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Preface

Scientific computing is by its very nature a practical subject - it requires tools and a lot of
practice. To solve realistic problems we need not only fast algorithms but also a combination
of good tools and fast computers. This is the subject of the current book, which emphasizes
equally all three: algorithms, tools, and computers. Often times such concepts and tools are
taught serially across different courses and different textbooks, and hence the interconnection
between them is not immediately apparent. We believe that such a close integration is
important from the outset.

The book starts with a heavy dosage of C++ and basic mathematical and computational
concepts, and it ends emphasizing advanced parallel algorithms that are used in modern
simulations. We have tried to make this book fun to read, to somewhat demystify the
subject, and thus the style is sometimes informal and personal. It may seem that this
happens at the expense of rigor, and indeed we have tried to limit notation and theorem
proofing. Instead, we emphasize concepts and useful tricks-of-the-trade with many code
segments, remarks, reminders, and warnings throughout the book.

The material of this book has been taught at different times to students in engineering,
physics, computer science, and applied mathematics at Princeton University, Brown Univer-
sity, and MIT over the last 15 years. Different segments have been taught to undergraduates
and graduates, to novices as well as to experts. To this end, on all three subjects covered, we
start with simple introductory concepts and proceed to more advanced topics - bandwidth,
we believe, is one strength of this book.

We have been involved in large-scale parallel computing for many years from benchmark-
ing new systems to solving complex engineering problems in computational mechanics. We
represent two different generations of computational science and supercomputing, and our
expertise are both overlapping and complementary. The material we selected to include in
this book is based on our experiences and needs as computational scientists for high-order
accuracy, modular code, and domain decomposition. These are necessary ingredients for
pushing the envelope in simulation science and allow one to test new theories and concepts
or solve very large specific engineering problems accurately.

In addition to integrating C++ and MPI concepts and programs into the text, we also
provide with this book a software suite containing all the functions and programs discussed.
It is our belief, as stated earlier, that mastery of this subject requires both a knowledge of the
tools and substantial practice using the tools. Part of the integration that we are attempting
to achieve is attained when the reader is able to go immediately from the textbook to the
computer to experiment with the concepts which have been presented. We envision the
software suite allowing the reader to do the following: to verify the concepts presented in
the book by using the programs that are provided, to extend the programs in the book
to implement concepts that may have been discussed but not programmed, and to tackle
different problems than those presented using the software provided.



How to Use This Book

The current book is appropriate for use by students in engineering and physics, computer
science, and applied mathematics. It is designed to be more like a textbook and less of
a research monograph. The material can be used to fill two semesters with the following
breakdown: The first semester will cover chapters 1 to 5 at the senior undergraduate or first
year graduate level. The second semester will cover the remainder of the book in a first or
second year graduate course. Chapters 1 to 5 cover all the basic concepts in algorithms, C++-,
and MPI. Chapters 6 to 10 cover discretization of differential equations and corresponding
solvers, and present more advanced C++ and MPI tools. The material in chapter 3 on
approximation of functions and discrete data is fundamental and precedes other topics. In
the basic material on discretization, we separated explicit from implicit approaches because
the parallel computational complexity of the two is fundamentally different.

A lighter course, e.g. a quarter course or a lower level undergraduate course, could be
based on chapters 1 to 5 by leaving out the MPI material and possibly other advanced
topics such as wavelets, advanced quadrature rules, and systems of nonlinear equations.
There are other possibilities as well. A graduate level course on numerical linear algebra can
be based on sections 4.1.6, 4.1.7 and chapters 7 to 10. Assuming that the student has a C++
background or even another high performance language then the addition of MPI material
in sections 2.3, 3.4, 4.3 and 5.13 to the above will constitute one full semester course on
parallel numerical linear algebra. Another possibility for a quarter course is to simply teach
the algorithms in chapters 5 to 8 covering traditional numerical analysis. Supplementary
notes from the instructor, e.g. theorem proofs and more case studies, can make this a full
semester course.

The book is designed so that it can be used with or without the C4++ and MPI tools
and associated concepts but we strongly encourage the instructor to teach the course as a
seamless integration of both algorithms and tools.

Acknowledgements

We are grateful to Dr. Ma Xia and Dr. C. Evangelinos for their help and advice regarding
the material of this topic and for some of the figures that they provided. We would also like
to thank Ms. Madeline Brewster for her help in formatting the book and for typing a major
part of it. The first author is grateful for the many years of funding by the Office of Naval
Research, the Air Force Office of Scientific Research, and the Department of Energy.

Finally, we would like to thank our families for their continuous love, patience, and
understanding, especially during this long project.

Providence, Rhode Island, USA George Em Karniadakis
Salt Lake City, Utah, USA Robert M. Kirby II

i



Contents

1 Scientific Computing and Simulation Science
1.1  What is Simulation? . . . . . .. ... o
1.2 A Seamless Approach Path . . . . . . .. .. ... ... L.
1.3 The Concept of Programming Language . . . . ... ... ... ... ....
1.4 Why C++ and What is MPI? . . . . . . .. ... ... .. ...
1.5 What About OpenMP? . . . . . . . . ..
1.6 Algorithms and Top Ten List . . . . ... .. ... .. ... ... .. ...

2 Basic Concepts and Tools
2.1 Introduction to C+4 . . . . . . . ..
2.1.1 Two Basic Concepts in C++. . . . . . . .. ... ... ... .....
2.1.2 Learning the Syntax and Other Basic Commands . . . . .. ... ..
2.1.3 Learning toPrint . . . . . . .. .o oo
2.1.4 LearningtoRead . . . . . . .. .. ... oo
2.1.5 How to Program in Style . . . . . . .. ... ... ... ...
2.2 Mathematical and Computational Concepts . . . . . . . .. ... ... ...
2.2.1 Notation . . . . . . .. . L
2.2.2  Binary Numbers and Round-oft . . . . .. ... ... ... ... ...
2.2.3 Condition Number . . . . . .. ... ...
2.2.4 Vector and Matrix Norms . . . . . . .. .. ... ... ...
2.2.5 Eigenvalues and Eigenvectors . . . . . . . ... .. ... .. ...
2.2.6  Memory Management . . . . . . .. . ... oo
2.2.7 Basic Linear Algebra - BLAS . . . . . .. ... ...
2.2.8 Exploiting the Structure of Sparse Matrices . . . . .. .. ... ...
2.2.9 Gram-Schmidt Vector Orthogonalization . . . . . ... .. ... ...
2.3 Parallel Computing . . . . . . . . ...
2.3.1  From Supercomputing to Soupercomputing . . . . . . . ... ... ..
2.3.2 Mathematical Parallelism and Recursive-Doubling . . . . . . . .. ..
233 Amdahl'sLaw . . . . . . .. ... .
2.3.4 MPI - Message Passing Interface . . . . . . .. ... ... ... ...
2.4 Homework Problems . . . . . . . .. . ...

3 Approximation
3.1 Polynomial Representation . . . . . . .. ... ... ... ... L.
3.1.1 Vandermonde and Newton Interpolation . . . . . .. ... ... ...

il



3.1.2 Arraysin CH++ . . . . .o 98

3.1.3 Lagrangian Interpolation . . . . . . . . .. ... ... 114
3.1.4 The Runge Phenomenon . . . . .. .. ... ... ... ... ... . 117
3.1.5  Chebyshev Polynomials . . . . . .. .. ... ... ... ... ..... 120
3.1.6  Hermite Interpolation and Splines . . . . . . . ... ... ... .... 126
3.1.7 Least-Squares Approximation . . . . . . .. ... ... ... ..... 131
3.1.8 Introduction to Classes . . . . . . . . . . .. ... ... ... ... 142
3.1.9  Multi-Dimensional Interpolations . . . . .. ... .. ... .. .... 153
3.1.10 Simple Domains . . . . . . . .. ... 154
3.1.11 Curvilinear Domains . . . . . . . . . ... ... ... ... 160
3.2 Fourier Series Representation . . . . . . . .. ... .. ... ... ... ... 163
3.2.1 Convergence . . . . . . . . . .. 163
3.2.2 Periodic Extension of Functions . . . . . .. ... .. ... .. .... 166
3.2.3 Differentiation and the Lanczos Filter . . . . . . . .. ... ... ... 168
3.2.4 Trigonometric Interpolation . . . . . . . .. ... ... ... ... 171
3.25 Noisy Data . . . . .. .. 173
3.2.6  Matrix Representation . . . . . . ... ... ... ... ... . ... 174
3.2.7  The Fast Fourier Transform (FFT) . ... ... ... ... ...... 176
3.2.8 The Fastest Fourier Transform in the West - FEFTW . . . . . . .. .. 178
3.3 Wavelet Series Representation . . . . . . . .. .. ... ... .. ... ... 181
3.3.1 Basic Relations . . . . ... ... .. 181
3.3.2 Dilation Equation . . . . . . . ... ... o 185
3.3.3 Discrete Wavelet Transform: Mallat’s Algorithm . . . . . . . . . . .. 188
3.3.4 Some Orthonormal Wavelets . . . . . . ... ... ... ... ..... 190
3.4 Back to Parallel Computing: Send and Receive . . . . ... ... ... ... 197
3.5 Homework Problems . . . . . ... . ... ... ... ... 201
3.5.1 Homework Problems for Section 3.1 . . . . . ... ... ... ..... 201
3.5.2  Homework Problems for Section 3.2 . . . . . ... .. ... .. .... 205
3.5.3 Homework Problems for Section 3.3 . . . . . .. ... ... ... ... 206
Roots and Integrals 207
4.1 Root Finding Methods . . . . . . . . . . . ... ... ... ... 208
4.1.1 Polynomial Equations . . . . .. ... ... ... ... .. ... .. 210
4.1.2 Fixed Point Iteration . . . . . . . . .. ... ... ... 213
4.1.3 Newton-Raphson Method . . . . .. ... .. ... ... ....... 217
4.1.4 Passing Functions to Functions in C+4. . . . . . .. .. ... .. .. 221
4.1.5 Secant Method . . . . . . . . ... ... 226
4.1.6 Systems of Nonlinear Equations . . . . . . . .. ... ... ... ... 227
4.1.7 Solution via Minimization:
Steepest Descent and Conjugate Gradients . . . . . . ... ... ... 230
4.2 Numerical Integration Methods . . . . . .. .. .. ... ... ... ... .. 240
4.2.1 Simple Integration Algorithms . . . . . . . . . . ... ... ... .. 240
4.2.2 Advanced Quadrature Rules . . . . . . ... ... ... ... .. .. 248
4.2.3 Multi-Dimensional Integration . . . . . . . . ... ... ... 265
4.3 Back to Parallel Computing: Reduction . . . . . .. ... .. ... ... ... 268

v



4.4 Homework Problems . . . . . . . . . 275

4.4.1 Homework Problems for Section 4.1 . . . . . . . ... ... ... ... 275
4.4.2 Homework Problems for Section 4.2 . . . . . . ... ... ... .. .. 279
Explicit Discretizations 281
5.1 Explicit Space Discretizations . . . . . . . .. ... ... L. 282
5.1.1 Basics . . . . .. 282
5.1.2  Uniform Grids . . . . . . . . ... 285
5.1.3 MPI Parallel Implementation of Finite Differences . . . . . . . . . .. 296
5.1.4  Multi-Dimensional Arrays in C++ . . . . . .. ... ... ... ... 304
5.1.5 Non-Uniform Grids . . . . . . . .. .. ... ... ... 308
5.1.6  One-Dimensional Boundary Value Problem . . . . . . . ... ... .. 314
5.1.7 Multi-Dimensional Discretizations . . . . . . . . . .. ... ... ... 316
5.2 Explicit Time Discretizations . . . . . . . .. ... ... ... 323
5.2.1 Multi-Step Schemes . . . . . .. ..o 323
5.2.2  Convergence: Consistency and Stability . . . . . .. .. ... .. ... 326
5.2.3 Stability and Characteristic Polynomials . . . . . . .. ... ... .. 328
5.2.4 Runge-Kutta Methods . . . . ... .. ... ... ... .. ..... 334
5.2.5  Stability of Runge-Kutta Methods . . . . . . .. .. .. .. ... ... 338
5.3 Homework Problems . . . . .. .. . ... ... 340
Implicit Discretizations 345
6.1 Implicit Space Discretizations . . . . . . . . . . . .. ... ... ... ... 346
6.1.1 Difference Operators . . . . . . . . . .. .. 346
6.1.2 Method of Undetermined Coefficients . . . . . . . .. ... ... ... 349
6.1.3 One-Dimensional Boundary Value Problem . . . . . . . ... ... .. 357
6.1.4 Thomas Algorithm for Tridiagonal Systems . . . . . . . . . ... ... 359
6.1.5 Parallel Algorithm for Tridiagonal Systems . . . . . .. . .. .. ... 367
6.2 Implicit Time Discretizations . . . . . . . . . . .. .. .. ... 378
6.2.1 Fundamental Theorems for Multi-Step Methods . . . . . . ... . .. 381
6.2.2 Stability of Stif ODEs . . . . . . . . ... oL 381
6.2.3 Second-Order Initial Value Problems . . . . . . ... ... ... ... 384
6.2.4 How to March in Time . . . . . . ... ... ... ... ... ..... 386
6.3 Homework Problems . . . . .. .. . ... ... . L 387
Relaxation: Discretization
and Solvers 390
7.1 Discrete Models of Unsteady Diffusion . . . . . .. ... ... ... .. ... 391
7.1.1 Temporal and Spatial Discretization . . . . .. .. .. .. ... ... 392
7.1.2 Accuracy of Difference Equation . . . . . . . ... ... ... ... .. 393
7.1.3 Stability of Difference Equation . . . . . . . ... ... ... ... .. 394
7.1.4 Spectrum of the Diffusion Operator . . . . . . . .. .. ... .. ... 403
7.1.5  Multi-Dimensional Time-Space Stencils . . . . . .. .. .. ... ... 409
7.2 Tterative Solvers . . . . . . . .. 416
7.2.1 Jacobi Algorithm . . . . . . ... ... 416



7.2.2  Parallel Jacobi Algorithm . . . . ... .. ... ... ... ... 422

7.2.3 Gauss-Seidel Algorithm . . . . . . ... ... 431
7.2.4 Parallel (Black-Red) Gauss-Seidel Algorithm . . . . ... ... .. .. 433
7.2.5  Successive Acceleration Techniques - SOR . . . . ... .. ... ... 436
7.2.6 Symmetric Successive Acceleration Techniques - SSOR . . . . . . .. 438
7.2.7 SSOR with Chebyshev Acceleration . . . . . ... ... ... ..... 439
7.2.8 Convergence Analysis of Iterative Solvers . . . . . .. ... ... ... 441
7.2.9 Relaxed Jacobi and Gauss-Seidel . . . . . ... .. ... 445
7.2.10 The Multigrid Method . . . . . .. .. ... ... oL 449
7.3 Homework Problems . . . . .. . . .. .. .. o 462
Propagation: Numerical Diffusion and Dispersion 466
8.1 Advection Equation . . . . . . ... ... 467
8.1.1 Dispersion and Diffusion . . . . ... ... ... ... ... .. ... 467
8.1.2  Other Advection Equations . . . . . . .. ... ... ... ... ... 469
8.1.3 First-Order Discrete Schemes . . . . . . . . .. ... ... ... ... 470
8.1.4 High-Order Discrete Schemes . . . . . .. ... .. ... .. ..... 482
8.1.5  Effects of Boundary Conditions . . . . . . ... .. ... ... .... 493
8.2  Advection-Diffusion Equation . . . . . . .. ..o 497
8.2.1 Discrete Schemes . . . . . . . ... 497
8.2.2 Effects of Boundary Conditions . . . . . . . ... ... ... . .... 505
8.3 MPI: Non-Blocking Communications . . . . . ... ... ... ... ..... 509
8.4 Homework Problems . . . . . .. . ... .. .. 514
Fast Linear Solvers 517
9.1 Gaussian Elimination . . . . . . . .. ..o 518
9.1.1 LU Decomposition . . . . . . . . . . . .. . 520
9.1.2 To Pivot or Not to Pivot? . . . . . . .. .. ... .. ... ...... 524
9.1.3 Parallel LU Decomposition . . . . . . .. .. ... .. ... .. .... 530
9.1.4 Parallel Back Substitution . . . . . .. ... ... ... 534
9.1.5 Gaussian Elimination and Sparse Systems . . . . . .. .. ... ... 546
9.1.6 Parallel Cyclic Reduction for Tridiagonal Systems . . . . . . . . . .. o547
9.2 Cholesky Factorization . . . . . . . . .. . ... L 559
9.3 QR Factorization and Householder Transformation . . . .. .. ... .. .. 560
9.3.1 Hessenberg and Tridiagonal Reduction . . . . . ... ... ... ... 568
9.4 Preconditioned Conjugate Gradient Method - PCGM . . . . . ... ... .. 572
9.4.1 Convergence Rate of CGM . . . . . . . ... .. ... ... 572
9.4.2 Preconditioners . . . . . .. ..o 973
9.4.3 Toeplitz Matrices and Circulant Preconditioners . . . . . . . . . . .. 577
9.4.4 Parallel PCGM . . . .. .. . ... . 578
9.5 Non-Symmetric Systems . . . . . . . ... oL 585
9.5.1 The Arnoldi Iteration . . . . . . . . ... ... L 586
9.5.2 GMRES . . . . . 590
9.5.3 GMRES(k) . . . . . . 594
9.5.4 Preconditioning GMRES . . . . . . ... .. ... 597

vi



9.5.5

Parallel GMRES . . . . . . .

9.6 What Solver to Choose? . . . . . . . . .
9.7 Available Software for Fast Solvers . . . . . . . . . . .. ... ... ...
9.8 Homework Problems . . . . . . . . .

10 Fast Eigensolvers
10.1 Local Eigensolvers . . . . . . . . .. .

10.1.1
10.1.2

Basic Power Method . . . . . . . . . . .. ..
Inverse Shifted Power Method . . . . . . . . . . . . . .. ... ...

10.2 Householder Deflation . . . . . . ... .. .. ... ... ... ........
10.3 Global Eigensolvers . . . . . . . . . . ... o

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6

The QR Eigensolver . . . . . . . .. ... ... o
The Hessenberg QR Eigensolver . . . . . . .. ... ... ... ....
Shifted QR Eigensolver . . . . . . . . . .. ... oL
The Symmetric QR Eigensolver: Wilkinson Shift . . . .. .. .. ..
Parallel QR Eigensolver: Divide-and-Conquer . . . . .. .. ... ..
The Lanczos Eigensolver . . . . . . . . . ... .. ... ... ...

10.4 Generalized Eigenproblems . . . . . . .. . ... o000

10.4.1
10.4.2
10.4.3

The QZ Eigensolver . . . . . . . . . . . . ...
Singular Eigenproblems . . . .. . ... ... o000
Polynomial Eigenproblems . . . . . .. ... .. ... ... ......

10.5 Arnoldi Method: Non-Symmetric Eigenproblems . . . . . . . ... ... ...
10.6 Available Software for Eigensolvers . . . . . . . ... .. .. ... ... ...
10.7 Homework Problems . . . . . . . . . . ... ..

A A. C++ Basics
A.1 Compilation Guide . . . . . . . . . . ..
A2 CH+ Basic Data Types . . . . . . . .
A3 C++4 Libraries . . . . . . . . e

A3.1
A3.2
A.3.3

Input/Output Library —iostream.h . . . . . ... .. ... ... ...
Input/Output Manipulation Library — iomanip.h . . . . .. . . . .|
Mathematics Library —math.h . . . . . . ... ... 0000

A.4 Operator Precedence . . . . . . . . . .. .. ...
A5 C++4+and BLAS . . . . . . .

B B. MPI Basics
B.1 Compilation Guide . . . . . . . . . ...
B.2 MPI Commands . . . . . . . . .

B.2.1
B.2.2
B.2.3
B.24

Predefined Variable Types in MPT . . . . . . . ... ... ... .. ..
Predefined Reduction Operatorsin MPI . . . . ... ... ... ...
MPI Function Declarations . . . . . . . . . . ... ... .. ......
MPI Constants and Definitions . . . . . . . .. ... ... ... ...



Chapter 1

Scientific Computing and Simulation
Science

1.1 What is Simulation?

Science and engineering have undergone a major transformation at the research as well as
at the development and technology level. The modern scientist and engineer spend more
and more time in front of a laptop, a workstation, or a parallel supercomputer and less and
less time in the physical laboratory or in the workshop. The virtual wind tunnel and the
virtual biology lab are not a thing of the future, they are here! The old approach of “cut-
and-try” has been replaced by “simulate-and-analyze” in several key technological areas such
as aerospace applications, synthesis of new materials, design of new drugs, chip processing
and microfabrication, etc. The new discipline of nanotechnology will be based primarily on
large-scale computations and numerical experiments. The methods of scientific analysis and
engineering design are changing continuously, affecting both our approach to the phenomena
that we study as well as the range of applications that we address. While there is a lot
of software available to be used as almost a “black-box,” working in new application areas
requires good knowledge of fundamentals and mastering of effective new tools.

In the classical scientific approach, the physical system is first simplified and set in a form
that suggests what type of phenomena and processes may be important, and correspond-
ingly what experiments are to be conducted. In the absence of any known-type governing
equations, dimensional inter-dependence between physical parameters can guide laboratory
experiments in identifying key parametric studies. The database produced in the laboratory
is then used to construct a simplified “engineering” model which after field-test validation
will be used in other research, product development, design, and possibly lead to new tech-
nological applications. This approach has been used almost invariably in every scientific
discipline, i.e., engineering, physics, chemistry, biology, etc.

The simulation approach follows a parallel path but with some significant differences.
First, the phase of the physical model analysis is more elaborate: The physical system is
cast in a form governed by a set of partial differential equations, which represent continuum
approximations to microscopic models. Such approximations are not possible for all systems,
and sometimes the microscopic model should be used directly. Second, the laboratory exper-
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iment is replaced by simulation, i.e., a numerical experiment based on a discrete model. Such
a model may represent a discrete approximation of the continuum partial differential equa-
tions, or it may simply represent a statistical representation of the microscopic model. Finite
difference approximations on a grid are examples of the first case, and Monte Carlo methods
are examples of the second case. In either case, these algorithms have to be converted to
software using an appropriate computer language, debugged, and run on a workstation or a
parallel supercomputer. The output is usually a large number of files of a few Megabytes to
hundreds of Gigabytes, being especially large for simulations of time-dependent phenomena.
To be useful, this numerical database needs to be put into graphical form using various vi-
sualization tools, which may not always be suited for the particular application considered.
Visualization can be especially useful during simulations where interactivity is required as
the grid may be changing or the number of molecules may be increasing.

The simulation approach has already been followed by the majority of researchers across
disciplines in the last few decades. The question is if this is a new science, and how one could
formally obtain such skills. Moreover, does this constitute fundamental new knowledge or is
it a “mechanical procedure,” an ordinary skill that a chemist, a biologist or an engineer will
acquire easily as part of “training on the job” without specific formal education. It seems
that the time has arrived where we need to reconsider boundaries between disciplines and
reformulate the education of the future simulation scientist, an inter-disciplinary scientist.

Let us re-examine some of the requirements following the various steps in the simulation
approach. The first task is to select the right representation of the physical system by
making consistent assumptions in order to derive the governing equations and the associated
boundary conditions. The conservation laws should be satisfied; the entropy condition should
not be violated; the uncertainty principle should be honored. The second task is to develop
the right algorithmic procedure to discretize the continuum model or represent the dynamics
of the atomistic model. The choices are many, but which algorithm is the most accurate
one, or the simplest one, or the most efficient one? These algorithms do not belong to a
discipline! Finite elements, first developed by the famous mathematician Courant and re-
discovered by civil engineers, have found their way into every engineering discipline, physics,
geology, etc. Molecular dynamics simulations are practiced by chemists, biologists, material
scientists, and others. The third task is to compute efficiently in the ever-changing world of
supercomputing. How efficient the computation is translates to how realistic of a problem is
solved, and therefore how useful the results can be to applications. The fourth task is to assess
the accuracy of the results in cases where no direct confirmation from physical experiments
is possible such as in nanotechnology or in biosystems or in astrophysics, etc. Reliability of
the predicted numerical answer is an important issue in the simulation approach as some
of the answers may lead to new physics or false physics contained in the discrete model or
induced by the algorithm but not derived from the physical problem. Finally, visualizing the
simulated phenomenon, in most cases in three-dimensional space and in time, by employing
proper computer graphics (a separate specialty on its own) completes the full simulation
cycle. The rest of the steps followed are similar to the classical scientific approach.

In classical science we are dealing with matter and therefore atoms but in simulation we
are dealing with information and therefore bits, so it is atoms versus bits! We should, there-
fore, recognize the simulation scientist as a separate scientist, the same way we recognized
just a few decades ago the computer scientist as different than the electrical engineer or the
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Figure 1.1: Definition of scientific computing as the intersection of numerical mathematics, com-
puter science, and modeling.

applied mathematician. The new scientist is certainly not a computer scientist although she
should be computer literate in both software and hardware. She is not a physicist although
she needs a sound physics background. She is not an applied mathematician although she
needs expertise of mathematical analysis and approximation theory.

With the rapid and simultaneous advances in software and computer technology, espe-
cially commodity computing, the so-called soupercomputing, every scientist and engineer will
have on her desk an advanced simulation kit of tools consisting of a software library and
multi-processor computers that will make analysis, product development, and design more
optimal and cost-effective. But what the future scientists and engineers will need, first and
foremost, is a solid inter-disciplinary education.

Scientific computing is the heart of simulation science, and this is the subject of this
book. The emphasis is on a balance between classical and modern elements of numerical
mathematics and of computer science, but we have selected the topics based on broad mod-
eling concepts encountered in physico-chemical and biological sciences, or even economics
(see figure 1.1).

1.2 A Seamless Approach Path

Our aim in writing this book has been to provide the student, the future simulation scien-
tist, with a seamless approach to numerical algorithms, modern programming techniques,
and parallel computing. Often times such concepts and tools are taught serially across dif-
ferent courses and different textbooks, and hence the interconnection between them is not
immediately apparent. The necessity of integrating concepts and tools usually comes after
such courses are concluded, e.g. during a first job or a thesis project, thus forcing the student
to synthesize what is perceived to be three independent subfields into one in order to produce
a solution. Although this process is undoubtly valuable, it is time consuming and in many
cases it may not lead to an effective combination of concepts and tools. Moreover, from the
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pedagogical point of view, the integrated seamless approach can stimulate the student simul-
taneously through the eyes of multiple disciplines, thus leading to enhanced understanding
of subjects in scientific computing.

This
Book

(a) (b)

Figure 1.2: Simultaneous integration of concepts shown in (a) in contrast with the classical serial
integration shown in (b).

As discussed in the previous section, in the scientific simulation approach there are several
successive stages that lead from :

1. The real world problem to its mathematical formulation;
2. From the mathematical description to the computer implementation and solution, and
3. From the numerical solution to visualization and analysis.

In this book, we concentrate on stage (2) which includes not only the mathematics of nu-
merical linear algebra and discretization but also the implementation of these concepts in
C++ and MPL

There are currently several excellent textbooks and monographs on these topics but
without the type of integration that we propose. For example, the book by Golub & Ortega
[45] introduces pedagogically all the basic parallel concepts, but a gap remains between the
parallel formulation and its implementation. Similarly, the books by Trefethen & Bau [8§]
and Demmel [26] provide rigor and great insight into numerical linear algebra algorithms,
but they do not provide sufficient material on discretization and implementation. On the
other hand, popular books in C++ (e.g., by Stroustrup [86]) and MPI (e.g., by Pacheco [73])
are references that teach programming using disconnected algorithmic examples, which is
useful for acquiring general programming skills but not for parallel scientific computing. Our
book treats numerics, parallelism, and programming equally and simultaneously by placing
the reader at a vantage point between the three areas as shown in the schematic of figure
1.2(a), and in contrast with the classical approach of connecting the three subjects serially
as illustrated in figure 1.2(b).
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1.3 The Concept of Programming Language

In studying computer languages, we want to study a new way of interacting with the com-
puter. Most people are familiar with the use of software purchased from your local computer
store, software ranging from word processors and spreadsheets to interactive games. But
have you ever wondered how these things are created? How do you actually “write” soft-
ware? Throughout this book we will be teaching through both lecture and example how to
create computer software that solves scientific problems. Our purpose is not to teach you
how to write computer games and the like, but the knowledge gained here can be used to
devise your own software endeavors.

It has been stated by some that the computer is a pretty dumb device, in that it only
understands two things — on and off. Like sending Morse code over a telegraph wire with
signals of dots and dashes, the computer uses sequences of zeros and ones as its language.
The zeros and ones may seem inefficient, but it is not just the data used, but the rules
applied to the data which make it powerful. This concept, in theory, is no different than
human language. If we were to set before you a collection of symbols, say a b ¢ d ... z,
and indicate to you that you can use these to express even the most complex thoughts
and emotions of the human mind and heart, you would think we were crazy. Just 26 little
symbols? How can this be? We know, however, that it is not merely the symbols that are
important, but the rules used to combine the symbols. If you adhere to the rules defined by
the English language, then books like this can be written using merely combinations of the
26 characters! How is this similar to the computer? The computer is a complex device for
executing instructions. These instructions are articulated by using our two-base characters,
0 and 1, along with a collection of rules for combining them together. This brings us to our
first axiom:

Axiom I: Computers are machines which execute instructions. If someone is not telling the
computer what to do, it does nothing.

Most people have had some experience with computers, and immediately they will read
this statement and say: “Hey, I have had my computer do all kinds of things that I didn’t
want!”. Ah, but read the axiom carefully. The key to this axiom is the use of the term
someone. The one thing to keep in mind is that some human, or collection of humans,
developed software to tell the computer what to do. At a relatively low level, this would be
the people who wrote the operating system used by the computer. At a higher level, this
would be the people that developed the word processor or game that you were using. In
both cases, however, someone determined how the computer would act and react to your
input. We want you, after reading this book and understanding the concepts herein, to be
able to be in the driver’s seat. This leads us to our second axiom:

Axiom II: Computer programming languages allow humans a simplified means of giving the
computer instructions.

We tell you that we want you to be in the driver’s seat, and you tell me “I don’t want
to learn how to communicate in zeros and ones ... learning English was hard enough!” You
can imagine how slowly the computer age would have progressed if every programming class
consisted of the following lecture scheme. Imagine the first day of class. On the first day,
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the instructor tells you that you will be learning the two basic components of the computer
language today: 0 and 1. He may force you to say zero and one a few times, and then write
zero and one many times on a piece of paper for practice, but then, what else would there be
to learn concerning your character set? Class dismissed. Then, for the rest of the semester,
you would spent your time learning how to combine zeros and ones to get the computer to
do what you want. Your first assignment might be to add two numbers a and b, and to store
the result in ¢ (i.e., c = a + b). You end up with something that looks like:

01011001010001000111010101000100
01011001011100100010100101000011
00111010101000100111010100100101
01011101010101010101010000111101

Seems like a longwinded way of saying
c=a+b?

But this is what the computer understands, so this is how we must communicate with it.
However, we do not communicate in this fashion. Human language and thought use a higher
abstraction than this. How can we make a bridge for this gap? We bridge this gap via
programming languages, see figure 1.3.

Visual

Assemby Jawa Quick Bast
1 1

—
— =

Low C/C+  Fortran Visual C+ High ‘ ’
I I P .
e | -

Compuer Specificiy e " Easines Human

Figure 1.3: Programming languages provide us a means of bridging the gap between the computer
and the human.

The first programming language we will mention is assembly. The unique property of as-
sembly is that for each instruction, there is a one-to-one correspondence between a command
in assembly and a computer understandable command (in zeros and ones). For instance,
instead of writing

01011001010001000111010101000100

as a command, you could write ‘load a $1’. This tells the computer to load the contents
of the memory location denoted by ‘a’ into register $1 in the computer’s CPU (Central
Processing Unit). This is much better than before. Obviously, this sequence of commands
is much easier for the human to understand. This was a good start, but assembly is still
considered a “low-level language”. By low-level we mean that one instruction in assembly is
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equal to one computer instruction. But as we said earlier, we want to be able to think on
a higher level. Hence, there was the introduction of “higher level” languages. Higher level
languages are those in which one instruction in the higher-level language equals one or more
computer level instructions. We want a computer language where we can say ‘c = a + b’,
and this would be equivalent to saying :

load a $1
load b $2
add $1 $2 $3
save $3 ¢

One high-level instruction was equivalent to four lower level instructions (here written in
pseudo-assembly so that you can follow what is going on). This is preferable for many rea-
sons. For one thing, we as humans would like to spend our time thinking about how to solve
the problem, not just trying to remember (and write) all the assembly code! Secondly, by
writing in a higher-level language, we can write code that can work on multiple computers,
because the translation of the higher level code can be done by a compiler into the assembly
code of the processor on which we are running.

As you read through this book and do the exercises found herein, always be mindful
that our goal is to utilize the computer for accomplishing scientific tasks encountered in
simulation science. At a high-level, there is a science or engineering problem to solve, and
we want to use the computer as a tool for solving the problem. The means by which we
will use the computer is through the writing and execution of programs written using the
computing language C++ and the parallel message passing libraries of MPI.

1.4 Why C++4 and What is MPI?

The algorithms we present in the book can certainly be implemented in other languages, e.g.
FORTRAN or Java, as well as other communication libraries, e.g. PVM (Parallel Virtual
Machine). However, we commit to a specific language and parallel library in order to provide
the student with the immediate ability to experiment with the concepts presented. To this
end, we have chosen C++ as our programming language for a multitude of reasons: First,
it provides an object-oriented infrastructure that accommodates a natural breakdown of the
problem into a collection of data structures and operations on those structures. Secondly, the
use of C++ transcends many disciplines beyond engineering where traditionally FORTRAN
has been the prevailing language. Thirdly, C++ is a language naturally compatible with the
basic algorithmic concepts of

e partitioning,
e recursive function calling,
e dynamic memory allocation, and

e encapsulation.
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Similarly, we commit to MPI (Message Passing Interface) as a message passing library be-
cause it accommodates a natural and easy partitioning of the problem, it provides portability
and efficiency, and it has received wide acceptance by academia and industry.

Algorithm s

Chapter 1 Chapter 10

Figure 1.4: Progression of new material throughout the book in the three areas shown in figure
(1.2).

The simultaneous integration we propose in this book will be accomplished by carefully
presenting related concepts from all three sub-areas. Moving from one chapter to the next re-
quires different dosages of new material in algorithms and tools. This is explained graphically
in figure 1.4, which shows that while new algorithms are introduced at an approximately
constant rate, the introduction of new C++ and MPI material vary inversely. We begin
with an emphasis on the basics of the language, which allows the student to immediately
work on the simple algorithms introduced initially, while as the book progresses and the
computational complexity of algorithms increases the use of parallel constructs and libraries
is emphasized.

More specifically, to help facilitate the student’s immersion into object-oriented thinking,
we provide a library of classes and functions for use throughout the book. The classes
contained in this library are used from the very beginning of the book as a natural, user-
defined, extension of C++. As the book progresses, the underlying logic and programming
implementation of these classes are explained, bringing the student to a deeper understanding
of the development of C++ classes. We will denote all classes used within the book and not

inherent to C++ with the letters SC, such as the classes SC'Vector and SCMatrix.
This is done to clearly distinguish between C++ defined and

user-defined data types, and also to accentuate the utility of
user-defined types within the C++ programming language. As
Software | students become more familiar and confident in their ability to

@ devise and use datatypes, we encourage them to use these facil-

Suite ities provided by the language for more effective programming
and problem solving. All the codes of this book and many
more examples are included in the software suite, which is dis-
tributed with this book.
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1.5 What About OpenMP?

Due to the recent proliferation of distributed shared-memory (DSM) machines in the scientific
computing community, there is much interest in how best to appropriately utilize both the
distributed and the shared-memory partitioning of these systems. MPI provides an efficient
means of parallel communication among a distributed collection of machines; however, not
all MPI implementations take advantage of shared-memory when it is available between
processors (the basic premise being that two processors, which share common memory, can
communicate with each other faster through the use of the shared medium than through
other communication means).

OpenMP (Open Multi Processing) was introduced to provide a means of implementing
shared-memory parallelism in FORTRAN and C/C++ programs. Specifically, OpenMP
specifies a set of environment variables, compiler directives, and library routines to be used
for shared-memory parallelization. OpenMP was specifically designed to exploit certain
characteristics of shared-memory architectures such as the ability to directly access memory
throughout the system with low latency and very fast shared-memory locks. To learn more
about OpenMP, visit www.openmp.org.

A new parallel programming paradigm is emerging in which both the MPI and OpenMP
are used for parallelization. In a distributed shared-memory architecture, OpenMP would
be used for intra-node communication (i.e., between a collection of processors which share
the same memory subsystem) and MPI would be used for inter-node communication (i.e.,
between distinct distributed collections of processors). The combination of these two par-
allelization methodologies may provide the most effective means of fully exploiting modern
distributed shared-memory (DSM) systems.

1.6 Algorithms and Top Ten List

The Greeks and Romans invented many scientific and engineering algorithms, but it is be-
lieved that the term ‘algorithm’ stems from the name of the ninth-century Arab mathemati-
cian al-Khwarizmi, who wrote the book al-jabr wa’l mugabalach which eventually evolved
into today’s high school algebra textbooks. He was perhaps the first to stress systematic
procedures for solving mathematical problems. Since then, some truly ingenious algorithms
have been invented, but the algorithms that have formed the foundations of the scientific
computing as a separate discipline were developed in the second part of the twentieth cen-
tury. Dongarra & Sullivan put together a list of the top ten algorithms of the twentieth
century [33]. According to these authors, these algorithms had the greatest influence on
science and engineering in the past. They are in chronological order:

1. 1946: The Monte Carlo method for modeling probabilistic phenomena.
2. 1947: The Simplex method for linear optimization problems.
3. 1950: The Krylov subspace iteration method for fast linear solvers and eigensolvers.

4. 1951: The Householder matrix decomposition to express a matrix as a product of
simpler matrices.
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5. 1957: The FORTRAN compiler that liberated scientists and engineers from program-
ming in assembly.

6. 1959-1961: The QR algorithm to compute many eigenvalues.
7. 1962: The Quicksort algorithm to put things in numerical or alphabetical order fast.

8. 1965: The Fast Fourier Transform to reduce operation count in Fourier series repre-
sentation.

9. 1977: The Integer relation detection algorithm, which is useful for bifurcations and in
quantum field theory.

10. 1987: The Fast multipole algorithm for N-body problems.

Although there is some debate as to the relative importance of these algorithms or the
absence of other important methods in the list, e.g. finite differences and finite elements,
this selection by Dongarra & Sullivan reflects some of the thrusts in scientific computing in
the past. The appearance of the FORTRAN compiler, for example, represents the historic
transition from assembly language to higher level languages, as discussed earlier. In fact, the
first FORTRAN compiler was written in 23,500 assembly language instructions! FORTRAN
has been used extensively in the past, especially in the engineering community, but most
of the recent scientific computing software has been re-written in C++, e.g. the Numerical
Recipes [75].

In this book we will cover in detail the algorithms (3), (4), (6) and (8) from the above
list, including many more recent versions, which provide more robustness with respect to
round-off errors and efficiency in the context of parallel computing. We will also present
discretizations of ordinary and partial differential equations using several finite difference
formulations.

Many new algorithms will probably be invented in the twenty-first century, hopefully
some of them from the readers of this book! As Dongarra & Sullivan noted “This century
will not be very restful for us, but is not going to be dull either!”



Chapter 2

Basic Concepts and Tools

In this chapter we introduce the main themes that we will cover in this book and provide an
introduction for each of them. We begin with a brief overview of C++ and define the two
basic concepts of functions and classes as well as other syntactic elements of the language. We
then introduce basic mathematical concepts that include elements of linear algebra, vector
orthogonalization, and corresponding codes and software. Finally, we introduce parallel
programming and review some generic parallel architectures as well as standard parallel
algorithms for basic operations, e.g., the fan-in algorithm for recursive doubling. We also
provide a brief overview of the main MPI commands.

12
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2.1 Introduction to C+-+

An ancient proverb states that the beginning of a thousand mile journey begins with a single
step. For us, this single step will be a brief overview of the C++4 programming language. This
introduction is not designed to be all-inclusive, but rather it should provide the scaffolding
from which we will build concepts throughout this book. Admittedly, what you will read now
may seem daunting in its scope, but as you become more familiar with the concepts found
herein, you will be able to use the C++ language as a tool for furthering your understanding
of deeper mathematical and algorithmic concepts presented later in the book. With this in
mind, let us begin our thousand mile journey with this first step.
Any programming language can be broken down into two high level concepts:

e Data, and
e Operations on data.

Though this may seem like a trivial statement, quite often in science and engineering prob-
lems the real work that needs to be done is identifying what is the relevant data, and what
operations need to be executed on that data to obtain the desired results. From the pro-
gramming point of view, we will assume that you already have a clear concept of what data
is needed to solve the problem, and what algorithms will be acting on the data; we will focus
on translating these needs into the programming language.

We have chosen to present this material in a top-down manner; that is, we will start
from the high level of the program and work our way down toward lower and lower levels
of detail. At the end of this section, we will recapitulate what we have learned, and show
how all the pieces do indeed fit together though an example. We start with the idea of a
program, or ‘code’ as it is sometimes referred to within the scientific computing community.
A program is a sequence of instructions acting on a collection of data. Just as this chapter
had a starting point, every program must have a starting point, and in C++, the starting
point of execution is the “main” function, which is called main. This tells the computer
where to start execution of your program. The simplest C++ code that can be written is
the following:

int main(int argc, char ** argv){

}

This piece of code will compile and execute, but it will do absolutely nothing. Though
it may contain data inputed through the arguments argc and argv, it contains no operations
on that data. It merely provides the computer with a starting point of execution, and then
immediately terminates because all executable commands have been executed (which in this
case is none!).

Software [ This is your first C++ program. In keeping with programming
@ tradition, your first non-trivial C++ program should be the
Suite following:
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#include<iostream.h>

int main(int argc, char ** argv){
cout << "Hello World" << endl;

}

At this stage, you should type in the program above, compile it using your native C++
compiler, and execute this program. The result of this program should be that the statement
“Hello World” is printed to your screen. If you have problems with this exercise, see Appendix
A.l.

In theory, you now have your first C++ program. You have written the code, compiled
and linked the code, and are able to execute the code on your native machine. Now that
this first step is behind us, let us jump into discussing some of the basic concepts, one of
which we have just gained some experience, i.e., the concept of a function.

2.1.1 Two Basic Concepts in C++4

There are two basic concepts used throughout the C++ programming language: the concepts
of

e Function, and of
o (lass.

The C programming language, upon its inception, had at least one self-defining feature:
modularity. The C language was designed to be modular, and this modularity was accom-
plished through the employment of functions. Almost everything in C is a function, and
some have said that “... all C really is a big function calling a bunch of other functions”.
Well, this is almost right. The C language basically consists of two components, a core lan-
guage specification which contains basic data types and constructs (such as if statements,
for statements, etc., some of which we discuss later on in this chapter), and a collection of
libraries, each of which contains many pre-defined functions. C+4+ built on this philosophy,
and introduced the “class” as a second fundamental building block of the language. Within
C++, functions and classes are intertwined to create the desired program.

We begin by defining what we mean by a function and a class. Functions and classes can
be distinguished by their fundamental premises. The primary premise of a function revolves
around what the function does, whereas the fundamental premise of a class revolves around
the data that the class contains. Functions are designed to be abstractions of algorithms;
Classes (at least as presented in this book) are an abstraction of data and operations on that
data. We will clarify this distinction by examining the two concepts in more detail.

Functions

Functions are abstractions which encapsulate a concept or algorithm. The concept of a
function is probably not new to you. In mathematics, we see functions all the time. We
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define functions so that we can abstract a particular operation or collection of operations
into one statement. In mathematics, we note functions in a manner like

flz) =2 — 2% + 2.

We understand that if we evaluate the function at the point x = 2, denoted f(2), this is
equivalent to substituting the number 2 into the expression z3 —x?+2, yielding 23 —2242 = 6.
We hence would say that f(2) = 6. In mathematical parlance, we would add rigor to all
that we have done so far, and state this collection of operations as follows:

Given z as a real number, define f(x) as a function returning a real number, where the
definition of f(x) is given by the expression f(z) = 2% — 2% + 2.

This example demonstrates the three major components of a function:
e input, output, and contract (or algorithm).

We specified the valid range of parameters that can be inputed into this function (math-
ematically referred to as the domain of the function); we specified the range in which the
output would lie (mathematically referred to as the range of the function); and finally we
specified what, given a particular input, the function will do. The same holds true for C++.
For a function, we need to specify the input, output, and contract.

Inpu ——>| Function — Outpu

Algorithm/Contrat

Figure 2.1: A schematic of a function in C++.

In C++, the process of specifying the input, output, and contract is done in two stages,
see figure 2.1 1. These two stages are specifying the following for each function:

e Function declaration, and

e Function definition.

A function’s declaration accomplishes several things in one step. It declares the name
of the function and the data types of the input and output of the function. The function
definition specifies what the function will accomplish given particular input data. Hence,
the definition of a function is the algorithmic explanation of the contract of the function.

A schematic for the syntax used for the declaration of a C++ function is given in figure
2.2. Using this as our guide, let us attempt to formulate our mathematical function into a

L According to the language standard, it is possible to combine both of these items into one statement
satisfying the requirement for both simultaneously. For pedagogical clarity, we will always keep the two
stages separate.
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C++ function. For the purposes of this demonstration, let us assume that we have a data
type called float, which is the floating point representation of a real number. The function
declaration of our function “f” is given by:

float f(float x);

Outpu || Function Nane ( Input/Outpt )

"Argument$

Figure 2.2: Schematic of the syntax of a C++ function.

Examining our schematic given in 2.2, we can dissect this code to understand what is
going on. Let us see if we have met the three components of a function declaration. First,
we specified the name of the function, “f”. Next, we specified that the valid input to our
function is a floating point value. Finally, we specified that our function returns a floating
point value. Hence, we now have declared our function! What does declaration really mean
though? Declaration of a function allows us to use this function throughout our code with
the assumption that this function will act upon the contract of the function (later specified
by the definition of the function). A key thing to realize is that:

o A function must be declared before it can be used.

Because of this fact, many programmers place all their function declarations at the beginning
of their C++ program so that all functions are accessible everywhere. You will notice
throughout this book that we either place our function declarations within a header file
(the files with a .h extension) which are included at the beginning of a program, or we
directly insert the function declarations after the include files and prior to the main function
definition. An example template of this type of file setup is shown at the end of this section.

Another important fact is that within the argument list (the list of inputs and outputs
given as arguments to the function), the names specified are irrelevant. The compiler is only
concerned about the data type. Hence, it would be perfectly valid to write

float f(float);

Why have a variable name there, if it is just to be ignored? The most practical reason we
put variable names in function declarations is that we normally cut-and-paste the function
declaration from the function definition. The function definition does require variable names
to be used. We will now give the function definition so that this becomes more apparent.
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float f(float x){
float y;

y = X*X*X — X*¥X + 2;

return y,

Notice that the function definition has a very similar beginning to the function declara-
tion. As before, you specify the function name and the input and output data types. The
difference, however, is that the function definition is the implementation of our contract. For
the function definition, including specific variable names within the argument list is essential
because we will use these variable names throughout the definition to refer to that data that
was inputed. In C+4, when data is inputed into a function, the information is passed by
value. This means that when the function is called, a copy of the information is created for
the function to use, not the original data. This is an important and yet subtle point about
C++. We will discuss this in more detail later (see section 3.1.2). For now, the thing to
remember is that the function takes from its argument list the information passed to it, and
it stores a copy of the information in a variable specified by the name given in the argument
list.

In this example, we declare a variable y in which we temporarily store the value of
our function, given by the expression x*x*x - x*x + 2, and then we return the value of the
variable 3. The return statement designates the variable from which a value is to be returned
from the function back to the caller. If we were to examine a code snippet, we could use our
function just as we did mathematically by writing:

float w;

w = f(2);

If were to print the value of w, we would see that returned value is the floating point
value 6.000. Some of this will become more clear after we have discussed basic data types.
The key items to remember from this discussion are:

e Every function must have a function declaration and definition.

e Function declarations specify the name of the function and the data types of the inputs
and outputs.

e Function definitions specify the implementation of the algorithm used to carry out the
contract of the function.

e Variable names in function declarations do not matter.
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e Variable names in function definitions do matter because they specify how the data is
to be referred to in the implementation of the function.

e Variables passed to C++ functions are passed by wvalue unless otherwise specified.

Software

(o)  Putting it into Practice
Suite

Recall our little main function we wrote, compiled, and ran at the beginning of this
section. Let us now combine that code with our new function.

#include <iostream.h> // inclusion of library header file
// for use of cout

float f(float x); // function declaration

int main(int argc, char ** argv){
float w;
w = £(2);
cout << "The value of w is: " << w << endl;

float f(float x){ // function definition
float y;
Y = X*X*X — X*¥X + 2;
return y,

If you were to compile and run this code, you would obtain a statement on your screen
that says: The value of w is: 6.00 .

In the program above, we use an object named cout, the declaration of which is found in
the system header file iostream.h. The object cout is used for printing to standard output,
which in many cases is the screen. For now, it is sufficient to know that the << symbols
delineate expressions to be printed. In the code above, the first statement to be printed is
the string “The value of w is:,” then the value associated with the variable w, and then the
end-of-line character denoted by the term endl. We will speak more about cout later in this
chapter.

Classes

Classes are abstractions which encapsulate data and operations on that data. In C++, the
concept of classes is used to simplify through encapsulation very complex data structures.
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A class consists of two parts: data and methods operating on the data. What you will find is
that methods are merely functions which are “attached” to classes. The concept of a method
is analogous to that of a function, with the primary focus of a method being to act on the
data of the class, and not on arbitrary inputed data.

For example, in the Gram-Schmidt routines in section 2.2.9, we utilize several user-defined
classes; among those classes is the class SCVector. Vector does not exist as a basic data type
in C++; however, the language allows us to define a new type, called SCVector, which
consists of a collection of basic data types and operations on that data. The declaration for
the class SCVector is given below. We will not go over every detail now, but will defer explicit
explanation until later in this book (see section 3.1.8). However, we call your attention to
the two basic concepts of classes in C++:

1. encapsulated data, and
2. methods acting on that data.

In this class, the variables dimension and data are encapsulated by the class, and all the
remaining methods (in the section marked ‘public’) act on this basic data.

Software
@ We now present the class declaration of the SCVector class:

Suite

class SCVector{
private:
int  dimension; // dimension of the vector
double *data; // pointer to array containing vector components

public:
SCVector(int dim); // default constructor
SCVector(const SCVector& v); // copy constructor
SCVector(int col, const SCMatrix &A); //secondary constructor
“SCVector(); //destructor

int Dimension() const; //dimension of the vector
double Length(); // Euclidean norm of the vector
void Normalize(); // normalize vector

double Norm_11();
double Norm_12();
double Norm_linf();

[ [ FF kR kR Rk Rk Rk Rk ok ok
// User Defined Operators
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[ [ FF kR kR Rk Rk Rk Rk ok ok

int operator==(const SCVector& v) const;
int operator!=(const SCVector& v) const;
SCVector & operator=(const SCVector& v);

double operator()(const int i) const;
double& operator() (const int i);

void Print() const;

C++ Clas

Data

Methods
Inpu —| — Outpu

Figure 2.3: A C++ class encapsulates data and methods acting on that data.

We will explain classes more thoroughly later (section 3.1.8), but let us take this oppor-

tunity to point out a few features of classes:

e In the class above, there are several “constructors”. A constructor is the first method

which is called when an object is instantiated. These methods can be used to initialize
data, set up information within the class, etc.

A destructor is the method called prior to an object being deleted. The operating
system will call this method (if it is available) to allow the object to “clean up for
itself” prior to the operating system (OS) finishing the job by freeing the memory to
which the class was allocated.

