SIAM J. Sci. Statist. Comput., 5:311–316, 1984.

[53] E. Hairer and G. Wanner. On the instability of the BDF formulas. SIAM J. Numer.
Anal., 20(6):1206–1209, 1983.

[54] W.W. Hargrove, F.M. Hoffman, and T. Sterling. The do-it-yourself supercomputer.
Scientific American, August:72–79, 2001.

[55] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bur. Stand., 49:409–436, 1952.

[56] C. Hirsch. Numerical Computation of Internal and External Flows. John Wiley & Sons,
1988.

[57] R.W. Hockney. The Science of Computer Benchmarking. SIAM, Software, Environ-
ments, Tools, 1996.

[58] J.D. Hoffman. Relationship between the truncation errors of centered finite difference
approximation on uniform and non-uniform meshes. J. Comp. Phys., 46:469–474, 1982.

[59] T.J. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis. Prentice-Hall, 1987.

[60] A. Jameson, H. Schmidt, and E. Turkel. Numerical solutions of the Euler equations
by finite volume methods using Runge-Kutta time stepping schemes. In AIAA Paper
number 81-1259, 1981.

[61] M.T. Jones and M.L. Patrick. The Lanczos algorithm for the generalized symmetric
eigenproblem on shared-memory architectures. Appl. Numer. Math., 12:377–389, 1993.

[62] D.W. Kammler. A First Course in Fourier Analysis. Prentice Hall, 2000.

[63] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for CFD. Oxford
University Press, 1999.

[64] S.K. Kim and A.T. Chronopoulos. A class of Lanczos-like algorithms implemented on
parallel computers. Parallel Comput., 17:763–778, 1991.

BIBLIOGRAPHY 681

[65] H.O. Kreiss and J. Oliger. Methods for the Approximate Solution of Time Depen-
dent Problems. World Meteorological Organization, International Council of Scientific
Unions, Geneva, 1973.

[66] C. Lanczos. Applied Analysis. Dover, 1988.

[67] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms
for Fortran usage. ACM Trans. Math. Softw., 5:308–329, 1979.

[68] S.K. Lele. Compact finite difference schemes with spectral-like resolutions. J. Comp.
Phys., 103:16–42, 1992.

[69] S. Mallat. Multiresolution approximation and wavelet orthonormal bases of L2(R).
Trans. Amer. Math. Soc., 315:69–87, 1989.

[70] C.B. Moler and G.W. Stewart. An algorithm for generalized matrix eigenvalue problems.
SIAM J. Num. Anal., 10:241–256, 1973.

[71] H. Nessyahu and E. Tadmor. Non-oscillatory central differencing for hyperbolic conser-
vation laws. J. Comput. Phys., 87:408–463, 1990.

[72] A.M. Ostrowski. Solutions of Equations and Systems of Equations. Academic Press,
1966.

[73] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[74] C.C. Paige. The computation of eigenvalues and eigenvectors of very large sparse ma-
trices. PhD thesis, London University, 1971.

[75] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.F. Flannery. Numerical Recipes in
C++. Cambridge University Press, 2002.

[76] J.K. Reid. Large Sparse Sets of Linear Equations. Academic Press, New York, 1971.

[77] P.D. Richtmyer and K.W. Morton. Difference Methods for Initial Value Problems.
Wiley-Interscience, second-edition, London, 1967.

[78] P.J. Roache. Fundamentals of Computational Fluid Dynamics. Hermosa Publications,
1998.

[79] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Halsted Press, New York,
1992.

[80] H. Schlichting and K. Gersten. Boundary Layer Theory. Springer, 8th edition, 2000.

[81] T. Sterling, J. Salmon, and D.J. Becker D. Savarese. How to Build a Beowulf: A Guide
to the Implementation and Application of PC Clusters. MIT Press, 1999.

[82] H. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system
of equations. J. ACM, 20:27–38, 1973.

BIBLIOGRAPHY 682

[83] G. Strang. A proposal for Toepliz matrix calculations. Studies in Applied Mathematics,
LXXIV (2):171, 1986.

[84] G. Strang. Linear Algebra and its Applications. Harcourt Brace Jovanvich, third edition,
1986.

[85] G. Strang. Wavelets and dilation equations: A brief introduction. SIAM Review,
31(4):614–627, 1989.

