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Preface

Innovations in hardware architecture, like hyperthreading or multicore processors,
make parallel computing resources available for inexpensive desktop computers.
However, the use of these innovations requires parallel programming techniques.
In a few years, many standard software products will be based on concepts of
parallel programming to use the hardware resources of future multicore proces-
sors efficiently. Thus, the need for parallel programming will extend to all areas
of software development. The application area will be much larger than the area
of scientific computing, which used to be the main area for parallel computing for
many years. The expansion of the application area for parallel computing will lead to
an enormous need for software developers with parallel programming skills. Some
chip manufacturers already demand to include parallel programming as a standard
course in computer science curricula.

This book takes up the new development in processor architecture by giving a
detailed description of important parallel programming techniques that are neces-
sary for developing efficient programs for multicore processors as well as for par-
allel cluster systems or supercomputers. Both shared and distributed address space
architectures are covered. The main goal of the book is to present parallel program-
ming techniques that can be used in many situations for many application areas
and to enable the reader to develop correct and efficient parallel programs. Many
example programs and exercises are provided to support this goal and to show how
the techniques can be applied to further applications. The book can be used as both
a textbook for students and a reference book for professionals. The material of the
book has been used for courses in parallel programming at different universities for
many years.

This is the third version of the book on parallel programming. The first two ver-
sions have been published in German in the years 2000 and 2007, respectively. This
new English version is an updated and revised version of the newest German edition
of the book. The update especially covers new developments in the area of multicore
processors as well as a more detailed description of OpenMP and Java threads.

The content of the book consists of three main parts, covering all areas of par-
allel computing: the architecture of parallel systems, parallel programming models
and environments, and the implementation of efficient application algorithms. The
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emphasis lies on parallel programming techniques needed for different architec-
tures.

The first part contains an overview of the architecture of parallel systems, includ-
ing cache and memory organization, interconnection networks, routing and switch-
ing techniques, as well as technologies that are relevant for modern and future mul-
ticore processors.

The second part presents parallel programming models, performance models,
and parallel programming environments for message passing and shared memory
models, including MPI, Pthreads, Java threads, and OpenMP. For each of these
parallel programming environments, the book gives basic concepts as well as more
advanced programming methods and enables the reader to write and run semanti-
cally correct and efficient parallel programs. Parallel design patterns like pipelining,
client–server, and task pools are presented for different environments to illustrate
parallel programming techniques and to facilitate the implementation of efficient
parallel programs for a wide variety of application areas. Performance models and
techniques for runtime analysis are described in detail, as they are a prerequisite for
achieving efficiency and high performance.

The third part applies the programming techniques from the second part to repre-
sentative algorithms from scientific computing. The emphasis lies on basic methods
for solving linear equation systems, which play an important role in many scientific
simulations. The focus of the presentation lies on the analysis of the algorithmic
structure of the different algorithms, which is the basis for parallelization, and not on
the mathematical properties of the solution methods. For each algorithm, the book
discusses different parallelization variants, using different methods and strategies.

Many colleagues and students have helped to improve the quality of this book.
We would like to thank all of them for their help and constructive criticisms. For
numerous corrections and suggestions we would like to thank Jörg Dümmler, Mar-
vin Ferber, Michael Hofmann, Ralf Hoffmann, Sascha Hunold, Matthias Korch,
Raphael Kunis, Jens Lang, John O’Donnell, Andreas Prell, Carsten Scholtes, and
Michael Schwind. Many thanks to Matthias Korch, Carsten Scholtes, and Michael
Schwind for help with the exercises. We thank Monika Glaser for her help and
support with the LATEX typesetting of the book. We also thank all the people who
have been involved in the writing of the first two German versions of this book. It
has been a pleasure working with the Springer Verlag in the development of this
book. We especially thank Ralf Gerstner for his support and patience.

Bayreuth Thomas Rauber
Chemnitz Gudula Rünger
August 2009
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Chapter 1
Introduction

In this short introduction, we give an overview of the use of parallelism and try
to explain why parallel programming will be used for software development in the
future. We also give an overview of the rest of the book and show how it can be used
for courses with various foci.

1.1 Classical Use of Parallelism

Parallel programming and the design of efficient parallel programs have been well
established in high-performance, scientific computing for many years. The simu-
lation of scientific problems is an important area in natural and engineering sci-
ences of growing importance. More precise simulations or the simulations of larger
problems need greater and greater computing power and memory space. In the last
decades, high-performance research included new developments in parallel hard-
ware and software technologies, and a steady progress in parallel high-performance
computing can be observed. Popular examples are simulations of weather forecast
based on complex mathematical models involving partial differential equations or
crash simulations from car industry based on finite element methods.

Other examples include drug design and computer graphics applications for film
and advertising industry. Depending on the specific application, computer simu-
lation is the main method to obtain the desired result or it is used to replace or
enhance physical experiments. A typical example for the first application area is
weather forecast where the future development in the atmosphere has to be pre-
dicted, which can only be obtained by simulations. In the second application area,
computer simulations are used to obtain results that are more precise than results
from practical experiments or that can be performed with less financial effort. An
example is the use of simulations to determine the air resistance of vehicles: Com-
pared to a classical wind tunnel experiment, a computer simulation can give more
precise results because the relative movement of the vehicle in relation to the ground
can be included in the simulation. This is not possible in the wind tunnel, since the
vehicle cannot be moved. Crash tests of vehicles are an obvious example where
computer simulations can be performed with less financial effort.
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Computer simulations often require a large computational effort. A low perfor-
mance of the computer system used can restrict the simulations and the accuracy
of the results obtained significantly. In particular, using a high-performance system
allows larger simulations which lead to better results. Therefore, parallel comput-
ers have often been used to perform computer simulations. Today, cluster systems
built up from server nodes are widely available and are now often used for par-
allel simulations. To use parallel computers or cluster systems, the computations
to be performed must be partitioned into several parts which are assigned to the
parallel resources for execution. These computation parts should be independent of
each other, and the algorithm performed must provide enough independent compu-
tations to be suitable for a parallel execution. This is normally the case for scientific
simulations. To obtain a parallel program, the algorithm must be formulated in a
suitable programming language. Parallel execution is often controlled by specific
runtime libraries or compiler directives which are added to a standard programming
language like C, Fortran, or Java. The programming techniques needed to obtain
efficient parallel programs are described in this book. Popular runtime systems and
environments are also presented.

1.2 Parallelism in Today’s Hardware

Parallel programming is an important aspect of high-performance scientific com-
puting but it used to be a niche within the entire field of hardware and software
products. However, more recently parallel programming has left this niche and will
become the mainstream of software development techniques due to a radical change
in hardware technology.

Major chip manufacturers have started to produce processors with several power-
efficient computing units on one chip, which have an independent control and can
access the same memory concurrently. Normally, the term core is used for single
computing units and the term multicore is used for the entire processor having sev-
eral cores. Thus, using multicore processors makes each desktop computer a small
parallel system. The technological development toward multicore processors was
forced by physical reasons, since the clock speed of chips with more and more
transistors cannot be increased at the previous rate without overheating.

Multicore architectures in the form of single multicore processors, shared mem-
ory systems of several multicore processors, or clusters of multicore processors
with a hierarchical interconnection network will have a large impact on software
development. In 2009, dual-core and quad-core processors are standard for normal
desktop computers, and chip manufacturers have already announced the introduc-
tion of oct-core processors for 2010. It can be predicted from Moore’s law that the
number of cores per processor chip will double every 18–24 months. According to
a report of Intel, in 2015 a typical processor chip will likely consist of dozens up
to hundreds of cores where a part of the cores will be dedicated to specific pur-
poses like network management, encryption and decryption, or graphics [109]; the
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majority of the cores will be available for application programs, providing a huge
performance potential.

The users of a computer system are interested in benefitting from the perfor-
mance increase provided by multicore processors. If this can be achieved, they can
expect their application programs to keep getting faster and keep getting more and
more additional features that could not be integrated in previous versions of the
software because they needed too much computing power. To ensure this, there
should definitely be a support from the operating system, e.g., by using dedicated
cores for their intended purpose or by running multiple user programs in parallel,
if they are available. But when a large number of cores are provided, which will
be the case in the near future, there is also the need to execute a single application
program on multiple cores. The best situation for the software developer would
be that there be an automatic transformer that takes a sequential program as input
and generates a parallel program that runs efficiently on the new architectures. If
such a transformer were available, software development could proceed as before.
But unfortunately, the experience of the research in parallelizing compilers during
the last 20 years has shown that for many sequential programs it is not possible to
extract enough parallelism automatically. Therefore, there must be some help from
the programmer, and application programs need to be restructured accordingly.

For the software developer, the new hardware development toward multicore
architectures is a challenge, since existing software must be restructured toward
parallel execution to take advantage of the additional computing resources. In partic-
ular, software developers can no longer expect that the increase of computing power
can automatically be used by their software products. Instead, additional effort is
required at the software level to take advantage of the increased computing power.
If a software company is able to transform its software so that it runs efficiently on
novel multicore architectures, it will likely have an advantage over its competitors.

There is much research going on in the area of parallel programming languages
and environments with the goal of facilitating parallel programming by providing
support at the right level of abstraction. But there are many effective techniques
and environments already available. We give an overview in this book and present
important programming techniques, enabling the reader to develop efficient parallel
programs. There are several aspects that must be considered when developing a
parallel program, no matter which specific environment or system is used. We give
a short overview in the following section.

1.3 Basic Concepts

A first step in parallel programming is the design of a parallel algorithm or pro-
gram for a given application problem. The design starts with the decomposition
of the computations of an application into several parts, called tasks, which can
be computed in parallel on the cores or processors of the parallel hardware. The
decomposition into tasks can be complicated and laborious, since there are usually
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many different possibilities of decomposition for the same application algorithm.
The size of tasks (e.g., in terms of the number of instructions) is called granularity
and there is typically the possibility of choosing tasks of different sizes. Defining
the tasks of an application appropriately is one of the main intellectual works in
the development of a parallel program and is difficult to automate. Potential par-
allelism is an inherent property of an application algorithm and influences how an
application can be split into tasks.

The tasks of an application are coded in a parallel programming language or
environment and are assigned to processes or threads which are then assigned to
physical computation units for execution. The assignment of tasks to processes or
threads is called scheduling and fixes the order in which the tasks are executed.
Scheduling can be done by hand in the source code or by the programming envi-
ronment, at compile time or dynamically at runtime. The assignment of processes
or threads onto the physical units, processors or cores, is called mapping and is
usually done by the runtime system but can sometimes be influenced by the pro-
grammer. The tasks of an application algorithm can be independent but can also
depend on each other resulting in data or control dependencies of tasks. Data and
control dependencies may require a specific execution order of the parallel tasks:
If a task needs data produced by another task, the execution of the first task can
start only after the other task has actually produced these data and has provided the
information. Thus, dependencies between tasks are constraints for the scheduling.
In addition, parallel programs need synchronization and coordination of threads
and processes in order to execute correctly. The methods of synchronization and
coordination in parallel computing are strongly connected with the way in which
information is exchanged between processes or threads, and this depends on the
memory organization of the hardware.

A coarse classification of the memory organization distinguishes between shared
memory machines and distributed memory machines. Often the term thread is
connected with shared memory and the term process is connected with distributed
memory. For shared memory machines, a global shared memory stores the data
of an application and can be accessed by all processors or cores of the hardware
systems. Information exchange between threads is done by shared variables written
by one thread and read by another thread. The correct behavior of the entire pro-
gram has to be achieved by synchronization between threads so that the access to
shared data is coordinated, i.e., a thread reads a data element not before the write
operation by another thread storing the data element has been finalized. Depending
on the programming language or environment, synchronization is done by the run-
time system or by the programmer. For distributed memory machines, there exists
a private memory for each processor, which can only be accessed by this processor,
and no synchronization for memory access is needed. Information exchange is done
by sending data from one processor to another processor via an interconnection
network by explicit communication operations.

Specific barrier operations offer another form of coordination which is avail-
able for both shared memory and distributed memory machines. All processes or
threads have to wait at a barrier synchronization point until all other processes or
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threads have also reached that point. Only after all processes or threads have exe-
cuted the code before the barrier, they can continue their work with the subsequent
code after the barrier.

An important aspect of parallel computing is the parallel execution time which
consists of the time for the computation on processors or cores and the time for data
exchange or synchronization. The parallel execution time should be smaller than the
sequential execution time on one processor so that designing a parallel program is
worth the effort. The parallel execution time is the time elapsed between the start of
the application on the first processor and the end of the execution of the application
on all processors. This time is influenced by the distribution of work to processors or
cores, the time for information exchange or synchronization, and idle times in which
a processor cannot do anything useful but wait for an event to happen. In general,
a smaller parallel execution time results when the work load is assigned equally
to processors or cores, which is called load balancing, and when the overhead for
information exchange, synchronization, and idle times is small. Finding a specific
scheduling and mapping strategy which leads to a good load balance and a small
overhead is often difficult because of many interactions. For example, reducing the
overhead for information exchange may lead to load imbalance whereas a good load
balance may require more overhead for information exchange or synchronization.

For a quantitative evaluation of the execution time of parallel programs, cost
measures like speedup and efficiency are used, which compare the resulting parallel
execution time with the sequential execution time on one processor. There are differ-
ent ways to measure the cost or runtime of a parallel program and a large variety of
parallel cost models based on parallel programming models have been proposed and
used. These models are meant to bridge the gap between specific parallel hardware
and more abstract parallel programming languages and environments.

1.4 Overview of the Book

The rest of the book is structured as follows. Chapter 2 gives an overview of
important aspects of the hardware of parallel computer systems and addresses new
developments like the trends toward multicore architectures. In particular, the chap-
ter covers important aspects of memory organization with shared and distributed
address spaces as well as popular interconnection networks with their topological
properties. Since memory hierarchies with several levels of caches may have an
important influence on the performance of (parallel) computer systems, they are
covered in this chapter. The architecture of multicore processors is also described in
detail. The main purpose of the chapter is to give a solid overview of the important
aspects of parallel computer architectures that play a role in parallel programming
and the development of efficient parallel programs.

Chapter 3 considers popular parallel programming models and paradigms and
discusses how the inherent parallelism of algorithms can be presented to a par-
allel runtime environment to enable an efficient parallel execution. An impor-
tant part of this chapter is the description of mechanisms for the coordination
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of parallel programs, including synchronization and communication operations.
Moreover, mechanisms for exchanging information and data between computing
resources for different memory models are described. Chapter 4 is devoted to the
performance analysis of parallel programs. It introduces popular performance or
cost measures that are also used for sequential programs, as well as performance
measures that have been developed for parallel programs. Especially, popular com-
munication patterns for distributed address space architectures are considered and
their efficient implementations for specific interconnection networks are given.

Chapter 5 considers the development of parallel programs for distributed address
spaces. In particular, a detailed description of MPI (Message Passing Interface) is
given, which is by far the most popular programming environment for distributed
address spaces. The chapter describes important features and library functions of
MPI and shows which programming techniques must be used to obtain efficient
MPI programs. Chapter 6 considers the development of parallel programs for shared
address spaces. Popular programming environments are Pthreads, Java threads, and
OpenMP. The chapter describes all three and considers programming techniques to
obtain efficient parallel programs. Many examples help to understand the relevant
concepts and to avoid common programming errors that may lead to low perfor-
mance or cause problems like deadlocks or race conditions. Programming examples
and parallel programming pattern are presented. Chapter 7 considers algorithms
from numerical analysis as representative example and shows how the sequential
algorithms can be transferred into parallel programs in a systematic way.

The main emphasis of the book is to provide the reader with the programming
techniques that are needed for developing efficient parallel programs for different
architectures and to give enough examples to enable the reader to use these tech-
niques for programs from other application areas. In particular, reading and using the
book is a good training for software development for modern parallel architectures,
including multicore architectures.

The content of the book can be used for courses in the area of parallel com-
puting with different emphasis. All chapters are written in a self-contained way so
that chapters of the book can be used in isolation; cross-references are given when
material from other chapters might be useful. Thus, different courses in the area of
parallel computing can be assembled from chapters of the book in a modular way.
Exercises are provided for each chapter separately. For a course on the programming
of multicore systems, Chaps. 2, 3, and 6 should be covered. In particular, Chapter 6
provides an overview of the relevant programming environments and techniques.
For a general course on parallel programming, Chaps. 2, 5, and 6 can be used. These
chapters introduce programming techniques for both distributed and shared address
spaces. For a course on parallel numerical algorithms, mainly Chaps. 5 and 7 are
suitable; Chap. 6 can be used additionally. These chapters consider the parallel algo-
rithms used as well as the programming techniques required. For a general course
on parallel computing, Chaps. 2, 3, 4, 5, and 6 can be used with selected applications
from Chap. 7. The following web page will be maintained for additional and new
material: ai2.inf.uni-bayreuth.de/pp book.



Chapter 2
Parallel Computer Architecture

The possibility for parallel execution of computations strongly depends on the
architecture of the execution platform. This chapter gives an overview of the gen-
eral structure of parallel computers which determines how computations of a pro-
gram can be mapped to the available resources such that a parallel execution is
obtained. Section 2.1 gives a short overview of the use of parallelism within a
single processor or processor core. Using the available resources within a single
processor core at instruction level can lead to a significant performance increase.
Sections 2.2 and 2.3 describe the control and data organization of parallel plat-
forms. Based on this, Sect. 2.4.2 presents an overview of the architecture of multi-
core processors and describes the use of thread-based parallelism for simultaneous
multithreading.

The following sections are devoted to specific components of parallel plat-
forms. Section 2.5 describes important aspects of interconnection networks which
are used to connect the resources of parallel platforms and to exchange data and
information between these resources. Interconnection networks also play an impor-
tant role in multicore processors for the connection between the cores of a pro-
cessor chip. Section 2.5 describes static and dynamic interconnection networks
and discusses important characteristics like diameter, bisection bandwidth, and
connectivity of different network types as well as the embedding of networks
into other networks. Section 2.6 addresses routing techniques for selecting paths
through networks and switching techniques for message forwarding over a given
path. Section 2.7 considers memory hierarchies of sequential and parallel plat-
forms and discusses cache coherence and memory consistency for shared memory
platforms.

2.1 Processor Architecture and Technology Trends

Processor chips are the key components of computers. Considering the trends
observed for processor chips during the last years, estimations for future develop-
ments can be deduced. Internally, processor chips consist of transistors. The number
of transistors contained in a processor chip can be used as a rough estimate of
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its complexity and performance. Moore’s law is an empirical observation which
states that the number of transistors of a typical processor chip doubles every 18–24
months. This observation was first made by Gordon Moore in 1965 and is valid now
for more than 40 years. The increasing number of transistors can be used for archi-
tectural improvements like additional functional units, more and larger caches, and
more registers. A typical processor chip for desktop computers from 2009 consists
of 400–800 million transistors.

The increase in the number of transistors has been accompanied by an increase in
clock speed for quite a long time. Increasing the clock speed leads to a faster compu-
tational speed of the processor, and often the clock speed has been used as the main
characteristic of the performance of a computer system. In the past, the increase
in clock speed and in the number of transistors has led to an average performance
increase of processors of 55% (integer operations) and 75% (floating-point oper-
ations), respectively [84]. This can be measured by specific benchmark programs
that have been selected from different application areas to get a representative per-
formance measure of computer systems. Often, the SPEC benchmarks (System Per-
formance and Evaluation Cooperative) are used to measure the integer and floating-
point performance of computer systems [137, 84], see www.spec.org. The aver-
age performance increase of processors exceeds the increase in clock speed. This
indicates that the increasing number of transistors has led to architectural improve-
ments which reduce the average time for executing an instruction. In the following,
we give a short overview of such architectural improvements. Four phases of micro-
processor design trends can be observed [35] which are mainly driven by the internal
use of parallelism:

1. Parallelism at bit level: Up to about 1986, the word size used by processors for
operations increased stepwise from 4 bits to 32 bits. This trend has slowed down
and ended with the adoption of 64-bit operations beginning in the 1990s. This
development has been driven by demands for improved floating-point accuracy
and a larger address space. The trend has stopped at a word size of 64 bits, since
this gives sufficient accuracy for floating-point numbers and covers a sufficiently
large address space of 264 bytes.

2. Parallelism by pipelining: The idea of pipelining at instruction level is an over-
lapping of the execution of multiple instructions. The execution of each instruc-
tion is partitioned into several steps which are performed by dedicated hardware
units (pipeline stages) one after another. A typical partitioning could result in the
following steps:

(a) fetch: fetch the next instruction to be executed from memory;
(b) decode: decode the instruction fetched in step (a);
(c) execute: load the operands specified and execute the instruction;
(d) write-back: write the result into the target register.

An instruction pipeline is like an assembly line in automobile industry. The
advantage is that the different pipeline stages can operate in parallel, if there
are no control or data dependencies between the instructions to be executed, see
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Fig. 2.1 Overlapping
execution of four independent
instructions by pipelining.
The execution of each
instruction is split into four
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Fig. 2.1 for an illustration. To avoid waiting times, the execution of the different
pipeline stages should take about the same amount of time. This time deter-
mines the cycle time of the processor. If there are no dependencies between
the instructions, in each clock cycle the execution of one instruction is fin-
ished and the execution of another instruction started. The number of instruc-
tions finished per time unit is defined as the throughput of the pipeline. Thus,
in the absence of dependencies, the throughput is one instruction per clock
cycle.

In the absence of dependencies, all pipeline stages work in parallel. Thus, the
number of pipeline stages determines the degree of parallelism attainable by a
pipelined computation. The number of pipeline stages used in practice depends
on the specific instruction and its potential to be partitioned into stages. Typical
numbers of pipeline stages lie between 2 and 26 stages. Processors which use
pipelining to execute instructions are called ILP processors (instruction-level
parallelism). Processors with a relatively large number of pipeline stages are
sometimes called superpipelined. Although the available degree of parallelism
increases with the number of pipeline stages, this number cannot be arbitrarily
increased, since it is not possible to partition the execution of the instruction into
a very large number of steps of equal size. Moreover, data dependencies often
inhibit a completely parallel use of the stages.

3. Parallelism by multiple functional units: Many processors are multiple-issue
processors. They use multiple, independent functional units like ALUs (arith-
metic logical units), FPUs (floating-point units), load/store units, or branch units.
These units can work in parallel, i.e., different independent instructions can be
executed in parallel by different functional units. Thus, the average execution rate
of instructions can be increased. Multiple-issue processors can be distinguished
into superscalar processors and VLIW (very long instruction word) processors,
see [84, 35] for a more detailed treatment.

The number of functional units that can efficiently be utilized is restricted
because of data dependencies between neighboring instructions. For superscalar
processors, these dependencies are determined at runtime dynamically by the
hardware, and decoded instructions are dispatched to the instruction units using
dynamic scheduling by the hardware. This may increase the complexity of the
circuit significantly. Moreover, simulations have shown that superscalar proces-
sors with up to four functional units yield a substantial benefit over a single
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functional unit. But using even more functional units provides little additional
gain [35, 99] because of dependencies between instructions and branching of
control flow.

4. Parallelism at process or thread level: The three techniques described so far
assume a single sequential control flow which is provided by the compiler and
which determines the execution order if there are dependencies between instruc-
tions. For the programmer, this has the advantage that a sequential programming
language can be used nevertheless leading to a parallel execution of instructions.
However, the degree of parallelism obtained by pipelining and multiple func-
tional units is limited. This limit has already been reached for some time for
typical processors. But more and more transistors are available per processor
chip according to Moore’s law. This can be used to integrate larger caches on the
chip. But the cache sizes cannot be arbitrarily increased either, as larger caches
lead to a larger access time, see Sect. 2.7.

An alternative approach to use the increasing number of transistors on a chip
is to put multiple, independent processor cores onto a single processor chip. This
approach has been used for typical desktop processors since 2005. The resulting
processor chips are called multicore processors. Each of the cores of a multi-
core processor must obtain a separate flow of control, i.e., parallel programming
techniques must be used. The cores of a processor chip access the same mem-
ory and may even share caches. Therefore, memory accesses of the cores must
be coordinated. The coordination and synchronization techniques required are
described in later chapters.

A more detailed description of parallelism by multiple functional units can be found
in [35, 84, 137, 164]. Section 2.4.2 describes techniques like simultaneous multi-
threading and multicore processors requiring an explicit specification of parallelism.

2.2 Flynn’s Taxonomy of Parallel Architectures

Parallel computers have been used for many years, and many different architec-
tural alternatives have been proposed and used. In general, a parallel computer can
be characterized as a collection of processing elements that can communicate and
cooperate to solve large problems fast [14]. This definition is intentionally quite
vague to capture a large variety of parallel platforms. Many important details are not
addressed by the definition, including the number and complexity of the processing
elements, the structure of the interconnection network between the processing ele-
ments, the coordination of the work between the processing elements, as well as
important characteristics of the problem to be solved.

For a more detailed investigation, it is useful to make a classification according
to important characteristics of a parallel computer. A simple model for such a clas-
sification is given by Flynn’s taxonomy [52]. This taxonomy characterizes parallel
computers according to the global control and the resulting data and control flows.
Four categories are distinguished:
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1. Single-Instruction, Single-Data (SISD): There is one processing element which
has access to a single program and data storage. In each step, the processing
element loads an instruction and the corresponding data and executes the instruc-
tion. The result is stored back in the data storage. Thus, SISD is the conventional
sequential computer according to the von Neumann model.

2. Multiple-Instruction, Single-Data (MISD): There are multiple processing ele-
ments each of which has a private program memory, but there is only one com-
mon access to a single global data memory. In each step, each processing element
obtains the same data element from the data memory and loads an instruction
from its private program memory. These possibly different instructions are then
executed in parallel by the processing elements using the previously obtained
(identical) data element as operand. This execution model is very restrictive and
no commercial parallel computer of this type has ever been built.

3. Single-Instruction, Multiple-Data (SIMD): There are multiple processing ele-
ments each of which has a private access to a (shared or distributed) data memory,
see Sect. 2.3 for a discussion of shared and distributed address spaces. But there
is only one program memory from which a special control processor fetches and
dispatches instructions. In each step, each processing element obtains from the
control processor the same instruction and loads a separate data element through
its private data access on which the instruction is performed. Thus, the instruction
is synchronously applied in parallel by all processing elements to different data
elements.

For applications with a significant degree of data parallelism, the SIMD
approach can be very efficient. Examples are multimedia applications or com-
puter graphics algorithms to generate realistic three-dimensional views of
computer-generated environments.

4. Multiple-Instruction, Multiple-Data (MIMD): There are multiple processing
elements each of which has a separate instruction and data access to a (shared
or distributed) program and data memory. In each step, each processing element
loads a separate instruction and a separate data element, applies the instruction
to the data element, and stores a possible result back into the data storage. The
processing elements work asynchronously with each other. Multicore processors
or cluster systems are examples for the MIMD model.

Compared to MIMD computers, SIMD computers have the advantage that they
are easy to program, since there is only one program flow, and the synchronous
execution does not require synchronization at program level. But the synchronous
execution is also a restriction, since conditional statements of the form

if (b==0) c=a; else c = a/b;

must be executed in two steps. In the first step, all processing elements whose local
value of b is zero execute the then part. In the second step, all other process-
ing elements execute the else part. MIMD computers are more flexible, as each
processing element can execute its own program flow. Most parallel computers
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are based on the MIMD concept. Although Flynn’s taxonomy only provides a
coarse classification, it is useful to give an overview of the design space of parallel
computers.

2.3 Memory Organization of Parallel Computers

Nearly all general-purpose parallel computers are based on the MIMD model. A
further classification of MIMD computers can be done according to their memory
organization. Two aspects can be distinguished: the physical memory organization
and the view of the programmer of the memory. For the physical organization,
computers with a physically shared memory (also called multiprocessors) and com-
puters with a physically distributed memory (also called multicomputers) can be
distinguished, see Fig. 2.2 for an illustration. But there also exist many hybrid orga-
nizations, for example providing a virtually shared memory on top of a physically
distributed memory.

computers
with

memory
shared

computers
with
distributed
memory

MIMD computer systems

Multicomputer systems

shared

computers
with
virtually

memory

parallel and distributed

Multiprocessor systems

Fig. 2.2 Forms of memory organization of MIMD computers

From the programmer’s point of view, it can be distinguished between comput-
ers with a distributed address space and computers with a shared address space.
This view does not necessarily need to conform with the physical memory. For
example, a parallel computer with a physically distributed memory may appear to
the programmer as a computer with a shared address space when a corresponding
programming environment is used. In the following, we have a closer look at the
physical organization of the memory.

2.3.1 Computers with Distributed Memory Organization

Computers with a physically distributed memory are also called distributed mem-
ory machines (DMM). They consist of a number of processing elements (called
nodes) and an interconnection network which connects nodes and supports the
transfer of data between nodes. A node is an independent unit, consisting of pro-
cessor, local memory, and, sometimes, periphery elements, see Fig. 2.3 (a) for an
illustration.
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Fig. 2.3 Illustration of computers with distributed memory: (a) abstract structure, (b) computer
with distributed memory and hypercube as interconnection structure, (c) DMA (direct memory
access), (d) processor–memory node with router, and (e) interconnection network in the form of a
mesh to connect the routers of the different processor–memory nodes

Program data is stored in the local memory of one or several nodes. All local
memory is private and only the local processor can access the local memory directly.
When a processor needs data from the local memory of other nodes to perform
local computations, message-passing has to be performed via the interconnection
network. Therefore, distributed memory machines are strongly connected with the
message-passing programming model which is based on communication between
cooperating sequential processes and which will be considered in more detail in
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Chaps. 3 and 5. To perform message-passing, two processes PA and PB on different
nodes A and B issue corresponding send and receive operations. When PB needs
data from the local memory of node A, PA performs a send operation containing
the data for the destination process PB . PB performs a receive operation specifying
a receive buffer to store the data from the source process PA from which the data is
expected.

The architecture of computers with a distributed memory has experienced many
changes over the years, especially concerning the interconnection network and the
coupling of network and nodes. The interconnection network of earlier multicom-
puters were often based on point-to-point connections between nodes. A node is
connected to a fixed set of other nodes by physical connections. The structure of the
interconnection network can be represented as a graph structure. The nodes repre-
sent the processors, the edges represent the physical interconnections (also called
links). Typically, the graph exhibits a regular structure. A typical network structure
is the hypercube which is used in Fig. 2.3(b) to illustrate the node connections; a
detailed description of interconnection structures is given in Sect. 2.5. In networks
with point-to-point connection, the structure of the network determines the possible
communications, since each node can only exchange data with its direct neighbor.
To decouple send and receive operations, buffers can be used to store a message
until the communication partner is ready. Point-to-point connections restrict paral-
lel programming, since the network topology determines the possibilities for data
exchange, and parallel algorithms have to be formulated such that their communi-
cation fits the given network structure [8, 115].

The execution of communication operations can be decoupled from the proces-
sor’s operations by adding a DMA controller (DMA – direct memory access) to the
nodes to control the data transfer between the local memory and the I/O controller.
This enables data transfer from or to the local memory without participation of the
processor (see Fig. 2.3(c) for an illustration) and allows asynchronous communica-
tion. A processor can issue a send operation to the DMA controller and can then
continue local operations while the DMA controller executes the send operation.
Messages are received at the destination node by its DMA controller which copies
the enclosed data to a specific system location in local memory. When the processor
then performs a receive operation, the data are copied from the system location to
the specified receive buffer. Communication is still restricted to neighboring nodes
in the network. Communication between nodes that do not have a direct connection
must be controlled by software to send a message along a path of direct inter-
connections. Therefore, communication times between nodes that are not directly
connected can be much larger than communication times between direct neighbors.
Thus, it is still more efficient to use algorithms with communication according to
the given network structure.

A further decoupling can be obtained by putting routers into the network, see
Fig. 2.3(d). The routers form the actual network over which communication can
be performed. The nodes are connected to the routers, see Fig. 2.3(e). Hardware-
supported routing reduces communication times as messages for processors on
remote nodes can be forwarded by the routers along a preselected path without
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interaction of the processors in the nodes along the path. With router support, there
is not a large difference in communication time between neighboring nodes and
remote nodes, depending on the switching technique, see Sect. 2.6.3. Each physical
I/O channel of a router can be used by one message only at a specific point in time.
To decouple message forwarding, message buffers are used for each I/O channel to
store messages and apply specific routing algorithms to avoid deadlocks, see also
Sect. 2.6.1.

Technically, DMMs are quite easy to assemble since standard desktop computers
can be used as nodes. The programming of DMMs requires a careful data layout,
since each processor can directly access only its local data. Non-local data must
be accessed via message-passing, and the execution of the corresponding send and
receive operations takes significantly longer than a local memory access. Depending
on the interconnection network and the communication library used, the difference
can be more than a factor of 100. Therefore, data layout may have a significant influ-
ence on the resulting parallel runtime of a program. Data layout should be selected
such that the number of message transfers and the size of the data blocks exchanged
are minimized.

The structure of DMMs has many similarities with networks of workstations
(NOWs) in which standard workstations are connected by a fast local area net-
work (LAN). An important difference is that interconnection networks of DMMs
are typically more specialized and provide larger bandwidths and lower latencies,
thus leading to a faster message exchange.

Collections of complete computers with a dedicated interconnection network are
often called clusters. Clusters are usually based on standard computers and even
standard network topologies. The entire cluster is addressed and programmed as a
single unit. The popularity of clusters as parallel machines comes from the availabil-
ity of standard high-speed interconnections like FCS (Fiber Channel Standard), SCI
(Scalable Coherent Interface), Switched Gigabit Ethernet, Myrinet, or InfiniBand,
see [140, 84, 137]. A natural programming model of DMMs is the message-passing
model that is supported by communication libraries like MPI or PVM, see Chap. 5
for a detailed treatment of MPI. These libraries are often based on standard protocols
like TCP/IP [110, 139].

The difference between cluster systems and distributed systems lies in the fact
that the nodes in cluster systems use the same operating system and can usually
not be addressed individually; instead a special job scheduler must be used. Several
cluster systems can be connected to grid systems by using middleware software like
the Globus Toolkit, see www.globus.org [59]. This allows a coordinated collab-
oration of several clusters. In grid systems, the execution of application programs is
controlled by the middleware software.

2.3.2 Computers with Shared Memory Organization

Computers with a physically shared memory are also called shared memory ma-
chines (SMMs); the shared memory is also called global memory. SMMs consist
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Fig. 2.4 Illustration of a
computer with shared
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and (b) implementation of the
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of a number of processors or cores, a shared physical memory (global memory), and
an interconnection network to connect the processors with the memory. The shared
memory can be implemented as a set of memory modules. Data can be exchanged
between processors via the global memory by reading or writing shared variables.
The cores of a multicore processor are an example for an SMM, see Sect. 2.4.2 for
a more detailed description. Physically, the global memory usually consists of sep-
arate memory modules providing a common address space which can be accessed
by all processors, see Fig. 2.4 for an illustration.

A natural programming model for SMMs is the use of shared variables which
can be accessed by all processors. Communication and cooperation between the
processors is organized by writing and reading shared variables that are stored in
the global memory. Accessing shared variables concurrently by several processors
should be avoided since race conditions with unpredictable effects can occur, see
also Chaps. 3 and 6.

The existence of a global memory is a significant advantage, since communi-
cation via shared variables is easy and since no data replication is necessary as is
sometimes the case for DMMs. But technically, the realization of SMMs requires
a larger effort, in particular because the interconnection network must provide fast
access to the global memory for each processor. This can be ensured for a small
number of processors, but scaling beyond a few dozen processors is difficult.

A special variant of SMMs are symmetric multiprocessors (SMPs). SMPs have
a single shared memory which provides a uniform access time from any processor
for all memory locations, i.e., all memory locations are equidistant to all processors
[35, 84]. SMPs usually have a small number of processors that are connected via a
central bus which also provides access to the shared memory. There are usually no
private memories of processors or specific I/O processors, but each processor has a
private cache hierarchy. As usual, access to a local cache is faster than access to the
global memory. In the spirit of the definition from above, each multicore processor
with several cores is an SMP system.

SMPs usually have only a small number of processors, since the central bus
provides a constant bandwidth which is shared by all processors. When too many
processors are connected, more and more access collisions may occur, thus increas-
ing the effective memory access time. This can be alleviated by the use of caches
and suitable cache coherence protocols, see Sect. 2.7.3. The maximum number of
processors used in bus-based SMPs typically lies between 32 and 64.

Parallel programs for SMMs are often based on the execution of threads. A thread
is a separate control flow which shares data with other threads via a global address
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space. It can be distinguished between kernel threads that are managed by the
operating system and user threads that are explicitly generated and controlled by
the parallel program, see Sect. 3.7.2. The kernel threads are mapped by the oper-
ating system to processors for execution. User threads are managed by the specific
programming environment used and are mapped to kernel threads for execution.
The mapping algorithms as well as the exact number of processors can be hidden
from the user by the operating system. The processors are completely controlled
by the operating system. The operating system can also start multiple sequential
programs from several users on different processors, when no parallel program is
available. Small-size SMP systems are often used as servers, because of their cost-
effectiveness, see [35, 140] for a detailed description.

SMP systems can be used as nodes of a larger parallel computer by employing
an interconnection network for data exchange between processors of different SMP
nodes. For such systems, a shared address space can be defined by using a suitable
cache coherence protocol, see Sect. 2.7.3. A coherence protocol provides the view of
a shared address space, although the physical memory might be distributed. Such a
protocol must ensure that any memory access returns the most recently written value
for a specific memory address, no matter where this value is physically stored. The
resulting systems are also called distributed shared memory (DSM) architectures.
In contrast to single SMP systems, the access time in DSM systems depends on
the location of a data value in the global memory, since an access to a data value
in the local SMP memory is faster than an access to a data value in the memory
of another SMP node via the coherence protocol. These systems are therefore also
called NUMAs (non-uniform memory access), see Fig. 2.5. Since single SMP sys-
tems have a uniform memory latency for all processors, they are also called UMAs
(uniform memory access).

2.3.3 Reducing Memory Access Times

Memory access time has a large influence on program performance. This can also be
observed for computer systems with a shared address space. Technological develop-
ment with a steady reduction in the VLSI (very large scale integration) feature size
has led to significant improvements in processor performance. Since 1980, integer
performance on the SPEC benchmark suite has been increasing at about 55% per
year, and floating-point performance at about 75% per year [84], see Sect. 2.1.
Using the LINPACK benchmark, floating-point performance has been increasing
at more than 80% per year. A significant contribution to these improvements comes
from a reduction in processor cycle time. At the same time, the capacity of DRAM
chips that are used for building main memory has been increasing by about 60%
per year. In contrast, the access time of DRAM chips has only been decreasing by
about 25% per year. Thus, memory access time does not keep pace with processor
performance improvement, and there is an increasing gap between processor cycle
time and memory access time. A suitable organization of memory access becomes
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more and more important to get good performance results at program level. This
is also true for parallel programs, in particular if a shared address space is used.
Reducing the average latency observed by a processor when accessing memory can
increase the resulting program performance significantly.