Notice that some methods of this class modify the data contained within the ob-
ject, while others merely compute things based upon the data within the object. For
instance, the function Normalize does exactly that — it normalizes the vector data con-
tained with the object to have norm one. The function Norm_l2, however, does not
modify the data contained with the object, but merely computes the Euclidean norm
of the vector based upon the information within the object.
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‘ Type ‘ Description

short | short integer
int integer
long | long integer

Table 2.1: Integer data types.

e (Classes allow us to define what are referred to as overloaded operators. In the
declaration given above, we have listed these as “user defined operators”. In addition
to defining new data types, we can also define (or re-define) how common unary and
binary operators act on those objects (such as defining what ‘4+’ means when two newly
defined objects are involved).

2.1.2 Learning the Syntax and Other Basic Commands
Getting Past “;” and “{ }”

As you may have already noticed from the small amount of code that we have presented to
you, the symbols “” and “{ } 7 are integral to C++. We will briefly describe the purpose
of these symbols here.

In general, the “;” is used to terminate an executable statement, hence why you see it at
the conclusion of the commands listed above. Having such a symbol denote the end of an
executable statement allows the compiler easily delineate between statements.

The { } brackets (called curly brackets) are used to denote scope. We will not go into
all the nuances of scope right now other than to tell you that the scope of a variable or a

function is the area of code in which that variable or function can be used.

Basic Data Types

In C++, variables are used to store information. In this section we go over some (not all, see
the Appendix A.2 for more information) of the basic data types available in C++. Just like
in mathematics, a variable is a symbol used to denote a particular value, either numerical
or character. One way of thinking of a variable is that it is a box in which information can
be stored. In C++, all variables must have a type. The type tells the computer what kind of
box to create, the dimension of the box, the shape, etc. The syntax for creating a variable
is:

<type> <variable list>

Some basic data types are listed in the tables 2.1, 2.2 and 2.3. Given the convention
above, we see that to declare a variable called x of type int, we would write:

int x;
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‘ Type ‘ Description

float | single precision
double | double precision

Table 2.2: Floating point data types.

‘ Type ‘ Description ‘

‘ char ‘ character ‘

Table 2.3: Character data type.

This allocates a block of memory of the size of an integer, and would assign the symbol
x to refer to that location in memory. Hence, from now on, if we act on the variable x, we
are acting on the content of the memory assigned to x. This may sound odd at first, but
this is one of the subtle differences between computer programming and mathematics. One
thing that most people do not realize is that the computer does not have integer memory,
floating point memory, character memory, etc 2. As far as the computer is concerned,
memory is memory. The data type that is used tells the computer how to interpret memory.
A particular set of four bytes can be used in one program to represent an integer, and in
another program to represent a float. The computer does not care. What is important is
that the computer needs to know how to interpret the bit pattern of the four bytes. Does it
interpret the collection of bits as an integer or a float, or some other variable type? Coming to
grips with this notion will be very important when we start discussing the idea of addresses,
the subject of pointers, etc. So, there are two key points to remember about data types.
The data type you specify tells the computer two things:

e The number of bytes to use to hold the data.
e How to interpret the bit pattern specified in those bytes.

Now that you know that variables exist, and you know some of the basic types, here are
some rules to remember when using variables:

e Variables must be declared before they are used.
e Variable names can be of arbitrary length.
e Variable names are case sensitive.

e Variables are to be assumed to be uninitialized. Do not rely on the operating system
to initialize/zero values for you.

2Computers do in fact have specialized memory within the processor, called registers, which are either
integer or float/double.
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‘ Symbol ‘ Interpretation

+ addition

- subtraction
multiplication

/ division

Table 2.4: Binary arithmetic operations.

e Variable lists may be used. If we wish to allocate three integer variables a,b and ¢, we
may do so as follows: int a,b,c;. All three variables will be declared as integers. It
is also perfectly valid to declare each one with a separate statement.

e Variables may be initialized by either constants or expressions within the declaration
statement. Hence, if we wanted to initialize the integer variable a to zero, we could do
the following: int a=0;. You can also do this in the context of variable lists. Suppose
you want to initialize the integer variable b to one, but not the other variables. You
can do this as follows: int a,b=1,c;

Basic Operations

Now that we have some concept of variables, the natural question to ask is: “What can we
do with them ?” C++4 provides a collection of basic operations, some of which are listed in
Table 2.4.

The operations presented look very much like the operations you would expect in math-
ematics. We must make two special notes, however. The first note is concerning the assign-
ment operator, and the second note is concerning order of precedence and associativity. In
C++, the symbol “=." which we, in English, pronounce “equals,” should be interpreted as
“is assigned the value of,”, e.g. © = 2 is to be read = “is assigned the value of” 2. Take the
following C++ code example:

int x,y,2;

X = 2;
y =4

zZ=XxX+y;

The C++ interpretation of this code is as follows: First, declare three variables, x, v,
and z as integers. Next, assign x the value 2, then assign y the value 4. We then add the
values of x and y, and assign to z the newly computed value. The ordering is important. In
mathematics, we may say p = q or ¢ = p, and both statements mean that p is equal to q.
However, in C++, p = ¢ says that the variable p is assigned the same value as the variable
q, whereas ¢ = p says that the variable ¢ is assigned the value of p. As you can see, these
two statements are not equivalent.
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The second item to note is that operators have both precedence and associativity. The
C++ operator precedence and associativity are provided in table 2.5. What does operator
precedence and associativity really mean to the programmer? Examine the following exam-
ple: Assume that we want to add up six numbers: 1,2,3,4,5,6. Mathematically, we write
this operation as 1 + 2+ 3 + 4 + 5 + 6. However, if we implement this expression, keeping
in mind that we are dealing with a binary operator “4.,” then we would write the following
for summing: 1+2=3,3+3=6,6+4=10,10+5= 15,15+ 6 = 21. We begin by adding
the first two numbers together, and then we accumulate as we come to each new value. The
same is true for the computer. When the computer is faced with the expression:

int x,y,2,w;

.0;
.0;
.0

<

S W N

W=3xX+7y+ z;
it interprets this as being equivalent to:

int x,y,2,w;

x = 2.0;
y = 3.0;
z =4.0;
w=x++y;
w=w+ z;

Notice that in the second expression, each evaluation involves only one binary expression.
Hence associativity is left to right in this case. Now suppose we had the following expression:

int x,y,2,w;

x = 2.0;
y = 3.0;
z =4.0;
Ww=x+y*x z;

The computer interprets this to be the following:

int x,y,2,w;

0;
O.

3

2.
y = 3.
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z =4.0;
W=y * Z;
W=Ww+ X;

Why multiplication prior to addition? The multiplication operator has precedence over
the addition operator, and hence all multiplications are done first. This is a very important
concept to realize:

Key Concept

e Order of operations is important. Precedence can make all the

difference!
OPERATIONS ASSOCIATIVITY
() [] — . left to right
' ~ +4+ -- 4+ — x & (type) sizeof right to left
x /% left to right
+ = left to right
<< >> left to right
< <= > >= left to right
== I= left to right

Table 2.5: Unitary +, -, and * have higher precedence than the binary forms.

One thing we should speak to is the use of () in expressions. Notice in the precedence
table that () are at the top of the list. This is for a reason. The use of () gives the programmer
the right to specify the order of precedence by explicitly placing () within the expression.
For instance, in the following piece of code

int x,y,2,w;

x = 2.0;
y = 3.0;
z =4.0;
w=(x+y) *z;

the computer interpret this to be the following:

int x,y,2,w;
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‘ Symbol ‘ Interpretation ‘
— 1 | NoT |

Table 2.6: Unitary Boolean Operations.

x = 2.0;
y = 3.0;
z =4.0;
Ww=Xx+y;
W =W * z;

We have in effect told the computer the precedence order that we, the programmer, want
by explicitly specifying that the addition is to be done first, and then the multiplication.
This brings us to a good, sound coding rule:

Key Concept

e Use () to explicitly denote the order or precedence that is desired.
() cost you nothing in terms of computational time, yet they
can save you hours of debugging time trying to find an order of
precedence error.

The Boolean Expression

One of the most fundamental concepts used in computer science is the concept of a boolean
expression. A boolean expression returns a value of either true or false. In C++4, true and
false are valid values of the enumerated (variable) type bool. For now, we will merely concern
ourselves with the fact that true may be converted to the integer value ‘1" and false may be
converted to the integer value ‘0’. As you will see in three fundamental structures presented
below, boolean expressions are used to determine the flow of control. Flow of control is, in
layman’s terms, which C++ statements should be executed in a particular situation. Both
the unary and binary boolean operators are presented in tables 2.6 and 2.7.

There are several key facts to know about these operators.
Software | First, they are binary operators just like 4+ and - (addition and
@ subtraction, respectively). Thus, you can assign a variable the
Suite value obtained by using them. For example, the following code
is perfectly legitimate:
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‘ Symbol ‘ Interpretation

&& AND
[ OR
> greater than

>= greater than or equal to
< less than

<= less than or equal to
== equal to

Table 2.7: Binary boolean operations.

#include <iostream.h>

int main(int argc, char ** argv){
int a,b,c;

a = 3;
b = 5;

cout << "The value of ¢ = " << ¢ << endl;

If we were to print the value of ¢ immediately following the assignment statement (as we
have in the code above through the use of the cout statement), we would find that the value
of ¢ is 1, because it is true that the number 3 < 5. The ability to assign a variable the value
of a boolean expression holds true for all boolean binary operators.

Two other operators that may not be as familiar to most readers are the boolean AND
(&&), and boolean OR (]|). These two operators are commonly used to simplify logical
expressions so that several cases can be considered in one statement. The boolean values of
these two expressions are given below:

OR()) AND(&&)
0 1 0 1

0101 0710 O

1111 110 1

The two above tables should be interpreted in the following manner. Suppose we have
two variables a and b. The boolean value of variable a is denoted by the values on the left of
the table, and the boolean value of the variable b is denoted by the values on the top of the
table. If we were to execute the operation a <operator> b (where <operator> is either OR
or AND), then the result of this operation is given by the value in the square given by the
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respective row and column given by the values of a and b. Hence, if a =1 and b =0, al |b
yields the value 1 (true) while a&&b yields the value 0 (false). These logical relationships are
very important and hence should be memorized.

Software [ You may be wondering what happens if you use these boolean
@ operations on regular values. Let us suppose that you had the
Suite following piece of code. What happens to the variable ‘c’?

#include <iostream.h>

int main(int argc, char ** argv){

int a,b,c;

a = 3;

b = 5;

c =aé&& b;

cout << "The value of ¢ = " << ¢ << endl;

Under such circumstances, a and b are implicitly cast to boolean expressions before the
AND operation is performed. Implicit casting does not affect the actual value of a or b,
but merely internally converts these values so that the computer can do the appropriate
boolean operation that you have requested. In such cases the following implicit casting rule
is applied:

e Any number not equal to zero (either positive or negative) denotes true (the logical
value 1), and zero denotes false (the logical value 0).

If we now try to answer the question of what will the computer do, we see that the computer
will first implicitly cast a and b to their appropriate values, which in this case are both logical
true since both are non-zero, and then the AND operation will be carried out. Looking at
the table above, we see that (true && true) equals true, and hence the value of ¢ is true
(cast to the value 1).

An Example: The Collatz Problem

We will now proceed to explain three fundamental flow of control structures in C++: the
if statement, the while statement, and the for statement. We will motivate our discussion
of these three constructs with the following problem, known as the Collatz Problem. The
problem itself is given by a very simple algorithm:

e Start with any integer greater than zero; if the number is even, divide it by two, oth-
erwise multiply it by three and add one to it. Iterate this process until the number you
reach is the number one.
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Hence, if you start with the value 10, the sequence of numbers what you will obtain from
this algorithm is the sequence 10,5,16,8,4,2,1. In Figure 2.4 we plot the iterate value versus
iteration for two different initial guesses, 100 and 1000. The description of the algorithm
is quite simple, and the patterns given by plotting the iterated solution versus iteration
number are intriguing, however the problem that has stumped mathematicians for decades
is the following proposition attributed to Collatz:

e Given any integer greater than one, the algorithm described above will terminate (i.e.,
the value will reach one) in a finite number of iterations.

Since the algorithm is fairly simple to implement, many explicit numerical tests have been
done which demonstrate that for extremely large numbers this proposition holds true. How-
ever, at the time of this writing no theoretical proof exists for Collatz’s proposition.

Initial Value:100 |
Number of Iterations: 25

90

90001 |nitial Value:1000

Number of Iterations: 111

80r 8000

nor 7000

60 6000

Iterate Value

s0- 5000{

sl 40001

20 3000+

2ol 2000

1000
10F

A . .
. 1 I L 0 20 40 60 80 100 120
) 5 10 15 20 25 Iteration

Figure 2.4: Tteration history of the Collatz algorithm for two different initial guesses, n=100 and
n=1000.

We will present two pieces of code which implement the algorithm described above. The
first algorithm, denoted Collatz-A, makes the assumption that Collatz is right; the other,
Collatz-B, is a little less confident that the proposition holds true!

Software
@ e Algorithm Collatz-A

Suite

#include<iostream.h>

int main(int argc, char ** argv){
int i,xn;
int initial_guess = 100; // #**declaration and initialization
// by a constant within the same
//  statement
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xn = initial_guess;
i=0;

while(xn '= 1){
cout << i << " " << xn << endl;
if (xn%2==0) // use of integer modulus operator
xn = xn/2;

else
xn

3*xn+1;

i=i+1;

Software
@ e Algorithm Collatz-B

Suite

#include <iostream.h>

int main(int argc, char ** argv){

int i,xn;
int max_iterations = 1000; // declaration and initialization
int initial_guess = 100; // declaration and initialization

xn = initial_guess;

for(i=0;i<max_iterations;i=i+1){

cout << i << " " << xn << endl;
if(xn == 1)
break; // use of break statement to exit for loop

// when the condition xn==1 is true

if (xn%2==0)

xn = xn/2;
else
xn = 3%xn+1;

30
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The fundamental difference between these two implementations is the choice of whether
to use the while statement or the for statement. In the Collatz-A code, the while statement
will terminate only if our iterate value reaches one; if it never reaches one, our program will
run forever (or until the system administrator kills your process thinking you accidently left
some mindless process running). Collatz-B, however, places a limit on the maximum number
of iterations that you will allow before giving up on Collatz. Both algorithms utilize the if
statement, so we will focus there first, and then move on to the description of both the for
and while statements.

The IF Statement

The if statement is truly at the core of any programming language. Almost all computer
architectures implement a form of the if statement as part of their fundamental set of com-
puter instructions. This is done because when someone sets up a computer problem, the
programmer is quite often confronted with algorithmic decisions in which if something is
true, then a particular piece of code should be done, and if it is not true, then another
piece of code should be done. Such logical decisions are not unique to programming, but
are fundamental to the way in which we, as humans, think. For this particular algorithm,
the “if” decision is based on whether the iterate value is odd or even. The way in which we
implemented this was as follows:

if (xn%2==0)
xn = xn/2;
else
xn = 3%xn+1;

Here, we check if the xn modulus 2 is zero (i.e., if the remainder from dividing xn by 2 is
zero); if it is, this implies that zn is even, and thus we should divide zn by two. Otherwise,
xn is odd, and thus we should multiply it by three and add one. From this you can see the
basic structure of the if statement. The basic structure is expressed in the following two
logical examples: if A then B, and if A then B else C.

Several examples are provided below so that you can see the syntactic structure of these
statements. There are a few things to point out: First, notice that if no {} brackets are used,
only the next statement immediately following the if statement is executed as part of the if.
This is a common programming mistake — people think that their if statement encompasses
many statements, but because they forgot to put {} brackets, only the first statement is
executed as part of the if. The other thing to notice is that you are not limited to only one
statement in the conditional. You can have logical statements such as if A then B,C,D,E,...
. Just remember, you need to use the {} brackets to denote this collection of commands!

Examples:

if( boolean statement )
statement 1;
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if ( boolean statement )
statement 1;

else
statement 2;

if ( boolean statement ){
statement 1;
statement 2;

}

if( boolean statement ){
statement 1;
statement 2;

}
elseq{
statement 3;
statement 4;
}

if ( boolean statement ){
statement 1;
statement 2;

Yelse if{
statement 3;
statement 4;

The WHILE Statement

32

The while statement is commonly used for executing a set of instructions while something
is true. For Collatz-A, in which we presume that Collatz was right, we continue to iterate

until our iterate xn reaches the value of one.
Two example while statements are presented below. Note that the rules concerning {}

discussed for if statements hold true here also. Multiple statements can be executed as part

of the while if {} are used to denote the extent of the statements.

Examples:

while( boolean expression )

statement 1;

while( boolean expression ){



2.1. Introduction to C++ 33

statement 1;
statement 2;

The FOR Statement

For scientific programming in general, one of the most common statements used is the for
loop. For loops are used to denote a finite number of times a particular set of instructions
is to be executed. In Collatz-B, we only allow finite number of iterations to occur, in this
case 1000. If the iterate value has not reached the value one after 1000 iterations, the loop
terminates. The for statement used for Collatz-B is given below:

for(i=0;i<max_iterations;i=i+1){
// ... statements

}

We begin by initializing a variable i to the value zero. The second part of the statement
states that as long as i is less than max_iterations, the statements contained within the
{} should be executed. The third component of the statement says to increment the value
of i by one (i.e., i =i + 1) at the conclusion of each iteration. Hence, in block form, the
expression becomes:

Initialize i = 0

head: if i < max_iterations, terminate
Execute statements
Increment the value of i by one
Return (go to) to the statement ‘head’

Hence if max_iterations is equal to zero, the loop will never execute. For any integer value
of max_iterations greater than zero, the statements inside the for statement will execute
mazx_iteration times.

There are many variations of the for statement, all of which follow the concept illustrated
in the example above. We list here several instanciations of the for statement.

Examples:

for( statement 1; boolean expression; statement 2)
statement 3;
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for( statement 1; boolean expression; statement 2){
statement 3;
statement 4;

In the place of statement 1, we normally have the initialization of the looping variable.
Then, we have a boolean expression which tells us when the loop is to end. Then finally, we
have an increment statement which updates the looping variable. Although in this case we
have used solely integers, the for statement does not require it. If we were marching across
an evenly spaced grid on [0, 1] with grid spacing h, we could equally have used the following
for loop:

int N = 10; // Number of points with which discretize
double x, h = 1.0/(N-1); // ** Grid spacing; initialization
// by an expression.

for(x=0.0; x<=1.0; x = x+h){ //** notice that we can use
// float/double within the for

// ... appropriate statements here .....

2.1.3 Learning to Print

The printing routines to standard output (i.e., the screen) are handled by the class cout.
The declaration of cout can be found in the tostream.h header file. You will notice that we
included it in every program we have written so far which has used output to the screen.
This file must be included in any program using the cout statement.

Recall our Collatz example described above. In that example, we wanted to print the
value of ¢ at each iteration, and the value of xn for that iteration, so we used the following
statement:

cout << i << " " << xn << endl;

The printing to standard output is initiated by cout. Following the cout class, the symbols
‘<<’ are used to delineate between items to print. In this case, we want to print the value of i,
followed by a space (here denoted by the string “ ) followed by the value of xn. The symbol
‘endl’ denotes printing the end of line character. If we wanted to print the final iteration
count only, we could execute the following statement after the while or for statement:
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cout << "The final iteration number is: " << i << endl;

The general rule for the cout statement is that strings (denoted by quotation marks) are
printed literally; that is, exactly what is placed between quotes is printed. When variables
are placed in the cout statement, it is tacitly assumed that the contents of the variable are
to be printed, and not the variable name itself.

We now present some general remarks concerning the cout statement:

e The << used with cout is actually an overloaded operator. The class cout encapsulates
into an object the information necessary to accomplish printing to standard output.
The << operator is defined for all pre-defined variable types (int, float, double, etc.)
and allows us to “feed’ cout with the data that we wish to have printed to the screen.

e Instead of using ‘endl’, you can also use the end of line character ‘\n’ called newline.
For example, instead of

cout << "The final answer is yes" << endl;
you could equal use the following:
cout << "The final answer is yes\n";

Then ‘\n’ character is considered one character, and hence can be stored in a single
variable of type char.

2.1.4 Learning to Read

Printing to the screen is important, but what about inputing information into the computer?
To read from standard input (i.e., the keyboard) we use the object cin. The declaration of
cin can be found in the iostream.h header file. This file must be included in any program
using the cin statement.

The cin statement allows us to read data from the keyboard. In the Collatz programs
that we presented earlier, every time that the user wanted to produce the pattern for a
different number, the user would have to change the value of the initial guess variable and
then recompile the program. Suppose in our Collatz problem that we wanted the user to
input the initial value from the keyboard so that the program could be compiled just once
and use the inputed information each time it ran. To accomplish this, we can use the cin
statement as follows:

#include <iostream.h>

int main(int argc, char ** argv){
int i,xn;
int max_iterations = 1000; // declaration and initialization
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int initial_guess = 100; // declaration and initialization

n

cout << "Input a new value: ";
cin >> initial_guess;

xn = initial_guess;
for(i=0;i<max_iterations;i=i+1){

// .... remainder of the program given previously

In the code above, we query the user for a new value (using cout to print a message to
the screen), and then we use cin to retrieve the user’s keyboard input and place it into the
variable initial_guess. Using the cin statement as above, we can now compile this program
once and rerun it allowing the user to input new values for which to obtain a Collatz sequence.

We now present some general remarks concerning the cin statement:

e Just as << was on overloaded operator for cout, >> is an overloaded operator for cin.
The operator >> is used to delineate between inputed items.

e cin ignores white space when reading from standard input. Suppose that we want to
input two integers into our program; we write the following:

int A,B;

cout << "Input two integers:";
cin >> A >> B;

The user could then type two integers separated by any number of white spaces (which
cin would ignore), and cin would put the two integers into the variables A and B.

e cinreads successively through the inputed stream of information. For example, suppose
that you wanted to input an integer and a floating point number into your program.
We write the following:

int A;
float B;

cout << "Input two integers:";
cin >> A >> B;

If the user inputs an integer and a float separated by white space, all will work as
expected. If the user, however, accidentally enters the floating point number first,
the program will read up to the decimal point to obtain the integer (suppose 10.3 is
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entered, cin will read the value 10 into the variable A) and then will continue from
that point to read the floating point value (which for this case cin will read the value
0.3 into the variable B).

For a more comprehensive description of the cin operator, we suggest that the reader
consult [86].

2.1.5 How to Program in Style

Though C++ is quite tolerant of programming styles, humans are not. Someone can write a
perfectly legitimate C++ code (syntactically and semantically), and yet it would be virtually
incomprehensible to anyone else but the programmer (and in some cases, it may even baffle
the programmer if she has not looked at it for a while). In general, it is good practice to
follow a few basic stylistic rules when programming:

e Comment the non-obvious. Here, non-obvious refers both to algorithmic tricks used
and programming tricks used.

e Space lines of code appropriately. White space and blank lines are ignored by the
compiler, hence you should use them to your advantage. A properly spaced out code
is much easier to read than a compacted, mangled piece of code.

e Use indentation to denote scope. When programming for, if, while, etc., you should
use indentation to denote scope. For example, examine the differences between the
two codes:

for(i=0;i<N;i=i+1){

y[il = 0.0;

for(j=0;j<N; j=j+1){

y[il = y[il + A[i]1[j1*x[j];
b

}

versus

for(i=0;i<N;i=i+1){
y[i] = 0.0;
for(j=0; j<N;j=j+1){
y[il = y[i] + A[i][j1*x[j];
}

As you can see, the indentation of the statements leads to immediate recognition of the
nesting of the statements. This type of ‘spot-check’ ability is very important when searching
for either algorithmic or syntactic bugs.
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How To Comment Code

C++ provides two means of commenting code: the single line comment and the block
comment. The single line comment is denoted by //. When the compiler reaches the //
statement, it ignores all characters which follow after up to the line return. Thus, we can
use this comment symbol to comment our coding example above as follows:

//This code computes the matrix-vector product A*x,
//and puts the result in y

for(i=0;i<N;i=i+1){ //loop over the rows
y[i] = 0.0; //initialize to zero
for(j=0;j<N;j=j+1){ //loop over the columns
y[i] = y[i] + A[i1[j1*x[j];
}//end for j
}//end for i

The second means of commenting is by using the /* */ syntax. The C++ compiler will
ignore everything between /* and */, even if this spans across several lines. Hence, if we
wanted to comment out the loops from above, we could do the following:

/%
for(i=0;i<N;i=i+1){
y[i] = 0.0;
for(j=0;j<N;j=j+1){
y[il = y[i] + A[i][j1*x[j];

+
;T ox/

By placing these symbols before and after this block of code, we have commented out
the entire block of code. Obviously, this is not the only (nor the primary) use of comment
blocks. The purpose of this form of commenting is to allow the user to place more detailed
descriptions of algorithmic components of the code, which may take up more than one or
two single lines.

Software

(o)  Putting it into Practice
Suite

We now introduce a full C4++ program using the previously discussed coding examples.
The program below contains all the essential items necessary to compile and execute our
Collatz Algorithm (in this particular case, we are looking at Collatz-A).



2.1. Introduction to C++ 39

#include <iostream.h>
#include <iomanip.h>

int main(int argc, char ** argv){
int i,xn;

int initial_guess = 100;

xn = initial_guess;

i=0;
while(xn != 1){
cout << i1 << " " << xn << endl;
if(xn == 1)
break;
if (xn%2==0)
xn = xn/2;
else
xn = 3%xn+1;
i=i+1;
}

}

The general format of our code is as follows: At the top of the file we place our “include”
statements. These statements are called “pre-compiled directives.” This means that they are
instructions to be carried out before the compilation is done. In this case, the “#include”
statement tells the compiler to insert the variable and function declarations found in the
header file “iostream.h” and “lomanip.h”. Since we have no other functions than our main
function, we have no other functions to declare. Our program begins with a main function,
which tells the computer where to start executing. Inside this function we place the C++
description of the algorithm we want executed.

To recapitulate, the general format of our C++ codes will be:

/********************************/

/* Include Statements */
[ ks ok stk ok ok sk ok ok stk ok ok sk ok o skok ok ok ok skok ok ok /

#include <iostream.h> //Input/Output Header File

#include <iomanip.h> //Input/Output Manipulation Header File
#include <fstream.h> //File Input/Output Header File
#include <string.h> //String Manipulation Header File
#include <math.h> //Math Library Header File
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/*****************************************/

/* User-Defined Variable Declarations x/
/ ks ok sk ok ok sk ok ok stk o ok sk ok ok sk ok sk ok sk sk ok sk ok skok ok ok sk skok /

// Items such as Class declarations, etc.

/***********************************/

/* Function Declarations x/
[ skoksk ksk ke sk ok ok ok sk sk ok ok ok sk sk ok ok ok sk sk ok sk sk sk ok ok /

// User-defined function declarations.

[ F AR A KK KA KKK KKK KKK KoK KoK Ko KKKk Kk Kk
/% Main Program */
[ FFAF KA K KKK KKK KK KKK KoK Kok Kok Kok Kok Kok ko
int main(int argc, char ** argv){

// ... Algorithm

/***********************************/

/* Function Definitions x/
/3 3kok ok ok sk ok ok sk sk ok ok ok o ok ok sk sk ok ok ok o sk ok ok sk skok sk ok ok ok /

40

Quite often throughout this book we will omit repeating this basic structure; we will focus
merely on providing algorithm and function definitions. Algorithms described throughout
this book can be inserted in the C++ programming shell above, compiled, and executed.
When deviations from the above style are needed, they will be explicitly mentioned in the

text.
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2.2 Mathematical and Computational Concepts

2.2.1 Notation

We will denote a vector by a bold letter, so the transpose of a vector x of length n is
xT' = (x1, 29,73, ...,1,). We will denote a matrix of size m x n by a capital bold letter, say
matrix A, which has entries (a;;;¢=1,...,m;j=1,...,n). We will often write the matrix
A in terms of its columns a;, each one having m entries. We will also use the symbol O(n?)
(read as “order-of” nP) to denote either asymptotic computational complexity or convergence
rate.

2.2.2 Binary Numbers and Round-off

Appreciation of the finite arithmetic in scientific computing is very important and sloppy
handling of arithmetic precision often leads to erroneous results or even disasters in large
scientific computations. It has been reported, for example, that the Patriot missile failure
in Dharan, Saudi Arabia, on February 25, 1991 which resulted in 28 deaths, is ultimately
attributable to poor handling of rounding errors. Similarly, the explosion of an Ariane
5 rocket just after lift-off on its maiden voyage off French Guinea, on June 4, 1996, was
ultimately the consequence of simple overflow (the conversion from a 64-bit floating point
value to a 16-bit signed integer value).

While we are familiar and more comfortable with the base 10 arithmetic system, a com-
puter is restricted to a binary numbering system. The number 126, for example, has the
representation

126 =1x 10> +2 x 10" + 6 x 10°

in the base-10 system, or equivalently
011111105 =0x 27T +1x 20 +1x 22 +1x2* +1x 25 4+1x 224+ 1x 21 +0 x 2°

in the base-2 system. This is the floatic point representation.

In computing we call each place in a binary number a digit or a bit, and we call a group
of 8 bits a byte. Similarly, we call 1,024 bytes a Kilo-byte (1 KB) and 1,048,576 bytes
a Megabyte (1 MB), and so on. An equivalent way to write the number 126 in scientific
notation is:

+ 126 x10°
stgn  fraction exponent

Therefore, in the computer we need to store the sign, the fraction and the exponent sepa-
rately. To this end, there is a standard notation adopted by IEEE (Institute of Electrical
and Electronic Engineers) for binary arithmetic, which is used in most computers (the old
Cray computers did not follow this convention). There are two types of floating point num-
bers, depending on the number of binary digits (bits) we store: Specifically, in the single
precision (float type in C++) we have 8 bits for the exponent and 23 bits in the fraction
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whereas in the double precision (double type in C++) we have 11 bits for the exponent
and 52 bits for the fraction. In both cases we need to also reserve one bit for the sign. What
this means simply is that there is a lower and an upper bound on the size of numbers we can
deal with in the computer. In the single precision type this range extends from 27126 to 2128
and in the double precision from 271022 to 21924 5o clearly the latter allows great flexibility
in dealing with very small or very large numbers. The lower limit in this range determines
an underflow while the upper limit determines an overflow. What value a variable takes on
when it overflows/underflows depends both on the variable type and the computing archi-
tecture on which you are running. Even this large range, however, may not be sufficient
in applications, and one may need to extend it by using the so-called double extended
precision (long double in C++) which can store up to total of 128 bits. In practice, it is
more efficient to use adaptive arithmetic only when it is needed, for example in refining the
mesh down to very small length scales to resolve small vortices in a flow simulation.

The finite arithmetic in computing implies that the effective zero in the computer is about
6 x 107 for single precision and 107! for double precision. We can determine the value of
machine epsilon by finding the value of 2%, such that to the computer:

1
1.0 + o = 1.0.

This is accomplished by increasing the value of p incremen-
Software | tally, and monitoring the point at which the computer cannot
@ distinguish between the value 1 and the value 1 + 2% This
Suite procedure is implemented for both floating point and double
precision variables in the following two functions:

float FloatMachineEps(){
float fmachine_e, ftest;
fmachine_e = 1.0;

ftest = 1.0 + fmachine_e;

while(1.0 != ftest){
fmachine_e = fmachine_e/2.0;
ftest = 1.0 + fmachine_e;

return fmachine_e;

double DoubleMachineEps(){
double dmachine_e, dtest;
dmachine_e = 1.0;



2.2. Mathematical and Computational Concepts 43

dtest = 1.0 + dmachine_e;

while(1.0 != dtest){
dmachine_e = dmachine_e/2.0;
dtest = 1.0 + dmachine_e;

return dmachine_e;

Now, a natural question is “How do I use these functions?” For starters, we would write
the following program which uses both functions:

#include <iostream.h>

float FloatMachineEps();
double DoubleMachineEps();

int main(int * argc, char ** argv[]){
float fep;
double dep;

fep
dep

FloatMachineEps();
DoubleMachineEps() ;

cout << "Machine epsilon for single precision is: " << fep << endl;;

cout << "Machine epsilon for double precision is: " << dep << endl;

The machine zero values obtained by running the program above on a Pentium-4 proces-
sor are given in table 2.8.

Key Concept

e Notice the structure of this code:

1. Function declarations
2. “main” Function

3. Function definitions
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‘ Variable Type ‘ Machine Zero

float 5.96046e-08
double 1.11022e-16

Table 2.8: Machine zero for float and double precision for a Pentium-4 processor.

This code example demonstrates two important concepts. First, it demonstrates that in
computing, it is important to understand how arithmetic works on your machine. Secondly,
this example demonstrates that with very little programming, a user can investigate the
machine upon which she is running. We must be mindful that no computer can accomplish
infinite precision arithmetic; it is limited to finite precision. Finite precision arithmetic is
explained as follows: when the exact value of a basic operation, e.g. addition of two numbers,
is not represented with a sufficient number of digits, it is then approximated with the closest
floating point number. The approximation error incurred is referred to as the round-off error.
It is for this reason that such a fundamental property of addition as the associative property
is not always satisfied in the computer. For example

—1.04+(1.0+¢€) #(—=1.0+1.0) + ¢

as on the left-hand-side a very small number is added to a large number and that change
may not be represented exactly (due to round-off) in the computer.

2.2.3 Condition Number

The condition number is a very useful measure of the sensitivity of the numerical solution
to a slight change in the input. This number is proportional to the magnitude of the first
derivative of the solution. This can be formally shown by considering a solution ¢(x) and
re-computing it for a slightly perturbed input, i.e., x + dx, where dz is the perturbation.
Using the Taylor series expansion and keeping the first term only, we obtain

d(x + 0z) = ¢(z) + ¢'(x)dz.
Thus, the change in the function values is
|6z +02) — ¢(2)] _ |¢'(2)llx]  |da]
|¢(x)] |¢(x)] |z
Using the above equation we define as condition number the first term in the product of

the right-hand-side. It represents the relative error in the solution (response) given a small
change in the input expressed by the independent variable z.

2.2.4 Vector and Matrix Norms

We define the most important norms that we will use to measure errors in this book. We need
norms both for vectors as well as for matrices. The norm of a vector x* = (x1, o, 3, ..., Z,)
of length n is a scalar which obeys the following rules:
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e || x|>0.

e |x||=0&x=0.

o | ax ||=|a| || x ||, where « is a scalar.
o [x+yl<lx[+Iyl

Some of the most commonly used norms are:

e Discrete Ly, - norm defined as: || X ||o= max; |z;].
e Discrete Ly - norm defined as: || x |[o= (X1, :1:22)% :
e Discrete L; - norm defined as: || x ||1= >0 |@i -

e L, - norm defined as: || x [,= (0, |ai]?)” .

There is a theorem of equivalence of vector norms, and by this we mean that:
| x ||, is equivalent to || x ||, if there exist numbers A(p,q,n) and B(p,q,n) so that

Il < Allxlg
Ixlly < Blx|p-

Theorem: All L, norms are equivalent for p > 1 and the size of the vector is n finite.

Remark: For p > ¢ > 1, then || z |[,<|| z ||[,< n || z ||,, where n is the vector length.

The above theorem is the reason why sometimes we omit the sub-index in the norm notation.
As an example, the L; norm and the L, norms are equivalent but not equal. In practice, this
means that either one can be used to measure errors and the convergence result we obtain
in our analysis would not depend on the particular norm.

The Cauchy-Schwarz Inequality is very useful in numerical analysis. For any two vectors
x and y we have:

(@)l <l w21y 2
where (x,y) is the inner product of the two vectors (see section 2.2.7) defined as (z,y) =
i1 Tili-

Matrix Norms: The matrix norm generated by the vector norm || x ||, is defined by

A
| A fl= max 1A%l
=20 || x [
Similarly:

e The L, norm generates || A ||oo=max »  |a;;|, which is the maximum row sum.
(2
i=1
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n
e The L; norm generates || A ||;= max Y _|a;;|, which is the maximum column sum.
i=1

e The Ly generates the average matrix norm, i.e., || A |o= \/max A(A"A), where A*A
is a positive symmetric matrix with positive real eigenvalues. Here A* denotes the
complex conjugate matrix of A, which in the case of real matrix entries it is the

transpose of A, i.e., A* = AT.
There are also two useful inequalities involving matrix norms:

IA+B| < [[Al+]B]
FAx (| < A {=I.

In the above inequalities we assume that a specific norm, as defined above, is chosen.

2.2.5 Eigenvalues and Eigenvectors

The eigenvalues and corresponding eigenvectors of a matrix A are determined by solving
Ax =X x=(A-N)x=0,
where

1 O

O | 1

is the identity matrix. The eigenvectors x are non-zero if the determinant is zero, i.e.,
det(A — M) =0,
and this equation determines the eigenvalues A. It can be re-written as
det(A — AI) =117y (as — Ai) + pn1(N) = 0,

where a;; are the diagonal elements of A and p,,_1(\) is a (n — 1)-order polynomial. There-
fore, an n x n matrix has exactly n eigenvalues, i.e., the roots of the above n'*-order poly-

nomial, which may be real or complex and simple or multiple. However, the above approach
is rarely used in practice to compute the eigenvalues because it is computationally very

expensive and also unstable. This is illustrated with the Wilkinson matrix

1 O(e)

19
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where by O(€) we denote possible round-off error. In the absence of round-off the eigenvalues
are determined by

(1=XN2-=XN)B=X)...(19—=X)(20 - \) =0,
and thus: \; = i. However, for € # 0 the characteristic polynomial is
A0 —210A" + ...+ 20! + e,
Let us assume that € = 107!, then we obtain
Ai=1,2,...,8,9,10.01,11.3,12.5 4+ 0.5¢,14.5 + 0.5, . . ., 20.

Therefore, the presence of even slight noise in the data results in several eigenvalues being
wrong, even complex in this case!

Similarity Transformation

Next, we provide some basic background on linear algebra. First, we define the similarity
transformation. Specifically, we say that the matrix A is similar to matrix B if A and
B have the same eigenvalues (i.e., the same eigenspectrum) but not necessarily the same
eigenvectors. Therefore, the transformation

A — PAP!

where P is a non-singular matrix, leads to a matrix B = PAP~! which is similar to A. This
can be proved based on the definitions. Let us assume

Ax = Ax

and
PAP 'y = py.

Then
AP 'y =P luy = uP7ly

and by defining x = Py, we have u = )\, so all n eigenvalues are the same for both
A and PAP~!. We also note that if P is an orthogonal matrix then P! = P7 and then
PAPT is similar to A. In theory, any non-singular matrix P can be used in the similarity
transformation, but the best choice in practice is to use an orthonormal matrix. The reason
is that with finite arithmetic ill-conditioned matrices amplify the round-off error and may
lead to erroneous results unlike orthonormal matrices.

Remark 1: The transpose matrix AT is similar to matrix A since they have the same
characteristic polynomial. However, they do not have the same eigenvectors. In contrast,
the inverse matrix A~ has the same eigenvectors with A but inverse eigenvalues, A; '. This
is true because

Ax= X x=x=A" X x= A 'x=A"x
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Remark 2: The matrix A¥, where k is a positive integer, has eigenvalues \*, where \ are
the eigenvalues of A. However, A* and A have the same eigenvectors. This can be extended
further and it is easy to show that if we construct the polynomial matriz

p(A) = ap A’ + A + A%+ .+ AR,

then
p()‘1>7 p()‘2>7 p()‘3) s p()‘n)

are the eigenvalues of p(A). Correspondingly, the eigenvectors of A are also eigenvectors of
p(A). As an example, the eigenvalues of p;(A) = A + ol are (\; + o).

We have already seen that computing the eigenvalues accurately from the determinant
may not always be possible, although the Newton-Raphson method of chapter 4 is an ac-
curate method of computing the roots of polynomials, but it may be inefficient. In chapter
10 we present several methods to compute iteratively and selectively the maximum and
minimum eigenvalues and corresponding eigenvectors.

2.2.6 Memory Management

Before we present BLAS (Basic Linear Algebra Subroutines) in the next section, we will
give you some preliminary information concerning memory management which will help to
make the next discussion more relevant.

In this section, we will discuss two issues:

e Memory layout for matrices, and
e cache blocking.

Our discussion will be directed toward understanding how memory layout in main memory
and cache (see figure 2.11) affect performance.

Memory Layout for Matrices

Computer memory consists of a linearly addressable space as illustrated in figure 2.5. In
this illustration, we denote memory as a one-dimensional partitioned strip. To the right of
the strip, the labels addr denote the address of the parcel of memory. By linearly addressable
we mean that addr2 = addrl 4 addrset where addrset is the memory offset between two
contiguous blocks addressable memory.? Single variables and one-dimensional arrays fit quite
nicely into this concept since a single integer variable needs only one parcel of memory, and
the array needs only one parcel of memory per element of the array.

How are two-dimensional arrays stored in memory? Since memory is linearly addressable,
in order to store a two-dimensional array we must decide how to decompose the matrix into
one-dimensional units. The two obvious means of doing this is decomposing the matrix into

3We have remained general because different architectures allow different addressable sets. Some archi-
tectures are bit addressable, some byte addressable, and some only word addressable. We will not delve
further into this matter, but the interested reader should consult a computer architecture book for more
details.
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integer a
array of floatsx
Memory
Location of the firs addr1
element of array x
Location of the second addr2
element of array x
addr3
addr4
Location of the third
element of array x addr5
addr6
L]
[ ]
L]
Location of te g addr 43
variable a
addr 44

Figure 2.5: Schematic showing the memory layout for an integer variable and an array of floating
point values. The partitioned strip denotes the memory of the computer, and the labels addr to
the right denote the address of the parcel of memory.

a collection of rows or decomposing the matrix into a collection of columns. The first is
referred to as “row-major order”, and the later is referred to as “column-major order”. This
concept is illustrated in figure 2.6.

After examining figure 2.6, we draw your attention to the following statements:

e The amount of memory used by both ordering is the same. Nine units of memory are

used in both cases.

The linear ordering is different. Although both orderings start with the same entry
(So0), the next addressable block in memory contains a different entry of S (Sp; for
row-major order versus Sig for column-major order). This is an important observation
which we will discuss further in just a moment.

If S is a symmetric matrix (meaning S;; = S;;), then row-major ordering and column-
major ordering appear identical.

C++ uses row-major ordering while FORTRAN uses column-major ordering. In sec-
tion 5.1.4 we discuss how multi-dimensional arrays are allocated in C++, and how
row-major ordering comes into play.

In addition to the comments above, one other item needs to be mentioned before we can

conclude this discussion. As shown in figure 2.11, most modern computing architectures
have several layers of memory between what we have referred to as “main memory” and
the central processing unit (CPU). Main memory is normally much slower than the CPU,
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Figure 2.6: The 3 x 3 matrix S is decomposed by row-major ordering on the left and by column-
major ordering on the right.

and hence engineers decided to insert smaller but faster memory between main memory
and the CPU (in this discussion, we will lump register memory in with the CPU and will
refer to Level 1 (L) and Level 2 (L,) cache simply as “cache”). If all the items necessary to
accomplish a computation could fit into cache, then the total time to execute the instructions
would be reduced because the time cost of loads and stores to memory would be accelerated.

In general, even for programs in which not all the data can fit into cache, the use of cache
decreases the total time cost by using cached data as much as possible. This is referred to as
cache reuse. The goal is that once some piece of information has been loaded into cache,
it should be reused as much as possible (since access to it is much faster than accessing the
same piece of data from main memory). Whenever a piece of needed information is found in
cache, we have what is referred to as a cache hit. Whenever a piece of information cannot
be found in cache, and hence it must be obtained from main memory (by loading it into
cache), we have what is referred to as a cache miss.

Items from main memory are loaded in blocks of size equal to the size of a cache line, a
term which comes from the size of the lines going from main memory modules to the cache
memory modules. Hence, if you want to access one element of an array, and it is not in cache
(a miss), an entire cache line’s worth of information will be loaded into cache, which may
include many contiguous elements of the array. We draw your attention to figure 2.7. In this
illustration, we are examining the memory layout during a matrix-vector multiplication. The
3 x 3 matrix A is stored in row-major order followed by a 3 x 1 vector x. In this simplified
example, our cache consists of nine units which are loaded/stored in blocks of three units
(our cache line is of size three units).

At macro time tg, the first element of A is needed, so an entire cache line’s worth of
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Figure 2.7: Main memory and cache layout for a matrix-vector multiplication.

information is loaded, which in this case consists of three units. Hence, the entire first row
of A is loaded into cache. The first element of the vector x is needed, and hence an entire
cache line’s worth of information is loaded, which is equal to all of x. To accomplish the dot
product of the first row of A with the vector x, the other entries already in cache are needed.
Thus, we have several cache hits as other computations are accomplished in order to obtain
the end result of the dot product, b;. At macro time t;, the first item in the second row of
A is needed, and hence there is a cache miss. An entire cache line of information is loaded,
which in this case is the entire second row. Again, many computations can be accomplished
until another cache miss happens, in which case new information must be loaded to cache.

Although this is a very simplied example, it demonstrates how memory layout can be
very important to cache reuse. What would have happened if we had stored the matrix A in
column-major order, but had implemented the algorithm above? Because of the particular
cache size and cache line size, we would have had a cache miss almost every time we needed
an entry of A, and hence the total time cost would have been greatly increased because of
the excessive direct use of main memory instead of the fast cache.

Cache Blocking

The concept of cache blocking is to structure the data and operations on that data so
that maximum cache reuse can be achieved (maximize cache hits). In the example above, we
have achieved this by choosing to store the matrix A in row-major order for the particular
algorithm which we implemented.

Keep this concept in mind during the discussion of BLAS in the next section. In several
cases, different implementations are given for the same mathematical operation, some de-
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pending on whether your matrix is stored in column-major order or in row-major order. In
the end, the computational time used to run your program can be significantly altered by
paying attention to which algorithm is most efficient with which memory layout. Taking into
account cache characteristics when determining the data partition used is very important,
and can greatly enhance or deteriorate the performance of your program.

2.2.7 Basic Linear Algebra - BLAS

Basic operations with vectors and matrices dominate scientific computing programs, and
thus to achieve high efficiency and clean computer programs an effort has been made in
the last few decades to standardize and optimize such operations. Two of the most basic
operations with vectors which appear in a code repeatedly are inner (dot) product and
outer product. The inner or dot product returns a scalar, however, the outer product
returns a matrix. For example:

‘ Inner Product ‘

where ¢ is the scalar value of the inner product, and ¢ = 0 implies that the two vectors are
orthogonal, a terminology similar to vector calculus.

‘ Outer Product ‘

a, arby aibs aqbs---
ay ashy  ashy  agbs - - -
as [bl b2 b3 .. ] = a3b1 &352 &353 T

In addition to the inner and outer products, there are several other standard matrix and
vector operations that are used repeatedly in scientific computing. A convenient taxonomy
is based on their computational complexity, i.e., the number of floating point operations
required to complete an operation. In the previous example with the inner product of vectors
with length n, we require n multiplications and (n — 1) additions or a total of approximately
2n operations. We denote the computational complexity of the inner product as O(n) (read
as “order n”). Similarly, we can estimate the computational complexity of the outer product
to be O(n?). We can then define levels of operations as

O(n), O(n?®), and O(n?),

and this is exactly what has been done with the BLAS, a collection of routines that perform
specific vector and matrix operations. BLAS stands for Basic Linear Algebra Subprograms
and were first proposed by Lawson et al. [67] and further developed in [27, 29]. BLAS serve
as building blocks in many computer codes, and their performance on a certain computer
usually reflects the performance of that code on the same computer. This is why most of the
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computer vendors optimize BLAS for specific architectures. BLAS provide both efficiency
and modularity. The most recent trend has been to develop a new generation of “self-tuning”
BLAS libraries targeting the rich but complex memory systems of modern processors.

The adaptive BLAS software is called ATLAS, which stands for
Automatically Tuned Linear Algebra Software [93]. ATLAS is an implementation of em-
pirical optimization procedures that allow for many different ways of performing a kernel
operation with corresponding timers to determine which approach is best for a particular
platform. More specifically, ATLAS uses two techniques: Multiple implementation and code
generation. In the latter, a highly parameterized code is written that generates many different
kernel implementations. In the former, different hand-written versions of the same kernel are
explicitly provided. The ATLAS framework also allows the user to supply machine-specific
implementations for other operations, for example prefetch instructions and even different
timers in order to affect optimization.

The first level, BLAS1, include O(n) operations, and include scalar-vector multipli-
cation, vector addition, inner (dot) product, vector multiply, and the so-called “saxpy”
operation. The latter simply means “scalar alpha x plus y” and serves as a mnemonic rule
for adding a vector to another vector multiplied with a scalar.

c = dot(x,y)
c = c+x(@y(i); i=1n

and also

z = sarpy(a,X,y)
2(1) = ax(i)+y(i); i=1n

In the above expressions the equal sign implies “assignment” rather than equality as is com-
mon in computer programming.

A typical performance of the double precision (ddot) inner product on the Intel Pentium-4
(1.7GHz) (see figure 2.12) is shown in figure 2.8. Specifically, the ATLAS version of BLAS is
employed with two different options of handling the data: “hot” implies that the vector is in
cache and “cold” that is out of cache. This processor has two levels of cache, which are both
on the chip (see figure 2.12). The primary (L;) cache is 16 Kbytes while the secondary (Ls)
cache is 256 Kbytes.* We see that the “hot/hot” combination results in the best performance,
which, however, is less than half of the maximum possible speed of 1.7 Gflops for a single
operation per cycle. On the other hand, when the vector sizes exceed the cache size, at array
size approximately 10,000, the performance asymptotes to approximately 250 Mflops, which
is only a fraction of the maximum speed.

4This is relatively small cashe. The new processors have cache of several MB.
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Figure 2.8: Performance of the dot product on the Intel Pentium-4 with speed 1.7 GHz. (Courtesy
of C. Evangelinos)

The second level, BLAS2, include O(n?) operations, and specifically the most important
operation in scientific computing, i.e., matriz-vector multiplication. ° There are two ways
of performing this operation depending on how we access the matrix A, either by row or by
column.

e z = MatVec.ij(A,x). This is the row version.

Initialize 2(i) =0.0for i =1,n
Begin Loop i=1,n
Begin Loop j=1n
2(i) = 2(i) + A(i, ) (j)
End Loop
End Loop

e z = MatVec.ji(A,x). This is the saxpy version. We give an example of this version
as it may be less familiar to the reader compared to the inner product version.

s el e ld]

The saxpy version is basically a linear combination of the columns of the matrix A
with weights given by the entries of the vector. We will also refer to this version as the
FORTRAN programming version since the matrix A is accessed by columns, which is
the way that matrices are stored in FORTRAN language. The loop that implements

®The matrix-vector BLAS routine has the name dgemuv (double precision) but also the name mazv is used.
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the column version is shown below. It is different than the row version only in the
order of the loops (i then j instead of the j then i presented below)..

Initialize z(i) = 0.0fori = 1,n
Begin Loop j=1n
Begin Loop i=1,n
2(i) = 2(i) + A(i, j)z(j)
End Loop
End Loop

An operation that involves matrix-vector products, which is the generalization of
saxpy, is the Gaxpy :

e Gaxpy (General A x plusy).

z=y+Ax; z=gazpy (A, X, y)

Lo
X n

!
m n m

To compute a gaxpy we use the saxpy operation in the following loop.