[86] B. Stroustrup. The C++ Programming Language. John Wiley & Sons, 1991.

[87] C. Temperton. Self-sorting mixed-radix fast Fourier transfroms. J. Comp. Phys., 52:1–
23, 1983.

[88] L.N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, 1997.

[89] R.S. Varga. Matrix Iterative Analysis. Springer Series in Computational Mathematics,
second edition, 2000.

[90] H. Wang. A parallel method for tridiagonal systems. ACM Trans. Math. Softw., 7:170–
183, 1981.

[91] R.F. Warming and R.W. Beam. Upwind second order difference schemes. AIAA Journal,
24:1241–1249, 1976.

[92] P. Wesseling. An Introduction to Multigrid Methods. John Wiley and Sons, 1992.

[93] R.C. Whaley and J.J. Dongarra. Automatically Tuned Linear Algebra Software. In
Proceeding of Supercomputing’98, 1998.

[94] J. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, New York,
1965.

[95] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York,
1971.

Index

θ-family, 378, 392

A-stable scheme, 379
Absolute stability, 327, 331, 383
Adams family, 324
Adams-Bashforth method, 324

fourth-order, 389
second-order, 324
third-order, 324

Adams-Moulton method, 386
fourth-order, 389
third-order, 380

ADI method, 410, 412
Advection equation, 467

boundary conditions, 493
first-order schemes, 470
high-order schemes, 482
stochastic, 470

Advection-diffusion equation, 497
boundary conditions, 505

Amdhal’s law, 79
Amplification factor, 400–402, 438–440, 443,

444, 446
Approximate factorization, 411
Arnoldi algorithm, 586

basic, 587
modified, 587
non-symmetric eigenproblems, 640

ATLAS, 53

Backward difference
first derivative, 282, 288
second derivative, 290

Backward substitution, 360, 521
parallel, 534

Backwards differentiation, 380
third-order, 380

Banded matrices, 62

Barycentric coordinates, 159
Battle-Lemarié wavelet, 194
BEOWULF, 74
Bessel’s inequality, 168
Bilinear mapping, 160
Black-Red Gauss-Seidel, 433
BLAS, 48, 52, 307

memory access, 60
Boundary conditions, 356, 493, 505

normal boundary layers, 506
periodic, 284
phantom nodes, 285

Burgers equation, 469, 515

C++, 8
arrays, 98

column-major order, 307
contiguous blocks, 306
deallocation, 104
dynamic allocation, 101, 305
multi-dimensions, 304
overrun, 99
row-major order, 307
static allocation, 98, 304

basic data types, 21
basic operations, 23
basic syntax, 21
boolean expression, 26
compound assignment, 139

++, 140
+=, 140
post-incrementing, 140
pre-incrementing, 140

how to comment, 38
learn to print, 34
learn to read, 35
NULL address, 104
NULL pointer, 104

683

INDEX 684

passing arrays to functions, 105
passing by reference, 107
passing by value, 107
passing functions, 221
passing the address, 108
pointer variable, 103
program in style, 37
use of ‘&’ operator, 109, 274

C++ Statements, 28
cin, 35
cout, 34
delete, 104
delete[], 104, 105
for, 33
if, 31
return, 17
switch, 121
while, 32

Cache, 50
blocking, 51, 58
cold, 53, 56
hit, 50
hot, 53, 56
line, 50
miss, 50
reuse, 50

Cauchy-Schwarz inequality, 45
Central difference

first derivative, 282, 288
second derivative, 290

CFL number, 470, 473, 475, 477, 481, 484,
486, 492, 495, 503, 507

see Courant number, 472
CGM, see Conjugate gradient method
CGNR, 585
Chaos, 341, 389
Characteristic polynomials, 328
Chebyshev acceleration, 438, 439
Chebyshev polynomials, 118, 120, 123

convergence, 124
minimax property, 125
shifted, 211

Chebyshev transforms, 206
Cholesky factorization, 559

incomplete algorithm, 575

Circulant matrices, 175
preconditioners, 577

Class, 18, 142
“->” notation, 153
“.” notation, 152
accessibility

private, 144
protected, 144
public, 144

constructor, 20, 145
copy constructor, 145
declaration of, 143
default constructor, 148
destructor, 20, 145
encapsulated data, 19
method definitions, 144
object, 144
object allocation, 147
operations on data, 19
overloaded operators, 21, 146