Two important approaches have been considered to reduce the average latency
for memory access [14]: the simulation of virtual processors by each physical
processor (multithreading) and the use of local caches to store data values that are
accessed often. We give now a short overview of these approaches in the following.
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2.3.3.1 Multithreading

The idea of interleaved multithreading is to hide the latency of memory accesses
by simulating a fixed number of virtual processors for each physical processor. The
physical processor contains a separate program counter (PC) as well as a separate
set of registers for each virtual processor. After the execution of a machine instruc-
tion, an implicit switch to the next virtual processor is performed, i.e., the virtual
processors are simulated by the physical processor in a round-robin fashion. The
number of virtual processors per physical processor should be selected such that
the time between the executions of successive instructions of a virtual processor is
sufficiently large to load required data from the global memory. Thus, the memory
latency will be hidden by executing instructions of other virtual processors. This
approach does not reduce the amount of data loaded from the global memory via
the network. Instead, instruction execution is organized such that a virtual processor
accesses requested data not before their arrival. Therefore, from the point of view of
a virtual processor, memory latency cannot be observed. This approach is also called
fine-grained multithreading, since a switch is performed after each instruction. An
alternative approach is coarse-grained multithreading which switches between
virtual processors only on costly stalls, such as level 2 cache misses [84]. For the
programming of fine-grained multithreading architectures, a PRAM-like program-
ming model can be used, see Sect. 4.5.1. There are two drawbacks of fine-grained
multithreading:

• The programming must be based on a large number of virtual processors. There-
fore, the algorithm used must have a sufficiently large potential of parallelism to
employ all virtual processors.

• The physical processors must be specially designed for the simulation of virtual
processors. A software-based simulation using standard microprocessors is too
slow.

There have been several examples for the use of fine-grained multithreading in
the past, including Dencelor HEP (heterogeneous element processor) [161], NYU
Ultracomputer [73], SB-PRAM [1], Tera MTA [35, 95], as well as the Sun T1 and
T2 multiprocessors. For example, each T1 processor contains eight processor cores,
each supporting four threads which act as virtual processors [84]. Section 2.4.1 will
describe another variation of multithreading which is simultaneous multithreading.

2.3.3.2 Caches

A cache is a small, but fast memory between the processor and main memory. A
cache can be used to store data that is often accessed by the processor, thus avoiding
expensive main memory access. The data stored in a cache is always a subset of the
data in the main memory, and the management of the data elements in the cache
is done by hardware, e.g., by employing a set-associative strategy, see [84] and
Sect. 2.7.1 for a detailed treatment. For each memory access issued by the processor,
the hardware first checks whether the memory address specified currently resides
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in the cache. If so, the data is loaded from the cache and no memory access is
necessary. Therefore, memory accesses that go into the cache are significantly faster
than memory accesses that require a load from the main memory. Since fast memory
is expensive, several levels of caches are typically used, starting from a small, fast,
and expensive level 1 (L1) cache over several stages (L2, L3) to the large, but slow
main memory. For a typical processor architecture, access to the L1 cache only takes
2–4 cycles whereas access to main memory can take up to several hundred cycles.
The primary goal of cache organization is to reduce the average memory access time
as far as possible and to achieve an access time as close as possible to that of the L1
cache. Whether this can be achieved depends on the memory access behavior of the
program considered, see Sect. 2.7.

Caches are used for single-processor computers, but they also play an important
role in SMPs and parallel computers with different memory organization. SMPs
provide a shared address space. If shared data is used by multiple processors, it
may be replicated in multiple caches to reduce access latencies. Each processor
should have a coherent view of the memory system, i.e., any read access should
return the most recently written value no matter which processor has issued the
corresponding write operation. A coherent view would be destroyed if a processor
p changes the value of a memory address in its local cache without writing this value
back to main memory. If another processor q would later read this memory address,
it would not get the most recently written value. But even if p writes the value back
to main memory, this may not be sufficient if q has a copy of the same memory
location in its local cache. In this case, it is also necessary to update the copy in the
local cache of q. The problem of providing a coherent view of the memory system
is often referred to as cache coherence problem. To ensure cache coherency, a
cache coherency protocol must be used, see Sect. 2.7.3 and [35, 84, 81] for a more
detailed description.

2.4 Thread-Level Parallelism

The architectural organization within a processor chip may require the use of
explicitly parallel programs to efficiently use the resources provided. This is called
thread-level parallelism, since the multiple control flows needed are often called
threads. The corresponding architectural organization is also called chip multipro-
cessing (CMP). An example for CMP is the placement of multiple independent exe-
cution cores with all execution resources onto a single processor chip. The resulting
processors are called multicore processors, see Sect. 2.4.2.

An alternative approach is the use of multithreading to execute multiple threads
simultaneously on a single processor by switching between the different threads
when needed by the hardware. As described in Sect. 2.3.3, this can be obtained by
fine-grained or coarse-grained multithreading. A variant of coarse-grained multi-
threading is timeslice multithreading in which the processor switches between the
threads after a predefined timeslice interval has elapsed. This can lead to situations
where the timeslices are not effectively used if a thread must wait for an event. If
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this happens in the middle of a timeslice, the processor may remain unused for the
rest of the timeslice because of the waiting. Such unnecessary waiting times can
be avoided by using switch-on-event multithreading [119] in which the processor
can switch to the next thread if the current thread must wait for an event to occur as
can happen for cache misses.

A variant of this technique is simultaneous multithreading (SMT) which will
be described in the following. This technique is called hyperthreading for some
Intel processors. The technique is based on the observation that a single thread of
control often does not provide enough instruction-level parallelism to use all func-
tional units of modern superscalar processors.

2.4.1 Simultaneous Multithreading

The idea of simultaneous multithreading (SMT) is to use several threads and
to schedule executable instructions from different threads in the same cycle if
necessary, thus using the functional units of a processor more effectively. This
leads to a simultaneous execution of several threads which gives the technique
its name. In each cycle, instructions from several threads compete for the func-
tional units of a processor. Hardware support for simultaneous multithreading is
based on the replication of the chip area which is used to store the processor
state. This includes the program counter (PC), user and control registers, as well
as the interrupt controller with the corresponding registers. With this replication,
the processor appears to the operating system and the user program as a set of
logical processors to which processes or threads can be assigned for execution.
These processes or threads can come from a single or several user programs. The
number of replications of the processor state determines the number of logical
processors.

Each logical processor stores its processor state in a separate processor resource.
This avoids overhead for saving and restoring processor states when switching to
another logical processor. All other resources of the processor chip like caches, bus
system, and function and control units are shared by the logical processors. There-
fore, the implementation of SMT only leads to a small increase in chip size. For two
logical processors, the required increase in chip area for an Intel Xeon processor is
less than 5% [119, 178]. The shared resources are assigned to the logical processors
for simultaneous use, thus leading to a simultaneous execution of logical processors.
When a logical processor must wait for an event, the resources can be assigned to
another logical processor. This leads to a continuous use of the resources from the
view of the physical processor. Waiting times for logical processors can occur for
cache misses, wrong branch predictions, dependencies between instructions, and
pipeline hazards.

Investigations have shown that the simultaneous use of processor resources by
two logical processors can lead to performance improvements between 15% and
30%, depending on the application program [119]. Since the processor resources are
shared by the logical processors, it cannot be expected that the use of more than two
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logical processors can lead to a significant additional performance improvement.
Therefore, SMT will likely be restricted to a small number of logical processors.
Examples of processors that support SMT are the IBM Power5 and Power6 proces-
sors (two logical processors) and the Sun T1 and T2 processors (four/eight logical
processors), see, e.g., [84] for a more detailed description.

To use SMT to obtain performance improvements, it is necessary that the oper-
ating system be able to control logical processors. From the point of view of the
application program, it is necessary that every logical processor has a separate thread
available for execution. Therefore, the application program must apply parallel pro-
gramming techniques to get performance improvements for SMT processors.

2.4.2 Multicore Processors

According to Moore’s law, the number of transistors of a processor chip doubles
every 18–24 months. This enormous increase has enabled hardware manufacturers
for many years to provide a significant performance increase for application pro-
grams, see also Sect. 2.1. Thus, a typical computer is considered old-fashioned and
too slow after at most 5 years, and customers buy new computers quite often. Hard-
ware manufacturers are therefore trying to keep the obtained performance increase
at least at the current level to avoid reduction in computer sales figures.

As discussed in Sect. 2.1, the most important factors for the performance increase
per year have been an increase in clock speed and the internal use of parallel pro-
cessing like pipelined execution of instructions and the use of multiple functional
units. But these traditional techniques have mainly reached their limits:

• Although it is possible to put additional functional units on the processor chip,
this would not increase performance for most application programs because
dependencies between instructions of a single control thread inhibit their par-
allel execution. A single control flow does not provide enough instruction-level
parallelism to keep a large number of functional units busy.

• There are two main reasons why the speed of processor clocks cannot be
increased significantly [106]. First, the increase in the number of transistors
on a chip is mainly achieved by increasing the transistor density. But this also
increases the power density and heat production because of leakage current and
power consumption, thus requiring an increased effort and more energy for cool-
ing. Second, memory access time could not be reduced at the same rate as the
processor clock period. This leads to an increased number of machine cycles for
a memory access. For example, in 1990 main memory access was between 6 and
8 cycles for a typical desktop computer system, whereas in 2006 memory access
typically took between 100 and 250 cycles, depending on the DRAM technology
used to build the main memory. Therefore, memory access times could become
a limiting factor for further performance increase, and cache memories are used
to prevent this, see Sect. 2.7 for a further discussion.
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There are more problems that processor designers have to face: Using the
increased number of transistors to increase the complexity of the processor archi-
tecture may also lead to an increase in processor–internal wire length to transfer
control and data between the functional units of the processor. Here, the speed
of signal transfers within the wires could become a limiting factor. For exam-
ple, a 3 GHz processor has a cycle time of 0.33 ns. Assuming a signal transfer
at the speed of light (0.3 ·109 m/s), a signal can cross a distance of 0.33 ·10−9 s
·0.3 · 109 m/s = 10 cm in one processor cycle. This is not significantly larger
than the typical size of a processor chip, and wire lengths become an important
issue.

Another problem is the following: The physical size of a processor chip limits
the number of pins that can be used, thus limiting the bandwidth between CPU and
main memory. This may lead to a processor-to-memory performance gap which
is sometimes referred to as memory wall. This makes the use of high-bandwidth
memory architectures with an efficient cache hierarchy necessary [17].

All these reasons inhibit a processor performance increase at the previous rate
using the traditional techniques. Instead, new processor architectures have to be
used, and the use of multiple cores on a single processor die is considered as
the most promising approach. Instead of further increasing the complexity of the
internal organization of a processor chip, this approach integrates multiple indepen-
dent processing cores with a relatively simple architecture onto one processor chip.
This has the additional advantage that the energy consumption of a processor chip
can be reduced if necessary by switching off unused processor cores during idle
times [83].

Multicore processors integrate multiple execution cores on a single processor
chip. For the operating system, each execution core represents an independent log-
ical processor with separate execution resources like functional units or execution
pipelines. Each core has to be controlled separately, and the operating system can
assign different application programs to the different cores to obtain a parallel
execution. Background applications like virus checking, image compression, and
encoding can run in parallel to application programs of the user. By using techniques
of parallel programming, it is also possible to execute a computation-intensive appli-
cation program (like computer games, computer vision, or scientific simulations) in
parallel on a set of cores, thus reducing the execution time compared to an execution
on a single core or leading to more accurate results by performing more computa-
tions as in the sequential case. In the future, users of standard application programs
as computer games will likely expect an efficient use of the execution cores of a
processor chip. To achieve this, programmers have to use techniques from parallel
programming.

The use of multiple cores on a single processor chip also enables standard
programs, like text processing, office applications, or computer games, to provide
additional features that are computed in the background on a separate core so that
the user does not notice any delay in the main application. But again, techniques of
parallel programming have to be used for the implementation.
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2.4.3 Architecture of Multicore Processors

There are many different design variants for multicore processors, differing in the
number of cores, the structure and size of the caches, the access of cores to caches,
and the use of heterogeneous components. From a high-level view, three different
types of architectures can be distinguished, and there are also hybrid organizations
[107].

2.4.3.1 Hierarchical Design

For a hierarchical design, multiple cores share multiple caches. The caches are orga-
nized in a tree-like configuration, and the size of the caches increases from the leaves
to the root, see Fig. 2.6 (left) for an illustration. The root represents the connection
to external memory. Thus, each core can have a separate L1 cache and shares the
L2 cache with other cores. All cores share the common external memory, resulting
in a three-level hierarchy as illustrated in Fig. 2.6 (left). This can be extended to
more levels. Additional sub-components can be used to connect the caches of one
level with each other. A typical usage area for a hierarchical design is the SMP
configuration.

A hierarchical design is also often used for standard desktop or server processors.
Examples are the IBM Power6 architecture, the processors of the Intel Xeon and
AMD Opteron family, as well as the Sun Niagara processors (T1 and T2). Figure 2.7
shows the design of the Quad-Core AMD Opteron and the Intel Quad-Core Xeon
processors as a typical example for desktop processors with a hierarchical design.
Many graphics processing units (GPUs) also exhibit a hierarchical design. An exam-
ple is shown in Fig. 2.8 for the Nvidia GeForce 8800, which has 128 stream proces-
sors (SP) at 1.35 GHz organized in 8 texture/processor clusters (TPC) such that each
TPC contains 16 SPs. This architecture is scalable to smaller and larger configura-
tions by scaling the number of SPs and memory partitions, see [137] for a detailed
description.
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2.4.3.2 Pipelined Designs

For a pipelined design, data elements are processed by multiple execution cores in
a pipelined way. Data elements enter the processor chip via an input port and are
passed successively through different cores until the processed data elements leave
the last core and the entire processor chip via an output port, see Fig. 2.6 (middle).
Each core performs specific processing steps on each data element.

Pipelined designs are useful for application areas in which the same computation
steps have to be applied to a long sequence of data elements. Network processors
used in routers and graphics processors both perform this style of computations.
Examples for network processors with a pipelined design are the Xelerator X10 and
X11 processors [176, 107] for the successive processing of network packets in a
pipelined way within the chip. The Xelerator X11 contains up to 800 separate cores
which are arranged in a logically linear pipeline, see Fig. 2.9 for an illustration. The
network packets to be processed enter the chip via multiple input ports on one side
of the chip, are successively processed by the cores, and then exit the chip.
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Fig. 2.9 Xelerator X11 network processor as an example for a pipelined design [176]

2.4.3.3 Network-Based Design

For a network-based design, the cores of a processor chip and their local caches and
memories are connected via an interconnection network with other cores of the chip,
see Fig. 2.6 (right) for an illustration. Data transfer between the cores is performed
via the interconnection network. This network may also provide support for the
synchronization of the cores. Off-chip interfaces may be provided via specialized
cores or DMA ports. An example for a network-based design is the Intel Teraflop
processor, which has been designed by the Intel Tera-scale Computing Research
Program [83, 17].

This research program addresses the challenges of building processor chips with
tens to hundreds of execution cores, including core design, energy management,
cache and memory hierarchy, and I/O. The Teraflop processor developed as a pro-
totype contains 80 cores, which are arranged in a 8×10 mesh, see Fig. 2.10 for an
illustration. Each core can perform floating-point operations and contains a local
cache as well as a router to perform data transfer between the cores and the main
memory. There are additional cores for processing video data, encryption, and
graphics computations. Depending on the application area, the number of special-
ized cores of such a processor chip could be varied.

2.4.3.4 Future Trends and Developments

The potential of multicore processors has been realized by most processor man-
ufacturers like Intel or AMD, and since about 2005, many manufacturers deliver
processors with two or more cores. Since 2007, Intel and AMD provide quad-core
processors (like the Quad-Core AMD Opteron and the Quad-Core Intel Xeon), and
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the provision of oct-core processors is expected in 2010. The IBM Cell processor
integrates one standard desktop core based on the Power Architecture and eight
specialized processing cores. The UltraSPARC T2 processor from Sun has up to
eight processing cores each of which can simulate eight threads using SMT (which
is called CoolThreads by Sun). Thus, an UltraSPARC T2 processor can simultane-
ously execute up to 64 threads.

An important issue for the integration of a large number of cores in one processor
chip is an efficient on-chip interconnection, which provides enough bandwidth for
data transfers between the cores [83]. This interconnection should be scalable to
support an increasing number of cores for future generations of processor designs
and robust to tolerate failures of specific cores. If one or a few cores exhibit hard-
ware failures, the rest of the cores should be able to continue operation. The inter-
connection should also support an efficient energy management which allows the
scale-down of power consumption of individual cores by reducing the clock speed.

For an efficient use of processing cores, it is also important that the data to be
processed be transferred to the cores fast enough to avoid the cores to wait for
the data to be available. Therefore, an efficient memory system and I/O system
are important. The memory system may use private first-level (L1) caches which
can only be accessed by their associated cores, as well as shared second-level (L2)
caches which can contain data of different cores. In addition, a shared third-level
(L3) cache is often used. Processor chip with dozens or hundreds of cores will likely
require an additional level of caches in the memory hierarchy to fulfill bandwidth
requirements [83]. The I/O system must be able to provide enough bandwidth to
keep all cores busy for typical application programs. At the physical layer, the I/O
system must be able to bring hundreds of gigabits per second onto the chip. Such
powerful I/O systems are currently under development [83].

Table 2.1 gives a short overview of typical multicore processors in 2009. For
a more detailed treatment of the architecture of multicore processors and further
examples, we refer to [137, 84].
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Table 2.1 Examples for multicore processors in 2009

Number of Number of Clock L1 L2 L3 Year
Processor cores threads GHz cache cache cache released

Intel Xeon E5450 4 4 3.0 4× 2× 2007
“Harpertown” 32 KB 6.1 MB
Intel Xeon E5540 4 8 2.53 4× 4× 8 MB 2009
“Gainestown” 64 KB 256 MB
AMD Opteron 4 4 2.0 4× 4× 2 MB 2007
“Barcelona” 64 KB 512 KB
AMD Opteron 6 6 2.8 6× 6× 6 MB 2009
“Istanbul” 128 KB 512 KB
IBM 2 4 4.7 128 KB 2× 32 MB 2007
Power6 4 MB
Sun T2 8 64 1.17 8× 4 MB 2007
Niagara 2 8 KB

2.5 Interconnection Networks

A physical connection between the different components of a parallel system is
provided by an interconnection network. Similar to control flow and data flow,
see Sect. 2.2, or memory organization, see Sect. 2.3, the interconnection network
can also be used for a classification of parallel systems. Internally, the network
consists of links and switches which are arranged and connected in some regular
way. In multicomputer systems, the interconnection network is used to connect
the processors or nodes with each other. Interactions between the processors for
coordination, synchronization, or exchange of data are obtained by communication
through message-passing over the links of the interconnection network. In multipro-
cessor systems, the interconnection network is used to connect the processors with
the memory modules. Thus, memory accesses of the processors are performed via
the interconnection network.

In both cases, the main task of the interconnection network is to transfer a mes-
sage from a specific processor to a specific destination. The message may contain
data or a memory request. The destination may be another processor or a memory
module. The requirement for the interconnection network is to perform the message
transfer correctly as fast as possible, even if several messages have to be transferred
at the same time. Message transfer and memory accesses represent a significant part
of operations of parallel systems with a distributed or shared address space. There-
fore, the interconnection network used represents a significant part of the design of a
parallel system and may have a large influence on its performance. Important design
criteria of networks are

• the topology describing the interconnection structure used to connect different
processors or processors and memory modules and

• the routing technique describing the exact message transmission used within the
network between processors or processors and memory modules.
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The topology of an interconnection network describes the geometric structure
used for the arrangement of switches and links to connect processors or processors
and memory modules. The geometric structure can be described as a graph in which
switches, processors, or memory modules are represented as vertices and physical
links are represented as edges. It can be distinguished between static and dynamic
interconnection networks. Static interconnection networks connect nodes (proces-
sors or memory modules) directly with each other by fixed physical links. They are
also called direct networks or point-to-point networks. The number of connec-
tions to or from a node may vary from only one in a star network to the total number
of nodes in the network for a completely connected graph, see Sect. 2.5.2. Static
networks are often used for systems with a distributed address space where a node
comprises a processor and the corresponding memory module. Dynamic intercon-
nection networks connect nodes indirectly via switches and links. They are also
called indirect networks. Examples of indirect networks are bus-based networks
or switching networks which consist of switches connected by links. Dynamic net-
works are used for both parallel systems with distributed and shared address space.
Often, hybrid strategies are used [35].

The routing technique determines how and along which path messages are trans-
ferred in the network from a sender to a receiver. A path in the network is a series
of nodes along which the message is transferred. Important aspects of the routing
technique are the routing algorithm which determines the path to be used for the
transmission and the switching strategy which determines whether and how mes-
sages are cut into pieces, how a routing path is assigned to a message, and how a
message is forwarded along the processors or switches on the routing path.

The combination of routing algorithm, switching strategy, and network topology
determines the performance of a network significantly. In Sects. 2.5.2 and 2.5.4,
important direct and indirect networks are described in more detail. Specific routing
algorithms and switching strategies are presented in Sects. 2.6.1 and 2.6.3. Efficient
algorithms for the realization of common communication operations on different
static networks are given in Chap. 4. A more detailed treatment of interconnection
networks is given in [19, 35, 44, 75, 95, 115, 158].

2.5.1 Properties of Interconnection Networks

Static interconnection networks use fixed links between the nodes. They can be
described by a connection graph G = (V, E) where V is a set of nodes to be con-
nected and E is a set of direct connection links between the nodes. If there is a direct
physical connection in the network between the nodes u ∈ V and v ∈ V , then it is
(u, v) ∈ E . For most parallel systems, the interconnection network is bidirectional.
This means that along a physical link messages can be transferred in both directions
at the same time. Therefore, the connection graph is usually defined as an undirected
graph. When a message must be transmitted from a node u to a node v and there
is no direct connection between u and v in the network, a path from u to v must
be selected which consists of several intermediate nodes along which the message
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is transferred. A sequence of nodes (v0, . . . , vk) is called path of length k between
v0 and vk , if (vi , vi+1) ∈ E for 0 ≤ i < k. For parallel systems, all interconnection
networks fulfill the property that there is at least one path between any pair of nodes
u, v ∈ V .

Static networks can be characterized by specific properties of the connection
graph, including the following properties: number of nodes, diameter of the net-
work, degree of the nodes, bisection bandwidth, node and edge connectivity of the
network, and flexibility of embeddings into other networks as well as the embedding
of other networks. In the following, a precise definition of these properties is given.

The diameter δ(G) of a network G is defined as the maximum distance between
any pair of nodes:

δ(G) = max
u,v∈V

min
ϕ path

from u to v

{k | k is the length of the path ϕ from u to v}.

The diameter of a network determines the length of the paths to be used for message
transmission between any pair of nodes. The degree g(G) of a network G is the
maximum degree of a node of the network where the degree of a node n is the
number of direct neighbor nodes of n:

g(G) = max{g(v) | g(v) degree of v ∈ V }.

In the following, we assume that |A| denotes the number of elements in a set A.
The bisection bandwidth B(G) of a network G is defined as the minimum number
of edges that must be removed to partition the network into two parts of equal size
without any connection between the two parts. For an uneven total number of nodes,
the size of the parts may differ by 1. This leads to the following definition for B(G):

B(G) = min
U1, U2 partition of V
||U1|−|U2||≤1

|{(u, v) ∈ E | u ∈ U1, v ∈ U2}|.

B(G)+ 1 messages can saturate a network G, if these messages must be transferred
at the same time over the corresponding edges. Thus, bisection bandwidth is a mea-
sure for the capacity of a network when transmitting messages simultaneously.

The node and edge connectivity of a network measure the number of nodes or
edges that must fail to disconnect the network. A high connectivity value indicates
a high reliability of the network and is therefore desirable. Formally, the node con-
nectivity of a network is defined as the minimum number of nodes that must be
deleted to disconnect the network, i.e., to obtain two unconnected network parts
(which do not necessarily need to have the same size as is required for the bisection
bandwidth). For an exact definition, let GV \M be the rest graph which is obtained
by deleting all nodes in M ⊂ V as well as all edges adjacent to these nodes. Thus,
it is GV \M = (V \ M, E ∩ ((V \ M)× (V \ M))). The node connectivity nc(G) of
G is then defined as
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nc(G) = min
M⊂V

{|M | | there exist u, v ∈ V \ M, such that there exists

no path in GV \M from u to v}.

Similarly, the edge connectivity of a network is defined as the minimum number
of edges that must be deleted to disconnect the network. For an arbitrary subset
F ⊂ E , let G E\F be the rest graph which is obtained by deleting the edges in F ,
i.e., it is G E\F = (V, E \ F). The edge connectivity ec(G) of G is then defined as

ec(G) = min
F⊂E

{|F | | there exist u, v ∈ V, such that there exists

no path in G E\F from u to v}.

The node and edge connectivity of a network is a measure of the number of indepen-
dent paths between any pair of nodes. A high connectivity of a network is important
for its availability and reliability, since many nodes or edges can fail before the
network is disconnected. The minimum degree of a node in the network is an upper
bound on the node or edge connectivity, since such a node can be completely sepa-
rated from its neighboring nodes by deleting all incoming edges. Figure 2.11 shows
that the node connectivity of a network can be smaller than its edge connectivity.

Fig. 2.11 Network with node
connectivity 1, edge
connectivity 2, and degree 4.
The smallest degree of a node
is 3

The flexibility of a network can be captured by the notion of embedding. Let
G = (V, E) and G ′ = (V ′, E ′) be two networks. An embedding of G ′ into G
assigns each node of G ′ to a node of G such that different nodes of G ′ are mapped
to different nodes of G and such that edges between two nodes in G ′ are also present
between their associated nodes in G [19]. An embedding of G ′ into G can formally
be described by a mapping function σ : V ′ → V such that the following holds:

• if u 	= v for u, v ∈ V ′, then σ (u) 	= σ (v) and
• if (u, v) ∈ E ′, then (σ (u), σ (v)) ∈ E .

If a network G ′ can be embedded into a network G, this means that G is at least as
flexible as G ′, since any algorithm that is based on the network structure of G ′, e.g.,
by using edges between nodes for communication, can be re-formulated for G with
the mapping function σ , thus using corresponding edges in G for communication.

The network of a parallel system should be designed to meet the requirements
formulated for the architecture of the parallel system based on typical usage pat-
terns. Generally, the following topological properties are desirable:

• a small diameter to ensure small distances for message transmission,
• a small node degree to reduce the hardware overhead for the nodes,
• a large bisection bandwidth to obtain large data throughputs,
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• a large connectivity to ensure reliability of the network,
• embedding into a large number of networks to ensure flexibility, and
• easy extendability to a larger number of nodes.

Some of these properties are conflicting and there is no network that meets all
demands in an optimal way. In the following, some popular direct networks are
presented and analyzed. The topologies are illustrated in Fig. 2.12. The topological
properties are summarized in Table 2.2.

2.5.2 Direct Interconnection Networks

Direct interconnection networks usually have a regular structure which is transferred
to their graph representation G = (V, E). In the following, we use n = |V | for the
number of nodes in the network and use this as a parameter of the network type
considered. Thus, each network type captures an entire class of networks instead of
a fixed network with a given number of nodes.

A complete graph is a network G in which each node is directly connected with
every other node, see Fig. 2.12(a). This results in diameter δ(G) = 1 and degree
g(G) = n − 1. The node and edge connectivity is nc(G) = ec(G) = n − 1, since a
node can only be disconnected by deleting all n − 1 adjacent edges or neighboring
nodes. For even values of n, the bisection bandwidth is B(G) = n2/4: If two subsets
of nodes of size n/2 each are built, there are n/2 edges from each of the nodes of
one subset into the other subset, resulting in n/2·n/2 edges between the subsets. All
other networks can be embedded into a complete graph, since there is a connection
between any two nodes. Because of the large node degree, complete graph networks
can only be built physically for a small number of nodes.

In a linear array network, nodes are arranged in a sequence and there is a
bidirectional connection between any pair of neighboring nodes, see Fig. 2.12(b),
i.e., it is V = {v1, . . . , vn} and E = {(vi , vi+1) | 1 ≤ i < n}. Since n − 1 edges
have to be traversed to reach vn starting from v1, the diameter is δ(G) = n − 1.
The connectivity is nc(G) = ec(G) = 1, since the elimination of one node or edge
disconnects the network. The network degree is g(G) = 2 because of the inner
nodes, and the bisection bandwidth is B(G) = 1. A linear array network can be
embedded in nearly all standard networks except a tree network, see below. Since
there is a link only between neighboring nodes, a linear array network does not
provide fault tolerance for message transmission.

In a ring network, nodes are arranged in ring order. Compared to the linear array
network, there is one additional bidirectional edge from the first node to the last
node, see Fig. 2.12(c). The resulting diameter is δ(G) = 
n/2�, the degree is g(G) =
2, the connectivity is nc(G) = ec(G) = 2, and the bisection bandwidth is also
B(G) = 2. In practice, ring networks can be used for small number of processors
and as part of more complex networks.

A d-dimensional mesh (also called d-dimensional array) for d ≥ 1 consists
of n = n1 · n2 · . . . · nd nodes that are arranged as a d-dimensional mesh, see
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Fig. 2.12 Static interconnection networks: (a) complete graph, (b) linear array, (c) ring, (d) two-
dimensional mesh, (e) two-dimensional torus, (f) k-dimensional cube for k=1,2,3,4, (g) cube-
connected-cycles network for k = 3, (h) complete binary tree, (i) shuffle–exchange network with
8 nodes, where dashed edges represent exchange edges and straight edges represent shuffle edges
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Table 2.2 Summary of important characteristics of static interconnection networks for selected
topologies

Degree Diameter Edge- connectivity Bisection bandwidth
Network G with n nodes g(G) δ(G) ec(G) B(G)

Complete graph n − 1 1 n − 1
(

n
2

)2

Linear array 2 n − 1 1 1
Ring 2

⌊
n
2

⌋
2 2

d-Dimensional mesh 2d d( d
√

n − 1) d n
d−1

d

(n = rd )

d-Dimensional torus 2d d
⌊

d√n
2

⌋
2d 2n

d−1
d

(n = rd )
k-Dimensional hyper- log n log n log n n

2
cube (n = 2k )

k-Dimensional 3 2k − 1+ 
k/2� 3 n
2k

CCC network
(n = k2k for k ≥ 3)

Complete binary 3 2 log n+1
2 1 1

tree (n = 2k − 1)
k-ary d-cube 2d d

⌊
k
2

⌋
2d 2kd−1

(n = kd )

Fig. 2.12(d). The parameter n j denotes the extension of the mesh in dimension j
for j = 1, . . . , d. Each node in the mesh is represented by its position (x1, . . . , xd )
in the mesh with 1 ≤ x j ≤ n j for j = 1, . . . , d . There is an edge between node
(x1, . . . , xd ) and (x ′1, . . . x ′d ), if there exists μ ∈ {1, . . . , d} with

|xμ − x ′μ| = 1 and x j = x ′j for all j 	= μ.

In the case that the mesh has the same extension in all dimensions (also called
symmetric mesh), i.e., n j = r = d

√
n for all j = 1, . . . , d, and therefore n =

rd , the network diameter is δ(G) = d · ( d
√

n − 1), resulting from the path length
between nodes on opposite sides of the mesh. The node and edge connectivity is
nc(G) = ec(G) = d , since the corner nodes of the mesh can be disconnected by
deleting all d incoming edges or neighboring nodes. The network degree is g(G) =
2d, resulting from inner mesh nodes which have two neighbors in each dimension.
A two-dimensional mesh has been used for the Teraflop processor from Intel, see
Sect. 2.4.3.

A d-dimensional torus is a variation of a d-dimensional mesh. The difference is
the additional edges between the first and the last node in each dimension, i.e., for
each dimension j = 1, . . . , d there is an edge between node (x1, . . . , x j−1, 1, x j+1,

. . . , xd ) and (x1, . . . , x j−1, n j , x j+1, . . . , xd ), see Fig. 2.12(e). For the symmetric
case n j = d

√
n for all j = 1, . . . , d , the diameter of the torus network is δ(G) =

d · 
 d
√

n/2�. The node degree is 2d for each node, i.e., g(G) = 2d. Therefore, node
and edge connectivities are also nc(G) = ec(G) = 2d.

A k-dimensional cube or hypercube consists of n = 2k nodes which are
connected by edges according to a recursive construction, see Fig. 2.12(f). Each
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node is represented by a binary word of length k, corresponding to the numbers
0, . . . , 2k−1. A one-dimensional cube consists of two nodes with bit representations
0 and 1 which are connected by an edge. A k-dimensional cube is constructed
from two given (k − 1)-dimensional cubes, each using binary node representa-
tions 0, . . . , 2k−1 − 1. A k-dimensional cube results by adding edges between each
pair of nodes with the same binary representation in the two (k − 1)-dimensional
cubes. The binary representations of the nodes in the resulting k-dimensional
cube are obtained by adding a leading 0 to the previous representation of the
first (k − 1)-dimensional cube and adding a leading 1 to the previous represen-
tations of the second (k − 1)-dimensional cube. Using the binary representations
of the nodes V = {0, 1}k , the recursive construction just mentioned implies that
there is an edge between node α0 . . . α j . . . αk−1 and node α0 . . . ᾱ j . . . αk−1 for
0 ≤ j ≤ k − 1 where ᾱ j = 1 for α j = 0 and ᾱ j = 0 for α j = 1. Thus,
there is an edge between every pair of nodes whose binary representation dif-
fers in exactly one bit position. This fact can also be captured by the Hamming
distance.

The Hamming distance of two binary words of the same length is defined as
the number of bit positions in which their binary representations differ. Thus, two
nodes of a k-dimensional cube are directly connected, if their Hamming distance is
1. Between two nodes v,w ∈ V with Hamming distance d, 1 ≤ d ≤ k, there exists
a path of length d connecting v and w. This path can be determined by traversing
the bit representation of v bitwise from left to right and inverting the bits in which
v and w differ. Each bit inversion corresponds to a traversal of the corresponding
edge to a neighboring node. Since the bit representation of any two nodes can differ
in at most k positions, there is a path of length≤ k between any pair of nodes. Thus,
the diameter of a k-dimensional cube is δ(G) = k. The node degree is g(G) = k,
since a binary representation of length k allows k bit inversions, i.e., each node has
exactly k neighbors. The node and edge connectivity is nc(G) = ec(G) = k as will
be described in the following.

The connectivity of a hypercube is at most k, i.e., nc(G) ≤ k, since each node
can be completely disconnected from its neighbors by deleting all k neighbors or
all k adjacent edges. To show that the connectivity is at least k, we show that there
are exactly k independent paths between any pair of nodes v and w. Two paths are
independent of each other if they do not share any edge, i.e., independent paths
between v and w only share the two nodes v and w. The independent paths are
constructed based on the binary representations of v and w, which are denoted
by A and B, respectively, in the following. We assume that A and B differ in l
positions, 1 ≤ l ≤ k, and that these are the first l positions (which can be obtained
by a renumbering). We can construct l paths of length l each between v and w by
inverting the first l bits of A in different orders. For path i , 0 ≤ i < l, we stepwise
invert bits i, . . . , l−1 in this order first, and then invert bits 0, . . . , i−1 in this order.
This results in l independent paths. Additional k − l independent paths between v

and w of length l + 2 each can be constructed as follows: For i with 0 ≤ i < k − l,
we first invert the bit (l+ i) of A and then the bits at positions 0, . . . , l−1 stepwise.
Finally, we invert the bit (l + i) again, obtaining bit representation B. This is shown
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Fig. 2.13 In a three-dimensional cube network, we can construct three independent paths (from
node 000 to node 110). The Hamming distance between node 000 and node 110 is l = 2. There are
two independent paths between 000 and 110 of length l = 2: path (000, 100, 110) and path (000,
010, 110). Additionally, there are k− l = 1 path of length l+2 = 4: path (000, 001, 101, 111, 110)

in Fig. 2.13 for an example. All k paths constructed are independent of each other,
showing that nc(G) ≥ k holds.

A k-dimensional cube allows the embedding of many other networks as will be
shown in the next subsection.

A cube-connected cycles (CCC) network results from a k-dimensional cube by
replacing each node with a cycle of k nodes. Each of the nodes in the cycle has
one off-cycle connection to one neighbor of the original node of the k-dimensional
cube, thus covering all neighbors, see Fig. 2.12(g). The nodes of a CCC network
can be represented by V = {0, 1}k × {0, . . . , k − 1} where {0, 1}k are the binary
representations of the k-dimensional cube and i ∈ {0, . . . , k − 1} represents the
position in the cycle. It can be distinguished between cycle edges F and cube
edges E :

F = {((α, i), (α, (i + 1) mod k)) | α ∈ {0, 1}k, 0 ≤ i < k},
E = {((α, i), (β, i)) | αi 	= βi and α j = β j for j 	= i}.

Each of the k ·2k nodes of the CCC network has degree g(G) = 3, thus eliminating a
drawback of the k-dimensional cube. The connectivity is nc(G) = ec(G) = 3 since
each node can be disconnected by deleting its three neighboring nodes or edges. An
upper bound for the diameter is δ(G) = 2k − 1+ 
k/2�. To construct a path of this
length, we consider two nodes in two different cycles with maximum hypercube
distance k. These are nodes (α, i) and (β, j) for which α and β differ in all k bits.
We construct a path from (α, i) to (β, j) by sequentially traversing a cube edge
and a cycle edge for each bit position. The path starts with (α0 . . . αi . . . αk−1, i) and
reaches the next node by inverting αi to ᾱi = βi . From (α0 . . . βi . . . αk−1, i) the next
node (α0 . . . βi . . . αk−1, (i + 1) mod k) is reached by using a cycle edge. In the next
steps, the bits αi+1, . . . , αk−1 and α0, . . . , αi−1 are successively inverted in this way,
using a cycle edge between the steps. This results in 2k − 1 edge traversals. Using
at most 
k/2� additional traversals of cycle edges starting from (β, i + k−1 mod k)
leads to the target node (β, j).

A complete binary tree network has n = 2k − 1 nodes which are arranged as
a binary tree in which all leaf nodes have the same depth, see Fig. 2.12(h). The
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degree of inner nodes is 3, leading to a total degree of g(G) = 3. The diameter of
the network is δ(G) = 2 · log n+1

2 and is determined by the path length between
two leaf nodes in different subtrees of the root node; the path consists of a subpath
from the first leaf to the root followed by a subpath from the root to the second leaf.
The connectivity of the network is nc(G) = ec(G) = 1, since the network can be
disconnected by deleting the root or one of the edges to the root.

A k-dimensional shuffle–exchange network has n = 2k nodes and 3 ·2k−1 edges
[167]. The nodes can be represented by k-bit words. A node with bit representation
α is connected with a node with bit representation β, if

• α and β differ in the last bit (exchange edge) or
• α results from β by a cyclic left shift or a cyclic right shift (shuffle edge).

Figure 2.12(i) shows a shuffle–exchange network with 8 nodes. The permutation
(α, β) where β results from α by a cyclic left shift is called perfect shuffle.
The permutation (α, β) where β results from α by a cyclic right shift is called
inverse perfect shuffle, see [115] for a detailed treatment of shuffle–exchange
networks.

A k-ary d-cube with k ≥ 2 is a generalization of the d-dimensional cube with
n = kd nodes where each dimension i with i = 0, . . . , d−1 contains k nodes. Each
node can be represented by a word with d numbers (a0, . . . , ad−1) with 0 ≤ ai ≤
k−1, where ai represents the position of the node in dimension i, i = 0, . . . , d−1.
Two nodes A = (a0, . . . , ad−1) and B = (b0, . . . , bd−1) are connected by an edge if
there is a dimension j ∈ {0, . . . , d − 1} for which a j = (b j ± 1) mod k and ai = bi

for all other dimensions i = 0, . . . , d − 1, i 	= j . For k = 2, each node has one
neighbor in each dimension, resulting in degree g(G) = d. For k > 2, each node
has two neighbors in each dimension, resulting in degree g(G) = 2d. The k-ary
d-cube captures some of the previously considered topologies as special case: A
k-ary 1-cube is a ring with k nodes, a k-ary 2-cube is a torus with k2 nodes, a 3-ary
3-cube is a three-dimensional torus with 3 × 3 × 3 nodes, and a 2-ary d-cube is a
d-dimensional cube.