Z=Yy
Begin Loop j=1,n

z=z+x(j) Al J)

——r

column

End Loop

Comparative dgemv() performance on a Xeon4 1.7GHz
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Figure 2.9: Performance of the matrix-vector multiply on the Intel Pentium-4 with speed of 1.7
GHz. (Courtesy of C. Evangelinos)
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A typical performance of the double precision (dgemwv) matrix-vector operation on the
Intel Pentium-4 (1.7GHz) is shown in figure 2.9. Specifically, the ATLAS version of the
BLAS2 routine is employed with different ways of handling the matrix, accessing it either
with unit stride (“T” stands for transpose) or with larger stride (“N” stands for normal).
Similarly to the dot operation in figure 2.8, hot and cold refer to in-cache or out-of-cache
operations, respectively. Here we see that the maximum achievable speed is larger than the
BLAST level operation of figure 2.8, but again in the above matrices with a rank of 200 the
out-of-cache operations result in inferior performance.

In this level we have the matriz-matriz multiplication, which is an O(N?) operation. It
can be accomplished in six different ways, based on the basic operations of lower computa-
tional complexity of level 1 and level 2. ¢ These six different loop arrangements were first
proposed by Dongarra, Gustavson and Karp [31]. The corresponding BLAS are BLAS3.
We present here the inner (dot) product version, the middle product or saxpy version, and
the outer product version. The other three ways are similar to the three versions that we
present here and form the so-called “dual” algorithms. In all cases the basic loop is

Cij = Cij + Qikby;

for the matrix multiplication C = A B, so it is the order of indexing which is different.
To make ideas more clear we present a specific example below with a 2 x 2 matrix-matrix
multiplication.

e Inner (dot) product version:

1 2 5 6| [1:54+2-7T 1-6+2-8
3 4 78| |3:-5+4-7 3-6+4-8

e Middle (saxpy) product version:
1 2 5 6 1 2 1 2
s AL s l=bls e a) ols]=<[2]]

e Outer product version:

IR BEOEHIEE!

Although mathematically equivalent, the different versions can have very different levels
of computer performance because of the different ways that they access memory.

Next we write the general loops for the three versions presented above for a matrix
A(mxr); B(rxn); C = AB. The asymptotic operation count for this operation is O(2mnr)
flops.

6The matrix-matrix BLAS routine has the name dgemm (double precision) but also the name mam is
used.
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e Inner (Dot) product version or MatMat.ijk Algorithm. Matrix A is accessed by rows
and matrix B by columns, while the matrix C is constructed row-by-row:

Initialize ( J)=0.0fori=1,m;j=1,n
Begin Loop =1m
Begin Loop j=1n
Begin Loop k=1r
C(i,j) = C(i,4) + A(i, k) B(k, j)
End Loop
End Loop
End Loop

e Dual inner (Dot) product version or MatMat.jik Algorithm. Matrix A is accessed by
rows and matrix B by columns, while the matrix C is constructed column-by-column
(note that the ordering of the i and j loops has changed):

Initialize C(i,j) =0.0fori =1,m;j=1,n
Begin Loop j=1n
Begin Loop 1=1,m
Begin Loop k =1,r
Cli. j) = Ci,5) + A1, k) B(k, j)
End Loop
End Loop
End Loop

e Middle (Gaxpy) product version or MatMat.jki Algorithm. Matrix A and matrix B
are both stored by columns, so we have repeated matrix-vector multiplies of matrix A
with columns of B, and this is done using the linear combination version of BLAS2:

Initialize C(i,j)=00fori=1,m;j=1,n
Begin Loop j=1n
Begin Loop k=1,r
Begin Loop i=1m
Cli, j) = Ci,5) + A1, k) B(k, j)
End Loop
End Loop
End Loop

Notice that the above operation can be accomplished by using the gaxpy operation as
follows

C(.,5) = gaxpy(A, B(.,5),C(.,]))

The dual operation of the outer product is MatMat.ikj, and it is implemented with a
similar loop as above where we need to exchange ¢ and j.
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e Outer product version or MatMat.kji version Algorithm. Here matrix A is accessed
by columns and matrix B is accessed by rows in order to form outer products.

Begin Loop k=1,r

Begin Loop j=1n
Begin Loop ?

C(i,7) = C(i,j) + A(i, k) B(k, j)

saxpy

End Loop
End Loop
End Loop

The dual operation for the outer product version is MatMat.kij, and it is implemented

with a similar loop as above where we need to exchange i for j.

Comparative dgemm() performance on a Xeon4 1.7GHz
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Figure 2.10: Performance of the matrix-matrix multiply on the Intel Pentium-4 with speed 1.7
GHz. (Courtesy of C. Evangelinos)

A typical performance of the double precision (dgemm) matrix-matrix operation on the
Intel Pentium-4 (1.7GHz) is shown in figure 2.10. Specifically, the ATLAS version of the
BLAS3 routine is employed with different ways of handling the matrix, accessing it either T
or N, hot or cold, as before. Here ATLAS employs cache blocking by carefully partitioning
the matrices into blocks and making effective reuse of the data. This results in a performance
which is approximately the same for all different ways of accessing the data. If no such fine
tuning were performed, the asymptotic performance would drop dramatically for matrices of
rank above 100. It is interesting to note here that the asymptotic performance is well above
1.7 Gflops that corresponds to a single operation per cycle. This is because one of the two
available floating point units of Pentium-4 (the SSE2) is capable of executing any pairwise
operation of eight available registers every cycle for a maximum performance of four single
or two double precision flops per cycle at IEEE 754 precision.
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Figure 2.11: Memory hierarchies in typical computer.
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Figure 2.12: Block diagram of the Intel Pentium-4 .
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BLAS and Memory Access

The practical difference in the various ways of implementing matrix-vector and matrix-matrix
operations lies in the way we access memory and the type of memory, i.e., main memory
or cache memory, as the latter is typically ten times faster than the former. To appreciate
this difference we sketch in figure 2.11 a pyramid of hierarchies (see [30] for more details)
in today’s typical computer that shows the relative distance between the central processing
unit (CPU) and the various levels of memory. The larger the size of memory, the longer it
takes to access it. A layout of the Intel Pentium-4 is shown in figure 2.12.

The cost associated with the BLAS programs can be computed by taking into account
the total number of floating operations but also including the cost associated with memory
access to load the operands. The following time estimate (7') is a conservative one, as it
assumes that there is no overlap between computation and loading of data:

T

n
T=n;x6t+n,xXT=nr 01+ x =),
! T =ng X 0t( 0 57

where ny is the number of floating point operations, n,, is the number of memory references,
and 0t and 7 are the times to execute a floating point operation and the time to load an
operand, respectively, and both are fixed for a given computer model.

From the above equation, we can see that the ratio of n,,/n; plays an important role in
minimizing the total time. For each BLAS routine we can estimate this ratio for the three
levels of operation. For example:

e For BLASI such as the sazpy operation, we have that ny = 2n,n,, = 3n + 1 and thus
nm/ny — 3/2 for large n.

e For BLAS2 (matrix-vector multiply) we have that ny = 2n?, n,, = n* 4+ 3n and thus
N /ny — 3 for large n.

e Finally, for BLAS3 (matrix-matrix multiply) we have that n; = 2n?*, n,, = 4n® and
thus n,,/ny — 2/n for large n.

From the three levels of operations, it is clear that the matrix-matrix multiply is the most
efficient one as the number of memory references per flop decreases for larger size matrices.
This is the reason that the asymptotic performance measured in the figures 2.8, 2.9 and 2.10
is maximum for the matrix-matrix operation. It is, therefore, a good practice in writing
code to involve more matrix-matrix multiplications and use BLAS2 or BLASI less often, if
possible.

Remark 1: There are also several other routines in all levels of BLAS for different opera-
tions. For example, generation of plane rotations in BLASI, solvers of triangular equations
in BLAS2, multiplications of a general matrix by a triangular matrix in BLAS3, etc. The
reader can find all this information on the web using the URL for the netlib freeware libraries:

http://www.netlib.org/blas and also http://www.netlib.org/atlas
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Remark 2: BLAS accommodate both single and double precision corresponding to prefixes
s and d, respectively, in the names of subroutines. For a subset of routines (dot products
and matriz-vector products) extended-precision is also available for very-high accuracy com-
putations (prefix e). BLAS also accommodate complex arithmetic.

2.2.8 Exploiting the Structure of Sparse Matrices

The asymptotic limit of computational complexity in obtaining
C(m xn)=A(m x r)B(r x n)

s O(2nmr), but this limit overpredicts the count of operations for small size matrices. In
practice, we often encounter sparse matrices, and thus we have to be able to obtain a better
estimate for the operation count taking into account that sparsity. One such example is the
multiplication of two upper triangular square matrices A and B (n x n), which contain a;;
and b;; as entries. The resulting matrix C is also upper triangular, as is shown below for the
case of n = 3.

a11011  a11012 4 a12bas  a11bis + ajabas + ai3bss
C= 0 22092 a29bo3 + a23bs3
O O a33b33

To implement the general case of multiplication of upper triangular matrices, we write
the following loop:

Initialize C(i,j)=00fori=1,n;j=1,n
Begin Loop i=1,n
Begin Loop j=1un
Begin Loop k=1i,j

Ci,j) = Cli,j) + Ali, k) B(k, j)

2(j—i+1) flops

End Loop
End Loop
End Loop

Notice that this is the inner product version MatMat.ijk but with the lower limits in the
index j and k modified so that only entries in the upper triangular matrix are involved in
the computation. Clearly, we want to avoid multiplying zero entries! In order to evaluate
the flop count, we sum the amount of arithmetic associated with the most deeply nested
statements in the algorithm. To this end, we obtain

n n—i+l

znjznj 2(j —i+1) 2223~22 ’H :zn: %3 (2.1)

i=1 j=1

Note that we used the following sums in the above derivation:

n+1) n?

S
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and also
n 3

Z 2 _ + n_2 + no n_3
P79 76 3"
The corresponding cost for computing these matrices as full matrices is 2n3, and thus the
savings with the above algorithm is six-fold.

In the same spirit, we could exploit the structure of other sparse matrices both in comput-
ing and in storing them. A particular structure that is often encountered in solving numerical
partial differential equations is that of banded matrices of the form shown below, where
we have a tridiagonal matrix [a(7), b(7), ¢(i)] with b(i) on the diagonal.

b1 aq O

1 by a2

O Cn—1 bn Ap—1

First, it is advantageous to store such matrices in terms of their diagonals [a,b,c]. Next, we
can easily verify that
Ax = bx §* ax; &' cx

where xT = (xy,...,7,) is a vector of length n but 27 = (29,23,...,2,) and 2l =

(1,22, ...,x,_1) are vectors of length (n—1). Because of this mismatching in vector length,
the summation & in the above equation should be interpreted appropriately, i.e., we should
add (@") the diagonal a above the main diagonal b (here the second term in the sum) to
the first component of bx and also add (@) the diagonal ¢ below the main diagonal to the
last component of bx. Also, the multiplications between all vectors should be performed in
an element-wise fashion.

2.2.9 Gram-Schmidt Vector Orthogonalization

Important operations in scientific computing are vector orthogonalization and normalization.
The Gram-Schmidt process starts with n linearly independent vectors x; and ends with n
orthonormal vectors q;, i.e., vectors which are orthogonal to each other, and also their Lo-
norm is unity. Let us consider the vectors x;, ¢ = 0,...,n — 1 each of length M. We want
to produce vectors q;, ¢« = 0,...,n — 1 where the first vector q, is the normalized xg, the
vector q, is orthogonal to q, and normalized, the vector q, is orthogonal to q, and q,, and
so on. The idea is to produce a vector

Yi = Xi— (q?—lxi)qifl e (qui)q07
which subtracts the projection of x; onto each vector q; for j = 0,...,i—1. Having obtained
y; we can then normalize it to obtain the corresponding orthonormal vector, i.e.,
Yi
q4 = .
oyl

We can summarize this algorithm as follows:
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e Initialize: Compute rog =|| X¢ [|2. If 790 = 0 STOP, else q, = xo/700-
e Begin Loop: For j =0,...,n—1 Do:
1. Compute rj; =q/x;, i=0,...,5—1
2. y; =x; — Y1 ria
3. =l y; Il
4. If Tjj = 0 STOP
else q; = y;/rj;

e End Loop.

Example: Let us assume that we want to orthonormalize the vectors

1 2
Xo=10 and x; = | 3
2 0

thus, following the above algorithm, we obtain

(124024922 _99 q L 109
o ro0 = (1" + 0" +2°) 367 and qo 2.2367( )
SO
0.4472
qo = 0
0.8942
_ T _
® 19 = ¢y x; = 0.8942
and
2 0.4472 1.6001
Yi=Xi —roaqo= | 3 | —0.8942 0 = 3
0 0.8942 —0.7996
" 2 2 2 1/2
ri =[ o= [(1.6001) + 3 + (=0.7996)?| "~ = 1.7887
and
0.89456
a =2 = | 1.6722
i 0.4470

Notice that we can write

0 1.6772

0.4472  0.89456 [
0.8942  0.4470

2.2367 0.8942
0 1.7887

N O =
o w N
I

63
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The algorithm above is presented using common mathematical abstractions, such as
vectors and matrices. The beauty of C++ is that these mathematical abstractions can be
implemented in C++ as “user-defined” data types, in particular for this case, as classes. We
now present the implementation of the above algorithm in C++, utilizing some predefined
user-defined classes that we have created. Explanation of the class syntax of this function will
be given later in section 3.1.8, along with details as to how to create your own user-defined
data types.

Software

@ Gram-Schmidt Code
Suite

In the coding example below, we are using the SCVector class that we previously defined
(section 2.1.1). Because we have defined the SCVector class to have mathematical properties
just like what we would expect, we see that we can translate the algorithm given above
directly into the code. Admittedly, some of the C++ syntax in the function below goes
beyond what you have been taught thus far; the details of the class implementation of
this code will be given later on in this book (see section 3.1.8). What you should notice,
however, is that classes, such as SCVector, allow you to more closely model the mathematical
definitions used in the algorithmic description of the solution of the problem.

SCstatus GramSchmidt (SCVector * x, SCVector * q){
int 1,7;
int dim = x[0] .Dimension();
SCVector y(dim);
SCMatrix r(dim);

r(0,0) = x[0].Norm_12Q);

if(r(0,0)==0.0)
return(FAIL);

else
ql0] = x[0]/r(0,0);

for (j=1;j<dim;j++){ // corresponds to Begin Loop
for(i=0;i<=j-1;i++)
r(i,j) = dot(qlil,x[jl); // corresponds to 1

y = x[j];
for(i=0;i<=j-1;i++)
y =y - r(i,j)*qlil; // corresponds to 2

r(j,j) = y.Norm_12Q); // corresponds to 3
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if(r(j,j) == 0.0)
return(FAIL);
else
qljl = y/r(G,3); // corresponds to 4

return(SUCCESS) ;
}

Observe in the code above that we allocate within this function an SCMatrix r which we
use throughout the function, and which is discarded when the function returns to its calling
function. We may want to retain r, however. In this case, we can create a function which
has an identical name as the previous function but contains an additional variable within the
argument list. The name and the argument list are used to distinguish which function we
are referring to when we call the function. (this concept will be discussed further in section
4.1.4).

Software | In the function below, we pass into the function GramSchmidt
@ a SCMatrix r which it populates over the course of the com-
Suite putation.

SCstatus GramSchmidt(SCVector * x, SCVector * g, SCMatrix &r){
int 1,7;
int dim = x[0] .Dimension();
SCVector y(dim);

r(0,0) = x[0].Norm_12Q);

if(r(0,0)==0.0)
return(FAIL);

else
ql0] = x[0]/r(0,0);

for (j=1;j<dim;j++){ // corresponds to Begin Loop
for(i=0;i<=j-1;i++)
r(i,j) = dot(qlil,x[jl); // corresponds to 1

y = x[j];
for(i=0;i<=j-1;i++)
y =y - r(i,j)*qlil; // corresponds to 2

r(j,j) = y.Norm_12Q); // corresponds to 3
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if(r(j,j) == 0.0)
return(FAIL) ;
else

qljl = y/r(G,3); // corresponds to 4

return(SUCCESS) ;

Key Concept

e (lasses can help you more closely mimic the natural data struc-
tures of the problem. We are not confined to working with only
the low level concepts of integers, floats, and characters.

QR Factorization and Code

Another important point which we will often use in this book is a special matrix factor-
ization. In particular, if the vectors x;, = 0,...,n — 1 form the columns of a matrix X of
size m X n, also q;,7 = 0,...,n — 1 form the columns of matrix Q, and r;; are the entries of
a square n X n matrix R (which turns out to be upper triangular) the following equation is
valid

X =QR

which is known as QR decomposition (or factorization) of the matriz X, and it has important
implications in obtaining eigenvalues and solutions of linear systems.

SOf&Sre We now present a C++ function which accomplishes the QR

decomposition of a matrix.

Suite

Just as was stated above, we input a matrix X to be decomposed into the matrices Q
and R. We begin by creating two arrays of vectors ¢ and v, which will serve as input to
our original Gram-Schmidt routine. As you will see, this routine contains only two basic
components:

1. A data management component, which is going from matrices to a collection of vectors
and back, and
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2. A call to the Gram-Schmidt routine that we wrote previously (and now you understand
why we may have wanted to be able to retrieve the value of the SCMatrix ).

This routine demonstrates one important issue in scientific computing, i.e., the compromise
between computational time and programmer’s time. In this case, one may argue that if we
were to write a routine specifically for QR decomposition, then we could reduce some of the
cost of the data management section, and thus have a “more optimal code”. However, this
consideration must be balanced by considering how much computational time is used for data
manipulation versus the time to properly write and debug an entirely new function. In this
particular case, in theory, we have already written and tested our GramSchmidt(v,q,R)
function, and hence we are confident that if we give the Gram-Schmidt function proper in-
puts, it will return the correct solution. Hence, we can focus our programming and debugging
on the extension of the concept, rather than on the details of optimization. Optimization
is certainly important if we were to be calling this routine many times in a particular simu-
lation; however, optimization-savy individuals, as the old saying goes, often miss the forest
for the trees!

SCstatus QRDecomposition(SCMatrix X, SCMatrix &Q, SCMatrix &R){
int 1,];
int num_vecs = X.Rows();
int dim = X.Columns();
SCstatus scflag;

new SCVector [num_vecs] (dim),
new Vector [num_vecs] (dim);

Vector *q
*v

for(i=0;i<num_vecs;i++){
for(j=0; j<dim; j++)
v[i]l (j) = X(§,1);

scflag = GramSchmidt(v,q,R);

for(i=0;i<num_vecs;i++)
for(j=0; j<dim; j++)
Q(j,1) = qlil(j);

return scflag;

Modified Gram-Schmidt Algorithm and Code

Notice that the Gram-Schmidt method breaks down at the k" stage if x; is linearly de-
pendent on the previous vectors x;, j = 0,...,k — 2 because || x;, [[2= 0. It has also been
observed that, in practice, even if there are no actual linear dependencies, orthogonality
may be lost because of finite arithmetic and round-off problems, as discussed earlier. To this
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end, a modified Gram-Schmidt process has been proposed which is almost always used
in computations. Specifically, an intermediate result is obtained,

y) = aq; — (a5 x;)qq,

which we project onto q, (instead of the original x;), as follows:

y; =¥ — (ary))a,

and so on. This process then involves successive one-dimensional projections. In the follow-
ing, we present a row-oriented version of the modified Gram-Schmidt algorithm.

e Initialize: Set q; =x;, ¢=0,...,n—1.
e Begin Loop: For:=0,...,n—1 Do:

rii = ||l

q; = q;/7ii

Forj=4+4+1,...,n—1 Do:

Tij = quq]'
4G =9 = "%
End Loop
e End Loop.
Software We present a C++ implementation of the modified Gram-

Schmidt algorithm below. With the exception of the com-
@ mented block of code, the remaining code is identical to the
Suite original code provided above.

SCstatus ModifiedGramSchmidt(Vector * x, Vector * q, Matrix &r){
int 1,];
int dim = x[0] .Dimension();
Vector y(dim);

r(0,0) = x[0].Norm_12Q);

if (r(0,0)==0)
return(FAIL);

else
ql0] = x[0]/r(0,0);
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for(j=1;j<dim;j++){

[ R F AR KRR kR K kKK ok kK ok kK Rk Kk kK Rk KKk kK ok
/* We replace the following block of lines from the */

/* original Gram-Schmidt algorithm presented above, */
/* for(i=0;i<=j-1;i++) */
/* r(i,j) = dot(qlil,x[j1); */
/* */
/% y = x[jl; */
/% for(i=0;i<=j-1;i++) x/
/* y =y - r(i,j)*qlil; */
/* */
/* with the modification described above. The */
/* following lines implement that modification. */

/*******************************************************/
y = x[j];

for(i=0;i<=j-1;i++){
r(i,j) = dot(qlil,y);
y =y - r(i,j)*qlil;
}

/*******************************************************/

/* End of Modification */
/*******************************************************/

r(j,j) = y.Norm_12Q);

if(r(j,j) == 0)
return(FAIL);
else

qljl = y/r(G,3);

return(SUCCESS) ;
}

Remark 1: The computational complexity of the Gram-Schmidt process is O(mn?) irre-
spective of which version is used. This is evident by comparing the comment block inserted
into the Modified Gram-Schmidt code. If you carefully examine the deleted code versus
the newly inserted code, you will see that the number of operations that is performed is
identical. It is often the case in scientific computing that although two algorithms may be
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identical mathematically (i.e., in infinite precision), one algorithm is inherently better than
the other when implemented numerically. Furthermore, in this case, we see that we achieve
an additional benefit from the modified algorithm at no additional cost.

Remark 2: The loss of orthogonality of Q in the modified Gram-Schmidt method
depends on the condition number k(A) of the matrix A obtained by using the specified
vectors as columns [8]. In general, the orthogonality of Q can be completely lost with the
classical Gram-Schmidt method while the orthogonality property may not be lost with the
modified Gram-Schmidt method but it may not be acceptable when the matrix A is ill-
conditioned. A better approach is to employ the Householder method discussed in section

9.3, which is more accurate and also computationally less expensive. For example, the cost
for Gram-Schmidt is O(mn?) while for the Householder method is O(mn? — n?/3).

2.3 Parallel Computing

e Imagine a large hall like a theater, except that the circles and galleries go rTight round through
the space usually occupied by the stage. The walls of this chamber are painted to form a map
of the globe...A myriad of computers are at work upon the weather of the part of the map
where each sits, but each computer attends only to one equation or part of an equation. The
work of each region is coordinated by an official of higher rank...From the floor of the pit a
tall pillar rises to half the height of the hall. It carries a large pulpit on its top. In this sits the
man in charge of the whole theater; he is surrounded by several assistants and messengers.
One of his duties is to maintain a uniform speed of progress in all parts of the globe. In this
respect he is like the conductor of an orchestra in which the instruments are slide rules and
calculating machines. But instead of waving a baton he turns a beam of blue light upon those
who are behindhand.

Lewis F. Richardson, “Weather Prediction By Numerical Process” (1922)

This prophetic quote describes quite accurately the many hardware and software ingre-
dients of a modern parallel computer. It refers to a multiple instruction/multiple data type
and involves domain decomposition as the mode of partitioning the work load. The concepts
of master node that synchronizes the processes as well as of load balancing are also included
in the statement.

In the following, we briefly review some parallel computer architectures and introduce
parallel concepts and tools.

2.3.1 From Supercomputing to Soupercomputing

A supercomputer is the fastest computer of its time; today’s supercomputer is tomorrow’s
desktop or laptop computer. One of the first supercomputers of historical significance was the
Cray-1. It was used quite successfully in many applications involving large-scale simulation
in the early 1980s. The Cray-1 was not a parallel computer, however, but it employed
a powerful (at the time) vector processor with many vector registers attached to the main
memory (see figure 2.13). Today, all supercomputers are parallel computers. Some are based
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Figure 2.13: Schematic of the first Cray computer, the Cray-1.

on specialized processors and networks, but the majority are based on commodity hardware
and open source operating system and applications software. In this section, we will review
briefly some of the history and the recent trends.

Types of Parallel Computers

A popular taxonomy for parallel computers is the description introduced by Michael Flynn
in the mid 1960s [36] of the programming model as single instruction/ multiple data stream
(SIMD) or multiple instruction/ multiple data stream (MIMD). In a SIMD computer, such
as the Thinking Machines CM-2 or the NCUBE Inc. computers of the 1980s, each pro-
cessor performs the same arithmetic operation (or stays idle) during each computer clock,
as controlled by a central control unit (see figure 2.14). In this model (also referred to as
a data parallel program) high-level languages (e.g., CM Fortran, C*, and Lisp) are used,
and computation and communication among processors are synchronized implicitly at every
clock period.

On a MIMD computer (see figure 2.15) each of the parallel processing units executes oper-
ations independently of each other, subject to synchronization through appropriate message
passing at specified time intervals. Both parallel data distribution as well as the message
passing and synchronization are under user control. Examples of MIMD systems include the
Intel Gamma and Delta Touchstone computers and, with fewer but more powerful processors,
the Cray C-90, and the first generation of IBM SP2 (all made in the 1990s).

While it is often easier to design compilers and programs for SIMD multiprocessors
because of the uniformity among processors such systems may be subject to great compu-
tational inefficiencies. This is due to their inflexibility when stages of a computation are
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Figure 2.14: Schematic of SIMD parallel computer.

encountered in which there is not a large number of identical operations. There has been a
natural evolution of multiprocessor systems towards the more flexible MIMD model, espe-
cially the merged programming model in which there is a single program (perhaps executing
distinct instructions) on each node. This merged programming model is a hybrid between
the data parallel model and the message passing model and was successfully exemplified in
the Connection Machine CM-5. In this SPMD (single program multiple data) model, data
parallel programs can enable or disable the message passing mode, and thus one can take
advantage of the best features of both models.

Control unit 0 Control unit 1 Control unit P-1
Processing Processing Processing
element 1 element 1 — " —| elementP-1

Local Local Local
memory 0 memory 1 memory P-1
Node 0 Node 1 Node P-1

Figure 2.15: Schematic of MIMD parallel computer.

MIMD computers can have either shared memory as the SGI Origin 2000 or distributed
memories as in the IBM SP system. The issue of shared memory requires further clarification
as it is different from the centralized memory. Shared memory means that a single address
space can be accessed by every processor through a synchronized procedure. In non-shared
memory systems explicit communication procedures are required. The prevailing paradigm
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in parallel computing today is one where the physical memory is distributed, but the address
space is shared as this is a more flexible and easier as a programming environment.
PC Clusters

The most popular and cost-effective approach to parallel computing is cluster computing,
based for example, on PCs running the Linux operating system (hereafter referred to merely
as Linux). The effectiveness of this approach depends on the communication network con-
necting the PCs together, which may vary from fast Ethernet to Myrinet that can broadcast
messages at a rate of several Ggabits per second (Gbs).

NODE 0 NODE 1 NODE P-1

High Speed
Switch

Figure 2.16: Schematic of Generic Parallel Computer (GPC).

Issues of computer design, balancing memory, network speed, and processing speed can
be addressed by examining the Generic Parallel Computer (GPC) depicted in figure 2.16.
The key components of the GPC are an interconnecting set of P processing elements (PE)
with distributed local memories, a shared global memory, and a fast disk system (DS). The
GPC serves as a prototype of most PC-based clusters that have dominated supercomputing
in the last decade both on the scientific as well as the commercial front.

The first PC cluster was designed in 1994 at NASA Goddard Space Flight Center to
achieve one Gigaflop. Specifically, 16 PCs were connected together using a standard Ethernet
network. Each PC had an Intel 486 microprocessor with sustained performance of about 70
Megaflops. This first PC cluster was built for only $40,000 compared to $1 million, which
was the cost for a commercial equivalent supercomputer at that time. It was named Beowulf
after the lean hero of medieval times who defeated the giant Grendel. In 1997 researchers
at the Oak Ridge national laboratory built a Beowulf cluster from many obsolete PCs of
various types; for example, in one version it included 75 PCs with Intel 486 microprocessors,
53 Intel Pentium PCs and five fast Alpha workstations. Dubbed the stone soupercomputer
because it was built at almost no cost, this PC heterogeneous cluster was able to perform
important simulations producing detailed national maps of ecoregions based on almost 100
million degrees of freedom [54]. A picture of this first soupercomputer is shown in figure
2.17.
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Figure 2.17: Soupercomputer of the Oak Ridge national laboratory. (Courtesy of F. Hoffman)

Building upon the success of the first such system, the BEOWULF project [7, 81], sev-
eral high performance systems have been built that utilize commodity microprocessors with
fast interconnects exceeding one Gigabits per second in bandwidth. Moore’s law (an em-
pirical statement made in 1965 by the Intel co-founder Gordon Moore) suggests that the
performance of a commodity microprocessor doubles every 18 months, which implies that,
even without fundamental changes in the fabrication technology, processors with a speed of
several tens of Gigaflops can become available. Nanotechnology can help in prolonging the
validity of this statement, which has been true for at least four decades. New developments
include the TeraHertz transistor and the packaging of more than one billion transistors on
a single chip will hopefully keep Moore’s law alive. Intel’s Pentium-4 (see figure 2.12) has
about 42 million transistors).

In addition to enhancements in the speed of individual processors, there have been several
key developments that have enabled commodity supercomputing:

e The development and maturization of the free operating system Linux, which is now
available for all computer platforms. The freely distributable system and the open
source software movement has established Linux as the operating system of choice, so
almost all PC clusters are Linux based.

e The MPI standard that has made parallel coding portable and easy. There are sev-
eral implementations such as MPICH, SCore, etc. but they all share the same core
commands which we present in this book.

e The rapid advances in interconnect and fast switches with small latencies, which are
now widely available unlike the early days of proprietory and expensive systems avail-
able only by a few big vendors.

Grid Supercomputing

The computational grid is a new distributed computing paradigm, similar in spirit to the
electric power grid. It provides scalable high-performance mechanisms for discovering and
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negotiating access to geographically remote resources. It came about by the internet and
world wide web advances and the fact that similarly to Moore’s law for computer speed, the
speed of networks doubles every about nine months. This is twice the rate of Moore’s law,
and it implies that the performance of a wide area network (WAN) increases by two orders
of magnitude every five years!

Computing on remote platforms involves several steps, to first identify the available sites,
to negotiate fast access to them, and configure the local hardware and software to access
them. The Grid provides the hardware and software infrastructure that allows us to do this.
The community-based opensource Globus toolkit is the most popular software infrastructure
[38], see also

http://www.globus.org

It implements protocols for secure identification, allocation and release of resources from a
globally federated pool of supercomputers, i.e., the Grid.

The Grid also allows the implementation of network-enabled solvers for scientific com-
puting, such as the package NetSolve [14]. NetSolve searches for available computational
resources within the Grid and chooses the best available resource based upon some sort of
match-making procedure. It consists of three parts: a client, an agent, and a server. Client
is the user issueing a request that is received by the agent. The latter allocates the best
server or servers which perform the computation and return the results to the client. The
server is a daemon process, which is on the alert awaiting requests from the client.

Performance Measurements and Top 500

As regards performance of parallel computers, there is no universal yardstick to measure it,
and in fact the use of a single number to characterize performance such as the peak perfor-
mance quoted by the manufacturer is often misleading. It is common to evaluate performance
in terms of benchmark runs consisting of kernels, algorithms, and applications so that differ-
ent aspects of the computer system are measured. This approach, however, is still dependent
on the quality of software rather than just hardware characteristics. The controversy over
performance evaluation methods has been recognized by the computer science community
and there have been several recent attempts to provide more objective performance metrics
for parallel computers [57]. A discussion of some of the most popular benchmarks, the BLAS
routines, was presented in 2.2.7, and more information can be found on the web at:

http://www.netlib.org/benchmark

A good basis for performance evaluation of supercomputers is also provided in the Top500
list, see:

URL: http://www.top500.org/

This was created by Dongarra in the early 1990s and it is updated twice a year. This list
reports the sites around the world with the 500 most powerful supercomputers. Performance
on a LINPACK benchmark [28] is the measure used to rank the computers. This is a code
that solves a system of linear equations, see chapter 9, using the best software for each
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platform. Based on the data collected so far and the current Teraflop sustained speeds
achieved, it is predicted that the first PETAFlop/s (10' floating point operations per second)
supercomputer would be available around 2010 or perhaps sooner.

2.3.2 Mathematical Parallelism and Recursive-Doubling

We now review briefly the mathematics of parallelism. There are many basic mathematical
operations that have a high degree of parallelism, and by this we mean that they can be
performed simultaneously and independently of each other. Consider, for example, the
element-wise multiplication of two vectors x,y to produce another vector c, i.e.,

G =xy;, t1=1,...,N.

(Clearly, in this case all NV products can be obtained simultaneously, and thus we can imagine
that each term in this product being evaluated by a different computer. In this particular
example there is of course no need to engage N different processors to do such a simple
operation, but the point we want to make is that for this operation there are no dependencies
among the different pairs of data. This is an example of perfect mathematical parallelism.
This form of parallelism also applies to the task of finding the maximum in each pair of a
set of N pairs of numbers, i.e., maz (x;,y;), ¢ = 1,..., N. This operation is also perfectly
parallel, and we will refer to such problems as EP (Embarassingly Parallel).

Notice, however, that if we attempt to find the absolute maximum number in the above
pairs we introduce inter-dependencies among the data, and such an operation is not perfectly
parallel anymore. The same is true for simple BLAS operations, for example the evaluation
of an inner (dot) product, i.e.,

N
C = Z TiYi,
i=1

where ¢ is a scalar. This requires the summation of all N product pairs (x;y;), which
is clearly a serial operation as it involves accumulation of the sum of a next pair to the
previous accumulation, and so on. Another such example is the evaluation of a polynomial
p(x), e.g.

p(z) = ap + a1x + axx® + azx® + ...+ aya®,

at a specific point zy, which is also an accumulation operation. For this example, a straight-
forward computation would require recomputing the powers of x or else we would require
extra storage. This last issue can be avoided by resorting to Horner’s rule and alternating
multiplications and additions appropriately. For example, the polynomial

p(x) =2+ 3z + T2® + 42° + 2,
can be computed from the equivalent equation
p(x) =2+ B+ (7T+ (4 +2)z)z)r,

which can be computed recursively with (N — 1) multiplication and N additions. This is an
important point: observe that the mathematical result of the two forms is the same, however
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the number of operations that must be accomplished to obtain the result is different. This
type of operation rearrangement for optimization is common (and powerful) in scientific
computing. This particular operation, however, is still serial because in order to proceed
with the next iteration we need the results from the previous one.

Let us now revisit the computation of the inner product mentioned above. To be able
to perform the addition of the terms (z;y;) faster than in the straightforward serial fashion
from left to right, we can break the sum into two smaller sums (assuming for convenience
that NV is an even number). For example, we have that the two sets are

N/2 N
Z x;y; and Z ZiYi -
i=1 i=N/2+1

We can compute the two sums separately and then collect the two results and perform
another sum to obtain the final result. The total number of additions is, of course, the
same, i.e., (N — 1) but assuming that we can execute the two big sums simultaneously the
wall clock time is almost half of what it was before. We can estimate more precisely the
wall clock time by assuming that it takes the computer a time dt to perform an addition.
This time 4t is related to the processor speed, and it is in the range of several nanoseconds
for a relatively fast computer. The total time required for the straightforward approach is
Ty, = (N — 1)dt. Then, the total time required after we break up the problem into two
subproblems is Ty = (N/2 — 1)0t + 6t + C, where C represents the time required to collect
the two results from the sub-sums. We can measuse the speed-up of this data partionining

method from the ratio
T N —1

T, N/2+C/ét

For efficiency we want S5 to be larger than one, which will be true if the relative communication-
to-computation time C'/dt is small. If this cost is negligible then for N very large we obtain
Sy &~ 2, which is the theoretical mazimum speed-up.

This simple exercise illustrates how we can extract parallelism from an operation that
is seemingly serial at a first glance. Moreover, this data partitioning approach can be con-
tinued recursively so that the sub-sums are smaller and smaller, to a single pair of numbers
in this particular approach. This divide-and-conquer approach is fundamental to paral-
lel processing thinking. It is also known by other names, e.g. the fan-in algorithm or the
recursive-doubling algorithm. Another advantage of recursive-doubling is that it leads to en-
hanced numerical stability because when we sum up a large set of numbers in a serial fashion
significant accumulation of errors can occur. However, the recursive doubling algorithm and
corresponding pair-wise summation is assured to be more stable.

We can now generalize the example above by assuming that we have P computer pro-
cessors available, and that P = N, with N = 2%, so that we can reduce the evaluation of a
dot product into a summation of two numbers on each processor. The total number of stages
or branches in this tree, which is illustrated in figure 2.18 for the case of N = 8, is ¢; here

q = 3. Using the aforementioned recursive thinking, we can estimate the speed-up factor to
be

SQZ

T (N =16t

Sp=_~- =X 7
P T, T ¢St +qC
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Figure 2.18: Inner (dot) product operation following the fan-in algorithm for N = P = 8.

where we include a total communication cost of ¢C' assuming that in each stage the commu-
nication time penalty to collect terms and send them to other processors is C'; let us denote
the relative time by a = C'/§t. We can rewrite the speed-up factor in terms of the problem
size N or the number of processors P

N -1 P-1

op = (1+oz)log2N: (1+a)logy, P

We see from the last equation that even for zero communications (o = 0), the theoretical
maximum speed-up factor is
P—-1 P—-1

- <P and mp=——
log, P e P = Plog P

P

where the last equation defines the parallel efficiency np. For an EP (embarassingly parallel)
problem we have that np = 1 or 100%. It is clear that in this recursive algorithm the parallel
efficiency is less than perfect even if we ignore communications among the processors. At
successive stages of the computations less and less processors are involved in the computation,
and in fact in the last stage only two processors are involved while (P — 2) are staying idle.
The parallel efficiency, therefore, should reflect this load imbalance amongst the P processors.

If communication is taken into account in the above simple model, which assumes that
C = «adt, then we have that

Sp(a=1) = %sp(& ).

Therefore, we are computing at only 50% parallel efficiency. In practice, there are other
factors which may limit the parallel efficiency even more. For example, the number of
processors may not match exactly with the size of the problem, the total problem or sub-
problems may not fit in the memory, or a startup time penalty known as latency may slow
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down the transferring of data. In this latter case, a better model for the communication cost
is

C=L+8l

where L is the latency and [ is the message length. Also 37! is the bandwidth, which reflects
the maximum rate at which messages can be exchanged. Latency is significant when we
transfer small parcels of data often, but for longer size messages it is a subdominant time
cost. Typical ranges for L are from a few nanoseconds to a few microseconds, and it is
usually inversely proportional to the cost of the computer multiprocessor.

2.3.3 Amdahl’s Law

A more general model for the speed-up factor was proposed by Gene Amdahl (1967), which is
often referred to as Amdahl’s law [2]. In its simplest form it assumes that some percentage,
say &, of the program or code cannot be parallelized, and that the remaining (1 — ¢) is
perfectly parallel. Neglecting any other communication delays such as memory contention,
latencies, etc. Amdahl’s model for speed-up states that

Tl . 1
E+(1-O/PIT e+ 55

Sp = (2.2)

and thus an upper bound in the limit of P — oo is Sp < 1/£. This implies that even if
¢ = 1% (meaning only 1% of the program is not parallelizable) for P = 100 we have that
S100 = 50, so we operate at half the maximum efficiency; see also figure 2.19.
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Figure 2.19: Speed-up factor versus number of processors for three different degrees of parallelizable
code.

Although useful, this performance measure Sp can sometimes be misleading since it may
favor inefficient but highly parallelizable algorithms instead of more efficient algorithms that
may be more difficult to map onto a parallel multiprocessor computer. Also, the derivation
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of Amdahl’s law relies on the assumption that the serial work £ is independent of the size
of the problem size N. In practice, it has been observed that ¢ decreases as a function of
problem size. Therefore, the upper bound on the speed-up factor Sp usually increases as
a function of problem size. Another anomaly is the so-called superlinear speed-up, which
means that the speed-up factor has been measured to be more than P. This may happen
because of memory access and cache mismanagement or because the serial implementation
on a single processor is suboptimal.

There are several industry standard benchmark programs such as Whetstone, Scal.A-
PACK and LINPACK benchmarks. While these benchmarks have been used extensively
in all advanced computer system evaluations, specific benchmarks have been developed to
evaluate shared, distributed, and hybrid memory parallel computers. They vary from simple
parallel loops to measure the ability of parallelizing compilers to the PERFECT benchmark
which consists of thirteen programs including several fluid dynamics programs, to the MIMD
benchmarks, e.g. Genesis consisting of FFTs, partial differential equations, molecular dy-
namics, and linear algebra. A particularly popular set of benchmarks was developed at
NASA Ames, the NAS parallel benchmarks, a suite of eight programs with three versions
for serial, machine-dependent, and MPI-based implementations:

(see URL: http://www.nas.nasa.gov/Software/NPB) .

Measures of performance based on Amdahl’s law are particularly effective for small pro-
grams that do not require extensive and intensive use of computer memory. Most computer
benchmarks are of this sort, but they do not in fact represent many of the requirements for
the solution of large-scale simulations.

2.3.4 MPI - Message Passing Interface

Parallel computing, in its conceptual form, appears to be a very reasonable concept. Many
of the concepts found in parallel computing have analogous concepts in social areas such as
business management. The idea of many people working together toward one goal is similar
to many processes working together toward one solution. The idea of wanting to partition
the work so that all processors are busy and none remain idle is similar to wanting to keep
your team busy, with noone having to sit around waiting on someone else for information.
From this perspective, we see that parallel computing is a natural extension of the concept
of divide-and-conquer; that is, we first begin with a problem which we want to solve, we
then access the available resources we can use toward solving the problem (which in the case
of computing will be the number of processors that can be used), and we then attempt to
partition the problem into manageable pieces which can be done concurrently by each person
on the team.

Key Concept

e Parallel Computing is a Divide-and-Conquer Strategy.
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The most common difficulty that people have with this concept is not the divide-and-
conquer component; most often, we are quite comfortable with the concept of partitioning
a problem into workable subproblems. However, it may be difficult to see how a specific
problem can be partitioned efficiently to be solved in parallel, and secondly to understand
how you can get computers to work in parallel. Both of these issues, at varying levels, will
be addressed in this book.

Throughout this book, we will be discussing how to take specific numerical algorithms
and partition them among multiple processors. Hence, at this stage of your reading, we will
focus on the second of the two major difficulties:

e Understanding and implementing parallel programming on a computer.

The first issue that we will draw your attention to is that the goal of this book is not to
give detailed descriptions of the hardware and software mechanisms used for implementing
parallel computers. Our goal in this book, and the goal of most simulation scientists, is to
use the parallel computing tools already designed and created for them. Hence, we focus
on the problem we are trying to solve, and not on the intricate details of getting computers
to communicate with each other. To this end, we have chosen to employ MPI, a Message-
Passing Interface, for handling our parallel computing communication needs.

There are many good books on MPT itself, e.g. [51] and [73], both of which give some
of the history and the developmental rational behind a message passing interface. We will
not cover this information other than to mention that the basic premise behind MPI is
that multiple parallel processes work concurrently towards a common goal using “messages”
as their means of communicating with each other. This idea is illustrated in figure 2.20.
Multiple MPI processes may run on different processors, and these processes communicate
through the infrastructure provided by MPI. As users, we need not know the implementation
of this infrastructure, we need only to know how to take advantage of it! To this end,
almost everything in MPI can be summed up in the single idea of “Message Sent - Message
Received.”

Proces9D Processl Process? Process3

Communication via MP

Figure 2.20: Schematic of MPI processes working together.
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Key Concept

e Almost everything in MPI can be summed up in the single idea
of “Message Sent - Message Received.”

We will be discussing the mechanics of this process, i.e., the MPI routines to use in order
to accomplish this, throughout this book. Let us begin our parallel computing experience by
understanding from a high-level the differences between our previous “serial” codes (those
programs that we have been addressing previous to this point) and our new “parallel” codes.
Up to now, every program that we have discussed has had one single thread of execution.
A simplistic breakdown is the following: the program started, data was allocated, work was
done on that data, and an answer was produced. All the steps were presented in a serial
fashion: A then B then C, etc. Think of this model as the “you working alone” model. You,
as a single person, have a goal to accomplish, and you set out with a specific collection of
tasks that need to be done in order to get the job done. You decide an order in which these
need to be accomplished, and then you plow through them one-by-one. Now, imagine that
you are working with someone else toward a common goal. You must now ask yourself the
following question:

e How can I partition the problem so that we can utilize our resources and accomplish
the goal in the least amount of time (or with the least effort)? This is a parallelization
question!

This parallelization question can be broken down into the following two questions:

e What work can be accomplished concurrently?

e When is communication between concurrent processes necessary?

Take the following example: Suppose that you are taking a class in which this book is
being used as the text. The goal (hopefully) is for everyone to read the text. If there is only
one copy of the text, then one possible strategy is for the instructor to prepare an ordered
list of all those in the class, and for each person to read the text when it is his turn. This is
thus a serial process; you as a student must wait until your turn in order to read the book,
and must remain idle (with respect to the reading the book) until you have obtained a copy.
However, if the goal is for everyone to read the book, then a more optimal solution with
respect to time is for everyone to have a copy of the book simultaneously! Then each person
can be reading the book concurrently. This is an example of an Embarrassingly Parallel
Algorithm.

Now, how would such an algorithm be implemented in parallel using MPI? We will begin
with a modification of our “Hello World” program. We must first specify our goal: We
want each process to print to the screen “Hello World!” Since this does not require any
communication, this should be able to be done concurrently by all the processes involved.
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Software Our first MPI program to accomplish this is the following pro-
@ | gram
Suite

#include <iostream.h>
#include <mpi.h>

int main(int argc, char ** argv){
MPI_Init (&argc,&argv);
cout << "Hello World!" << endl;

MPI_Finalize();
+

Compilation and execution details for MPI programs is provided in the Appendix B.1.
What is the first thing that you should notice about MPI? The programming interface to
MPI is a collection of functions! MPI is a library of functions designed to handle all the
nitty-gritty details of message passing on the architecture on which you want to run. We
notice several things immediately about the program above:

e We included mpi.h. This provides us with the function declarations for all MPI func-
tions.

e We must have a beginning and an ending. The beginning is in the form of an MPI_Init()
call, which indicates to the operating system that this is an MPI program and allows the
OS to do any necessary initialization. The ending is in the form of an MPI_Finalize()
call, which indicates to the OS that “clean-up” with respect to MPI can commence.

e [f the program is embarrassingly parallel, then the operations done between the MPI
initialization and finalization involve no communication.

When you compile and run this program, you obtain a collection of “Hello World!”
messages printed to your screen. The number of messages is equal to the number of processes
on which you ran the program *. This is your first parallel program!

The two MPI functions that you used in the previous program have the following form:

e MPI Init

int MPI_Init(
int* argcptr  /* in/out */,
char®* argv ptr[ ] /* in/out */)

"Though the printing by the program is done concurrently, the computer must serialize the output in
order to write it to the screen. We still consider this to be an embarrassingly parallel process.
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e MPI _Finalize
int MPI_Finalize(void)

In this book, we will take for granted the information that is passed to MPI_Init. Just
as in Figure 2.20, our MPI program started up a number of processes, each of which printed
its message. The most natural question to ask is:

e How does a process know which number he is?

There are two important commands very commonly used in MPI:

e MPI_Comm_rank

int MPI_Comm_rank(
MPI_Comm comm /* in */
int* result  /* out */)

e MPI_Comm_ size
int MPI_Comm _size(
MPI_Comm comm /* in */
int* size /¥ out */)

The first of these two functions, M PI_Comm_rank , provides you with your process
identification or rank (which is an integer ranging from 0 to P — 1, where P is the number
of processes on which are are running), and M PI_Comm_size provides you with the total
number of processes that have been allocated. The argument com is called the communica-
tor , and it essentially is a designation for a collection of processes which can communicate
with each other. MPI has functionality to allow you to specify varies communicators (dif-
fering collections of processes); however, in this book, whenever a communicator must be
specified, we will always use M PI_COMM_WORLD, which is predefined within MPI and
consists of all the processes initiated when we run our parallel program.

If you were running a P = 8 process job, M PI_Comm_size would pass back the number
8 as the total number of processes running, and M PI_Comm_rank would return to you a
number 0, 1, ..., 7 denoting which process you currently were executing within. How do you
use this information?

Software Let us modify our code above to not only have each MPI pro-

cess print out “Hello World!” but also to tell us which process

@ the message is coming from, and how many total processes
Suite with which it is joined.

#include <iostream.h>
#include <mpi.h>

int main(int argc, char ** argv){
int mynode, totalnodes;
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MPI_Init (&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

cout << "Hello world from process " << mynode;
cout << " of " << totalnodes << endl;

MPI_Finalize();

When run four processes, the screen output may look like:

Hello world from process 0 of 4
Hello world from process 3 of 4
Hello world from process 2 of 4
Hello world from process 1 of 4

Note, as we pointed out, the output to the screen may not be ordered correctly since all
processes are trying to write to the screen at the same time, and the operating system has
to decide on an ordering. However, the thing to notice is that each process called out with
its process identification number and the total number of MPI processes of which it was a
part.

It is at this point that we want to make a critical observation: when running with MPI,
all processes use the same compiled binary, and hence all processes are running the exact
same code. What in an MPI distinguishes a parallel program running on P processors from
the serial version of the code running on P processors? Two things distinguish the parallel
program:

1. Each process uses its process rank to determine what part of the algorithm instructions
are meant for it.

2. Processes communicate with each other in order to accomplish the final task.

Even though each process receives an identical copy of the instructions to be executed,
this does not imply that all processes will execute the same instructions. Because each
process is able to obtain its process rank (using M PI_Comm_rank), it can determine which
part of the code it is supposed to run. This is accomplished through the use of if statements.
Code that is meant to be run by one particular process should be enclosed within an if
statement, which verifies the process identification number of the process. If the code is not
placed with if statements specific to a particular id, then the code will be executed by all
processes (like in the case of the code above). Shortly we will show you a parallel program
in which this fact is illustrated.

We, as of yet, have not actually accomplished the second point, communicating between
processes (from the programmers point of view); we have merely relied on the operating
system and other software system layers to handle the initiation and termination of our
MPI processes across multiple processors. Recall that we said that MPI can be summed
up in the concept of sending and receiving messages. Sending and receiving is done with
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the following two functions: M PI_Send and M PI_Recv. Below we present the function
syntax, argument list description, a usage example and some remarks for the M PI_Send
and M PI_Recv commands.

Function Call Syntax

int MPI_Send(

void* message /* in */,
int count /¥ in */,
MPI_Datatype datatype /* in */
int dest /¥ in ¥/
int tag /¥ in ¥/
MPI_Comm comm /* in */,

int MPI_Recv(

void* message /* out */,
int count /¥ in ¥/,
MPI_Datatype datatype /* in  */,
int source /¥ in ¥/
int tag /¥ in ¥/
MPI_Comm comm /* in ¥/,

MPI_Status* status /¥ out */)

Understanding the Argument Lists

e message - starting address of the send/recv buffer.

e count - number of elements in the send/recv buffer.

e datatype - data type of the elements in the send buffer.
e source - process rank to send the data.

e dest - process rank to receive the data.

e f(ag - message tag.

e comm - communicator.

e status - status object.

Example of Usage

int mynode, totalnodes;
int datasize; // number of data units to be sent/recv
int sender; // process number of the sending process
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int receiver; // process number of the receiving process
int tag; // integer message tag

MPI_Status status; // variable to contain status information

MPI_Init (&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

// Determine datasize
double * databuffer = new double[datasize];

// Fill in sender, receiver, tag on sender/receiver processes,
// and fill in databuffer on the sender process.

if (mynode==sender)
MPI_Send(databuffer,datasize,MPI_DOUBLE,receiver,
tag,MPI_COMM_WORLD) ;

if (mynode==receiver)
MPI_Recv(databuffer,datasize,MPI_DOUBLE, sender,tag,
MPI_COMM_WORLD, &status) ;

// Send/Recv complete

e In general, the message array for both the sender and receiver should be of the same
type and both of size at least datasize.

e In most cases the sendtype and recvtype are identical.
e The tag can be any integer between 0-32767.

e M PI_Recv may use for the tag the wildcard MPI_ANY_TAG. This allows an MPI_Recv
to receive from a send using any tag.

e M PI_Send cannot use the wildcard MPI_ANY_TAG. A specific tag must be specified.

e MPI_Recv may use for the source the wildcard MPI_LANY_SOURCE. This allows an
MPI_Recv to receive from a send from any source.
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e MPI_Send must specify the process rank of the destination. No wildcard exists.