Classes and functions
library of, 9

Collatz problem, 28, 91
Communicator, 84, 200
Condition number, 44, 528
Conjugate directions, 234
Conjugate gradient method, 232

convergence, 572
parallel, 578
preconditioners, 573

Consistent ordering, 435
Contraction mapping, 216
Convergence error

Fourier analysis, 444
Courant number, 472
CPU, 7
Cramer’s rule, 523
Crank-Nicolson scheme, 378, 399

stability, 379
Cray computer, 70
Curvilinear domains, 160
Cyclic reduction, 547, 556

Dahlquist stability theorem, 331, 381
Dahlquist-Bjorck stencil, 320

INDEX 685

Daubechies wavelets, 194
Diagonally-dominant matrix, 528
Difference equation

accuracy, 393
stability, 394

Diffusion, 467
Diffusion number, 395
Diffusion operator

spectrum, 403
Dilation equation, 185
Directed graph, 421
Directional splitting, 346, 410
Dirichlet kernel, 165
Dispersion, 467
Dispersion relation, 401
Divided differences, see Newton interpola-

tion
Dongarra, 10, 11, 56, 75, 627
double, 21
Double extended precision, 42
Double precision, 21, 42
Douglas-Rachford algorithm, 413
Downwind difference, 288
DSM, 10
DuFort-Frankel scheme, 401
Dynamic memory allocation, 8

Eigenvalues, 46
Eigenvectors, 46
Embarassingly parallel problem, 78
Embarrassingly parallel algorithm, 82
Encapsulation, 8
Equivalent differential equation, 469, 485,

488, 489, 491, 498, 501
Error function, 279
Euler-backward scheme, 378, 399, 405

stability, 379
Euler-forward scheme, 323, 400, 405

stability, 327
Explicit casting, 100
Explicit time-stepping, 323

convergence, 326

Fan-in algorithm, 77, 78
inner product, 77

Fast Fourier Transform, 11, see FFT
Fast multipole algorithm, 11
Fastest Fourier Transform in the West, see

FFTW
Feigenbaum’s constant, 214
Fejer’s construction, 165
FFT, 163, 176

divide-and-conquer, 177
FFTW, 178
Fibonacci sequence, 91
Finite differences

α-family, 351, 354
boundary conditions, 356
difference operators, 286, 346
explicit, 282
first derivative, 346, 349
fourth derivative, 355
higher-order derivatives, 289
implicit, 346
mappings, 312
method of undetermined coefficients, 285,

349
mixed derivatives, 320
MPI implementation, 296
multi-dimensions, 316
non-uniform grids, 308
one-dimensional boundary value prob-

lem, 314, 357
second derivative, 290, 348, 352
third derivative, 354
two-point stencil, 348
uniform grids, 285
variable coefficient, 304, 318

Fixed point iteration, 213
attractive, 214
convergence theorem, 216
repulsive, 214

float, 16, 21
Floating point, 16, 41
Fornberg’s method, 309
FORTRAN, 10, 11

BLAS, 54
compiler, 11

Forward difference
first derivative, 282, 287

INDEX 686

second derivative, 290
Forward substitution, 360, 521
Fourier series, 163

convergence, 163
differentiation, 168
matrix representation, 174
periodic extension, 166

Frequency domain, 163
Full-recursive-doubling, 368, 369
Function

argument list, 16
declaration of, 15
definition of, 15

Functions, 14
main(), 13

Garabedian, P.R., 441
Gauss quadrature, 248, 256–258

error, 258
infinite intervals, 259
weights, 259

Gauss-Chebyshev quadrature, 262
Gauss-Seidel algorithm, 431, 433, 441, 453

parallel, 433
relaxed, 445

Gaussian elimination, 518
computational cost, 521
pivoting, 524
sparse systems, 546

General stability, 326, 383
Givens rotations, 567, 591
Globus, 75
GMRES, 590

parallel, 597
preconditioning, 597

GMRES(k), 594
Gram-Schmidt algorithm, 62, 587

modified, 67, 598

Haar family, 183
Haar wavelet, 191
Halley’s method, 276
Hankel matrix, 133
Harmonic functions, 163
Helmholtz equation, 387, 463