Table 2.2 summarizes important characteristics of the network topologies
described.

2.5.3 Embeddings

In this section, we consider the embedding of several networks into a hypercube
network, demonstrating that the hypercube topology is versatile and flexible.

2.5.3.1 Embedding a Ring into a Hypercube Network

For an embedding of a ring network with n = 2k nodes represented by V ′ =
{1, . . . , n} in a k-dimensional cube with nodes V = {0, 1}k , a bijective function
from V ′ to V is constructed such that a ring edge (i, j) ∈ E ′ is mapped to a hyper-
cube edge. In the ring, there are edges between neighboring nodes in the sequence
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1, . . . , n. To construct the embedding, we have to arrange the hypercube nodes
in V in a sequence such that there is also an edge between neighboring nodes in
the sequence. The sequence is constructed as reflected Gray code (RGC) sequence
which is defined as follows:

A k-bit RGC is a sequence with 2k binary strings of length k such that two neigh-
boring strings differ in exactly one bit position. The RGC sequence is constructed
recursively, as follows:

• The 1-bit RGC sequence is RGC1 = (0, 1).
• The 2-bit RGC sequence is obtained from RGC1 by inserting a 0 and a 1 in front

of RGC1, resulting in the two sequences (00, 01) and (10, 11). Reversing the
second sequence and concatenation yields RGC2 = (00, 01, 11, 10).

• For k ≥ 2, the k-bit Gray code RGCk is constructed from the (k − 1)-bit Gray
code RGCk−1 = (b1, . . . , bm) with m = 2k−1 where each entry bi for 1 ≤ i ≤ m
is a binary string of length k − 1. To construct RGCk , RGCk−1 is duplicated; a 0
is inserted in front of each bi of the original sequence, and a 1 is inserted in front
of each bi of the duplicated sequence. This results in sequences (0b1, . . . , 0bm)
and (1b1, . . . , 1bm). RGCk results by reversing the second sequence and concate-
nating the two sequences; thus RGCk = (0b1, . . . , 0bm, 1bm, . . . , 1b1).

The Gray code sequences RGCk constructed in this way have the property that
they contain all binary representations of a k-dimensional hypercube, since the
construction corresponds to the construction of a k-dimensional cube from two
(k − 1)-dimensional cubes as described in the previous section. Two neighboring
k-bit words of RGCk differ in exactly one bit position, as can be shown by induc-
tion. The statement is surely true for RGC1. Assuming that the statement is true for
RGCk−1, it is true for the first 2k−1 elements of RGCk as well as for the last 2k−1

elements, since these differ only by a leading 0 or 1 from RGCk−1. The statement
is also true for the two middle elements 0bm and 1bm at which the two sequences
of length 2k−1 are concatenated. Similarly, the first element 0b1 and the last element
1b1 of RGCk differ only in the first bit. Thus, neighboring elements of RGCk are
connected by a hypercube edge.

An embedding of a ring into a k-dimensional cube can be defined by the mapping

σ : {1, . . . , n} → {0, 1}k with σ (i) := RGCk(i),

where RGCk(i) denotes the i th element of RGCk . Figure 2.14(a) shows an example
for k = 3.

2.5.3.2 Embedding a Two-Dimensional Mesh into a Hypercube Network

The embedding of a two-dimensional mesh with n = n1 · n2 nodes into a k-
dimensional cube with n = 2k nodes can be obtained by a generalization of the
embedding of a ring network. For k1 and k2 with n1 = 2k1 and n2 = 2k2 , i.e.,
k1 + k2 = k, the Gray codes RGCk1 = (a1, . . . , an1 ) and RGCk2 = (b1, . . . , bn2 ) are
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Fig. 2.14 Embeddings into a
hypercube network: (a)
embedding of a ring network
with 8 nodes into a
three-dimensional hypercube
and (b) embedding of a
two-dimensional 2× 4 mesh
into a three-dimensional
hypercube
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used to construct an n1 × n2 matrix M whose entries are k-bit strings. In particular,
it is

M =

⎡

⎢⎢⎢
⎣

a1b1 a1b2 . . . a1bn2

a2b1 a2b2 . . . a2bn2

...
...

. . .
...

an1 b1 an1 b2 . . . an1 bn2

⎤

⎥⎥⎥
⎦

.

The matrix is constructed such that neighboring entries differ in exactly one bit
position. This is true for neighboring elements in a row, since identical elements
of RGCk1 and neighboring elements of RGCk2 are used. Similarly, this is true for
neighboring elements in a column, since identical elements of RGCk2 and neighbor-
ing elements of RGCk1 are used. All elements of M are bit strings of length k and
there are no identical bit strings according to the construction. Thus, the matrix M
contains all bit representations of nodes in a k-dimensional cube and neighboring
entries in M correspond to neighboring nodes in the k-dimensional cube, which are
connected by an edge. Thus, the mapping

σ : {1, . . . , n1} × {1, . . . , n2} → {0, 1}k with σ (i, j) = M(i, j)

is an embedding of the two-dimensional mesh into the k-dimensional cube.
Figure 2.14(b) shows an example.

2.5.3.3 Embedding of a d-Dimensional Mesh into a Hypercube Network

In a d-dimensional mesh with ni = 2ki nodes in dimension i , 1 ≤ i ≤ d, there are
n = n1 · · · · ·nd nodes in total. Each node can be represented by its mesh coordinates
(x1, . . . , xd ) with 1 ≤ xi ≤ ni . The mapping
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σ : {(x1, . . . , xd ) | 1 ≤ xi ≤ ni , 1 ≤ i ≤ d} −→ {0, 1}k
with σ ((x1, . . . , xd )) = s1s2 . . . sd and si = RGCki (xi )

(where si is the xi th bit string in the Gray code sequence RGCki ) defines an embed-
ding into the k-dimensional cube. For two mesh nodes (x1, . . . , xd ) and (y1, . . . , yd )
that are connected by an edge in the d-dimensional mesh, there exists exactly one
dimension i ∈ {1, . . . , d} with |xi − yi | = 1 and for all other dimensions j 	= i , it is
x j = y j . Thus, for the corresponding hypercube nodes σ ((x1, . . . , xd )) = s1s2 . . . sd

and σ ((y1, . . . , yd )) = t1t2 . . . td , all components s j = RGCk j (x j ) = RGCk j (y j ) =
t j for j 	= i are identical. Moreover, RGCki (xi ) and RGCki (yi ) differ in exactly one
bit position. Thus, the hypercube nodes s1s2 . . . sd and t1t2 . . . td also differ in exactly
one bit position and are therefore connected by an edge in the hypercube network.

2.5.4 Dynamic Interconnection Networks

Dynamic interconnection networks are also called indirect interconnection net-
works. In these networks, nodes or processors are not connected directly with each
other. Instead, switches are used and provide an indirect connection between the
nodes, giving these networks their name. From the processors’ point of view, such a
network forms an interconnection unit into which data can be sent and from which
data can be received. Internally, a dynamic network consists of switches that are
connected by physical links. For a message transmission from one node to another
node, the switches can be configured dynamically such that a connection is estab-
lished.

Dynamic interconnection networks can be characterized according to their topo-
logical structure. Popular forms are bus networks, multistage networks, and crossbar
networks.

2.5.4.1 Bus Networks

A bus essentially consists of a set of wires which can be used to transport data from a
sender to a receiver, see Fig. 2.15 for an illustration. In some cases, several hundreds
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Fig. 2.15 Illustration of a bus network with 64 wires to connect processors P1, . . . , Pn with caches
C1, . . . , Cn to memory modules M1, . . . , Mm
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of wires are used to ensure a fast transport of large data sets. At each point in time,
only one data transport can be performed via the bus, i.e., the bus must be used in
a time-sharing way. When several processors attempt to use the bus simultaneously,
a bus arbiter is used for the coordination. Because the likelihood for simultaneous
requests of processors increases with the number of processors, bus networks are
typically used for a small number of processors only.

2.5.4.2 Crossbar Networks

An n × m crossbar network has n inputs and m outputs. The actual network con-
sists of n · m switches as illustrated in Fig. 2.16 (left). For a system with a shared
address space, the input nodes may be processors and the outputs may be memory
modules. For a system with a distributed address space, both the input nodes and
the output nodes may be processors. For each request from a specific input to a
specific output, a connection in the switching network is established. Depending
on the specific input and output nodes, the switches on the connection path can
have different states (straight or direction change) as illustrated in Fig. 2.16 (right).
Typically, crossbar networks are used only for a small number of processors because
of the large hardware overhead required.

P

P

MM

P1

2

n

1 2 Mm

Fig. 2.16 Illustration of a n ×m crossbar network for n processors and m memory modules (left).
Each network switch can be in one of two states: straight or direction change (right)

2.5.4.3 Multistage Switching Networks

Multistage switching networks consist of several stages of switches with connecting
wires between neighboring stages. The network is used to connect input devices
to output devices. Input devices are typically the processors of a parallel system.
Output devices can be processors (for distributed memory machines) or memory
modules (for shared memory machines). The goal is to obtain a small distance for
arbitrary pairs of input and output devices to ensure fast communication. The inter-
nal connections between the stages can be represented as a graph where switches are
represented by nodes and wires between switches are represented by edges. Input
and output devices can be represented as specialized nodes with edges going into
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the actual switching network graph. The construction of the switching graph and
the degree of the switches used are important characteristics of multistage switching
networks.

Regular multistage interconnection networks are characterized by a regular
construction method using the same degree of incoming and outgoing wires for all
switches. For the switches, a × b crossbars are often used where a is the input
degree and b is the output degree. The switches are arranged in stages such that
neighboring stages are connected by fixed interconnections, see Fig. 2.17 for an
illustration. The input wires of the switches of the first stage are connected with the
input devices. The output wires of the switches of the last stage are connected with
the output devices. Connections from input devices to output devices are performed
by selecting a path from a specific input device to the selected output device and
setting the switches on the path such that the connection is established.

Fig. 2.17 Multistage
interconnection networks
with a × b crossbars as
switches according to [95]
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The actual graph representing a regular multistage interconnection network
results from gluing neighboring stages of switches together. The connection between
neighboring stages can be described by a directed acyclic graph of depth 1. Using w

nodes for each stage, the degree of each node is g = n/w where n is the number of
edges between neighboring stages. The connection between neighboring stages can
be represented by a permutation π : {1, . . . , n} → {1, . . . , n} which specifies which
output link of one stage is connected to which input link of the next stage. This
means that the output links {1, . . . , n} of one stage are connected to the input links
(π (1), . . . , π (n)) of the next stage. Partitioning the permutation (π (1), . . . , π (n))
into w parts results in the ordered set of input links of nodes of the next stage. For
regular multistage interconnection networks, the same permutation is used for all
stages, and the stage number can be used as parameter.

Popular regular multistage networks are the omega network, the baseline net-
work, and the butterfly network. These networks use 2× 2 crossbar switches which
are arranged in log n stages. Each switch can be in one of four states as illustrated
in Fig. 2.18. In the following, we give a short overview of the omega, baseline,
butterfly, Beneš, and fat tree networks, see [115] for a detailed description.
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straight crossover upper broadcast lower broadcast

Fig. 2.18 Settings for switches in an omega, baseline, or butterfly network

2.5.4.4 Omega Network

An n × n omega network is based on 2 × 2 crossbar switches which are arranged
in log n stages such that each stage contains n/2 switches where each switch has
two input links and two output links. Thus, there are (n/2) · log n switches in total,
with log n ≡ log2 n. Each switch can be in one of four states, see Fig. 2.18. In
the omega network, the permutation function describing the connection between
neighboring stages is the same for all stages, independent of the number of the stage.
The switches in the network are represented by pairs (α, i) where α ∈ {0, 1}log n−1

is a bit string of length log n− 1 representing the position of a switch within a stage
and i ∈ {0, . . . , log n − 1} is the stage number. There is an edge from node (α, i) in
stage i to two nodes (β, i + 1) in stage i + 1 where β is defined as follows:

1. β results from α by a cyclic left shift or
2. β results from α by a cyclic left shift followed by an inversion of the last (right-

most) bit.

An n × n omega network is also called (log n − 1)-dimensional omega network.
Figure 2.19(a) shows a 16×16 (three-dimensional) omega network with four stages
and eight switches per stage.

2.5.4.5 Butterfly Network

Similar to the omega network, a k-dimensional butterfly network connects n = 2k+1

inputs to n = 2k+1 outputs using a network of 2 × 2 crossbar switches. Again, the
switches are arranged in k + 1 stages with 2k nodes/switches per stage. This results
in a total number (k + 1) · 2k of nodes. Again, the nodes are represented by pairs
(α, i) where i for 0 ≤ i ≤ k denotes the stage number and α ∈ {0, 1}k is the position
of the node in the stage. The connection between neighboring stages i and i + 1 for
0 ≤ i < k is defined as follows: Two nodes (α, i) and (α′, i + 1) are connected if
and only if

1. α and α′ are identical (straight edge) or
2. α and α′ differ in precisely the (i + 1)th bit from the left (cross edge).

Figure 2.19(b) shows a 16× 16 butterfly network with four stages.

2.5.4.6 Baseline Network

The k-dimensional baseline network has the same number of nodes, edges, and
stages as the butterfly network. Neighboring stages are connected as follows: Node
(α, i) is connected to node (α′, i + 1) for 0 ≤ i < k if and only if
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Fig. 2.19 Examples for dynamic interconnection networks: (a) 16×16 omega network, (b) 16×16
butterfly network, (c) 16× 16 baseline network. All networks are three-dimensional
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1. α′ results from α by a cyclic right shift on the last k − i bits of α or
2. α′ results from α by first inverting the last (rightmost) bit of α and then perform-

ing a cyclic right shift on the last k − i bits.

Figure 2.19(c) shows a 16× 16 baseline network with four stages.

2.5.4.7 Beneš Network

The k-dimensional Beneš network is constructed from two k-dimensional butterfly
networks such that the first k + 1 stages are a butterfly network and the last k + 1
stages are a reverted butterfly network. The last stage (k + 1) of the first butterfly
network and the first stage of the second (reverted) butterfly network are merged. In
total, the k-dimensional Beneš network has 2k + 1 stages with 2k switches in each
stage. Figure 2.20(a) shows a three-dimensional Beneš network as an example.
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Fig. 2.20 Examples for dynamic interconnection networks: (a) three-dimensional Beneš network
and (b) fat tree network for 16 processors

2.5.4.8 Fat Tree Network

The basic structure of a dynamic tree or fat tree network is a complete binary tree.
The difference from a normal tree is that the number of connections between the
nodes increases toward the root to avoid bottlenecks. Inner tree nodes consist of
switches whose structure depends on their position in the tree structure. The leaf
level is level 0. For n processors, represented by the leaves of the tree, a switch on
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tree level i has 2i input links and 2i output links for i = 1, . . . , log n. This can be
realized by assembling the switches on level i internally from 2i−1 switches with
two input and two output links each. Thus, each level i consists of n/2 switches in
total, grouped in 2log n−i nodes. This is shown in Fig. 2.20(b) for a fat tree with four
layers. Only the inner switching nodes are shown, not the leaf nodes representing
the processors.

2.6 Routing and Switching

Direct and indirect interconnection networks provide the physical basis to send
messages between processors. If two processors are not directly connected by a
network link, a path in the network consisting of a sequence of nodes has to be
used for message transmission. In the following, we give a short description of how
to select a suitable path in the network (routing) and how messages are handled at
intermediate nodes on the path (switching).

2.6.1 Routing Algorithms

A routing algorithm determines a path in a given network from a source node A to a
destination node B. The path consists of a sequence of nodes such that neighboring
nodes in the sequence are connected by a physical network link. The path starts
with node A and ends at node B. A large variety of routing algorithms have been
proposed in the literature, and we can only give a short overview in the following.
For a more detailed description and discussion, we refer to [35, 44].

Typically, multiple message transmissions are being executed concurrently accord-
ing to the requirements of one or several parallel programs. A routing algorithm tries
to reach an even load on the physical network links as well as to avoid the occurrence
of deadlocks. A set of messages is in a deadlock situation if each of the messages is
supposed to be transmitted over a link that is currently used by another message of
the set. A routing algorithm tries to select a path in the network connecting nodes A
and B such that minimum costs result, thus leading to a fast message transmission
between A and B. The resulting communication costs depend not only on the length
of the path used, but also on the load of the links on the path. The following issues
are important for the path selection:

• Network topology: The topology of the network determines which paths are
available in the network to establish a connection between nodes A and B.

• Network contention: Contention occurs when two or more messages should be
transmitted at the same time over the same network link, thus leading to a delay
in message transmission.

• Network congestion: Congestion occurs when too many messages are assigned
to a restricted resource (like a network link or buffer) such that arriving messages
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have to be discarded since they cannot be stored anywhere. Thus, in contrast to
contention, congestion leads to an overflow situation with message loss [139].

A large variety of routing algorithms have been proposed in the literature. Several
classification schemes can be used for a characterization. Using the path length,
minimal and non-minimal routing algorithms can be distinguished. Minimal rout-
ing algorithms always select the shortest message transmission, which means that
when using a link of the path selected, a message always gets closer to the target
node. But this may lead to congestion situations. Non-minimal routing algorithms
do not always use paths with minimum length if this is necessary to avoid congestion
at intermediate nodes.

A further classification can be made by distinguishing deterministic routing
algorithms and adaptive routing algorithms. A routing algorithm is deterministic if
the path selected for message transmission only depends on the source and destina-
tion nodes regardless of other transmissions in the network. Therefore, deterministic
routing can lead to unbalanced network load. Path selection can be done source
oriented at the sending node or distributed during message transmission at inter-
mediate nodes. An example for deterministic routing is dimension-order routing
which can be applied for network topologies that can be partitioned into several
orthogonal dimensions as is the case for meshes, tori, and hypercube topologies.
Using dimension-order routing, the routing path is determined based on the position
of the source node and the target node by considering the dimensions in a fixed
order and traversing a link in the dimension if necessary. This can lead to network
contention because of the deterministic path selection.

Adaptive routing tries to avoid such contentions by dynamically selecting the
routing path based on load information. Between any pair of nodes, multiple paths
are available. The path to be used is dynamically selected such that network traffic
is spread evenly over the available links, thus leading to an improvement of network
utilization. Moreover, fault tolerance is provided, since an alternative path can be
used in case of a link failure. Adaptive routing algorithms can be further catego-
rized into minimal and non-minimal adaptive algorithms as described above. In the
following, we give a short overview of important routing algorithms. For a more
detailed treatment, we refer to [35, 95, 44, 115, 125].

2.6.1.1 Dimension-Order Routing

We give a short description of XY routing for two-dimensional meshes and E-cube
routing for hypercubes as typical examples for dimension-order routing algorithms.

XY Routing for Two-Dimensional Meshes

For a two-dimensional mesh, the position of the nodes can be described by an X -
coordinate and a Y -coordinate where X corresponds to the horizontal and Y cor-
responds to the vertical direction. To send a message from a source node A with
position (X A, YA) to target node B with position (X B, YB), the message is sent from
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the source node into (positive or negative) X -direction until the X -coordinate X B

of B is reached. Then, the message is sent into Y -direction until YB is reached. The
length of the resulting path is | X A − X B | + | YA − YB |. This routing algorithm is
deterministic and minimal.

E-Cube Routing for Hypercubes

In a k-dimensional hypercube, each of the n = 2k nodes has a direct interconnection
link to each of its k neighbors. As introduced in Sect. 2.5.2, each of the nodes can
be represented by a bit string of length k such that the bit string of one of the k
neighbors is obtained by inverting one of the bits in the bit string. E-cube uses the
bit representation of a sending node A and a receiving node B to select a routing
path between them. Let α = α0 . . . αk−1 be the bit representation of A and β =
β0 . . . βk−1 be the bit representation of B. Starting with A, in each step a dimension
is selected which determines the next node on the routing path. Let Ai with bit
representation γ = γ0 . . . γk−1 be a node on the routing path A = A0, A1, . . . , Al =
B from which the message should be forwarded in the next step. For the forwarding
from Ai to Ai+1, the following two substeps are made:

• The bit string γ ⊕ β is computed where ⊕ denotes the bitwise exclusive or com-
putation (i.e., 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0).

• The message is forwarded in dimension d where d is the rightmost bit position
of γ ⊕ β with value 1. The next node Ai+1 on the routing path is obtained by
inverting the dth bit in γ , i.e., the bit representation of Ai+1 is δ = δ0 . . . δk−1

with δ j = γ j for j 	= d and δd = γ̄d . The target node B is reached when
γ ⊕ β = 0.

Example For k = 3, let A with bit representation α = 010 be the source node and
B with bit representation β = 111 be the target node. First, the message is sent from
A into direction d = 2 to A1 with bit representation 011 (since α⊕β = 101). Then,
the message is sent in dimension d = 0 to β since (011⊕ 111 = 100).

2.6.1.2 Deadlocks and Routing Algorithms

Usually, multiple messages are in transmission concurrently. A deadlock occurs if
the transmission of a subset of the messages is blocked forever. This can happen in
particular if network resources can be used only by one message at a time. If, for
example, the links between two nodes can be used by only one message at a time
and if a link can only be released when the following link on the path is free, then
the mutual request for links can lead to a deadlock. Such deadlock situations can be
avoided by using a suitable routing algorithm. Other deadlock situations that occur
because of limited size of the input or output buffer of the interconnection links or
because of an unsuited order of the send and receive operations are considered in
Sect. 2.6.3 on switching strategies and Chap. 5 on message-passing programming.

To prove the deadlock freedom of routing algorithms, possible dependencies
between interconnection channels are considered. A dependence from an intercon-
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nection channel l1 to an interconnection channel l2 exists, if it is possible that the
routing algorithm selects a path which contains channel l2 directly after channel
l1. These dependencies between interconnection channels can be represented by a
channel dependence graph which contains the interconnection channels as nodes;
each dependence between two channels is represented by an edge. A routing algo-
rithm is deadlock free for a given topology, if the channel dependence graph does not
contain cycles. In this case, no communication pattern can ever lead to a deadlock.

For topologies that do not contain cycles, no channel dependence graph can
contain cycles, and therefore each routing algorithm for such a topology must be
deadlock free. For topologies with cycles, the channel dependence graph must be
analyzed. In the following, we show that XY routing for two-dimensional meshes
with bidirectional links is deadlock free.

Deadlock Freedom of XY Routing

The channel dependence graph for XY routing contains a node for each uni-
directional link of the two-dimensional nX × nY mesh, i.e., there are two nodes
for each bidirectional link of the mesh. There is a dependence from link u to link
v, if v can be directly reached from u in horizontal or vertical direction or by a 90◦

(deg) turn down or up. To show the deadlock freedom, all unidirectional links of the
mesh are numbered as follows:

• Each horizontal edge from node (i, y) to node (i + 1, y) gets number i + 1 for
i = 0, . . . , nx − 2 for each valid value of y. The opposite edge from (i + 1, y) to
(i, y) gets number nx − 1 − (i + 1) = nx − i − 2 for i = 0, . . . , nx − 2. Thus,
the edges in increasing x-direction are numbered from 1 to nx − 1, the edges in
decreasing x-direction are numbered from 0 to nx − 2.

• Each vertical edge from (x, j) to (x, j+1) gets number j+nx for j = 0, . . . , ny−
2. The opposite edge from (x, j + 1) to (x, j) gets number nx + ny − ( j + 1).

Figure 2.21 shows a 3 × 3 mesh and the resulting channel dependence graph for
XY routing. The nodes of the graph are annotated with the numbers assigned to
the corresponding network links. It can be seen that all edges in the channel depen-
dence graph go from a link with a smaller number to a link with a larger number.
Thus, a delay during message transmission along a routing path can occur only if
the message has to wait after the transmission along a link with number i for the
release of a successive link w with number j > i currently used by another mes-
sage transmission (delay condition). A deadlock can only occur if a set of messages
{N1, . . . , Nk} and network links {n1, . . . , nk} exists such that for 1 ≤ i < k each
message Ni uses a link ni for transmission and waits for the release of link ni+1

which is currently used for the transmission of message Ni+1. Additionally, Nk is
currently transmitted using link nk and waits for the release of n1 used by N1. If n()
denotes the numbering of the network links introduced above, the delay condition
implies that for the deadlock situation just described, it must be

n(n1) < n(n2) < · · · < n(nk) < n(n1).
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Fig. 2.21 3× 3 mesh and corresponding channel dependence graph for XY routing

This is a contradiction, and thus no deadlock can occur. Each routing path selected
by XY routing consists of a sequence of links with increasing numbers. Each edge
in the channel dependence graph points to a link with a larger number than the
source link. Thus, there can be no cycles in the channel dependence graph. A similar
approach can be used to show deadlock freedom for E-cube routing, see [38].

2.6.1.3 Source-Based Routing

Source-based routing is a deterministic routing algorithm for which the source node
determines the entire path for message transmission. For each node ni on the path,
the output link number ai is determined, and the sequence of output link numbers
a0, . . . , an−1 to be used is added as header to the message. When the message passes
a node, the first link number is stripped from the front of the header and the message
is forwarded through the specified link to the next node.

2.6.1.4 Table-Driven Routing

For table-driven routing, each node contains a routing table which contains for each
destination node the output link to be used for the transmission. When a message
arrives at a node, a lookup in the routing table is used to determine how the message
is forwarded to the next node.

2.6.1.5 Turn Model Routing

The turn model [68, 125] tries to avoid deadlocks by a suitable selection of turns that
are allowed for the routing. Deadlocks occur if the paths for message transmission
contain turns that may lead to cyclic waiting in some situations. Deadlocks can



2.6 Routing and Switching 51

Fig. 2.22 Illustration of turns
for a two-dimensional mesh
with all possible turns (top),
allowed turns for XY routing
(middle), and allowed turns
for west-first routing (bottom)

possible turns in a 2D mesh

turns allowed for XY−Routing

turn allowed for West−First−Routing

turns allowed:

turns not allowed:

be avoided by prohibiting some of the turns. An example is the XY routing on a
two-dimensional mesh. From the eight possible turns, see Fig. 2.22 (top), only four
are allowed for XY routing, prohibiting turns from vertical into horizontal direction,
see Fig. 2.22 (middle) for an illustration. The remaining four turns are not allowed
in order to prevent cycles in the networks. This not only avoids the occurrence of
deadlocks, but also prevents the use of adaptive routing. For n-dimensional meshes
and, in the general case, k-ary d-cubes, the turn model tries to identify a minimum
number of turns that must be prohibited for routing paths to avoid the occurrence
of cycles. Examples are the west-first routing for two-dimensional meshes and the
P-cube routing for n-dimensional hypercubes.

The west-first routing algorithm for a two-dimensional mesh prohibits only
two of the eight possible turns: Turns to the west (left) are prohibited, and only
the turns shown in Fig. 2.22 (bottom) are allowed. Routing paths are selected such
that messages that must travel to the west must do so before making any turns.
Such messages are sent to the west first until the requested x-coordinate is reached.
Then the message can be adaptively forwarded to the south (bottom), east (right),
or north (top). Figure 2.23 shows some examples for possible routing paths [125].
West-first routing is deadlock free, since cycles are avoided. For the selection of
minimal routing paths, the algorithm is adaptive only if the target node lies to the
east (right). Using non-minimal routing paths, the algorithm is always adaptive.
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Fig. 2.23 Illustration of path
selection for west-first
routing in an 8× 8 mesh. The
links shown as blocked are
used for other message
transmissions and are not
available for the current
transmission. One of the
paths shown is minimal, the
other two are non-minimal,
since some of the links are
blocked

source node

target node

mesh node

blocked
channel

Routing in the n-dimensional hypercube can be done with P-cube routing. To
send a message from a sender A with bit representation α = α0 . . . αn−1 to a receiver
B with bit representation β = β0 . . . βn−1, the bit positions in which α and β differ
are considered. The number of these bit positions is the Hamming distance between
A and B which determines the minimum length of a routing path from A to B. The
set E = {i | αi 	= βi , i = 0, . . . , n − 1} of different bit positions is partitioned into
two sets E0 = {i ∈ E | αi = 0 and βi = 1} and E1 = {i ∈ E | αi = 1 and βi = 0}.
Message transmission from A to B is split into two phases accordingly: First, the
message is sent into the dimensions in E0 and then into the dimensions in E1.

2.6.1.6 Virtual Channels

The concept of virtual channels is often used for minimal adaptive routing algo-
rithms. To provide multiple (virtual) channels between neighboring network nodes,
each physical link is split into multiple virtual channels. Each virtual channel has its
own separate buffer. The provision of virtual channels does not increase the number
of physical links in the network, but can be used for a systematic avoidance of
deadlocks.

Based on virtual channels, a network can be split into several virtual networks
such that messages injected into a virtual network can only move in one direction
for each dimension. This can be illustrated for a two-dimensional mesh which is
split into two virtual networks, a +X network and a −X network, see Fig. 2.24
for an illustration. Each virtual network contains all nodes, but only a subset of
the virtual channels. The +X virtual network contains in the vertical direction all
virtual channels between neighboring nodes, but in the horizontal direction only the
virtual channels in positive direction. Similarly, the −X virtual network contains in
the horizontal direction only the virtual channels in negative direction, but all virtual
channels in the vertical direction. The latter is possible by the definition of a suitable
number of virtual channels in the vertical direction. Messages from a node A with
x-coordinate xA to a node B with x-coordinate xB are sent in the +X network, if
xA < xB . Messages from A to B with xA > xB are sent in the −X network. For
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Fig. 2.24 Partitioning of a two-dimensional mesh with virtual channels into a +X network and a
−X network for applying a minimal adaptive routing algorithm

xA = xB , one of the two networks can be selected arbitrarily, possibly using load
information for the selection. The resulting adaptive routing algorithm is deadlock
free [125]. For other topologies like hypercubes or tori, more virtual channels might
be needed to provide deadlock freedom [125].

A non-minimal adaptive routing algorithm can send messages over longer paths
if no minimal path is available. Dimension reversal routing can be applied to
arbitrary meshes and k-ary d-cubes. The algorithm uses r pairs of virtual channels
between any pair of nodes that is connected by a physical link. Correspondingly, the
network is split into r virtual networks where network i for i = 0, . . . , r − 1 uses
all virtual channels i between the nodes. Each message to be transmitted is assigned
a class c with initialization c = 0 which can be increased to c = 1, . . . , r − 1
during message transmission. A message with class c = i can be forwarded in
network i in each dimension, but the dimensions must be traversed in increasing
order. If a message must be transmitted in opposite order, its class is increased by
1 (reverse dimension order). The parameter r controls the number of dimension
reversals that are allowed. If c = r is reached, the message is forwarded according
to dimension-ordered routing.

2.6.2 Routing in the Omega Network

The omega network introduced in Sect. 2.5.4 allows message forwarding using
a distributed algorithm where each switch can forward the message without
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coordination with other switches. For the description of the algorithm, it is useful to
represent each of the n input channels and output channels by a bit string of length
log n [115]. To forward a message from an input channel with bit representation
α to an output channel with bit representation β the receiving switch on stage k of
the network, k = 0, . . . , log n − 1, considers the kth bit βk (from the left) of β and
selects the output link for forwarding the message according to the following rule:

• for βk = 0, the message is forwarded over the upper link of the switch and
• for βk = 1, the message is forwarded over the lower link of the switch.

Figure 2.25 illustrates the path selected for message transmission from input
channel α = 010 to the output channel β = 110 according to the algorithm just
described. In an n × n omega network, at most n messages from different input
channels to different output channels can be sent concurrently without collision. An
example of a concurrent transmission of n = 8 messages in an 8×8 omega network
can be described by the permutation

π8 =
(

0 1 2 3 4 5 6 7
7 3 0 1 2 5 4 6

)
,

which specifies that the messages are sent from input channel i (i = 0, . . . , 7) to
output channel π8(i). The corresponding paths and switch positions for the eight
paths are shown in Fig. 2.26.

Many simultaneous message transmissions that can be described by permutations
π8 : {0, . . . , n−1} → {0, . . . , n−1} cannot be executed concurrently since network
conflicts would occur. For example, the two message transmissions from α1 = 010
to β1 = 110 and from α2 = 000 to β2 = 111 in an 8 × 8 omega network would
lead to a conflict. These kinds of conflicts occur, since there is exactly one path for
any pair (α, β) of input and output channels, i.e., there is no alternative to avoid a
critical switch. Networks with this characteristic are also called blocking networks.
Conflicts in blocking networks can be resolved by multiple transmissions through

the network.

Fig. 2.25 8× 8 omega
network with path from 010
to 110 [14]

000000
001

011

101

111

010

100

110

001

010
011

100
101

110
111



2.6 Routing and Switching 55

Fig. 2.26 8× 8 omega
network with switch positions
for the realization of π8 from
the text
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There is a notable number of permutations that cannot be implemented in one
switching of the network. This can be seen as follows. For the connection from the
n input channels to the n output channels, there are in total n! possible permutations,
since each output channel must be connected to exactly one input channel. There are
in total n/2·log n switches in the omega network, each of which can be in one of two
positions. This leads to 2n/2·log n = nn/2 different switchings of the entire network,
corresponding to n concurrent paths through the network. In conclusion, only nn/2

of the n! possible permutations can be performed without conflicts.
Other examples for blocking networks are the butterfly or banyan network, the

baseline network, and the delta network [115]. In contrast, the Beneš network is a
non-blocking network since there are different paths from an input channel to an
output channel. For each permutation π : {0, . . . , n − 1} → {0, . . . , n − 1} there
exists a switching of the Beneš network which realizes the connection from input
i to output π (i) for i = 0, . . . , n − 1 concurrently without collision, see [115] for
more details. As example, the switching for the permutation

π8 =
(

0 1 2 3 4 5 6 7
5 3 4 7 0 1 2 6

)

is shown in Fig. 2.27.
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Fig. 2.27 8× 8 Beneš network with switch positions for the realization of π8 from the text
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2.6.3 Switching

The switching strategy determines how a message is transmitted along a path that
has been selected by the routing algorithm. In particular, the switching strategy
determines

• whether and how a message is split into pieces, which are called packets or flits
(for flow control units),

• how the transmission path from the source node to the destination node is allo-
cated, and

• how messages or pieces of messages are forwarded from the input channel to the
output channel of a switch or a router. The routing algorithm only determines
which output channel should be used.

The switching strategy may have a large influence on the message transmission time
from a source to a destination. Before considering specific switching strategies, we
first consider the time for message transmission between two nodes that are directly
connected by a physical link.

2.6.3.1 Message Transmission Between Neighboring Processors

Message transmission between two directly connected processors is implemented
as a series of steps. These steps are also called protocol. In the following, we sketch
a simple example protocol [84]. To send a message, the sending processor performs
the following steps:

1. The message is copied into a system buffer.
2. A checksum is computed and a header is added to the message, containing the

checksum as well as additional information related to the message transmission.
3. A timer is started and the message is sent out over the network interface.

To receive a message, the receiving processor performs the following steps:

1. The message is copied from the network interface into a system buffer.
2. The checksum is computed over the data contained. This checksum is compared

with the checksum stored in the header. If both checksums are identical, an
acknowledgment message is sent to the sender. In case of a mismatch of the
checksums, the message is discarded. The message will be re-sent again after
the sender timer has elapsed.

3. If the checksums are identical, the message is copied from the system buffer into
the user buffer, provided by the application program. The application program
gets a notification and can continue execution.

After having sent out the message, the sending processor performs the following
steps:

1. If an acknowledgment message arrives for the message sent out, the system
buffer containing a copy of the message can be released.
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2. If the timer has elapsed, the message will be re-sent again. The timer is started
again, possibly with a longer time.

In this protocol, it has been assumed that the message is kept in the system buffer
of the sender to be re-sent if necessary. If message loss is tolerated, no re-sent is
necessary and the system buffer of the sender can be re-used as soon as the packet
has been sent out. Message transmission protocols used in practice are typically
much more complicated and may take additional aspects like network contention or
possible overflows of the system buffer of the receiver into consideration. A detailed
overview can be found in [110, 139].

The time for a message transmission consists of the actual transmission time over
the physical link and the time needed for the software overhead of the protocol, both
at the sender and the receiver side. Before considering the transmission time in more
detail, we first review some performance measures that are often used in this context,
see [84, 35] for more details.

• The bandwidth of a network link is defined as the maximum frequency at which
data can be sent over the link. The bandwidth is measured in bits per second or
bytes per second.

• The byte transfer time is the time which is required to transmit a single byte
over a network link. If the bandwidth is measured in bytes per second, the byte
transfer time is the reciprocal of the bandwidth.

• The time of flight, also referred to as channel propagation delay, is the time
which the first bit of a message needs to arrive at the receiver. This time mainly
depends on the physical distance between the sender and the receiver.

• The transmission time is the time needed to transmit the message over a network
link. The transmission time is the message size in bytes divided by the bandwidth
of the network link, measured in bytes per second. The transmission time does
not take conflicts with other messages into consideration.

• The transport latency is the total time needed to transfer a message over a
network link. This is the sum of the transmission time and the time of flight,
capturing the entire time interval from putting the first bit of the message onto
the network link at the sender and receiving the last bit at the receiver.

• The sender overhead, also referred to as startup time, is the time that the sender
needs for the preparation of message transmission. This includes the time for
computing the checksum, appending the header, and executing the routing algo-
rithm.

• The receiver overhead is the time that the receiver needs to process an incoming
message, including checksum comparison and generation of an acknowledgment
if required by the specific protocol.

• The throughput of a network link is the effective bandwidth experienced by an
application program.

Using these performance measures, the total latency T (m) of a message of size m
can be expressed as
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Fig. 2.28 Illustration of performance measures for the point-to-point transfer between neighboring
nodes, see [84]

T (m) = Osend + Tdelay + m/B + Orecv, (2.1)

where Osend and Orecv are the sender and receiver overheads, respectively, Tdelay is
the time of flight, and B is the bandwidth of the network link. This expression does
not take into consideration that a message may need to be transmitted multiple times
because of checksum errors, network contention, or congestion.

The performance parameters introduced are illustrated in Fig. 2.28. Equation
(2.1) can be reformulated by combining constant terms, yielding

T (m) = Toverhead + m/B (2.2)

with Toverhead = Tsend + Trecv. Thus, the latency consists of an overhead which does
not depend on the message size and a term which linearly increases with the message
size. Using the byte transfer time tB = 1/B, Eq. (2.2) can also be expressed as

T (m) = Toverhead + tB · m. (2.3)

This equation is often used to describe the message transmission time over a net-
work link. When transmitting a message between two nodes that are not directly
connected in the network, the message must be transmitted along a path between the
two nodes. For the transmission along the path, several switching techniques can be
used, including circuit switching, packet switching with store-and-forward routing,
virtual cut-through routing, and wormhole routing. We give a short overview in the
following.

2.6.3.2 Circuit Switching

The two basic switching strategies are circuit switching and packet switching, see
[35, 84] for a detailed treatment. In circuit switching, the entire path from the source
node to the destination node is established and reserved until the end of the trans-
mission of this message. This means that the path is established exclusively for this
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message by setting the switches or routers on the path in a suitable way. Internally,
the message can be split into pieces for the transmission. These pieces can be so-
called physical units (phits) denoting the amount of data that can be transmitted over
a network link in one cycle. The size of the phits is determined by the number of
bits that can be transmitted over a physical channel in parallel. Typical phit sizes lie
between 1 bit and 256 bits. The transmission path for a message can be established
by using short probe messages along the path. After the path is established, all phits
of the message are transmitted over this path. The path can be released again by a
message trailer or by an acknowledgment message from the receiver to the sender.