Software | To get you started, we will begin with a small numerical exam-
@ ple. Imagine that we want to sum up all the numbers from 1
Suite to 1000. We could implement this as the following serial code:

#include<iostream.h>

int main(int argc, char ** argv){
int sum;

sum = O;

for(int i=1;i<=1000;i=i+1)
sum = sum + i;

cout << "The sum from 1 to 1000 is: " << sum << endl;

Instead, let us use multiple processes to do the job. Now admittedly, multiple processes
are not needed for this job, but the point of this exercise is for you to see how we partition
the problem. The first thing we realize is that to effectively sum up all the numbers from 1 to
1000 using multiple processes, we want to partition the sums across the processes. Suppose
that we use only two processes, then we want that process 0 sums from 1 to 500, and process
1 sums from 501 to 1000, and then at the end, the two values are added together to obtain
the total sum of all numbers from 1 to 1000. A schematic of this is provided in figure 2.21.
Given P processes, the problem of summing is partitioned into P subproblems, and then at
the end all processes send their information to process 0 for the final accumulation of the

T 00000000

1

Figure 2.21: Gathering of all information to one process using sends and receives.

The first question we must ask ourselves is how do we partition the processing? Recall
from our discussion above that every process can find out how many total processes are
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being used, and which process it is (by using M PI_Comm_size and M PI_Comm_rank,
respectively). Let mynode be the variable storing the result of the call to M PI_Comm_rank,
and let totalnodes be the variable storing the result of the call to M PI_Comm_size. Then,
the formula for partitioning the sums across the processes is given by the following code:

startval = 1000*mynode/totalnodes+1;
endval = 1000 (mynode+1)/totalnodes;

If you use only one process, then totalnodes = 1 and mynode = 0, and hence startval = 1
and endval = 1000. If you are using two processes, then totalnodes = 2, and mynode is
either 0 or 1. For mynode = 0, startval = 1 and endval = 500, and for mynode = 1,
startval = 501 and endval = 1000. You can continue this procedure until you are using
1000 processes, at which point each process is only summing one value (i.e., not summing at
all!), and all the values are sent to process zero for accumulation.

Once we have the starting value and ending value of our sum, each process can execute a
forloop which sums up the values between its startval and its endval. Then, once the local
accumulation is done, each process (other than process 0) sends its sum to process 0.

Software . . )
The code below is a C+4/MPI program which accomplishes
@ this:
Suite

#include<iostream.h>
#include<mpi.h>

int main(int argc, char ** argv){
int mynode, totalnodes;
int sum,startval,endval,accum;
MPI_Status status;

MPI_Init(argc,argv);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes); // get totalnodes
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ; // get mynode

sum = 0; // zero sum for accumulation
startval = 1000*mynode/totalnodes+1;
endval = 1000 (mynode+1)/totalnodes;

for(int i=startval;i<=endval;i=i+1)
sum = sum + i;

if (mynode!=0)
MPI_Send(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD) ;
else
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for(int j=1;j<totalnodes;j=j+1){
MPI_Recv(&accum,1,MPI_INT,j,1,MPI_COMM_WORLD, &status);
sum = sum + accum;

3

if (mynode == 0)
cout << "The sum from 1 to 1000 is: " << sum << endl;

MPI_Finalize();

We will present more detailed information about the MPI_Send and
M PI_Recv commands later in this book (see section 3.4). Note however, the general struc-
ture of the message passing. First, observe that there is an if statement, which distinguishes
between whether you are process 0 or any other process. Why? Because recall, all processes
other than process zero are sending, whereas process 0 is receiving. We should decide our
programs so that for each message sent using an the command M PI_Send, there is some
receiving process.

Hence, whereas each process other than 0 has one M PI_Send call, process 0 has (P —1)
MPI_Recv calls (where P is the total number of processes used). This is an important
concept to understand. Often times an MPI program has been sitting idle because one
process was sending, and there were no process waiting to receive!

This portion of the text was not meant to be all inclusive, nor are you expected to be able
to go out and write MPI codes using sends and receives with blinding efficiency (especially
since we have not yet explained the argument lists for M PI_Send and M PI_Recv). However,
as you go through this book, you will slowly but surely accumulate MPI knowledge and
experience, and at the end, you will hopefully be writing C++/MPI code with confidence!
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2.4 Homework Problems

1. Prove that the condition number in the Ly-norm of an othogonal matrix is 1, and that
the condition number (in any norm) of a matrix is greater or equal one.

2. Use the classical Gram-Schmidt and the modified Gram-Schmidt algorithms to or-
thonormalize the vectors

1 1
xg= | 107* and x; = 0
0 10~

Compare the two results. What do you observe?
3. Find the eigenvalues of an n x n matrix with all entries equal to 1.

4. Modify Collatz-B so that instead of using the expression x,.; = 3z, + 1 you use
Tpt1 = 5T, + 1. Use the number 100 as an initial guess and with the maximum
number of iterations set to 10,000. What do you observe? Postulate as to why this
happens.

(Hint: Have you ever played an arcade game in which you eventually were scoring a
negative number?)

5. The Fibonacci sequence is a sequence of integers created by the following inductive
process: given fy = 0 and f; = 1, the next number in the sequence is equal to the sum
of the previous two numbers, i.e.,

fn - fn—l + fn—2-
This process can be continued indefinitely and produces the Fibonacci sequence: 0,1,1,2,3,5,8, 13

(a) Write a program which allows the user to input a desired number of terms N of
the Fibonacci sequence, and outputs the sequence fy, fi1,..., fx to the screen.

(b) Modify your program so that you keep track of the ratio I How many terms

n—1

do you need so that the difference between —-2— and fa=1 g less than 1.0 x 10757

fnfl n—2
(c) What is the value of this ratio? The number you have converged to is called the
Golden Mean.

6. The harmonic series Y32, 1/k diverges, i.e., it grows without bound as we include more
terms. Consider the truncation that includes the first n terms, which we call partial
sum S,, and can be computed recursively from S, = S,,_; + 1/n with S; = 1. What is
the largest .S,, that can be obtained in your computer in single precision?

7. The Pythagorean theorem states that the sum of the squares of the sides of a right
triangle is equal to the square of the hypotenuse. Thus, if x and y are the lengths of the
two sides of a right triangle, and z is the length of the hypotenuse, then 22 4 y? = 2%
Fermat, a lawyer and amateur mathematician during the 1600s, postulated that there
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exists no other integer m (other than m = 2) such that 2™ 4 y™ = 2™ for the sides of
a right triangle as described above.

(a)

(b)

Write a function power which takes as input a double precision number x and an
integer m and returns as output a double precision number which is equal to the
value of x raised to the power m (i.e., ™).

Write a function pythagoreus which takes as input two double precision numbers
x and y and an integer m and returns as output a double precision number which
is equal to the value of 2 + y". Use the function power written above.

Write a program which queries the user for three values: two double precision
number which equal the length of two of the sides of a right triangle, and an
integer N. Your program should first use the function pythagoreus to determine
the value of the square of the hypotenuse. Then you should write a loop which
checks to see if there exists any integer 2 < m < N such that ™ = 2™ + y™. If
you find such a value of m, print the result and break out of the loop. If you do
not find a value m such that the above expression is true, print a message which
states that no value can be found for the value N provided by the user.

8. Change the stride of the summing example given in section 2.3 (make the stride of the
additions equal to the number of processors). This will require devising new formulae
for the variables startval and endval, and changing the ¢ = ¢ + 1 used within the
summing loop to some other increment.

9. Modify the summing example as follows:

(a)

(b)

(c)
()

At the beginning of the main function, add an integer variable master, and initial-
ize this value to some number between zero and the number of processors minus
one.

Modify the M PI_Send/M PI_Recv sequence such that all processes except master
send, and process master receives.

(Hint: From the example, in the M PI_Send, the ‘0’, denotes that you are sending

to process zero; in the M PI_Recv, the j denotes the process from which a message
is being received. These will need to be modified.)

Output the sum from master.

Add cout statements so that each sending process prints a message stating to
whom it is sending, and add cout statements so that the receiving process ac-
knowledges from whom it has received.

10. Modify the summing example as follows:

(a)

(b)

Instead of summing integers, change the appropriate variables so that you will
now sum doubles. You will need to use M PI_DOUBLE instead of MPI_INT
within the MPI calls. Verify that you obtain the same answer as the integer case.

Change the sum so that you are summing % instead of i.
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(c) At the top of the program, immediately following the #include<iostream.h>
statement, add #include<iomanip.h>. Then prior to calling the cout statement,
add the following line:
cout << setprecision(20);

After making these changes and recompiling, run your program on 2,4, and 8
processes. What differences in the sum of % do you see? Postulate as to why this
is so.

11. Modify the parallel MPI code to do the following:

(a) Have process zero query the user for the number of elements over which to sum.

(b) From process zero, distribute to all processes the number of elements to sum
(using sends and receives) and appropriately calculate the interval over which
each process is to sum.

(¢) Accomplish the summing as is already done in the program.

(d) After creating the final answer on process zero, print the result.



Chapter 3

Approximation

Two of the most common tasks in scientific computing are interpolation of discrete data
and approximation by known functions of the numerical solution, the source terms, and the
boundary or initial conditions. Therefore, we need to perform these tasks both accurately and
efficiently. The data are not always nicely distributed on a uniform lattice or grid, and thus
we must learn how to manage these situations as well. We often use polynomials to represent
discrete data as they are easy to “manipulate,” i.e., differentiate and integrate. However,
sines and cosines as well as special functions, called wawvelets, are very effective means to
perform interpolation and approximation, and they have very interesting properties.

In this section, we will study different such representations and their corresponding C++
implementations. We consider cases where the data are just sufficient to determine exactly
the representation (deterministic case) as well as cases where the data are more than the
information needed (overdetermined case).

Finally, we will present a more detailed discussion of M PI_Send and M PI_Recv, the
two fundamental building blocks of MPI.

94
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3.1 Polynomial Representation

In this section we will study different ways of interpolating data on equidistant and more
general grids using polynomials. We will discuss both accuracy and efficiency and will
introduce C++ arrays and other concepts to effectively implement the algorithms.

3.1.1 Vandermonde and Newton Interpolation

Assuming that we have the data available on the discrete set of points {x¢, z1, ..., zy} with
corresponding values {f(xo), f(x1),... f(xn)}, then we can construct a function f(x) that
passes through the pairs (z;, f(z;)) by the approximation

f(z) = pn(2) = E arpr()

where py(z) is referred to as the interpolating polynomial, ¢ (z) are a priori known poly-
nomials, and ay, are the unknown coefficients. We call ¢y () the basis, and its choice is very
important in obtaining an efficient approximation. For example, assuming that ¢, (x) = xF,

k=0,...,N, then we have the following representation at the known pair (x;, f(z;))
f(x;) = ap+ a1z + a2? + ... +anyx), i=0,...N.

All together we have (N + 1) such equations for the (N + 1) unknowns a;, 7 = 0,..., N.
This system of equations can be recast in matrix form with the vector of unknowns a’ =

(ag,a1,as,...,ay) as follows

(1 2z xf ..oz [ a | [ flzo) ]
2 N
1 = 27 ... 2 a; | = | f(z) :
1 ooy 2% 2N | av | | flaw) |
or in compact form
Va=Tf,

where the matrix V is known as the Vandermonde matriz. This matrix is non-singular
because we assume that all {xg,z1,...2y} are distinct points, and therefore there exists a
unique polynomial of order N that represents this data set. We could obtain the vector of

coefficients a from
a=VIf,

by inverting the Vandermonde matrix V and subsequently performing matrix-vector mul-
tiplications with f(x;). This, however, is an expensive operation with a cost of O(N?3) to
invert the matrix V (see chapter 9), and it is rarely used in practice.

One approach in reducing the computational complexity is to simply change the basis to

O(r) =) (2 — ;)
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so f(x) is now approximated by
flz) map+ai(x —z9) +as(x —zo)(x — 1)+ ... +an(x —xo)(z — 1) ... (x —xN_1). (3.1)

Notice that we still use a polynomial basis, but we have simply shifted it with respect
to the coordinates of the data points. This simple shift turns out to have a dramatic effect
since now the new unknown coefficients can be computed by inverting the following system

10 0 ao
1 (ZEl—l'()) 0 ai
1 (ZEN—l'())...(l'N—Io)(IN—l'l)...(l'N—ZEN_l) an

f (o)

_ | flay)

f(ﬂ;“N)

which is a lower triangular matrix and requires only O(N?) operations in order to obtain
the vector of unknown coefficients. This is done by simple forward substitution, and can be
implemented readily using BLAS?2.

Remark: It is instructive to compare this method, which is called Newton interpolation,
with the Vandermonde interpolation. Assuming that we use Gauss elimination to obtain
the vector of unknown coefficients (see chapter 9), we see that the change of basis in the
Newton approach takes us directly to the second stage of Gauss elimination, which is the
forward substitution, while in the Vandermonde approach we have to essentially perform an
LU decomposition of the matrix V, which is an O(N?) operation. However, the Vander-
monde matrix is a special one, and its inversion can also be done in O(N?) operations (e.g.
using FFTs, see section 3.2). Thus, the two approaches discussed here are computationally
equivalent.

Newton Interpolation: Recursive Algorithm

There is a nice recursive property that we can deduce from Newton’s interpolation method,
and which can be used for writing compact C++ code as we shall see in the next section.
Solving for the first few coefficients, we obtain

ap = f(xo)
~ f(=1) = f(=0)
a = —
1 — Xo
f@a)=f(zo) _ flz1)—f(z0)
ay —= T2—T0 T1—T0

T2 — I
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so we see that the coefficient
ar = F(xo, 1, .., %),

that is the k™ coefficient is a function of the first k function values f(z}). F is a function of
both the x; variables and the f(z;) data (and hence, in the end, since f(x) is a function of
x, then really F is just a function of the z;’s as given above).
To obtain a recursive relation for the coefficient a; we need to write the approximation
in the grid
GE={x}, i=0,...k,

where the subscript denotes the starting index and the superscript denotes the ending index.
To this end, we consider the two subsets

k-1 _
Gy = {zo,71,...,25_1}, and

Glf = {.Tl,.]?g, Ce ,.]fk},

of k grid points each. We also denote the corresponding polynomial approximations by pk(z),

Pt (z) and p¥ formed by using the grids G, G§~* and G¥, respectively. We then observe

that
(o — @)pg(2) = (x — wp)py ' (2) — (& — wo)ph (2) (3.2)
as the polynomial pf(z) passes through all the pairs

(xlaf(xl))7 Z:O,,k

Next, upon substitution of pf(z), pf~*(z) and p¥(z) in equation (3.2) by their full expansions,

which are

() = aot+ar(zr—m0) +... Faplr—20)... (v — 24_1)
i x) = ap+ay(z—x0) ... Fap1(z—x0) ... (2 — T8_2)

Pia) = bidbo(z—a)+.. bl —21)... (2 —x3_1).
and comparing the coefficients of highest polynomial power, z*, we obtain:
(rg — wp)ag = ap—1 — by

or
(xo — zx) F (20, 21, . .. xk) = F(x0, T1, ... Tp—1) — F (21, 22, ... 7))

and therefore

F(.TQ,...Z'k,l) —f(l'l,]?k)

To — Tk

F(xo, x1,...0x) = (3.3)

We thus obtain the higher divided differences (i.e., coefficients) from the lower ones from
equation (3.3).

We illustrate this procedure on a grid G2 containing three grid points (zg, 1, z2), so that

F(wo) = f(wo); F(x1) = f(z1);  Flwz) = f(22),
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then at the next level

F(.ﬁ[o) — F(.Tl)

F(.ﬁl?o, .lel) = T — 1
Flm) - F
Flzy,m) = (I;i — x2(I2)

nd F( ) — F( )
To,T1) — T,
5"-($0,$1,l‘2)= Lt D2 )
o — T2

and so on, for grids with more points.

3.1.2 Arrays in C++

So far, when we have discussed variables in C++4-, we have referred to single variables, such
as the variables mynode and totalnode presented in section 2.3.4. Now, mathematically, we
just introduced a collection of variables in the form of a sequence: xg, x1,xs,...xzy. If you
were to write a program which involved such a sequence of numbers, how would you declare
these variables? Of course, to start with, you may use the knowledge you gained from section
2.1.2 to decide how to declare the variables. The variable declaration would look like the
following (for N = 5):

double x0,x1,x2,x3,x4,x5;

This does not seem too difficult. However, imagine that you want to use 100 points!
Do you want to type x0, x1, ..., x997 And even more annoying, suppose that you want
to compare the results of running a program using 50 points compared to 1000 points! Do
not be dismayed; C++ has a solution to your problem! The C++ solution to this problem
is the concept of arrays. In C++, you can allocate a block of memory locations using the
concepts of arrays. There are two means of accomplishing this: static allocation and dynamic
allocation. We will discuss both briefly.

Static Allocation of Arrays

The first means by which you can allocate an array is to statically allocate the array. For
our purposes, we will take this to mean that prior to both compilation and execution, the
size of the array is known. In the previous section, we discussed the idea of using a discrete
set of points {zg,x1,..., 2N} for interpolation. For a specific example, let us take N = 99
(so that the total number of points is 100 points), and let us assume that we want our grid
points to be evenly spaced in the interval [0, 1].

Software | The following piece of code would statically allocate an array
@ of 100 doubles, and would fill in those variables with their
Suite appropriate positions in the interval [0, 1]:
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#include <iostream.h>

int main(int argc, char * argv[]){
int i;
double x[100];
double dx = 1.0/99.0;

for(i=0;1<100;i++)
x[i] = i*dx;

for (i=0;i<100;i++)
cout << "x[" << i << "] =" << x[i] << endl;

Let us now examine in detail the statements in this program. First, notice the syntax
used for allocating static arrays:

<type> <variable name> [ size |

Here, size is the number of memory positions that you want allocated. In our example,
we wanted 100 doubles to be allocated. Once the allocation is done, how do we access these
variables? C-++ uses | | for accessing variables in an array. In the above allocation, x[0] is
the first element, x[1] is the second element, etc. There are several key points for you to
realize:

e C++ array indexing always begins at 0. Hence, the first position in an array is always
the position denoted by [0].

e C++ does not verify that you do not overrun an array. To overrun an array is to
attempt to access a memory location which has not been allocated to the array. In
the above example, trying to access x[100] would be illegal because we only allocated
an array containing 100 elements (indexed 0,...,99). C+4++ will not complain when
compiling, but may cause a segmentation fault (or even far worse, it may run normally
but give the wrong results!). You should be very careful not to overrun arrays!

e When statically allocating arrays, you cannot use a variable for the size parameter.
Hence the following C++ code is invalid:

int npts = 100;
double x[npts];

Your C++ compiler will complain that this is illegal! This is because it is not until the
program is actually executed that the value of npts is known to the program (recall
that upon execution npts is both allocated in memory, and then intialized to the value
100). This type of operation can be done with dynamic memory allocation, which will
also be discussed below.
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e We can, however, index the array using variables. In the above example, we are able
to iterate through all the values of the array using a for loop.

WARNING Programmer Beware!

e C++ arrays always begin their
indexing at 0!

e Array allocations are done by
stze, not the final index value!
Hence if you allocate an array
with 100 elements, you would
index them from 0, ..., 99!

Implicit and Explicit Casting

At this stage, let us interject a brief note concerning a common mistake made by pro-
grammers first learning C++. Notice in the above example that we have allocated a variable
dx, and we have initialized it to 1.0/99.0. What would happen if we were to write 1/997? The
answer: the variable would be set to 0.0 instead of 0.01010101 as we would have expected.
Why you might ask? All binary operations in C++ are type-specific. Although we use the
‘+7 symbol to add two integers together, and we also use the ‘+’ to add two floats together,
the operations which the computer accomlishes to execute these two operations are different.
What happens when you want to mix-and-match variable types? Suppose that you want to
add 10.0+4 1, where 10.0 is a floating point value, and 1 is an integer? The answer: C+-+ will
implicitly cast the value 1 to 1.0 (i.e., from an integer value to a floating point value), and
then will carry out the binary operation of ‘+’ between two floating point values. Casting is
the conversion of information stored by a variable from one type to another. Implicit casting
implies that the casting operation is done automatically for you (C++ also allows explicit
casting, which we also mention below). The order of casting is presented in figure 3.1. In
the figure, there is a pictorial example of implicit casting.

Why will 1/99 yield the value 07 Since the value 1 is an integer, and the value 99 is
an integer, then the division operator used will be the integer division operator ‘/’. As an
integer operation, 99 divides 1 zero times, and hence the solution is zero! However, if we
were to write 1.0/99, we now have a floating point value divided by an integer, and hence the
computer must first cast the integer value to a float. Operationally, the computer would first
cast the value 99 to the value 99.0, and then would use the floating point division operator
‘/” to divide 1.0 by 99.0, yielding 0.01010101.

WARNING Programmer Beware!

e Incorrect assumptions
concerning implicit casting
can lead to erroneous
answers!
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+ Implicit Cast
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Figure 3.1: Implicit casting precedence.

C++ also allows explicit casting; that is, it allows you, the programmer, to specify that
you want a value cast to a different type. The syntax used for explicit casting is the following:

(type to cast to) <variable name>

For example, suppose that we want to explicity cast the value of an integer variable to a
floating point variable. We could write the following:

int x = 1;
float y;

y = (float) x;

In this example, the value of x is explicitly cast to a floating point value, and then the
floating point variable is assigned that value. In the above example, if you were not using
the explicit casting operator (float), the variable would have to be implicitly cast. Explicit
casting is useful in identifying to both you - the programmer - and to the computer the
places that you expect a casting call to occur.

Dynamic Allocation of Arrays

Recall from our static allocation example, we stated that in order for an array to be
allocated statically, the size of the array must be known prior to compilation and execution.
Suppose that we want to specify the size of an array “on-the-fly;” that is, suppose that we
want the user to be able to input the size of an array, and the program, while executing, to
allocate the properly sized array. How can this be done? This can be accomplished in C++
using dynamic allocation. Dynamic allocation occurs using the new operator.
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Let us re-examine our example from above. Suppose that we
want the user to be able to input the number of points into
@ which he would like to partition the interval [0, 1]. This can be
Suite accomplished with the following code:

Software

#include <iostream.h>

int main(int argc, char * argv[]){
int i,npts;
double *x; //declaration of pointer variable ’x’
double dx;

cout << "Enter the number of points in [0,1]: ";
cin >> npts;

x = new double[npts]; // dynamic allocation of npts doubles
dx = 1.0/ (npts-1);

for(i=0;i<npts;i++)
x[i] = i*dx;

for(i=0;i<npts;i++)
cout << "x[" << i << "] =" << x[i] << endl;

delete[] x; // deallocation of dynamically allocated
// memory

We will now analyze the differences between this code and the one presented previously:
First, you will notice that we allow the user to input the number of points into the program.
This is accomplished through the use of cin. This class, like cout, is declared in the system
header file tostream.h. By using cin, we can obtain data from standard input, which in this
case is from the keyboard. Recall from the previous chapter the following facts:

e cin reads from standard input (which for us is the keyboard)

e Observe that the direction of the >> is opposite of cout. This is for a reason. For cout,
you are taking information from the variables that you provide to the expression and
are providing that information to the operating system to be written to the screen.
In the case of cin, you obtain data from the operating system, and place it into the
variables provided in calling statement.

e The program must read one data item for each variable in the cin input list. Hence if
we have the statement cin >> a >> b; where both a and b are declared as integers,
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then cin will expect that there are two distinct integers for it to read from standard
input.

e You may place one or more blank (space) characters to delineate numerical values.
e Any blank space prior to the value to be read is ignored.

Immediately following the computer’s execution of the cin statement, the variable npts
has a value equal to the number of points that the programmer wants for this discretization.
Next, we allocate an array dynamically using the new operator. This is but one step in a
three-step process (to be described further in just a moment). We then do the operations
just as we had done before, and we conclude by “freeing” the memory that we allocated by
using the delete/delete[] operator. To recapitulate, the three steps that occur in dynamic
memory allocation are:

1. Declaration of a pointer variable.
2. Allocation of memory using the new operator.

3. Deallocation of memory using the delete/delete[] operator.

We will now discuss each of these three steps individually. We begin with the first step:
declaration of a pointer variable. Pointers are variables which hold addresses. They may hold
addresses to integer variables; they may hold addresses to floating point or double precision
variables. Pointer variables are type-specific.

Key Concept

e Pointer variables are type-specific.

In the above example, we have obtained from the cin statement the number of points that
the user wants to use. This is stored in the integer variable npts. We now want to allocate
an array of size npts. First, notice that we have declared a variable x of type double*. The
use of the “*’ prior to the variable name designates this as a pointer variable (i.e., a variable
that holds the address in memory of a double) instead of declaring a double. To recapitulate:

double x;

declares a variable named ‘x’ of type double (that is, x is a variable valid for containing
a double precision number), whereas

double *x;
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declares a variable named ‘x’ of type “double *” !, which is a variable valid to contain the

address in memory of a double precision variable. For now, you should take this mechanism
for granted; this distinction will become more apparant as we use pointers more and more.

One common mistake when declaring multiple pointers is to misplace the “*’. Take for
example the following two declarations:

double *x1,y1;
double *x2,*y2;

The first of these two statements declares a variable named z1 of type double* and
then declares a variable named yl of type double (not double*). However, in the second
declaration, both 22 and y2 are declared of type double star.

Once a pointer variable has been declared, we can ask the operating system to allocate
for us a block of memory to contain our collection of doubles. This process is accomplished
through the use of new. The new command asks the operating system (OS) for a block of
memory of the type and size for which we ask, and returns to us the address of that block
of memory. If no memory is available (or for whatever other reason the OS may decide not
to be cooperative), the new command will return NULL, which is called the “Null pointer”
or “Null address.” This implies that we have not successfully obtained our request. In the
code above, we ask the OS for npts doubles in the following syntactic form:

<address> new <type> | size ]

If the OS is successful in giving us the memory we request, we will have a block of memory
which we can access just as we did in the static memory allocation case. To access the first
double in the array, we access z[0], and so forth.

At the conclusion of our program, or at some stage of the program where the array is no
longer needed, we should release the memory used for this array back to the operating system
for reuse. This process is called deallocating memory. To accomplish this deallocation, we
use the delete || command. In our case

delete[] x;

informs the OS that the memory that was allocated to the pointer variable x is no longer
needed, and can be released. There are actually two delete operators, delete and delete ||
which are used for informing the OS that dynamically allocated memory can be reclaimed.
The distinction between the aforementioned operators is the following:

e delete (with no [] following it) is used when only a single object has been allocated.
Suppose we were to allocate space to hold an integer as follows:

int * a = new int;

Space for only one integer was allocated (i.e., one integer object was allocated), hence
to deallocate we would merely use delete as follows:

!Programmers quite often actually say “double star” when pronouncing this variable type.
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delete a;

e delete [] is used when an array of objects has been allocated. Suppose we were to
allocate space to hold 20 integers as follows:

int * a = new int[20];

Space for 20 integers was allocated (i.e., an array of 20 integer objects was allocated),
hence to deallocate we would use the delete [] as follows:

delete[] a;

Remark: Both delete and delete[]| take only one argument. A comma separated list is
not valid, and although it will compile, it will not give the desired result.

Allocation/Deallocation Rule-of-Thumb: If your allocation statement new requires
the use of [], then so does the deallocation statement delete.

WARNING Programmer Beware!

e Once memory is
deallocated, you should not
use it!

Passing Arrays to Functions

Finally, we want to draw your attention to passing arrays in C++4-. Passing arrays in C++
comes down to passing the pointer variable. Whether you declared the array dynamically or
statically, you still end up passing a pointer. This is one subtle point which is not apparent
when you declare arrays statically: statically declared arrays are really just pointers in
disguise. Whether you are dealing with statically declared or dynamically declared arrays,
you will pass them to functions in the same fashion.

In the program below, we have encapsulated the generation

Software of the grid into a function called “CreateGrid_EvenlySpaced.”

This function takes as arguments the size of the array npts and

@ the pointer variable x. With these two pieces of information,

the function can successfully fill in the array, as had been done
before.

Suite

#include <iostream.h>
#include "SCchapter3.h" //contains declaration of
//CreateGrid_EvenlySpaced
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int main(int argc, char * argv[]){
int i,npts;
double *x;
double dx;

cout << "Enter the number of points in [0,1]: ";
cin >> npts;

x = new double[npts];
CreateGrid_EvenlySpaced(nts, x, 0.0, 1.0);

for(i=0;i<npts;i++)
cout << "x[" << i << "] = " << x[i] << endl;

delete[] x;

// Definition of CreateGrid_EvenlySpaced is in SCchapter3.cpp

void CreateGrid_EvenlySpaced(int npts, double *x,
double a, double b){
double dx = (b-a)/(npts-1.0);

for(int i=0;i<npts;i++)
x[i] = a + ix*dx;

return;

}

There are three things that we want to draw your attention to in this example:

1. Note that in both the declaration and definition of the function
CreateGrid_EvenlySpaced we declare z as a variable of type double*; this is im-
portant. The compiler needs to know (and recognize) that it is passing an address.

2. Note also that we have to pass npts into the function CreateMesh. What if we did not?
Recall that variables within functions are local to the function. Hence, if we do not
explicitly tell the function that the size of the array is npts, it has no way of knowing
it!

3. Observe in the example above that for including the standard header file iostream.h we
use #include<iostream.h>, whereas to include our user-defined header file SC'chapter3.h
we use #include "SCchapter3.h". The angled bracket notation < ... > is to used
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when including standard library headers obtained from the standard include directory
(files such as iostream.h, iomanip.h, math.h, etc.). To include user-defined header
files from the current directory, quotation marks " ... " are used.

Passing by Value Versus Passing by Reference

Recall in the previous chapter that we mentioned that unless otherwise stated all variables
passed to a function are, by default, passed by value. We now want to clarify the difference
between the ideas of passing by value, passing by reference, and passing the address.

e Passing by Value - When a variable is passed to a function by value, a new memory
location is allocated, and a copy of the contents of the variable are placed in the
new memory location. The function may then locally modify the contents of the new
location. When the function returns, the new memory location is released and its
contents lost. Consider the following program:

#include <iostream.h>
void func(int a);

int main(int argc, char * argv[]){
int b;

b = 4;
func(b) ;
cout << "value of b = " << b << endl;

void func(int a){
cout << "value of a = " << a << endl;
a = 64;

In the program above, the variable b is passed to the function func by value. When
the function is executed, a new memory location (distinct from the memory location
of the variable b) is allocated on the function stack and assigned to the variable name
a locally within the function. The contents of b are copied into the location associated
with the variable a. The first cout statement prints that the value of a is 4. The
local function variable a is then assigned the value 64, and the function returns. Upon
returning, the local memory is returned to the system. The second cout statement
prints that the value of b is still 4; it was uneffected by the function.

e Passing by Reference - When a variable is passed to a function by reference, no new
memory location is allocated; instead, the local variable within the function is assigned
to refer to the same memory location as the variable being passed. Consider the
following program:
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#include <iostream.h>
void func(int &a);

int main(int argc, char * argv[]){
int b;

b = 4;
func(b) ;
cout << "value of b = " << b << endl;

void func(int &a){
cout << "value of a = " << a << endl;
a = 64;

In the program above, the variable b is passed to the function func by reference. Notice
the placement of the & in both function declaration and definition; this syntax informs
the compiler that we want the variable passed by reference. When the function is
executed, the local variable a is assigned to the same memory location as b. The first
cout statement will print that the value of a is 4. The local function variable a is then
assigned the value 64, and the function returns. Since the local variable a referred to
the same memory location as b, the second cout statement prints that the value of b is
64.

Passing the Address - Instead of passing by value or by reference, we have the third
option of passing (explicitly) the address of the variable. When an address is passed,
the address value is stored in a pointer variable of the appropriate type. Consider the
following program:

#include <iostream.h>
void func(int *a);

int main(int argc, char * argv[]){
int b;

b =4;
func (&b) ;
cout << "value of b = " << b << endl;

void func(int *a){
cout << "value of a

" << *a << endl;
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*a = 64;

In the function func above, we declare the input argument to be a pointer to an
integer. When the function func is called from within main, we use the operator &,
which stands for “take the address of”. Inside of the function func, an integer pointer
variable is created, and the address of b is stored there. The contents of the memory
location to which a points can be accessed using the operator *, which stands for “the
memory location that is pointed to by”. The first cout statement will print that the
value of *a is 4. The memory to which a points is then assigned the value 64, and the
function returns. Since the local variable a pointed to the same memory location as b,
the second cout statement prints that the value of b is 64.

Code for Recursive Newton’s Algorithm

Let us now try to use the C++ concepts we have just introduced to implement Newton’s
recursive algorithm. To accomplish this, we first need to look at how to partition the problem.
The first thing we observe from the mathematical description of section 3.1.1 is that we will
need to generate an array of doubles, which will contain the differencing coefficients a; from
the formulation given previously. First, we need to have:

1. The number of interpolation points.
2. A grid of points at which the interpolation is to be exact.

3. An array containing the function we wish to interpolate evaluated at the interpolating
grid.

4. An array to store the Newton differencing coefficients ay.

Software | Let us take the top-down approach. First, assume that we
@ have the four items enumerated above. The following function
Suite encapsulates the calculation of the differencing coefficients:

void NewtonDiffTable(int npts, double *xpts, double *funcvals,
double * newton_coeffs){
int 1,];
for(i=0;i<npts;i++)
newton_coeffs[i] = NewtonDiffFunction(0,i, xpts, funcvals);

In this function, npts is the number of interpolating points, xpts is an array containing
the interpolating grid, funcwvals is an array containing the function we wish to interpolate
evaluated at the interpolating grid. For each coefficient a; (contained within the array
element newton_coef fsli]), we call the following NewtonDif f Function:



3.1. Polynomial Representation 110

double NewtonDiffFunction(int start_index, int ending_index,
double * xpts, double * funcvals){
double val;

int diff = ending_index-start_index;

if (diff == 0){
val = funcvals[start_index];
}
elseq{
val = (NewtonDiffFunction(start_index,ending_index-1,
xpts,funcvals) -
NewtonDiffFunction(start_index+1,ending_index,
xpts,funcvals))/
(xpts[start_index]-xpts[ending_index]) ;

return val;

As input, this function takes a starting index and an ending index (both of which are
assumed to be in between zero and (npts — 1)), the interpolating grid, and the function
to be interpolated evaluated on that grid. What is different about this function? It calls
itself! This is a powerful concept which can be used in C++, i.e. the concept of recursive
function calling. In the function above, notice that we are able to replicate in C++ code the
mathematical recursive relation given in equation (3.3).

In order for the recursion to be effective, we must have two things:

1. A recursive relationship, and

2. A stopping condition.

Key Concept

e Recursive functions require two things: A recursive definition and
a stopping condition.

The first item seems quite obvious; recursion requires a recursive definition. The second
item, although it sounds trivial, is often the stumbling block — often we do not know when
the recursive relationship ends. In the example code above, the recursive definition is given
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in equation (3.3) and the stopping condition is determined by the condition that the starting
index be the same as the ending index. From our mathematical definitions above, we know
that when the starting index and ending index are the same, then the Newton formula gives
back the value of the function evaluated at that index value.

Suite nomial as follows:

Software | Once we have successfully calculated the Newton divided differ-
@ ences, we can now implement our Newton interpolating poly-

double NewtonInterpolant(double x, int npts, double * xpts,

double * newton_coeffs){
int 1i,j;
double sum = 0.0, xval;

for(i=0;i<npts;i++){
xval = 1.0;
for(j=0;j<i;j++)
xval = xvalx(x-xpts[jl);
sum = sum + newton_coeffs[i]*xval;

return sum;

}

As input, this function takes a value z, which is the value at which we want to know the
value of the interpolating polynomial, the number of interpolating points npts, an array of
interpolating points xpts, and the array of previously calculated Newton divided differences.
As output, this function gives the value of the interpolating polynomial evaluated at the
point z. Observe that this code replicates the mathematical definition given in equation

(3.1).
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Software

©

Suite

We will now use the previously defined functions in a pro-
gram. Below, we have provided a program which interpolates
the Runge function

1

This code queries the user for the degree of the interpolating
polynomial, and prints on the screen the values of the inter-
polating polynomial evaluated at 1000 evenly spaced points
on the interval [—1,1]. This example demonstrates the use of
output/input with cout/cin respectively, dynamic memory al-
location, and recursive functions (through the calling of the
NewtonDif fTable function). In figure 3.2, we plot the results
of running the program when the degree of the interpolating
polynomial is set to five.

ze[-1,1]. (3.4)

#include <iostream.h>
#include "SCchapter3.h"

double func(double x);

int main(int
int 1i;
int degree
int npts =
double xpt

argc, char * argv[]){

, polypnts;

1000; //number of points used for plotting

, soln, approx;

cout << "Enter the degree of the interpolating polynomial: ";
cin >> degree;

polypnts =

double * poly_xpts

degree+1; //number of points is
//  equal to 1 + degree

new double[polypnts];

double * func_vals = new double[polypnts];
double * newton_coeffs = new double[polypnts];

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){
func_vals[i] = func(poly_xpts[il]);

3

NewtonDiffTable(polypnts, poly_xpts, func_vals,

newton_coeffs) ;

112
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for(i=0;i<npts;i++){
xpt = -1.0 + 2.0*i/(npts-1);
soln = func(xpt);
approx = NewtonInterpolant(xpt, polypnts,
poly_xpts, newton_coeffs);
cout << xpt << " " << soln << " " << approx << endl;

3

delete[] poly_xpts;
delete[] func_vals;
delete[] newton_coeffs;

double func(double x){
double y;

1.0 + 25.0%x*x;
1.0/y;

y
y

return y,;

b

1.2

-0.2 1 1 1 1 1 1 1 1 1
1

Figure 3.2: Comparison of the solution (solid) and fifth-order interpolation polynomial (dashed)
obtained using the Newton differencing program.

We will conclude this section by making some observations concerning the code above.
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e Notice in the program above that we have variable declarations after executable state-
ments. This is one major difference between the programming language C (and many
other programming languages) and C++. In many languages, all declarations must be
made prior to executable statements. This is not true in C++. In C++, variables may
be declared at any point within the program. Observe that we declare three pointer
variables (double * variables) following the input sequence. Our primary reason for
often placing all the variable declarations at the beginning of a function is clarity.

e In chapter 2 we mentioned that in C++ it is possible to initialize a variable with an
executable statement and not just a constant. This is exactly what we have done in
the program above. Observe that we initialize each new double* variable (with which
the previous remark was dealing) with the results of the new operator.

e For each item we want to delete, we must execute an individual delete[] statement.
You cannot combine them like variable declaration in the following manner:

delete[] poly_xpts, func_vals, newton_coeffs;

Though the compiler will not complain about the statement given above, only the last
variable will have the valid operation done to it. Both delete and delete][] take only
one argument.

3.1.3 Lagrangian Interpolation

Another basis which is often used in practice to interpolate data primarily on non-equidistant
grids is Lagrangian interpolation. Here, the basis ¢ () is equal to the Lagrangian polynomial
which is defined by

(x — zy)

E x>>, i=0,1,...N; i#k (3.5)
k — 44

This is a polynomial of degree N and satisfies the equation
hi(x;) = 0y,

where 0;; is the Kronecker delta

[ Li=j
& _{o,z‘#j

Software

(o)  Putting it into Practice
Suite

The following code implements this definition and returns values of the Lagrange poly-
nomial.
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double LagrangePoly(double x, int pt, int npts, double * xpts){
int i;
double h=1.0;

for(i=0;i<pt;i++)
h =h *x (x - xpts[i])/(xpts[pt]-xpts[il);

for (i=pt+1;i<npts;i++)
h =h * (x - xpts[i])/(xpts[pt]l-xpts[il);

return h;

b

This code is relatively simple, yet there is one point to which we would like to draw
your attention. Notice in the mathematical definition of Lagrange polymonials there is the
condition ¢ # j, which in the above code translates into ¢ != pt. This can be implemented
in one of two ways:

1. As above, by breaking the sum into two parts, and having a separate for loops for each
part.

2. Having one for loop ranging from 0 < ¢ < npts, in which inside the for loop there is an
if statement which checks if the value of the looping variable is the same as the value
of pt.

Thus, the alternative function definition is the following:

double LagrangePoly(double x, int pt, int npts, double * xpts){
int 1i;
double h=1.0;

for(i=0;i<npts;i++)
if (il=pt)
h =h * (x - xpts[i])/(xpts[pt]-xptsl[i]);

return h;

by

These two definitions accomplish the same objective; however, their efficiency may be
different. The reason for the efficiency difference comes from the repeated use of the if
statement. The if statement is, in general, a very difficult computer instruction to optimize
because the value of the boolean expression is not known ahead of time, and hence which
branch of the if the computer will have to execute is uncertain until the boolean expression
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is evaluated. Hence, avoiding unnecessary if statements is, in general, a good policy because
it allows the compiler to accomplish more code optimization.?

Key Concept

e A good rule of thumb: Avoid if statements within for loops.

Returning to the mathematics, by definition, then, we have that
f(x) = > appe(z) or
k
flx) = > flaw)h(x),
k

which in C++ is implemented as follows:

double LagrangeInterpolant(double x, int npts, double *xpts,
double * funcvals){
int i;
double sum = 0.0;

for(i=0;i<npts;i++){
sum = sum + funcvals[i]*LagrangePoly(x,i,npts,xpts);
}

return sum;

}

We can reuse the program presented for the Newton divided differences (previous section)
to now do Lagrange interpolation. First, we can remove the declaration of the Newton
Differencing coefficients, and we can also remove the call to the function NewtonDzif fT able.
Now, instead of calling NewtonInterpolant(...), we will call LagrangelInterpolant(...) with
its appropriate arguments. We have extracted the relevant code from the program presented
earlier, and now present a modified version of the code. The key thing to observe is that by
writing modular code, we have increased code reuseability.

double * poly_xpts = new double[polypnts];
double * func_vals = new double[polypnts];

2In recent years, there has been considerable work in processor design to incorporate what is referred
to as “branch prediction.” During runtime, the processor monitors the behavior of branches, and attempts
to predict which branch of the if will be taken. By doing so (i.e., if it predicts correctly) it can pipeline
instructions with no additional cost due to the branching statement. If it is wrong, it will incur the normal
branching penalty (in terms of pipelining).
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CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){
func_vals[i] = func(poly_xpts[i]);
}

for(i=0;i<npts;i++){
xpt = -1.0 + 2.0*i/(npts-1);
soln = func(xpt);
approx = LagrangeInterpolant(xpt, polypnts,
poly_xpts, func_vals);
cout << xpt << " " << soln << " " << approx << endl;

¥

delete[] poly_xpts;
delete[] func_vals;

Key Concept

e Modular code is reusable code!

The coefficients in this polynomial representation are the function values at the grid
points. Therefore, this approach is very efficient, especially for a “static” grid, as the La-
grangian polynomials can be constructed once, stored, and be used repeatedly. However,
in a dynamic grid where the grid points {x;} change, we need to recompute all Lagrangian
polynomials, and this may be costly.

3.1.4 The Runge Phenomenon

Up to this point, we have assumed that all polynomial interpolation formulas converge
irrespective of the distribution of points x;, i.e., uniform with equidistant spacing or non-
uniform with arbitrary spacing. We have to wonder, however, if the type of function we try
to approximate matters? Usually, polynomial approximation in the neighborhood of a point
is safe, but as we try to extend this interpolation in the large, i.e., away from the given data,
proper conditions have to be satisfied, as we will illustrate in this section. First, we state a
fundamental theorem that justifies polynomial approximation.

Weierstrass Theorem (1885): Any continuous function defined in a finite range can be
approximated to any degree of accuracy by polynomial powers.
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While this theorem is re-assuring it does not suggest what is the appropriate type of poly-
nomial approximation. Specifically, the question still remains if equidistant data always
produce stable and convergent polynomial approximations. Experience shows that the an-
swer to this question is negative, and in fact it was O. Runge in 1901, who first discovered
this troubling fact by considering the function

B 1
1425227

f(2) re|[-1,1]. (3.6)

Figure 3.3: Plot of the Runge function (equation (3.4); solid line) and approximations using 10
equidistant points (dashed line) and 20 equidistant points (dashed-dot line).

In figure 3.3 we plot this function along with a polynomial approximation on ten and
twenty equidistant points. We observe that the approximation is accurate around the origin
but at > 40.72 the interpolating polynomial does not converge; taking more than ten
points makes the oscillations worse. On the other hand, by interpolating the Runge function
at special non-equidistant points, obtained from

zy = cos(kw/N),i=0,...,N

we obtain a stable polynomial approximation, which converges fast to the exact solution as
the number of grid points increases; this is shown in figure 3.4. These special points are the
roots of the derivatives of Chebyshev polynomials, which we will study in the next section.
Other type of approximations, such as trigonometric interpolation, may also be stable, see
section 3.2.4.

The question then remains for equidistant polynomial interpolation how can we know in
advance which functions have stable polynomial approximations? We know that for Taylor
type expansions this question relates to the analyticity of a function in the complex plane,
and we are perhaps familiar with the Taylor circle inside which there are no singularities.
The same picture emerges here also except that the circle is replaced by an oval shape
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121 q

Figure 3.4: Plot of the Runge function (equation (3.4); solid line) and approximations using 10
points (dashed line) and 20 points (dashed-dot line) following the cosine-law distribution of grid
points.
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Figure 3.5: Region of required analyticity for a function for stable equidistant polynomial inter-
polation.
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region, which is shown in figure 3.5. The proof is rather elaborate and the interested reader
is referred to the book by Lanczos [66].

Theorem: The necessary and sufficient condition for convergence of equidistant polynomial
interpolation is that a function not have any singularities in the oval region £ corresponding
to the definition interval of f(x) with x € [—1,1].

The Runge function of equation (3.4) has singularities at z = +i/5, and this is the reason
for the unstable behavior close to the end-points. The more general Runge function

62

r)=———7, x€|-11
fo) = s, wel-L
has a singularity at x = die. This is a very tough function to approximate, as at © = 0 we
have f(0) =1 but at distance only € away we have f(e) = %, independent of the value of e.

You can appreciate what happens when € = 107!

3.1.5 Chebyshev Polynomials

Spectral approximations and more specifically polynomial approximations using Chebyshev
polynomials are a very effective means of representing relatively smooth data and also nu-
merical solutions of partial differential equations. Just as before, we can write our polynomial
approximation py(x) as truncated series of the form

f(z) = py(z) = 2 ay Ty (),

where Ty () is the k' Chebyshev polynomial. The Chebyshev polynomial series converges
very fast; the polynomials are determined from recursion relations such as:

To(z)=1; Ti(z)=z; Thpi(x)=22T,(x) —Th_1(x), n>1. (3.7)

war . . . .
Software The following code implements this recursive formula; plots of

@ Ty(x), k=0,1,2,3,4 are shown in figure 3.6.
Suite

double ChebyshevPoly(int degree, double x){
double value;

switch(degree){
case 0:
value = 1.0;
break;
case 1:

value

I
»
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break;
default:
value = 2.0*x*ChebyshevPoly(degree-1,x) -
ChebyshevPoly (degree-2,x) ;

return value;

by

In this example, there are two things that we want to point out. First, notice that for this
particular example, we have two explicit stopping conditions: when k£ = 0 and when k£ = 1.
This is because our recurrence relation contains references to (k — 1) and (k — 2), and hence
we need both to be valid in order to get the k™ term. The second thing to observe in this
example is the use of a not previously mentioned C++4 statement, the switch statement.

The SWITCH Statement

The switch statement is a convenient way of replacing a collection of if-else statements. In
the example above, we have the following logic: If the value of degree is 0, then return the
number 1.0, else if the value of degree is 1, return the value of x, else the value is what is
given by the recurrence relation. We could implement this using if-else statements as follows:

if (degree == 0)
value = 1.0;
else{
if (degree == 1)
value = x;
else
value = 2.0*x*ChebyshevPoly(degree-1,x) -

ChebyshevPoly (degree-2,x) ;

However, C++4 has a statement named switch which accomplishes this type of logic for
you. The syntax of a switch statement is as follows:

switch( variable ){

case a:
statement 1;
break;

case b:
statement 2;
statement 3;
break;
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default:
statement 4;

Here, ‘variable’ is the variable that you want to test; ‘a’, ‘b’, etc. are the constant values
that you want to test against (these cannot be variables, they must be constants). When
the switch is executed, the first case in which the variable is equivalent to the case is where
execution begins. All statements below that case statement are executed. Hence, when all
the statements that you want done for a particular case have been executed, you must use a
break statement to exit the switch. The default case is the case that is executed if no other
cases have matched the variable.

WARNING Programmer Beware!

e Do not forget to put
break statements between
independent cases!

Because of the “flow-through” nature of the switch statement, one can group cases to-
gether. Suppose, for example, that we wanted to implement a statement which executes
statement 1 if cases 0 and 1 are true, and statement 2 otherwise. The following pseudo-code
example demonstrates the implementation of this logic:

switch(degree){
case 0:
case 1:
statement 1;
break;
default:
statement 2;

In this example, if either case 0 or case 1 is true, then statement 1 (and only statement
1, due to the break statement) will be executed. For all other values of the variable degree,
statement 2 will be executed.

Key Concept

e Switch is a nice organizational tool for implementing if-else re-
lationships.
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Figure 3.6: Chebyshev polynomials of order 0 through 4 in the interval [—1, 1].

Properties of Chebyshev Polynomials

Next, we summarize some important properties of the Chebyshev polynomials:
e Symmetry: T, (—z) = (—1)"T,(x).
e The leading coefficient is 2"~ n > 1.

e Zeros: The roots of T, (z) are xy = cos (hf . g) ,k=20,1,...,n—1. These are called
Gauss points and we will use them later in numerical integration. The roots of its
derivative T} (z), which are the locations of extrema for Ty(x), are the Gauss-Lobatto
points and are given by x} = cos %’r We also have that

T.(z}) = (-1F, k=0,1,2,...

e Orthogonality in the continuous inner product is:

0.  i#j
1 d
| TS = (T T) = § 7/2, i=j £0
SR
m, 1=753=0

We often use orthogonality in the discrete inner product:
0, iF
Y Tiwe)Ti(ze) = ™55 i=j#0

m+1, i=j
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e Lagrangian Interpolant: The Chebyshev Lagrangian interpolant through N Gauss
points has a simple form:

TN(JZ')
Ty (we)(z —ap)

e Grid Transformation: The following grid transformation maps the Gauss-Lobatto
points xp = cos(kw/N), k =0,..., N to a new set of grid points &, obtained from:

_ sin”!(amy)

&k = : (3.8)

sin~!(a)
where « € (0, 1] defines the exact distribution. For o — 0 the new points are equidis-
tant and the Chebyshev approximation resembles the Fourier method. However, for
stability of the approximation the new points cannot be exactly equidistant, and thus
a > 0.

e MiniMax Property: Of all the n'"-degree polynomials with leading coefficient 1, the
polynomial 27T, (x) has the smallest maximum norm in the interval [—1,1]. The
value of its maximum norm is 2177,

Approximation Error and Convergence Rate

Let us assume that we are given the values of a function f(x) on a grid of (m + 1) points,
and we use a polynomial p(z) to represent the data on this grid. The error (or remainder
r(x)) in the approximation of a function f(z) is then

(2 — zo)(x = 21) ... (2 — @) | f" V(&)

Y

where & € [zg, x,,]. This error behaves like the polynomial curve
r(z) ~ (v —20)(x — 21) (¥ — T2) ... (T — Tpy),

which oscillates, similar in fact to the least-squares approximation (section 3.1.7), and unlike
the Taylor expansion approximation where the error increases exponentially as ~ (z—x)™ .