Hermite integration, 261
Hermite interpolation, 126
Hessenberg matrix, 568, 591, 602
Hessenberg reduction, 568
Hilbert matrix, 520
Householder algorithm, 564
Householder deflation, 616
Householder matrix

decomposition, 10
Householder transformation, 560, 590

Implicit casting, 100
Implicit time-stepping, 378
Inner product, 52
Integer relation detection algorithm, 11
Integration, 240

multi-dimensions, 265
singular integrals, 263

Interpolation
bilinear, 155
high-order, 156
mappings, 203
multi-dimensional, 153
multi-variate polynomial, 202
noisy data, 173
polynomial, 95
trigonometric, 171

Iterative solvers, 416
convergence, 441
non-symmetric systems, 585

Jacobi algorithm, 416, 417, 433, 441
convergence rate, 419
parallel, 422
relaxed, 445, 451

Jacobi polynomials, 250

Krylov subspace, 10, 572, 586, 590, 635

Lagrangian interpolation, 114, 309
Laguerre integration, 259
Lanczos eigensolver, 635
Lanczos filter, 168, 170, 268
Lanczos formula, 572, 635
Laplace modes, 447, 449
Lax’s equivalence theorem, 328

INDEX 687

Lax-Friedrichs scheme, 479
nonlinear, 515

Lax-Wendroff scheme, 484
Leap-frog scheme, 323, 386, 495

stability, 329
Least Squares, 131

normal equations, 132
orthonormal polynomials, 134

Legendre polynomial, 251
Linux, 74
Load balancing, 70
Long-time stability, 397
Lotka-Volterra system, 342, 389
LR factorization, 625, 644
LU decomposition, 359, 360, 365, 367, 520

incomplete, 597
parallel, 530

Machine zero, 44
Mallat’s algorithm, 190
Matrix method for stability, 399
Memory hierarchies, 60
Memory leak, 138
Memory management, 48

matrices, 48
Midpoint-rectangle rule, 240
MIMD, 71, 72
Minimax property, 439
Molecular dynamics, 3
Monte Carlo method, 3, 10, 267, 343
Moore’s law, 74
MPI, 8, 9, 80
MPI Datatypes, 197
MPI functions

MPI Allgather, 424, 559
MPI Allgatherv, 431
MPI Allreduce, 271
MPI Alltoall, 617, 619
MPI Barrier, 376
MPI Bcast, 538, 542, 543
MPI Comm rank, 84
MPI Comm size, 84
MPI Finalize, 83, 84
MPI Gather, 422
MPI Init, 83

MPI Irecv, 510
MPI Isend, 510
MPI Recv, 86, 90, 198, 296
MPI Reduce, 269
MPI Scatter, 425
MPI Send, 86, 90, 197, 296
MPI Sendrecv, 299
MPI Sendrecv replace, 299, 302
MPI Status, 198
MPI Wait, 510
MPI Wtick, 375
MPI Wtime, 375

MPI reduction operations, 269
MPI MAX, 269
MPI PROD, 269
MPI SUM, 269

MPI tag, 197
MPI ANY SOURCE, 200
MPI ANY TAG, 200
MPI COMM WORLD, 197, 200
MPI ERROR, 198
MPICH, 74
Mueller’s method, 276
Multi-resolution analysis, 183
Multi-step schemes, 323, 381, 386
Multigrid method, 449

coarse-grid correction, 453, 458, 459
convergence, 460
nested iteration, 450
prolongation, 451, 454, 456
restriction, 451, 453, 454
smoother, 451–453
V-cycle, 460, 464
W-cycle, 459

Nanotechnology, 2, 3, 74
Newmark method, 384
Newton interpolation, 95

divided differences, 97
recursive algorithm, 96

code, 109
Newton-Raphson algorithm, 208, 217

convergence theorem, 221
improved convergence, 219
multiple roots, 219

INDEX 688

Nonlinear equations
convergence, 229
modified Newton, 229
systems, 227

Norms, 44
Notation, 41
Numerical dispersion, 401
Numerical dissipation, 401
Numerical quadrature, 240
Numerical Recipes, 11