Sending a control message along a path of length l takes time l · tc where tc is
the time to transmit the control message over a single network link. If mc is the size
of the control message, it is tc = tB · mc. After the path has been established, the
transmission of the actual message of size m takes time m · tB . Thus, the total time
of message transmission along a path of length l with circuit switching is

Tcs(m, l) = Toverhead + tc · l + tB · m. (2.4)

If mc is small compared to m, this can be reduced to Toverhead+ tB ·m which is linear
in m, but independent of l. Message transfer with circuit switching is illustrated in
Fig. 2.30(a).

2.6.3.3 Packet Switching

For packet switching the message to be transmitted is partitioned into a sequence
of packets which are transferred independently of each other through the network
from the sender to the receiver. Using an adaptive routing algorithm, the packets
can be transmitted over different paths. Each packet consists of three parts: (i) a
header, containing routing and control information; (ii) the data part, containing a
part of the original message; and (iii) a trailer which may contain an error con-
trol code. Each packet is sent separately to the destination according to the rout-
ing information contained in the packet. Figure 2.29 illustrates the partitioning of
a message into packets. The network links and buffers are used by one packet at
a time.

Packet switching can be implemented in different ways. Packet switching with
store-and-forward routing sends a packet along a path such that the entire packet

data flit

taD

message

packet

flit checksum

routing informationa

routing flit

Fig. 2.29 Illustration of the partitioning of a message into packets and of packets into flits (flow
control units)
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is received by each switch on the path (store) before it is sent to the next switch
on the path (forward). The connection between two switches A and B on the path
is released for reuse by another packet as soon as the packet has been stored at B.
This strategy is useful if the links connecting the switches on a path have different
bandwidths as this is typically the case in wide area networks (WANs). In this case,
store-and-forward routing allows the utilization of the full bandwidth for every link
on the path. Another advantage is that a link on the path can be quickly released
as soon as the packet has passed the links, thus reducing the danger of deadlocks.
The drawback of this strategy is that the packet transmission time increases with the
number of switches that must be traversed from source to destination. Moreover, the
entire packet must be stored at each switch on the path, thus increasing the memory
demands of the switches.

The time for sending a packet of size m over a single link takes time th + tB · m
where th is the constant time needed at each switch to store the packet in a receive
buffer and to select the output channel to be used by inspecting the header informa-
tion of the packet. Thus, for a path of length l, the entire time for packet transmission
with store-and-forward routing is

Ts f (m, l) = tS + l(th + tB · m). (2.5)

Since th is typically small compared to the other terms, this can be reduced to
Ts f (m, l) ≈ tS + l · tB · m. Thus, the time for packet transmission depends lin-
early on the packet size and the length l of the path. Packet transmission with store-
and-forward routing is illustrated in Fig. 2.30(b). The time for the transmission of
an entire message, consisting of several packets, depends on the specific routing
algorithm used. When using a deterministic routing algorithm, the message trans-
mission time is the sum of the transmission time of all packets of the message, if
no network delays occur. For adaptive routing algorithms, the transmission of the
individual packets can be overlapped, thus potentially leading to a smaller message
transmission time.

If all packets of a message are transmitted along the same path, pipelining can
be used to reduce the transmission time of messages: Using pipelining, the packets
of a message are sent along a path such that the links on the path are used by suc-
cessive packets in an overlapping way. Using pipelining for a message of size m and
packet size m p, the time of message transmission along a path of length l can be
described by

tS + (m − m p)tB + l(th + tB · m p) ≈ tS + m · tB + (l − 1)tB · m p, (2.6)

where l(th + tB · m p) is the time that elapses before the first packet arrives at the
destination node. After this time, a new packet arrives at the destination in each time
step of size m p · tB , assuming the same bandwidth for each link on the path.
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Fig. 2.30 Illustration of the latency of a point-to-point transmission along a path of length l = 4
for (a) circuit switching, (b) packet switching with store and forward, and (c) packet switching
with cut-through

2.6.3.4 Cut-Through Routing

The idea of the pipelining of message packets can be extended by applying pipelin-
ing to the individual packets. This approach is taken by cut-through routing. Using
this approach, a message is again split into packets as required by the packet-
switching approach. The different packets of a message can take different paths
through the network to reach the destination. Each individual packet is sent through
the network in a pipelined way. To do so, each switch on the path inspects the first
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few phits (physical units) of the packet header, containing the routing information,
and then determines over which output channel the packet is forwarded. Thus, the
transmission path of a packet is established by the packet header and the rest of the
packet is transmitted along this path in a pipelined way. A link on this path can be
released as soon as all phits of the packet, including a possible trailer, have been
transmitted over this link.

The time for transmitting a header of size m H along a single link is given by
tH = tB · m H . The time for transmitting the header along a path of length l is then
given by tH · l. After the header has arrived at the destination node, the additional
time for the arrival of the rest of the packet of size m is given by tB(m−m H ). Thus,
the time for transmitting a packet of size m along a path of length l using packet
switching with cut-through routing can be expressed as

Tct (m, l) = tS + l · tH + tB · (m − m H ) . (2.7)

If m H is small compared to the packet size m, this can be reduced to Tct (m, l) ≈
tS + tB · m. If all packets of a message use the same transmission path, and if
packet transmission is also pipelined, this formula can also be used to describe the
transmission time of the entire message. Message transmission time using packet
switching with cut-through routing is illustrated in Fig. 2.30(c).

Until now, we have considered the transmission of a single message or packet
through the network. If multiple transmissions are performed concurrently, net-
work contention may occur because of conflicting requests to the same links. This
increases the communication time observed for the transmission. The switching
strategy must react appropriately if contention happens on one of the links of a trans-
mission path. Using store-and-forward routing, the packet can simply be buffered
until the output channel is free again.

With cut-through routing, two popular options are available: virtual cut-through
routing and wormhole routing. Using virtual cut-through routing, in case of a
blocked output channel at a switch, all phits of the packet in transmission are col-
lected in a buffer at the switch until the output channel is free again. If this happens at
every switch on the path, cut-through routing degrades to store-and-forward routing.
Using partial cut-through routing, the transmission of the buffered phits of a packet
can continue as soon as the output channel is free again, i.e., not all phits of a packet
need to be buffered.

The wormhole routing approach is based on the definition of flow control units
(flits) which are usually at least as large as the packet header. The header flit estab-
lishes the path through the network. The rest of the flits of the packet follow in a
pipelined way on the same path. In case of a blocked output channel at a switch,
only a few flits are stored at this switch, the rest is kept on the preceding switches
of the path. Therefore, a blocked packet may occupy buffer space along an entire
path or at least a part of the path. Thus, this approach has some similarities to circuit
switching at packet level. Storing the flits of a blocked message along the switches
of a path may cause other packets to block, leading to network saturation. More-
over, deadlocks may occur because of cyclic waiting, see Fig. 2.31 [125, 158]. An
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Fig. 2.31 Illustration of a deadlock situation with wormhole routing for the transmission of four
packets over four switches. Each of the packets occupies a flit buffer and requests another flit buffer
at the next switch; but this flit buffer is already occupied by another packet. A deadlock occurs,
since none of the packets can be transmitted to the next switch

advantage of the wormhole routing approach is that the buffers at the switches can
be kept small, since they need to store only a small portion of a packet.

Since buffers at the switches can be implemented large enough with today’s tech-
nology, virtual cut-through routing is the more commonly used switching technique
[84]. The danger of deadlocks can be avoided by using suitable routing algorithms
like dimension-ordered routing or by using virtual channels, see Sect. 2.6.1.

2.6.4 Flow Control Mechanisms

A general problem in network may arise form the fact that multiple messages can be
in transmission at the same time and may attempt to use the same network links at
the same time. If this happens, some of the message transmissions must be blocked
while others are allowed to proceed. Techniques to coordinate concurrent message
transmissions in networks are called flow control mechanisms. Such techniques are
important in all kinds of networks, including local and wide area networks, and
popular protocols like TCP contain sophisticated mechanisms for flow control to
obtain a high effective network bandwidth, see [110, 139] for more details. Flow
control is especially important for networks of parallel computers, since these must
be able to transmit a large number of messages fast and reliably. A loss of messages
cannot be tolerated, since this would lead to errors in the parallel program currently
executed.

Flow control mechanisms typically try to avoid congestion in the network to
guarantee fast message transmission. An important aspect is the flow control mech-
anisms at the link level which considers message or packet transmission over a
single link of the network. The link connects two switches A and B. We assume
that a packet should be transmitted from A to B. If the link between A and B is
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free, the packet can be transferred from the output port of A to the input port of
B from which it is forwarded to the suitable output port of B. But if B is busy,
there might be the situation that B does not have enough buffer space in the input
port available to store the packet from A. In this case, the packet must be retained
in the output buffer of A until there is enough space in the input buffer of B.
But this may cause back pressure to switches preceding A, leading to the danger
of network congestion. The idea of link-level flow control mechanisms is that the
receiving switch provides a feedback to the sending switch, if enough input buffer
space is not available, to prevent the transmission of additional packets. This feed-
back rapidly propagates backward in the network until the original sending node is
reached. The sender can then reduce its transmission rate to avoid further packet
delays.

Link-level flow control can help to reduce congestion, but the feedback prop-
agation might be too slow and the network might already be congested when the
original sender is reached. An end-to-end flow control with a direct feedback to the
original sender may lead to a faster reaction. A windowing mechanism as used by
the TCP protocol is one possibility for implementation. Using this mechanism, the
sender is provided with the available buffer space at the receiver and can adapt the
number of packets sent such that no buffer overflow occurs. More information can
be found in [110, 139, 84, 35].

2.7 Caches and Memory Hierarchy

A significant characteristic of the hardware development during the last decades
has been the increasing gap between processor cycle time and main memory access
time, see Sect. 2.1. The main memory is constructed based on DRAM (dynamic ran-
dom access memory). A typical DRAM chip has a memory access time between 20
and 70 ns whereas a 3 GHz processor, for example, has a cycle time of 0.33 ns, lead-
ing to 60–200 cycles for a main memory access. To use processor cycles efficiently,
a memory hierarchy is typically used, consisting of multiple levels of memories with
different sizes and access times. Only the main memory on the top of the hierarchy is
built from DRAM, the other levels use SRAM (static random access memory), and
the resulting memories are often called caches. SRAM is significantly faster than
DRAM, but has a smaller capacity per unit area and is more costly. When using a
memory hierarchy, a data item can be loaded from the fastest memory in which it is
stored. The goal in the design of a memory hierarchy is to be able to access a large
percentage of the data from a fast memory, and only a small fraction of the data
from the slow main memory, thus leading to a small average memory access time.

The simplest form of a memory hierarchy is the use of a single cache between
the processor and main memory (one-level cache, L1 cache). The cache contains a
subset of the data stored in the main memory, and a replacement strategy is used
to bring new data from the main memory into the cache, replacing data elements
that are no longer accessed. The goal is to keep those data elements in the cache
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which are currently used most. Today, two or three levels of cache are used for each
processor, using a small and fast L1 cache and larger, but slower L2 and L3 caches.

For multiprocessor systems where each processor uses a separate local cache,
there is the additional problem of keeping a consistent view of the shared address
space for all processors. It must be ensured that a processor accessing a data element
always accesses the most recently written data value, also in the case that another
processor has written this value. This is also referred to as cache coherence prob-
lem and will be considered in more detail in Sect. 2.7.3.

For multiprocessors with a shared address space, the top level of the memory
hierarchy is the shared address space that can be accessed by each of the processors.
The design of a memory hierarchy may have a large influence on the execution
time of parallel programs, and memory accesses should be ordered such that a given
memory hierarchy is used as efficiently as possible. Moreover, techniques to keep a
memory hierarchy consistent may also have an important influence. In this section,
we therefore give an overview of memory hierarchy design and discuss issues of
cache coherence and memory consistency. Since caches are the building blocks of
memory hierarchies and have a significant influence on the memory consistency, we
give a short overview of caches in the following subsection. For a more detailed
treatment, we refer to [35, 84, 81, 137].

2.7.1 Characteristics of Caches

A cache is a small, but fast memory between the processor and the main mem-
ory. Caches are built with SRAM. Typical access times are 0.5–2.5 ns (ns =
nanoseconds = 10−9 seconds) compared to 50–70 ns for DRAM (values from 2008
[84]). In the following, we consider a one-level cache first. A cache contains a copy
of a subset of the data in main memory. Data is moved in blocks, containing a small
number of words, between the cache and main memory, see Fig. 2.32. These blocks
of data are called cache blocks or cache lines. The size of the cache lines is fixed
for a given architecture and cannot be changed during program execution.

Cache control is decoupled from the processor and is performed by a sepa-
rate cache controller. During program execution, the processor specifies memory
addresses to be read or to be written as given by the load and store operations
of the machine program. The processor forwards the memory addresses to the
memory system and waits until the corresponding values are returned or written.
The processor specifies memory addresses independently of the organization of the

processor
main

memory
word block

cache

Fig. 2.32 Data transport between cache and main memory is done by the transfer of memory
blocks comprising several words whereas the processor accesses single words in the cache
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memory system, i.e., the processor does not need to know the architecture of the
memory system. After having received a memory access request from the proces-
sor, the cache controller checks whether the memory address specified belongs to
a cache line which is currently stored in the cache. If this is the case, a cache hit
occurs, and the requested word is delivered to the processor from the cache. If the
corresponding cache line is not stored in the cache, a cache miss occurs, and the
cache line is first copied from main memory into the cache before the requested
word is delivered to the processor. The corresponding delay time is also called
miss penalty. Since the access time to main memory is significantly larger than
the access time to the cache, a cache miss leads to a delay of operand delivery to the
processor. Therefore, it is desirable to reduce the number of cache misses as much as
possible.

The exact behavior of the cache controller is hidden from the processor. The
processor observes that some memory accesses take longer than others, leading to
a delay in operand delivery. During such a delay, the processor can perform other
operations that are independent of the delayed operand. This is possible, since the
processor is not directly occupied for the operand access from the memory system.
Techniques like operand prefetch can be used to support an anticipated loading of
operands so that other independent operations can be executed, see [84].

The number of cache misses may have a significant influence on the result-
ing runtime of a program. If many memory accesses lead to cache misses, the
processor may often have to wait for operands, and program execution may be
quite slow. Since cache management is implemented in hardware, the program-
mer cannot directly specify which data should reside in the cache at which point
in program execution. But the order of memory accesses in a program can have a
large influence on the resulting runtime, and a reordering of the memory accesses
may lead to a significant reduction of program execution time. In this context,
the locality of memory accesses is often used as a characterization of the mem-
ory accesses of a program. Spatial and temporal locality can be distinguished as
follows:

• The memory accesses of a program have a high spatial locality, if the program
often accesses memory locations with neighboring addresses at successive points
in time during program execution. Thus, for programs with high spatial locality
there is often the situation that after an access to a memory location, one or more
memory locations of the same cache line are also accessed shortly afterward.
In such situations, after loading a cache block, several of the following memory
locations can be loaded from this cache block, thus avoiding expensive cache
misses. The use of cache blocks comprising several memory words is based on
the assumption that most programs exhibit spatial locality, i.e., when loading
a cache block not only one but several memory words of the cache block are
accessed before the cache block is replaced again.

• The memory accesses of a program have a high temporal locality, if it often
happens that the same memory location is accessed multiple times at successive
points in time during program execution. Thus, for programs with a high temporal
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locality there is often the situation that after loading a cache block in the cache,
the memory words of the cache block are accessed multiple times before the
cache block is replaced again.

For programs with small spatial locality there is often the situation that after
loading a cache block, only one of the memory words contained is accessed before
the cache block is replaced again by another cache block. For programs with small
temporal locality, there is often the situation that after loading a cache block because
of a memory access, the corresponding memory location is accessed only once
before the cache block is replaced again. Many program transformations to increase
temporal or spatial locality of programs have been proposed, see [12, 175] for more
details.

In the following, we give a short overview of important characteristics of caches.
In particular, we consider cache size, mapping of memory blocks to cache blocks,
replacement algorithms, and write-back policies. We also consider the use of multi-
level caches.

2.7.1.1 Cache Size

Using the same hardware technology, the access time of a cache increases (slightly)
with the size of the cache because of an increased complexity of the addressing. But
using a larger cache leads to a smaller number of replacements as a smaller cache,
since more cache blocks can be kept in the cache. The size of the caches is limited by
the available chip area. Off-chip caches are rarely used to avoid the additional time
penalty of off-chip accesses. Typical sizes for L1 caches lie between 8K and 128K
memory words where a memory word is four or eight bytes long, depending on the
architecture. During the last years, the typical size of L1 caches has not increased
significantly.

If a cache miss occurs when accessing a memory location, an entire cache block
is brought into the cache. For designing a memory hierarchy, the following points
have to be taken into consideration when fixing the size of the cache blocks:

• Using larger blocks reduces the number of blocks that fit in the cache when using
the same cache size. Therefore, cache blocks tend to be replaced earlier when
using larger blocks compared to smaller blocks. This suggests to set the cache
block size as small as possible.

• On the other hand, it is useful to use blocks with more than one memory word,
since the transfer of a block with x memory words from main memory into the
cache takes less time than x transfers of a single memory word. This suggests to
use larger cache blocks.

As a compromise, a medium block size is used. Typical sizes for L1 cache blocks
are four or eight memory words.
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2.7.1.2 Mapping of Memory Blocks to Cache Blocks

Data is transferred between main memory and cache in blocks of a fixed length.
Because the cache is significantly smaller than the main memory, not all memory
blocks can be stored in the cache at the same time. Therefore, a mapping algo-
rithm must be used to define at which position in the cache a memory block can be
stored. The mapping algorithm used has a significant influence on the cache behav-
ior and determines how a stored block is localized and retrieved from the cache.
For the mapping, the notion of associativity plays an important role. Associativity
determines at how many positions in the cache a memory block can be stored. The
following methods are distinguished:

• for a direct mapped cache, each memory block can be stored at exactly one
position in the cache;

• for a fully associative cache, each memory block can be stored at an arbitrary
position in the cache;

• for a set associative cache, each memory block can be stored at a fixed number
of positions.

In the following, we consider these three mapping methods in more detail for a
memory system which consists of a main memory and a cache. We assume that the
main memory comprises n = 2s blocks which we denote as B j for j = 0, . . . , n−1.
Furthermore, we assume that there are m = 2r cache positions available; we denote
the corresponding cache blocks as B̄i for i = 0, . . . , m−1. The memory blocks and
the cache blocks have the same size of l = 2w memory words. At different points of
program execution, a cache block may contain different memory blocks. Therefore,
for each cache block a tag must be stored, which identifies the memory block that
is currently stored. The use of this tag information depends on the specific mapping
algorithm and will be described in the following. As running example, we consider a
memory system with a cache of size 64 Kbytes which uses cache blocks of 4 bytes.
Thus, 16K = 214 blocks of four bytes each fit into the cache. With the notation from
above, it is r = 14 and w = 2. The main memory is 4 Gbytes = 232 bytes large,
i.e., it is s = 30 if we assume that a memory word is one byte. We now consider the
three mapping methods in turn.

2.7.1.3 Direct Mapped Caches

The simplest form to map memory blocks to cache blocks is implemented by direct
mapped caches. Each memory block B j can be stored at only one specific cache
location. The mapping of a memory block B j to a cache block B̄i is defined as
follows:

B j is mapped to B̄i if i = j mod m.

Thus, there are n/m = 2s−r different memory blocks that can be stored in one
specific cache block B̄i . Based on the mapping, memory blocks are assigned to
cache positions as follows:
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cache block memory block
0 0, m, 2m, . . . , 2s − m
1 1, m + 1, 2m + 1, . . . , 2s − m + 1
...

...
m − 1 m − 1, 2m − 1, 3m − 1, . . . , 2s − 1

Since the cache size m is a power of 2, the modulo operation specified by the
mapping function can be computed by using low-order bits of the memory address
specified by the processor. Since a cache block contains l = 2w memory words, the
memory address can be partitioned into a word address and a block address. The
block address specifies the position of the corresponding memory block in main
memory. It consists of the s most significant (leftmost) bits of the memory address.
The word address specifies the position of the memory location in the memory
block, relative to the first location of the memory block. It consists of the w least
significant (rightmost) bits of the memory address.

For a direct mapped cache, the r rightmost bits of the block address of a memory
location define at which of the m = 2r cache positions the corresponding memory
block must be stored if the block is loaded into the cache. The remaining s − r
bits can be interpreted as tag which specifies which of the 2s−r possible memory
blocks is currently stored at a specific cache position. This tag must be stored with
the cache block. Thus each memory address is partitioned as follows:

tag

s − r r w

cache position

block address word address

For the running example, the tags consist of s − r = 16 bits for a direct mapped
cache.

Memory access is illustrated in Fig. 2.33(a) for an example memory system with
block size 2 (w = 1), cache size 4 (r = 2), and main memory size 16 (s = 4).
For each memory access specified by the processor, the cache position at which the
requested memory block must be stored is identified by considering the r rightmost
bits of the block address. Then the tag stored for this cache position is compared
with the s − r leftmost bits of the block address. If both tags are identical, the
referenced memory block is currently stored in the cache, and memory access can
be done via the cache. A cache hit occurs. If the two tags are different, the requested
memory block must first be loaded into the cache at the given cache position before
the memory location specified can be accessed.

Direct mapped caches can be implemented in hardware without great effort, but
they have the disadvantage that each memory block can be stored at only one cache
position. Thus, it can happen that a program repeatedly specifies memory addresses
in different memory blocks that are mapped to the same cache position. In this
situation, the memory blocks will be continually loaded and replaced in the cache,
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leading to a large number of cache misses and therefore a large execution time. This
phenomenon is also called thrashing.

2.7.1.4 Fully Associative Caches

In a fully associative cache, each memory block can be placed in any cache position,
thus overcoming the disadvantage of direct mapped caches. As for direct mapped
caches, a memory address can again be partitioned into a block address (s leftmost
bits) and a word address (w rightmost bits). Since each cache block can contain any
memory block, the entire block address must be used as tag and must be stored with
the cache block to allow the identification of the memory block stored. Thus, each
memory address is partitioned as follows:

To check whether a given memory block is stored in the cache, all the entries
in the cache must be searched, since the memory block can be stored at any cache
position. This is illustrated in Fig. 2.33(b).

w

block address word address

tag

s

The advantage of fully associative caches lies in the increased flexibility when
loading memory blocks into the cache. The main disadvantage is that for each mem-
ory access all cache positions must be considered to check whether the correspond-
ing memory block is currently held in the cache. To make this search practical,
it must be done in parallel using a separate comparator for each cache position,
thus increasing the required hardware effort significantly. Another disadvantage is
that the tags to be stored for each cache block are significantly larger as for direct
mapped caches. For the example cache introduced above, the tags must be 30 bits
long for a fully associated cache, i.e., for each 32-bit memory block, a 30-bit tag
must be stored. Because of the large search effort, a fully associative mapping is
useful only for caches with a small number of positions.

2.7.1.5 Set Associative Caches

Set associative caches are a compromise between direct mapped and fully asso-
ciative caches. In a set associative cache, the cache is partitioned into v sets
S0, . . . , Sv−1 where each set consists of k = m/v blocks. A memory block B j is
not mapped to an individual cache block, but to a unique set in the cache. Within the
set, the memory block can be placed in any cache block of that set, i.e., there are k
different cache blocks in which a memory block can be stored. The set of a memory
block B j is defined as follows:

B j is mapped to set Si , if i = j mod v
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Fig. 2.33 Illustration of the mapping of memory blocks to cache blocks for a cache with m = 4
cache blocks (r = 2) and a main memory with n = 16 memory blocks (s = 4). Each block
contains two memory words (w = 1). (a) Direct mapped cache; (b) fully associative cache; (c) set
associative cache with k = 2 blocks per set, using v = 2 sets (d = 1)
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for j = 0, . . . , n − 1. A memory access is illustrated in Fig. 2.33(c). Again, a
memory address consists of a block address (s bits) and a word address (w bits).
The d = log v rightmost bits of the block address determine the set Si to which
the corresponding memory block is mapped. The leftmost s − d bits of the block
address are the tag that is used for the identification of the memory blocks stored
in the individual cache blocks of a set. Thus, each memory address is partitioned as
follows:

w

block address word address

set numbertag

ds − d 

When a memory access occurs, the hardware first determines the set to which
the memory block is assigned. Then, the tag of the memory block is compared with
the tags of all cache blocks in the set. If there is a match, the memory access can be
performed via the cache. Otherwise, the corresponding memory block must first be
loaded into one of the cache blocks of the set.

For v = m and k = 1, a set associative cache reduces to a direct mapped cache.
For v = 1 and k = m, a fully associative cache results. Typical cases are v = m/4
and k = 4, leading to a 4-way set associative cache, and v = m/8 and k = 8,
leading to an 8-way set associative cache. For the example cache, using k = 4 leads
to 4K sets; d = 12 bits of the block address determine the set to which a memory
block is mapped. The tags used for the identification of memory blocks within a set
are 18 bits long.

2.7.1.6 Block Replacement Methods

When a cache miss occurs, a new memory block must be loaded into the cache.
To do this for a fully occupied cache, one of the memory blocks in the cache must
be replaced. For a direct mapped cache, there is only one position at which the new
memory block can be stored, and the memory block occupying that position must be
replaced. For a fully associative or set associative cache, there are several positions
at which the new memory block can be stored. The block to be replaced is selected
using a replacement method. A popular replacement method is least recently used
(LRU) which replaces the block in a set that has not been used for the longest time.

For the implementation of the LRU method, the hardware must keep track for
each block of a set when the block was used last. The corresponding time entry
must be updated at each usage time of the block. This implementation requires
additional space to store the time entries for each block and additional control logic
to update the time entries. For a 2-way set associative cache the LRU method can be
implemented more easily by keeping a USE bit for each of the two blocks in a set.
When a cache block of a set is accessed, its USE bit is set to 1 and the USE bit of the
other block in the set is set to 0. This is performed for each memory access. Thus,
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the block whose USE bit is 1 has been accessed last, and the other block should be
replaced if a new block has to be loaded into the set. An alternative to LRU is least
frequently used (LFU) which replaces the block of a set that has experienced the
fewest references. But the LFU method also requires additional control logic since
for each block a counter must be maintained which must be updated for each mem-
ory access. For a larger associativity, an exact implementation of LRU or LFU as
described above is often considered as too costly [84], and approximations or other
schemes are used. Often, the block to be replaced is selected randomly, since this can
be implemented easily. Moreover, simulations have shown that random replacement
leads to only slightly inferior performance compared to more sophisticated methods
like LRU or LFU [84, 164].

2.7.2 Write Policy

A cache contains a subset of the memory blocks. When the processor issues a write
access to a memory block that is currently stored in the cache, the referenced block
is definitely updated in the cache, since the next read access must return the most
recent value. There remains the question: When is the corresponding memory block
in the main memory updated? The earliest possible update time for the main mem-
ory is immediately after the update in the cache; the latest possible update time
for the main memory is when the cache block is replaced by another block. The
exact replacement time and update method is captured by the write policy. The most
popular policies are write-through and write-back.

2.7.2.1 Write-Through Policy

Using write-through, a modification of a block in the cache using a write access
is immediately transferred to main memory, thus keeping the cache and the main
memory consistent. An advantage of this approach is that other devices like I/O
modules that have direct access to main memory always get the newest value of
a memory block. This is also important for multicore systems, since after a write
by one processor, all other processors always get the most recently written value
when accessing the same block. A drawback of write-through is that every write
in the cache causes also a write to main memory which typically takes at least
100 processor cycles to complete. This could slow down the processor if it had
to wait for the completion. To avoid processor waiting, a write buffer can be used
to store pending write operations into the main memory [137, 84]. After writing
the data into the cache and into the write buffer, the processor can continue its
execution without waiting for the completion of the write into the main mem-
ory. A write buffer entry can be freed after the write into main memory com-
pletes. When the processor performs a write and the write buffer is full, a write
stall occurs, and the processor must wait until there is a free entry in the write
buffer.
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2.7.2.2 Write-Back Policy

Using write-back, a write operation to a memory block that is currently held in
the cache is performed only in the cache; the corresponding memory entry is not
updated immediately. Thus, the cache may contain newer values than the main
memory. The modified memory block is written to the main memory when the
cache block is replaced by another memory block. To check whether a write to main
memory is necessary when a cache block is replaced, a separate bit (dirty bit) is held
for each cache block which indicates whether the cache block has been modified or
not. The dirty bit is initialized to 0 when a block is loaded into the cache. A write
access to a cache block sets the dirty bit to 1, indicating that a write to main memory
must be performed when the cache block is replaced.

Using write-back policy usually leads to fewer write operations to main memory
than write-through policy, since cache blocks can be written multiple times before
they are written back to main memory. The drawback of write-back is that the main
memory may contain invalid entries, and hence I/O modules can access main mem-
ory only through the cache.

If a write to a memory location goes to a memory block that is currently not
in the cache, most caches use the write-allocate method: The corresponding mem-
ory block is first brought into the cache and then the modification is performed as
described above. An alternative approach is write no allocate, which modifies in
main memory without loading it into the cache. However, this approach is used less
often.

2.7.2.3 Number of Caches

So far, we have considered the behavior of a single cache which is placed between
the processor and main memory and which stores data blocks of a program in exe-
cution. Such caches are also called data caches.

Besides the program data, a processor also accesses instructions of the program
in execution before they are decoded and executed. Because of loops in the program,
an instruction can be accessed multiple times. To avoid multiple loading operations
from main memory, instructions are also held in cache. To store instructions and
data, a single cache can be used (unified cache). But often, two separate caches are
used on the first level, an instruction cache to store instructions and a separate data
cache to store data. This approach is also called split caches. This enables a greater
flexibility for the cache design, since the data and instruction caches can work inde-
pendently of each other and may have different size and associativity depending on
the specific needs.

In practice, multiple levels of caches are typically used as illustrated in Fig. 2.34.
The current standard is to have two levels with a trend toward three levels. For
the first level (L1), split caches are typically used; for the remaining levels, unified
caches are standard. The caches are hierarchically organized, and for two levels, the
L1 caches contain a subset of the L2 cache which contains a subset of the main
memory.

The caches are normally integrated into the chip area of the processor. Typical
cache sizes lie between 8 Kbytes and 128 Kbytes for the L1 cache and between
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256 Kbytes and 8 Mbytes for the L2 cache. Typical sizes of the main memory lie
between 1 Gbyte and 16 Gbytes. Typical access times are one or a few processor
cycles for the L1 cache, between 15 and 25 cycles for the L2 cache, between 100
and 1000 cycles for the main memory, and between 10 and 100 million cycles for
the hard disc [137].

2.7.3 Cache Coherency

Using a memory hierarchy with multiple levels of caches can help to bridge large
access times to main memory. But the use of caches introduces the effect that
memory blocks can be held in multiple copies in caches and main memory, and
after an update in the L1 cache, other copies might become invalid, in particular
if a write-back policy is used. This does not cause a problem as long as a single
processor is the only accessing device. But if there are multiple accessing devices,
as is the case for multicore processors, inconsistent copies can occur and should be
avoided, and each execution core should always access the most recent value of a
memory location. The problem of keeping the different copies of a memory location
consistent is also referred to as cache coherency problem.

In a multiprocessor system with different cores or processors, in which each pro-
cessor has a separate local cache, the same memory block can be held as copy in
the local cache of multiple processors. If one or more of the processors update a
copy of a memory block in their local cache, the other copies become invalid and
contain inconsistent values. The problem can be illustrated for a bus-based system
with three processors [35] as shown in the following example.

Example We consider a bus-based SMP system with three processors P1, P2, P3

where each processor Pi has a local cache Ci for i = 1, 2, 3. The processors are
connected to a shared memory M via a central bus. The caches Ci use a write-
through strategy. We consider a variable u with initial value 5 which is held in the
main memory before the following operations are performed at times t1, t2, t3, t4:

t1: Processor P1 reads variable u. The memory block containing u is loaded
into cache C1 of P1.

t2: Processor P3 reads variable u. The memory block containing u is also
loaded into cache C3 of P3.

t3: Processor P3 writes the value 7 into u. This new value is also written into
the main memory because write-through is used.

t4: Processor P1 reads u by accessing the copy in its local cache.
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At time t4, processor P1 reads the old value 5 instead of the new value 7, i.e., a cache
coherency problem occurs. This is the case for both write-through and write-back
caches: For write-through caches, at time t3 the new value 7 is directly written into
the main memory by processor P3, but the cache of P1 will not be updated. For
write-back caches, the new value of 7 is not even updated in main memory, i.e., if
another processor P2 reads the value of u after time t3, it will obtain the old value,
even when the variable u is not held in the local cache of P2.

For a correct execution of a parallel program on a shared address space, it must
be ensured that for each possible order of read and write accesses performed by
the participating processors according to their program statements, each processor
obtains the right value, no matter whether the corresponding variable is held in cache
or not.

The behavior of a memory system for read and write accesses performed by
different processors to the same memory location is captured by the coherency of
the memory system. Informally, a memory system is coherent if for each memory
location any read access returns the most recently written value of that memory
location. Since multiple processors may perform write operations to the same mem-
ory location at the same time, we must first define more precisely what the most
recently written value is. For this definition, the order of the memory accesses in
the parallel program executed is used as time measure, not the physical point in
time at which the memory accesses are executed by the processors. This makes the
definition independent of the specific execution environment and situation.

Using the program order of memory accesses, a memory system is coherent, if
the following conditions are fulfilled [84]:

1. If a processor P writes into a memory location x at time t1 and reads from
the same memory location x at time t2 > t1 and if between t1 and t2 no other
processor performs a write into x , then P obtains at time t2 the value written by
itself at time t1. Thus, for each processor the order of the memory accesses in its
program is preserved despite a parallel execution.

2. If a processor P1 writes into a memory location x at time t1 and if another pro-
cessor P2 reads x at time t2 > t1, then P2 obtains the value written by P1, if
between t1 and t2 no other processors write into x and if the period of time t2− t1
is sufficiently large. Thus, a value written by one of the processors must become
visible to the other processors after a certain amount of time.

3. If two processors write into the same memory location x , these write operations
are serialized so that all processors see the write operations in the same order.
Thus, a global write serialization is performed.

To be coherent, a memory system must fulfill these three properties. In particu-
lar, for a memory system with caches which can store multiple copies of memory
blocks, it must be ensured that each processor has a coherent view of the memory
system through its local caches. To ensure this, hardware-based cache coherence
protocols are used. Depending on the architecture of the execution platform, differ-
ent protocols are used, including snooping protocols and directory-based protocols.
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2.7.3.1 Snooping Protocols

The technique of bus snooping has first been used for bus-based SMP systems,
where the local caches of the processors use a write-through policy. The technique
relies on the property that on such systems all memory accesses are performed via
the central bus, i.e., the bus is used as broadcast medium. Thus, all memory accesses
can be observed by the cache controllers of all processors. Each cache controller can
observe the memory accesses transferred over the bus. When the cache controller
observes a write into a memory location that is currently held in the local cache, it
updates the value in the cache by copying the new value from the bus into the cache.
Thus, the local caches always contain the most recently written values of memory
locations. These protocols are also called update-based protocols, since the cache
controllers directly perform an update. There are also invalidation-based protocols
in which the cache block corresponding to a memory block is invalidated so that
the next read access must perform an update from main memory first. Using an
update-based protocol in the example from above (p. 75), processor P1 can observe
the write operation of P3 at time t3 and can update the value of u in its local cache
C1 accordingly. Thus, at time t4, P1 reads the correct value 7.

The technique of bus snooping relies on the use of a write-through policy and
the existence of a broadcast medium so that each cache controller can observe all
write accesses to perform updates or invalidations. In the past, the broadcast medium
has been a shared bus, but for newer architectures interconnection networks like
crossbars or point-to-point networks are used. This makes updates or invalidations
more complicated, since the interprocessor links are not shared, and the coherency
protocol must use broadcasts to find potentially shared copies of memory blocks,
see [84] for more details. Due to the coherence protocol, additional traffic occurs in
the interconnection network, which may limit the effective memory access time of
the processors. Snooping protocols are not restricted to write-through caches. The
technique can also be applied to write-back caches as described in the following.

2.7.3.2 Write-Back Invalidation Protocol

In the following, we describe a basic write-back invalidation protocol, see [35, 84]
for more details. In the protocol, each cache block can be in one of three states [35]:

M (modified) means that the cache block contains the current value of the memory
block and that all other copies of this memory block in other caches or in the
main memory are invalid, i.e., the block has been updated in the cache.

S (shared) means that the cache block has not been updated in this cache and that
this cache contains the current value, as do the main memory and zero or
more other caches.

I (invalid) means that the cache block does not contain the most recent value of
the memory block.

According to these three states, the protocol is also called MSI protocol. The same
memory block can be in different states in different caches. Before a processor
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modifies a memory block in its local cache, all other copies of the memory block
in other caches and the main memory are marked as invalid (I). This is performed
by an operation on the broadcast medium. After that, the processor can perform one
or several write operations to this memory block without performing other invali-
dations. The memory block is marked as modified (M) in the cache of the writing
processor. The protocol provides three operations on the broadcast medium, which
is a shared bus in the simplest case:

• Bus Read (BusRd): This operation is generated by a read operation (PrRd)
of a processor to a memory block that is currently not stored in the cache of
this processor. The cache controller requests a copy of the memory block by
specifying the corresponding memory address. The requesting processor does
not intend to modify the memory block. The most recent value of the memory
block is provided from the main memory or from another cache.

• Bus Read Exclusive (BusRdEx): This operation is generated by a write opera-
tion (PrWr) of a processor to a memory block that is currently not stored in the
cache of this processor or that is currently not in the M state in this cache. The
cache controller requests an exclusive copy of the memory block that it intends
to modify; the request specifies the corresponding memory address. The memory
system provides the most recent value of the memory block. All other copies of
this memory block in other caches are marked invalid (I).

• Write-Back (BusWr): The cache controller writes a cache block that is marked
as modified (M) back to the main memory. This operation is generated if the
cache block is replaced by another memory block. After the operation, the main
memory contains the latest value of the memory block.

The processor performs the usual read and write operations (PrRd, PrWr) to
memory locations, see Fig. 2.35 (right). The cache controller provides the requested
memory words to the processor by loading them from the local cache. In case of
a cache miss, this includes the loading of the corresponding memory block using
a bus operation. The exact behavior of the cache controller depends on the state of
the cache block addressed and can be described by a state transition diagram that is
shown in Fig. 2.35 (left).

A read and write operation to a cache block marked with M can be performed
in the local cache without a bus operation. The same is true for a read operation
to a cache block that is marked with S. To perform a write operation to a cache
block marked with S, the cache controller must first execute a BusRdEx operation
to become the exclusive owner of the cache block. The local state of the cache block
is transformed from S to M. The cache controllers of other processors that have a
local copy of the same cache block with state S observe the BusRdEx operation
and perform a local state transition from S to I for this cache block.

When a processor tries to read a memory block that is not stored in its local
cache or that is marked with I in its local cache, the corresponding cache controller
performs a BusRd operation. This causes a valid copy to be stored in the local cache
marked with S. If another processor observes a BusRd operation for a memory
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Fig. 2.35 Illustration of the MSI protocol: Each cache block can be in one of the states M (mod-
ified), S (shared), or I (invalid). State transitions are shown by arcs that are annotated with opera-
tions. A state transition can be caused by
(a) Operations of the processor (PrRd, PrWr) (solid arcs); The bus operations initiated by the
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other processors (dashed arcs). Again, the corresponding operations of the local cache controller
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block, for which it has the only valid copy (state M), it puts the value of the memory
block on the bus and marks its local copy with state S (shared).

When a processor tries to write into a memory block that is not stored in its local
cache or that is marked with I, the cache controller performs a BusRdEx operation.
This provides a valid copy of the memory block in the local cache, which is marked
with M, i.e., the processor is the exclusive owner of this memory block. If another
processor observes a BusRdEx operation for a memory block which is marked with
M in its local cache, it puts the value of the memory block on the bus and performs
a local state transition from M to I.