Now, we can attempt to find the optimum distribution of the grid points, which means
that we seek to minimize the maximum magnitude of

g(z) = (m+Dlp(x) = (xr —x0)(x —21) .. . (T — Zp,).
To this end, we can use the minimax property to obtain
q(z) = 27" T (),

thus {z}} are the zeros of the Chebyshev polynomial 7T},+1(z), and thus the grid points xy
are the roots of T,,,11(x), i.e.,

2k +1
xkzcos< i 7T),k:O,l,...m

m—i—lf



3.1. Polynomial Representation 125

We now state Rivlin’s minimaz error theorem:

MiniMax Error Theorem: The maximum pointwise error of a Chebyshev series expansion
that represents an arbitrary function f(x) is only a small constant away from the minimax
error, i.e., the smallest possible pointwise error of any N degree polynomial. The following
inequality applies:

1) =3 aTio) s 4 (1425 ) 1 ) = monte) |
k=0

where mm(x) is the best possible polynomial.

Note that for N = 128 the prefactor is less than 5 and for N = 2,688, 000 the pre-factor
is 4 (1 + h;r—év) ~ 10. Therefore, the Chebyshev expansion series is within a decimal point of
the minimax approrimation.

The convergence of Chebyshev polynomial expansions is similar to Fourier cosine series,
as the following transformation applies

x=cosf and T,(cosf) = cos(nb).

Assuming an infinite expansion of the form

f(z) = ki apT,(x)

then 1 2t d
- X
a = || fleos)coskdd = = [ f@)Tilw) s,

where we have defined
_J2,k=0
4= 1,k>0

The convergence rate of the expansion series is defined by the decaying rate of the coef-
ficients a;. To this end, if :

o f)(2)is continuous V|z| <1, p=0,1,2,...,n—1, and
o f(z) is integrable

then

1
ak<<ﬁ.

This implies that for infinitely differentiable functions the convergence rate is extremely
fast. This convergence is called exponential, and it simply means that if we double the
number of grid points the approximation error will decrease by a two orders of magnitude
(i.e., a factor of 100), instead of a factor of four which will correspond to interpolation with
quadratic polynomials and second-order convergence rate. The above estimate also shows
that in the Chebyshev approximation we can exploit the regularity, i.e., smoothness, of the
function to accelerate the convergence rate of the expansion. Also, notice that unlike the
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Fourier series (see section 3.2), the convergence of Chebyshev series does not depend on the
values of f(z) at the end points, because the boundary terms vanish automatically.

Finally, an important consequence of the rapid convergence of Chebyshev polynomial
expansions of smooth functions is that they can be differentiated normally term-wise, i.e.,

dr f(x i Ty ()
dxP @ dxP

In computing Chebyshev derivatives higher than the first, inaccurate results may be obtained
due to round-off. In particular, it has been observed that round-off may be significant for
the second derivative for N > 128, for the third derivative for N > 64, and for the fourth
derivative for N > 32. This round-off can be reduced if the grid transformation given by
equation (3.8) is employed.

Example: The following example, first presented in Gottlieb & Orszag [49], shows the fast
convergence of Chebyshev discretization. The exact representation for the sine function
corresponding to wave number M is

=1 1
sin Mm(z + a) =2 Y —J,(M7) sin(Mma + imr)Tn(x),
n=0 "N

where J,,(z) is the Bessel function of order n. We can argue that J,,(Mm) — 0 exponentially
fast for n > M, given that the Bessel function can be approximated by

1 Mm n
Mm) ~ — if — .
I (M) Tomn e if >
<1

This result leads to the following heuristic rule for Chebyshev series approximation, proposed
by Gottlieb & Orszag:

Quasi-sinusoidal rule-of-thumb: In order to resolve M complete waves it is required that
Mmn modes be retained, or in other words m polynomials should be retained per wavelength.

Although very good, such a resolution capability is less than that of a Fourier method
that requires approximately two points per wave! In fact, the above is an asymptotic result,
and a more practical rule for the total number of points N is:

N =6+44(M —1),

which has been verified in many numerical experiments.

3.1.6 Hermite Interpolation and Splines

We now turn to piecewise polynomial interpolation using relatively low-order polynomials,
unlike the single domain global interpolation. As we know from our previous discussion,
the more (distinct) grid points that we introduce into the polynomial approximation, the
higher the order of the interpolating polynomial. As the degree of the polynomial increases,
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the interpolating polynomial becomes more oscillatory. One solution to this problem is to
use multiple piecewise polynomials of low-order instead of one high-order polynomial. This
has the advantage that the interpolation error is proportional to a lower order derivative
resulting in better accuracy and more flexibility. The method of splines, first used in naval
architecture, is a very effective way of such an approach and facilitates smooth transition
between subdomains.

To proceed, let us first consider cubic Hermite interpolation where both function and
derivatives are interpolated. The interpolation problem can be stated as follows:

e Given data for the function values y and slopes s, (xr;yr;sr) and (xgr;yr;sL) at the
left (x1) and right (xg) boundaries of one-dimensional domain, find a cubic polynomial

p(z) = ag+ a1 (z — xp) + ag(x — xp)? + az(x — v1)*(x — xR)
with the four unknown coefficients obtained from
p(zL) =yr, p(TR) = Yr
P(xr) = si, P'(zr) = sg.
The first derivative is
p(z) = ay + 2a9(x — x1) + a3[2(z — 21)(x — xR) + (v — 21)?]
and by substituting the known data at the boundaries, we have
p(xr) =y, = ao; ap + a1Ax + az(Ax)? = yr
P (xp) = s, = ag; ay + 2a,Ax + az(Az)? = sg,

where Az = xr —xy, is the domain size. We recast the above in matrix-vector form as follows

O Qg YL

1

0 1 ay | _ | SL
1 Az Ax? as YR
0 1 2Az Ax? as SR

and we see that the coefficient matrix is lower-triangular.
The solution is obtained by forward substitution:
— _ "
o =YL, az =Yy,

J— _ n
ay = S, a3 =Yg,

where we have defined the forward differences at the left boundary as:

) _YR—YL  n Yo —5SL o _ SL—2YL+ Sk
Yr Ax ) Yr Ax ) Yr A2
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Theorem on Accuracy of Hermite Interpolation: For a function f(x) interpolated by
a cubic Hermite polynomial p(x) in a domain of size Ax, the error is bounded from above

by

/D) lloo o 4

This theorem guarantees that if the domain is divided into 100 subintervals then the error

will be reduced by a factor of 108! The proof is based on evaluating the mazimum contribution
of the remainder at the mid-point of the domain.

Constructing Cubic Splines: Having obtained simple formulas for Hermite cubic polyno-
mial interpolation, we now proceed to construct formulas for different types of cubic splines.
Here we replace the extra information given for first derivatives (sp,sg) at the end-points
of the domain by imposing continuity at the interior points. We assume, therefore, that the
entire domain is subdivided into subdomains or cells and that the function and its derivatives
are continuous at the breakup points, which we call the interior points. We can state the
problem of constructing splines as follows:

e Given the data points (x1,%1),...(Tn,Yn), find a piecewise cubic interpolant S(x) so
that S(z), S'(z) and S" () are continuous at all interior points x;, i =2,...,(n —1).

To achieve this we have to choose the slopes (s;,7 = 1,...,n) at all points appropriately. To
maintain continuity of the slopes we simply assign a single value at each point. However, we
have to enforce continuity of the second derivative explicitly. To this end, we consider the
subdomain z € [x;, x;,1] and apply Hermite interpolation as before where the point z; is the
left boundary and the point x;,; is the right boundary, as shown in figure 3.7.

X

I+1

R

Figure 3.7: Interpolation in the interval z € [x;, ;1]
We then construct the cubic polynomial
pi(2) = yi+ si(e — ;) + ) (v — 2:)* +y" (v — 2)* (2 — zita),
where

Y= Yirl 7 Yi, Yl = Yi — Si Yl = Si — 2y; + Si+1
' Az; 7 Az; = 7" (Az;)? ’

with Ax; = x;11 — x;. We also obtain the second derivative

"

pi(x) = 2y +y" [4(x — 2;) + 2(2 — 2441)] .

Next, we move to the adjacent cell z € [z;41, %42 in order to apply Hermite interpolation
on this interval, see figure 3.8.
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Figure 3.8: Interpolation in the interval x € [x; 41, Tit2].

We construct the polynomial

Pit1(2) = Yirr + sis1 (v = @ign) + Yl (@ = 2001)* + 4 (2 — 2000)* (2 — i),
and its second derivative

/)

P () =2y +yi [A(r — 2iq) + 2(2 — 2409)].

Next, we enforce continuity of second derivative at z;,; and obtain equations for the
unknown slopes:

2 (28541 + ;i — Sy;) = i(3y;+1 — 25i11 — Siy2),
Az; Az
which can be re-written as
Axiv18; + 2(Ax; + Axii)Siv1 + AxiSio = 3(Axi+1y; + Axiyl/-ﬂ) (3.9)
i=1,....n—2.

The above equations can be recast in a matrix-vector form with a tridiagonal coefficient
matrix. However, we have no information for the slopes sy, s,, (the end-slopes), and thus we
cannot solve for the slopes yet; we need additional information, the type of which specifies
different classes of splines:

e I. The Complete Spline: Here the additional information is given at the end-points
where the end-slopes are explicitly specified, i.e., s; = S and s, = Skg.

e II. The Natural Spline: In this case the curvature (i.e., p”(x)) at the end-points is
set to zero, 1.e.

1. 1.
pllxr)=0= s = Q(Sy1 —s9) and s, = 5(3%4 — Sp_1)-

e ITI. The Not-A-Knot Spline: In this case, no explicit information on the end-points
is provided, but instead we use continuity of the third-derivative p” (x) at the points
o and x,_1. Using

" S; + Si+1 — 2y;
() =206 )
p; ( ) (A.]?Z)Q

and enforcing the continuity condition, we obtain

+2/—+(Am>2( + 2s)
S1 = —S Ee— S Sq — .
1 2 Yq Aty 2 3 Yo
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This forms the first row in the triagonal matrix-vector system, which now has a band-
width of two instead of one. A similar equation is valid for the other end (last row in
the matrix-vector system).

IV. The B-Spline: An example of a very popular cubic spline derived from the above
Hermite interpolation is the basic or B-spline. It corresponds to zero slopes at the end-
points, i.e., s, = sg = 0, and it is symmetric. Its support is five points, that is, it is
non-zero within four equidistant intervals Ax. It is defined by the five points

(xia yz) = [(17 0)7 (17 1)7 (27 4)7 (37 1)a (47 O)]
Solving the matrix-vector system constructed from equation (3.9):
21
1 41
1 4
1

— R
DN =
”n

ot

|

we obtain
2 0<z<1

4—-6(2—2)*+32—-2)>1<z<2

4—-6(2—2)2-32—-2)32<z2<3

(4—2)%3<x<A4,

and it is zero everywhere else as shown in figure 3.9. Note that the B-spline, which has
its origin in applications of beam vibrations, satisfies a minimum principle. Specifically,
the B-spline has the smallest bending energy

B(B@) = [ (2—3)dx

among all functions or other splines that go through the same data points.

Next, we state a theorem that gives upper bounds for the error of spline interpolation up

to the third derivative. This depends on the end-points, so the theorem is for the complete
spline:

Theorem on Accuracy of Complete Splines: Let S(x) be the cubic spline that interpo-
lates f(x), x € [a,b] at points x; = iAx, where Ax = @, i=0,...,n, and also s, = f (a)
and sg = f (b), then:

where ¢y =

H S(r)(l') — f(r)(llf) H2 S €r H f(4) HQ (Ax>477“’ r= 07 17273

5 - 1 -3 —
221 €1 = 5,62 = 5 and 3 = 1.
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Figure 3.9: Plot of the B-spline. Its support extends over four intervals.

3.1.7 Least-Squares Approximation

What we have dealt with so far are interpolations for which the number of unknowns matches
the number of constraints in the function values or slopes. The cubic splines are perhaps a
slight exception, as extra information is needed to determine them, but that too could be
cast in a form of a linear system

Ca=y,

where a is the vector of unknowns and y is the vector of prescribed values.

In practical scientific computing, however, the opposite situation may occur where we
may have much more information than we actually require. For example, consider the case
of data analysis in an experiment with many measurements and with the dependent variable
following a quadratic trend. It is clear that, unless we are really lucky, not all measurements
will lie on a parabola! It is also clear that not all measurements have the same confidence
associated with them, and this should be reflected in the polynomial interpolant. The
question then is what type of parabola fits best the data and has built-in the measurements-
accuracy reported.

A similar situation arises in the problem of smoothing the data, a familiar task in engi-
neering, and Gauss was the first to provide a general treatment of this subject. He introduced
the bracket notation which we will use here, i.e., for a set of m grid points we define

Y=+ 4 Yn

and the moments

[wak] = wiah + worh + ..+ wpak, .

To obtain the least-squares polynomial, we assume that we have m points and the pairs
(i,y:), 1 =1,...,m, and we try to represent them with a polynomial p(x) of degree n

p(z) = ap + a1z + agx® + ... + apa”,
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where m > n + 1. The strict inequality corresponds to an over-determined system that we
discuss in this section. In matrix-vector form, if we follow the straightforward path, as in
the Vandermonde approach (section 3.1.1), we have that

Clm x (n+1)) x a(n +1) = y(m),

so the matrix C is rectangular, and for m > (n + 1) this system does not always have a
solution.

However, there is a minimum principle associated with this problem. That is, instead
of solving the system Ca = y we attempt to find the vector a such that we minimize the
residual

r(a)=|Ca—y .

This results in solving a system of the form
C'ca=C"y, (3.10)

where CTC is a symmetric positive definite matrix if C has linearly independent columns.
This may not be obvious at first but following Gauss, we can derive the normal equations
that result in the matrix-vector form of equation (3.10). To this end, we compute the residual

ri=ap+ax; + ...+ a,x; —y;

at each measurement point z;,7 = 1,..., m. We now form the sum of the square of all the
m residuals

m
R(ag,ay,...,a,) = Zwir?,
i—1

where w; is a weight that reflects confidence in the accuracy of measurement at point x;.
The next step is to minimize the residual R by taking its derivatives with respect to all a;
and setting them to zero, i.e.,

OR
2a. =0 for i=1,...,m.
Using the Gauss notation, this yields
aplwz®] + afwz'] + ...+ a,[wz"] = [wy]
aplwr] + afwz?] + ...+ a,[wr" ] = [way]
aplwz"] + aifwz" + ..+ an[wr?™] = [wa™y).
We also note that the unknowns are (ag, ay, ..., a,) and that the coefficient matrix H is:
[ wz®] [wxl'] .. [wa?]
(wxl] [wx?] . [wa™

(wx™]  [wz" ] L [wz?n
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which is an (n + 1) x (n + 1) matrix, the so-called Hankel matriz, with its cross-diagonals

constant. Also, if we form
wn
W9 0

W

the matrix of weights, then we can write the Hankel matrix as

H=V'WV
where
1 x Y
V— 1 :1:'2 Ty
1 xm T,

is the rectangular Vandermonde matrix; it is non-singular if at least (n + 1) points (out of
the total m points) are distinct. The normal equations can be recast in matrix-vector form

as
(VIWV)a = VI'Wy

where
yT = (y17y27 s 7ym>

are the measurements.

The normal equations are, in some sense, a generalization of the Vandermonde approach

where the set
(1,z,2% ... 2"

is used as basis ¢ (z) in the expansion
n
f(@) =) apdp(x).
k=0
We can change the basis, as we did in the case of deterministic interpolation, in order to

arrive at a better algorithm to compute the coefficients (a,, a1, .. .a,) via recursion. To this
end, minimization of

R(ag, a1, ...a,) = sz[f(xl) —y)?
i=1
results in a coefficient matrix G((n + 1) x (n + 1)) with elements
gi; = > wpdi(wy) (k)
k=1
for the system Ga = Db or

gija; =b; with b, = wigi(zr)y.
k=1
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If this basis is orthonormal, i.e.,

m . .

5 woaonon - { 12

k=1 v =
then the matrix G is a diagonal matriz and the computation of the unknown vector a
becomes a trivial matter. We have seen that the Chebyshev polynomials are orthonormal
but their construction requires special Gauss-Lobbato points (see section 3.1.5). Here the
key is to discover a similar three-term recurrence formula for a given arbitrary distribution
of points {z;}. We expect that such a three-term recurrence formula is possible given that
the Gram-Schmidt orthogonality procedure of this form for vectors leads to that form, see
section 2.2.9; similar results should be expected for polynomials.

Let us call the basis ¢p(x) = qx(x) where g(x) is the orthonormal polynomial which, by
assumption, satisfies the recursion

G+1(x) = 2q;(2) — yq;(2) — Bigj—1(x), j=1,...,(n—1). (3.11)

We need to find recurrence relations for the constants a1 ; and ; as well as initial conditions.
From the orthonormality constraint we have that

qGpo(z) =1

and by assuming that
() =2 — an,

we require orthonormality, i.e.,

iwiqo(xi)% (z;) =0

=1
or
m
Zwl(xz — C(l) =0
i=1
or
m m 1 m
Zwi&l = Z’LUZ.CI?Z = = — Z’LUZ.CI?Z
i=1 i=1 70 i=1
where

m
Yo = Z w;
i=1
and in general, we define

Ve = Z wzqz(%)
i=1

Similarly, we can obtain the coefficients as and (35 by insisting that ¢o(x) be orthogonal to
¢1(x) and go(x), which are the two previous polynomials. By induction we obtain the general
result from the following two orthogonality constraints:

> wigzea (@) (wi) =05 a1 L g (3.12)
1=1
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Y wigia(zi)gi-1(21) =0, o1 L i (3.13)
i=1

These conditions are sufficient to prove that ¢; 1 L gx, Kk =0,...,7 — 2.

By substituting the recurrence formula (equation (3.11)) for g1 in equations (3.12) and
(3.13), we obtain

Qjp1 = — szxquQ(%)
Ji=1
and
1 m
Bi = —— > wilrig(w:)|g;(w:)
Ti-1i=31 o1l
eqn.3.

1
= o Y wilg; (i) + g (i) + Bi1gi—o(w:)] - gj(2:)
o
1 2 Vi
= — ) wigj(z) = ——
Yi-1 Z ! Vi-1
= ﬁj = i .
Vi-1

We can now write the following recursive algorithm for computing the orthogonal polynomials
qx(2):
Initialize:

m 1 m
70 = sz‘; Q(r) =1; qu(z) =z — 7— sz‘l'z‘
=1 0 ;=1

Begin Loop 7 =1,n—1
V= i wigy ()

ﬂj:L

Vi—1
1
Qg1 = P 2211 wzszJQ(xz)

gj+1(x) = 2q;(z) — aj1q;(z) — Bigj-1(x)

End Loop

Having constructed all the orthogonal polynomials g, (z), the unknown coefficients are com-
puted from

1 m
ap = — > wige(z)y,, k=0,1,...,n
Tk i—1

and finally
fz) =) arqr(z)
k=0
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is the least-squares polynomaal.

Remark: There is a similarity between the procedure we just described and the QR de-
composition presented in section 2. Recall that the problem of finding a least-square
polynomial is equivalent to solving the system

c'ca=C"y.
We can apply QR decomposition to matrix C, to obtain
C=QR
and the above equation becomes
R'Ra=R"Q"y

or
Ra=Q'y
with R being upper triangular. The vector of unknown coefficients a is then obtained by

back substitution. In practice, another version of QR factorization is preferable, the so-called
Householder triangulaziation, which we will study in chapter 9.

Software

(o)  Putting it into Practice
Suite

From the discussion above, we see that given a set of data, we need to calculate and
store three quantities: «;, 3;, and the set of least-squares coefficients. We will accomplish
this with the function presented below. This function takes as input the number of points
over which the least-squares approximation is to be calculated (npts), an array of positions
x, data values (or function values) at the previously mentioned spatial points stored in the
array funcvals, the degree of the least-squares approximation ndeg, and then as output
arrays this routine will fill in the arrays alpha, beta and [scoef fs. Note that this function
assumes that all the arrays have been allocated:

void LS_ComputeCoeffs(int npts, double *xpts, double *funcvals,
int ndeg, double *alpha, double *beta, double *1lscoeffs){
int 1,7;
double xi,tmpd;
double * gamma = new double[ndeg+1];

11777777717777777777177777

// Compute average first
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xi = 0.0;
for(i=0;i<npts;i++){

xi += xpts[i];
}
xi /= (double) npts;
[171777717777777177717777

gamma [0] = npts;
alpha[0] = beta[0] = 0.0;
alphal1] = xi;

for(j=1;j<=ndeg-1;j++){
gammal[jl = 0.0;
alpha[j+1] = 0.0;
for(i=0;i<npts;i++){
tmpd = LS_OrthoPoly(j,xpts[i],alpha,beta);
gamma [j] += tmpd*tmpd;
alpha[j+1] += xpts[i]*tmpd*tmpd;
}
alpha[j+1] /= gammal[j];
betalj] = gammal[jl/gammal[j-1];
}

gamma [ndeg] = 0.0;

for(i=0;i<npts;i++){
tmpd = LS_OrthoPoly(ndeg,xpts[i],alpha,beta);
gamma [ndeg] += tmpd*tmpd;

}

beta[ndeg] = gamma[ndeg]/gamma[ndeg-1];

for(j=0;j<=ndeg;j++){
1lscoeffs[j] = 0.0;
for(i=0;i<npts;i++)
lscoeffs[j] = 1lscoeffs[j] + funcvals[i]*
LS_OrthoPoly(j,xpts[i],alpha,beta);
lscoeffs[j] /= gammal[j];
}

delete[] gamma;

return;
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There are two issues that we would like to point your attention to as you examine this

function:

1. Remark 1: If you examine the mathematical formulation carefully, you notice that

the above function relies on the orthogonal polynomial function being defined. The
definition for the orthogonal polynomial requires the o and 3 to be defined. At first
glance, there appears to be a circular dependency! However, it is not. Observe that
whenever the orthogonal polynomial needs to know a and (3, they have already been
properly calculated. The point: this is a highly inductive process. The ordering of
calculation is very important in this routine. You should take the time to chart out
the dependencies, and observe how timing is everything!

. Remark 2: Dynamic memory allocation within functions is quite natural, and most
programmers have no problem allocating arrays within functions. However, many
programmers become negligent, and do not deallocate the temporary memory that
they needed. In the function above, the array gamma is allocated for temporary usage
within this function. Note that this temporary array is deallocated (using the delete]]
command) just prior to the function returning. Recall that the local variables within a
function are local to the function, and go away when the function concludes. Hence, if
memory is allocated to gamma and is not returned to the system prior to the function
returning, that memory is “lost” for the remainder of the runtime of your program!
This is what is referred to as a memory leak. If you view memory as a conserved
quantity (that is, that for every allocation there is a deallocation), then if you forget
to deallocate a piece of memory prior to it being inaccessible by the user (in this
case due to the pointer variable going away when the function returns), then memory
has “leaked,” and hence the total amount of memory available for dynamic memory
allocation is reduced.

WARNING Programmer Beware!

e Beware of memory leaks!
For every allocate
(new) there should be a
deallocate (delete[])

Using the Switch

Once again, we use the concept of recursion for quickly imple-

Software

Suite

menting the mathematical definition of the orthogonal polyno-

mial. Again, we have two base cases, when the index of the
@ polynomial is 0 or 1; for all other positive values of the index,
the value of the polynomial is calculated using the recursion

relation.
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double LS_OrthoPoly(int j, double x, double *alpha, double *beta){
int i;
double value;

switch(j){
case O:
value
break;
case 1:
value
break;
default:
value = (x-alphal[j])*LS_OrthoPoly(j-1,x,alpha,beta) -
beta[j-1]*LS_OrthoPoly(j-2,x,alpha,beta);
break;

}

1.0;

x - alphaljl;

return value;

Once the coefficients have been calculated, then the least-squares approximating polyno-
mial can be evaluated at any point. Below we present the implementation of this function.

double LSApproximatingPoly(int ndeg, double x, double *alpha,
double *beta, double *lscoeffs){
double value = 0.0;

for(int i=0;i<=ndeg;i++)
value += lscoeffs[i]*LS_OrthoPoly(i, x, alpha, beta);

return value;

C++ Compound Assignment

Y

Look carefully at the function above. You will notice something new: the “4=’
This is a convenient C++ shorthand used for accumulation. The C++ statement

operator.

a += b;
is equivalent to the statement

a=a+ b;
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‘ Shorthand ‘ Description
i++ Pre-increment, i =1 + 1
++i Post-increment, i =1 + 1
i- Pre-decrement, i =i- 1
—i Post-decrement, i =i- 1
1+=] i=14]
i-=]j i=1i-j
1*=j i=1i%*]j
/= =i/

Table 3.1: C4++ compound assignment operations.

which is to be interpreted as taking the value of b and accumulating it to a. Table 3.1
gives a collection of these “shorthand” programming notations used in C++-.

Pre- and post-incrementing /decrementing may be somewhat confusing at first, but con-
sider the following code

j = it++;

k ++p;

in which we use the post-incrementor in the first line, and the pre-incrementor in the second
line. If we expand this shorthand notation into its traditional C++ code, we obtain the
following;:

J =1
i =1+ 1;
pP=p+1
k = p;

Notice that in the first example, the post-incrementor is used, so the assignment is
accomplished first, and then the increment. The exact opposite happens when the pre-
incrementor is used. When used as an individual statement (such as we have used it in for
statements), the two give identical results.

WARNING Programmer Beware!

e C++ shorthands can be
convenient but deadly! A slip

of the finger, and += can

be =+, which is a valid

C++ statement, setting one value
as the positive value of another
value! Not what was intended!!
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Software

Suite

Below, we present a program which uses the functions de-
scribed above. Notice the general structure of this program:

1.

2.

Query the user to obtain information.
Allocate necessary memory (dynamically).

Produce a grid, and evaluate the function to be approx-
imated.

Compute least squares coefficients by calling
LS_ComputeCoeffs.

Evaluate approximating polynomial on a fine grid for
plotting.

Deallocate dynamic memory used within the program.

#include <iostream.h>
#include "SCchapter3.h"

double func(double x);

int main(int argc, char * argv[]){

int i;

int degree, polypnts;
= 1000; //number of points used for plotting
double xpt, soln, approx;

int npts

cout << "Enter the degree of the least squares polynomial: ";

cin >> degree;

cout << "Enter the number of points to use for evaluation: ";

cin >> polypnts;

double
double
double
double
double

* ¥ X X *

poly_xpts = new double[polypnts];
func_vals = new double[polypnts];
alpha = new double[degree+1];
beta = new double[degree+1];
lscoeffs = new double[degree+1];

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){

141
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func_vals[i] = func(poly_xpts[il);
}

LS_ComputeCoeffs(polypnts, poly_xpts, func_vals, degree,
alpha, beta, lscoeffs);

for(i=0;i<npts;i++){
xpt = -1.0 + 2.0*i/(npts-1);
soln = func(xpt);
approx = LSApproximatingPoly(degree, xpt, alpha,
beta, lscoeffs);
cout << xpt << " " << soln << " " << approx << endl;

¥

delete[] alpha;
delete[] beta;
delete[] 1lscoeffs;
delete[] poly_xpts;
delete[] func_vals;

double func(double x){
double y;

1.0 + 25.0%x*x;
1.0/y;

y
y

return y,

}

Key Concept

e As a programmer, you should have a gameplan! Always take a
few moments to formulate the general structure of your program;
this will save you much time in the end!

3.1.8 Introduction to Classes

In the previous chapter, we discussed the two fundamental concepts within C++, i.e.; the
idea of functions and the idea of classes. In this section, we will present a brief overview of
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how to declare, define, and use classes. We will use as an example the class SCVector found
in the software suite. We will then illustrate the rationale of classes by defining a new class
to be used in a least-squares example.

This section is meant only to be a brief overview of classes for the cases where classes are
used in this book. To discover the full power of classes (through inheritance, etc.), we refer
the reader to [86].

Class Declaration

Software | Classes are user-defined data types. We first present the decla-
@ ration of our user-defined class SCVector, and then will com-
Suite ment on the specifics of the declaration:

class SCVector{
private:
int dimension;
double *data;

public:
SCVector(int dim);
SCVector (const SCVector& v);
SCVector(int col, const SCMatrix &A);

~“SCVector();
int Dimension() const;
double Length(); /* Euclidean Norm of the Vector */

void Normalize();

double Norm_11(Q);

double Norm_12();

double Norm_linf();
double MaxMod();

double ElementofMaxMod();
int MaxModindex() ;

[ [ FF kR kR Rk Rk Rk Rk ok ok
// User Defined Operators
/[ xkkokskokokok sk okokok sk okokok sk ok sk sk ok ok ok
int operator==(const SCVector& v) const;
int operator!=(const SCVector& v) const;
SCVector & operator=(const SCVector& v);

double operator() (const int i) const;
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+;

double& operator() (const int 1i);

void Print() const;
void Initialize(double a);
void Initialize(double *v);

We now present some remarks concerning the code above:

Observe the structure of a class declaration. First, there is the use of the key word
class, followed by the user-defined variable name which will be used later when creating
instantiations of this class. Within the {}, there are three key words used to denote
accessibility:

1. private — those variables and functions that cannot be accessed from outside of
the object. Access is non-inheritable.

2. protected — those variables and functions that cannot be accessed from outside of
the object. Access is inheritable.

3. public — those variables and functions that can be accessed from outside of the
object.

Those variables/methods within the private section are only accessible from within
the object, whereas variables/methods in the public section are accessible outside the
object.

@,”

The declaration of a class must be concluded by a *;

You may have noticed that we used the term object in the above definitions, and you
may have assumed that we really meant class. We did not. In C++ nomenclature, a
class refers to the declaration of the user-defined variable, while an object is an instance
of a variable of that type. Take for example the predefined variable type int. In C++
parlance, we would refer to our declaration of int as the class, and every variable that
we create as “an object of type int.”

Within the private section of this class, we have declared two variables dimension and
data which can be used within the object.

In the public section, we have declared a collection of methods which access or modify
the data contained within the object.

Method Definitions

Software

@ We now discuss some of the method definitions for this class

Suite

found within the software suite.

Each method has the following structure:
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<return type> ClassName: :MethodName (<argument list>)

The return type, method name, and argument list are similar to what we have seen with
functions. In the case of a class method, we also designate the class to which the method is
assigned (using the “ClassName::” syntax).

Constructor: A constructor is the first function which is called when the object is in-
stantiated. In this case, the constructor requires the input of the dimension of the vector.
The constructor then uses this information to initialize the local variable dimension, and to
allocate memory which is assigned to the local variable data.

SCVector: :SCVector(int dim){
dimension = dim;
data = new double[dimension];

for(int i=0;i<dimension;i++)
datal[i] = 0.0;

Copy Constructor: A copy constructor is used whenever a copy is required (either by
the programmer or the program). The object to be copied is passed as an argument to this
method. Notice that the argument is passed as a const (meaning that within the method we
cannot change the value of the object v), and that it is passed by reference (denoted by the
“&”) so that no new memory allocation is required to store the contents of v (as opposed to
if we had passed by value). The current object is initialized so that it is a copy of v.

SCVector: :SCVector(const SCVector &v){
dimension = v.Dimension();
data = new double[dimension];

for(int i=0;i<dimension;i++)
datal[i] = v.datalil;

Destructor: This method is called automatically when the object is released back to the
operating system. Its purpose is to clean up the storage contained within the object.

SCVector::~“SCVector (){
dimension = O;
delete[] data;
data = NULL;

}

General Methods: From the class declaration presented above, we present two method
definitions, one which merely accesses the data with the object to provide a result, and the
second with acts upon the data contained within the object. Consider the following two
method definitions:
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double SCVector::Norm_12(){
double sum = 0.0;
for(int i=0;i<dimension;i++)
sum += datalil*datalil;
return(sqrt(sum)) ;

}

void SCVector: :Normalize(){
double tmp = 1.0/Norm_12();
for(int i=0;i<dimension;i++)
data[i] = data[i]*tmp;

In the first method, we use the information stored within the class (contained within data)
to compute the Ly norm of the vector, and we return this information at the conclusion of
the function. In the second method, we act upon the data contained within the object by
normalizing the value of the vector to one. Notice within the Normalize method that we
call local class method Norm_l2 to obtain the discrete Lo norm of the vector.

Overloaded Operators

In addition to class methods, we can also overload operators so that they are appropriately
defined for our new user-defined data type. Consider the following operator declaration:

SCVector operator+(const SCVector& vl, const SCVector& v2);
and corresponding operator definition:

SCVector operator+(const SCVector& vl, const SCVector& v2){
int min_dim = min_dimension(vl,v2);
SCVector x(min_dim);
for(int i=0;i<min_dim;i++)
x(1) = v1i(i) + v2(i);
return Xx;

b
The basic syntax is as follows:
<return type> operator<symbol>(<argument 1>,<argument 2>)

where the return type, symbol, and arguments are to be supplied by the programmer. Using
this syntax we appropriately define what it means to add (using the binary operator '+7)
two SCVector objects. We will illustrate how this is used below.
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Object Allocation and Usage

To understand how all the information presented above is used, consider the following code:

SCVector a(3),b(3),c(3); //allocate SCVectors a,b,c
//Constructor is called automatically to
//allocate memory and provide default
//initialization

a(0) = 1.0; //Initialize the values of ’a’ using () operator
a(l) = 2.0; //defined for the class SCVector

a(2) = 3.0;

b(0) = -2.0; //Initialize the values of ’b’using () operator
b(1) = 1.0; //defined for the class SCVector

b(2) = 3.0;

c = atb; //Use overloaded operator ’+’ to compute
//the sum of a and b, and use of the
//overloaded operator ’=’ to assign
//the value to ’c’

c.Print(); //Use print method to print the value of ¢

Execution of this code within a program would yield the result [-1.0; 3.0; 6.0] printed
to standard output.

Software

(o)  Putting it into Practice
Suite

The least-squares example presented earlier provides a good motivation for using classes.
Observe that associated with each least-squares approximating polynomial we form, we need
to keep track of three arrays, alpha, beta and [scoef fs, for each approximating polynomial!
Is this do-able? Certainly. But from an organizational standpoint, we would like to be able
to automatically associate the appropriate arrays with the right polynomials. Imagine that
we were asked to handle 20-100 least squares approximations simultaneously! Doable, yes;
messy, yes; but recall that classes can provide us a means of organizing our data.

First, we begin by giving the class declaration:

class LSPoly{
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private:
int ndeg;
double *alpha, *beta, *lscoeffs;

double LSPolyOrtho(int j, double x);

public:
LSPoly();
~LSPoly();

void PrintCoeffs();
int Initialize(int npts, int in_ndeg, double * xpts,
double * funcvals);
double Evaluate(double x);
};

In addition to the four variables ndeg, alpha, beta, and [scoef fs declared within the
class, five methods associated with this class have declared. We present the definitions of
these five methods and provide a brief explanation of each.

Default Constructor: This method is called automatically when the object is instantiated
if no other constructor is called. Observe that in this case we initialize variables to either
zero or NULL (whichever is appropriate for the variable type).

LSPoly: :LSPoly () {

ndeg = O;
alpha = NULL;
beta = NULL;

lscoeffs = NULL;
}

Destructor: This method is called automatically when the object is destroyed.

LSPoly: :"LSPoly (0{
delete[] alpha;
delete[] beta;
delete[] 1lscoeffs;

ndeg = O;
alpha = NULL;
beta = NULL;

lscoeffs = NULL;

The next method is a “private” method; that is, it can only be called from within the
object. This means that the only valid places that this function can be called are within
other methods defined within the object.
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double LSPoly::LSPolyOrtho(int j,double x){
int i;
double value;

switch(j){
case O:
value
break;
case 1:

1.0;

value = x - alphalj];
break;
default:
value = (x-alphal[j])*LSPolyOrtho(j-1,x) -
beta[j-1]*LSPolyOrtho(j-2,%);
break;

}

return value;

The next three methods are “public” methods; that is, they can be accessed from outside
the object. The first method accomplishes the initialization of the class which consists of
computing the values stored in alpha, beta, and gamma. The second method allows us to
print the contents of the object, and the third method allows us to evaluate the least-squares
approximation using the information stored within the object.

int LSPoly::Initialize(int npts, int in_ndeg, double * xpts,
double * funcvals){
int 1,];
double xi,tmpd;

if (alpha!=NULL){
cerr << "Error:: LSPoly has already been initialized" << endl;
return O;

}

ndeg = in_ndeg;

/* Storage for this object */
lscoeffs = new double[ndeg+1];

alpha = new double[ndeg+1];
beta = new double[ndeg+l];

/* Storage for just this method */
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double * gamma = new double[ndeg+1];

11777717117777177777777777
// Compute average first
xi = 0.0;
for(i=0;i<npts;i++){

xi += xpts[i];
}
xi /= (double) npts;
[117777777717777777717777

gamma [0] = npts;
alpha[0] = betal[0] = 0.0;
alpha[1l] = xi;

for(j=1;j<=ndeg-1;j++){
gammal[j] = 0.0;
alphal[j+1] = 0.0;
for(i=0;i<npts;i++){
tmpd = LS_OrthoPoly(j,xpts[i],alpha,beta);
gamma [j] += tmpd*tmpd;
alpha[j+1] += xpts[i]*tmpd*tmpd;
}
alphal[j+1] /= gammal[j];
betalj] = gammaljl/gammal[j-1];
}

gamma [ndeg] = 0.0;

for (i=0;i<npts;i++){
tmpd = LSPolyOrtho(ndeg,xpts[i]);
gamma [ndeg] += tmpd*tmpd;

}

beta[ndeg] = gamma[ndeg]/gamma[ndeg-1];

for(j=0;j<=ndeg;j++){
1scoeffs[j] = 0.0;
for(i=0;i<npts;i++)
lscoeffs[j] = 1lscoeffs[j] + funcvals[i]*LSPolyOrtho(j,xpts[i]);
lscoeffs[jl /= gammal[j];
}

delete[] gamma;
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return 1;

b

void LSPoly: :PrintCoeffs(){
cout << endl;
cout << Msskokskokokskokkskokskokokskokkkokskokokkokkokkkokkokkk ! << endl;

cout << "i\talpha\tbeta\tlscoeffs" << endl;
for(int j=0;j<=ndeg;j++){

cout << j << "\t" << alpha[j] << "\t";

cout << betal[j] << "\t" << lscoeffs[j] << endl;

3

cout << Mskskskskokokokokokskskskokokskkokkokskskkokkokokkkkkkkk " << endl << endl;

return;

double LSPoly::Evaluate(double x){
double value = 0.0;

for(int i=0;i<=ndeg;i++)
value += lscoeffs[i]*LSPolyOrtho(i,x);

return value;

}
Now, we want to put it all together into one piece of code. Using the information above,

we have now declared a class named LSPoly, and we have provided definitions to all its
methods. We now use this new user-defined variable in the program below.

#include <iostream.h>
#include "SCchapter3.h"

double func(double x);

int main(int argc, char * argv[]){

int i;
int degree, polypnts;
int npts = 1000; //number of points used for plotting

double xpt, soln, approx;
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LSPoly poly; // Our user-defined class!

cout << "Enter the degree of the least-squares polynomial: ";
cin >> degree;

cout << "Enter the number of points to use for evaluation: ";
cin >> polypnts;

new double[polypnts];
new double[polypnts];

double * poly_xpts
double * func_vals

CreateGrid_EvenlySpaced(polypnts, poly_xpts, -1.0, 1.0);

for(i=0;i<polypnts;i++){
func_vals[i] = func(poly_xpts[il);
}

poly.Initialize(polypnts,degree,poly_xpts,func_vals);

for(i=0;i<npts;i++){
xpt = -1.0 + 2.0*i/(npts-1);
soln = func(xpt);
approx = poly.Evaluate(xpt);
cout << xpt << " " << soln << " " << approx << endl;

delete[] poly_xpts;
delete[] func_vals;

double func(double x){
double y;

1.0 + 25.0%x*x;
1.0/y;

y
y

return y,;

}
We want to draw your attention to certain key items within the program above:

e We begin by instantiating a variable of type LSPoly, just like creating a “regular”
(pre-defined) variable. As stated above, when the variable is initiated, the constructor
is called.

(13X

e To access both variables and methods which are public, we use the notation.
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<variable name>.<object variable>

or
<variable name>.<method>( ... <method argument list> ... )

In the example above, we access the Initialize method as follows:
poly.Initialize(polypnts,degree,poly_xpts,func_vals);

where poly is the name of the object, and Initialize is the name of the public method
that we want to access.

If, instead of the object, we were using a pointer to the object, we use the “-;” notation
as follows:

<pointer variable name>-><object variable>

or
<pointer variable name>-><method>( ... <method argument list> ... )

e All the information necessary for the least squares approximation is stored within the
object, and hence the call for evaluating the least squares polynomial is merely the
call:

approx = poly.Evaluate(xpt);

3.1.9 Multi-Dimensional Interpolations

We can extend the interpolation methods we have presented so far in two-dimensions or
three-dimensions by constructing appropriate two- or three-dimensional polynomials. In
two dimensions, for example, we have

f(x,y) - Zak¢k(x7y)
k

where oy, are the unknown coefficients, and the exact form of the polynomial basis ¢ (x,y)
depends on the shape of the computational domain. In order to simplify the presentation, we
first consider canonical domains, and subsequently we present mapping techniques to deal
with more general domains. The approach presented here is typically followed in finite ele-
ment methods, see [63], where polynomial approximations in subdomains (the “elements”)
are required; however this polynomial approximation is general, and also is easy to imple-
ment.
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Figure 3.10: Standard domains for the quadrilateral (left), and triangular (right) expansion in
terms of the Cartesian coordinates &1, &s.
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Figure 3.11: Pascal’s diagram that shows the polynomial space for the triangular expansion (shaded

region) and square region (shaded region plus values within dotted line). The example here is for
cubic polynomial approximation.

3.1.10 Simple Domains

The canonical domains we consider are the square and the triangular domains with the
coordinates & € [—1,1] and & € [—1, 1] being the normalized coordinates as shown in figure
3.10. Similar extensions can be constructed in three-dimensions for a standard hexahedron
and a tetrahedron. In figure 3.11 we construct the so-called Pascal’s diagram to demonstrate
graphically the polynomial space for each region.

We first consider the square domain, for which it is computationally efficient to split
directions by constructing tensor-products of the form

f(fl, £2> ~ Z Z O‘pq¢p(£1)¢q(£2)'

Let us re-write the above equation using one-dimensional Lagrangian interpolants h;(§), i.e.

f(&1,6) ~ ZZ Foalip(§1)hq(&2)
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where f,, are the function values at the node (p, q).
In the standard square, bilinear interpolation is achieved by employing the one-dimensional
linear interpolants

h(€) = 51£8), =12
and thus
FlEn &) ~ 1A~ )1~ &) + 310 + )1 - &) +
L1+ )1+ &)+ {101 - &)1 + &)

where we have used a counter-clockwise convention to number the corners of the domain,
and f; denotes the function values at each vertex starting from the low left corner, see figure
3.10.

Software

(o)  Putting it into Practice
Suite

We can implement the above formula as follows:

double Square_2dInterpolant(SCPoint x, int npts, double *funcvals){
double value = 0.;
double h[4];

if (npts !'= 4){
cerr << "Error in Square_2dInterpolant -- ";
cerr << "Invalid npts given" << endl;
return value;

}

h[0] = 0.5%(1.0-x(0));
h[1] = 0.5%(1.0+x(0));
h[2] = 0.5%(1.0-x(1));
h[3] = 0.5%(1.0+x(1));

value = funcvals[0]*h[0]*h[2] + funcvals[1]*h[1]x*h[2] +
funcvals[2]*h[1]*h[3] + funcvals[3]*h[0]*h[3];

return value;
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In this routine, we rely on the use of the data type SCPoint, which is a user-defined class
included in the software suite. What is important for you to know concerning SCPoint is
that if P is a variable of type SCPoint, then the coordinate (z,y) is stored as (P(0), P(1)).
Hence, in this 2D example, we are providing an SCPoint which has two accessible values,
x(0) and z(1): 2(0) = & and z(1) = &;.

Let us observe a few items within this code:

e Notice that because we know how many interpolants we will need, we can use static
allocation of an array for holding the temporary values of the interpolants. If instead
of four points we knew that we would use nine points, then we could allocate h[9]
instead of h[4]. Obviously this is much easier than typing h0,hl, ... h8! It would
also be perfectly valid to use dynamic memory allocation here; we have chosen not to
for optimization reasons. For such a small number of variables, the cost of dynamic
memory allocation outweighs the convenience.

e In this function, we introduce the concept of argument checking. We have written the
function above with the intention of providing the two-dimensional bilinear interpo-
lation. From the theory, we see that this requires that four function values be given.
What would happen if we are only given three function values (that is, what if the
user had only allocated and assigned values for funcvals|0], funcvals[1] and funcvals|2])?
Using this function would be invalid, and in all likelihood our program would crash!
Quite often programmers introduce checks into their code to help minimize such mis-
takes. In this case, we check to make sure that we have received npts = 4; if not, we
issue a warning that we received an invalid npts value, and we return 0.0.

e Notice that we used cerr instead of cout. The object cerris an output object like cout,
and is also declared in iostream.h. The difference between cout and cerr is that cerr
writes to standard error instead of standard output (which may or may not be the
same actual output device).

Key Concept

e Carefully designed argument checking can save you hours of de-
bugging time! Plan ahead for your own possible mistakes — and
prevent them from occurring.

High-Order Interpolation

Higher order approximations can be constructed if more information about the function f(z)
is given. Typically, that information may be available at the midpoints of the edges of the
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domain or even at the center of the domain. In this case, we need to first construct higher
order one-dimensional Lagrangian interpolants. Let us consider the case of an extra one and
two interior points distributed equidistantly along the edge. From their definition we have

that
hs(€) =1—€% and hy(§) =1 —276% —9¢ + 27¢ +9.

C
D G C
@
F E
H ° F
|
. o
A E B A D B

Figure 3.12: Domain and points where the data is specified for square (left) and triangle (right).

With the above four one-dimensional Lagrangian interpolants we can construct up to
third-order polynomial approximations in a square domain if information is given at all
the points A, B, ..., I as shown in figure 3.12. As an example, let us assume that we
have available f(A), f(B), f(C), f(D) and f(E). Then the interpolants (also called shape

functions) are as follows:

hy = i(l —&)(1—&) - %hES hp = 1(1+&)(1 — &) — she;

he=7(-E)1+&);  ho=(1+8)(1+6)
hEzé(l—ﬁ)

Let us now assume that in addition we also have function values at the points I and F.
Then the above interpolants can be easily modified to handle this case as well by adding
extra terms that reflect this interaction

ha= 30—~ 8)(1~ &) — she — 3hr; hp =20+ 6)(1 ~ &) ~ bhe — bhe — Thy
he = 31— €)1+ &)~ ghe — 7hr ho = H1+6)(1+&) — Lhy
hEZ%(l—Ef)(l—&)—%hI; he = 5(1+&)(1 = &) — 3h

hy = (1 - f%)(l - 53)
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These approximations can be extended to hexahedral domains using the tensor-product
form. For example, in the case of trilinear interpolation with the function values specified at
the eight vertices the shape functions are:

Wl ,65) = g1 £ E)1 £ &)1 6).

For higher order interpolations similar constructions can be obtained with the approximating
polynomials defined by the hierarchy shown in figure 3.13(a), which is Pascal’s diagram for
hexahedral domains. For more details see ([63], chapter 3).

81837 Ea8a?

&% &1 8283 &%,

&3 §,2¢, & &2 &3

Figure 3.13: Pascal’s diagram for hexahedral (left) and tetrahedal domains (right).

Non-Tensor Products

For a triangular region, however, no tensor products are easily constructed unless special
coordinate systems and transformations are introduced, see [63]. For linear interpolation,
the shape functions are constructed, e.g., by collapsing the corners D and C of the square to
obtain

1 .
W= = S+ (C)) (1 —s), = A D

and

1
Rl = hid + hil = 5(1+&).

These can be recomputed after we renormalize the coordinates so that & € [0,1] and & €
[0, 1] to obtain
ha=1=& =&, hp=&, hc==%&.
Furthermore, if we have data at the midpoints of the edges of the triangle (see figure
3.12(b)) we can construct complete quadratic interpolation using the shape functions

1 1
hA=1—§1—§2—§hD—§hF; hg =& — $hp — $hg;
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=19 &3

(-1-1-9 (1,-1-9

a) b)

Figure 3.14: (a) The area coordinate system in the standard triangular region. Each coordinate
l1,1ly, and I3 can be interpreted as the ratio of areas Aj, Ay, and As over the total area. (b) The
standard tetrahedral region for the definition of volume coordinates.

he =& — %hE - %hF§ hp = 4§ (1 — & — &);
hp =4§&; hp= 452(1 & - 52)'

Another popular way of constructing linear interpolations in a triangular region is by
using the area (and volume in three-dimensions) coordinates, otherwise known as barycentric
or triangular/tetrahedral coordinates.

The area coordinate system is illustrated in figure 3.14(a) for the standard triangle. Any
point in the triangle is described by three coordinates [y, [5, and I3, which can be interpreted
as the ratio of the areas A;, A, and A3 over the total area A = A; + Ay + As, that is,

_ A A _ 4

ll_Za l3_ A

Therefore 1y, l5, and I3 have a unit value at the vertices marked 1,2 and 3 in figure 3.14(a),
respectively. By definition these coordinates satisfy the relationship:

l1+l2+13:1,

and they can be expressed in terms of &1, & as:

l s1-6)— 31+ &);
Iy s(1+&);
I3 s(1+&).

A similar construction follows for volume coordinates [y, s, [3, 14, which are defined as
having a unit value at the vertices marked 1,2,3,4 in figure 3.14(b). In terms of the local
Cartesian coordinates the volume coordinate system is defined as:

L — —(14+& +&+&3) Lo— (1+&)

1 — ) 2 — )
2 2

L 0te) .0t

3 9 ) 4 9 .
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Figure 3.15: To construct a C° expansion from multiple elements of specified shapes (for example,
triangles or rectangles), each elemental region Q¢ is mapped to a standard region Qg in which all
local operations are evaluated [63].

3.1.11 Curvilinear Domains

In many practical simulation problems we need to perform polynomial interpolation in re-
gions which may be of an arbitrary shape and orientation as illustrated in figure 3.15. Such
general domains can be broken into subdomains which are triangular or quadrilateral regions.
These can be then transformed to standard regions as shown in figure 3.10. To treat these
more general domains we follow the method presented in [63]; we introduce a one-to-one
mapping denoted by

r1 = X1(&1,62), Ty = Xx5(&1,62)

in two dimensions, and similarly

Ty = XT(&) 52753)7 Tg = X;(fb 52753)7 T3 = X§(§1, 52753)

in three dimensions.
For elemental shapes with straight sides a simple mapping may be constructed using
linear interpolation. For example, to map a triangular region [as in figure 3.15(a)] assuming

that the coordinates of the triangle {(z7, 23'), (2P, 28), (¢, 25)} are known we can use

n=xl68) = 3ot ((e— &) +5ef (1+6)+ 300 (146, (314)

A similar approach leads to the bilinear mapping for an arbitrary shaped straight-sided
quadrilateral where only the vertices need to be prescribed. For the straight-sided quadri-
lateral with vertices labeled as shown in figure 3.15(b) the mapping is:

1=, &) = x{‘(l_;l) (1_252>+x§<1+251><1—2€2>

(1—&)(1+¢&) +xc(1+§1) (1+&)
2 2 L9 2

taP . (3.15)

When developing a mapping it is important to ensure that the Jacobian of the mapping
to the standard region is non-zero and of the same sign. To ensure this condition is satisfied
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% = &y

x = £2(,) % = %)

[ R —
% = fA\Ey)

AEL» %,Ez)
&

Figure 3.16: A general curved element can be described in terms of a series of parametric functions
A, fB(&), fC(&1),and fP(&). Representing these functions as a discrete expansion we can
construct a mapping x;(£1,£2) relating the standard region (&1, £2) to the deformed region (z1,x2).
[63].

when using the mappings given above, we require all elemental regions to have internal
corners with angles that are less than 180° and so are convex.