OpenMP, 10
Outer product, 52

Padé approximation, 346
Parabolic equation, 391
Parallel computing, 70, 80

divide-and-conquer, 77
reduction, 268
send and receive, 197
top 500, 75

Parallel efficiency, 78
Parseval’s identity, 168
Partitioning, 8
Pascal’s diagram, 154, 158
PCGM, 572

parallel, 578
Peaceman-Rachford algorithm, 413
Peclet number, 497, 506

grid, 500
Pentadiagonal schemes, 351
Period doubling cascade, 214
Perturbation analysis, 396
Phase errors, 480, 483, 485, 488–491
Phase speed, 468
Polynomial deflation, 252
Polynomial eigenproblems, 640
Polynomial equations, 210
Power method, 609

inverse, 612
shifting, 611

Preconditioned Conjugate Gradient Algo-
rithm, 574

Preconditioners, 435, 442, 573
circulant, 577

Predictor-corrector, 386
Process rank, 84, 85
Process synchronization, 377
Programming language

assembly, 7
concept of, 6
higher level, 8
low-level, 7

PVM, 8

QMR, 600
QR algorithm, 11
QR eigensolver, 623

Hessenberg, 625
parallel, 627
shifted, 625
Wilkinson shift, 627

QR factorization, 66, 136, 522, 560
computational cost, 567

Quadrature error, 242
Quicksort algorithm, 11
QZ eigensolver, 639

Race condition, 298
Ramanujan, 279
Rational approximation theorem, 329
Rayleigh quotient, 611–613, 640
Recursive function calling, 8
Recursive-doubling, 76
Richardson, Lewis F., 70
Romberg’s method, 244
Runge function, 112, 118, 201
Runge phenomenon, 117
Runge-Kutta methods, 334, 386

autonomous ODE, 336
stability, 338

Rutishauser formula, 572

SC, 9
Schur complement, 602
Schur triangulization theorem, 624
Scientific computing

definition of, 4
SCMatrix, 9, 237
SCVector, 9, 237
Secant method, 226

INDEX 689

error analysis, 227
Second-order initial value problem, 384
Secular equation, 629
Semi-Implicit discretization, 503
Semi-Lagrangian discretization, 503
Shannon wavelet, 191
Shape functions, 157, 204
Shared-memory computer, 10
Sherman-Morrison formula, 387
SIMD, 71, 72
Similarity transformation, 47
Simplex method, 10
Simpson’s rule, 246
Simulation science, 2, 4

stages of, 5
Simulation scientist, 3
Single precision, 21, 41
Singular eigenproblems, 639
Software for fast eigensolvers, 641
Software for fast solvers, 601
SOR algorithm, 436, 441
Soupercomputer, 74
Soupercomputing, 70
Sparse matrices, 61
Speed-up factor, 77

superlinear, 80
Spline wavelet, 192
Splines, 126

B-spline, 130
complete, 129
cubic, 128
natural, 129
not-a-knot, 129

SSOR algorithm, 438
Stability, 328

regions of, 331
root condition, 330

Steepest descent method, 230
Stiff ODEs, 386

stability, 381
Stiffly stable schemes, 383, 386
Stochastic ODE, 342
Supercomputing, 70

grid, 74

Tadmor’s correction, 479
nonlinear, 515

Telescoping of power series, 211
Thomas algorithm, 359

periodic system, 365
Time-space stencils, 392, 475

multi-dimensions, 409
Toeplitz matrix, 577, 606, 644
Top ten algorithms, 10
Transportive property, 478
Trapezoid rule, 241, 256

corrected, 244
Tridiagonal schemes, 350
Tridiagonal system

diagonally dominant, 361
parallel, 547
parallel algorithm, 367

TVB, 334, 386
TVD, 334

Upwind scheme
first-order, 475, 494
second-order, 482

Vandermonde interpolation, 95
Vandermonde matrix, 95, 201
von Neumann stability analysis, 398, 471,

480, 483, 485, 488, 490, 498, 500

Walsh family, 181
Wave equation, 470
Wavelets, 181

bi-orthogonality condition, 189
discrete transform, 188
dual wavelet, 189
hat wavelet, 185
mother, 183, 189
orthonormal, 190
reconstruction, 190
scaling function, 181

Weirstrass theorem, 117