A drawback of the MSI protocol is that a processor which first reads a memory
location and then writes into a memory location must perform two bus operations
BusRd and BusRdEx, even if no other processor is involved. The BusRd provides
the memory block in S state, the BusRdEx causes a state transition from S to M.
This drawback can be eliminated by adding a new state E (exclusive):
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E (exclusive) means that the cache contains the only (exclusive) copy of the mem-
ory block and that this copy has not been modified. The main memory con-
tains a valid copy of the block, but no other processor is caching this block.

If a processor requests a memory block by issuing a PrRd and if no other processor
has a copy of this memory block in its local cache, then the block is marked with
E (instead of S in the MSI protocol) in the local cache after being loaded from the
main memory with a BusRd operation. If at a later time, this processor performs
a write into this memory block, a state transition from E to M is performed before
the write. In this case, no additional bus operation is necessary. If between the local
read and write operation, another processor performs a read to the same memory
block, the local state is changed from E to S. The local write would then cause the
same actions as in the MSI protocol. The resulting protocol is called MESI protocol
according to the abbreviation of the four states. A more detailed discussion and a
detailed description of several variants can be found in [35]. Variants of the MESI
protocol are supported by many processors and the protocols play an important role
in multicore processors to ensure the coherency of the local caches of the cores.

The MSI and MESI protocols are invalidation protocols. An alternative is write-
back update protocols for write-back caches. In these protocols, after an update of
a cache block with state M, all other caches which also contain a copy of the corre-
sponding memory block are updated. Therefore, the local caches always contain the
most recent values of the cache blocks. In practice, these protocols are rarely used
because they cause more traffic on the bus.

2.7.3.3 Directory-Based Cache Coherence Protocols

Snooping protocols rely on the existence of a shared broadcast medium like a bus
or a switch through which all memory accesses are transferred. This is typically the
case for multicore processors or small SMP systems. But for larger systems, such a
shared medium often does not exist and other mechanisms have to be used.

A simple solution would be not to support cache coherence at hardware level.
Using this approach, the local caches would only store memory blocks of the local
main memory. There would be no hardware support to store memory blocks from
the memory of other processors in the local cache. Instead, software support could
be provided, but this requires more support from the programmer and is typically
not as fast as a hardware solution.

An alternative to snooping protocols are directory-based protocols. These do
not rely on a shared broadcast medium. Instead, a central directory is used to store
the state of every memory block that may be held in cache. Instead of observ-
ing a shared broadcast medium, a cache controller can get the state of a memory
block by a lookup in the directory. The directory can be held shared, but it could
also be distributed among different processors to avoid bottlenecks when the direc-
tory is accessed by many processors. In the following, we give a short overview
of directory-based protocols. For a more detailed description, we refer again to
[35, 84].
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As example, we consider a parallel machine with a distributed memory. We
assume that for each local memory a directory is maintained that specifies for each
memory block of the local memory which caches of other processors currently store
a copy of this memory block. For a parallel machine with p processors the directory
can be implemented by maintaining a bit vector with p presence bits and a number
of state bits for each memory block. Each presence bit indicates whether a specific
processor has a valid copy of this memory block in its local cache (value 1) or
not (value 0). An additional dirty bit is used to indicate whether the local memory
contains a valid copy of the memory block (value 0) or not (value 1). Each directory
is maintained by a directory controller which updates the directory entries according
to the requests observed on the network.

Figure 2.36 illustrates the organization. In the local caches, the memory blocks
are marked with M (modified), S (shared), or I (invalid), depending on their state,
similar to the snooping protocols described above. The processors access the mem-
ory system via their local cache controllers. We assume a global address space, i.e.,
each memory block has a memory address which is unique in the entire parallel
system.

When a read miss or write miss occurs at a processor i , the associated cache
controller contacts the local directory controller to obtain information about the
accessed memory block. If this memory block belongs to the local memory and the
local memory contains a valid copy (dirty bit 0), the memory block can be loaded
into the cache with a local memory access. Otherwise, a non-local (remote) access
must be performed. A request is sent via the network to the directory controller at
the processor owning the memory block (home node). For a read miss, the receiving
directory controller reacts as follows:

• If the dirty bit of the requested memory block is 0, the directory controller
retrieves the memory block from local memory and sends it to the requesting
node via the network. The presence bit of the receiving processor i is set to 1 to
indicate that i has a valid copy of the memory block.

• If the dirty bit of the requested memory block is 1, there is exactly one processor
j which has a valid copy of the memory block; the presence bit of this processor
is 1. The directory controller sends a corresponding request to this processor j .
The cache controller of j sets the local state of the memory block from M to S
and sends the memory block both to the home node of the memory block and to
the processor i from which the original request came. The directory controller of
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the home node stores the current value in the local memory, sets the dirty bit of
the memory block to 0, and sets the presence bit of processor i to 1. The presence
bit of j remains 1.

For a write miss, the receiving directory controller does the following:

• If the dirty bit of the requested memory block is 0, the local memory of the home
node contains a valid copy. The directory controller sends an invalidation request
to all processors j for which the presence bit is 1. The cache controllers of these
processors set the state of the memory block to I. The directory controller waits
for an acknowledgment from these cache controllers, sets the presence bit for
these processors to 0, and sends the memory block to the requesting processor i .
The presence bit of i is set to 1, the dirty bit is also set to 1. After having received
the memory block, the cache controller of i stores the block in its cache and sets
its state to M.

• If the dirty bit of the requested memory block is 1, the memory block is requested
from the processor j whose presence bit is 1. Upon arrival, the memory block is
forwarded to processor i , the presence bit of i is set to 1, and the presence bit of
j is set to 0. The dirty bit remains at 1. The cache controller of j sets the state of
the memory block to I.

When a memory block with state M should be replaced by another memory block in
the cache of processor i , it must be written back into its home memory, since this is
the only valid copy of this memory block. To do so, the cache controller of i sends
the memory block to the directory controller of the home node. This one writes the
memory block back to the local memory and sets the dirty bit of the block and the
presence bit of processor i to 0.

A cache block with state S can be replaced in a local cache without sending a
notification to the responsible directory controller. Sending a notification avoids the
responsible directory controller sending an unnecessary invalidation message to the
replacing processor in case of a write miss as described above.

The directory protocol just described is kept quite simple. Directory protocols
used in practice are typically more complex and contain additional optimizations
to reduce the overhead as far as possible. Directory protocols are typically used for
distributed memory machines as described. But they can also be used for shared
memory machines. Examples are the Sun T1 and T2 processors, see [84] for more
details.

2.7.4 Memory Consistency

Cache coherence ensures that each processor of a parallel system has the same con-
sistent view of the memory through its local cache. Thus, at each point in time, each
processor gets the same value for each variable if it performs a read access. But
cache coherence does not specify in which order write accesses become visible to
the other processors. This issue is addressed by memory consistency models. These
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models provide a formal specification of how the memory system will appear to
the programmer. The consistency model sets some restrictions on the values that
can be returned by a read operation in a shared address space. Intuitively, a read
operation should always return the value that has been written last. In uniprocessors,
the program order uniquely defines which value this is. In multiprocessors, different
processors execute their programs concurrently and the memory accesses may take
place in different order depending on the relative progress of the processors.

The following example illustrates the different results of a parallel program if
different execution orders of the program statements by the different processors are
considered, see also [95].

Example We consider three processors P1, P2, P3 which execute a parallel program
with shared variables x1, x2, x3. The three variables x1, x2, x3 are assumed to be
initialized to 0. The processors execute the following programs:

processor P1 P2 P3

program (1) x1 = 1; (3) x2 = 1; (5) x3 = 1;
(2) print x2, x3; (4) print x1, x3; (6) print x1, x2;

Processor Pi sets the value of xi , i = 1, 2, 3, to 1 and prints the values of the
other variables x j for j 	= i . In total, six values are printed which may be 0 or 1.
Since there are no dependencies between the two statements executed by P1, P2, P3,
their order can be arbitrarily reversed. If we allow such a reordering and if the state-
ments of the different processors can be mixed arbitrarily, there are in total 26 = 64
possible output combinations consisting of 0 and 1. Different global orders may
lead to the same output. If the processors are restricted to execute their statements
in program order (e.g., P1 must execute (1) before (2)), then output 000000 is not
possible, since at least one of the variables x1, x2, x3 must be set to 1 before a print
operation occurs. A possible sequentialization of the statements is (1), (2), (3), (4),
(5), (6). The corresponding output is 001011.

To clearly describe the behavior of the memory system in multiprocessor envi-
ronments, the concept of consistency models has been introduced. Using a consis-
tency model, there is a clear definition of the allowable behavior of the memory
system which can be used by the programmer for the design of parallel programs.
The situation can be described as follows [165]: The input to the memory system is
a set of memory accesses (read or write) which are partially ordered by the program
order of the executing processors. The output of the memory system is a collection
of values returned by the read accesses executed. A consistency model can be seen
as a function that maps each input to a set of allowable outputs. The memory sys-
tem using a specific consistency model guarantees that for any input, only outputs
from the set of allowable outputs are produced. The programmer must write parallel
programs such that they work correctly for any output allowed by the consistency
model. The use of a consistency model also has the advantage that it abstracts
from the specific physical implementation of a memory system and provides a clear
abstract interface for the programmer.
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In the following, we give a short overview of popular consistency models. For a
more detailed description, we refer to [3, 35, 84, 111, 165].

Memory consistency models can be classified according to the following two
criteria:

• Are the memory access operations of each processor executed in program order?
• Do all processors observe the memory access operations performed in the same

order?

Depending on the answer to these questions, different consistency models can be
identified.

2.7.4.1 Sequential Consistency

A popular model for memory consistency is the sequential consistency model (SC
model) [111]. This model is an intuitive extension of the uniprocessor model and
places strong restrictions on the execution order of the memory accesses. A memory
system is sequentially consistent, if the memory accesses of each single processor
are performed in the program order described by that processor’s program and if the
global result of all memory accesses of all processors appears to all processors in the
same sequential order which results from an arbitrary interleaving of the memory
accesses of the different processors. Memory accesses must be performed as atomic
operations, i.e., the effect of each memory operation must become globally visible
to all processors before the next memory operation of any processor is started.

The notion of program order leaves some room for interpretation. Program order
could be the order of the statements performing memory accesses in the source
program, but it could also be the order of the memory access operations in a
machine program generated by an optimizing compiler which could perform state-
ment reordering to obtain a better performance. In the following, we assume that the
order in the source program is used.

Using sequential consistency, the memory operations are treated as atomic oper-
ations that are executed in the order given by the source program of each processor
and that are centrally sequentialized. This leads to a total order of the memory
operations of a parallel program which is the same for all processors of the system.
In the example given above, not only output 001011 but also 111111 conforms to
the SC model. The output 011001 is not possible for sequential consistency.

The requirement of a total order of the memory operations is a stronger restriction
as has been used for the coherence of a memory system in the last section (p. 76).
For a memory system to be coherent it is required that the write operations to the
same memory location are sequentialized such that they appear to all processors
in the same order. But there is no restriction on the order of write operations to
different memory locations. On the other hand, sequential consistency requires that
all write operations (to arbitrary memory locations) appear to all processors in the
same order.
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The following example illustrates that the atomicity of the write operations is
important for the definition of sequential consistency and that the requirement of a
sequentialization of the write operations alone is not sufficient.

Example Three processors P1, P2, P3 execute the following statements:

processor P1 P2 P3

program (1) x1 = 1; (2) while(x1 == 0); (4) while(x2 == 0);
(3) x2 = 1; (5) print(x1);

The variables x1 and x2 are initialized to 0. Processor P2 waits until x1 has value
1 and then sets x2 to 1. Processor P3 waits until x2 has value 1 and then prints the
value of x1. Assuming atomicity of write operations, the statements are executed in
the order (1), (2), (3), (4), (5), and processor P3 prints the value 1 for x1, since write
operation (1) of P1 must become visible to P3 before P2 executes write operation
(3). Using a sequentialization of the write operations of a variable without requir-
ing atomicity and global sequentialization as is required for sequential consistency
would allow the execution of statement (3) before the effect of (1) becomes visible
to P3. Thus, (5) could print the value 0 for x1.

To further illustrate this behavior, we consider a directory-based protocol and
assume that the processors are connected via a network. In particular, we consider a
directory-based invalidation protocol to keep the caches of the processors coherent.
We assume that the variables x1 and x2 have been initialized to 0 and that they
are both stored in the local caches of P2 and P3. The cache blocks are marked as
shared (S).

The operations of each processor are executed in program order and a memory
operation is started not before the preceding operations of the same processor have
been completed. Since no assumptions on the transfer of the invalidation messages
in the network are made, the following execution order is possible:

(1) P1 executes the write operation (1) to x1. Since x1 is not stored in the cache of
P1, a write miss occurs. The directory entry of x1 is accessed and invalidation
messages are sent to P2 and P3.

(2) P2 executes the read operation (2) to x1. We assume that the invalidation mes-
sage of P1 has already reached P2 and that the memory block of x1 has been
marked invalid (I) in the cache of P2. Thus, a read miss occurs, and P2 obtains
the current value 1 of x1 over the network from P1. The copy of x1 in the main
memory is also updated.

After having received the current value of x1, P1 leaves the while loop and
executes the write operation (3) to x2. Because the corresponding cache block
is marked as shared (S) in the cache of P2, a write miss occurs. The directory
entry of x2 is accessed and invalidation messages are sent to P1 and P3.

(3) P3 executes the read operation (4) to x2. We assume that the invalidation mes-
sage of P2 has already reached P3. Thus, P3 obtains the current value 1 of x2

over the network. After that, P3 leaves the while loop and executes the print
operation (5). Assuming that the invalidation message of P1 for x1 has not yet
reached P3, P3 accesses the old value 0 for x1 from its local cache, since the
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corresponding cache block is still marked with S. This behavior is possible if
the invalidation messages have different transfer times over the network.

In this example, sequential consistency is violated, since the processors observe dif-
ferent orders of the write operation: Processor P2 observes the order x1 = 1, x2 = 1
whereas P3 observes the order x2 = 1, x1 = 1 (since P3 gets the new value of x2,
but the old value of x1 for its read accesses).

In a parallel system, sequential consistency can be guaranteed by the following
sufficient conditions [35, 45, 157]:

(1) Every processor issues its memory operations in program order. In particular,
the compiler is not allowed to change the order of memory operations, and no
out-of-order executions of memory operations are allowed.

(2) After a processor has issued a write operation, it waits until the write operation
has been completed before it issues the next operation. This includes that for a
write miss all cache blocks which contain the memory location written must be
marked invalid (I) before the next memory operation starts.

(3) After a processor has issued a read operation, it waits until this read operation
and the write operation whose value is returned by the read operation have been
entirely completed. This includes that the value returned to the issuing processor
becomes visible to all other processors before the issuing processor submits the
next memory operation.

These conditions do not contain specific requirements concerning the interconnec-
tion network, the memory organization, or the cooperation of the processors in the
parallel system. In the example from above, condition (3) ensures that after reading
x1, P2 waits until the write operation (1) has been completed before it issues the next
memory operation (3). Thus, P3 always reads the new value of x1 when it reaches
statement (5). Therefore, sequential consistency is ensured.

For the programmer, sequential consistency provides an easy and intuitive model.
But the model has a performance disadvantage, since all memory accesses must be
atomic and since memory accesses must be performed one after another. There-
fore, processors may have to wait for quite a long time before memory accesses
that they have issued have been completed. To improve performance, consistency
models with fewer restrictions have been proposed. We give a short overview in the
following and refer to [35, 84] for a more detailed description. The goal of the less
restricted models is to still provide a simple and intuitive model but to enable a more
efficient implementation.

2.7.4.2 Relaxed Consistency Models

Sequential consistency requires that the read and write operations issued by a pro-
cessor maintain the following orderings where X → Y means that the operation X
must be completed before operation Y is executed:
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• R → R: The read accesses are performed in program order.
• R → W : A read operation followed by a write operation is executed in program

order. If both operations access the same memory location, an anti-dependence
occurs. In this case, the given order must be preserved to ensure that the read
operation accesses the correct value.

• W → W : The write accesses are performed in program order. If both operations
access the same memory location, an output dependence occurs. In this case, the
given order must be preserved to ensure that the correct value is written last.

• W → R: A write operation followed by a read operation is executed in program
order. If both operations access the same memory location, a flow dependence
(also called true dependence) occurs.

If there is a dependence between the read and write operations the given order
must be preserved to ensure the correctness of the program. If there is no such
dependence, the given order must be kept to ensure sequential consistency. Relaxed
consistency models abandon one or several of the orderings required for sequential
consistency, if the data dependencies allow this.

Processor consistency models relax the W → R ordering to be able to par-
tially hide the latency of write operations. Using this relaxation, a processor can
execute a read operation even if a preceding write operation has not yet been
completed if there are no dependencies. Thus, a read operation can be performed
even if the effect of a preceding write operation is not visible yet to all proces-
sors. Processor consistency models include total store ordering (TSO model) and
processor consistency (PC model). In contrast to the TSO model, the PC model
does not guarantee atomicity of the write operations. The differences between
sequential consistency and the TSO or PC model are illustrated in the following
example.

Example Two processors P1 and P2 execute the following statements:

processor P1 P2

program (1) x1 = 1; (3) x2 = 1;
(2) print(x2); (4) print(x1);

Both variables x1 and x2 are initialized to 0. Using sequential consistency, state-
ment (1) must be executed before statement (2), and statement (3) must be executed
before statement (4). Thus, it is not possible that the value 0 is printed for both x1

and x2. But using TSO or PC, this output is possible, since, for example, the write
operation (3) does not need to be completed before P2 reads the value of x1 in (4).
Thus, both P1 and P2 may print the old value for x1 and x2, respectively.

Partial store ordering (PSO) models relax both the W → W and the W → R
ordering required for sequential consistency. Thus in PSO models, write opera-
tions can be completed in a different order as given in the program if there is
no output dependence between the write operations. Successive write operations
can be overlapped which may lead to a faster execution, in particular when write
misses occur. The following example illustrates the differences between the different
models.
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Example We assume that the variables x1 and flag are initialized to 0. Two proces-
sors P1 and P2 execute the following statements:

processor P1 P2

program (1) x1 = 1; (3) while(flag == 0);
(2) flag = 1; (4) print(x1);

Using sequential consistency, PC, or TSO, it is not possible that the value 0 is
printed for x1. But using the PSO model, the write operation (2) can be completed
before x1 = 1. Thus, it is possible that the value 0 is printed for x1 in statement (4).
This output does not conform to intuitive understanding of the program behavior in
the example, making this model less attractive for the programmer.

Weak ordering models additionally relax the R → R and R → W orderings.
Thus, no completion order of the memory operations is guaranteed. To support pro-
gramming, these models provide additional synchronization operations to ensure
the following properties:

• All read and write operations which lie in the program before the synchronization
operation are completed before the synchronization operation.

• The synchronization operation is completed before read or write operations are
started which lie in the program after the synchronization operation.

The advent of multicore processors has led to an increased availability of parallel
systems and most processors provide hardware support for a memory consistency
model. Often, relaxed consistency models are supported, as is the case for the Pow-
erPC architecture of IBM or the different Intel architectures. But different hardware
manufacturers favor different models, and there is no standardization as yet.

2.8 Exercises for Chap. 2

Exercise 2.1 Consider a two-dimensional mesh network with n rows and m columns.
What is the bisection bandwidth of this network?

Exercise 2.2 Consider a shuffle–exchange network with n = 2k nodes, k > 1. How
many of the 3 · 2k−1 edges are shuffle edges and how many are exchange edges?
Draw a shuffle–exchange network for k = 4.

Exercise 2.3 In Sect. 2.5.2, p. 35, we have shown that there exist k independent
paths between any two nodes of a k-dimensional hypercube network. For k = 5,
determine all paths between the following pairs of nodes: (i) nodes 01001 and
00011; (ii) nodes 00001 and 10000.

Exercise 2.4 Write a (sequential) program that determines all paths between any
two nodes for hypercube networks of arbitrary dimension.

Exercise 2.5 The RGC sequences RGCk can be used to compute embeddings of dif-
ferent networks into a hypercube network of dimension k. Determine RGC3, RGC4,
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and RGC5. Determine an embedding of a three-dimensional mesh with 4 × 2 × 4
nodes into a five-dimensional hypercube network.

Exercise 2.6 Show how a complete binary tree with n leaves can be embedded into
a butterfly network of dimension log n. The leaves of the trees correspond to the
butterfly nodes at level log n.

Exercise 2.7 Construct an embedding of a three-dimensional torus network with
8 × 8 × 8 nodes into a nine-dimensional hypercube network according to the con-
struction in Sect. 2.5.3, p. 39.

Exercise 2.8 A k-dimensional Beneš network consists of two connected k-dimen-
sional butterfly networks, leading to 2k + 1 stages, see p. 45. A Beneš network
is non-blocking, i.e., any permutation between input nodes and output nodes can
be realized without blocking. Consider an 8 × 8 Beneš network and determine the
switch positions for the following two permutations:

π1 =
(

0 1 2 3 4 5 6 7
0 1 2 4 3 5 7 6

)
, π2 =

(
0 1 2 3 4 5 6 7
2 7 4 6 0 5 3 1

)
.

Exercise 2.9 The cross-product G3 = (V3, E3) = G1 ⊗ G2 of two graphs G1 =
(V1, E1) and G2 = (V2, E2) can be defined as follows:
V3 = V1 × V2 and E3 = {((u1, u2), (v1, v2)) | ((u1 = v1) and (u2, v2) ∈ E2) or
((u2 = v2) and (u1, v1) ∈ E1)}. The symbol

⊗
can be used as abbreviation with the

following meaning:

b⊗

i=a

Gi = ((· · · (Ga ⊗ Ga+1)⊗ · · · )⊗ Gb).

Draw the following graphs and determine their network characteristics (degree,
node connectivity, edge connectivity, bisection bandwidth, and diameter):

(a) linear array of size 4 ⊗ linear array of size 2,
(b) two-dimensional mesh with 2× 4 nodes ⊗ linear array of size 3,
(c) linear array of size 3 ⊗ complete graph with 4 nodes,

(d)
4⊗

i=2
linear array of size i ,

(e)
k⊗

i=1
linear array of size 23. Draw the graph for k = 4, but determine the charac-

teristics for general values of k.

Exercise 2.10 Consider a three-dimensional hypercube network and prove that
E-cube routing is deadlock free for this network, see Sect. 2.6.1, p. 48.

Exercise 2.11 In the directory-based cache coherence protocol described in
Sect. 2.7.3, p. 81, in case of a read miss with dirty bit 1, the processor which has
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the requested cache block sends it to both the directory controller and the requesting
processor. Instead, the owning processor could send the cache block to the directory
controller and this one could forward the cache block to the requesting processor.
Specify the details of this protocol.

Exercise 2.12 Consider the following sequence of memory accesses:

2, 3, 11, 16, 21, 13, 64, 48, 19, 11, 3, 22, 4, 27, 6, 11

Consider a cache of size 16 bytes. For the following configurations of the cache
determine for each of the memory accesses in the sequence whether it leads to a
cache hit or a cache miss. Show the resulting cache state that results after each
access with the memory locations currently held in cache. Determine the resulting
miss rate:

(a) direct-mapped cache with block size 1,
(b) direct-mapped cache with block size 4,
(c) two-way set-associative cache with block size 1, LRU replacement strategy,
(d) two-way set-associative cache with block size 4, LRU replacement strategy,
(e) fully associative cache with block size 1, LRU replacement,
(f) fully associative cache with block size 4, LRU replacement.

Exercise 2.13 Consider the MSI protocol from Fig. 2.35, p. 79, for a bus-based
system with three processors P1, P2, P3. Each processor has a direct-mapped cache.
The following sequence of memory operations access two memory locations A and
B which are mapped to the same cache line:

Processor Action

P1 write A, 4
P3 write B, 8
P2 read A
P3 read A
P3 write A, B
P2 read A
P1 read B
P1 write B, 10

We assume that the variables are initialized to A = 3 and B = 3 and that the
caches are initially empty. For each memory access determine

• the cache state of each processor after the memory operations,
• the content of the cache and the memory location for A and B,
• the processor actions (PrWr, PrRd) caused by the access, and
• the bus operations (BusRd, BusRdEx, flush) caused by the MSI protocol.

Exercise 2.14 Consider the following memory accesses of three processors P1,

P2, P3:
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P1 P2 P3

(1) A = 1; (1) B = A; (1) D = C ;
(2) C = 1;

The variables A, B, C, D are initialized to 0. Using the sequential consistency
model, which values can the variables B and D have?

Exercise 2.15 Visit the Top500 web page at www.top500.org and determine
important characteristics of the five fastest parallel computers, including num-
ber of processors or core, interconnection network, processors used, and memory
hierarchy.

Exercise 2.16 Consider the following two realizations of a matrix traversal and
computation:

for (j=0; j<1500; j++)
for (i=0; i<1500; i++)

x[i][j] = 2 · x[i][j];

for (i=0; i<1500; i++)
for (j=0; j<1500; j++)

x[i][j] = 2 · x[i][j];
We assume a cache of size 8 Kbytes with a large enough associativity so that

no conflict misses occur. The cache line size is 32 bytes. Each entry of the matrix
x occupies 8 bytes. The implementations of the loops are given in C which uses a
row-major storage order for matrices. Compute the number of cache lines that must
be loaded for each of the two loop nests. Which of the two loop nests leads to a
better spatial locality?



Chapter 3
Parallel Programming Models

The coding of a parallel program for a given algorithm is strongly influenced by
the parallel computing system to be used. The term computing system comprises
all hardware and software components which are provided to the programmer and
which form the programmer’s view of the machine. The hardware architectural
aspects have been presented in Chap. 2. The software aspects include the spe-
cific operating system, the programming language and the compiler, or the runtime
libraries. The same parallel hardware can result in different views for the program-
mer, i.e., in different parallel computing systems when used with different software
installations. A very efficient coding can usually be achieved when the specific hard-
ware and software installation is taken into account. But in contrast to sequential
programming there are many more details and diversities in parallel programming
and a machine-dependent programming can result in a large variety of different
programs for the same algorithm. In order to study more general principles in par-
allel programming, parallel computing systems are considered in a more abstract
way with respect to some properties, like the organization of memory as shared or
private. A systematic way to do this is to consider models which step back from
details of single systems and provide an abstract view for the design and analysis of
parallel programs.

3.1 Models for Parallel Systems

In the following, the types of models used for parallel processing according to [87]
are presented. Models for parallel processing can differ in their level of abstrac-
tion. The four basic types are machine models, architectural models, computational
models, and programming models. The machine model is at the lowest level of
abstraction and consists of a description of hardware and operating system, e.g.,
the registers or the input and output buffers. Assembly languages are based on
this level of models. Architectural models are at the next level of abstraction.
Properties described at this level include the interconnection network of parallel
platforms, memory organization, synchronous or asynchronous processing, and exe-
cution mode of single instructions by SIMD or MIMD.
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The computational model (or model of computation) is at the next higher
level of abstraction and offers an abstract or more formal model of a correspond-
ing architectural model. It provides cost functions reflecting the time needed for
the execution of an algorithm on the resources of a computer given by an archi-
tectural model. Thus, a computational model provides an analytical method for
designing and evaluating algorithms. The complexity of an algorithm should reflect
the performance on a real computer. For sequential computing, the RAM (random
access machine) model is a computational model for the von Neumann architectural
model. The RAM model describes a sequential computer by a memory and one
processor accessing the memory. The memory consists of an unbounded number
of memory locations each of which can contain an arbitrary value. The proces-
sor executes a sequential algorithm consisting of a sequence of instructions step
by step. Each instruction comprises the load of data from memory into registers,
the execution of an arithmetic or logical operation, and the storing of the result
into memory. The RAM model is suitable for theoretical performance prediction
although real computers have a much more diverse and complex architecture. A
computational model for parallel processing is the PRAM (parallel random access
machine) model, which is a generalization of the RAM model and is described in
Chap. 4.

The programming model is at the next higher level of abstraction and describes
a parallel computing system in terms of the semantics of the programming lan-
guage or programming environment. A parallel programming model specifies the
programmer’s view on parallel computer by defining how the programmer can code
an algorithm. This view is influenced by the architectural design and the language,
compiler, or the runtime libraries and, thus, there exist many different parallel pro-
gramming models even for the same architecture. There are several criteria by which
the parallel programming models can differ:

• the level of parallelism which is exploited in the parallel execution (instruction
level, statement level, procedural level, or parallel loops);

• the implicit or user-defined explicit specification of parallelism;
• the way how parallel program parts are specified;
• the execution mode of parallel units (SIMD or SPMD, synchronous or asyn-

chronous);
• the modes and pattern of communication among computing units for the exchange

of information (explicit communication or shared variables);
• synchronization mechanisms to organize computation and communication between

parallel units.

Each parallel programming language or environment implements the criteria
given above and there is a large number of different possibilities for combination.
Parallel programming models provide methods to support the parallel programming.

The goal of a programming model is to provide a mechanism with which the
programmer can specify parallel programs. To do so, a set of basic tasks must be
supported. A parallel program specifies computations which can be executed in par-
allel. Depending on the programming model, the computations can be defined at
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different levels: A computation can be (i) a sequence of instructions performing
arithmetic or logical operations, (ii) a sequence of statements where each state-
ment may capture several instructions, or (iii) a function or method invocation
which typically consists of several statements. Many parallel programming models
provide the concept of parallel loops; the iterations of a parallel loop are inde-
pendent of each other and can therefore be executed in parallel, see Sect. 3.3.3
for an overview. Another concept is the definition of independent tasks (or mod-
ules) which can be executed in parallel and which are mapped to the processors
of a parallel platform such that an efficient execution results. The mapping may
be specified explicitly by the programmer or performed implicitly by a runtime
library.

A parallel program is executed by the processors of a parallel execution envi-
ronment such that on each processor one or multiple control flows are executed.
Depending on the specific coordination, these control flows are referred to as pro-
cesses or threads. The thread concept is a generalization of the process concept:
A process can consist of several threads which share a common address space
whereas each process works on a different address space. Which of these two con-
cepts is more suitable for a given situation depends on the physical memory orga-
nization of the execution environment. The process concept is usually suitable for
distributed memory organizations whereas the thread concept is typically used for
shared memory machines, including multicore processors. In the following chapters,
programming models based on the process or thread concept are discussed in more
detail.

The processes or threads executing a parallel program may be created statically
at program start. They may also be created during program execution according
to the specific execution needs. Depending on the execution and synchronization
modi supported by a specific programming model, there may or may not exist a
hierarchical relation between the threads or processes. A fixed mapping from the
threads or processes to the execution cores or processors of a parallel system may
be used. In this case, a process or thread cannot be migrated to another processor
or core during program execution. The partitioning into tasks and parallel execu-
tion modes for parallel programs are considered in more detail in Sects. 3.2–3.3.6.
Data distributions for structured data types like vectors or matrices are considered
in Sect. 3.4.

An important classification for parallel programming models is the organization
of the address space. There are models with a shared or distributed address space,
but there are also hybrid models which combine features of both memory organi-
zations. The address space has a significant influence on the information exchange
between the processes or threads. For a shared address space, shared variables are
often used. Information exchange can be performed by write or read accesses of
the processors or threads involved. For a distributed address space, each process
has a local memory, but there is no shared memory via which information or data
could be exchanged. Therefore, information exchange must be performed by addi-
tional message-passing operations to send or receive messages containing data or
information. More details will be given in Sect. 3.5.
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3.2 Parallelization of Programs

The parallelization of a given algorithm or program is typically performed on the
basis of the programming model used. Independent of the specific programming
model, typical steps can be identified to perform the parallelization. In this section,
we will describe these steps. We assume that the computations to be parallelized are
given in the form of a sequential program or algorithm. To transform the sequential
computations into a parallel program, their control and data dependencies have to
be taken into consideration to ensure that the parallel program produces the same
results as the sequential program for all possible input values. The main goal is
usually to reduce the program execution time as much as possible by using multiple
processors or cores. The transformation into a parallel program is also referred to
as parallelization. To perform this transformation in a systematic way, it can be
partitioned into several steps:

1. Decomposition of the computations: The computations of the sequential algo-
rithm are decomposed into tasks, and dependencies between the tasks are deter-
mined. The tasks are the smallest units of parallelism. Depending on the target
system, they can be identified at different execution levels: instruction level,
data parallelism, or functional parallelism, see Sect. 3.3. In principle, a task is
a sequence of computations executed by a single processor or core. Depending
on the memory model, a task may involve accesses to the shared address space
or may execute message-passing operations. Depending on the specific appli-
cation, the decomposition into tasks may be done in an initialization phase at
program start (static decomposition), but tasks can also be created dynamically
during program execution. In this case, the number of tasks available for exe-
cution can vary significantly during the execution of a program. At any point
in program execution, the number of executable tasks is an upper bound on the
available degree of parallelism and, thus, the number of cores that can be use-
fully employed. The goal of task decomposition is therefore to generate enough
tasks to keep all cores busy at all times during program execution. But on the
other hand, the tasks should contain enough computations such that the task
execution time is large compared to the scheduling and mapping time required
to bring the task to execution. The computation time of a task is also referred
to as granularity: Tasks with many computations have a coarse-grained granu-
larity, tasks with only a few computations are fine-grained. If task granularity is
too fine-grained, the scheduling and mapping overhead is large and constitutes
a significant amount of the total execution time. Thus, the decomposition step
must find a good compromise between the number of tasks and their granularity.

2. Assignment of tasks to processes or threads: A process or a thread represents
a flow of control executed by a physical processor or core. A process or thread
can execute different tasks one after another. The number of processes or threads
does not necessarily need to be the same as the number of physical processors or
cores, but often the same number is used. The main goal of the assignment step
is to assign the tasks such that a good load balancing results, i.e., each process
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or thread should have about the same number of computations to perform. But
the number of memory accesses (for shared address space) or communication
operations for data exchange (for distributed address space) should also be taken
into consideration. For example, when using a shared address space, it is useful
to assign two tasks which work on the same data set to the same thread, since this
leads to a good cache usage. The assignment of tasks to processes or threads is
also called scheduling. For a static decomposition, the assignment can be done
in the initialization phase at program start (static scheduling). But scheduling can
also be done during program execution (dynamic scheduling).

3. Mapping of processes or threads to physical processes or cores: In the sim-
plest case, each process or thread is mapped to a separate processor or core, also
called execution unit in the following. If less cores than threads are available,
multiple threads must be mapped to a single core. This mapping can be done by
the operating system, but it could also be supported by program statements. The
main goal of the mapping step is to get an equal utilization of the processors or
cores while keeping communication between the processors as small as possible.

The parallelization steps are illustrated in Fig. 3.1.

P1

P3 P4

P2

gnippamgniludehcs

process 4process 2

process 1 process 3

partitioning

Fig. 3.1 Illustration of typical parallelization steps for a given sequential application algorithm.
The algorithm is first split into tasks, and dependencies between the tasks are identified. These
tasks are then assigned to processes by the scheduler. Finally, the processes are mapped to the
physical processors P1, P2, P3, and P4

In general, a scheduling algorithm is a method to determine an efficient execu-
tion order for a set of tasks of a given duration on a given set of execution units. Typ-
ically, the number of tasks is much larger than the number of execution units. There
may be dependencies between the tasks, leading to precedence constraints. Since
the number of execution units is fixed, there are also capacity constraints. Both
types of constraints restrict the schedules that can be used. Usually, the scheduling
algorithm considers the situation that each task is executed sequentially by one pro-
cessor or core (single-processor tasks). But in some models, a more general case is
also considered which assumes that several execution units can be employed for a
single task (parallel tasks), thus leading to a smaller task execution time. The overall
goal of a scheduling algorithm is to find a schedule for the tasks which defines for
each task a starting time and an execution unit such that the precedence and capacity
constraints are fulfilled and such that a given objective function is optimized. Often,
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the overall completion time (also called makespan) should be minimized. This is the
time elapsed between the start of the first task and the completion of the last task of
the program. For realistic situations, the problem of finding an optimal schedule is
NP-complete or NP-hard [62]. A good overview of scheduling algorithms is given
in [24].

Often, the number of processes or threads is adapted to the number of execution
units such that each execution unit performs exactly one process or thread, and there
is no migration of a process or thread from one execution unit to another during exe-
cution. In these cases, the terms “process” and “processor” or “thread” and “core”
are used interchangeably.

3.3 Levels of Parallelism

The computations performed by a given program provide opportunities for parallel
execution at different levels: instruction level, statement level, loop level, and func-
tion level. Depending on the level considered, tasks of different granularity result.
Considering the instruction or statement level, fine-grained tasks result when a small
number of instructions or statements are grouped to form a task. On the other hand,
considering the function level, tasks are coarse-grained when the functions used
to form a task comprise a significant amount of computations. On the loop level
medium-grained tasks are typical, since one loop iteration usually consists of sev-
eral statements. Tasks of different granularity require different scheduling methods
to use the available potential of parallelism. In this section, we give a short overview
of the available degree of parallelism at different levels and how it can be exploited
in different programming models.

3.3.1 Parallelism at Instruction Level

Multiple instructions of a program can be executed in parallel at the same time,
if they are independent of each other. In particular, the existence of one of the
following data dependencies between instructions I1 and I2 inhibits their parallel
execution:

• Flow dependency (also called true dependency): There is a flow dependency
from instruction I1 to I2, if I1 computes a result value in a register or variable
which is then used by I2 as operand.

• Anti-dependency: There is an anti-dependency from I1 to I2, if I1 uses a register
or variable as operand which is later used by I2 to store the result of a computa-
tion.

• Output dependency: There is an output dependency from I1 to I2, if I1 and I2

use the same register or variable to store the result of a computation.

Figure 3.2 shows examples of the different dependency types [179]. In all three
cases, instructions I1 and I2 cannot be executed in opposite order or in parallel,
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Fig. 3.2 Different types of data dependencies between instructions using registers R1, . . . , R5. For
each type, two instructions are shown which assign a new value to the registers on the left-hand
side (represented by an arrow). The new value results by applying the operation on the right-hand
side to the register operands. The register causing the dependence is underlined

since this would result in an erroneous computation: For the flow dependence, I2

would use an old value as operand if the order is reversed. For the anti-dependence,
I1 would use the wrong value computed by I2 as operand, if the order is reversed. For
the output dependence, the subsequent instructions would use a wrong value for R1,
if the order is reversed. The dependencies between instructions can be illustrated
by a data dependency graph. Figure 3.3 shows the data dependency graph for a
sequence of instructions.
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Fig. 3.3 Data dependency graph for a sequence I1, I2, I3, I4 of instructions using registers
R1, R2, R3 and memory addresses A, B. The edges representing a flow dependency are anno-
tated with δ f . Edges for anti-dependencies and output dependencies are annotated with δa and
δo, respectively. There is a flow dependence from I1 to I2 and to I4, since these two instructions
use register R1 as operand. There is an output dependency from I1 to I3, since both instructions
use the same output register. Instruction I2 has an anti-dependency to itself caused by R2. The
flow dependency from I3 to I4 is caused by R1. Finally, there is an anti-dependency from I2 to I3

because of R1

Superscalar processors with multiple functional units can execute several instruc-
tions in parallel. They employ a dynamic instruction scheduling realized in hard-
ware, which extracts independent instructions from a sequential machine program
by checking whether one of the dependence types discussed above exists. These
independent instructions are then assigned to the functional units for execution.
For VLIW processors, static scheduling by the compiler is used to identify inde-
pendent instructions and to arrange a sequential flow of instructions in appropriate
long instruction words such that the functional units are explicitly addressed. For
both cases, a sequential program is used as input, i.e., no explicit specification of
parallelism is used. Appropriate compiler techniques like software pipelining and
trace scheduling can help to rearrange the instructions such that more parallelism
can be extracted, see [48, 12, 7] for more details.
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3.3.2 Data Parallelism

In many programs, the same operation must be applied to different elements of a
larger data structure. In the simplest case, this could be an array structure. If the
operations to be applied are independent of each other, this could be used for par-
allel execution: The elements of the data structure are distributed evenly among the
processors and each processor performs the operation on its assigned elements. This
form of parallelism is called data parallelism and can be used in many programs,
especially from the area of scientific computing. To use data parallelism, sequen-
tial programming languages have been extended to data-parallel programming
languages. Similar to sequential programming languages, one single control flow
is used, but there are special constructs to express data-parallel operations on data
structures like arrays. The resulting execution scheme is also referred to as SIMD
model, see Sect. 2.2.