To describe a straight-sided region we only need to know the values of the vertex locations.
However, to describe a curved region we need more information. Specifically, as illustrated in
figure 3.16 we need a description of the shape of each edge in terms of a series of parametric
functions which we define as f (&), f2(&), f€(&) and fP(&). Since our mapping x;(&1, &)
maps the whole of the standard region to the curvilinear quadrilateral domain, the parameter
can be taken as the local coordinate & or &.

A practical algorithm of doing this is the method of blending function as originally pro-
posed by Gordon and Hall [48]. For the quadrilateral region shown in figure 3.16 the linear
blending function is given by

Xi(flan) = fA(fl)%"‘fc(fl)(H—;g)

+fD(€2> (1—251) + fB(fg) (1-251)
(3.16)
(1-&) (1;£Q)fA(—1) _ (1+2€1) (1;§Q)fA(1)

2

1-£1) (1 1 1
_( 251)( -;52)]00(_1) _( +2§1)( 252)f0(1)7

where the vertex points are continuous [for example, f4(—1) = fP(—1)] and so the last
four may also be expressed in terms of fZ and f”. The mapping function of a curved-
sided element is constructed by approximating the edge function in terms of the Lagrange
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polynomial, that is,

sz(fl) ~ Z sz(fl,p)hp(£1)7

p=0

and then using the linear blending function equation (3.16).
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3.2 Fourier Series Representation

kx or coskx or

In this section, we will consider interpolations based on a basis ¢p(z) = €'
sin kz. This is the Fourier representation in terms of complex exponentials, and cosines or
sines, respectively; that is we represent an arbitrary function in terms of pure harmonic
functions. The Fourier method works in the frequency domain (or wavenumber domain) to
provide information in the physical domain. This ability to relate frequency and space or
time domains has made the Fourier transform one of the most useful tools of numerical and
mathematical analysis. With the discovery of a fast algorithm in 1965, which reduces its
computational complexity from O(N?) to O(N log, N), the FFT (Fast Fourier Transform)

is also an extremely effective tool in scientific computing.

3.2.1 Convergence

The main idea of Fourier series is to represent a function y = f(x) with a basis consisting of
sines and cosines or complex exponentials. However, unlike the polynomial approximation,
the convergence of Fourier series is not always guaranteed in the point-wise sense for an
arbitrary function. Here, we will follow the exposition of Lanczos to present the basic
material, see [66].

In general, if the function f(x) satisfies the so-called Dirichlet conditions, it converges, but
such conditions are too restrictive. Specifically, a function satisfies the Dirichlet conditions

if:
e f(x) is defined at every point in the interval z € [—7, 7].

e f(x) is single valued, piecewise continuous, and finite; e.g., the function f(z) = logz
is excluded.

e f(x) is of bounded variation, that is f(x) cannot have an infinite number of maxima
and minima.

A function that satisfies the Dirichlet conditions can be expanded into the following
convergent infinite series:

1
flz) = §a0+a1 coST +ascos2x + ...+ bysinx +bysin2z + ... (3.17)

where the Fourier coefficients are computed from:

1 ™
ay = —/ f(z)coskx dx,

™ J—7
and
1 s
b = —/ f(z)sin kz dz.
T J—7
Equivalently, we can use complex exponentials as the basis, to write

f(z) = i cre’™® with ¢ = %/ﬂ f(x)e *dg. (3.18)

k=—o00
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Also, the two sets of coefficients are related, i.e.,

ar = Cp+C_g (319)
1
bk = ;(C}C — C,k). (320)

The truncated version of the above series is called discrete Fourier series, and has the

form:
N—-1

fvl@) = > e

k=—(N—1)

As we will see below, it can be constructed by sampling the function at N equidistant points

21k
ry=—, k=0,...N—1
N
12
— - N=16
— N=32
ol ﬂ (0, 10.3451) |
I
[
8 H ]
oL i
‘ (0, 5.2521)
> 4r -
! \
!‘ ‘
I
2F ‘ .
o W vaNVITVITY) T\ ‘ w\ ,(n ey g
LY
R | | ]
s+

Figure 3.17: Fourier series of §(x) for N = 16 and N = 32.
Example: The Fourier coefficients of the Dirac function d(x) are:

1 1
ap = —/5(x)coskxdx: —
T

m
1 .
by = —/5(1‘)sm/mdx:0
m

k= g/é(x)e dx—QW.

The Fourier series of §(z) for N = 16 and N = 32 are shown in figure 3.17. The peak is
sharper at higher values of N. The Dirac function does not satisfy the Dirichlet conditions.
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Dirichlet Kernel

We now return to the question of convergence, and specifically the validity of equations
(3.17) or (3.18). What Dirichlet did was to substitute back into equations (3.17) or (3.18)
the expressions for the Fourier coefficients ay, b, ¢, and truncate after N terms; then he let
N — oo to obtain

fn(@) = [ FEDuw ~ 2)dz
where sin(N +1/2)t

27 sin (%) ’

Dy(t) = Dirichlet kernel

The Dirichlet kernel contains the partial sum
GI(N+1/2)t _ o—i(N+1/2)t

ci(1/2)t _ o—i(1/2)t

N
Zeikt — it [1 +oelt L2t L 4 eQNit} _
-N

sin (N + %) t
N sin %t '
The above Dirichlet kernel can be thought as a “lens” that focuses the action at the point
z = z. In order to ensure that limy_.., fy(x) = f(x), it requires a very strong focusing power
around the point ¢ = 0 of the kernel Dy(¢). Mathematically, this can be expressed by the
following two conditions, see [66]:
e (A) lim |Dn(t)|dt =0

N—oo Je

o (B) lim [ Dn(t)dt=1

N—oo J_¢

Condition (A) is not satisfied by the Dirichlet kernel because its secondary maxima are
comparable to the primary maximum at ¢t = 0.

Fejer’s Construction

A different path to convergence was suggested by Fejer who proposed an alternative sum-
mation procedure. He only imposed the constraint

[ 1@ < oo,

which states that f(x) is an absolutely integrable function. For example, the function y =
log z is absolutely integrable but the function y = 1/x is not. He then considered the partial
sums

1

So = 56107
1

S = §a0+alcosx+blsinx...,
1

Sy = §a0+alcosx+...aNcos Nx+bysinz+ ...+ bysin Nz,
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and constructed the sequence:

So+Sl So+S1+...+SNv=-1
=5 = oSy = .
fl 05 f2 9 9 s PN N
This sequence leads to the kernel
sin?(Nt/2)
Fy(t) = ———————
w(t) 27N sin?(t/2)’

which is very focused and satisfies conditions (A) and (B). Unlike the previous case, the
Fejer sequence converges at all points including points of discontinuity, where it converges
at the arithmetic mean of the values at either side of the discontinuity.

3.2.2 Periodic Extension of Functions

Consider now that f(x) is defined in the interval z € [0, 7]. We can still represent the function
as a Fourier series by appropriately extend it, i.e., define it in the interval x € [—7,z| as
well by representing it either by an even or an odd function. The Fourier series will then
involve cosines or sines, respectively. If f(x) is not zero at the boundary points the reflection
as an odd function will cause a discontinuity at x = 0, 7, which will lead to the so-called
“Gibbs phenomenon.” This is manifested by wiggles around the discontinuity that affect the
solution everywhere. This is avoided for an even function.

An example of a periodic extension for the function y = z/7, where z € [0, 7| is shown
in figure 3.18. Both odd and even constructions are shown, with the latter resulting in a C°
continuous extended function.

Let us now assume that f(0) =0 and also f(m) = 0. Then we should expand f(x) using
a sine series as both the (extended) function and first derivative are continuous. We can
compare the convergence rates of the two representations by performing integration by parts,
i.e., for the cosine series

[ epeoste de = LS L f ),

and the second term gives

! 1 "
/f’(x)sinkx dr = _L}:oskw + E/f (x) coskx dx .
Thus, the convergence of
/ f(z)cos kx dx
0

is dictated by the boundary term
(=D*f'(m) = f'(0) 1

k2 TR
In contrast, the sine series representation leads to

[ f@ysinke ax — FO=CUIE)

| =

k
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Figure 3.18: Periodic extensions of the function y = z/7, where = € [0, 7] using an odd function
extension (upper) and an even function extension (lower).
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Now if
£(0)=f(r)=0= /0 " (@) sin ke dr — f”<x>k§os kr (—1)’“f"(;) — £"(0)
1
~ L

Therefore, we conclude that in this case the sine series converges like 1/k® versus 1/k? for
the cosine series, and therefore the former is a better approach.

Some Properties of the Fourier Series

Fourier series have many interesting properties, see for example [62]. Two of the most
important ones that are useful in theoretical work are:

e Bessel’s inequality, which states that projections are smaller than the projected
function, and thus:

T 1] 2 a
/ bao—l—alcosx—i-...%—b]vsin]\fx] dmg/ [f ()] d.

- -7
e Parseval’s formula, which is a direct consequence of the above, and states that

mlag +af + b7 +ad+ 03+ .. :/ [f (z)]*d.

—T

This is obtained from Bessels’ inequality, which in the limit of N — oo becomes an equality;
it is simply the definition of the Fourier series. Integrating both sides and using orthogo-
nality we obtain Passeval’s formula. This equation is very useful as it connects a vector of
coefficients to a function in a unique way.

3.2.3 Differentiation and the Lanczos Filter

Taking derivatives of Fourier series of functions which are discontinuous is not a straightfor-
ward matter. Lanczos has devised a clever method in dealing with this, which we explain
next.

Let us consider the truncated Fourier series:

N-1

fN (33') — Z Ckeik:t

k=—(N—-1)

and from that the truncation error, which we also call the residual

S 00 [
nN(x) — Z (Ckeikx + C_kefikx) — eiNx Z CN+k6ikx _}_efiN:t Z C_N_keikx )
k=N ko k=0

pn () p—n~(2)
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Examining the residual more carefully we observe that it consists of two contributions,
pn(x) which is slowly varying, and of e’* which is rapidly varying. Thus, the error in the
Fourier series has the structure of a modulated wave. This will have consequences when we
attempt to take the derivative, the error of which is

ny(z) = iNe™py (@) + e ply () — iNe™ N p_y (x)e ™™ ply ().

We see from the above that the differentiation of the high frequency wave produces divergent
terms proportional to N, N — oo.

In order to overcome this difficulty, Lanczos introduced a new differentiation operator
Dy so that

Dy — i, N — 0.
dx
It is defined by:
f@+n/N)— flx—n/N)
2 /N '

If we apply, for example, this operator to the function f(z) = ¢’

Dyf=-—

kx e obtain:

, sink/N m sin 2% ,
D tkr _ ikr _ N 15 ikx
NE TN € ( kT ) (ik)e™,

where we recognize the term in parenthesis (ik) being the d/dx derivative of e?**. We can
then write

d
Dy = op—
N = Ok A
where N
o = % is the Lanczos filter. (3.21)

A plot of the Lanczos filter is shown in figure 3.19. It has the value o = 1 around the
origin and it tends to zero for Kk — N. Therefore, the action of this filter is to attenuate the
contribution of the high frequencies.

We now apply the new differentiation operator to the residual obtained above, i.e.,
Dy () = =™ Dypy () — e Durp_n ().

Both py(x) and p_y(x) are smooth functions and their differentiation produces bounded
terms. In addition, we observe that there are now no divergent terms (e.g. terms proportional
to N) and thus the residual error for the new differentiation tends to zero, and in fact in the
limit as N — oo the derivative of f(x) is obtained correctly at all points.

Example 1: We first examine the action of the Lanczos filter in the approximation of f(z)
by a Fourier series. We choose the function shown in figure 3.20 which has a discontinuity
at x = 0 and it is constant at values £1/2 in the rest of the interval xz € [—7, 7).

Its Fourier representation is a sine series of the form

2

y(x) = - (sinx +

sin 3z n sin bx )
3 5 )7
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Figure 3.19: Plot of the Lanczos filter of equation (3.21).
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Figure 3.20: Step function and approximations using the Fourier series, the Lanczos-filtered series,

and the Fejer construction; N = 8.
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which we also plot in figure 3.20 for N = 8. We observe the Gibbs phenomenon around the
origin and also around x = %7, i.e., the loss of convergence, which is not improved for higher
values of N. We also plot the filtered Fourier series, i.e., the modified series where each of
the coefficients has been multiplied by o}; in this case a smooth representation is obtained.
Finally, for comparison we also include the Fejer construction, e.g. the arithmetic mean of
the partial sums. We see that this representation is also smooth but not as accurate as the
Lancozs-filtered function.

We now turn to the question of differentiation of the above function. Clearly
y'(z) =0,
except at x = 0 where the derivative does not exist. The term-wise standard differentiation
of y = f(x) gives
, 2
yy(z) = ;(cosx + cos 3z + cosHx + .. .)
which does not converge at any point z, except at © = +7/2. Thus, the singularity at x =0

propagates its effect globally!
We then apply the Lanczos recipe, i.e.,

2 |sin 5 in 3T
1 2N 2N
yy(z) == COST + —3-00S3T + ... .
7w | m/2N o

Now y/(z) converges at all points, except at x = 0, where it grows to oo, so that fng yy(x)de =

1, which is the 6(z) function!

Example 2: We can also use the Lanczos recipe to construct Fourier series expansions
for functions that are not absolutely square integrable, such as the function y = 1/z. To
this end, we consider the function y = logz, where x € [0, 7], which is absolutely square
integrable, and thus its Fourier series converges (recall Fejer). We then use the Lanczos
recipe to take its derivative, and observe that

= —logx

dx

thus the Fourier series of

d
z~' = o,— [Fourier series oflog z].
~ dx

3.2.4 Trigonometric Interpolation

Trigonometric interpolation is a powerful tool in representing data and does not suffer from
some of the problems we encountered with polynomial interpolation for certain functions,
e.g. the Runge function. In fact, we can argue that generally trigonometric interpolation is
superior to polynomial interpolation for data on equidistant grids.

We now consider the approximation problem, where we have a number m of basis func-
tions involved less than the number of available data equidistant points n. Let us denote the
function values by

ya - f(xa)7
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and the representation by

ﬂzzck@k ), m < n.

As we have already seen in section 3.1.7, in general y, # 7(«), and thus we try to minimize
the square of this error. This is the method of least squares, which we apply here first for
the case of

pi(x) = .
The coefficients ¢ are then computed using the minimization procedure outlined in section
3.1.7 to get:

Z yagpk xa

Fykal

where ¢} (z) = e~** denotes the complex conjugate of . (z). Also, 4, are normalization

factors given by
N
T =D Pr(Ta)Pk(Ta) -
a=1

The orthonormality condition implies that
N
Ngri=c+a+...
a=1

and thus the error in the approximation is

N
Z Z —(G+G+...+).

In summary, assuming that the positions of the data points x, are chosen so that:

T
To=a—, a=-N,—(N—-1),....,(N—=1),N
N
then the trigonometric interpolation problem using the complex exponentials as a basis is
given by: A
g(x) = , cpe®® m < N

—ik
_QNZa* N Yol ikxa

where in the second sum the end-values should be multiplied by %

We can also employ a real basis, either sines or cosines, to perform the approximation
depending on the function f(x), i.e., if it is odd or even, respectively.
For example, if the function is odd we employ the sine series:

f(z) = bysinx + bysin 2z + ... + b, sinmx

where
1

2) N—
= N ya sin kaﬁ
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For m = N we do not have an over-determined problem anymore, and thus we can fit
the data exactly to produce a sine interpolation instead of approximation. We note here,
however, that by is undetermined in this case as we effectively have only (N —1) data points.
This is because f(7) = 0 in the above approximation since sin kz = 0 at * = 7. While the
condition f(0) = 0 is satisfied automatically because of the odd property, the condition
f(m) = 0 may not necessarily be true. This means that a Gibbs phenomenon may develop,
which will limit convergence of the approximation to 1/k. To enhance the convergence rate
we can construct the following function:

g(x) = f(z) = (a + fx),

which satisfies the conditions ¢(0) = g(7) = 0 if

a=f(0) and (= M

The sine representation of g(x) now leads to convergence rate dictated by 1/k3.

We can also employ the cosine series to approximate an even function. The expansion

now has the form .
f(z) = 500 +ajcosx + ...+ a, cosmz,

where

2 N
_- — (6% k ——
ak—NO;Oy COSs C(N

Here again in the summation above the end-values are multiplied by 1/2. Notice also that to
obtain an interpolation instead of an approximation the last term is replaced by 1/2ay cos Nzx.

Remark: All the above summations can be executed efficiently using the fast Fourier trans-
forms covered in the next section.

3.2.5 Noisy Data

We can also use the properties of trigonometric interpolation to process noisy data, i.e., to
remove the major part of the noise which is superimposed on our data; we want to clean up
our data! Wavelets is a great way of doing that (see section 3.3) but we can also use Fourier
analysis.

We have seen in the previous section that we can construct a sine Fourier series to
approximate a function, which converges as ~ 1/n®. On the other hand, any amount of
noise, which can be thought of as a pulse of short duration, would lower the convergence of
the series significantly, most probably to ~ 1/n.

o The key idea is then to differentiate between good data and noise by looking at the decay
of coefficients, e.g. 1/n3 versus 1/n.

Let us assume that we sample the function f(zy) over an interval L at the points

2y = 0,h,2h, ..., Nh.
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Then, as before, we construct a new function g(z) based on
g(x) = f(z) = (a + Br)
g9(=x) = —g(2)

which leads to

We then expand

LT .27
g(x):blslnzx—i-bgsmfx—i-...

where

2 T
b = N az::l g(ah) sin kaﬁ.
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From the physical point of view, we may not want any overtones contained in the harmonic

analysis of f(x) beyond a “cutoft” frequency 1y so we set:

bk:O, k’Sm

so that
T — 2T x
—r =
7 0
= % = 21/0h .

Therefore, we can represent the actual data by

g(z) = ) bysin -~
k=1 L

up to wavenumber (or frequency) m determined from the equation in the box. In practice,
the lower wavenumbers are also contaminated, i.e., the coefficients b, < m, are also influenced
by noise but not as much as the upper part of the spectrum which is produced entirely by

noise.

3.2.6 Matrix Representation

Let us assume again that the function f(z) is sampled at N equidistant points with spacing
%’T between successive neighbors, with the first point at x = 0. The values of the function

represented by the truncated Fourier series are given by

N-1
o 221
fa= e N, n=0,1,... N—1
k=0

Let



3.2. Fourier Series Representation 175

2

where wV = €™ = 1, so w is the N*" root of unity. Then:

N-1
f n = Z Ckzwkn‘
k=0
We can then determine the Fourier coefficients ¢j by solving the following linear system

Co+01+02+...+CN_1:f0

2 N-1
Co+ cqw + cw* + ...+ ey w = fi

co+awN T + g™ 1 ey w™Y =

which we rewrite in matrix form as

11 .1 e 1 [ fo ]
1 w wh=1 C1 J1
|1 wh =t w17 | Lev— | L fy-1

The coefficients matrix, which we denote by W, has a special structure similar to the
Vandermonde matrix defined in section 3.1.1 of polynomial interpolation. It can be readily
inverted, since:

1
WW*=NI=W!= NW*’
where W* is the complex conjugate of matrix W. This can be easily verified by considering
any entry of a matrix resulted by multiplying W with W* and use orthogonality of vectors
for the row-column combination.
Note that we can normalize the matrix W to produce a unitary matriz U by a simple

rescaling, i.e.,

W
U=——.
VN

Circulant Matrices

We first give the definition:
e A circulant matrix is a periodic matrix with constant diagonals of the form

Co CN—-1 CN—2 * (O
&1 Co CN—1 - C2

CN-1 CN-2 CN-3 =+ (o
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There is a special relationship between the circular matrix and the Fourier matrix W. In
general, the matrix C can be factorized as

C = QAQ~!

where Q contains the eigenvectors of C as columns and A is a diagonal matrix containing
the eigenvalues. For a circulant matrix

Q=W,

that is the eigenvectors of the circulant matrix C are the columns of the Fourier matrix W.
This can be shown directly by substituting the columns of W into the eigenproblem

Cx = \x.

3.2.7 The Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) leads to a very smart factorization of the Fourier matrix W
of size N. It produces a product of about O(log, N) matrices with only about O(N log, N)
non-zero entries (total). Therefore, the cost to compute the discrete Fourier transform or its
inverse is O(N log, N) instead of O(N?). The term log, N suggests a fan-in type algorithm
(see section 2.3.2) — this is what we will explain in this section.

We start by considering the system
C = Wf,

where W is the Fourier matrix of order N x N, f is the vector containing the function values
at N points, and C is the vector of the Fourier coefficients. We recall the Vandermonde
structure of the Fourier matrix, for example for N = 4 we have

11 1 1 11 1 1
1 wy w? wi 1 i -1 —i
W4 — =
1 w! wi ws 1 -1 1 -1
1 wi wd w] | 1 = =1 ]

where wy = T = Cos%7r +isin%f = 1.
The special structure of W, as well as the properties of the principal roots of unity
suggest that the matrix Wy relates to W,. This is because w? = w,, and in general

2 _
UJN — wM,
where M = %
For example, the second row of Wy is

2,03 ad .05 67
[l ws wg wy wy wg wg wg] ,
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which we rewrite as

2 2 .3 3
1 ws wy wswy wj wsw; w; wswy)

This can be further split into two subvectors of half size. The first one involves only wy, i.e.,
1wy wi wi
formed by taking every other entry, starting with the first one. The second subvector is then:
wg[ 1 wy wi wi ],
and it is the same as the first subvector with a pre-factor wg.

We thus see that the rows of Wy are closely related to Wy, and we can derive similar
relations for Wy, W3, and so on. This is the key observation that led Cooley & Tukey in
the formulation of FFT in 1965 [17]. It is based on the old idea of divide-and-conquer .
Assuming that we have a Fourier matrix Wy where N = 2™, then we can split the matrix
in successive steps to smaller and smaller matrices. This is only part of the job as we still
need to perform matrix-vector multiplies, and finally to compute the Fourier coefficients.

More formally, the n'® function value is:
N-1 M-1 M-1 o)
nk 2nk +1)n
Jn = Z Wy C, = Z Wy Cop + Z Wy Cok+1,
k=0 k=0 k=0
where M = % or
M-1 M-1
o nk e n nk o
fo= Y wifc +wh > wifcy (3.22)

k=0 k=0

since w% = wyy; also we have denoted by ¢® and ¢ the even and odd parts of the vector
c, respectively. Notice that the above formula gives us only the first half of the Fourier
coefficients from n = 0,...(M — 1). To obtain the other half we substitute (n + M) instead

of n and use the fact that
wk(n+M) nk kM nk

M =Wy Wy = Wy
and also .
wK,JrM = wh w% =Wy - N = Wy €™ = —wy
Therefore:
M—1 M—1
froim = Z w}‘fcz — Wy Z w?fcz. (3.23)
k=0 k=0

The matrix-vector product W c is then computed from equations (3.22) and (3.23).

The above is the first level of splitting into even and odd parts. However, assuming
N = 2™ we can repeat this process m more times in a recursive fashion. The cost at each
level includes the two matrix-vector multiplies of length M = N/2 plus the multiplication
by the prefactor w% in equation (3.22) and (3.23). The basic cost model for this recursion is

com-ac(3)+(3).
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which leads to the estimate
C(N) ~ O(5N log, N)

versus O(8N?) operations for the direct computation.

Remark 1: Although the FFT is a recursive algorithm, traditional implementations are
based on simple nested loops, which have been proved to be more efficient. However, on
more modern architectures where cache utilization is important, the recursive procedure is
better, see FF'TW in section 3.2.8.

Remark 2: In addition to its computational simplicity, the FFT has less round-off error
than the direct summation approach.

Remark 3: For N which has the general form
N = 243547596,

it is still possible to perform FFTs by splitting into several parts and not only to odd and
even components, see [87]. The corresponding cost is

11 3 1
N L8ty 41325 1132 —6)).
0( <5a+93ﬁ+827+ 325+ 1356 6>>

Remark 4: The real-to-real transform can be computed in half the number of operations,
e.g.,in O (%Nlog2 N) . This is done by defining

9k = for +ifort1, k=0,1,... M,

where M = N/2. Then we take an M-length transform of g5 and set ¢, = ¢y. We extract all
the coeflicients from

. ~ i .
ck:—(agk—i-g*M,k)—ie N gk — 9"yl E=0,1,... . M—1

where we have denoted the Fourier coefficients of g with g, and the star denotes complex
conjugate.

3.2.8 The Fastest Fourier Transform in the West - FFTW

The FFTW is a C subroutine that contains adaptive software for real and complex one-
dimensional and multi-dimensional FFTs. Unlike conventional implementations that use
loops instead of recursion, in the FFTW explicitly recursive implementation is followed
because of theoretical evidence that divide-and-conquer algorithms improve locality.

FFTW is not a new FFT algorithm but it is simply a smart implementation that attempts
to exploit a given processor architecture by interacting with its pipeline and its memory
hierarchy. It derives its name (the Fastest Fourier Transform in the West) from the fact
that in benchmark tests it has proven to be faster than any other publicly available FF'T
software. FFTW was developed by Frigo & Johnson at MIT in the late 1990s [40]. It is
similar in spirit with the ATLAS software described in chapter 2. The key idea is that
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the standard Cooley-Tukey algorithm is adapted to the specific hardware employed in the
computation.

In order to adapt to any hardware, FF'TW runs several diagnostic tests in a pre-processing
stage. More specifically, the code is divided into two parts:

e The executor, and
e The codelet generator.

The ezxecutor computes the transform by first building a plan. This plan consists of
a sequence of instructions that specifies the operation of the executor. The codelets are
highly optimized fragments of C code that the executor uses. What exactly combination
of codelets will be used depends on the plan, which contains diagnostics and measurements
for the particular computer employed. The plan itself is also activated at runtime but it
is determined before the actual computation starts. It employs dynamic programming and
a cost minimization algorithm, which targets the execution time and not the number of
floating point operations.

Therefore, the plan is created first as follows:

fftw_plan fftw_create_plan(int n, fft_direction dir, int flags)

This function creates a plan for computing an one-dimensional Fourier transform. Here
n is the size of the transform, which can be an arbitrary integer, dir = —1 or 1 are
flags that denote direction and can be substituted by the aliases FFTW _FORW ARD and
FFTW _BACKW ARD, respectively. Also, flags is a boolean,which provides different op-
tions. For example, the FFTW _MEASURE finds the optimal plan by computing several
FFTs and measuring their execution time. Clearly, this takes time so the first time around
when you run FFTW it is expensive. However, the computed plan can be used for subse-
quent runs which are really fast! An alternative is to use the flag FFTW _ESTIMATE
which provides a “best-guess” of an optimal plan without actually running any diagnostic
FFTs.
A typical code that uses the complex one-dimensional FFTW looks like:

#include<fftw.h>

{

fftw_complex in[N], out[N];

fftw_plan p;
p=fftw_create_plan(N,FFTW_FORWARD,FFTW_MEASURE) ;

fftw_one(p,in,out);

fftw_destroy_plan(p);
}
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An example of typical performance of the one-dimensional FFTW is provided in figure
3.21 which shows the superior performance of FF'TW on the Pentium-4 processor. We also
compare the FFTW _MEASURE versus the FFTW_ESTIMATE options and show that
even for this relatively small size N of the transform tested, the optimal plan that the former
uses makes a substantial difference.
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Figure 3.21: Comparisons of FFTW with other FFT implementations on the 1.7GHz Pentium-4
processor. The other FFT implementations are in C and Fortran.

FFTW has also been implemented for parallel environments both for shared memory as
well as distributed memory platforms. In particular, the MPI FFTW routines use distributed
data, with the array divided according to the rows; that is, each processor gets a subset of
the rows of data. FFTW supplies a routine that reports how much data resides on each
processor. A typical name of the MPI FFTW routines is

#include<fftw_mpi.h>

fftwnd_mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER);

The above uses a complex two-dimensional MPI FFTW.
For details on how to use the FFTW, including the MPI FF'TW the reader should consult:

o www.fftw.org,

which is the official internet site maintained by the developers of this adaptive software.
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3.3 Wavelet Series Representation

Wavelets are an alternative, relatively recent, family of basis functions to represent a function
in the form

fl@) =) dp(2x — k),
where dj;, are the unknown coefficients. They can be orthonormal or not, smooth or not,
compact or not. They allow a decomposition of a function in such a way that its wavenumbers
depend on the position x. They can also represent segmented functions, e.g., the multi-step
function shown in figure 3.22.

Figure 3.22: Multi-step function.

Such a function is almost impossible to be represented with a Fourier series. However,
using wavelets we can construct a special basis, called the Walsh basis functions, see figure
3.23, which can approximate the multi-step function very accurately. Specifically, the func-
tion shown in figure 3.22 is represented by the first six basis functions of the Walsh family
using the following coefficients (from first to sixth):

0.3200; 0.9601; 0.7266; 0.4120; 0.7446; 0.2679

We note here that the Walsh basis functions are defined in the same interval as the
original function, i.e. the basis is global not local, similar to the Fourier representation. In
contrast, some of the best wavelets, as we will see in the following, have a compact support,
that is they are local.

3.3.1 Basic Relations

There are two basic concepts that are used in this field: the scaling function ¢(x) and the
wavelet 1p(x). More specifically, we use the integer translations, i.e.,

¢(x—k) and Y(x—k), keZ
and also, their dilations, i.e.,

$(2'z) and (2x), j€ Z.
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Figure 3.23: First six basis functions of the Walsh
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Almost always we need both translations and dilations, which we obtain by combining the
above concepts, i.e.,

#(2x — k) and ¢ (2x — k).

Here, we will refer to 277 as the scale of level j.

Now using one of the oldest scaling function and wavelets, from the Haar family, we can
construct the entire Walsh family. The basic Haar scaling function is a (positive) constant
pulse, while the Haar basic wavelet is a combined positive-negative pulse — sometimes we
will refer to it as the mother Haar wavelet. In figure 3.24 we show how to construct the first
two Walsh basis functions from the Haar basic units.

! ¢(x)

Figure 3.24: The first Walsh basis function (upper) is expressed in terms of the Haar scaling
function. The second Walsh basis function (lower) is expressed in terms of the Haar wavelet.

In fact, we can generate the entire Walsh family by using the mother wavelet; we only
need the scaling function for the very first Walsh basis. This decomposition of a function
into hierarchical components is known as multi-resolution analysis; we will generalize it to
arbitrary functions later. Actually, the functions cannot quite be arbitrary — they need to
be in Lo, that is in the space of absolutely square integrable, similar to the condition that
Fejer considered in his Fourier construction, see section 3.2.1.

In addition to Lo, the following two spaces are also very useful in the following:

V= { i cjkgzﬁ(ij —k): i |cjk\2 < oo}

k=—o00 k=—o00

and

k=—o00 k=—o00

W; = { Z dipb(2x — k): Z dil* < oo} .
Based on the above definitions, we have the following important hierarchy of spaces:
L.CViCc Wy Vi C Ls.

We conclude that the subspaces for the scaling functions are nested. Schematically, we have,
for example, for the Haar scaling function the picture shown in figure 3.25.
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Figure 3.25: Schematic illustration of the spaces V) and V;.

Using the Haar wavelet we can also infer a relationship between the spaces V; and Wj.
Let us, for example, consider the scaling function ¢(2z — 1), then we can write

620 1) = 30(x) — 50(a), (3.24)

as shown in the sketch of figure 3.26.

Figure 3.26: Schematic illustration of equation (3.24).

In terms of spaces the above equation can be written as V; = Vi + Wy, but it turns out
that this can be generalized to:

‘/jJrl:V}'—l-Wj, VJEZ

In addition, the Haar scaling function and wavelet are orthogonal, which means that the
corresponding spaces are orthogonal, i.e.,

Vi LW

In general, however, the above orthogonality condition may not be valid for all types of
wavelets, and instead the following condition is satisfied

‘/jﬂWj:Q) VjEZ

that is, the intersection of the scaling function and wavelet spaces is the empty set.
The fact that there is hierarchy in spaces V; C Vj41, and also that W; C V4, leads to
the following two fundamental equations, also known as two-scale relations:

¢(z) =D pud(2z — k) (3.25)
k
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and

W(x) = Z @wo(2x — k). (3.26)
k

Thus, the wavelet can be obtained from the scaling function. For special cases, e.g. or-
thonormal wavelets, we have

P(x) = (=1 p1xd(22 — k), (3.27)

k

which will be discussed in detail later.

Examples:

e For the Haar wavelet ¢(x) = ¢(2x) — ¢(2x — 1) where ¢(z) is the Haar scaling (box)
function, we have: po =1 and p; = 1.

e For the hat wavelet, corresponding to hat function No(z): ¢ (z) = ¢(2z) — 56(22 —1) —
$6(2x + 1), the coefficients are: py = 1/2, py = 1 and p, = 1/2 from equation (3.27).

3.3.2 Dilation Equation

The nested property of the spaces V; leads to the two-scale dilation equation of the form
o(x) =Y (22 — k).
k
For example, for the Haar scaling function, we have that

¢(x) = ¢(22) + o2z — 1)

since
po=p1 = 1.
pr =0, |k| > 1.

Let us also consider the new scaling function we introduced above

8(r) = Nola) = [ Nl —

where Nj(x) is the box Haar function. Then, the dilation equation is

8(r) = 50(22) + 6(2r — 1) + 56(2r ~2)

since
p0—27p1—ap2—2

as we have already seen above for the wavelet ¢ (x), and

pr =0, |k| > 2.
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Figure 3.27: Solution of the dilation equation for the hat wavelet Na(x).

Schematically, this can be justified as shown in figure 3.27.

So far we have shown that the coefficients p; form a finite set, typically very small
consisting of the first few non-zero values. This shows compact support, but there are cases
that py are all non-zeros. How to obtain them is not always easy. Dilation equations are
interesting on their own right, and here we review three different approaches of solving them,
see [85]:

Iteration for Dilation Equation

Here we iterate on the two-scale dilation equation
¢n(3?) = Zpk¢n71(2x - k)
k

where Y, pr = 2. This condition is based on the normalization [ ¢(x)dx = 1 and can be
derived by multiplying the dilation equation by 2 and integrating, i.e.,

2/¢d:p - Zpk/gb(Qx— kK)d(2z — k) = S pp = 2.

To initialize we need to set the value of ¢, for n = 1. For Daubechies wavelets (see below)
we set ¢y equal to the Haar scaling function N;(z). An appropriate initial choice is made
for other families of wavelets.

o If py =2 then p, =0, |k| > 1 and the iteration above converges to a delta function.

e If po = p; = 1 the iteration converges to the Haar scaling function, i.e., we have
invariance, since ¢,, = ¢q.

o If pg = %, pr=1;py = % we recover the hat function Ny(z) as demonstrated in figure
3.27.

o If pg = %;pl = %;pQ = %%P:s = %;p4 = % the iteration converges to the cubic B-spline
Ny(z). This can be written as

1

Ny(z) = /0 Na(z — t)dt,
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where N3(x) is the quadratic B-spline, which in turn is

Na(z) = /01 No(z — t)dt

and Ny(z) is the hat function of figure 3.27.

Fourier Transform for Dilation Equation

We can also obtain the scaling function by Fourier transforming the two-scale difference
equation, i.e.,

0z = Y [ o2z —k)eda

= zk:pkeikz/Q /¢(2x - k)eim;kzéd@x — k)
— (%Xk:pkei%> ~/¢(t)eitz/2dt
P(3)4(5)

P(z) = % > ppe'™ (3.28)

is the transfer function and P(0) = 1. We have thus obtained

-7 (3) 4(})

where also ¢(0) = 1 = [ ¢(z)dx by the normalization condition.

where

Using the above equation for ¢2 we have that:

o(3)=r (i) ()

and so on for é (i), ¢3 (g), etc. Thus,

and for )
N — oo, QiN—>O:>$(2—N) —1
Thus
z
82) = IE2,P ()

and the inverse transform of ¢(z) gives the scaling function ¢(z).

For example:
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e Let py = 2, then P(z) =1 = ¢(2) = 1 = ¢(z) = §(x), the Dirac function.

e Let pg=p1 =1, 0 P(z) = 3 [1 + ¢”*]. Then

PGP () )0

The inverse transform then gives ¢(x) = Ni(x), which is the Haar scaling function.

Recursion for Dilation Equation

The idea here is that we can construct ¢(z) numerically, point-by-point. That is, assuming
that we know ¢(k) (at the integer points), then we can use the dilation equation to obtain
¢ at %, then at % and ultimately at 2% The question then becomes how do we obtain the
values ¢(k)? These are obtained as solutions of the eigenvalue problem constructed from the
algebraic equations at points

x=0,%1,+2 ...

within the range of support. Specifically, we set up an eigensystem
¢=-Po

where
¢ =1[..001),0(2),603).. ]

and P is a relatively sparse matrix containing the coefficients pj..
We will demonstrate this approach later for the Daubechies wavelets.

3.3.3 Discrete Wavelet Transform: Mallat’s Algorithm

Let f(x) € Lo, and we want to approximate it by
fo(z) = f(z),  fulz) € Vo
Then, given the hierarchy of spaces and the fact that
Vign =V + Wy,

a unique decomposition of f,(z) in terms of its components g;(z) € W; exists. In particular,
we can write

fa(®) = fom(T) + S Gnom(®) + ...+ gna(2) ¢, (3.29)
—_——
EVihem EWnem .. Wp_1

where m is a positive integer that depends on the filter size.
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That is, the function is decomposed into one component (the “blur” or “DC”) that can
be represented in the space V,,_,, of scaling functions plus contributions at various scales that
can be represented by wavelets. This decomposition makes sense as the “blur” represents
the “mean” while the wavelets represent the “fluctuations,” since they have zero mean by
construction. The wavelet contributions correspond to the following wavelet series

gj(z) = ; dixtj(T).

Most but not all wavelets are orthogonal, so here we extend the concept of orthogonality
to bi-orthogonality. To this end, we introduce the dual wavelet )(x) € Lo, where the following
inner product expresses the bi-orthogonality condition :

< V(@) Yjr(x) >= /O:O i (), (2)dT = 660 pm,

where the star * denotes complex-conjugate — some wavelets are complex functions. Also,
the following normalization condition is usually employed:

Vi = 20 2p(2x — k)

to relate the wavelet basis functions to mother wavelet.

With the above definitions, we can now obtain the discrete wavelet transform in the
general case. To this end, we re-write equation (3.29)

9i(x) = fu(x) = [f;(@) + gna(2) + .. + gja(2)],

and taking the inner product, we get
< gj(x>7qz(2jx - k) >=< fn(x>7qz(2]x - k) >,

as the rest of the terms drop out due to bi-orthogonality. Thus,

dix = < gj(2),dju(r) >=< ful@), Yju(z) > (3.30)

= 22 [ @@ - W],
which is the discrete wavelet transform of f,(x).

We now turn to searching for algorithms that enable us to decompose or reconstruct the
approximation f,(z) fast. Using the scaling function as basis, we can write

fulz) = chqu(Q”x — k).
k
Also, from the relation V; = Vy + Wy, we have that

o2z —m) = [am-od(x — k) + by_oxtp(z — k)] Vm € Z. (3.31)
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Similarly, from V,, = V,,_; + W,,_1, we conclude that

fn (33') = fnfl (3:) + gnfl(x%
~~ —— —
cVn eVn-1 ceWn_1
where
fac1(@) = D cpipd(2" e — k) (3.32)
k
gn—l(x) = Z dn—l,kqu)(Qnilx - k) (333)
k

The above relations are useful in helping us to obtain the set of coefficients

{cax} and {d.x} from {c,—1x} and {d,—1x}.

Comparing for example, equations (3.31) with (3.32) and (3.33), we obtain:

Cn-1k = Z@mfﬂccn,m
m

dnfl,k = mefﬂc Cnym
m

The above operations represent discrete convolution and can be performed fast. More pre-
cisely, there should be a change sign, between e.g., a,,_or — G2r_m; also, only the double-
indexed entries should be sampled. The above procedure is known as the Mallat algorithm
[69]. It can compute all coefficients in O(N) arithmetic operations, i.e., even faster than the
FFT with O(N log, N) arithmetic operations.

This analysis gives the decomposition of f,(z). In terms of reconstruction i.e., to obtain
fn(z) from {f,_1(z) and g,_1(x)}, we start with the two-scale difference equation

¢(z) = > pip(2x —k)
() = Y b2z —k)

and thus
Cn,k = Z[pk72mcnfl,m + qk72,mdnfl,m]7

m

where again the aforementioned corrections are needed to make the above an exact convo-
lution, which can be computed fast. This is the inverse Mallat’s algorithm.

3.3.4 Some Orthonormal Wavelets

Orthonormal wavelets form a very special class of basis functions. They satisfy the condition
among spaces at different scales
Wi LW, i+
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Also, the space of finite-energy function Ly can be represented by an orthogonal sum of the
subspaces W, which we express as

It is read as “the direct sum of W;” and we refer to it as the wavelet decomposition of L.
The condition of orthonormality is expressed best by the Fourier transform. That is, if

Z W +27Tk]

k=—00

then the function ¢(z) € Ly is orthonormal, see [16]. One can show that the orthogonality
condition between W, and V}, and correspondingly between ¢(x) and ¢(x), gives

ar = (—1)*p1_4,

that is, the wavelet coefficients are determined solely by the scaling function coefficients, so

U(w) =D (=1 piord(2z — k). (3.34)

k
Based on that, the orthogonal decomposition V; = Vi @& W, leads to:

P2z —m) = Z %[pmw@(l“ — k) + (=1)"pok—m1p(z — k)],

k

which is a decomposition relation of function ¢(z) and ¢ (x).

Next, we provide some examples of orthonormal wavelets.

Haar Wavelet

The oldest of all is the Haar wavelet, which we have already studied. It corresponds to the
box scaling function with py = p; = 1 and py = 0 for all the other coefficients (k > 1). Using
equation (3.34), we can write:

(x) = ¢(2r) - ¢(2r — 1)

Shannon Wavelet

The Shannon wavelet uses the scaling function

sin x

¢(r) =

T
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which is identical to the Lanczos filter, see section 3.2.3. The coefficients of the Shannon
scaling function are

1, k=0

k—1

2
~1)T =, k=2m-1
( ) 7Tk’ m

Pk

0, k=2m

Based on equation (3.34), we then obtain

d(x) = (=1)"piro(2z — k)

k

which leads to equation
sin 2w — cosmx
)

m(z — 5)

P(x) = (3.35)

A plot of the Shannon wavelet is shown in figure 3.28 .
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Figure 3.28: Shannon wavelet.

Orthonormal Spline Wavelets

We have discussed splines in section 3.1.6 and here we examine how we can use them as
orthonormal wavelets. In general, the translates of B-splines are not orthogonal, and thus a
special orthonormalization procedure needs to be employed. The result is that the orthonor-
malized splines will no longer be polynomials.

Following Chui [16], we first define the B-splines recursively from

Np() = [ O:o Npw_1( — )Ny (£)dt = /0 Ny (o — t)dt,
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where Nj(t) is the box function. The two-scale equation for the B-splines is

N, (z) = Iizmﬂ ( ’]Z ) N, (22 — k),

and N, (x) is an (m — 1)-order polynomial with continuity (smoothness)
Ny (z) € C™2,
Plots are shown in figure 3.29 for various orders; they are smooth but not orthonormal.
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Figure 3.29: B-splines (cardinal) from first- to fifth-order.

In order to orthonormalize N,,(z) to produce N;:(x), Chui has introduced the complex
conjugate of the reflection of N,,(z), i.e., N} (—x) as the dual function. To this end, we have

(e 9]

Nop(m + ) = /OO Ny ()N (t — x)dt = ! /0% { > |N, (w + 27rk)\2} e dw,

—0 2w k= —o0

where the last term refers to the Fourier transform of N,,(z).
Now defining

m—1

En(2)= > Nop(m+k)*
k=—m+1

the orthonormalization procedure leads to

N (w) _w

Né(w):W, z=¢"2

Also, the transfer function can be expressed via E,,(z), see [16]:

[ B (s 1/2
p<z>%§p’“z'€:(1;) lffmé%] |
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Finally, the m'-order orthonormal wavelet, also known as Battle-Lemarié wavelet is
given by

V() =Y (=1)"p1_p N, (22 — k). (3.36)
k

In practice, it is more convenient to define the Battle-Lemarié wavelet in terms of its Fourier

transform:
A - . N 1/2
Um(w) = — (%) [sin2m (Zﬂ 2 [%] ’

where 2z = ¢~/2,

A plot of the Battle-Lemarié wavelet is shown in figure 3.30 for m = 2.
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Figure 3.30: Battle-Lemarié wavelet of order m = 2 (linear).

The Daubechies Wavelets

The Daubechies wavelets are very special because they are very compact but also orthonor-
mal — no special procedure is needed to orthonormalize them. They can be defined by means
of the transfer function

1+ 2

Pe =53 met = (1) Snente)

where Sy_p,(2) is a polynomial of degree (N —m) and Sy_p,(1) = 1; the latter implies that
P(1) = 1. How to compute Sy_,, is not trivial and the interested reader is referred to [22].
The inverse Fourier transform of the product

Gm(w) = 52, P (e_i“’ﬂj)

gives the Daubechies scaling function.
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An alternative way is to use iteration, as discussed earlier, e.g.,

N
Omijr1(2) = Y PkPmij (22 — k)
=0

starting with ¢,,,.0 = Na2(z), the linear B-spline, and iterate to a converged solution to obtain
Having obtained the scaling function, the Daubechies wavelets can then be obtained from

1

Um(z) = (=1 *p1_kpm (22 — k).

k=—N+1

The Daubechies scaling function and wavelet of order m = 4 are shown in figure 3.31, and
of order m = 7 in figure 3.32.

15

051

L L L L L L _ L L L L L L
0 1 2 3 4 5 6 7 -3 -2 -1 0 1 2 3 4

Figure 3.31: Scaling function (left) and wavelet (right) of the Daubechies family; m = 4.
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Figure 3.32: Scaling function (left) and wavelet (right) of the Daubechies family; m = 7.

As we see from the plots, the Daubechies wavelets are compact but not very smooth;
in fact, here polynomial smoothness has been sacrificed for compactness! The smoothness
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of the Daubechies wavelets increases with the order but only by about half derivative each
time; e.g., ¥y is %%, i.e., fractionally continuous. In contrast, we recall that the B-splines
with m = 4 are C? continuous.

More specifically, the Daubechies wavelet of fourth-order (m = 4) is defined by the
coefficients:

1+3 3+3
Po = 1 , b1 = 1

_3-V3  1-3
P2 = 4 ) b3 = 4 .

We can now use these coefficients to construct ¢4(x), the scaling function, by recursion, as
discussed earlier. First, we set up an eigenvalue problem by applying the dilation equation
at the integer points x = 1 and = = 2 in the open interval x € (0, 3):

d4(1) = ! +4\/§¢4(2) + 5 +4\/§

$4(2) = k _4\/§¢4(2) - ! _4\/5

¢(1)

o4(1).
The eigenvalues of the 2 x 2 eigensystem are 1 and 1/2; the former leads to

1+\/§5L 1-v3

1) = nd 2) =
ou(1) = — 61(2) = —
Having obtained these values, we now set x = %, 2%, 2% and so on at all dyadic points to

compute values of ¢4(x) at many other points.
The accuracy of the approximation depends on the order p of zeros of the transfer function

1 )
k

This turns out to be equivalent to the following condition for the coefficients py:
S(=DFE™p, =0, m=01,...,p—1
Correspondingly, the first p moments of the wavelet 1)(x) are zero, i.e.,
/xmw(x)dx: 0, Ym=0,...p— 1.

The fourth-order Daubechies scaling function ¢4(z) has p = 2 in contrast with the cubic
spline which has p = 4. The corresponding error bound is

I f(z) =D prd (e — k) ||< C- 2777 || fP(a) |

that is, the error is O(h?), where h = 27,
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3.4 Back to Parallel Computing: Send and Receive

The information that we provided to you in chapter 2 was accurate but incomplete. In
this section we want to supply more information about sending and receiving in MPI. After
this section, throughout the book, we will begin to directly integrate MPI concepts into the
lessons.

Recall from our previous discussion that for each call to M PI_Send, there should be
a call to MPI_Recv. Below we give the declarations (which can be found in mpi.h on
your parallel computer) for both M PI_Send and M PI_Recv. Let us investigate each one
separately. Throughout the book, we will use the format below for presenting MPI functions.
The return value and name will be provided followed by the argument list (both variable
type and variable name) and comments denoting whether the variable is intended to act as
input (in) to or output (out) of the function.

e MPI _Send
int MPI_Send(
void* message /* in ¥/,
int count /¥ in ¥/
MPI_Datatype datatype /* in */,
int dest /¥ in ¥/
int tag /¥ in */,

MPI_Comm comm /¥ in */)

The first item in the argument list is the starting address from which the data item
is to be retrieved. You can translate this as “the pointer variable.” The second piece of
information is the count, which is the number of items to send. The third item is the data
type, which can be among the following:

e MPIINT
MPI_FLOAT

MPI_DOUBLE

MPI_CHAR

See Appendix B.2 for a full listing of all the allowable variable types. We only provide here
the four basic types that we have introduced thus far. The fourth argument is the processor
identification number to which the message is to be sent. This processor id is the integer that
is obtained locally on the processor by calling M PI_Comm_rank() (recall, in the previous
example, we stored the local process number in the variable mynode). The fifth argument is
a tag , which is an integer used to delineate between successive messages. Suppose that you
were going to send messages one right after the other to and from one processor to the next.
Then you would assign two different tag numbers so that you can guarantee the ordering
that the processor will receive the information. The final argument provides information
concerning which processes are within the current communication group. For our purposes,
this argument will always be set to MPI_COMM _WORLD.

Now, on the receiving side, we have the following:
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e MPI_Recv
int MPI_Recv(

void* message /* out */,
int count /¥ in ¥/
MPI_Datatype datatype /* in  */,
int source /¥ in %/,
int tag /¥ in ¥/,
MPI_Comm comm /¥ in ¥/

MPI_Status* status /¥ out */)

Again, the first item in the argument list is the starting address into which the data is
to be placed, the second argument is the count, and the third argument identifies the type
of information to be sent. Instead of specifying the destination, the fourth argument is the
source of the information, which is the process identifier of the source of the message to be
received. The fifth and sixth arguments were just discussed above. The final argument is a
special type of variable which supplies status information. Examining status. M PI_ERROR
can provide the programmer with error information when something goes wrong. For more
information concerning the content and use of M PI_Status, we refer the reader to [73].

Software

©

Suite

For the purposes of illustration, let us examine the following
MPI code. We want to create an array on each process, but
to only initialize it on process 0. Once the array has been
initialized on process 0, then it is sent out to each process.

#include<iostream.h>
#include<mpi.h>

int main(int argc, char * argv[]){

int i;

int nitems

= 10;

int mynode, totalnodes;
MPI_Status status;

double * array;

MPI_Init (&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

array = new double[nitems];

if (mynode == 0){
for(i=0;i<nitems;i++)
array[i] = (double) i;
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if (mynode==0)
for(i=1;i<totalnodes;i++)
MPI_Send(array,nitems,MPI_DOUBLE,i,1,MPI_COMM_WORLD) ;
else
MPI_Recv(array,nitems,MPI_DOUBLE,0,1,MPI_COMM_WORLD, &status);

for(i=0;i<nitems;i++){
cout << "Processor " << mynode;
cout << ": array[" << i << "] = " << array[i] << endl;

delete[] array;

MPI_Finalize();

We draw your attention to the following:

e We first do the MPI initialization and information gathering calls described in the
previous chapter
(MPI_Init, MPI_Comm_size and M PI_Comm_rank).

e We then create, on each process, an array using dynamic memory allocation.

e On process 0 only (i.e., mynode == 0), we initialize the array to contain the ascending
index values. Observe that we ezplicitly cast the integer index value i to a double
precision number to be stored in arrayli].

e On process 0, we proceed with (totalnodes-1) calls to M PI_Send.
e On all other processes other than 0, we call M PI_Recv to receive the sent message.
e On each individual process, we print the results of the sending/receiving pair.

e On each individual process, we deallocate the dynamic memory that we had allocated.
Though this program is simple, it contains most of the necessary components for getting
up and running with MPI.