Often, data-parallel operations are only provided for arrays. A typical example
is the array assignments of Fortran 90/95, see [49, 175, 122]. Other examples for
data-parallel programming languages are C* and data-parallel C [82], PC++ [22],
DINO [151], and High-Performance Fortran (HPF) [54, 57]. An example for an
array assignment in Fortran 90 is

a(1:n) = b(0:n-1) + c(1:n).

The computations performed by this assignment are identical to those computed by
the following loop:

for (i=1:n)
a(i) = b(i-1) + c(i)

endfor.

Similar to other data-parallel languages, the semantics of an array assignment in
Fortran 90 is defined as follows: First, all array accesses and operations on the
right-hand side of the assignment are performed. After the complete right-hand side
is computed, the actual assignment to the array elements on the left-hand side is
performed. Thus, the following array assignment

a(1:n) = a(0:n-1) + a(2:n+1)

is not identical to the loop

for (i=1:n)
a(i) = a(i-1) + a(i+1)

endfor.
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The array assignment uses the old values of a(0:n-1) and a(2:n+1) whereas
the for loop uses the old value only for a(i+1); for a(i-1) the new value is
used, which has been computed in the preceding iteration.

Data parallelism can also be exploited for MIMD models. Often, the SPMD
model (Single Program Multiple Data) is used which means that one parallel pro-
gram is executed by all processors in parallel. Program execution is performed asyn-
chronously by the participating processors. Using the SPMD model, data parallelism
results if each processor gets a part of a data structure for which it is responsible.
For example, each processor could get a part of an array identified by a lower and
an upper bound stored in private variables of the processor. The processor ID can
be used to compute for each processor its part assigned. Different data distributions
can be used for arrays, see Sect. 3.4 for more details. Figure 3.4 shows a part of an
SPMD program to compute the scalar product of two vectors.

In practice, most parallel programs are SPMD programs, since they are usually
easier to understand than general MIMD programs, but provide enough expressive-
ness to formulate typical parallel computation patterns. In principle, each processor
can execute a different program part, depending on its processor ID. Most parallel
programs shown in the rest of the book are SPMD programs.

Data parallelism can be exploited for both shared and distributed address spaces.
For a distributed address space, the program data must be distributed among the
processors such that each processor can access the data that it needs for its compu-
tations directly from its local memory. The processor is then called the owner of its
local data. Often, the distribution of data and computation is done in the same way
such that each processor performs the computations specified in the program on the

Fig. 3.4 SPMD program to compute the scalar product of two vectors x and y. All variables are
assumed to be private, i.e., each processor can store a different value in its local instance of a
variable. The variable p is assumed to be the number of participating processors, me is the rank
of the processor, starting from rank 0. The two arrays x and y with size elements each and the
corresponding computations are distributed blockwise among the processors. The size of a data
block of each processor is computed in local size, the lower and upper bounds of the local data
block are stored in local lower and local upper, respectively. For simplicity, we assume
that size is a multiple of p. Each processor computes in local sum the partial scalar product for
its local data block of x and y. These partial scalar products are accumulated with the reduction
function Reduce() at processor 0. Assuming a distribution address space, this reduction can
be obtained by calling the MPI function MPI Reduce(&local sum, &global sum, 1,
MPI FLOAT, MPI SUM, 0, MPI COMM WORLD), see Sect. 5.2
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data that it stores in its local memory. This is called owner-computes rule, since
the owner of the data performs the computations on this data.

3.3.3 Loop Parallelism

Many algorithms perform computations by iteratively traversing a large data struc-
ture. The iterative traversal is usually expressed by a loop provided by imperative
programming languages. A loop is usually executed sequentially which means that
the computations of the i th iteration are started not before all computations of the
(i − 1)th iteration are completed. This execution scheme is called sequential loop
in the following. If there are no dependencies between the iterations of a loop, the
iterations can be executed in arbitrary order, and they can also be executed in parallel
by different processors. Such a loop is then called a parallel loop. Depending on
their exact execution behavior, different types of parallel loops can be distinguished
as will be described in the following [175, 12].

3.3.3.1 forall Loop

The body of a forall loop can contain one or several assignments to array ele-
ments. If a forall loop contains a single assignment, it is equivalent to an array
assignment, see Sect. 3.3.2, i.e., the computations specified by the right-hand side
of the assignment are first performed in any order, and then the results are assigned
to their corresponding array elements, again in any order. Thus, the loop

forall (i = 1:n)
a(i) = a(i-1) + a(i+1)

endforall

is equivalent to the array assignment

a(1:n) = a(0:n-1) + a(2:n+1)

in Fortran 90/95. If the forall loop contains multiple assignments, these are exe-
cuted one after another as array assignments, such that the next array assignment
is started not before the previous array assignment has been completed. A forall
loop is provided in Fortran 95, but not in Fortran 90, see [122] for details.

3.3.3.2 dopar Loop

The body of a dopar loop may not only contain one or several assignments to array
elements, but also other statements and even other loops. The iterations of a dopar
loop are executed by multiple processors in parallel. Each processor executes its
iterations in any order one after another. The instructions of each iteration are exe-
cuted sequentially in program order, using the variable values of the initial state
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before the dopar loop is started. Thus, variable updates performed in one iteration
are not visible to the other iterations. After all iterations have been executed, the
updates of the single iterations are combined and a new global state is computed. If
two different iterations update the same variable, one of the two updates becomes
visible in the new global state, resulting in a non-deterministic behavior.

The overall effect of forall and dopar loops with the same loop body may
differ if the loop body contains more than one statement. This is illustrated by the
following example [175].

Example We consider the following three loops:

for (i=1:4) forall (i=1:4) dopar (i=1:4)
a(i)=a(i)+1 a(i)=a(i)+1 a(i)=a(i)+1
b(i)=a(i-1)+a(i+1) b(i)=a(i-1)+a(i+1) b(i)=a(i-1)+a(i+1)

endfor endforall enddopar

In the sequential for loop, the computation of b(i) uses the value of a(i-1)
that has been computed in the preceding iteration and the value of a(i+1) valid
before the loop. The two statements in the forall loop are treated as separate array
assignments. Thus, the computation of b(i) uses for both a(i-1) and a(i+1)
the new value computed by the first statement. In the dopar loop, updates in one
iteration are not visible to the other iterations. Since the computation of b(i) does
not use the value of a(i) that is computed in the same iteration, the old values
are used for a(i-1) and a(i+1). The following table shows an example for the
values computed:

After After After
Start values for loop forall loop dopar loop

a(0) 1
a(1) 2 b(1) 4 5 4
a(2) 3 b(2) 7 8 6
a(3) 4 b(3) 9 10 8
a(4) 5 b(4) 11 11 10
a(5) 6

�

A dopar loop in which an array element computed in an iteration is only used in
that iteration is sometimes called doall loop. The iterations of such a doall
loop are independent of each other and can be executed sequentially, or in parallel
in any order without changing the overall result. Thus, a doall loop is a parallel
loop whose iterations can be distributed arbitrarily among the processors and can be
executed without synchronization. On the other hand, for a general dopar loop, it
has to be made sure that the different iterations are separated, if a processor executes
multiple iterations of the same loop. A processor is not allowed to use array values
that it has computed in another iteration. This can be ensured by introducing tempo-
rary variables to store those array operands of the right-hand side that might cause
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conflicts and using these temporary variables on the right-hand side. On the left-
hand side, the original array variables are used. This is illustrated by the following
example:

Example The following dopar loop

dopar (i=2:n-1)
a(i) = a(i-1) + a(i+1)

enddopar

is equivalent to the following program fragment

doall (i=2:n-1)
t1(i) = a(i-1)
t2(i) = a(i+1)

enddoall
doall (i=2:n-1)

a(i) = t1(i) + t2(i)
enddoall,

where t1 and t2 are temporary array variables. �
More information on parallel loops and their execution as well as on transforma-

tions to improve parallel execution can be found in [142, 175]. Parallel loops play an
important role in programming environments like OpenMP, see Sect. 6.3 for more
details.

3.3.4 Functional Parallelism

Many sequential programs contain program parts that are independent of each other
and can be executed in parallel. The independent program parts can be single state-
ments, basic blocks, loops, or function calls. Considering the independent program
parts as tasks, this form of parallelism is called task parallelism or functional
parallelism. To use task parallelism, the tasks and their dependencies can be rep-
resented as a task graph where the nodes are the tasks and the edges represent
the dependencies between the tasks. A dependence graph is used for the conjugate
gradient method discussed in Sect. 7.4. Depending on the programming model used,
a single task can be executed sequentially by one processor, or in parallel by multi-
ple processors. In the latter case, each task can be executed in a data-parallel way,
leading to mixed task and data parallelism.

To determine an execution plan (schedule) for a given task graph on a set of pro-
cessors, a starting time has to be assigned to each task such that the dependencies are
fulfilled. Typically, a task cannot be started before all tasks which it depends on are
finished. The goal of a scheduling algorithm is to find a schedule that minimizes the
overall execution time, see also Sect. 4.3. Static and dynamic scheduling algorithms
can be used. A static scheduling algorithm determines the assignment of tasks to
processors deterministically at program start or at compile time. The assignment
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may be based on an estimation of the execution time of the tasks, which might be
obtained by runtime measurements or an analysis of the computational structure
of the tasks, see Sect. 4.3. A detailed overview of static scheduling algorithms for
different kinds of dependencies can be found in [24]. If the tasks of a task graph
are parallel tasks, the scheduling problem is sometimes called multiprocessor task
scheduling.

A dynamic scheduling algorithm determines the assignment of tasks to proces-
sors during program execution. Therefore, the schedule generated can be adapted
to the observed execution times of the tasks. A popular technique for dynamic
scheduling is the use of a task pool in which tasks that are ready for execution
are stored and from which processors can retrieve tasks if they have finished the
execution of their current task. After the completion of the task, all depending tasks
in the task graph whose predecessors have been terminated can be stored in the task
pool for execution. The task pool concept is particularly useful for shared address
space machines since the task pool can be held in the global memory. The task pool
concept is discussed further in Sect. 6.1 in the context of pattern programming. The
implementation of task pools with Pthreads and their provision in Java is consid-
ered in more detail in Chap. 6. A detailed treatment of task pools is considered in
[116, 159, 108, 93]. Information on the construction and scheduling of task graphs
can be found in [18, 67, 142, 145]. The use of task pools for irregular applica-
tions is considered in [153]. Programming with multiprocessor tasks is supported
by library-based approaches like Tlib [148].

Task parallelism can also be provided at language level for appropriate language
constructs which specify the available degree of task parallelism. The management
and mapping can then be organized by the compiler and the runtime system. This
approach has the advantage that the programmer is only responsible for the specifi-
cation of the degree of task parallelism. The actual mapping and adaptation to spe-
cific details of the execution platform is done by the compiler and runtime system,
thus providing a clear separation of concerns. Some language approaches are based
on coordination languages to specify the degree of task parallelism and dependen-
cies between the tasks. Some approaches in this direction are TwoL (Two Level
parallelism) [146], P3L (Pisa Parallel Programming Language) [138], and PCN
(Program Composition Notation) [58]. A more detailed treatment can be found in
[80, 46]. Many thread-parallel programs are based on the exploitation of functional
parallelism, since each thread executes independent function calls. The implemen-
tation of thread parallelism will be considered in detail in Chap. 6.

3.3.5 Explicit and Implicit Representation of Parallelism

Parallel programming models can also be distinguished depending on whether the
available parallelism, including the partitioning into tasks and specification of com-
munication and synchronization, is represented explicitly in the program or not. The
development of parallel programs is facilitated if no explicit representation must
be included, but in this case an advanced compiler must be available to produce
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efficient parallel programs. On the other hand, an explicit representation is more
effort for program development, but the compiler can be much simpler. In the fol-
lowing, we briefly discuss both approaches. A more detailed treatment can be found
in [160].

3.3.5.1 Implicit Parallelism

For the programmer, the simplest model results, when no explicit representation of
parallelism is required. In this case, the program is mainly a specification of the
computations to be performed, but no parallel execution order is given. In such a
model, the programmer can concentrate on the details of the (sequential) algorithm
to be implemented and does not need to care about the organization of the parallel
execution. We give a short description of two approaches in this direction: paral-
lelizing compilers and functional programming languages.

The idea of parallelizing compilers is to transform a sequential program into an
efficient parallel program by using appropriate compiler techniques. This approach
is also called automatic parallelization. To generate the parallel program, the com-
piler must first analyze the dependencies between the computations to be per-
formed. Based on this analysis, the computation can then be assigned to processors
for execution such that a good load balancing results. Moreover, for a distributed
address space, the amount of communication should be reduced as much as possi-
ble, see [142, 175, 12, 6]. In practice, automatic parallelization is difficult to perform
because dependence analysis is difficult for pointer-based computations or indirect
addressing and because the execution time of function calls or loops with unknown
bounds is difficult to predict at compile time. Therefore, automatic parallelization
often produces parallel programs with unsatisfactory runtime behavior and, hence,
this approach is not often used in practice.

Functional programming languages describe the computations of a program
as the evaluation of mathematical functions without side effects; this means the
evaluation of a function has the only effect that the output value of the function
is computed. Thus, calling a function twice with the same input argument values
always produces the same output value. Higher-order functions can be used; these
are functions which use other functions as arguments and yield functions as argu-
ments. Iterative computations are usually expressed by recursion. The most popular
functional programming language is Haskell, see [94, 170, 20]. Function evaluation
in functional programming languages provides potential for parallel execution, since
the arguments of the function can always be evaluated in parallel. This is possible
because of the lack of side effects. The problem of an efficient execution is to extract
the parallelism at the right level of recursion: On the upper level of recursion, a par-
allel evaluation of the arguments may not provide enough potential for parallelism.
On a lower level of recursion, the available parallelism may be too fine-grained, thus
making an efficient assignment to processors difficult. In the context of multicore
processors, the degree of parallelism provided at the upper level of recursion may be
enough to efficiently supply a few cores with computations. The advantage of using



3.3 Levels of Parallelism 107

functional languages would be that new language constructs are not necessary to
enable a parallel execution as is the case for non-functional programming languages.

3.3.5.2 Explicit Parallelism with Implicit Distribution

Another class of parallel programming models comprises models which require an
explicit representation of parallelism in the program, but which do not demand
an explicit distribution and assignment to processes or threads. Correspondingly,
no explicit communication or synchronization is required. For the compiler, this
approach has the advantage that the available degree of parallelism is specified in the
program and does not need to be retrieved by a complicated data dependence anal-
ysis. This class of programming models includes parallel programming languages
which extend sequential programming languages by parallel loops with independent
iterations, see Sect. 3.3.3.

The parallel loops specify the available parallelism, but the exact assignments
of loop iterations to processors is not fixed. This approach has been taken by the
library OpenMP where parallel loops can be specified by compiler directives, see
Sect. 6.3 for more details on OpenMP. High-Performance Fortran (HPF) [54] has
been another approach in this direction which adds constructs for the specification
of array distributions to support the compiler in the selection of an efficient data
distribution, see [103] on the history of HPF.

3.3.5.3 Explicit Distribution

A third class of parallel programming models requires not only an explicit repre-
sentation of parallelism, but also an explicit partitioning into tasks or an explicit
assignment of work units to threads. The mapping to processors or cores as well as
communication between processors is implicit and does not need to be specified. An
example for this class is the BSP (bulk synchronous parallel) programming model
which is based on the BSP computation model described in more detail in Sect. 4.5.2
[88, 89]. An implementation of the BSP model is BSPLib. A BSP program is explic-
itly partitioned into threads, but the assignment of threads to processors is done by
the BSPLib library.

3.3.5.4 Explicit Assignment to Processors

The next class captures parallel programming models which require an explicit par-
titioning into tasks or threads and also need an explicit assignment to processors.
But the communication between the processors does not need to be specified. An
example for this class is the coordination language Linda [27, 26] which replaces the
usual point-to-point communication between processors by a tuple space concept.
A tuple space provides a global pool of data in which data can be stored and from
which data can be retrieved. The following three operations are provided to access
the tuple space:
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• in: read and remove a tuple from the tuple space;
• read: read a tuple from the tuple space without removing it;
• out: write a tuple in the tuple space.

A tuple to be retrieved from the tuple space is identified by specifying required
values for a part of the data fields which are interpreted as a key. For distributed
address spaces, the access operations to the tuple space must be implemented by
communication operations between the processes involved: If in a Linda program,
a process A writes a tuple into the tuple space which is later retrieved by a process
B, a communication operation from process A (send) to process B (recv) must
be generated. Depending on the execution platform, this communication may pro-
duce a significant amount of overhead. Other approaches based on a tuple space are
TSpaces from IBM and JavaSpaces [21] which is part of the Java Jini technology.

3.3.5.5 Explicit Communication and Synchronization

The last class comprises programming models in which the programmer must spec-
ify all details of a parallel execution, including the required communication and
synchronization operations. This has the advantage that a standard compiler can be
used and that the programmer can control the parallel execution explicitly with all
the details. This usually provides efficient parallel programs, but it also requires a
significant amount of work for program development. Programming models belong-
ing to this class are message-passing models like MPI, see Chap. 5, as well as
thread-based models like Pthreads, see Chap. 6.

3.3.6 Parallel Programming Patterns

Parallel programs consist of a collection of tasks that are executed by processes or
threads on multiple processors. To structure a parallel program, several forms of
organizations can be used which can be captured by specific programming patterns.
These patterns provide specific coordination structures for processes or threads,
which have turned out to be effective for a large range of applications. We give a
short overview of useful programming patterns in the following. More information
and details on the implementation in specific environments can be found in [120].
Some of the patterns are presented as programs in Chap. 6.

3.3.6.1 Creation of Processes or Threads

The creation of processes or threads can be carried out statically or dynamically. In
the static case, a fixed number of processes or threads is created at program start.
These processes or threads exist during the entire execution of the parallel program
and are terminated when program execution is finished. An alternative approach is
to allow creation and termination of processes or threads dynamically at arbitrary
points during program execution. At program start, a single process or thread is
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active and executes the main program. In the following, we describe well-known
parallel programming patterns. For simplicity, we restrict our attention to the use of
threads, but the patterns can as well be applied to the coordination of processes.

3.3.6.2 Fork–Join

The fork–join construct is a simple concept for the creation of processes or threads
[30] which was originally developed for process creation, but the pattern can also be
used for threads. Using the concept, an existing thread T creates a number of child
threads T1, . . . , Tm with a fork statement. The child threads work in parallel and
execute a given program part or function. The creating parent thread T can execute
the same or a different program part or function and can then wait for the termination
of T1, . . . , Tm by using a join call.

The fork–join concept can be provided as a language construct or as a library
function. It is usually provided for shared address space, but can also be used for
distributed address space. The fork–join concept is, for example, used in OpenMP
for the creation of threads executing a parallel loop, see Sect. 6.3 for more details.
The spawn and exit operations provided by message-passing systems like MPI-2,
see Sect. 5, provide a similar action pattern as fork–join. The concept of fork–join is
simple, yet flexible, since by a nested use, arbitrary structures of parallel activities
can be built. Specific programming languages and environments provide specific
variants of the pattern, see Chap. 6 for details on Pthreads and Java threads.

3.3.6.3 Parbegin–Parend

A similar pattern as fork–join for thread creation and termination is provided by the
parbegin–parend construct which is sometimes also called cobegin–coend. The
construct allows the specification of a sequence of statements, including function
calls, to be executed by a set of processors in parallel. When an executing thread
reaches a parbegin–parend construct, a set of threads is created and the statements
of the construct are assigned to these threads for execution. The statements follow-
ing the parbegin–parend construct are executed not before all these threads have
finished their work and have been terminated. The parbegin–parend construct can
be provided as a language construct or by compiler directives. An example is the
construct of parallel sections in OpenMP, see Sect. 6.3 for more details.

3.3.6.4 SPMD and SIMD

The SIMD (single-instruction, multiple-data) and SPMD (single-program, multiple-
data) programming models use a (fixed) number of threads which apply the same
program to different data. In the SIMD approach, the single instructions are executed
synchronously by the different threads on different data. This is sometimes called
data parallelism in the strong sense. SIMD is useful if the same instruction must be
applied to a large set of data, as is often the case for graphics applications. Therefore,
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graphics processors often provide SIMD instructions, and some standard processors
also provide SIMD extensions.

In the SPMD approach, the different threads work asynchronously with each
other and different threads may execute different parts of the parallel program.
This effect can be caused by different speeds of the executing processors or by
delays of the computations because of slower access to global data. But the pro-
gram could also contain control statements to assign different program parts to
different threads. There is no implicit synchronization of the executing threads, but
synchronization can be achieved by explicit synchronization operations. The SPMD
approach is one of the most popular models for parallel programming. MPI is based
on this approach, see Sect. 5, but thread-parallel programs are usually also SPMD
programs.

3.3.6.5 Master–Slave or Master–Worker

In the SIMD and SPMD models, all threads have equal rights. In the master–slave
model, also called master–worker model, there is one master which controls the
execution of the program. The master thread often executes the main function of a
parallel program and creates worker threads at appropriate program points to per-
form the actual computations, see Fig. 3.5 (left) for an illustration. Depending on
the specific system, the worker threads may be created statically or dynamically.
The assignment of work to the worker threads is usually done by the master thread,
but worker threads could also generate new work for computation. In this case, the
master thread would only be responsible for coordination and could, e.g., perform
initializations, timings, and output operations.
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Fig. 3.5 Illustration of the master–slave model (left) and the client–server model (right)

3.3.6.6 Client–Server

The coordination of parallel programs according to the client–server model is sim-
ilar to the general MPMD (multiple-program multiple-data) model. The client–
server model originally comes from distributed computing where multiple client
computers have been connected to a mainframe which acts as a server and provides
responses to access requests to a database. On the server side, parallelism can be
used by computing requests from different clients concurrently or even by using
multiple threads to compute a single request if this includes enough work.
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When employing the client–server model for the structuring of parallel programs,
multiple client threads are used which generate requests to a server and then perform
some computations on the result, see Fig. 3.5 (right) for an illustration. After having
processed a request of a client, the server delivers the result back to the client.
The client–server model can be applied in many variations: There may be sev-
eral server threads or the threads of a parallel program may play the role of both
clients and servers, generating requests to other threads and processing requests
from other threads. Section 6.1.8 shows an example for a Pthreads program using
the client–server model. The client–server model is important for parallel program-
ming in heterogeneous systems and is also often used in grid computing and cloud
computing.

3.3.6.7 Pipelining

The pipelining model describes a special form of coordination of different threads
in which data elements are forwarded from thread to thread to perform different pro-
cessing steps. The threads are logically arranged in a predefined order, T1, . . . , Tp,
such that thread Ti receives the output of thread Ti−1 as input and produces an output
which is submitted to the next thread Ti+1 as input, i = 2, . . . , p − 1. Thread T1

receives its input from another program part and thread Tp provides its output to
another program part. Thus, each of the pipeline threads processes a stream of input
data in sequential order and produces a stream of output data. Despite the dependen-
cies of the processing steps, the pipeline threads can work in parallel by applying
their processing step to different data.

The pipelining model can be considered as a special form of functional decompo-
sition where the pipeline threads process the computations of an application algo-
rithm one after another. A parallel execution is obtained by partitioning the data
into a stream of data elements which flow through the pipeline stages one after
another. At each point in time, different processing steps are applied to different
elements of the data stream. The pipelining model can be applied for both shared
and distributed address spaces. In Sect. 6.1, the pipelining pattern is implemented
as Pthreads program.

3.3.6.8 Task Pools

In general, a task pool is a data structure in which tasks to be performed are stored
and from which they can be retrieved for execution. A task comprises computations
to be executed and a specification of the data to which the computations should be
applied. The computations are often specified as a function call. A fixed number of
threads is used for the processing of the tasks. The threads are created at program
start by the main thread and they are terminated not before all tasks have been pro-
cessed. For the threads, the task pool is a common data structure which they can
access to retrieve tasks for execution, see Fig. 3.6 (left) for an illustration. During
the processing of a task, a thread can generate new tasks and insert them into the
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task pool. Access to the task pool must be synchronized to avoid race conditions.
Using a task-based execution, the execution of a parallel program is finished, when
the task pool is empty and when each thread has terminated the processing of its
last task. Task pools provide a flexible execution scheme which is especially useful
for adaptive and irregular applications for which the computations to be performed
are not fixed at program start. Since a fixed number of threads is used, the overhead
for thread creation is independent of the problem size and the number of tasks to be
processed.

Flexibility is ensured, since tasks can be generated dynamically at any point dur-
ing program execution. The actual task pool data structure could be provided by
the programming environment used or could be included in the parallel program.
An example for the first case is the Executor interface of Java, see Sect. 6.2 for
more details. A simple task pool implementation based on a shared data structure
is described in Sect. 6.1.6 using Pthreads. For fine-grained tasks, the overhead of
retrieval and insertion of tasks from or into the task pool becomes important, and
sophisticated data structures should be used for the implementation, see [93] for
more details.

3.3.6.9 Producer–Consumer

The producer–consumer model distinguishes between producer threads and con-
sumer threads. Producer threads produce data which are used as input by con-
sumer threads. For the transfer of data from producer threads to consumer threads,
a common data structure is used, which is typically a data buffer of fixed length
and which can be accessed by both types of threads. Producer threads store the
data elements generated into the buffer, consumer threads retrieve data elements
from the buffer for further processing, see Fig. 3.6 (right) for an illustration. A
producer thread can only store data elements into the buffer, if this is not full.
A consumer thread can only retrieve data elements from the buffer, if this is
not empty. Therefore, synchronization has to be used to ensure a correct coor-
dination between producer and consumer threads. The producer–consumer model
is considered in more detail in Sect. 6.1.9 for Pthreads and Sect. 6.2.3 for Java
threads.
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3.4 Data Distributions for Arrays

Many algorithms, especially from numerical analysis and scientific computing, are
based on vectors and matrices. The corresponding programs use one-, two-, or
higher dimensional arrays as basic data structures. For those programs, a straight-
forward parallelization strategy decomposes the array-based data into subarrays and
assigns the subarrays to different processors. The decomposition of data and the
mapping to different processors is called data distribution, data decomposition,
or data partitioning. In a parallel program, the processors perform computations
only on their part of the data.

Data distributions can be used for parallel programs for distributed as well as for
shared memory machines. For distributed memory machines, the data assigned to
a processor reside in its local memory and can only be accessed by this processor.
Communication has to be used to provide data to other processors. For shared mem-
ory machines, all data reside in the same shared memory. Still a data decomposition
is useful for designing a parallel program since processors access different parts
of the data and conflicts such as race conditions or critical regions are avoided.
This simplifies the parallel programming and supports a good performance. In this
section, we present regular data distributions for arrays, which can be described by a
mapping from array indices to processor numbers. The set of processors is denoted
as P = {P1, . . . , Pp}.

3.4.1 Data Distribution for One-Dimensional Arrays

For one-dimensional arrays the blockwise and the cyclic distribution of array ele-
ments are typical data distributions. For the formulation of the mapping, we assume
that the enumeration of array elements starts with 1; for an enumeration starting
with 0 the mappings have to be modified correspondingly.

The blockwise data distribution of an array v = (v1, . . . , vn) of length n cuts
the array into p blocks with �n/p� consecutive elements each. Block j , 1 ≤ j ≤ p,
contains the consecutive elements with indices ( j − 1) · �n/p� + 1, . . . , j · �n/p�
and is assigned to processor Pj . When n is not a multiple of p, the last block con-
tains less than �n/p� elements. For n = 14 and p = 4 the following blockwise
distribution results:

P1: owns v1, v2, v3, v4,
P2: owns v5, v6, v7, v8,
P3: owns v9, v10, v11, v12,
P4: owns v13, v14.

Alternatively, the first n mod p processors get �n/p� elements and all other proces-
sors get 
n/p� elements.

The cyclic data distribution of a one-dimensional array assigns the array ele-
ments in a round robin way to the processors so that array element vi is assigned to
processor P(i−1) mod p +1, i = 1, . . . , n. Thus, processor Pj owns the array elements
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j, j + p, . . . , j + p · (�n/p� − 1) for j ≤ n mod p and j, j + p, . . . , j + p ·
(�n/p� − 2) for n mod p < j ≤ p. For the example n = 14 and p = 4 the cyclic
data distribution

P1: owns v1, v5, v9, v13,
P2: owns v2, v6, v10, v14,
P3: owns v3, v7, v11,
P4: owns v4, v8, v12

results, where Pj for 1 ≤ j ≤ 2 = 14 mod 4 owns the elements j, j + 4, j + 4 ∗
2, j + 4 ∗ (4− 1) and Pj for 2 < j ≤ 4 owns the elements j, j + 4, j + 4 ∗ (4− 2).

The block–cyclic data distribution is a combination of the blockwise and cyclic
distributions. Consecutive array elements are structured into blocks of size b, where
b � n/p in most cases. When n is not a multiple of b, the last block contains
less than b elements. The blocks of array elements are assigned to processors in a
round robin way. Figure 3.7a shows an illustration of the array decompositions for
one-dimensional arrays.

3.4.2 Data Distribution for Two-Dimensional Arrays

For two-dimensional arrays, combinations of blockwise and cyclic distributions in
only one or both dimensions are used.

For the distribution in one dimension, columns or rows are distributed in a block-
wise, cyclic, or block–cyclic way. The blockwise columnwise (or rowwise) distribu-
tion builds p blocks of contiguous columns (or rows) of equal size and assigns block
i to processor Pi , i = 1, . . . , p. When n is not a multiple of p, the same adjustment
as for one-dimensional arrays is used. The cyclic columnwise (or rowwise) distri-
bution assigns columns (or rows) in a round robin way to processors and uses the
adjustments of the last blocks as described for the one-dimensional case, when n is
not a multiple of p. The block–cyclic columnwise (or rowwise) distribution forms
blocks of contiguous columns (or rows) of size b and assigns these blocks in a round
robin way to processors. Figure 3.7b illustrates the distribution in one dimension for
two-dimensional arrays.

A distribution of array elements of a two-dimensional array of size n1×n2 in both
dimensions uses checkerboard distributions which distinguish between blockwise
cyclic and block–cyclic checkerboard patterns. The processors are arranged in a
virtual mesh of size p1 · p2 = p where p1 is the number of rows and p2 is the
number of columns in the mesh. Array elements (k, l) are mapped to processors
Pi, j , i = 1, . . . , p1, j = 1, . . . , p2.

In the blockwise checkerboard distribution, the array is decomposed into
p1 · p2 blocks of elements where the row dimension (first index) is divided into
p1 blocks and the column dimension (second index) is divided into p2 blocks.
Block (i, j), 1 ≤ i ≤ p1, 1 ≤ j ≤ p2, is assigned to the processor with
position (i, j) in the processor mesh. The block sizes depend on the number of
rows and columns of the array. Block (i, j) contains the array elements (k, l) with
k = (i−1)·�n1/p1�+1, . . . , i ·�n1/p1� and l = ( j−1)·�n2/p2�+1, . . . , j ·�n2/p2�.
Figure 3.7c shows an example for n1 = 4, n2 = 8, and p1 · p2 = 2 · 2 = 4.
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Fig. 3.7 Illustration of the data distributions for arrays: (a) for one-dimensional arrays, (b) for
two-dimensional arrays within one of the dimensions, and (c) for two-dimensional arrays with
checkerboard distribution

The cyclic checkerboard distribution assigns the array elements in a round
robin way in both dimensions to the processors in the processor mesh so that a
cyclic assignment of row indices k = 1, . . . , n1 to mesh rows i = 1, . . . , p1 and a
cyclic assignment of column indices l = 1, . . . , n2 to mesh columns j = 1, . . . , p2

result. Array element (k, l) is thus assigned to the processor with mesh position
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((k − 1) mod p1 + 1, (l − 1) mod p2 + 1). When n1 and n2 are multiples of p1 and
p2, respectively, the processor at position (i, j) owns all array elements (k, l) with
k = i+s · p1 and l = j+t · p2 for 0 ≤ s < n1/p1 and 0 ≤ t < n2/p2. An alternative
way to describe the cyclic checkerboard distribution is to build blocks of size p1×p2

and to map element (i, j) of each block to the processor at position (i, j) in the mesh.
Figure 3.7c shows a cyclic checkerboard distribution with n1 = 4, n2 = 8, p1 = 2,
and p2 = 2. When n1 or n2 is not a multiple of p1 or p2, respectively, the cyclic
distribution is handled as in the one-dimensional case.

The block–cyclic checkerboard distribution assigns blocks of size b1 × b2

cyclically in both dimensions to the processors in the following way: Array element
(m, n) belongs to the block (k, l), with k = �m/b1� and l = �n/b2�. Block (k, l) is
assigned to the processor at mesh position ((k−1) mod p1+1, (l−1) mod p2+1).
The cyclic checkerboard distribution can be considered as a special case of the
block–cyclic distribution with b1 = b2 = 1, and the blockwise checkerboard dis-
tribution can be considered as a special case with b1 = n1/p1 and b2 = n2/p2.
Figure 3.7c illustrates the block–cyclic distribution for n1 = 4, n2 = 12, p1 = 2,
and p2 = 2.

3.4.3 Parameterized Data Distribution

A data distribution is defined for a d-dimensional array A with index set IA ⊂
N

d . The size of the array is n1 × · · · × nd and the array elements are denoted as
A[i1, . . . , id ] with an index i = (i1, . . . , id ) ∈ IA. Array elements are assigned to
p processors which are arranged in a d-dimensional mesh of size p1 × · · · × pd

with p = ∏d
i=1 pi . The data distribution of A is given by a distribution function

γA : IA ⊂ N
d → 2P , where 2P denotes the power set of the set of processors P .

The meaning of γA is that the array element A[i1, . . . , id ] with i = (i1, . . . , id ) is
assigned to all processors in γA(i) ⊆ P , i.e., array element A[i] can be assigned
to more than one processor. A data distribution is called replicated, if γA(i) = P
for all i ∈ IA. When each array element is uniquely assigned to a processor, then
|γA(i)| = 1 for all i ∈ IA; examples are the block–cyclic data distribution described
above. The function L(γA) : P → 2IA delivers all elements assigned to a specific
processor, i.e.,

i ∈ L(γA)(q) if and only if q ∈ γA(i).

Generalizations of the block–cyclic distributions in the one- or two-dimensional
case can be described by a distribution vector in the following way. The array
elements are structured into blocks of size b1, . . . , bd where bi is the block size
in dimension i , i = 1, . . . , d . The array element A[i1, . . . , id ] is contained in
block (k1, . . . , kd ) with k j = �i j/b j� for 1 ≤ j ≤ d. The block (k1, . . . , kd ) is
then assigned to the processor at mesh position ((k1 − 1) mod p1 + 1, . . . , (kd −
1) mod pd + 1). This block–cyclic distribution is called parameterized data dis-
tribution with distribution vector
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((p1, b1), . . . , (pd , bd )) . (3.1)

This vector uniquely determines a block–cyclic data distribution for a d-dimensional
array of arbitrary size. The blockwise and the cyclic distributions of a d-dimensional
array are special cases of this distribution. Parameterized data distributions are used
in the applications of later sections, e.g., the Gaussian elimination in Sect. 7.1.

3.5 Information Exchange

To control the coordination of the different parts of a parallel program, informa-
tion must be exchanged between the executing processors. The implementation of
such an information exchange strongly depends on the memory organization of the
parallel platform used. In the following, we give a first overview on techniques for
information exchange for shared address space in Sect. 3.5.1 and for distributed
address space in Sect. 3.5.2. More details will be discussed in the following chapters.
As example, parallel matrix–vector multiplication is considered for both memory
organizations in Sect. 3.6.

3.5.1 Shared Variables

Programming models with a shared address space are based on the existence of a
global memory which can be accessed by all processors. Depending on the model,
the executing control flows may be referred to as processes or threads, see Sect. 3.7
for more details. In the following, we will use the notation threads, since this is more
common for shared address space models. Each thread will be executed by one pro-
cessor or by one core for multicore processors. Each thread can access shared data
in the global memory. Such shared data can be stored in shared variables which
can be accessed as normal variables. A thread may also have private data stored in
private variables, which cannot be accessed by other threads. There are different
ways how parallel program environments define shared or private variables. The
distinction between shared and private variables can be made by using annotations
like shared or private when declaring the variables. Depending on the pro-
gramming model, there can also be declaration rules which can, for example, define
that global variables are always shared and local variables of functions are always
private. To allow a coordinated access to a shared variable by multiple threads,
synchronization operations are provided to ensure that concurrent accesses to the
same variable are synchronized. Usually, a sequentialization is performed such
that concurrent accesses are done one after another. Chapter 6 considers program-
ming models and techniques for shared address spaces in more detail and describes
different systems, like Pthreads, Java threads, and OpenMP. In the current section, a
few basic concepts are given for a first overview.
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A central concept for information exchange in shared address space is the use
of shared variables. When a thread T1 wants to transfer data to another thread T2,
it stores the data in a shared variable such that T2 obtains the data by reading this
shared variable. To ensure that T2 reads the variable not before T1 has written the
appropriate data, a synchronization operation is used. T1 stores the data into the
shared variable before the corresponding synchronization point and T2 reads the
data after the synchronization point.

When using shared variables, multiple threads accessing the same shared variable
by a read or write at the same time must be avoided, since this may lead to race
conditions. The term race condition describes the effect that the result of a parallel
execution of a program part by multiple execution units depends on the order in
which the statements of the program part are executed by the different units. In the
presence of a race condition it may happen that the computation of a program part
leads to different results, depending on whether thread T1 executes the program part
before T2 or vice versa. Usually, race conditions are undesirable, since the relative
execution speed of the threads may depend on many factors (like execution speed
of the executing cores or processors, the occurrence of interrupts, or specific values
of the input data) which cannot be influenced by the programmer. This may lead
to non-deterministic behavior, since, depending on the execution order, different
results are possible, and the exact outcome cannot be predicted.

Program parts in which concurrent accesses to shared variables by multiple
threads may occur, thus holding the danger of the occurrence of inconsistent values,
are called critical sections. An error-free execution can be ensured by letting only
one thread at a time execute a critical section. This is called mutual exclusion. Pro-
gramming models for shared address space provide mechanisms to ensure mutual
exclusion. The techniques used have originally been developed for multi-tasking
operating systems and have later been adapted to the needs of parallel programming
environments. For a concurrent access of shared variables, race conditions can be
avoided by a lock mechanism, which will be discussed in more detail in Sect. 3.7.3.

3.5.2 Communication Operations

In programming models with a distributed address space, exchange of data and
information between the processors is performed by communication operations
which are explicitly called by the participating processors. The execution of such
a communication operation causes one processor to receive data that is stored in
the local memory of another processor. The actual data exchange is realized by
the transfer of messages between the participating processors. The corresponding
programming models are therefore called message-passing programming models.

To send a message from one processor to another, one send and one receive
operations have to be used as a pair. A send operation sends a data block from the
local address space of the executing processor to another processor as specified by
the operation. A receive operation receives a data block from another processor and
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stores it in the local address space of the executing processor. This kind of data
exchange is also called point-to-point communication, since there is exactly one
send point and one receive point. Additionally, global communication operations
are often provided in which a larger set of processors is involved. These global
communication operations typically capture a set of regular communication patterns
often used in parallel programs [19, 100].

3.5.2.1 A Set of Communication Operations

In the following, we consider a typical set of global communication operations
which will be used in the following chapters to describe parallel implementations for
platforms with a distributed address space [19]. We consider p identical processors
P1, . . . , Pp and use the index i , i ∈ {1, . . . , p}, as processor rank to identify the
processor Pi .

• Single transfer: For a single transfer operation, a processor Pi (sender) sends
a message to processor Pj (receiver) with j 	= i . Only these two processors
participate in this operation. To perform a single transfer operation, Pi executes
a send operation specifying a send buffer in which the message is provided as
well as the processor rank of the receiving processor. The receiving processor
Pj executes a corresponding receive operation which specifies a receive buffer to
store the received message as well as the processor rank of the processor from
which the message should be received. For each send operation, there must be
a corresponding receive operation, and vice versa. Otherwise, deadlocks may
occur, see Sects. 3.7.4.2 and 5.1.1 for more details. Single transfer operations are
the basis of each communication library. In principle, any communication pattern
can be assembled with single transfer operations. For regular communication pat-
terns, it is often beneficial to use global communication operations, since they are
typically easier to use and more efficient.

• Single-broadcast: For a single-broadcast operation, a specific processor Pi sends
the same data block to all other processors. Pi is also called root in this context.
The effect of a single-broadcast operation with processor P1 as root and message
x can be illustrated as follows:

P1 : x P1 : x
P2 : - P2 : x
...

broadcast=⇒ ...
Pp : - Pp : x

Before the execution of the broadcast, the message x is only stored in the local
address space of P1. After the execution of the operation, x is also stored in
the local address space of all other processors. To perform the operation, each
processor explicitly calls a broadcast operation which specifies the root processor
of the broadcast. Additionally, the root processor specifies a send buffer in which
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the broadcast message is provided. All other processors specify a receive buffer
in which the message should be stored upon receipt.

• Single-accumulation: For a single-accumulation operation, each processor pro-
vides a block of data with the same type and size. By performing the operation,
a given reduction operation is applied element by element to the data blocks
provided by the processors, and the resulting accumulated data block of the
same length is collected at a specific root processor Pi . The reduction oper-
ation is a binary operation which is associative and commutative. The effect
of a single-accumulation operation with root processor P1 to which each pro-
cessor Pi provides a data block xi for i = 1, . . . , p can be illustrated as
follows:

P1 : x1 P1 : x1 + x2 + · · · + x p

P2 : x2 P2 : x2

...
accumulation=⇒ ...

Pp : x p Pp : x p

The addition is used as reduction operation. To perform a single-accumulation,
each processor explicitly calls the operation and specifies the rank of the root pro-
cessor, the reduction operation to be applied, and the local data block provided.
The root processor additionally specifies the buffer in which the accumulated
result should be stored.

• Gather: For a gather operation, each processor provides a data block, and the data
blocks of all processors are collected at a specific root processor Pi . No reduction
operation is applied, i.e., processor Pi gets p messages. For root processor P1,
the effect of the operation can be illustrated as follows:

P1 : x1 P1 : x1 ‖ x2 ‖ · · · ‖ x p

P2 : x2 P2 : x2

...
gather=⇒ ...

Pp : x p Pp : x p

Here, the symbol || denotes the concatenation of the received data blocks. To
perform the gather, each processor explicitly calls a gather operation and speci-
fies the local data block provided as well as the rank of the root processor. The
root processor additionally specifies a receive buffer in which all data blocks are
collected. This buffer must be large enough to store all blocks. After the operation
is completed, the receive buffer of the root processor contains the data blocks of
all processors in rank order.

• Scatter: For a scatter operation, a specific root processor Pi provides a sepa-
rate data block for every other processor. For root processor P1, the effect of the
operation can be illustrated as follows:
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P1 : x1 ‖ x2 ‖ · · · ‖ x p P1 : x1

P2 : - P2 : x2

...
scatter=⇒ ...

Pp : - Pp : x p

To perform the scatter, each processor explicitly calls a scatter operation and
specifies the root processor as well as a receive buffer. The root processor addi-
tionally specifies a send buffer in which the data blocks to be sent are provided
in rank order of the rank i = 1, . . . , p.

• Multi-broadcast: The effect of a multi-broadcast operation is the same as the
execution of several single-broadcast operations, one for each processor, i.e., each
processor sends the same data block to every other processor. From the receiver’s
point of view, each processor receives a data block from every other processor.
Different receivers get the same data block from the same sender. The operation
can be illustrated as follows:

P1 : x1 P1 : x1 ‖ x2 ‖ · · · ‖ x p

P2 : x2 P2 : x1 ‖ x2 ‖ · · · ‖ x p

...
multi-broadcast=⇒ ...

Pp : x p Pp : x1 ‖ x2 ‖ · · · ‖ x p

In contrast to the global operations considered so far, there is no root processor.
To perform the multi-broadcast, each processor explicitly calls a multi-broadcast
operation and specifies a send buffer which contains the data block as well as
a receive buffer. After the completion of the operation, the receive buffer of
every processor contains the data blocks provided by all processors in rank order,
including its own data block. Multi-broadcast operations are useful to collect
blocks of an array that have been computed in a distributed way and to make the
entire array available to all processors.

• Multi-accumulation: The effect of a multi-accumulation operation is that each
processor executes a single-accumulation operation, i.e., each processor provides
for every other processor a potentially different data block. The data blocks for
the same receiver are combined with a given reduction operation such that one
(reduced) data block arrives at the receiver. There is no root processor, since each
processor acts as a receiver for one accumulation operation. The effect of the
operation with addition as reduction operation can be illustrated as follows:

P1 : x11 ‖ x12 ‖ · · · ‖ x1p P1 : x11 + x21 + · · · + x p1

P2 : x21 ‖ x22 ‖ · · · ‖ x2p P2 : x12 + x22 + · · · + x p2

...
multi-accumulation=⇒ ...

Pp : x p1 ‖ x p2 ‖ · · · ‖ x pp Pp : x1p + x2p + · · · + x pp
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The data block provided by processor Pi for processor Pj is denoted as xi j , i, j =
1, . . . , p. To perform the multi-accumulation, each processor explicitly calls a
multi-accumulation operation and specifies a send buffer, a receive buffer, and a
reduction operation. In the send buffer, each processor provides a separate data
block for each other processor, stored in rank order. After the completion of the
operation, the receive buffer of each processor contains the accumulated result
for this processor.

• Total exchange: For a total exchange operation, each processor provides for each
other processor a potentially different data block. These data blocks are sent to
their intended receivers, i.e., each processor executes a scatter operation. From
a receiver’s point of view, each processor receives a data block from each other
processor. In contrast to a multi-broadcast, different receivers get different data
blocks from the same sender. There is no root processor. The effect of the opera-
tion can be illustrated as follows:

P1 : x11 ‖ x12 ‖ · · · ‖ x1p P1 : x11 ‖ x21 ‖ · · · ‖ x p1

P2 : x21 ‖ x22 ‖ · · · ‖ x2p P2 : x12 ‖ x22 ‖ · · · ‖ x p2

...
total exchange=⇒ ...

Pp : x p1 ‖ x p2 ‖ · · · ‖ x pp Pp : x1p ‖ x2p ‖ · · · ‖ x pp

To perform the total exchange, each processor specifies a send buffer and a
receive buffer. The send buffer contains the data blocks provided for the other
processors in rank order. After the completion of the operation, the receive buffer
of each processor contains the data blocks gathered from the other processors in
rank order.

Section 4.3.1 considers the implementation of these global communication oper-
ations for different networks and derives running times. Chapter 5 describes how
these communication operations are provided by the MPI library.

3.5.2.2 Duality of Communication Operations

A single-broadcast operation can be implemented by using a spanning tree with the
sending processor as root. Edges in the tree correspond to physical connections in
the underlying interconnection network. Using a graph representation G = (V, E)
of the network, see Sect. 2.5.2, a spanning tree can be defined as a subgraph G ′ =
(V, E ′) which contains all nodes of V and a subset E ′ ⊆ E of the edges such that
E ′ represents a tree. The construction of a spanning tree for different networks is
considered in Sect. 4.3.1.

Given a spanning tree, a single-broadcast operation can be performed by a top-
down traversal of the tree such that starting from the root each node forwards the
message to be sent to its children as soon as the message arrives. The message can
be forwarded over different links at the same time. For the forwarding, the tree edges
can be partitioned into stages such that the message can be forwarded concurrently
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Fig. 3.8 Implementation of a single-broadcast operation using a spanning tree (left). The edges
of the tree are annotated with the stage number. The right tree illustrates the implementation of a
single-accumulation with the same spanning tree. Processor Pi provides a value ai for i = 1, . . . , 9.
The result is accumulated at the root processor P1 [19]

over all edges of a stage. Figure 3.8 (left) shows a spanning tree with root P1 and
three stages 0, 1, 2.

Similar to a single-broadcast, a single-accumulation operation can also be imple-
mented by using a spanning tree with the accumulating processor as root. The reduc-
tion is performed at the inner nodes according to the given reduction operation. The
accumulation results from a bottom-up traversal of the tree, see Fig. 3.8 (right). Each
node of the spanning tree receives a data block from each of its children (if present),
combines these blocks according to the given reduction operation, including its own
data block, and forwards the results to its parent node. Thus, one data block is sent
over each edge of the spanning tree, but in the opposite direction as has been done
for a single-broadcast. Since the same spanning trees can be used, single-broadcast
and single-accumulation are dual operations.

A duality relation also exists between a gather and a scatter operation as well as
between a multi-broadcast and a multi-accumulation operation.

A scatter operation can be implemented by a top-down traversal of a spanning
tree where each node (except the root) receives a set of data blocks from its parent
node and forwards those data blocks that are meant for a node in a subtree to its
corresponding child node being the root of that subtree. Thus, the number of data
blocks forwarded over the tree edges decreases on the way from the root to the
leaves. Similarly, a gather operation can be implemented by a bottom-up traversal
of the spanning tree where each node receives a set of data blocks from each of its
child nodes (if present) and forwards all data blocks received, including its own
data block, to its parent node. Thus, the number of data blocks forwarded over
the tree edges increases on the way from the leaves to the root. On each path to
the root, over each tree edge the same number of data blocks are sent as for a
scatter operation, but in opposite direction. Therefore, gather and scatter are dual
operations. A multi-broadcast operation can be implemented by using p spanning
trees where each spanning tree has a different root processor. Depending on the
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underlying network, there may or may not be physical network links that are used
multiple times in different spanning trees. If no links are shared, a transfer can be
performed concurrently over all spanning trees without waiting, see Sect. 4.3.1 for
the construction of such sets of spanning trees for different networks. Similarly, a
multi-accumulation can also be performed by using p spanning trees, but compared
to a multi-broadcast, the transfer direction is reversed. Thus, multi-broadcast and
multi-accumulation are also dual operations.

3.5.2.3 Hierarchy of Communication Operations

The communication operations described form a hierarchy in the following way:
Starting from the most general communication operation (total exchange), the other
communication operations result by a stepwise specialization. A total exchange is
the most general communication operation, since each processor sends a potentially
different message to each other processor. A multi-broadcast is a special case of
a total exchange in which each processor sends the same message to each other,
i.e., instead of p different messages, each processor provides only one message. A
multi-accumulation is also a special case of a total exchange for which the messages
arriving at an intermediate node are combined according to the given reduction
operation before they are forwarded. A gather operation with root Pi is a special
case of a multi-broadcast which results from considering only one of the receiving
processors, Pi , which receives a message from every other processor. A scatter
operation with root Pi is a special case of multi-accumulation which results by
using a special reduction operation which forwards the messages of Pi and ignores
all other messages. A single-broadcast is a special case of a scatter operation in

total exchange

duality

duality

duality

single transfer

multi-broadcast operation

scatter operation 

single-broadcast operation

multi-accumulation operation

gather operation

single-accumulation operation

Fig. 3.9 Hierarchy of global communication operations. The horizontal arrows denote duality
relations. The dashed arrows show specialization relations [19]
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which the root processor sends the same message to every other processor, i.e.,
instead of p different messages the root processor provides only one message. A
single-accumulation is a special case of a gather operation in which a reduction is
performed at intermediate nodes of the spanning tree such that only one (combined)
message results at the root processor. A single transfer between processors Pi and
Pj is a special case of a single-broadcast with root Pi for which only the path from
Pi to Pj is relevant. A single transfer is also a special case of a single-accumulation
with root Pj using a special reduction operation which forwards only the message
from Pi . In summary, the hierarchy in Fig. 3.9 results.

3.6 Parallel Matrix–Vector Product

The matrix–vector multiplication is a frequently used component in scientific com-
puting. It computes the product Ab = c, where A ∈ R

n×m is an n × m matrix
and b ∈ R

m is a vector of size m. (In this section, we use bold-faced type for the
notation of matrices or vectors and normal type for scalar values.) The sequential
computation of the matrix–vector product

ci =
m∑

j=1

ai j b j , i = 1, ..., n,

with c = (c1, . . . , cn) ∈ R
n , A = (ai j )i=1,...,n, j=1,...,m , and b = (b1, . . . , bm), can be

implemented in two ways, differing in the loop order of the loops over i and j . First,
the matrix–vector product is considered as the computation of n scalar products
between rows a1, . . . , an of A and vector b, i.e.,

A · b =

⎛

⎜
⎝

(a1, b)
...

(an, b)

⎞

⎟
⎠ ,

where (x, y) = ∑m
j=1 x j y j for x, y ∈ R

m with x = (x1, . . . , xm) and y =
(y1, . . . , ym) denotes the scalar product (or inner product) of two vectors. The cor-
responding algorithm (in C notation) is

for (i=0; i<n; i++) c[i] = 0;
for (i=0; i<n; i++)

for (j=0; j<m; j++)
c[i] = c[i] + A[i][j] * b[j];

The matrix A ∈ R
n×m is implemented as a two-dimensional array A and the vectors

b ∈ R
m and c ∈ R

n are implemented as one-dimensional arrays b and c. (The
indices start with 0 as usual in C.) For each i = 0,...,n-1, the inner loop
body consists of a loop over j computing one of the scalar products. Second, the
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matrix–vector product can be written as a linear combination of columns ã1, . . . , ãm

of A with coefficients b1, . . . , bm , i.e.,

A · b =
m∑

j=1

b j ã j .

The corresponding algorithm (in C notation) is:

for (i=0; i<n; i++) c[i] = 0;
for (j=0; j<m; j++)

for (i=0; i<n; i++)
c[i] = c[i] + A[i][j] * b[j] ;

For each j = 0,...,m-1, a column ã j is added to the linear combination.
Both sequential programs are equivalent since there are no dependencies and the
loops over i and j can be exchanged. For a parallel implementation, the row- and
column-oriented representations of matrix A give rise to different parallel imple-
mentation strategies.

(a) The row-oriented representation of matrix A in the computation of n scalar
products (ai , b), i = 1, . . . , n, of rows of A with vector b leads to a parallel
implementation in which each processor of a set of p processors computes
approximately n/p scalar products.

(b) The column-oriented representation of matrix A in the computation of the
linear combination

∑m
j=1 b j ã j of columns of A leads to a parallel implemen-

tation in which each processor computes a part of this linear combination with
approximately m/p column vectors.

In the following, we consider these parallel implementation strategies for the case
of n and m being multiples of the number of processors p.

3.6.1 Parallel Computation of Scalar Products

For a parallel implementation of a matrix–vector product on a distributed memory
machine, the data distribution of A and b is chosen such that the processor comput-
ing the scalar product (ai , b), i ∈ {1, . . . , n}, accesses only data elements stored in
its private memory, i.e., row ai of A and vector b are stored in the private memory
of the processor computing the corresponding scalar product. Since vector b ∈ R

m

is needed for all scalar products, b is stored in a replicated way. For matrix A, a
row-oriented data distribution is chosen such that a processor computes the scalar
product for which the matrix row can be accessed locally. Row-oriented blockwise
as well as cyclic or block–cyclic data distributions can be used.

For the row-oriented blockwise data distribution of matrix A, processor Pk , k =
1, . . . , p, stores the rows ai , i = n/p · (k − 1) + 1, . . . , n/p · k, in its private
memory and computes the scalar products (ai , b). The computation of (ai , b) needs
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no data from other processors and, thus, no communication is required. According
to the row-oriented blockwise computation the result vector c = (c1, . . . , cn) has a
blockwise distribution.

When the matrix–vector product is used within a larger algorithm like iteration
methods, there are usually certain requirements for the distribution of c. In iteration
methods, there is often the requirement that the result vector c has the same data
distribution as the vector b. To achieve a replicated distribution for c, each proces-
sor Pk , k = 1, . . . , p, sends its block (cn/p·(k−1)+1, . . . , cn/p·k) to all other proces-
sors. This can be done by a multi-broadcast operation. A parallel implementation
of the matrix–vector product including this communication is given in Fig. 3.10.
The program is executed by all processors Pk , k = 1, . . . , p, in the SPMD style.
The communication operation includes an implicit barrier synchronization. Each
processor Pk stores a different part of the n × m array A in its local array local A
of dimension local n × m. The block of rows stored by Pk in local A contains
the global elements

local A[i][j]=A[i+(k-1) * n/p][j]

with i = 0, . . . , n/p − 1, j = 0, . . . , m − 1, and k = 1, . . . , p. Each processor
computes a local matrix–vector product of array local A with array b and stores
the result in array local c of size local n. The communication operation

multi broadcast(local c,local n,c)

performs a multi-broadcast operation with the local arrays local c of all proces-
sors as input. After this communication operation, the global array c contains the
values

c[i+(k-1) * n/p]=local c[i]

for i = 0, . . . , n/p − 1 and k = 1, . . . , p, i.e., the array c contains the values of
the local vectors in the order of the processors and has a replicated data distribution.

Fig. 3.10 Program fragment in C notation for a parallel program of the matrix–vector product with
row-oriented blockwise distribution of the matrix A and a final redistribution of the result vector c
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See Fig. 3.13(1) for an illustration of the data distribution of A, b, and c for the
program given in Fig. 3.10.

For a row-oriented cyclic distribution, each processor Pk , k = 1, . . . , p, stores
the rows ai of matrix A with i = k + p · (l − 1) for l = 1, . . . , n/p and computes
the corresponding scalar products. The rows in the private memory of processor Pk

are stored within one local array local A of dimension local n × m. After the
parallel computation of the result array local c, the entries have to be reordered
correspondingly to get the global result vector in the original order.

For the implementation of the matrix–vector product on a shared memory
machine, the row-oriented distribution of the matrix A and the corresponding dis-
tribution of the computation can be used. Each processor of the shared memory
machine computes a set of scalar products as described above. A processor Pk com-
putes n/p elements of the result vector c and uses n/p corresponding rows of matrix
A in a blockwise or cyclic way, k = 1, . . . , p. The difference to the implementation
on a distributed memory machine is that an explicit distribution of the data is not
necessary since the entire matrix A and vector b reside in the common memory
accessible by all processors.

The distribution of the computation to processors according to a row-oriented
distribution, however, causes the processors to access different elements of A and
compute different elements of c. Thus, the write accesses to c cause no conflict.
Since the accesses to matrix A and vector b are read accesses, they also cause
no conflict. Synchronization and locking are not required for this shared memory
implementation. Figure 3.11 shows an SPMD program for a parallel matrix–vector
multiplication accessing the global arrays A, b, and c. The variable k denotes the
processor id of the processor Pk , k = 1, . . . , p. Because of this processor number
k, each processor Pk computes different elements of the result array c. The pro-
gram fragment ends with a barrier synchronization synch() to guarantee that all
processors reach this program point and the entire array c is computed before any
processor executes subsequent program parts. (The same program can be used for a
distributed memory machine when the entire arrays A, b, and c are allocated in
each private memory; this approach needs much more memory since the arrays are
allocated p times.)

Fig. 3.11 Program fragment in C notation for a parallel program of the matrix–vector prod-
uct with row-oriented blockwise distribution of the computation. In contrast to the pro-
gram in Fig. 3.10, the program uses the global arrays A, b, and c for a shared memory
system
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3.6.2 Parallel Computation of the Linear Combinations

For a distributed memory machine, the parallel implementation of the matrix–vector
product in the form of the linear combination uses a column-oriented distribution of
the matrix A. Each processor computes the part of the linear combination for which
it owns the corresponding columns ãi , i ∈ {1, . . . , m}. For a blockwise distribution
of the columns of A, processor Pk owns the columns ãi , i = m/p · (k − 1) +
1, . . . , m/p · k, and computes the n-dimensional vector

dk =
m/p·k∑

j=m/p·(k−1)+1

b j ã j ,

which is a partial linear combination and a part of the total result, k = 1, . . . , p. For
this computation only a block of elements of vector b is accessed and only this block
needs to be stored in the private memory. After the parallel computation of the vec-
tors dk , k = 1, . . . , p, these vectors are added to give the final result c =∑p

k=1 dk .
Since the vectors dk are stored in different local memories, this addition requires
communication, which can be performed by an accumulation operation with the
addition as reduction operation. Each of the processors Pk provides its vector dk for
the accumulation operation. The result of the accumulation is available on one of
the processors. When the vector is needed in a replicated distribution, a broadcast
operation is performed. The data distribution before and after the communication
is illustrated in Fig. 3.13(2a). A parallel program in the SPMD style is given in
Fig. 3.12. The local arrays local b and local A store blocks of b and blocks of
columns of A so that each processor Pk owns the elements

local A[i][j]=A[i][j+(k-1) * m/p]

and

local b[j]=b[j+(k-1) * m/p],

Fig. 3.12 Program fragment in C notation for a parallel program of the matrix–vector product
with column-oriented blockwise distribution of the matrix A and reduction operation to compute
the result vector c. The program uses local array d for the parallel computation of partial linear
combinations
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where j=0,...,m/p-1, i=0,...,n-1, and k=1,...,p. The array d is a
private vector allocated by each of the processors in its private memory containing
different data after the computation. The operation

single accumulation(d,local m,c,ADD,1)

denotes an accumulation operation, for which each processor provides its array d of
size n, and ADD denotes the reduction operation. The last parameter is 1 and means
that processor P1 is the root processor of the operation, which stores the result of the
addition into the array c of length n. The final single broadcast(c,1) sends
the array c from processor P1 to all other processors and a replicated distribution of
c results.

Alternatively to this final communication, multi-accumulation operation can be
applied which leads to a blockwise distribution of array c. This program version
may be advantageous if c is required to have the same distribution as array b. Each
processor accumulates the n/p elements of the local arrays d, i.e., each processor
computes a block of the result vector c and stores it in its local memory. This com-
munication is illustrated in Fig. 3.13(2b).

For shared memory machines, the parallel computation of the linear combina-
tions can also be used but special care is needed to avoid access conflicts for the
write accesses when computing the partial linear combinations. To avoid write con-
flicts, a separate array d k of length n should be allocated for each of the processors
Pk to compute the partial result in parallel without conflicts. The final accumulation
needs no communication, since the data d k are in the common memory, and can
be performed in a blocked way.

The computation and communication time for the matrix–vector product is ana-
lyzed in Sect. 4.4.2.

3.7 Processes and Threads

Parallel programming models are often based on processors or threads. Both are
abstractions for a flow of control, but there are some differences which we will
consider in this section in more detail. As described in Sect. 3.2, the principal idea
is to decompose the computation of an application into tasks and to employ multi-
ple control flows running on different processors or cores for their execution, thus
obtaining a smaller overall execution time by parallel processing.

3.7.1 Processes

In general, a process is defined as a program in execution. The process comprises the
executable program along with all information that is necessary for the execution
of the program. This includes the program data on the runtime stack or the heap,
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the current values of the registers, as well as the content of the program counter
which specifies the next instruction to be executed. All this information changes
dynamically during the execution of the process. Each process has its own address
space, i.e., the process has exclusive access to its data. When two processes want to
exchange data, this has to be done by explicit communication.

A process is assigned to execution resources (processors or cores) for execution.
There may be more processes than execution resources. To bring all processes to
execution from time to time, an execution resource typically executes several pro-
cesses at different points in time, e.g., in a round-robin fashion. If the execution is
assigned to another process by the scheduler of the operating system, the state of the
suspended process must be saved to allow a continuation of the execution at a later
time with the process state before suspension. This switching between processes is
called context switch, and it may cause a significant overhead, depending on the
hardware support [137]. Often time slicing is used to switch between the processes.
If there is a single execution resource only, the active processes are executed con-
currently in a time-sliced way, but there is no real parallelism. If several execution
resources are available, different processes can be executed by different execution
resources, thus indeed leading to a parallel execution.

When a process is generated, it must obtain the data required for its execution.
In Unix systems, a process P1 can create a new process P2 with the fork system
call. The new child process P2 is an identical copy of the parent process P1 at the
time of the fork call. This means that the child process P2 works on a copy of
the address space of the parent process P1 and executes the same program as P1,
starting with the instruction following the fork call. The child process gets its own
process number and, depending on this process number, it can execute different
statements as the parent process. Since each process has its own address space and
since process creation includes the generation of a copy of the address space of the
parent process, process creation and management may be quite time-consuming.
Data exchange between processes is often done via socket communication which is
based on TCP/IP or UDP/IP communication. This may lead to a significant over-
head, depending on the socket implementation and the speed of the interconnection
between the execution resources assigned to the communicating processes.

3.7.2 Threads

The thread model is an extension of the process model. In the thread model, each
process may consist of multiple independent control flows which are called threads.
The word thread is used to indicate that a potentially long continuous sequence of
instructions is executed. During the execution of a process, the different threads of
this process are assigned to execution resources by a scheduling method.

3.7.2.1 Basic Concepts of Threads

A significant feature of threads is that threads of one process share the address space
of the process, i.e., they have a common address space. When a thread stores a value
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in the shared address space, another thread of the same process can access this value
afterwards. Threads are typically used if the execution resources used have access to
a physically shared memory, as is the case for the cores of a multicore processor. In
this case, information exchange is fast compared to socket communication. Thread
generation is usually much faster than process generation: No copy of the address
space is necessary since the threads of a process share the address space. Therefore,
the use of threads is often more flexible than the use of processes, yet providing
the same advantages concerning a parallel execution. In particular, the different
threads of a process can be assigned to different cores of a multicore processor,
thus providing parallelism within the processes.

Threads can be provided by the runtime system as user-level threads or by the
operating system as kernel threads. User-level threads are managed by a thread
library without specific support by the operating system. This has the advantage
that a switch from one thread to another can be done without interaction of the
operating system and is therefore quite fast. Disadvantages of the management of
threads at user level come from the fact that the operating system has no knowl-
edge about the existence of threads and manages entire processes only. Therefore,
the operating system cannot map different threads of the same process to different
execution resources and all threads of one process are executed on the same exe-
cution resource. Moreover, the operating system cannot switch to another thread if
one thread executes a blocking I/O operation. Instead, the CPU scheduler of the
operating system suspends the entire process and assigns the execution resource to
another process.

These disadvantages can be avoided by using kernel threads, since the operating
system is aware of the existence of threads and can react correspondingly. This is
especially important for an efficient use of the cores of a multicore system. Most
operating systems support threads at the kernel level.

3.7.2.2 Execution Models for Threads

If there is no support for thread management by the operating system, the thread
library is responsible for the entire thread scheduling. In this case, all user-level
threads of a user process are mapped to one process of the operating system. This is
called N:1 mapping, or many-to-one mapping, see Fig. 3.14 for an illustration. At
each point in time, the library scheduler determines which of the different threads
comes to execution. The mapping of the processes to the execution resources is done
by the operating system. If several execution resources are available, the operating
system can bring several processes to execution concurrently, thus exploiting paral-
lelism. But with this organization the execution of different threads of one process
on different execution resources is not possible.

If the operating system supports thread management, there are two possibilities
for the mapping of user-level threads to kernel threads. The first possibility is to
generate a kernel thread for each user-level thread. This is called 1:1 mapping, or
one-to-one mapping, see Fig. 3.15 for an illustration. The scheduler of the oper-
ating system selects which kernel threads are executed at which point in time. If
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multiple execution resources are available, it also determines the mapping of the
kernel threads to the execution resources. Since each user-level thread is assigned
to exactly one kernel thread, there is no need for a library scheduler. Using a 1:1
mapping, different threads of a user process can be mapped to different execution
resources, if enough resources are available, thus leading to a parallel execution
within a single process.

The second possibility is to use a two-level scheduling where the scheduler of
the thread library assigns the user-level threads to a given set of kernel threads. The
scheduler of the operating system maps the kernel threads to the available execution
resources. This is called N:M mapping, or many-to-many mapping, see Fig. 3.16
for an illustration. At different points in time, a user thread may be mapped to a
different kernel thread, i.e., no fixed mapping is used. Correspondingly, at different
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Fig. 3.16 Illustration of an
N :M mapping for thread
management with kernel
threads using a two-level
scheduling. User-level
threads T of different
processes are assigned to a
set of kernel threads BT
(N :M mapping) which are
then mapped by the scheduler
of the operating system to
execution resources P
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points in time, a kernel thread may execute different user threads. Depending on the
thread library, the programmer can influence the scheduler of the library, e.g., by
selecting a scheduling method as is the case for the Pthreads library, see Sect. 6.1.10
for more details. The scheduler of the operating system on the other hand is tuned
for an efficient use of the hardware resources, and there is typically no possibility
for the programmer to directly influence the behavior of this scheduler. This second
mapping possibility usually provides more flexibility than a 1:1 mapping, since the
programmer can adapt the number of user-level threads to the specific algorithm or
application. The operating system can select the number of kernel threads such that
an efficient management and mapping of the execution resources is facilitated.

3.7.2.3 Thread States

A thread can be in one of the following states:

• newly generated, i.e., the thread has just been generated, but has not yet per-
formed any operation;

• executable, i.e., the thread is ready for execution, but is currently not assigned to
any execution resources;

• running, i.e., the thread is currently being executed by an execution resource;
• waiting, i.e., the thread is waiting for an external event to occur; the thread cannot

be executed before the external event happens;
• finished, i.e., the thread has terminated all its operations.

Figure 3.17 illustrates the transition between these states. The transitions between
the states executable and running are determined by the scheduler. A thread may
enter the state waiting because of a blocking I/O operation or because of the exe-
cution of a synchronization operation which causes it to be blocked. The transition
from the state waiting to executable may be caused by a termination of a previ-
ously issued I/O operation or because another thread releases the resource which
this thread is waiting for.
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Fig. 3.17 States of a thread.
The nodes of the diagram
show the possible states of a
thread and the arrows show
possible transitions between
them
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3.7.2.4 Visibility of Data

The different threads of a process share a common address space. This means that
the global variables of a program and all dynamically allocated data objects can
be accessed by any thread of this process, no matter which of the threads has allo-
cated the object. But for each thread, there is a private runtime stack for controlling
function calls of this thread and to store the local variables of these functions, see
Fig. 3.18 for an illustration. The data kept on the runtime stack is local data of the
corresponding thread and the other threads have no direct access to this data. It is in
principle possible to give them access by passing an address, but this is dangerous,
since how long the data is accessible cannot be predicted. The stack frame of a
function call is freed as soon as the function call is terminated. The runtime stack
of a thread exists only as long as the thread is active; it is freed as soon as the
thread is terminated. Therefore, a return value of a thread should not be passed via
its runtime stack. Instead, a global variable or a dynamically allocated data object
should be used, see Chap. 6 for more details.

Fig. 3.18 Runtime stack for
the management of a program
with multiple threads
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3.7.3 Synchronization Mechanisms

When multiple threads execute a parallel program in parallel, their execution has to
be coordinated to avoid race conditions. Synchronization mechanisms are provided
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to enable a coordination, e.g., to ensure a certain execution order of the threads
or to control access to shared data structures. Synchronization for shared variables
is mainly used to avoid a concurrent manipulation of the same variable by differ-
ent threads, which may lead to non-deterministic behavior. This is important for
multi-threaded programs, no matter whether a single execution resource is used in a
time-slicing way or whether several execution resources execute multiple threads in
parallel. Different synchronization mechanisms are provided for different situations.
In the following, we give a short overview.

3.7.3.1 Lock Synchronization

For a concurrent access of shared variables, race conditions can be avoided by a
lock mechanism based on predefined lock variables, which are also called mutex
variables as they help to ensure mutual exclusion. A lock variable l can be in one of
two states: locked or unlocked. Two operations are provided to influence this state:
lock(l) and unlock(l). The execution of lock(l) locks l such that it cannot
be locked by another thread; after the execution, l is in the locked state and the
thread that has executed lock(l) is the owner of l. The execution of unlock(l)
unlocks a previously locked lock variable l; after the execution, l is in the unlocked
state and has no owner. To avoid race conditions for the execution of a program part,
a lock variable l is assigned to this program part and each thread executes lock(l)
before entering the program part and unlock(l) after leaving the program part.
To avoid race conditions, each of the threads must obey this programming rule.

A call of lock(l) for a lock variable l has the effect that the executing thread
T1 becomes the owner of l, if l has been in the unlocked state before. But if there
is already another owner T2 of l before T1 calls lock(l), T1 is blocked until
T2 has called unlock(l) to release l. If there are blocked threads waiting for l
when unlock(l) is called, one of the waiting threads is woken up and becomes
the new owner of l. Thus, using a lock mechanism in the described way leads
to a sequentialization of the execution of a program part which ensures that at
each point in time, only one thread executes the program part. The provision of
lock mechanisms in libraries like Pthreads, OpenMP, or Java threads is described in
Chap. 6.

It is important to see that mutual exclusion for accessing a shared variable
can only be guaranteed if all threads use a lock synchronization to access the
shared variable. If this is not the case, a race condition may occur, leading to an
incorrect program behavior. This can be illustrated by the following example where
two threads T1 and T2 access a shared integer variable s which is protected by a lock
variable l [112]:

Thread T1 Thread T2

lock(l);
s = 1; s = 2;
if (s!=1) fire missile();
unlock(l);
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In this example, thread T1 may get interrupted by the scheduler and thread T2 can set
the value of s to 2; if T1 resumes execution, s has value 2 and fire missile()
is called. For other execution orders, fire missile() will not be called. This
non-deterministic behavior can be avoided if T2 also uses a lock mechanism with l
to access s.

Another mechanism to ensure mutual exclusion is provided by semaphores [40].
A semaphore is a data structure which contains an integer counter s and to which
two atomic operations P(s) and V (s) can be applied. A binary semaphore s can
only have values 0 or 1. For a counting semaphore, s can have any positive integer
value. The operation P(s), also denoted as wait(s), waits until the value of s is
larger than 0. When this is the case, the value of s is decreased by 1, and execution
can continue with the subsequent instructions. The operation V (s), also denoted
as signal(s), increments the value of s by 1. To ensure mutual exclusion for a
critical section, the section is protected by a semaphore s in the following form:

wait(s)
critical section
signal(s).

Different threads may execute operations P(s) or V (s) for a semaphore s to access
the critical section. After a thread T1 has successfully executed the operation
wait(s) with waiting it can enter the critical section. Every other thread T2 is
blocked when it executes wait(s) and can therefore not enter the critical section.
When T1 executes signal(s) after leaving the critical section, one of the waiting
threads will be woken up and can enter the critical section.

Another concept to ensure mutual exclusion is the concept of monitors [90]. A
monitor is a language construct which allows the definition of data structures and
access operations. These operations are the only means by which the data of a mon-
itor can be accessed. The monitor ensures that the access operations are executed
with mutual exclusion, i.e., at each point in time, only one thread is allowed to
execute any of the access methods provided.

3.7.3.2 Thread Execution Control

To control the execution of multiple threads, barrier synchronization and condition
synchronization can be used. A barrier synchronization defines a synchronization
point where each thread must wait until all other threads have also reached this
synchronization point. Thus, none of the threads executes any statement after the
synchronization point until all other threads have also arrived at this point. A barrier
synchronization also has the effect that it defines a global state of the shared address
space in which all operations specified before the synchronization point have been
executed. Statements after the synchronization point can be sure that this global
state has been established.

Using a condition synchronization, a thread T1 is blocked until a given condi-
tion has been established. The condition could, for example, be that a shared variable
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contain a specific value or have a specific state like a shared buffer containing at
least one entry. The blocked thread T1 can only be woken up by another thread T2,
e.g., after T2 has established the condition which T1 waits for. When T1 is woken
up, it enters the state executable, see Sect. 3.7.2.2, and will later be assigned to an
execution resource, then entering the state running. Thus, after being woken up,
T1 may not be immediately executed, e.g., if not enough execution resources are
available. Therefore, although T2 may have established the condition which T1 waits
for, it is important that T1 check the condition again as soon as it is running. The
reason for this additional check is that in the meantime another thread T3 may have
performed some computations which might have led to the fact that the condition
is not fulfilled any more. Condition synchronization can be supported by condition
variables. These are for example provided by Pthreads and must be used together
with a lock variable to avoid race condition when evaluating the condition, see
Sect. 6.1 for more details. A similar mechanism is provided in Java by wait()
and notify(), see Sect. 6.2.3.

3.7.4 Developing Efficient and Correct Thread Programs

Depending on the requirements of an application and the specific implementation
by the programmer, synchronization leads to a complicated interaction between
the executing threads. This may cause problems like performance degradation by
sequentializations, or even deadlocks. This section contains a short discussion of
this topic and gives some suggestions about how efficient thread-based programs
can be developed.

3.7.4.1 Number of Threads and Sequentialization

Depending on the design and implementation, the runtime of a parallel program
based on threads can be quite different. For the design of a parallel program it is
important

• to use a suitable number of threads which should be selected according to the
degree of parallelism provided by the application and the number of execution
resources available and

• to avoid sequentialization by synchronization operations whenever possible.

When synchronization is necessary, e.g., to avoid race conditions, it is important
that the resulting critical section which is executed sequentially be made as small as
possible to reduce the resulting waiting times.

The creation of threads is necessary to exploit parallel execution. A parallel pro-
gram should create a sufficiently large number of threads to provide enough work
for all cores of an execution platform, thus using the available resources efficiently.
But the number of threads created should not be too large to keep the overhead for
thread creation, management, and termination small. For a large number of threads,
the work per thread may become quite small, giving the thread overhead a significant
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portion of the overall execution time. Moreover, many hardware resources, in partic-
ular caches, may be shared by the cores, and performance degradations may result
if too many threads share the resources; in the case of caches, a degradation of the
read/write bandwidth might result.

The threads of a parallel program must be coordinated to ensure a correct behav-
ior. An example is the use of synchronization operations to avoid race conditions.
But too many synchronizations may lead to situations where only one or a small
number of threads are active while the other threads are waiting because of a syn-
chronization operation. In effect, this may result in a sequentialization of the thread
execution, and the available parallelism cannot be used. In such situations, increas-
ing the number of threads does not lead to faster program execution, since the new
threads are waiting most of the time.

3.7.4.2 Deadlock

Non-deterministic behavior and race conditions can be avoided by synchronization
mechanisms like lock synchronization. But the use of locks can lead to deadlocks,
when program execution comes into a state where each thread waits for an event
that can only be caused by another thread, but this thread is also waiting.