Let us conclude this section by stating a collection of remarks which will be useful both
in understanding the program above and in understanding MPI programs to follow.
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e Whenever you send and receive data, MPI assumes that you have provided non-
overlapping positions in memory. This remark will be extremely relevant when we
study collective routines in the chapters to follow. We will point this fact out again.

e As we pointed out in the previous chapter, M PI_COMM _WORLD is referred to as a
communicator. In general, a communicator is a collection of processes that can send
messages to each other. MPI_COMM _WORLD is pre-defined in all implementations
of MPI, and it consists of all MPI processes running after the initial execution of the
program.

e In the send/receive discussions above, we were required to use a tag. The tag variable
is used to distinguish upon receipt between two messages sent by the same process.
The order of sending does not necessarily guarantee the order of receiving. Tags are
used to distinguish between messages. MPI allows the tag M PI_ANY T AG which
can be used by M PI_Recv to accept any valid tag from a sender. You cannot use
MPI_ANY _TAG in the M PI_Send command, however.

e Similar to the M PI_ANY T AG wildcard for tags, there is also an M PI_ANY _SOURCE
wildcard that can also be used by M PI_Recv. By using it in an M PI_Recv, a process is
ready to receive from any sending process. Again, you cannotuse MPI_ANY SOURCE
in the M PI_Send command. There is no wildcard for sender destinations.

e When you pass an array to M PI_Send/M PI_Recv, it need not have exactly the num-
ber of items to be sent — it must have greater than or equal to the number of items
to be sent. Suppose, for example, that you had an array of 100 items, but you only
wanted to send the first ten items. You can do so by passing the array to M PI_Send
and only stating that ten items are to be sent.

Throughout the remainder of this book we will building upon the basic foundation in-
troduced here to accomplish more serious tasks of parallel scientific computing.
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3.5 Homework Problems

3.5.1 Homework Problems for Section 3.1

1.

In the previous chapter’s exercises, a recursive relationship was given for generating
the Fibonacci sequence. Write a recursively called function which takes as input at
least the maximum number of terms to generate (your function may have more inputs)
and prints the Fibonacci sequence to the screen.

The Vandermonde matrix of rank n is defined by

(1 @y @3 ... 0]
1z 23 ... 2
V., =
|1 =z, x% |

Prove the following result for its determinant
det Vn = do dl c. dn,1

where
dp = (Tpy1 — ) (Xpe1 — Tp—1) - - (Tra1 — To)-

Compute (by hand) the second-order polynomial ps(x) so that

pQ(O) = 37 p?(l) = 27 p2(3) = 57
using the Vandermonde, Newton, and Lagrange approaches.

Construct the third-order Lagrange polynomials for the following functions in the in-
terval [xo, 2]

(a) f(x)=Inz, 20 =121 =1.1,20 = 13,23 =14

(b) f(z) =5cosz + 3sinx, g = 0,27 = 0.25, 20 = 0.5, x3 = 1.0

Consider the Runge function with e = 107", where n = 1 (case A) and n = 5 (case B).

How many Chebyshev modes are required to approximate it with 10% (engineering)
or 1% (scientific) accuracy for both cases A and B?

Consider the function f(z) = sin 27z, where x € [—1,1].

(a) Write a program for computing the interpolating polynomial p,(z) at the points
xy = —1—1—% with7=20,1,...,nforn = 6,12, 18, 24 using the Lagrange approach.
Plot the maximum point-wise error versus n.

(b) Do the same as in (a) but use Chebyshev distribution of points to represent f(x).
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10.

11.

(c) Repeat (a) and (b) using the Newton approach.

(d) Write a program which asks the user which approach to use and which distribution
to use. Integers may be used to delineate between approaches and between point
distributions (i.e., Lagrange = 0, Newton = 1, etc.)

Estimate the number of multiplications required to compute f(z) = > p_, arqr(z),
where g (x) is a general orthogonal polynomial. Show that if ¢x(z) is a Chebyshev
polynomial then the number of required multiplications can be reduced to half the
number required in the general case.

Modify the class defined for least-squares to be an interpolation class. Encapsulate all
the inner-workings of interpolation into one object.

Represent the data in the table below by a function of the form
g(x) = az™" + fa?,

using a procedure similar to least-squares. Determine the values of «, # that minimize
the least-squares error.

Note: The resulting system of nonlinear equations may be solved iteratively; for help
visit www.netlib.org.

Multi-variate polynomial interpolation

In most problems in simulation science the dependent variable is a function of more
than one independent variable, e.g., y = f(z1,z3) is a bi-variate function. We want to
develop a least-squares multi-variate approximation using the quadratic polynomial

Y =co+ a1z + By + azr® + Boy® + cray.

Obtain the equation for ¢;, «;, §; that minimize the least-squares error and formulate
the problem in matrix form.

Determine a B-spline that goes through the end-points for the following control points:
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12.

13.

14.

15.

Construct a fourth-order polynomial that approximates the function f(x) = /= and
goes through the points 0, 1, 2, 3, 4. Also, approximate this function with a cubic
B-spline and compare the average and maximum approximation errors of the two
approaches.

As stated in section 3.1.9 - “Exercise Your Programming Skills,” modify the given code
to handle more than just bi-linear interpolation. Given nine points, you should be able
to go up to bi-cubic interpolation. Follow the guidelines provided in the text.

Using the M PI_Send and M PI_Recv functions, write an MPI program which ac-
complishes piecewise Lagrange interpolation. As in the problem above, consider the
function f(x) = sin27x where x € [—1,1]. Write a program which accomplishes the
following:

(a) Partition the interval [—1, 1] based upon the number of processors used.

(b) For each process, use only four interpolation points (third-order polynomial) in
which two of the points are the end-points of the subdomain used for that process.

(c) For each process, evaluate your interpolant at 30 points on its subdomain.
(d) For each process, send all 30 points to process 0 for collection.
(e) Have only process 0 print out the resulting interpolant evaluated at 30*P points

(where P is the number of processes used).

Mappings in polynomial approximations: As we have seen in section 3.1.4 regions
of rapid variation in a function may lead to global spurius oscillations. An effective
remedy is to introduce a new coordinate system x = ¢(s, ), where x is the physical
coordinate and the transformed coordinate satisfies: —1 < s < 1. The parameter « is
associated with the steepness and its location.

Two such mappings have been introduced by [6] that work effectively with Chebyshev
approximations.

The first mapping x +— s employs:
T = ag + tan[(s — so)A]/as

where b1
0= 1077 ; o k= tan”[on(1+ ag)]/ tanfaq (1 — )]
and
A= tan" oy (1 — )]/ (1 — s0).
Here « expresses the degree of steepness and as the location of rapid variation.

The second mapping has the form:
r=sin"!(as)/sin"Ha;y), 0<a; <1,

This mapping expands the boundary regions and compresses the interior regions. As
a1 — 1 the Gauss-Lobatto points become more uniformly spaced.
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16.

17.

18.

Consider the Runge function f(x) = 1/(1 + 252%) with € [-1,1], and use both
mappings to approximate f(x). Systematically vary the values of a; and s to find
optimum values for N = 4,8,12,24 and 32 grid points. Make a log-lin plot of the L,
and L., errors versus /N and compare your answers to the unmapped case, as in figures
3.3 and 3.4.

Construct shape functions for a square domain [—1,1] x [—1,1] and a cubic domain
[—1,1] x[—1, 1] x [-1, 1] for which there are only three nodes per edge (i.e., two vertices
and a middle node) but not an interior node. Repeat for the case where there are four
equidistant nodes per edge but no interior nodes.

Construct shape functions for a triangular domain and a tetrahedron domain each with
edges of unit length and with a middle node per edge as well as one interior node.

Modify the code for multi-dimensional interpolation presented in section 3.1.9 to handle
more than just bi-linear interpolation. Given nine points, you should be able to go up
to bi-cubic interpolation. Modify the code presented earlier to handle at least four
points, and up to nine points. This implies that your function has to be intelligent
concerning the number of points that it is passed. Let us first examine the things that
will and will not change:

(a) Observe that the argument list itself need not change. Only the information
passed into the function will change.

b) The user will now specify npts to be some value other than (or possibly including)
four. The first thing to change: the static memory allocation of the array. No
longer is an array of four elements sufficient. Should we move to dynamic memory
allocation based on npts? No. Even though it would be perfectly legitimate to
use dynamic memory allocation in this case, it is just as easy to allocate a static
array for the maximum number of elements, which in this case is nine. In this
case, it is “cheaper” to allocate a few extra doubles (in the case that npts is less
than nine) than to both allocate and deallocate memory dynamically.

(a) You must now, of course, change the argument checking. No longer should you
check to see if npts is exactly equal to four, but rather if npts lies between four
and nine (inclusive).

(¢) Now you must introduce the interpolation formulas for the various interpolants.
We have already provided the first four formulas.

(d) The final issue is how to check which npts category into which you fall. Did the
user want npts = 4, npts =5, ... or npts = 97 Since there are a small number of
possibilities, try using a switch statement. Recall, the layout will look like:

switch(npts)
case 4:
// formulas for npts = 4
break;
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case 5:
// formulas for npts = 5
break;

case 6:
// formulas for npts = 6
break;

case 7:
// formulas for npts = 7
break;

case 8:
// formulas for npts = 8
break;

case 9:
// formulas for npts = 9

break;

default:
//add error statement here for when an
//invalid npts is given

by

One thing that we would like to point out in the example above is that we have
made a programming decision to sacrifice optimality for generality. Experienced
programmers would be quick to point out that the structure above is not optimal,
and that if you were going to be doing thousands or millions of interpolations,
that it would be better for you to write a function for each case separately (hence
eliminating the switch statement, and even the argument checking). The tradeoff
in this case is that we have only one function to maintain. This balance between
generality and optimality is one which you will constantly be confronted with as
a programmer. The balance you reach is almost always application and situation
dependent.

3.5.2 Homework Problems for Section 3.2

1. Let f =Y aze™ and g = 3 bye’*™, and we construct the product fg = 3" ¢,e?*®. What
is the relationship between ¢, and by, ¢;.”

2. Construct the cosine and sine series of the function f(x) = x3. Do the two series

converge at the same rate? Plot the partial sums for each representation retaining
N =2,4,8,16, 32 terms. What do you observe?

3. Compute the square of the Fourier matrix W of order N = 1024 using matrix-matrix
multiplication, e.g. dgemm from BLAS3, and also using the discrete fast Fourier trans-
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forms using the fact that this is a product of two circulant matrices. What do you
observe?

Consider the function f(z) = 1,z € [0,1] and f(z) = —1, x € [1,2]. Obtain its
Fourier coefficients and use the Lanczos filter to improve the approximation. What
is the asymptotic rate of convergence before and after the filtering in the L; and Lo
norms? You can obtain that either analytically or numerically.

Use a double Fourier series representation to expand in real double Fourier series the
function

f(l‘,y)zl'—f-y ZE,yE[—TF,’ﬂ'].
(Chebyshev Transforms)

Derive an algorithm for a fast Chebyshev transform based on the fast Fourier transform.
Write a C++ code for it and obtain timings on your computer for various sizes N. How
does it compare to the matrix-vector multiplication, and specifically at what value of
N we have the break-even point?

3.5.3 Homework Problems for Section 3.3

1.

2.

Use the Fourier transform approach to plot the Battle-Lemarié wavelet of order m = 4.

Use the iteration approach to plot the Daubechies scaling functions and wavelets of
order m =5 and 9.

Obtain the discrete wavelet transform of the function f using the Daubechies wavelets
of fourth-order.

Derive equation 3.35 for the Shannon wavelet.



Chapter 4

Roots and Integrals

In this chapter we apply the approximation theory we presented in chapter 3 to find solutions
of linear and nonlinear equations and to perform integration of general functions. Both
subjects are classical, but they serve as basic tools in scientific computing operations and in
solving systems of ordinary and partial differential equations. With regards to root finding,
we consider both scalar as well as systems of nonlinear equations. We present different
versions of the Newton-Raphson method, the steepest descent method, and the conjugate
gradient method; we will revisit the latter in chapter 9. With regards to numerical integration
we present some basic quadrature approaches, but we also consider advanced quadrature
rules with singular integrands or in unbounded domains.

On the programming side, we first introduce the concept of passing a function to a func-
tion; in the previous chapter we were passing variables. This allows an easy implementation
of recursion, which is so often encountered in scientific computing. We offer several C++
examples from root finding and numerical integration applications that make use of recur-
ston, and show an effective use of classes and overloaded operators. We also address parallel
programming with emphasis on domain decomposition, specifically the concept of reduc-
tion operations. We introduce the MPI commands M PI_Reduce and M PI_Allreduce for
accomplishing reduction operations among a collection of processes.

207



4.1. Root Finding Methods 208

4.1 Root Finding Methods

There are many problems in scientific computing where we need to find the root of a nonlinear
equation or systems of algebraic equations. For example, a polynomial equation arises in
computing the eigenvalues from the characteristic polynomial, or general transcendental
equations need to be solved to obtain the dispersion relation in wave dynamics problems.
Another example is the computation of a square-root of a number; e.g., the computation
of v/3 can be turned into finding the root of the equation f(z) = 2% — 3 = 0, and this can
be solved iteratively very fast, starting from an educated guess! For example, for an initial
guess of xg = 1.5 we substitute in the formula

3
(xn+—), n=12,...

Tpt1 = z
n

N —

and obtain x; = 1.75 in one iteration versus the exact value 1.7320508. More iterations will
result in predicting accurately more and more digits, in fact, we double the number of correct
digits in each iteration! The above formula comes from the Newton-Raphson algorithm, and
it is often used in mathematical libraries of computers for the square-root function.

Software | Below we provide our own implementation of this function and
@ construct table 4.1 showing the iteration count and associated
Suite error when computing v/3 using this function.

double SquareRoot(double value, double guess, int iterations){
int i;
double xn = guess;

for(i=0; i<iterations;i++)
xn = 0.5%(xn + value/xn);

return xn;

b

In the function above, observe that upon calculation of the next value x,,1, we immedi-
ately place it in the variable xn. This is because in this iterative scheme, once the new value
is computed, the previous value is not needed. An alternative version of the function is the
following:

double SquareRoot(double value, double guess, double tol){
int i;
int maxit = 100;
double xn2, xn = guess;

for(i=0; i<maxit;i++){
xn2 = 0.5%(xn + value/xn);
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if (fabs(xn2-xn)<tol)
return xn2;
Xn = xn2;
}
cerr << "Maximum number of iterations reached ";
cerr << "without convergence" << endl;
return xn2;

In the function above, instead of inputing the number of iterations, we input a tolerance.
As we calculate updated values, we check to see if the absolute value of the difference between
successive iterates is less than the tolerance. For the code above, we have the following
remarks:

e We do need to separately store the new value (xn2) so that it can be compared with
the old value.

e We have chosen to set a maximum number of iterations instead of using a while loop.

e We use the function fabs, which is a function whose declaration is contained within
math.h, and which takes as input a double precision number and provides back the
double precision absolute value of that number. NOTE: A function abs exists also,
but takes as input integers and returns the integer absolute value. Because of implicit
casting, oftentimes people make the mistake of using abs when they should be using
fabs, and they obtain the wrong result.

e We return directly from the for loop once the tolerance condition has been met. By
using return, we terminate the loop tacitly by exiting the function.

Iteration Root Approximation Error
0 1.50000000 2.32050808e-01
1 1.75000000 1.79491924e-02
2 1.73214286 9.20495740e-05
3 1.73205081 2.44585041e-09

Table 4.1: Numerical approximation of v/3.

We are familiar with root finding methods for the first- and second-order polynomial
equations for which we can derive closed form solutions, and these solutions have been
known for centuries to Egyptians and also to Babylonians for more than forty centuries!
Clearly, we do not need to use a computer to obtain solutions for these equations, but things
become much harder as the order of the polynomial increases, and in fact fifth- or higher
order polynomials cannot be solved in closed form as Lagrange first discovered in the late
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eighteen century. For third- and fourth-order polynomial equations, analytical formulas are
available. They were first obtained by the Italian mathematician Ferrari, however they are
very complex and thus not very useful.

In this section, we will study methods and corresponding code fragments to obtain so-
lutions of general nonlinear equations as well as systems of general nonlinear equations, but
it instructive to start with polynomial equations. The methods that we will develop are
iterative and are easy to program but they require good knowledge of the basic theory. We
need to know:

e How fast the algorithms converge,
e When to terminate the iterative process, and
e An initial guess to start the iteration, sometimes an educated guess!
In the following, we show how we can use the approximation theory of the previous chapter

to achieve this.

4.1.1 Polynomial Equations

Cubic Polynomials: Let us first consider a cubic polynomial equation of the form

f(6) =€ +ag+ g —c=0

where a, b, ¢ are real numbers so that we have at least one real root. Here we will follow the
analysis of Lanczos [66]. The first step is to rescale the above equation in a more convenient
form by introducing the transformation

r=af, a; = aa, by = a’b, ¢; = a’c
and by substitution we obtain
f(x) =2 +a12® + bz —¢; = 0.
By taking a = 1/+/c we obtain ¢; = 1, and therefore
f(0)==-1<0 and f(o0)>0.
We also have that the three roots satisfy
Ty Tox3 = 1.

Next, we examine the sign of f(z) at « = 1; if f(1) > 0 there exists one real root in the
interval [0, 1], but if f(1) < 0 there must be one real root in the interval [1, oo]. In this case,
we simply introduce another transformation, i.e.,

r=-,
T
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mapping [1,00] — [0,1]. It is then sufficient to find the real root of a cubic equation in the
interval [0, 1].

Telescoping of a power series by successive reductions is an elegant way of reducing
a high-order polynomial to a lower order by taking advantage of the properties of the Cheby-
shev polynomials discussed in section 3.1.5. In particular, we will use the shifted Chebyshev
polynomials defined by

Ti(x) =T,(2x — 1), x€][0,1] (4.1)

which we tabulate in table 4.2. We will make use of the fact that:

e The shifted Chebyshev polynomials have the largest coefficient of the highest power of
x among all polynomials defined in the same interval.

e They are bounded by +1, just like the standard Chebyshev polynomials.

e They are defined in the interval of interest; here = € [0, 1].
Let us consider, for example, the third-order shifted Chebyshev polynomial Tj(z) =
3223 —48 22 + 18 x — 1, then

5 _ 482% — 18z + 1 +T§(x)
32 32

and because of the boundness of 75 (), we can approximate

Xz

2® ~ 1.5 2% — 0.5625 = + 0.03125  (+ 0.03125),

where the term in the parenthesis is the error +1/32, which in this case is about 3%.

n=1 1,2

n=2 1,88

n=3 1,18, 48, 32

n=4: 1,32, 160, 256, 128

n="5: 1,50,400, 1120, 1280, 512
n=6: 1,72, 840, 3584, 6912, 6144, 2048

Table 4.2: Coefficients of the first six shifted Chebyshev Polynomials T(z) . The underlined
numbers correspond to negative coefficients, and the sequence is from the lowest to highest power;
e.g., Ti(x) = —1+ 18 — 4822 + 3223; Tg(x) = 1.

Example: The following example illustrates the main points discussed so far. Let us consider
the cubic polynomial equation

462156 —-50=0.
We first perform the transformation

a=1/V50 ~ 02714 = f(z) = 2° 4 0.27142° — 0.11052 — 1 = 0,



4.1. Root Finding Methods 212

and subsequently, we examine the sign of f(z) at = = 1:
f(1) =0.1609 > 0 = x; € [0, 1].

The next step is to reduce the cubic equation to a quadratic equation and apply the formula
of Babylonians! To this end, we use the shifted Chebyshev polynomial 775 (z) and equation
(4.1) to obtain

1.7714 2 2 — 0.673 2 — 0.9687 = 0,

which has a positive root ;1 = 0.9534 and a negative root, which we disregard. We now

transform back to obtain
vy 0.9534

Q= T 02ma

The residual is f(3.513) = 0.42, and although this value is not 0, it is relatively small
compared to the constant ¢ = 50; it corresponds to an 0.4% error! The more accurate value
obtained with the Newton-Raphson method is 3.5030. If, however, this is not an acceptable
accuracy, then this “educated” guess can serve as initial value in one of the algorithms that
we will present in this section.

= 3.513

Fourth-Order Polynomials: We can proceed similarly with fourth-order polynomial equa-
tions of the form
e et et = 0,

which can be turned into the form
(2* + az + B)* = (ax +b)?,

and by taking the square root we reduce this to two quadratic equations. The question is
how to obtain «, 3,a and b in terms of ¢;, i = 1,2, 3,4. This is accomplished via a series of
simple transformations:

a=rc/2; A=cy—a* B=c3—aA.
We then form the cubic equation
fE) =€+ (24— )& + (A% + 2Ba — 4c¢y)€ — B* =0,

which has a positive real root since f(0) = —B? < 0. We now use the previous method
for cubic polynomials to determine the real root, which we call £;. Having obtained &;, we
determine all the coefficients of the two quadratic equations from

a = %Cla f= %(A_'_gl)a a= \/gla b= g(@—B/fl)-

Again, this real root can be used as initial guess to obtain more accurate answers from the
algorithms presented later in this section.

High-Order Polynomials: Obtaining good approximations for the roots of high-order
polynomials is a much more difficult job and may require many function evaluations in
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order to locate approximately real roots. However, high-order polynomials have typically
complex roots, so here we review a method first proposed by Bernoulli which provides an
approximation to the absolutely largest root. Let us consider the polynomial

fry=a2"+aa" '+ .. ta,=(x—z)(— 1) ... (2 — 1),

were z;, i = 1,2,...,n denote the roots of the polynomial f(x). We can then compute the
ratio ,
x 1 1 1
@ -+ .o+ .
flz) -z ax9—7 Ty — T

If x¢ is an initial guess which happens to be close to one of the roots, say i, then by
comparing terms in the above expansion we can see that one term dominates, i.e.,

L =)

Ty — Ty f(flfo) ‘

Thus, we have managed to isolate one root, and, in fact, we can make this estimate sharper
by taking the derivative (m — 1) times to obtain

“(m - 1)! Hf(()) ](m_l) - G L

:(xl—xo)m - _(m—l)!

1 1 lf’(xo)] (=1 |

By choosing m sufficiently high we can put the “spotlight” on the root x; with increasing
accuracy. This method, however, requires a lot of work as it involves the computation of
derivatives, although approximate ways have been suggested by Lanczos to do this efficiently;
for example the so-called method of moments. The interested reader should consult Lanczos’s
book [66] for more details.

4.1.2 Fixed Point Iteration

One approach to solving nonlinear equations is by iteration, where the equation f(z) =0 is
re-arranged as

with f(z) = x — g(x). We can set up a fized point iteration of the form

Tpt1 = g(xn)a

which upon convergence (“steady state”) leads to x,.1 — s, and thus equation (4.2) is
satisfied. It turns out that the key to convergence, as we will see in the theorem below, is the
first derivative of g(x). We demonstrate this by a simple example of a quadratic polynomial,
which is used often to model chaos. Let us consider

g(z) = ax(l — z) = ax — ax?
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with a being the bifurcation parameter, the meaning of which will become clear below.

We want to solve:
Tpy1 = QT, — Q2. (4.3)

We note that the maximum value of g(z) is g(1/2) = «/4, and therefore for a < 4,
x, € [0, 1], i.e. the sequence of numbers produced by the iteration process remains bounded
within the range [0, 1]. Let us consider a specific example, and take a = 2. Then

2

Tpt1 = 2Ty, — 27,

and in steady state, that is upon convergence, we have that z, — s and also x,,1 — s, so
the fixed or stationary points are given by the equation

s =25 — 252,

which has two roots, the stationary points, at s = 0 and %
We then evaluate the first derivative at the stationary points, and if

e |g'(s)| < 1, the stationary point s is attractive,
e otherwise, it is repulsive.

This can be seen by constructing the graph of g(z) and follow the sequence generated by
the iterative equation. In this case, we have that ¢'(0) = 2, which is a repulsive point, and
g (1/2) = 0, which is an attractive point, and in fact very attractive!

This process can be easily generalized for the simple iteration equation we have considered
to obtain the stationary points s; = 0 and sy = (o — 1) /. At the second point, we have

g(ss))=2—a and 2-a|<l=>-1<2-a<l=1<a<3.

Therefore, we have found the range within which the bifurcation parameter « results in an
attractive point and thus a convergent iteration process. Similarly, it is easy to show that
g'(s1) = a, so as long as & < 1 we have a convergent iteration process.

We can of course substitute back in equation (4.2) to obtain

g1(z) = g(g(x)) = a(ar — az®) — alaxr — ax?)?,

which has four stationary points. By proceeding as above and examining the derivative
g1(s), we find that we have an instability and thus divergence for o > 3.45. In fact, for
higher values of a the system bifurcates even further to a period doubling cascade. The ratio
between the length of one stability window and the next approaches a universal constant
0 = 4.69920166 . . ., which is known as the Feigenbaum’s constant in chaos theory.

Example: Next, we present an example of the iteration process for the quadratic chaos
equation, which converges for some small value of the bifurcation parameter; for larger
values oscillates between different values even at steady state; and for even larger values it
is unstable and diverges. Consider the iteration

Tpy1 = (14 10a)x, — 10ax?, x9=0.1. (4.4)
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Figure 4.1: Plot of the values (vertical axis) of the time series versus the iteration number (hori-
zontal axis) produced from the quadratic chaos equation (4.3); a = 0.249. The iteration converges
to four different values at steady state.
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Figure 4.2: Bifurcation diagram. Plotted are the converged values of the iteration in equation
(4.4) versus the bifurcation parameter (step size) a.
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We find that for a = 0.18 the above iteration converges to 1, but for a = 0.23 it jumps
between 1.18 and 0.69. For a = 0.25 it jumps between 1.23,0.54,1.16 and 0.70. For the
value o« = 0.3 no discernible pattern is displayed; note also a window of order just above
a = 0.28 and then a return to chaos again! The plots in figures 4.1 and 4.2 show schematically
this strange but interesting behavior.

After this introductory example, we are now ready to state the theorem on convergence
of fixed point iteration.

Theorem of Convergence of Fixed Point Iteration: Let s be a solution of x = g(x)
and g has a continuous derivative in some interval I containing s. Then if |g'(s)] < K < 1
in I, the iteration process x,1 = g(x,) converges for any initial value xy in I.

Proof: From the mean value theorem we have that there exists a point ¢; € [z, s] : g(z) —
g(s) =g (t1)(x — s). Then

9(2a—1) = g(s)| = 19 (t1)| |21 — 3|

|zn — 8| =
S K|xn—1 - S|
= Klg(n-2) = g(s)]
< Klg (2)] [n—2 — 5|
< K*,_9 — 3|
< K"zg—s|—0.
Here t;,i = 1,2,... € I as well. Note that g(z) is called a contraction, and in general a

contraction mapping is defined as

lg(u) — g(v)| < Klu—v|, K<1.

Round-off: Associated with such an iteration process is round-off errors, which, however,
can be quantified. To this end, consider the iteration

Ty = g(xnfl) + 571

where [0,] <0 and § < 1 denotes the known machine accuracy. We then have

|9(zn-1) — g(s) + bal

K|z, 1—s|+9§

K(Kl|xp—o —s|+0)+9
K"2zg—s|+6(1+K+K*+...+ K"

[T — 8]

IA A IA

)
K™ — 8| + ——
‘.TO 8‘+1—K’

IN

where in the last line we used the limit of a geometric series since K < 1.
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Error Estimate: Similarly, we can obtain an error estimate by comparing two successive
approximations:

|xn+1 - xn| = |g(‘rn) - g(‘rn—l)|
S K’xn - xnfly

IN

Kn‘.ilfl — .ﬁl?o’ .

For fixed n and m > n we have

’xm_xn‘ S ‘xm_xmfly+’xmfl_xm72’+---+’xn+l_xn
< (K™ P4 K™ 2 4+ K™z — 20
Kn
= 1_K‘$1—I0|

Since x,, — s as m — oo for convergence, then

n

|z, — 5] < |z — xo] .

T 1-K

We can now define the convergence rate as the ratio of two successive error estimates. Let
en =, — s and s = ¢(s), then

eni1 = Tnpr — 5 = g(s+en) —g(s) =g (t)en,

from the mean value theorem, ¢ € [z, s|, and thus in the limit:

lim = — g'(s) |
€n

If ¢'(s) = 0 and g¢'(z) continuous (as in the case of the very attractive point at s = 0 that
we encountered in the example earlier), then

eni1 = g(s+en) —g(s) =g (s)en+ 9 (5)= + ...

2o |

and therefore

. €n+1 1
=59 ()

which shows quadratic convergence, that is at every iteration the number of correct digits
is doubled!

4.1.3 Newton-Raphson Method

We now present the most popular method in rood finding, which was proposed independently
by Newton and Raphson. It combines the ideas of iterative process discussed above and of
approximation presented in section 3.1. Let us consider again the equation

fx) =z —g(z) and f(s) =0,
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and denote by h the distance between the exact solution s and an initial guess xy. Then, we
use Taylor expansion around z, to obtain

2

! h "
By neglecting terms higher than second-order in h, we obtain

f (o)
fl(xo) '

We can now propose an improved guess x; = o + hg, which leads to a hopefully shorter
distance
/ (1’1)

f(x)’

]’L(]Eh:—

hi = —
and so on.

We summarize this iterative process as follows:

Tn+1 — $0+h0+—|—hn

o= A

f/ (xn) )
where 1z is the initial guess that starts the iteration. Alternatively, we can write the above
two equations as a single equation

f(an) (4.5)

Tn4+1 = Tn — &
Tn
S (an)

9(zn)

assuming that f'(s) # 0. The convergence rate can then be obtained by examining the first
derivative ¢'(s):

"

f
(f)?

, P2 ff
g(0)=1="mz— =

— 0 as =z — s.

/
We also have that

g (@) = YU =2 F £ _FFF+ 2 —2ff7
(f)* (f)?
In general, ¢" (s) # 0, and therefore the convergence rate of the Newton-Raphson is second-
order (quadratic convergence).

"

#0 as © — s.

Example: Let us revisit the example of finding the square-root of a positive number that
we discussed in the introduction of this section. We assume that

f(z) =2? —C and therefore s=+/C

is the exact answer. We now use the Newton-Raphson formula from above
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’

[ (@) (@ng1 — 20) = —f(2),
and thus

2 C

= xn+1:%(1}n+—n)

T

22, (X1 — xp) = C — (x3)

Therefore, we compute the square-root v/C' by averaging x and C/z. The convergence is
quadratic, i.e.

s — VO = — (2, — VTP

2z,

At every iteration step the difference (z,, — v/C), which is the error, is squared!

Improved Convergence

We can improve the convergence rate of the Newton-Raphson method by retaining the
second-order term in the Taylor expansion, i.e.,

f(xo) + h[f (z0) + gf"(xo)] -0

/ (5130)
(o) + 5 f" (o)
In the above equation, we can compute a provisional value for i in the denominator, say A},
from the linear Taylor expansion at the previous iteration as

h*:—f(xn) éi:_f(x”)_}_lf (2n)

This two-step approach is a general procedure called predictor-corrector method and is used
very often in scientific computing. The idea is to first predict with a lower order but explicit
method and subsequently to correct the answer with a higher order method.

= h=-

Multiple Roots

So far we have only treated the case of a single root, but we also need to have fast methods to
compute multiple roots. In such cases, both the function and some of its derivatives vanish
at the root location, depending on the multiplicity.

Let us first examine the case of a double root and consider an initial guess zq; if it
is close to the exact root s then f(zo) — 0 and also f’(zg) — 0. Therefore, the standard
Newton-Raphson method will converge slowly due to the fact that the term

! — flr f//(xo)
g (ZE()) - f( 0) [fl(xO)P

will be finite or slowly decaying to zero, and

lim < = g'(s) £0,

n—oo e,
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which indicates only first-order convergence for a double root. We can improve convergence
by solving the quadratic equation with respect to h

51" o)l + f (o) + (o) = 0,

derived from Taylor’s expansion to obtain two roots h4 and then set
1 = X + hi,

and proceed with the iteration.
In the case of a triple root

’ 1"

f(xO) - 07 f (.CI?0> - O: f (.CI?(]) - 07

and we need to solve a cubic equation to obtain the proper distance in order to update the
guess, i.e.,

1 " 1 " /
o @)+ S (@o)h + fo(wo)h + f(wo) = 0.
By solving this equation we obtain three values hy, hs, hs, and thus we can update x; =
xo + hi, 1 =1,2,3, and so on for the next iteration.

A better approach in dealing with multiple roots is presented in the following. We assume
that the function f(z) has a root of multiplicity p, so we can write

f(z) = (z—s)’h(z), p>1, h(s)#0,
and

_ @
A=)

whose derivative as x — s determines the convergence rate. We obtain
ph*(x) + (x — s)°(W(2))* — (z — s)*h(2)h" (x)
- / 2 :
p2h?(x) {1 + (x — s);lh(é))}

g'(x) =1

Upon convergence we have that © — s, and thus

’

1
g(s)—=1—=%£0 for p>1.
p

Clearly, |¢'(s)| < 1, and the method converges, but it is only first-order. However, we note
that if we re-define g(s) so that
f(x)

g(z) = TPy

we obtain quadratic convergence, as ¢'(xz — s) — 0, and we use the theorem of convergence
of the previous section. The iterative process is then

l'n_i_l:l'n—pm, n:(],l,...
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Yet, another way to obtain second-order convergence for a multiple root is to define the
function
f(@)

f'(x)’

which upon convergence (x — s) has the simple form

¢(r) =

]
oz —s) — et

with a single root at x = s, and thus Newton-Raphson will converge quadratically fast.
However, this method requires three function evaluations, i.e. f(z), f'(z) and f”(z), and
thus it is more expensive than the previous one.

e In general, it is impossible to achieve second-order convergence with only one function
evaluation.

The initial guess is very important in starting the iterative process in the Newton-Raphson
algorithm. The following theorem states the proper conditions for convergence:

Theorem of Convergence of Newton-Raphson Method: Suppose that f’(x) # 0, that
f"(z) does not change sign in the interval [a,b], and that f(a)f(b) < 0.

@) B
Pyl < 0= 0) and | a5l < (0~ a)

then the Newton-Raphson method converges from an arbitrary initial approximation xo €
[a, 0].

If |

4.1.4 Passing Functions to Functions in C++4

One thing that we will find useful throughout this chapter is the concept of passing functions
to functions, just as you pass variables to functions. Why is this useful? When writing
modular code, quite often you write essential library routines once, and compile them once,
and then merely link them to your current program when you compile. Take for example our
Newton-Raphson algorithm above. Notice that the algorithm is described independently of
the particular function with which you are working; it merely relies on the fact that you have
a function f(z) and its derivative f'(x). We want to write code in such a way that we can
change our function and its derivative, and never have to change our core Newton-Raphson
implementation. This can be accomplished by passing functions to functions.

Just as in the case of a variable, within the argument of the function to which you are
passing the function, you must provide information as to what is being passed. In the case
of passing a function, the information that is needed is:

e The name that the function is to be called within the routine.

e The argument types of the function that you are passing.
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e The return value of the function that you are passing.

This procedure will be made more clear in the examples below.

Software

(o)  Putting it into Practice
Suite

In the following examples, there are two main concepts that we would like to draw your
attention to:

e Passing functions to functions.

e Using different functions with the same name.

We begin with passing functions to functions. The example below is our implementation
of the Newton-Raphson method. Recall that for this algorithm, we require both the function
and its derivative. We thus require two functions, here called “func” and “func_der” within
our code to be passed to the NewtonRaphson routine.

double NewtonRaphson(double x0, double (xfunc) (double),
double (xfunc_der) (double),
int max_iter, int multiplicity){
double x,p = (double) multiplicity;
const double tolerance = 1.0e-14;

for(int i=0;i<max_iter;i++){
x = x0 - p*func(x0)/func_der(x0);
if (fabs (func(x))<tolerance) break;
x0 = x;

}

return X;

Concerning the function above, we have the following remarks:

e Observe how the function above is notified that a function is being passed to it. In the
second argument of the argument list above, we specify as the argument

double (xfunc) (double)
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notifying the function of the return type (in this case double), name of the passed
function to be used within the function (in this case func), and the argument types
of the passed function (in this case double). In the third argument we pass another
function with the same return type and argument list types, but a different name

(func_der).

We wrote the if statement on one line — this is perfectly valid in C++. Since by
definition an if statement executes the next executable statement given that the check
is evaluated to be true, then we can condense an if statement having only one executable
statement to one line. We suggest that if the executable statement which follows the
if is complicated, you do not condense both the if and the next executable statement
to one line.

We can sacrifice memory for optimization. Notice that within the if statement, we
evaluate func(z). If the tolerance criterion is not met, we set z0 = z and begin
the iteration again, which requires that we evaluate func(x0). If the function func
is expensive to compute, it is advantageous us to save the function evaluation to a
variable which we use both in the if statement and in the case that the tolerance is not
met.

Look at the function below: What is the difference between this function and the one
directly above?

double NewtonRaphson(double x0, double (*func) (double),

double (*xfunc_der) (double), int max_iter){

double x, p = 1; // here, p stands for the multiplicity;

// we assume default p=1

const double tolerance = 1.0e-14;

for(int i=0;i<max_iter;i++){

}

x = x0 - p*func(x0)/func_der(x0);
if (fabs (func(x))<tolerance) break;
x0 = x;

return Xx;

The answer: The second function does not require you to pass the variable “multiplicity.”
The second implementation of the Newton Raphson function assumes the multiplicity is one.
Why do we point this out? Notice that we used the same function name for both functions.
C++ allows you to have multiple functions with the same name as long as the argument
lists are different. By different, we mean either in number of arguments or in the type of
variable.
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Key Concept

e C++ allows multiple functions with the same name as long as
the argument lists are different.

In the example above, the argument list of one function has less variables than the
argument list of the other function, and hence the compiler can distinguish them as two
different functions. This concept is useful in writing general software libraries, in that you can
handle many different function cases by having functions with the same name but different
argument lists.

WARNING Programmer Beware!

e Different return types
does not imply different
functions!

The compiler cannot tell the difference between two functions which have identical names
and arguments, but only different return types!

Also, observe that in the function above we use the keyword const. This identifier should
be used in conjunction with a variable declaration and initialization as follows:

const <type> <variable name> = <constant value>;

where <type> is the variable type, <variable name> is the variable name we have chosen
to use, and <constant value> is a value of the appropriate type which we would like to
remain constant. Once a variable has been declared constant within a function, it cannot
be changed within the function. Using const reinforces that something is meant to be
a constant, and guarantees that the programmer does not accidentally reset the value to
something else (which would imply that the value was not constant!).

We provide another example of the NewtonRaphson routine, now with three functions
being passed to this routine. In this case, we pass a functional implementation of the second
derivative of the function to this routine so that the convergence rate for multiple roots can
be computed.

double NewtonRaphson(double x0, double (xfunc) (double),
double (xfunc_der) (double),
double (*func_secondder) (double), int max_iter,
int multiplicity){
double x,p = (double) multiplicity;
const double tolerance = 1.0e-14;
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cout << M——mmmmmm " << endl;
cout << "x \t f(x) \t g’ (x)" << endl;

for(int i=0;i<max_iter;i++){
cout << x0 << "\t" << func(x0) << "\t" << (1-p) +
p*func (x0) *func_secondder (x0) /pow(func_der(x0),2) << endl;;
x = x0 - p*func(x0)/func_der(x0);
if (fabs (func(x))<tolerance) break;
x0 = x;

}

return Xx;

We can now put into practice what we have learned above. The following program uses
the last NewtonRaphson function to compute the roots of

(z—2)*x+2)=0.

#include <iostream.h>
#include "SCchapter4.h"

const double alpha = 2.0; // global constant

double func(double x);
double func_der(double x);
double func_secondder (double x);

int main(int argc, char * argv[]){
int max_iter = 100;
int multiplicity = 1;
double x0 = 1;

double x = NewtonRaphson(x0,func,func_der,func_secondder,
max_iter,multiplicity);

cout << x << " " << fabs(func(x)) <<endl;;

double func(double x){
double value = (x-alpha)*(x-alpha)*(x-alpha)*(x+alpha);
return(value) ;
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double func_der(double x){
double value = 3*(x-alpha)*(x-alpha)*(x+alpha)+
(x-alpha)*(x-alpha)* (x-alpha) ;

return(value) ;

b

double func_secondder(double x){
double value = 6*(x-alpha)*(x+alpha)+6*(x-alpha)*(x-alpha);
return(value) ;

}

Observe that we declare and define our implementations of the function, derivative func-
tion and second derivative function just as we have always done previously. Now, when it is
time to call the NewtonRaphson routine we place into the argument list the function names
in the appropriate places within the argument list, just as if we were passing these functions
as variables.

4.1.5 Secant Method

The Newton-Raphson method requires that we know the function analytically, so that we can
differentiate it analytically. However, there are instances where we only know the function
values and therefore we need to construct the derivative using finite differences. General
finite difference methods will be covered in detail in sections 5.1 and 6.1, but here we use
the simple backward-difference formula to approximate the first derivative, i.e.,

f(xn) - f(xn—l) '

Tp — Tp—1

F(xn) =~ (Af), =

The secant method extrapolates along the chord that connects the points x,, and z,,_; instead
of extrapolating along the tangent at x,,_; as the Newton-Raphson method. This is a first-
order, O(h), approximation to the derivative, however the overall convergence rate of the
secant method is about 1.6 instead of 2 of the Newton-Raphson method.

In comparing the secant method with the Newton-Raphson method in situations where
both approaches can be applied, we have a break-even point determined approximately by
the equation of cost in computing

f(z) =0 x (cost of f(z)).

Then if 6 > 0.4, it is more efficient to use the secant method. Note that (0.4 = 2 — 1.6)
reflects the difference in convergence rate of the two methods.
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Error Analysis of the Secant Method

In the following, we provide a brief proof on the convergence rate of the secant method,
following the derivation in [72].

We use Newton’s interpolating formula presented in chapter 3 and the mean value theo-
rem:

F(a) = faa) + @ = ) (A + (@ = 2am)(o — )51,
where we defined earlier I
@ =Lzl

Now x4 satisfies the secant method equation: 0 = f, + (zp11 — ) (Af)1.

We also have for the exact solution:
1 1
0=fot(s=2a)(Af)1+ 55 = Tur)(s — 20) f (&),
and by subtracting, we obtain
]. 1"
(5 = 2p1)(Af)1 + 5(3 —Tn1)(s — ) f (§) =0.

From the mean value theorem we have that for a special point &*, (Af); = f(¢*), and
therefore the error ,
/(&)

T oE)

——
C

€n€n—1 -

We have assumed in the above that f”(z) is continuous, and thus it is bounded, so we can
always find the constant C'. Let us now assume that

l€ny1] = Klea|™,
and substitute in the above to arrive at

1
Klea™ ~ Clea| (K~V™|en|V™) = m =1+ 1/m — m = 5(1 +5).

We can only accept the (+) sign and thus we obtain that the convergence rate is m ~ 1.618
(recall, this value is the golden ratio, which we computed from the Fibonacci sequence in the
exercises in chapter 2).

4.1.6 Systems of Nonlinear Equations

The Newton-Raphson method can be generalized in a straightforward manner to systems of
nonlinear equations by introducing the Jacobian operator. Let us consider the n x n system:

fl(.flfl,...,xn) = 0
fg(.Tl,...,ZEn) = 0

fn(xla"'7xn) = 07
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which we re-write in compact form as
f(x) = 0.
Then, the iterative Newton-Raphson method for the above system is:
Jn(Xng1 — X)) = —f(x,),

where we define the Jacobian operator as

y=
8xj
We also note that here the subscripts n, (n + 1), ... denote iteration number but also com-

ponents of the vector x.

Convergence: Next, we examine the conditions that guarantee that the Newton-Raphson
method for a system converges at a rate similar to the scalar equations, i.e., at quadratic
rate. This is done by examining the partial derivatives of

g(x)=x— J_lf(x)

and by differentiation

Og(x) ox 0 1+,
or, ~ 0z, 0 [T (0f(x)]

At the solution x = s, the above expression becomes

0g(s) o —1
or, I-J(s)J(s) —f(s) oz, — 0,

where I is the identity operator. Furthermore, in order to determine the last term -2-[J " (x)],
J

we note that

G, ol 0J a3 !
— I N===0=J1=4+13
c%cj[ ) ox 0x + ox '’
and therefore
03" — _J—la_JJ_l
(9:15]- (9:15]- '

From the analysis above, we see that we need only require that:
e f(x) have two derivatives, and

e J(x) be non-singular at the solution or root.
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Then, the convergence of Newton-Raphson’s method is quadratic, similar to the scalar case.
The theorem below gives the precise conditions for convergence.

Convergence Theorem: Let us assume that
1T (x0) IS a and [ xo—xi [|<D

and also that

n

82 fz (X)
c%cj 8xk

< Vx:||x—xq| < 2b, i,7=1,2,...

=

C
R
n

k=1

If in addition abc < 1/2, then the Newton-Raphson iterates are uniquely defined and lie in
the 2b-sphere, i.e.,
I —xo || < 20
2b

]}Lrgloxk:s, ||xk—s]|§?.

The problem with the Newton-Raphson method for systems is that it is computationally
expensive as it requires the solution of a linear system in each iteration to invert the Jacobian
matrix J. It also requires the construction of the n? entries in the Jacobian matrix, which
are partial derivatives of f(x). To this end, several modifications have been proposed and
many different versions are used in practice, depending on the particular application. Next,
we present two simple popular versions.

Modified Newton: Here the Jacobian is computed only initially and used for all subsequent
iterations, i.e.,

JO(Xn+1 - Xn) = _f(Xn) .
This, however, lowers the convergence to first-order, as can be seen for the scalar example
presented earlier for the square-root (here Jy = 2x.):

25170

T, +VC
(anrl - \/5) = [1 - 7\/_] (Jl'n - \/5>7
which clearly indicates linear convergence.

Quasi-Newton: Here we use the values from the first two iterations x1,Xy and we define
Ax =x; —xg and Af=f; —fy. The idea is to adjust J; to satisfy J;Ax = Af, and thus

(Af — JoAx)(Ax)T

i=dot R grax)

and then x, = x; — J7'f. Convergence is faster than linear but not quite quadratic. An
extension of this approach with modifications to preserve symmetry of J is used in finite
element methods [84].
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Continuation Method

We have seen so far through the theorems and through examples how crucial the initial
condition (guess) is for the Newton-Raphson method to converge, and this is especially true
for systems of nonlinear equations. In problems where we have to solve nonlinear equations
many times, e.g. in time-dependent simulations, we can use the solution of the previous
time step. Similarly, assuming that we study the instability of a system which depends on a
bifurcation parameter o, we need to solve

f(x, ) =0

for several values of . One approach that is often used in practice is to linearize the
equations for the critical value of the bifurcation parameter, say at a., e.g. right at the onset
of the bifurcation (instability), and compute the solution to the linear system of equations.
We can then use that solution as a initial guess to obtain a solution for a value of a > a
but with the difference (a — a,) not too large. This process can continue for a larger value
of a, and so on. This is the so-called continuation method, as we assume that the systems
of equations define dependent variables which are continuously differentiable in «.

If there is no bifurcation parameter explicitly included in the equations, we can still use
the continuation method by introducing a fictitious parameter o and rewrite the system of
equations as

h(x,a) = (1 — a)f(xo) — f(x), «€]0,1]

where X is a first solution guess which may or may not satisfy the original system f(x) = 0.
We see that for a = 0 the guess solution is a root for h(x), and for & = 1 we recover the
system we want to solve. This suggests that we can start with the guess solution x, and
a = 0 and continue in small increments of a up to o = 1.

4.1.7 Solution via Minimization:
Steepest Descent and Conjugate Gradients
In this section we present ways of solving systems of linear and nonlinear algebraic equations

by attempting to obtain the minimum of an appropriately defined functional. We will focus
on two useful methods: Steepest Descent and Conjugate Gradient.

Method of Steepest Descent

We have already mentioned the computational complexity associated with the computation
of the Jacobian J, but even worse, sometimes we may not be able to compute it at all. In
this case, we can still use an approach similar to the secant method in which we replace the
inverse Jacobian with a scalar constant «, as follows

Xpi1 — X, = —af(x,). (4.6)

The step size « is important, but it is the direction of the path that we follow, namely along
the tangent direction —f(x,,) that gives this method the name of the steepest descent.
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In order to appreciate this, let us introduce the anti-derivative of the system of equations
we try to solve, which is a scalar function

P
P(zy,...,2,) and f;= g— =0.
Li

We can then interpret f(x) as the gradient of the parent function P(x). Obtaining the
solution is equivalent to minimizing the parent function, as we set all its partial derivatives
equal to zero. For example, for a system of linear equations Ax = b, the parent function
that we minimize has the simple quadratic form

P(x) = %XTAX —x'b
as the location of the minimum coincides with the solution x = A~'b. For nonlinear
equations, however, the parent function is more difficult to obtain.

Since f = VP and the gradient operator points towards increasing values of the scalar P,
that is along paths of steepest ascent, it is clear that —f(x,) points along paths of steepest
descent (see equation (4.6)), and it is perpendicular to iso-contours of P(x). The iso-surfaces
of a positive-definite quadratic P(x) is an ellipsoid centered about the global minimum; the
semi-axes of the ellipsoid are related to the eigenvalues of the corresponding matrix A. If
the eigenvalues of A are all equal, then the iso-surfaces of P would be spheres, and thus the
steepest descent direction would point towards the sphere center. However, the eigenvalues
are typically very different in magnitude; in extreme cases the sphere may be a thin ellipsoid,
in which case convergence to the minimum may be very slow or may even fail. This is
expressed in the following theorem, which is valid for the linear case:

First Theorem of Convergence for Quadratic P: The eigenspectrum of the matriz A
defines the convergence of the steepest descent method as follows:

P(xy) + %bTA‘lb < (1 - ﬁ) (P(:z:kl) + %bTA‘lb ) :

Here \

)‘min

is the condition number of the positive-definite symmetric matrix A, and if it is large the
convergence is very slow. The condition number expresses the aspect ratio of the ellipsoid,
i.e., the ratio of its two semi-axes.

The step size a can be chosen properly so that a monotonic convergence is guaranteed.
The following theorem presents the appropriate choice for .

Second Theorem of Convergence for Quadratic P: Consider the vector f = VP =
Ax — b. By computing the step size in the steepest descent method from

_f'f
- fTAT

(0%

(4.7)
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then
P(x) = P(x —2af); and P(x—af)— P(x) <0

for an arbitrary vector x.

This theorem simply states that if we move by an amount 2« along the steepest descent,
we will end up on the other side of the ellipsoid formed by the iso-contours of P(x). If we
move only by an amount «, then we guarantee that we get closer to the global minimum.
This is proven by considering:

1
P(x —2af) = i(x —2af)T A(x — 2af) — (x — 2af)"b
which is re-arranged to
P(x — 2af) = P(x) — 2af" f 4 20" Af,

so by choosing « as suggested by the theorem we prove the first statement. The second
statement is straightforward to prove with this choice of a;, and upon substitution we obtain

—~

LD b,

P(x —aof) = P(x) — S AL S

The steepest descent algorithm with adaptive step size o for the linear system f =
Ax — b =0 can then be summarized as follows:

Steepest Descent Algorithm

o [nitialize : Choose x¢ = fy = Axg— b.

e Begin Loop : for n=1,2,...

L,
" AS,
Xn+1 = Xp — &nfn
£ = Ax, —b
endfor

e Find Loop

For nonlinear systems the above algorithm can also be used but the step size a,, may not
be optimum and convergence could be slow.

Conjugate Gradient Method - CGM

A more effective method than the steepest descent is one that takes not only adaptive steps
but also turns adaptively in the pursuit of the minimum of the parent function. To this
end, we can improve the search direction so instead of f(x,), we follow the direction of the
steepest descent p, which is conjugate to the previous search directions

pn = _fn + 6n—1pn—1 (48)
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where (3, 1 changes in each iteration adaptively and can be computed from the projection

B 7' (f, — f,_1)

1 = 4.9
Br—1 ff,lfnq ( )
as we will show later. The conjugate gradient formula is then

Xnpt1 — Xn = QpP,,s (4.10)

where p,, is computed from above and the step size «,, could also be computed adaptively.
For nonlinear problems there are no known formulas that can do that but for linear problems
there is a nice theory that we will present next. We note that for 3,_; = 0 we recover the
steepest descent method.

CGM for Linear Systems

We will present several different solution algorithms for linear systems in chapter 9, but CGM
is one of the very best. The success of the conjugate gradient method in obtaining solutions
of systems of nonlinear equations fast is based upon the theory of conjugate gradients for
linear systems of equations and the remarkable properties that are inherent in this method.
In the following, we develop this theory for the linear system

Ax=b=r=b — Ax,

where r is defined as the residual. It is zero exactly when we reach the minimum of the the
quadratic parent function

1
P(x) = axTAx —x'b,

where we assume that A is positive-definite and symmetric.

First, we need to define conjugate directions. In general, the vectors p and q are said to
be conjugate or A-orthogonal if
p’Aq=0.

The idea of the conjugate gradient method is to perform searches in a set of conjugate
directions p, satisfying the A-orthogonality condition, i.e.,

pZ-TApj = 0.
As an example, the eigenvectors of the matrix A satisfy this property since
VIiAvV; =viAv, = Aviv; =0, i#j.

Let us now assume that we have a symmetric positive-definite matrix A which has size
n X n, then at each iteration (k + 1) we obtain the conjugate direction, that is the solution,
from

Xp+1 = Xg + apy,
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where o will be chosen to minimize the quadratic functional, and p, will be computed
adaptively, as we will see below. First, we can show that

1
P(xp41) = P(xy) + 5042p£Ap,C — Ongl‘k,

where we have used ry = b — Ax;. Next, we minimize the quadratic P with respect to a by
setting

oP
2 =0
da 7
which leads to ( )
— P, Tk
ap == —"——.
Here we have defined the inner (dot) product
(a,b)=a’b

to simplify the notation, and we will use that in the following.

Theorem on Conjugate Directions: Let A be a symmetric positive-definite matriz of
size n X n. Then after n conjugate direction searches in the n-dimensional space, we obtain
r, = 0, and thus we reach a minimum of the parent function P(x).

Proof: We will make use of the A-orthogonality property defining the conjugate directions.
First, from the repeated action of the iteration x; = x;_1 + ax_1Pp;,_; We obtain

k—1
X — Xg = Z a;p; (4.11)
i=0

where xq is the initial (arbitrary) guess and

(pi7 ri)
(pi, Ap;)

as determined from the minimization of the quadratic form.

Let us now consider the (unknown) solution s and express it in terms of the n A-
orthogonal vectors that form the conjugate directions. This is possible as these vectors
are linearly independent due to the A-orthogonality. Specifically, we offset the solution by
the initial guess and then expand it as follows

oy =

n—1
s—Xo= Y VD;
§=0

where from the orthogonality again we can compute the coefficients

. (p;, A(s — x0))
’ (p,. Ap,)
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Next, we consider the coefficient 7, and subtract-off the scalar

(pk7 A(Xk: - Xo))
(Pr; Apy)

)

which is zero considering equation (4.11). We can then combine the two to get

" = (Pr; A(s —xo)) _ (Pg; A(xx — Xo))
(Px, APy) (Px> APy)
(Py, A(s — %))
(Pr: Apy)
(P 1)

(sza Apk) ’

where we have used the definition of the residual, i.e., ry = b — Ax;, = A(s — x;).

Now by comparing the coefficients v, and oy, we see that they are identical and therefore
the n-term expansion of the conjugate direction iteration (x; — Xg) is identical to the exact
solution (s — xg). This result is indeed remarkable!

While the above theorem is valid for any set of conjugate directions, efficiency is what
distinguishes the conjugate gradient algorithm. For example, the use of the eigenvectors of A
would be prohibitively expensive as it takes much more computational work to compute the
eigenvectors of the matrix than solving the linear system! Another approach would be to use
the Gram-Schmidt algorithm to obtain conjugate directions but this is also very expensive
and would amount to O(n?*) work.

To this end, the idea of Hestenes & Stiefel [55] to compute iteratively the search directions
p is the keystone of this method. It is very efficient and requires the storage of two or three
vectors only. Initially, we set p, = ro, and then we iterate

Pit1 = Tht1 + BePps

where we need to determine the scalar, 3, by using the A-conjugate property of the search
directions pj. For this, we take the inner product of the above equation with p} and impose
A-orthogonality on the left-hand-side

0= (pk7 Apk+1) = (pka Arkﬂ) + Bk(plm Apk>7

and this leads to
By = (g, Arppa) _ (Tet1, APy)
(Pr> APy) (P, Apy)
which can always be computed since the denominator is guaranteed to be non-zero. The last

equality is valid since A is symmetric.

Next, we prove some useful relationships between the orthogonal directions and the resid-
ual which can be used to reduce even further the computational complexity of the conjugate
gradient algorithm. First, it is clear that using its definition we can compute the residual
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iteratively as well, as follows

rep1 = b— Axpp
= b— A(xy + axpy)
= (b— Axy) — o Ap,
= 1 — o Ap,.

Using the above equation we now show that

(rip;) = 0, i#j (4.12)
(ri,p;) = (ri1y) (4.13)
(rjr;) = 0, i#] (4.14)

This is shown by induction, that is assuming that the first equation above is valid we will
also show that (r;y1, pj) = 0. We substitute r;; from the iteration equation above and then
it becomes obvious; we proceed similarly for the other two equations.

Based on these relations, we can also prove that [ is the ratio of the square of the
magnitudes of two successive gradients, i.e.,

B = _(plm Arpy ) _ (Thy1, Trp1)
(pk7 Apk) (rkv I'k)

We now finalize the CG algorithm for linear systems of equations:

Conjugate Gradient Algorithm

e [nitialize : Choose Xg = py =19 = b — Ax,.
e Begin Loop : for k = 1ito n

4= p,.Ap,
X1 = X + axPy,

rk:+1 =TI — ozkApk

B, = [CYFSR yEsY)
k (g, Ty)

Pii1 = Tht1 + BePy

endfor
e lind Loop

This code represents the ideal algorithm that terminates after exactly n iterations; it
assumes that the orthogonality of the conjugate directions is preserved independently of the
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matrix A, i.e., its size and its structure. In practice, however round-off errors may destroy
such orthogonality resulting in incomplete convergence. The convergence process then is
controlled by the condition number of A as discussed in chapter 9, where preconditioning
techniques for convergence acceleration are also presented.

The simplicity of the CG algorithm both in terms of coding as well as in terms of com-
putational complexity is amazing! We only need to perform one matrix-vector product, i.e.,
Ap,., one dot product, and three daxpy’s operations, all of which can be implemented very
efficiently using the BLAS routines discussed in section 2.2.7.

Software

(o)  Putting it into Practice
Suite

Here we provide our implementation of a non-preconditioned ConjugateGradient routine.
We also use a stopping criterion for convergence in anticipation of round-off errors. Our
program can then be terminated before or after n iterations, depending on the matrix A and
the tolerance level we use. For this implementation, we are using classes from the software
suste: namely, SC'Vector and SCMatriz.

The beautiful thing about the implementation below is that by using classes (and all the
mechanics that are available for using classes in C++), the CG method can be described
succinctly in a few lines of code. Below, we present our implementation:

SCVector ConjugateGradient(SCMatrix A, SCVector b, SCVector x0){
int dim = x0.Dimension();
const double tolerance = 1.0e-14;
SCVector x(dim),r(dim),v(dim),z(dim);

double c,t,d;
x = x0;
r = b - A*x;
v =T,
¢ = dot(r,r);

for(int i=0;i<dim;i++){
if (sqrt(dot(v,v))<tolerance){
cerr << "Error in ConjugateGradient: execution "
cerr << "of function terminated" << endl;
break;
}
z

= Axv;
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t = c¢/dot(v,z);
X = X + txv;
r =r - t*xz;
d = dot(r,r);
if (sqrt(d) < tolerance)
break;
v =r + (d/c)*v;
c =d;
}
return Xx;

}

In this function, we have used classes for encapsulating the ideas of a vector and a matrix,
and we have used the idea of overloaded operators to perform the mathematical operations
necessary. Notice that we are using operators like ‘+’, -> and ‘*’ between variables of type
SCVector and SCVector, and between SC Matrixz and SCVector. As we discussed in 3.1.8,
this is accomplished by overloading the operators, that is, extending the definition of these
operators to include operations between our newly created data types.

We now present a simple main driving program which uses the function above.

#include <iostream.h>
#include "SCmathlib.h"
#include "SCchapter4.h"

int main(int argc, char * argv[]){
int dim = 4;
SCVector x(dim),b(dim) ,x0(dim) ;
SCMatrix A(dim);

// Set our initial guess
x0(0) = x0(1) = x0(2) = x0(3) = 1.0;

for(int i=0;i<dim;i++){
for(int j=0;j<dim;j++){
A(i,j) = 1+(GE+D)*(G+1);

/* We do this to make sure that the symmetric matrix that
we create has a determinant which is non-zero */

if(i==3 && j == 2)
AGi,j) = 12;

if(i==2 && j == 3)
AGi,j) = 12;
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cout << "The Matrix A that we are using: " << endl;
A.Print();
cout << endl;

SCVector y(dim);

y(0) = 2.;

y(1) = -3.;

y(2) = 5.43;

y(3) = -22.56;

cout << "The exact solution is: " << endl;
y.Print(Q);

cout << endl;

b = Axy;

cout << "The right hand side, b, of Ax=b: " << endl;
b.Print();

cout << endl;

x = ConjugateGradient(A,b,x0);

cout << "The approximate solution using CG is: " << endl;

x.Print();
cout << endl;
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4.2 Numerical Integration Methods

Approximate integration of a function is a very old subject. It was first performed rigorously
by Archimedes who used the method of inscribed and circumscribed polygons to obtain lower
and upper bounds for the value of the area of a circle. He also computed the center of mass
and center of buoyancy for many complicated figures, a task that requires accurate integra-
tion. Simpson suggested a very accurate formula in the mid-eighteen century, and Gauss
proposed his famous quadrature rules in the early part of the nineteen century. Numerical
discretization methods such as finite elements and boundary elements, in particular, depend
critically on efficient numerical integration procedures. There exist both simple quadrature
rules as well as more advanced approaches, which we present next. More details on inte-
gration can be found in the books of Davis & Rabinowitz [23] and Ghizzetti & Ossicini
[43].

4.2.1 Simple Integration Algorithms

A
f(x)

a ~hi b a rhq D

Figure 4.3: Trapezoid (left) versus midpoint-rectangle (right) rule: The accuracy is of the same
order, O(h?) for both, but surprisingly the midpoint-rectangle wins by a factor of two.

-

The simplest quadrature formulas are based on either piecewise constant approximations
of a function in the interval of interest

1= [ fwyia,

as shown schematically in figure 4.3 (right) or on piecewise linear approximations (left).
Assuming that h is the size of each of the n equal cells involved in the discretization, we
obtain the approximations:

o Muidpoint-Rectangle Rule:
i=1
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This is implemented in the code below.

Software
(o)  Putting it into Practice
Suite

We present a functional implementation of the Midpoint Rule. Notice that we are
continuing to use the concept of passing functions to functions.

double MidpointRule(int level, double xleft, double xright,
double (*func) (double)){
int i, nsteps = (int) pow(2,level)-1;
double h = (xright-xleft)/pow(2,level);
double sum = 0.0;

for(i=0;i<=nsteps;i++)
sum += func(xleft + (i+0.5)*h);

sum *= h;

return sum;

e Trapezoid Rule:
1 1
I ~T(h) :h[§f0+fl+...+fnfl+§fn]' (4.16)

This is implemented in the code below.

Software
(o)  Putting it into Practice
Suite

We present a functional implementation of the Trapezoidal Rule. Observe the use of
short-hand operators in the function below. We are able to short-hand both addition
and multiplication.
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double TrapezoidRule(int level, double xleft, double xright,
double (*func) (double)){
int i, nsteps = (int) pow(2,level)-1;
double h = (xright-xleft)/pow(2,level);
double sum = 0.0;

for(i=1;i<=nsteps;i++)
sum += func(xleft + ixh);
sum *= 2;

/* Add the first and the last point to the summation */
sum += func(xleft) + func(xright);
sum *= 0.5%h;

return sum;

Note that, by definition, the following identity applies

1
T(h) = §[T(2h) + R(2h)],
so we can easily relate the two formulas. Intuitively, one would guess that the trapezoid
rule may be more accurate than the midpoint-rectangle because of the higher-order approx-
imation involved, i.e. linear versus constants. However, as we will see below the quadrature

error in the trapezoid rule is twice the quadrature error in the midpoint-rectangle rule!

Quadrature Error

To obtain the quadrature error for the above methods we assume that f”(x) is continuous
in [a,b]. We then consider a grid consisting of the (m + 1) points

[.CI?(], Ty, ... 7xm]7
and construct the unique polynomial
p(r) =co+cr(x —xp) +ca(x—zo)(x —21) + ...+ e —x0)(x —21) ... (T — 2pyq) (4.17)

so that p(x;) = f(x;),7 = 0,1,...,m. This is Newton’s formula of approximating f(x) in
the interval [a,b] where xy = a and x,, = b. Then, if f(x) possesses continuous derivatives
of order at least (m + 1), we obtain

_ ()

(x —zo)(x—21) ... (T — ) (4.18)

for some point £ € [a,b]. We can then obtain the quadrature error by simply integrating the
right-hand-side in the above equation and by providing an upper bound for the magnitude
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of the (m + 1) derivative.

For the Trapezoid rule we obtain on each cell i:

F=r)~ [ paar=—[" T w )@ rgdn, €€ lrial
and thus . N
& ~ —§f”(§z‘) /x;l(f — @) (x — @;)dw.
Let . : oy
r=ux;i_1+hs, eiT%—af"(fi)/o hs h(s—l)hds:%.

The above is the local quadrature error on the cell . We can easily obtain the global error
by summing over all the cells i, i.e.

(b — a)h?

=3~ O

i=1
where
n
b—a=) h
i=1
Therefore, the trapezoid rule results in second-order convergence rate O(h?) for the global
€eITor.

For the Midpoint-Rectangle rule we need to expand the function around the midpoint
o — (33'1;1 -+ JZ'Z)/Q in the cell 7 :

2
(@) % a0+ (o = 20)ao) + T2 ),
where £ € [a,b]. Then the error for the integral R;(h) is
R = Ri(h) — / fla)de = — / (o) (z — zo)da — / / 2@ ( — )2dz
hS
— f//(g)ﬂ .

The above is the local quadrature error on the cell . We can easily obtain the global error
by summing over all the cells i, i.e.

& (b — a)h?
24 ‘

Comparing now the global quadrature errors ef* and €7 we see that, surprisingly, the midpoint-
rectangle rule approximates the integral I better, as its corresponding error is half of that
for the trapezoid rule!
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Better Trapezoid Rules

We present here two efficient ways of improving the second-order accuracy of the trapezoid
rule by

1. Correcting the end-values,
2. Interval subdivision.

First, the corrected trapezoid rule is based on a trigonometric interpolation of the
function, unlike the Newton linear approximation used for the standard trapezoid (equation
(4.17) with m = 1). It adds to the standard trapezoid formula a correction term at the ends,
le.

To(h) = W o+ b o+ Fus + 50+ (0 = PO (4.19)
with corresponding quadrature error
a1 )~ (@)
720

Clearly, for functions which are periodic in the interval [a, b], a very high degree of accuracy
is achieved without the addition of the extra correction terms.

Another efficient method to increase the formal order of accuracy of the trapezoid rule
is Romberg’s method . This method, which is also called extrapolation to the limit, is a
systematic procedure of using subdivision of intervals with the trapezoid rule. It is based on
Richardson’s extrapolation idea which is used most often in numerical differentiation.

Let us define a series of trapezoid sums

T07 T17 T27"'

by successively bisecting the interval of integration

Ty = 220f(w0) + Sz + o)
T = Zf(e) + 2 (0 + ) + Flao + 20

2k_1

T, = %[f(x0)+2 N7 flwo +ihy) + f(xo + 25hy)).

i=1

Then the error on each grid (k) is: €, = I — T}, where [ is the exact value of the integral.
Because of the quadratic convergence, we have

1
€pr1 =~ ZG]C.
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We also have for £k =0,1,...

I = TO + €
1 1 4T, — T,
I = Ti+ea~Ti+-e="T+-(I-T)) = ~—"—-2,
4 4 3
In general, we have by induction
ATy, — Ty
[]i _ k ; k—1 ’

which defines a one-step correction. Expanding T}, and Tj_; and substituting in the above
formula we obtain a quadrature error for I} which is proportional to h*, competitive with
Simpson’s rule (see below). Thus, the error in successive terms of I} is reduced by a factor

of 1/16 and we obtain a two-step correction:
o 1611
" 1

Continuing this process (m) times, we get the recurrence formula

e

Im =
k 4m — 1 ’

m>1k>m. (4.20)

To completely define the recursive process, we also need to specify the initial conditions, i.e.,
=T I, =T

The corresponding quadrature error in Romberg’s method is
€~ p2HE Fem+2) ().

This method uses a fine grid (k) and a coarse grid (k — 1) and extrapolates the standard
trapezoid rule. The reason why this algorithm works is because we know that the error
structure has the polynomial form

Clh2 + Cgh4 + 03h6 + ...

for the trapezoid rule. So the idea of the method is to use more than one grid, a fine
grid and a coarse grid, and then at the first correction level construct the extrapolant, at the
second correction level construct the extrapolant of the extrapolant, and so on. By weighting
appropriately these successive constructs, we can extrapolate the resulted quadrature values
to higher accuracy.

In theory, Romberg’s method gives arbitrarily high convergence rate but in practice
round-off error slows down convergence and accuracy.

We present a functional implementation of Romberg’s integration. Notice that this im-
plementation consists of two components:
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Software

(o)  Putting it into Practice
Suite

1. An implementation of the trapezoid rule.

2. A recursive definition for Romberg integration.

In the case below, the stopping condition for the recursion is when the variable m is equal
to zero. When this is true, we execute the trapezoid rule. For all other valid values of m we
recursively call the Romberg function with appropriately changed arguments.

double Romberg(int m, int k, double xleft, double xright,
double (*func) (double)){
double RI,I1,12;
double coeff = pow(4.0,m);

if(k < m){
cerr << "ROMBERG::Value of k must be >= m; setting k=m\n";
k = m;

}

if (m==0){
RI = TrapezoidRule(k,xleft,xright,func);

}

elsed{
I1 = Romberg(m-1,k, xleft,xright,func);
I2 = Romberg(m-1,k-1,xleft,xright,func);
RI = (coeff*xI1l - I2)/(coeff-1.0);

}

return RI;

Simpson’s Rule

The idea in Simpson’s rule of integration is to connect three consecutive ordinates by a
parabola and use Newton’s approximation formula to obtain the quadrature error. The
standard or 1/3 Simpson’s rule employs an even number of cells. For the i cell defined by
(1, ;, 41] we obtain

i1 h
/Z f(@)dz » Si(h) = 5lfir +4fi + fin] (4.21)

i—1

and the Simpson quadrature for the entire interval [a, ] is

S(h) = 2lfo + 4+ 2o+ Afucs + ful (1.22)
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where m is an even number.
To obtain the error in Simpson’s formula we employ equation (4.17) with m = 2, then

S 2t(t_1>(t_2) " o
e =nf S )t =0,

thus the leading term in the error is zero, so we have to integrate the next term

s, 2tE=DE=2)t=3) 4wy P
S=h o WOt =~ f(E),

so the local error is O(h®). The global error can be easily obtained by replacing h = (b—a)/2,

i.e.
S__(b—a) 4 p(4)
= "5g0 ")

It is interesting to note that in Simpson’s rule we obtain O(h?*) convergence with a quadratic
polynomial fit as we take advantage of the even number of cells and the corresponding
cancellation in the error terms. In fact, a cubic polynomial fit in equation (4.17) leads to
the 3/8 rule

Si(h) = %h[fi—l +3fi + fis1]

with an error
S 3h°

_ 2" @
€& = 80f4(§)’

which is larger than the local error of the 1/3 Simpson’s rule corresponding to lower order
polynomial approximation. However, this rule is useful when an odd number of cells is
required in the integration, which can be broken up into two subintervals: The first one
consists of 3 cells (3/8 rule), and the second one consists of the rest, which corresponds to
an even number of cells where we apply the standard 1/3 Simpson’s rule.

Example

As an example, we put into practice several of the functions
implemented above (see software suite). We are attempting to
Software | approximate the integral of 2* on the interval [0, 1], for which
@ we know the exact value to be 0.2. In the program, we com-
Suite pute the midpoint rule, trapezoid rule, and Simpson’s rule ap-
proximation for ten levels. The output of the program is the
following table:

Level Midpoint Trapezoidal Simpsons

0 1.375000e-01 3.000000e-01 8.333333e-03
1 3.984375e-02 8.125000e-02 5.208333e-04
2 1.030273e-02 2.070312e-02 3.255208e-05
3 2.597046e-03 5.200195e-03 2.034505e-06
4 6.505966e-04 1.301575e-03 1.271566e-07
5 1.627326e-04 3.254890e-04 7.947286e-09
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4.068837e-05
1.017242e-05
2.543125e-06
6.357825e-07

8.137822e-05
2.034493e-05
5.086255e-06
1.271565e-06

4.967053e-10
3.104406e-11
1.940226e-12
1.212364e-13

From the data presented above, we observe the following:

e The trapezoid rule has, in fact, an error which is about twice that of the midpoint rule,
just as predicted by the theory!

e Both the midpoint rule and the trapezoid rule exhibit second-order convergence, as
predicted by the theory!

e For Simpson’s rule, we obtain fourth-order convergence, as predicted by the theory!

Key Concept

e Theoretical results should be used to test the validity of your
implementation.

4.2.2 Advanced Quadrature Rules

All integration methods in the previous section are based on Newton’s formula and low-
order polynomial approximation. We can extend these methods to high-order polynomial
interpolation using Lagrangian interpolation, see section 3.1. The objective is to maximize
the order of accuracy for a fixed number of points whose locations are allowed to vary. This
leads us to Gauss quadrature. For example, suppose that we want to evaluate the integral

N+

0o vz’
the exact value of which is 8/3. We can only use n = 2 quadrature points and Gauss
integration to compute the above integral exactly!

The important difference with the methods of the previous section is the location of the
quadrature points. These are special points, as we will explain, and typically they are roots
of an appropriate orthogonal polynomial. The Legendre polynomial is the most-often used
but Chebyshev, Laguerre and Hermite polynomials are also used. For the aforementioned

integral, the two special points are determined from the roots of the second-order Legendre
polynomial

Py(s) = %(332 —1), se[-1,1]



4.2. Numerical Integration Methods 249

i.e., sz = +1/4/3. These special points need to be mapped in the interval of integration
[a, b], so we obtain

a+b b—a
r =

5 T3 where z € [a,b] and se€[—1,1].

Let us now derive the general Gauss quadrature. We assume that the values

f(x1), fza),.. ., fln)

cannot provide sufficient information for determining f(z). Let = x;, and correspondingly
yr = f(zx), and determine the polynomial p,_;(z) which fits the coordinates yi, ya. .., Yn-
We can employ Lagrange’s interpolation by constructing the fundamental polynomial

F.x)=(x—z1)(x —23)...(x — )

and define
1 Fu(x) :
h; = =1,2,...
Z(‘r) Fé(Iz)f—ZEZ’ G ) < ) T
hi(xg) = 0; hi(z;) =1, by construction.

We then obtain the polynomial

Pn—1(2) = y1ha (x) + yaho(z) + ... + yphn ()
where
pn—l(fk) = Yk-

The Gauss integral can then be approximated as :
1 n
Io = Pno1(z)dr = Z Y / X hi(z)dx = Z YpW
- k=1

where

are the weights of integration, which are independent of the integrand.

Gauss’s idea is then to add an extra point z,,,1 without changing xx, k < n or equivalently

the term @
F.(x

hoii(z) = =———,
* FnJrl(xTH—l)

and thus the (n + 1) weight
1
Wpaq ~ / F,(x)dx.
-1
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Similarly, if we add m new points

Tnt+1; Tnt2s -y Tntm

m points

then the (n + 1) weight is obtained from
+1 A
wopr = [ ()Gl (2)da,
-1

where G?,_;(x) is a polynomial of order (m — 1). Now, if we impose that all moments of
F,(x) up to (m — 1) are zero, i.e.,

1
/ F(x)afdz, k=0,1,...,m—1

-1
then orthogonality leads to
+1 ‘
/ Fo(2)Gl_ (x)dz =0,
-1
since G is a linear combination of powers z¥. We can add up to n points to the original
grid, and thus we can effectively double the number of points considered with only half the
weights!
Therefore, the Gauss formula
n
I =) yewy
k=1
that employs a grid of n points results in quadrature accuracy equivalent to a grid corre-
sponding to 2n coordinates using the simple rules of the previous section.

Jacobi Polynomials

Jacobi polynomials P#(z) are a family of polynomial solutions to the singular Sturm-
Liouville problem. A significant feature of these polynomials is that they are orthogonal
in the interval [—1,1] with respect to the function (1 — z)*(1 + x)” (o, 8 > —1). We have
already presented the Chebyshev polynomials in section 3.1.5 — they are a subset of Jacobi
polynomials for the special case that a = = —%. A detail account of their properties can
be found in Abramowitz & Stegun ([1]: chapter 22) and also in Ghizzetti & Ossicini ([43]:
chapter 3.4).

Differential Equation

(1—2)(1+ :Ir)d?;f) +B-—a—(a+p+2)x) dz(;) = —\y(x) (4.23)
% (1—2)"(1+ x)lwdz;—(f) = (1 —2)*(1 +2)’y(x) (4.24)

Ap = nn+a+pB+1)
y(x) = Pri()
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Special Cases

Legendre Polynomial a=£=0) — P,(x)="P"(z)

n _1_
) = Tu(a) =Tt

N|—=

()

Chebychev Polynomial (o= (= —

Recursion Relations

PP(x) = 1

PRo(a) = fla— B+ (at B+ 2)
a,Pifi(x) = (a} +abz) PP (w) — an Pl (o) (4.25)
L= 2n+1)(n+a+B+1)2n+a+F)
2= (2n+a+f+1)(® -5
5= n+a+B)2n+a++1)2n+a+5+2)
4

= 2(n+a)(n+pB)2n+a+F+2)

SRS

= Bi(x) PP (x) + by (o) P () (4.26)

() o
() = @n+a+p)1—a?)
(x) = nla—5—02n+a+ )]
(z) = 2(n+a)(n+p)

Special Values

pab(1) = <n+0‘> — (n+a)t (4.27)
Pri(—z) = (=1)"P}(x) (4.28)

Orthogonality Relations

/11(1 —2)*(1 4 )’ PP (2) PP (x)dx = 0 n#m (4.29)
[0 =2t 2 P (@) P ) =

-1
208 Tn+a+1)I'(n+B+1)
2n+a+p+1 nllln+a+pG+1)

Evaluation of the Zeros of Jacobi Polynomials

The formulas for the weights of the general Jacobi polynomials (see table 4.3 for the
Legendre case) have a closed form in terms of the grid points x;. In general, however, there
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are no explicit formulas for the grid points. These are defined in terms of the roots of the
Jacobi polynomial such that

Pﬁi’ﬁ(l‘z}f) =0 1=0,1,...,m— 1.

The zeros x?rg can be numerically evaluated using an iterative technique, such as the

Newton-Raphson we studied in the previous section 4.1.3. However, we note that the zeros
of the Chebychev polynomial (a« = = —3) do have an explicit form,

_1_1 20+ 1
x.2’2:—cos<12+ 7'(') i:(),...,m—l,
m

_1
and so we can use x,,. ° as an initial guess to the iteration.

To ensure that we find a new root at each search we can apply polynomial deflation or
reduction, where the known roots are factored out of the initial polynomial once they have
been determined. This means that the root finding algorithm is applied to the polynomial

_1
2

P (o)
A [
where z; (i =0,...,n — 1) are the known roots of P (z).
Noting that
fn-n() _ Po(x)

fron(@) — [PRP(2)] = PoP () S0 1) (w — )]
a root finding algorithm to determine the m roots of P%#(z) using the Newton-Raphson
iteration with polynomial deflation is

fork=0,m—1
r= x;i :
if(k>0)r=(r+z,1)/2
For j = 1,stop
S = Zf:_ol (T,lxi)
_ Pyl (r)
PRt =P (s
r=r+9
if (§ < €) exit loop
endfor
Ty =T
endfor

Here € is a specified tolerance. Numerically, we find that a better approximation for the
11

initial guess is given by the average of r = x; »" * and xj_;. The values of PP (z) and

[P28(z)]" can be generated using the recursion relationships (4.25) and (4.26).
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n Abscissas z; Weights w;
2 +0.577350 = + ! 1
' V3
8
3 0 —
9
5
+0.774597 9
4 +0.339981 0.652145
+0.861136 0.347855
5 0 0.568889
+0.538469 0.478629
+0.906180 0.236927

Table 4.3: Zeros of Legendre polynomials P, (x) and corresponding weights.

In the following, we first use the above formulas to compute the Jacobi polynomials and
its derivatives, and subsequently implement the root finding algorithm given above.

Software

(o)  Putting it into Practice
Suite

Here we present an implementation of the Jacobi polynomials. Observe that our definition
relies on the recursive nature of these polynomials, and that we have specifically implemented
the three-term recurrence relation immediately into code.

double JacobiPoly(int degree, double x, double alpha,
double beta){
double value;
double tmp,degml;
double al=0.,a2=0.,a3=0.,a4=0.;
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switch(degree){
case O:
value
break;
case 1:
value
break;
default:
degml = degree-1.0;
tmp = 2.0*degml+alpha+beta;
al= 2.0*(degml+1)*(degml+alphatbetat+l)*tmp;
a2= (tmp+1)*(alpha*alpha-beta*beta) ;
a3= tmp* (tmp+1.0)*(tmp+2.0);
ad= 2.0*(degml+alpha)*(degml+beta) * (tmp+2.0) ;

1.0;

0.5%*(alpha-beta+(alphatbeta+2.0)*x) ;

value = ((a2+a3*x)*JacobiPoly(degree-1,x,alpha,beta)-
ad*JacobiPoly(degree-2,x,alpha,beta))/al;

return value;

Similarly, for the derivatives of the Jacobi polynomials, we rely on the three-term recur-
rence relation to provide us a fast way of implementing the derivative.

double JacobiPolyDerivative(int degree, double x,
double alpha, double beta){
double value;
double tmp;
double bl1,b2,b3;

switch(degree){
case O:
value = 0.0;
break;
default:

tmp = 2.0*degreet+alphatbeta;

bl = tmp*(1.0-x%*x);

b2 = degreex(alpha-beta-tmp*x) ;

b3 = 2.0x(degree+alpha)* (degree+beta) ;

value = (b2xJacobiPoly(degree,x,alpha,beta) +
b3xJacobiPoly (degree-1,x,alpha,beta))/bl;
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return value;

b

To compute the zeros of the Jacobi polynomials, we use a reduction technique.
In the code below, you will notice that we use two primary concepts:

e We rely on our previous function definitions for the Jacobi polynomials and their
derivatives (given directly above).

e We rely on using Newton-Raphson iteration for obtaining the root.

void JacobiZeros(int degree, double *z, double alpha,

double beta){

int 1,]j,k;

const int maxit = 30;

const double EPS = 1.0e-14;

double  dth = M_PI/(2.0*degree);

double poly,pder,rlast=0.0;

double sum,delr,r;

double one = 1.0, two = 2.0;

// If the degree of the polynomial is zero (or less),
// then there are no roots
if (degree<=0)

return;

for(k = 0; k < degree; k++){
r = -cos((twoxk + one) * dth);
if(k) r = 0.5%(r + rlast);

for(j = 1; j < maxit; ++j){
poly = JacobiPoly(degree,r,alpha,beta);
pder = JacobiPolyDerivative(degree,r,alpha,beta);

sum = 0.0;
for(i = 0; 1 < k; ++1i)
sum += one/(r - z[i]);

delr = -poly / (pder - sum * poly);
r += delr;
if( fabs(delr) < EPS ) break;

}
z[k] = r;
rlast = r;
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return;

}

Combining everything that we have done above, we can now implement one function
which, when called, returns the zeros and the weights of the Jacobi polynomial of your
choice. Notice in this function that we assume that both arrays z and w have already been
allocated.

void JacobiZW(int degree, double * z, double *w,
double alpha, double beta){
int i;
double fac, one = 1.0, two = 2.0, apb = alpha + beta;

JacobiZeros(degree, z, alpha, beta);

for(i=0;i<degree;i++)
w[i] = JacobiPolyDerivative(degree,z[i],alpha,beta);

fac = pow(two,apb + one)*GammaF(alpha + degree + one)x*
GammaF (beta + degree + one);
fac /= GammaF(degree + one)*GammaF (apb + degree + one);

for(i = 0; i < degree; ++i)
wli] = fac/(wlil*w[i]l*(one-z[i]l*z[i]));

return;

We note that the orthogonality conditions are satisfied automatically by the Legendere
polynomials P, (z). The zeros of these polynomials will then determine the locations of the
special points z;. Some values are shown in table 4.3; these values were computed using the
JacobiZW function presented above with both the alpha and beta arguments set to zero.

Also, the fast convergence in the error in Gauss quadrature is due to the fast convergence
of the Legendre interpolation. In addition, the computational advantage results from the
fact that we employ only half of the (2n) coordinates explicitly. Equidistant interpolation
is not a well-convergent process as we have seen in section 3.1.4, and for functions with
singularities inside the “oval region” (see section 3.1.4) convergence is not guaranteed. The
convergence in Legendre distribution is always guaranteed.

Example: Let us compare the Gauss quadrature with the trapezoid rule for the integral
evaluation

4
/ vetdr = 3¢ + 1 2 164.79445.
0



4.2. Numerical Integration Methods 257
Using the trapezoid with rule 9-coordinates equidistant we obtain
1 1
T(h) = (1/2) (50 +0.824361 4 ... + 5218.3926) = 170.42826

with error
el = 5.63381.

Next, we employ Gauss quadrature using 5-coordinates obtained from Legendre’s zeros
T =2+42s,, s, €[—1,1]
which in the domain of interest are

2(1 4 0.906179846)

2(1 £ 0.538469310).

Table 4.2.2 contains the 5 coordinates in physical space and also the corresponding
weights which also need to be corrected, as follows

Wi, X

because

T Wi
0.18764031 | 0.47385377
0.9230618 | 0.95725734

2 L.13777778
3.07693862 | 0.95725734
3.81235969 | 0.47385377

Table 4.4: Five Gauss-Legendre coordinates and corresponding weights in the interval x € [0, 4].

The result is:

5
I =Y yrwy = 1.64794290, with error ¢“ = 1.5981 x 107,
1

which is four orders of magnitude less than the result obtained with the trapezoid rule. We,
therefore, find that the good interpolation with ninth-order Legendre polynomials leads to
good integration with effectively 9 total coordinates.
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Gauss Quadrature Error

The error in Gaussian quadrature is relatively difficult to obtain. The standard formula
employs the (2n)"" derivative (see Lanczos [66]), i.e.,

(n1)*]* 2 fe(g)
€~ LGﬂ] m+1 (2n) (4.30)

where ¢ € [—1,1]. However, such an error cannot be easily computed, and also this bound
is not very sharp as it is based on the evaluation of a very high-order derivative.

An alternative estimate proposed by Lanczos is obtained as follows: Let us start with
the identity

= S+ f(=1)

Then, if we consider the error €* in the Gauss quadrature of the function (zf’) we have that
it is equal to the quadrature error of the function (zf)" minus the quadrature error in f
because (zf) = xf’ + f. Therefore,

/ll[xf(x)]'dx = /11 xf'dx + /11 f(z)dx

= ) F-) ~ To— 3w ().

k=1

In the case of a general interval [a, b] instead of [—1, 1] we have

10)+ 5@~ 1o~ (57 3 wnees )

_b—a
2

*

€

The next key step relies on the assumption that we integrate a function f(z) which is
relatively smooth, and thus we can assume that the unknown point is at & ~ 0. Then
the term in the Taylor expansion of the error (equation (4.30)) is approximately equal to
the coefficient £2" in the Taylor expansion around the origin £ = 0. On the other hand, the
expansion of (£f(§)) is identical to the original expansion except from the shift in coefficients
and thus the ag, coefficient is multiplied by (2n + 1). By comparison then we can obtain
that |
G *
o1
which relates the Gauss quadrature error to the first derivative of the function. If the function
f(z) does not meet the smoothness criterion, the above estimate overpredicts the quadrature
error. If f’(x) changes sign in the interval [a, b], the above procedure breaks down completely.

J

Weights and Weighted Moments

Let us consider the grid of figure 4.4.
On this grid, all powers
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€, &, &,

Figure 4.4: Grid to compute the weights.

are interpolated exactly, and thus the corresponding quadrature associated with all these
powers will also be exact. Let us compute the k™ moment

b n
U, :/ p(I)ZL‘kdI = Z wmf(fm)v
@ m=1
where p(x) is a weight function. Thus, we can obtain the weights from the known moments,
ie.,

Wy +We+...+wW, = U
Wil +wele + . Wk = w

wig 7wy T L w& T = U

by solving the above system. Alternatively, we can compute the weights directly from
1
wy, = / hi(z)dz.
-1

Theorem: The weights wy in the Gauss quadrature are positive.

Proof: The formula is exact for f(x) = hi(zx), since this is a polynomial of degree 2n. But
hk(il?]) = 5ij7 k 7é j Thus,

/a ()2 = wi(hi(2))? = g — / lhe(2)]2dz > 0.

a

Gaussian Quadrature Over Infinite Intervals

The two general strategies in dealing with such important applications of numerical integra-
tion are:

1. Use knowledge of the integrand to bound the magnitude of the integral from some
finite value to infinity by a positive constant, and then use a quadrature formula for
the remaining finite interval.

2. Use a quadrature formula especially developed for the infinite interval.

Laguerre Integration: Following the second approach here we introduce a weight function

w(z)
w(z)=e" x€]|0,0]
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where we employ the Laguerre polynomial L, (x) defined by

Lo(x) = 1
Li(z) = 1—=x
(n+1)Lyt1(z) = —aLy(z)+ 2n+1)L,(x) — nl,—:1(2),

and its derivative defined by

Ly (z) = Ly (x) = Lo (2).

Software | The corresponding quadrature points are defined by the roots
@ of the Laguerre polynomial (see table 4.2.2 and corresponding
software suite). Specifically, the weights are given by

Suite

(n})*

Then we approximate the integral
9] n I
[ = g+
j=1

and the error is
L (n!)Q

=)

Example: Taking n = 3 we can compute the interval

/ e "z dr = (0.711093)(0.415774)" + (0.278518)(2.294280)"

0
+(0.010389)(6.289945)7 = 4139.9

using the values of table 4.2.2. The exact value is 5040, and thus substantial errors occur
because f®(z) is not bounded. Note, however, that for n = 4 = f®(z) = 0, and thus we
obtain the exact result!

Software | In the software suite we present the code necessary to compute
@ the zeros and the weights of the Laguerre polynomials. Four
Suite functions are provided as enumerated below:

1. The polynomial definition (using recursion) - the function LaguerrePoly.
2. The derivative definition (using recursion) - the function LaguerrePolyDerivative.

3. The computation of zeros (using reduction and Newton-Raphson iteration) - the func-
tion LaguerreZeros.
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n  Abscissas x; Weights w; n  Abscissas z; Weights w;

2 0.585786 0.853553 4 4.536620 0.038888

3.414214 0.146447 9.395071 0.000539
3 0.415775 0.711093 5 0.263560 0.521756
2.294280 0.278518 1.413403 0.398667
6.289945 0.010389 3.596426 0.074942
4 0.322548 0.603154 7.085810 0.003612
1.745761 0.357419 12.640801 0.000023

Table 4.5: Zeros of Laguerre polynomials and corresponding weights.
4. Putting it all together to get zeros and weights - the function LaguerreZW.

Hermite Integration: Here the weight function is

and we can use the Hermite polynomials that are associated with this weight to perform this
integration efficiently. We can then compute integrals of the form

/:X) e_“”Qf(x)dx = zn:wjf(xj) + €l

J=1

with the Hermite polynomial H,,(z) defined by:

Ho(x) = 1
Hi(x) = 2z
Hy(x) = 2xH,(z) —2nH, 1(z),

and its derivative defined by
Hi o (2) = 20+ 1) Ho(a)

The corresponding weights are given by

2ntinly/m
Wj = T 77 12 7
[H,, ()]
and the error is i
nly/m
el = 12 ().

2n(2n)!
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n  Abscissas a; Weights H,
2 £0.707107 0.886227

3 0 1.181636
+1.224745 0.295409

4 £0.524648 0.804914
+1.650680 0.081313

D 0 0.945309
£0.958572 0.393619
+2.020183 0.019953

Table 4.6: Zeros of Hermite polynomials and corresponding weights.

In table 4.2.2 we present the zeros of the Hermite polynomials and corresponding weights
for n up to 5.

Software | In the software suite we present the code necessary to compute
@ the zeros and the weights of the Hermite polynomials. Four
Suite functions are provided as enumerated below:

1. The polynomial definition (using recursion) - the function HermitePoly.
2. The derivative definition (using recursion) - the function HermitePoly Derivative.

3. The computation of zeros (using reduction and Newton-Raphson iteration) - the func-
tion HermiteZeros.

4. Putting it all together to get zeros and weights - HermiteZW .

Gauss-Chebyshev Quadrature

The Gauss-Chebyshev quadrature uses the weight function w(z) = (1—22)""/2 in the interval
€ [-1,1], ie

————dx = wi fr + ¢
[t =
where the quadrature points are the zeros of the Chebyshev polynomial which are obtained
from
T, (x) = cos(ncos™ ' x) =0
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and thus
(2j—Dr
r; = COST, j=1...,n
s
’LUj = E
The corresponding quadrature error is
27
C (2n)

Singular Integrals

We can also follow a weight-function approach to deal with singular integrals, Let us consider
integrands with singularities at the end-points of the interval, and write the general problem
as

b k
/a p(x Zwsz )

where p(z) is a weight function and it may be smgular at one end-point or both. Accordingly,
we distinguish the following cases:

Case 1: p(z) = (1 — 2?)"/2 on [~1,1]. Then, we will employ Chebyshev polynomials of the
second kind U, (z) defined as

sin[(n + 1) cos™! 7]

sin(cos™! x)

Un(x) =

)

which gives the following quadrature points

1

g
Tj = COS ..
J +17 j Y

N

with corresponding weights
T 4 JT
w; = sin .
n+1 n+1

The error in this quadrature is
_ 0 f(Qn)
22n+1(2n)! © -

Case 2: Here the weight function is p(x) = 1/y/x on [0, 1]. The appropriate polynomial is

defined as
pn(x> = PQn(\/E)a

where P, is the Legendre polynomial. Then the quadrature points are the roots of p,(x)
and the appropriate weights are twice the weights corresponding to Psy, ().

The quadrature error is
24n+1[(2n)!]3

€= @) (¢).
(4n + 1)[(4n)!] FE)
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Example: We now return to the integral we mentioned in the introduction of this section,

ie.,
1+
0 VT

and we use n = 2. From table 4.3 we obtain the Legendre points

dx

z; = (0.339981)%, x5 = (0.861136)”

and
wy = 1.304290, wy = 0.695710.

Therefore,

1
/ T g 2.66666,
0 VT

which is equal to the exact value (8/3)!

Case 3: Here the weight function is p(x) = /x on [0,1]. The appropriate polynomial has
singularities in the derivative and is defined based on the Legendre polynomial

pn(z) = %anJrl(\/E)'

The roots z; of p,(z) determine the quadrature points and they are then related to the roots
of the Legendre polynomial (X;) by z; = X ]2 Correspondingly, the appropriate weights are

w; = 2W; X7,

where W; are the Legendre weights.
The quadrature error is given by

24n+3[(2, 4 1)1]4

= Wt 3an+20en ),

Case 4: Here the weight function is p(z) = [z/(1 — 2)]"/? on [0,1]. The appropriate
polynomial is defined in terms of the Chebyshev polynomial, i.e.

1
pn(x) = \/—5T2n+1(\/§)'
This has a singularity at one point and a derivative-singularity at another point. Here the
set of quadrature points, weights, and error, respectively, are given by

o o (2) — Dm
T T
21
- W,
b 1)
€ = L,f@")(f)

24n+1(2n)
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where W; refers to the corresponding Chebyshev weights.

Remark: More details on Gauss quadrature based on Jacobi polynomials, which includes
both Chebyshev and Legendre polynomials, can be found in Ghizzetti & Ossicini [43], and
Karniadakis & Sherwin [63]. In particular, there exist three different approaches in distribut-
ing the quadrature points:

e In Gauss integration the end-points are not included, and the locations of the quadra-
ture points are determined by the zeros of the Jacobi polynomials.

e In Gauss-Lobatto integration both end-points are included and the interior quadrature
points are determined by the zeros of the first derivative of the Jacobi polynomials.

e In Gauss-Radau integration only one point is included and the interior points are
determined by the zeros of the Jacobi polynomials with mixed weights.

4.2.3 Multi-Dimensional Integration

Numerical integration in two- or three-dimensions can be accomplished similarly following
the algorithms presented above, where direction splitting is applied.

We show here how to compute, using Simpson’s rule, a two-dimensional integral over a
rectangular region as well as a more general region. To this end, we consider the integral

X{topxg
Q = / f(l'l,l'g)dl'ldilfg
Xt JXxgy

and subdivide the two directions of integration as follows:
v, = XP4ihy, i=0,1,...,2]
ro = Xy +jhy, j=0,1,...2J
where
XF - Xt XF - Xt

hlzT and hy = 57

We apply Simpson’s rule direction-by-direction, i.e., we first compute

Q2 = /X f($1,$2)d$2

X3
SO

h

szflf(:l:hxg +22f3:1,:1:2 +4Zf v, 25 )+ fa, 2J)]-

Then, the two-dimensional integral is approximated as

ho | X1
Q =~ 3 /X2 f(x1,29) d331+22/ xl,fﬂz )dx,

1

J X , XE
+ 42/ f(xl,xgj_l)dxl +/ f(xl,xg‘])dm] )
=X X{
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Next, we need to integrate each one of these terms along the x;-direction using again Simp-
son’s rule. This will give

hh I-1
Q ~ 52{[f($?,$g)+22f$1,$2 +4Zf i x2 —|—f($1 7:[2)
=1
J—1 J—11-1 J—-1 1 o
+ Zf:cl,:rg +2303 flatad) 433 f@ o
Jj= j=11i=1 j=11i=1

J—1
+ X f(x%f,x?)]

j=1
J J I-1 J I A .
+ A fEN Y 42 S f@V e ) A4S fi e
J=1 j=1li=1 j=1j=1

J
25— 1
+ Z fa oy ]

+

1

fxlaxQ +22fx1ia$2 +4Zf 7 1 +f(x1ax2 )1}
The error is additive if the partial fourth-order derivate is continuous along both directions,

o Ll [140(6,G) 106 )
S _ _H1F2 |44 1,61 4 2,62
BT [hl L ]

where (&;, ;) for ¢ = 1,2 are some unknown points inside the region of integration.

In many applications the region of integration is not rectangular. To this end, we can
either use domain decomposing or employ variable step size integration. For example, if we
consider the above case with XF(z;) and X£(z;,) then

Q:/Q/f(xl,xQ)dxldxg

where (2 is a general, non-cartesian region. In this case, we can proceed as before by allowing

the step size
XM xy) — XL X
hg(l’l) = 2 ( 1)2 2 ( 1).

Therefore, for each fixed z; location we integrate along o, with fixed hy step size, as before.

For Gaussian quadrature, we can also form tensor-product interpolations of the integrand
as was discussed in section 3.1. This is straightforward for cartesian (orthogonal) domains.
For triangular domains the barycentric coordinates (1, ls,l3) can also be used, and for linear
approximations the following exact relations hold:

2A
(m+n+k+2)

Le
/ nds = minl——¢
Le

/ IEEdA = minlk!
A
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where A is the area of the triangular region, and L. is the length of the edge of the triangle.

For integrals in multiple dimensions (greater than 3) or for integrands which are not very
smooth it is more efficient to resort to Monte Carlo integration. The convergence of this
approach is very slow, e.g. O(N~/2) compared to O(N~2) for the trapezoid rule or O(N~*)
for the Simpson’s rule, and thus it is very inefficient for one- two- or three-dimensional
integrals. Convergence acceleration is used in practice following standard algorithms such
as importance sampling or control variate, see [15] for more details.
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4.3 Back to Parallel Computing: Reduction

The concept of numerical integration lends itself to a discussion of domain decomposition.
Suppose that you want to integrate a function numerically on multiple processors? From
our knowledge of calculus, we know that we can write an integral over a interval [a, b] as the
sum of the integrals over a disjoint partition of subintervals of [a, b].

For the purposes of this explanation, let us integrate the function f(z) = % on the
interval [—50,50]. This is a very important function often used in computer graphics as a

filtering function — the Lanczos filter, see section 3.2.

Suppose that we have five processors that we can partition this integral operation across.
First, we must partition the problem into five processes so that each is doing roughly the
same amount of work. This step is graphically accomplished in figure 4.5. Notice that we
partition the entire domain [—50, 50] into five equal length subdomains

[—50, —30], [~30, —10], [~ 10, 10], [10, 30], [30, 50).

1.2 T T
Processor O | Processor 1 | Processor 2 | Processor 3 | Processor 4

1+ 4

0.6 4

0.4r B

-02F N

-0.4 I 1 I I I
-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 4.5: Plot of the Lanczos filter Si%, and processor assignment.

As we have expressed before, we can now use our numerical integration routines discussed
previously in this chapter to accomplish the integration on our local interval. Once this is
accomplished, we now want to add up the integral components from each processor. How
can this be accomplished? Recall from our previous discussions that the classical way of
accomplishing this would be for each process to send its result to one process (process 0),
and then for process 0 to accumulate all the results from the individual processes and to
print out a result. This type of operation is so common in scientific computing that MPI
has a function built in to accomplish all of this in one function call!
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Key Concept

e If it seems like a collection of operations is repeatedly done, in
all likelihood a function to accomplish those operations already
exists to simplify your life.

The function is called M PI_Reduce and combines the sending of information with one
operation. The admissible operations are given in table 4.3.

Operation Name | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC | Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Table 4.7: Summary of MPI commands for reduction operations.

In our case, we are interested in the M PI_SUDM operation; that is, we want to take a
piece of information from each processor, and we want the sum of all the pieces to be given
to process zero for printing the result. This type of operation is graphically depicted in figure

4.6.

Here, we present the function syntax, argument list description, usage examples, and
some remarks for both MPI_Reduce and MPI_Allreduce. The functions are very similar.
M PI_Reduce takes information from all processes and sends the result of the MPI operation
to only one process. M PI_Allreduce sends