Generally, a deadlock occurs for a set of activities, if each of the activities waits
for an event that can only be caused by one of the other activities, such that a cycle
of mutual waiting occurs. A deadlock may occur in the following example where
two threads T1 and T2 both use two locks s1 and s2:

Thread T1 Thread T2

lock(s1); lock(s2);
lock(s2); lock(s1):
do work(); do work();
unlock(s2) unlock(s1)
unlock(s1) unlock(s2)

A deadlock occurs for the following execution order:

• a thread T1 first tries to set a lock s1, and then s2; after having locked s1 success-
fully, T1 is interrupted by the scheduler;

• a thread T2 first tries to set lock s2 and then s1; after having locked s2 successfully,
T2 waits for the release of s1.

In this situation, s1 is locked by T1 and s2 by T2. Both threads T1 and T2 wait for
the release of the missing lock by the other thread. But this cannot occur, since the
other thread is waiting.

It is important to avoid such mutual or cyclic waiting situations, since the pro-
gram cannot be terminated in such situations. Specific techniques are available to
avoid deadlocks in cases where a thread must set multiple locks to proceed. Such
techniques are described in Sect. 6.1.2.
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3.7.4.3 Memory Access Times and Cache Effects

Memory access times may constitute a significant portion of the execution time of a
parallel program. A memory access issued by a program causes a data transfer from
the main memory into the cache hierarchy of that core which has issued the memory
access. This data transfer is caused by the read and write operations of the cores.
Depending on the specific pattern of read and write operations, not only is there a
transfer from main memory to the local caches of the cores, but there may also be a
transfer between the local caches of the cores. The exact behavior is controlled by
hardware, and the programmer has no direct influence on this behavior.

The transfer within the memory hierarchy can be captured by dependencies
between the memory accesses issued by different cores. These dependencies can
be categorized as read–read dependency, read–write dependency, and write–write
dependency. A read–read dependency occurs if two threads running on different
cores access the same memory location. If this memory location is stored in the
local caches of both cores, both can read the stored values from their cache, and
no access to main memory needs to be done. A read–write dependency occurs,
if one thread T1 executes a write into a memory location which is later read by
another thread T2 running on a different core. If the two cores involved do not share
a common cache, the memory location that is written by T1 must be transferred into
main memory after the write before T2 executes its read which then causes a transfer
from main memory into the local cache of the core executing T2. Thus, a read–write
dependency consumes memory bandwidth.

A write–write dependency occurs, if two threads T1 and T2 running on different
cores perform a write into the same memory location in a given order. Assuming
that T1 writes before T2, a cache coherency protocol, see Sect. 2.7.3, must ensure
that the caches of the participating cores are notified when the memory accesses
occur. The exact behavior depends on the protocol and the cache implementation
as write-through or write-back, see Sect. 2.7.1. In any case, the protocol causes a
certain amount of overhead to handle the write–write dependency.

False sharing occurs if two threads T1 and T2, running on different cores, access
different memory locations that are held in the same cache line. In this case, the
same memory operations must be performed as for an access to the same memory
locations, since a cache line is the smallest transfer unit in the memory hierarchy.
False sharing can lead to a significant amount of memory transfers and to notable
performance degradations. It can be avoided by an alignment of variables to cache
line boundaries; this is supported by some compilers.

3.8 Further Parallel Programming Approaches

For the programming of parallel architectures, a large number of approaches have
been developed during the last years. A first classification of these approaches can be
made according to the memory view provided, shared address space or distributed
address space, as discussed earlier. In the following, we give a detailed description of
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the most popular approaches for both classes. For a distributed address space, MPI
is by far the most often used environment, see Chap. 5 for a detailed description.
The use of MPI is not restricted to parallel machines with a physically distributed
memory organization. It can also be used for parallel architectures with a physically
shared address space like multicore architectures. Popular programming approaches
for shared address space include Pthreads, Java threads, and OpenMP, see Chap. 6
for a detailed treatment. But besides these popular environments, there are many
other interesting approaches aiming at making parallel programming easier by pro-
viding the right abstraction. We give a short overview in this section.

The advent of multicore architectures and their use in normal desktop computers
has led to an intensifying of the research efforts to develop a simple, yet efficient
parallel language. An important argument for the need of such a language is that
parallel programming with processes or threads is difficult and is a big step for
programmers used to sequential programming [114]. It is often mentioned that, for
example, thread programming with lock mechanisms and other forms of synchro-
nization are too low level and too error-prone, since problems like race conditions
or deadlocks can easily occur. Current techniques for parallel software development
are therefore sometimes compared to assembly programming [169].

In the following, we give a short description of language approaches which
attempt to provide suitable mechanisms at the right level of abstraction. Moreover,
we give a short introduction to the concept of transactional memory.

3.8.1 Approaches for New Parallel Languages

In this subsection, we give a short overview of interesting approaches for new
parallel languages that are already in use but are not yet popular enough to be
described in great detail in an introductory textbook on parallel computing. Some
of the approaches described have been developed in the area of high-performance
computing, but they can also be used for small parallel systems, including multicore
systems.

3.8.1.1 Unified Parallel C

Unified Parallel C (UPC) has been proposed as an extension to C for the use of par-
allel machines and cluster systems [47]. UPC is based on the model of a partitioned
global address space (PGAS) [32], in which shared variables can be stored. Each
such variable is associated with a certain thread, but the variable can also be read
or manipulated by other threads. But typically, the access time for the variable is
smaller for the associated thread than for another thread. Additionally, each thread
can define private data to which it has exclusive access.

In UPC programs, parallel execution is obtained by creating a number of threads
at program start. The UPC language extensions to C define a parallel execution
model, memory consistency models for accessing shared variables, synchronization
operations, and parallel loops. A detailed description is given in [47]. UPC compil-
ers are available for several platforms. For Linux systems, free UPC compilers are
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the Berkeley UPC compiler (see upc.nersc.gov) and the GCC UPC compiler
(see www.intrepid.com/upc3). Other languages based on the PGAS model
are the Co-Array Fortran Language (CAF), which is based on Fortran, and Titanium,
which is similar to UPC, but is based on Java instead of C.

3.8.1.2 DARPA HPCS Programming Languages

In the context of the DARPA HPCS (High Productivity Computing Systems) pro-
gram, new programming languages have been proposed and implemented, which
support programming with a shared address space. These languages include Fortress,
X10, and Chapel.

Fortress has been developed by Sun Microsystems. Fortress is a new object-
oriented language based on Fortran which facilitates program development for par-
allel systems by providing a mathematical notation [11]. The language Fortress sup-
ports the parallel execution of programs by parallel loops and by the parallel eval-
uation of function arguments with multiple threads. Many constructs provided are
implicitly parallel, meaning that the threads needed are created without an explicit
control in the program.

A separate thread is, for example, implicitly created for each argument of a func-
tion call without any explicit thread creation in the program. Additionally, explicit
threads can be created for the execution of program parts. Thread synchronization is
performed with atomic expressions which guarantee that the effect on the memory
becomes atomically visible immediately after the expression has been completely
evaluated; see also the next section on transactional memory.

X10 has been developed by IBM as an extension to Java targeting at high-
performance computing. Similar to UPC, X10 is based on the PGAS memory model
and extends this model to the GALS model (globally asynchronous, locally syn-
chronous) by introducing logical places [28]. The threads of a place have a locally
synchronous view of their shared address space, but threads of different places work
asynchronously with each other. X10 provides a variety of operations to access array
variables and parts of array variables. Using array distributions, a partitioning of
an array to different places can be specified. For the synchronization of threads,
atomic blocks are provided which support an atomic execution of statements. By
using atomic blocks, the details of synchronization are performed by the runtime
system, and no low-level lock synchronization must be performed.

Chapel has been developed by Cray Inc. as a new parallel language for high-
performance computing [37]. Some of the language constructs provided are similar
to High-Performance Fortran (HPF). Like Fortress and X10, Chapel also uses the
model of a global address space in which data structures can be stored and accessed.
The parallel execution model supported is based on threads. At program start, there
is a single main thread; using language constructs like parallel loops, more threads
can be created. The threads are managed by the runtime system and the program-
mer does not need to start or terminate threads explicitly. For the synchronization
of computations on shared data, synchronization variables and atomic blocks are
provided.
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3.8.1.3 Global Arrays

The global array (GA) approach has been developed to support program design for
applications from scientific computing which mainly use array-based data struc-
tures, like vectors or matrices [127].

The GA approach is provided as a library with interfaces for C, C++, and Fortran
for different parallel platforms. The GA approach is based on a global address space
in which global array can be stored such that each process is associated with a
logical block of the global array; access to this block is faster than access to the
other blocks. The GA library provides basic operations (like put, get, scatter, gather)
for the shared address space, as well as atomic operations and lock mechanisms
for accessing global arrays. Data exchange between processes can be performed
via global arrays. But a message-passing library like MPI can also be used. An
important application area for the GA approach is the area of chemical simulations.

3.8.2 Transactional Memory

Threads must be synchronized when they access shared data concurrently. Standard
approaches to avoid race conditions are mutex variables or critical sections. A
typical programming style is as follows:

• The programmer identifies critical sections in the program and protects them with
a mutex variable which is locked when the critical section is entered and unlocked
when the critical section is left.

• This lock mechanism guarantees that the critical section is entered by one thread
at a time, leading to mutual exclusion.

Using this approach with a lock mechanism leads to a sequentialization of the exe-
cution of critical sections. This may lead to performance problems and the critical
sections may become a bottleneck. In particular, scalability problems often arise
when a large number of threads are used and when the critical sections are quite
large so that their execution takes quite long.

For small parallel systems like typical multicore architecture with only a few
cores, this problem does not play an important role, since only a few threads are
involved. But for large parallel systems of future multicore systems with a signif-
icantly larger number of cores, this problem must be carefully considered and the
granularity of the critical section must be reduced significantly. Moreover, using
a lock mechanism the programmer must strictly follow the conventions and must
explicitly protect all program points at which an access conflict to shared data may
occur in order to guarantee a correct behavior. If the programmer misses a program
point which should be locked, the resulting program may cause error situations from
time to time which depend on the relative execution speed of the threads and which
are often not reproducible.

As an alternative approach to lock mechanisms, the use of transactional mem-
ory has been proposed, see, for example, [2, 16, 85]. In this approach, a program
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is a series of transactions which appear to be executed indivisibly. A transaction
is defined as a sequence of instructions which are executed by a single thread such
that the following properties are fulfilled:

• Serializability: The transactions of a program appear to all threads to be executed
in a global serial order. In particular, no thread observes an interleaving of the
instructions of different transactions. All threads observe the execution of the
transactions in the same global order.

• Atomicity: The updates in the global memory caused by the execution of the
instructions of a transaction become atomically visible to the other threads after
the executing thread has completed the execution of the instructions. A transac-
tion that is completed successfully commits. If a transaction is interrupted, it has
no effect on the global memory. A transaction that fails aborts. If a transaction
fails, it is aborted for all threads, i.e., no thread observes any effect caused by
the execution of the transaction. If a transaction is successful, it commits for all
threads atomically.

Using a lock mechanism to protect a critical section does not provide atomicity in
the sense just defined, since the effect on the shared memory becomes immediately
visible. Using the concept of transactions for parallel programming requires the
provision of new constructs which could, for example, be embedded into a pro-
gramming language. A suitable construct is the use of atomic blocks where each
atomic block defines a transaction [2]. The DARPA HPCS languages Fortran,
X10, and Chapel contain such constructs to support the use of transactions, see
Sect. 3.8.1.

The difference between the use of a lock mechanism and atomic blocks is
illustrated in Fig. 3.19 for the example of a thread-safe access to a bank account
using Java [2]. Access synchronization based on a lock mechanism is provided by
the class LockAccount, which uses a synchronized block for accessing the
account. When the method add() is called, this call is simply forwarded to the non-
thread-safe add() method of the class Account, which we assume to be given.
Executing the synchronized block causes an activation of the lock mechanism using
the implicit mutex variable of the object mutex. This ensures the sequentializa-
tion of the access. An access based on transactions is implemented in the class
AtomicAccount, which uses an atomic block to activate the non-thread-safe
add() method of the Account class. The use of the atomic block ensures that
the call to add() is performed atomically. Thus, the responsibility for guaranteeing
serializability and atomicity is transferred to the runtime system. But depending on
the specific situation, the runtime system does not necessarily need to enforce a
sequentialization if this is not required. It should be noted that atomic blocks are
not (yet) part of the Java language.

An important advantage of using transactions is that the runtime system can per-
form several transactions in parallel if the memory access pattern of the transactions
allows this. This is not possible when using standard mutex variables. On the other
hand, mutex variables can be used to implement more complex synchronization
mechanisms which allow, e.g., a concurrent read access to shared data structures. An
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Fig. 3.19 Comparison
between a lock-oriented and a
transaction-oriented
implementation of an access
to an account in Java

example is the read–write locks which allow multiple read accesses but only a single
write access at a time, see Sect. 6.1.4 for an implementation in Pthreads. Since the
runtime system can optimize the execution of transactions, using transactions may
lead to a better scalability compared to the use of lock variables.

By using transactions, many responsibilities are transferred to the runtime sys-
tem. In particular, the runtime system must ensure serializability and atomicity. To
do so, the runtime system must provide the following two key mechanisms:

• Version control: The effect of a transaction must not become visible before the
completion of the transaction. Therefore, the runtime system must perform the
execution of the instructions of a transaction on a separate version of data. The
previous version is kept as a copy in case the current transaction fails. If the
current transaction is aborted, the previous version remains visible. If the current
transaction commits, the new version becomes globally visible after the comple-
tion of the transaction.

• Conflict detection: To increase scalability, it is useful to execute multiple trans-
actions in parallel. When doing so, it must be ensured that these transactions
do not concurrently operate on the same data. To ensure the absence of such
conflicts, the runtime system must inspect the memory access pattern of each
transaction before issuing a parallel execution.
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The use of transactions for parallel programming is an active area of research and
the techniques developed are currently not available in standard programming lan-
guages. But transactional memory provides a promising approach, since it provides
a more abstract mechanism than lock variables and can help to improve scalability
of parallel programs for parallel systems with a shared address space like multicore
processors. A detailed overview of many aspects of transactional memory can be
found in [112, 144, 2].

3.9 Exercises for Chap. 3

Exercise 3.1 Consider the following sequence of instructions I1, I2, I3, I4, I5:

I1: R1 ← R1 + R2

I2: R3 ← R1 + R2

I3: R5 ← R3 + R4

I4: R4 ← R3 + R1

I5: R2 ← R2 + R4

Determine all flow, anti, and output dependences and draw the resulting data
dependence graph. Is it possible to execute some of these instructions parallel to
each other?

Exercise 3.2 Consider the following two loops:

for (i=0 : n-1)
a(i) = b(i) +1;
c(i) = a(i) +2;
d(i) = c(i+1)+1;

endfor

forall (i=0 : n-1)
a(i) = b(i) + 1;
c(i) = a(i) + 2;
d(i) = c(i+1) + 1;

endforall

Do these loops perform the same computations? Explain your answer.

Exercise 3.3 Consider the following sequential loop:

for (i=0 : n-1)
a(i+1) = b(i) + c;
d(i) = a(i) + e;

endfor

Can this loop be transformed into an equivalent forall loop? Explain your
answer.

Exercise 3.4 Consider a 3× 3 mesh network and the global communication opera-
tion scatter. Give a spanning tree which can be used to implement a scatter operation
as defined in Sect. 3.5.2. Explain how the scatter operation is implemented on this
tree. Also explain why the scatter operation is the dual operation of the gather oper-
ation and how the gather operation can be implemented.
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Exercise 3.5 Consider a matrix of dimension 100 × 100. Specify the distribu-
tion vector ((p1, b1), (p2, b2)) to describe the following data distributions for p
processors:

• Column-cyclic distribution,
• Row-cyclic distribution,
• Blockwise column-cyclic distribution with block size 5,
• Blockwise row-cyclic distribution with block size 5.

Exercise 3.6 Consider a matrix of size 7× 11. Describe the data distribution which
results for the distribution vector ((2, 2), (3, 2)) by specifying which matrix element
is stored by which of the six processors.

Exercise 3.7 Consider the matrix–vector multiplication programs in Sect. 3.6. Based
on the notation used in this section, develop an SPMD program for computing a
matrix–matrix multiplication C = A · B for a distributed address space. Use the
notation from Sect. 3.6 for the communication operations. Assume the following
distributions for the input matrices A and B:

(a) A is distributed in row-cyclic, B is distributed in column-cyclic order;
(b) A is distributed in column-blockwise, B in row-blockwise order;
(c) A and B are distributed in checkerboard order as has been defined on p. 114.

In which distribution is the result matrix C computed?

Exercise 3.8 The transposition of an n × n matrix A can be computed sequentially
as follows:

for (i=0; i<n; i++)
for (j=0; j<n; j++)

B[i][j] = A[j][i];

where the result is stored in B. Develop an SPMD program for performing a matrix
transposition for a distributed address space using the notation from Sect. 3.6. Con-
sider both a row-blockwise and a checkerboard order distribution of A.

Exercise 3.9 The statement fork(m) creates m child threads T1, . . . , Tm of the
calling thread T , see Sect. 3.3.6, p. 109. Assume a semantics that a child thread exe-
cutes the same program code as its parent thread starting at the program statement
directly after the fork() statement and that a join() statement matches the last
unmatched fork() statement. Consider a shared memory program fragment:

fork(3);
fork(2);
join();
join();

Give the tree of threads created by this program fragment.
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Exercise 3.10 Two threads T0 and T1 access a shared variable in a critical section.
Let int flag[2] be an array with flag[i] = 1, if thread i wants to enter
the critical section. Consider the following approach for coordinating the access to
the critical section:

Thread T0

repeat {
while (flag[1]) do no op();

flag[0] = 1;

- - - critical section - - -;

flag[0] = 0;

- - - uncritical section - - -;

until 0;

Thread T1

repeat {
while (flag[0]) do no op();

flag[1] = 1;

- - - critical section - - -;

flag[1] = 0;

- - - uncritical section - - -;

until 0;

Does this approach guarantee mutual exclusion, if both threads are executed on
the same execution core? Explain your answer.

Exercise 3.11 Consider the following implementation of a lock mechanism:

int me;
int flag[2];
int lock() {

int other = 1 - me;
flag[me] = 1;
while (flag[other]) ; // wait

}
int unlock() {

flag[me] = 0;
}

Assume that two threads with ID 0 and 1 execute this piece of program to access
a data structure concurrently and that each thread has stored its ID in its local vari-
able me. Does this implementation guarantee mutual exclusion when the functions
lock() and unlock() are used to protect critical sections? see Sect. 3.7.3. Can
this implementation lead to a deadlock? Explain your answer.

Exercise 3.12 Consider the following example for the use of an atomic block [112]:

bool flag A = false; bool flag B = false;

Thread 1
atomic {

while (!flag A) ;
flag B = true;

}

Thread 2
atomic {

flag A = true ;
while (!flag B);

}

Why is this code incorrect?



Chapter 4
Performance Analysis of Parallel Programs

The most important motivation for using a parallel system is the reduction of
the execution time of computation-intensive application programs. The execution
time of a parallel program depends on many factors, including the architecture of
the execution platform, the compiler and operating system used, the parallel pro-
gramming environment and the parallel programming model on which the environ-
ment is based, as well as properties of the application program such as locality of
memory references or dependencies between the computations to be performed. In
principle, all these factors have to be taken into consideration when developing a
parallel program. However, there may be complex interactions between these fac-
tors, and it is therefore difficult to consider them all.

To facilitate the development and analysis of parallel programs, performance
measures are often used which abstract from some of the influencing factors. Such
performance measures can be based not only on theoretical cost models but also on
measured execution times for a specific parallel system.

In this chapter, we consider performance measures for an analysis and compari-
son of different versions of a parallel program in more detail. We start in Sect. 4.1
with a discussion of different methods for a performance analysis of (sequential
and parallel) execution platforms, which are mainly directed toward a performance
evaluation of the architecture of the execution platform, without considering a spe-
cific user-written application program. In Sect. 4.2, we give an overview of pop-
ular performance measures for parallel programs, such as speedup or efficiency.
These performance measures mainly aim at a comparison of the execution time of
a parallel program with the execution time of a corresponding sequential program.
Section 4.3 analyzes the running time of global communication operations, such
as broadcast or scatter operations, in the distributed memory model with differ-
ent interconnection networks. Optimal algorithms and asymptotic running times
are derived. In Sect. 4.4, we show how runtime functions (in closed form) can
be used for a runtime analysis of application programs. This is demonstrated for
parallel computations of a scalar product and of a matrix–vector multiplication.
Section 4.5 contains a short overview of popular theoretical cost models like BSP
and LogP.
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4.1 Performance Evaluation of Computer Systems

The performance of a computer system is one of the most important aspects of
its evaluation. Depending on the point of view, different criteria are important to
evaluate performance. The user of a computer system is interested in small response
times, where the response time of a program is defined as the time between the start
and the termination of the program. On the other hand, a large computing center is
mainly interested in high throughputs, where the throughput is the average number
of work units that can be executed per time unit.

4.1.1 Evaluation of CPU Performance

In the following, we first consider a sequential computer system and use the
response times as performance criteria. The performance of a computer system
becomes larger, if the response times for a given set of application programs become
smaller. The response time of a program A can be split into

• the user CPU time of A, capturing the time that the CPU spends for exe-
cuting A;

• the system CPU time of A, capturing the time that the CPU spends for the exe-
cution of routines of the operating system issued by A;

• the waiting time of A, caused by waiting for the completion of I/O operations
and by the execution of other programs because of time sharing.

So the response time of a program includes the waiting times, but these waiting
times are not included in the CPU time. For Unix systems, the time command can
be used to get information on the fraction of the CPU and waiting times of the overall
response time. In the following, we ignore the waiting times, since these strongly
depend on the load of the computer system. We also neglect the system CPU time,
since this time mainly depends on the implementation of the operating system, and
concentrate on the execution times that are directly caused by instructions of the
application program [137].

The user CPU time depends both on the translation of the statements of the pro-
gram into equivalent sequences of instructions by the compiler and on the execution
time for the single instructions. The latter time is strongly influenced by the cycle
time of the CPU (also called clock cycle time), which is the reciprocal of the clock
rate. For example, a processor with a clock rate of 2 GHz = 2 · 109 · 1/s has cycle
time of 1/(2 · 109)s = 0.5 · 10−9 s = 0.5 ns (s denotes seconds and ns denotes
nanoseconds). In the following, the cycle time is denoted as tcycle and the user CPU
time of a program A is denoted as TU CPU(A). This time is given by the product of
tcycle and the total number ncycle(A) of CPU cycles needed for all instructions of A:

TU CPU(A) = ncycle(A) · tcycle . (4.1)

Different instructions may have different execution times. To get a relation between
the number of cycles and the number of instructions executed for program A, the
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average number of CPU cycles used for instructions of program A is considered.
This number is called CPI (Clock cycles Per Instruction). The CPI value depends
on the program A to be executed, since the specific selection of instructions has
an influence on CPI. Thus, for the same computer system, different programs may
lead to different CPI values. Using CPI, the user CPU time of a program A can be
expressed as

TU CPU(A) = ninstr(A) · CPI (A) · tcycle, (4.2)

where ninstr(A) denotes the total number of instructions executed for A. This num-
ber depends on many factors. The architecture of the computer system has a large
influence on ninstr(A), since the behavior of the instruction provided by the archi-
tecture determines how efficient constructs of the programming language can be
translated into sequences of instructions. Another important influence comes from
the compiler, since the compiler selects the instructions to be used in the machine
program. An efficient compiler can make the selection such that a small number
ninstr(A) results.

For a given program, the CPI value strongly depends on the implementation
of the instructions, which depends on the internal organization of the CPU and
the memory system. The CPI value also depends on the compiler, since different
instructions may have different execution times and since the compiler can select
instructions such that a smaller or a larger CPI value results.

We consider a processor which provides n types of instructions, I1, . . . , In . The
average number of CPU cycles needed for instructions of type Ii is denoted by
CPIi , and ni (A) is the number of instructions of type Ii executed for a program A,
i = 1, . . . , n. Then the total number of CPU cycles used for the execution of A can
be expressed as

ncycle(A) =
n∑

i=1

ni (A) · C P Ii . (4.3)

The total number of machine instructions executed for a program A is an exact
measure of the number of CPU cycles and the resulting execution time of A only if
all instructions require the same number of CPU cycles, i.e., have the same values
for CPIi . This is illustrated by the following example, see [137].

Example We consider a processor with three instruction classes I1, I2, I3 contain-
ing instructions which require 1, 2, or 3 cycles for their execution, respectively. We
assume that there are two different possibilities for the translation of a programming
language construct using different instructions according to the following table:

Instruction classes

Sum of the
Translation I1 I2 I3 instructions ncycle

1 2 1 2 5 10
2 4 1 1 6 9
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Translation 2 needs less cycles than translation 1, although translation 2 uses a
larger number of instructions. Thus, translation 1 leads to a CPI value of 10/5 = 2,
whereas translation 2 leads to a CPI value of 9/6 = 1.5.

4.1.2 MIPS and MFLOPS

A performance measure that is sometimes used in practice to evaluate the perfor-
mance of a computer system is the MIPS rate (Million Instructions Per Second).
Using the notation from the previous subsection for the number of instructions
ninstr(A) of a program A and for the user CPU time TU CPU(A) of A, the MIPS rate
of A is defined as

MIPS (A) = ninstr(A)

TU CPU(A) · 106
. (4.4)

Using Eq. (4.2), this can be transformed into

MIPS (A) = rcycle

CPI (A) · 106
,

where rcycle = 1/tcycle is the clock rate of the processor. Therefore, faster processors
lead to larger MIPS rates than slower processors. Because the CPI value depends on
the program A to be executed, the resulting MIPS rate also depends on A.

Using MIPS rates as performance measure has some drawbacks. First, the MIPS
rate only considers the number of instructions. But more powerful instructions usu-
ally have a longer execution time, but fewer of such powerful instructions are needed
for a program. This favors processors with simple instructions over processors with
more complex instructions. Second, the MIPS rate of a program does not necessarily
correspond to its execution time: Comparing two programs A and B on a processor
X , it can happen that B has a higher MIPS rate than A, but A has a smaller execution
time. This can be illustrated by the following example.

Example Again, we consider a processor X with three instruction classes I1, I2, I3

containing instructions which require 1, 2, or 3 cycles for their execution, respec-
tively.

We assume that processor X has a clock rate of 2 GHz and, thus, the cycle time
is 0.5 ns. Using two different compilers for the translation of a program may lead
to two different machine programs A1 and A2 for which we assume the following
numbers of instructions from the different classes:

Program I1 I2 I3

A1 5 · 109 1 · 109 1 · 109

A2 10 · 109 1 · 109 1 · 109
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For the CPU time of A j , j = 1, 2, we get from Eqs. (4.2) and (4.3)

TU CPU(A j ) =
3∑

i=1

ni (A j ) · CPI i (A j ) · tcycle,

where ni (A j ) is the number of instruction executions from the table and C P Ii (A j )
is the number of cycles needed for instructions of class Ii for i = 1, 2, 3. Thus,
machine program A1 leads to an execution time of 5 s, whereas A2 leads to an exe-
cution time of 7.5 s. The MIPS rates of A1 and A2 can be computed with Eq. (4.4).
For A1, in total 7 · 109 instructions are executed, leading to a MIPS rate of 1400
(1/s). For A2, a MIPS rate of 1600 (1/s) results. This shows that A2 has a higher
MIPS rate than A1, but A1 has a smaller execution time. �

For program with scientific computations, the MFLOPS rate (Million
Floating-point Operations Per Second) is sometimes used. The MFLOPS rate of
a program A is defined by

MFLOPS (A) = nflp op(A)

TU CPU(A) · 106
[1/s] , (4.5)

where nflp op(A) is the number of floating-point operations executed by A. The
MFLOPS rate is not based on the number of instructions executed, as is the case for
the MIPS rate, but on the number of arithmetic operations on floating-point values
performed by the execution of their instructions. Instructions that do not perform
floating-point operations have no effect on the MFLOPS rate. Since the effective
number of operations performed is used, the MFLOPS rate provides a fair com-
parison of different program versions performing the same operations, and larger
MFLOPS rates correspond to faster execution times.

A drawback of using the MFLOPS rate as performance measure is that there is
no differentiation between different types of floating-point operations performed.
In particular, operations like division and square root that typically take quite long
to perform are counted in the same way as operations like addition and multiplica-
tion that can be performed much faster. Thus, programs with simpler floating-point
operations are favored over programs with more complex operations. However, the
MFLOPS rate is well suited to compare program versions that perform the same
floating-point operations.

4.1.3 Performance of Processors with a Memory Hierarchy

According to Eq. (4.1), the user CPU time of a program A can be represented as the
product of the number of CPU cycles ncycles(A) for A and the cycle time tcycle of the
processor. By taking the access time to the memory system into consideration, this
can be refined to
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TU CPU(A) = (ncycles(A)+ nmm cycles(A)) · tcycle, (4.6)

where nmm cycles(A) is the number of additional machine cycles caused by memory
accesses of A. In particular, this includes those memory accesses that lead to the
loading of a new cache line because of a cache miss, see Sect. 2.7. We first consider
a one-level cache. If we assume that cache hits do not cause additional machine
cycles, they are captured by ncycles(A). Cache misses can be caused by read misses
or write misses:

nmm cycles(A) = nread cycles(A)+ nwrite cycles(A).

The number of cycles needed for read accesses can be expressed as

nread cycles(A) = nread op(A) · rread miss(A) · nmiss cycle,

where nread op(A) is the total number of read operations of A, rread miss(A) is the read
miss rate for A, and nmiss cycle is the number of machine cycles needed to load a
cache line into the cache in case of a read miss; this number is also called read
miss penalty. A similar expression can be given for the number of cycles nwrite cycles

needed for write accesses. The effect of read and write misses can be combined for
simplicity which results in the following expression for the user CPU time:

TU CPU(A) = ninstr(A) · (C P I (A)+ nrw op(A) · rmiss(A) · nmiss cycle) · tcycle, (4.7)

where nrw op(A) is the total number of read or write operations of A, rmiss(A) is the
(read and write) miss rate of A, and nmiss cycles is the number of additional cycles
needed for loading a new cache line. Equation (4.7) is derived from Eqs. (4.2) and
(4.6).

Example We consider a processor for which each instruction takes two cycles to
execute, i.e., it is CPI = 2, see [137]. The processor uses a cache for which the
loading of a cache block takes 100 cycles. We consider a program A for which the
(read and write) miss rate is 2% and in which 33% of the instructions executed are
load and store operations, i.e., it is nrw op(A) = ninstr(A)·0.33. According to Eq. (4.7)
it is

TU CPU(A) = ninstr(A) · (2+ 0.33 · 0.02 · 100) · tcycle

= ninstr(A) · 2.66 · tcycle.

This can be interpreted such that the ideal CPI value of 2 is increased to the real CPI
value of 2.66 if the data cache misses are taken into consideration. This does not
take instruction cache misses into consideration. The equation for TU CPU(A) can
also be used to compute the benefit of using a data cache: Without a data cache,
each memory access would take 100 cycles, leading to a real CPI value of 2 +
100 · 0.33 = 35.
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Doubling the clock rate of the processor without changing the memory system
leads to an increase in the cache loading time to 200 cycles, resulting in a real CPI
value of 2 + 0.33 · 0.02 · 200 = 3.32. Using tcycle for the original cycle time, the
CPU time on the new processor with half of the cycle time yields

T̃U CPU(A) = ninstr(A) · 3.32 · tcycle/2.

Thus, the new processor needs 1.66 instead of 2.66 original cycle time units. There-
fore, doubling the clock rate of the processor leads to a decrease of the execution
time of the program to 1.66/2.66, which is about 62.4% of the original execution
time, but not 50% as one might expect. This shows that the memory system has
an important influence on program execution time. �

The influence of memory access times using a memory hierarchy can be captured
by defining an average memory access time [137]. The average read access time
tread access(A) of a program A can be defined as

tread access(A) = tread hit + rread miss(A) · tread miss, (4.8)

where tread hit is the time for a read access to the cache. The additional time needed
for memory access in the presence of cache misses can be captured by multiplying
the cache read miss rate rread miss(A) with the read miss penalty time tread miss needed
for loading a cache line. In Eq. (4.7), tread miss has been calculated from nmiss cycle

and tcycle. The time tread hit for a read hit in the cache was assumed to be included in
the time for the execution of an instruction.

It is beneficial if the access time to the cache is adapted to the cycle time of the
processor, since this avoids delays for memory accesses in case of cache hits. To
do this, the first-level (L1) cache must be kept small and simple and an additional
second-level (L2) cache is used, which is large enough such that most memory
accesses go to the L2 cache and not to main memory. For performance analysis,
the modeling of the average read access time is based on the performance values of
the L1 cache. In particular, for Eq. (4.8), we have

tread access(A) = t (L1)
read hit + r (L1)

read miss(A) · t (L1)
read miss,

where r (L1)
read miss(A) is the cache read miss rate of A for the L1 cache, calculated by

dividing the total number of read accesses causing an L1 cache miss by the total
number of read accesses. To model the reload time t (L1)

read miss of the L1 cache, the
access time and miss rate of the L2 cache can be used. More precisely, we get

t L1
read miss = t (L2)

read hit + r (L2)
read miss(A) · t (L2)

read miss,

where r (L2)
read miss(A) is the read miss rate of A for the L2 cache, calculated by dividing

the total number of read misses of the L2 cache by the total number of read misses
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of the L1 cache. Thus, the global read miss rate of program A can be calculated by
r (L1)

read miss(A) · r (L2)
read miss(A).

4.1.4 Benchmark Programs

The performance of a computer system may vary significantly, depending on the
program considered. For two programs A and B, the following situation can occur:
Program A has a smaller execution time on a computer system X than on a computer
system Y , whereas program B has a smaller execution time on Y than on X .

For the user, it is important to base the selection of a computer system on a set
of programs that are often executed by the user. These programs may be different
for different users. Ideally, the programs would be weighted by their execution time
and their execution frequency. But often, the programs to be executed on a com-
puter system are not known in advance. Therefore, benchmark programs have
been developed which allow a standardized performance evaluation of computer
systems based on specific characteristics that can be measured on a given computer
system. Different benchmark programs have been proposed and used, including the
following approaches, listed in increasing order of their usefulness:

• Synthetic benchmarks, which are typically small artificial programs containing
a mixture of statements which are selected such that they are representative for
a large class of real applications. Synthetic benchmarks usually do not execute
meaningful operations on a large set of data. This bears the risk that some pro-
gram parts may be removed by an optimizing compiler. Examples for synthetic
benchmarks are Whetstone [36, 39], which has originally been formulated in For-
tran to measure floating-point performance, and Dhrystone [174] to measure inte-
ger performance in C. The performance measured by Whetstone or Dhrystone is
measured in specific units as KWhetstone/s or KDhrystone/s. The largest
drawback of synthetic benchmarks is that they are not able to match the pro-
file and behavior of large application programs with their complex interactions
between computations of the processor and accesses to the memory system. Such
interactions have a large influence on the resulting performance, yet they cannot
be captured by synthetic benchmarks. Another drawback is that a compiler or
system can be tuned toward simple benchmark programs to let the computer
system appear faster than it is for real applications.

• Kernel benchmarks with small but relevant parts of real applications which typ-
ically capture a large portion of the execution time of real applications. Compared
to real programs, kernels have the advantage that they are much shorter and easier
to analyze. Examples for kernel collections are the Livermore Loops (Livermore
Fortran Kernels, LFK) [121, 50], consisting of 24 loops extracted from scientific
simulations, and Linpack [41] capturing a piece of a Fortran library with lin-
ear algebra computations. Both kernels compute the performance in MFLOPS.
The drawback of kernels is that the performance values they produce are often
too large for applications that come from other areas than scientific computing.
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A variant of kernels is a collection of toy programs, which are small, but complete
programs performing useful computations. Examples are quicksort for sorting or
the sieve of Erathostenes for prime test.

• Real application benchmarks comprise several entire programs which reflect
a workload of a standard user. Such collections are often called benchmark
suites. They have the advantage that all aspects of the selected programs are
captured. The performance results produced are meaningful for users for which
the benchmark suite is representative for typical workloads. Examples for bench-
mark suites are the SPEC benchmarks, described in the following, for desk-
top computers, and the EEMBC benchmarks (EDV Embedded Microproces-
sor Benchmark Consortium) for embedded systems, see www.eembc.org for
more information.

The most popular benchmark suite is the SPEC benchmark suite (System Per-
formance Evaluation Cooperation), see www.spec.org for detailed information.
The cooperation was founded in 1988 with the goal to define a standardized per-
formance evaluation method for computer systems and to facilitate a performance
comparison. Until now, SPEC has published five generations of benchmark suites
for desktop computers: SPEC89, SPEC92, SPEC95, SPEC00, and SPEC06. There
are other benchmark suites for file servers (SPECSFC), web servers (SPECWeb), or
parallel systems like SPECOpenMP.

SPEC06 is the current version for desktop computers. It consists of 12 integer
programs (9 written in C, 3 in C++) and 17 floating-point programs (6 written in
Fortran, 3 in C, 4 in C++, and 4 in mixed C and Fortran). The integer programs
include, for example, a compression program (bzip2), a C compiler (gcc), a video
compression program, a chess game, and an XML parser. The floating-point pro-
grams include, for example, several simulation programs from physics, a speech
recognition program, a ray-tracing program (povray), as well as programs from
numerical analysis and a linear programming algorithm (soplex).

The SPEC integer and floating-point programs are used to compute two per-
formance measures SPECint2006 and SPECfp2006, respectively, to express the
average integer and floating-point performance of a specific computer system. The
performance measures are given as the relative performance with respect to a fixed
reference computer, specified by the SPEC suite. For SPEC06, the reference com-
puter is a Sun Ultra Enterprise 2 with a 296 MHz UltraSparc II processor. This ref-
erence computer gets a SPECint2006 and SPECfp2006 score of 1.0. Larger values
of the performance measures correspond to a higher performance of the computer
system tested. The SPECint2006 and SPECfp2006 values are determined separately
by using the SPEC integer and floating-point programs, respectively. To perform the
benchmark evaluation and to compute the performance measures SPECint2006 or
SPECfp2006, the following three steps are executed:

(1) Each of the programs is executed three times on the computer system U to be
tested. For each of the programs Ai an average execution time TU (Ai ) in sec-
onds is determined by taking the median of the three execution times measured,
i.e., the middle value.
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(2) For each program, the execution time TU (Ai ) determined in step (1) is nor-
malized with respect to the reference computer R by dividing the execution
time TR(Ai ) on R by the execution time TU (Ai ) on U . This yields an execution
factor FU (Ai ) = TR(Ai )/TU (Ai ) for each of the programs Ai which expresses
how much faster machine U is compared to R for program Ai .

(3) SPECint2006 is computed as the geometric mean of the execution factors of the
12 SPEC integer programs, i.e., a global factor Gint

U is computed by

Gint
U = 12

√√
√
√

12∏

i=1

FU (Ai ).

Gint
U is the SPECint2006 score, expressing how much faster U is compared

to R. SPECfp2006 is defined similarly, using the geometric mean of the 17
floating-point programs.

An alternative to the geometric means would be the arithmetic means to compute

the global execution factors, by calculation, for example, Aint
U = 1/12

12∑

i=1
FU (Ai ).

But using the geometric means has some advantages. The most important advantage
is that the comparison between two machines is independent of the choice of the
reference computer. This is not necessarily the case when the arithmetic means is
used instead; this is illustrated by a following example calculation.

Example Two programs A1 and A2 and two machines X and Y are considered, see
also [84]. Assuming the following execution times

TX (A1) = 1 s, TY (A1) = 10 s,
TX (A2) = 500 s, TY (A2) = 50 s

results in the following execution factors if Y is used as reference computer:

FX (A1) = 10, FX (A2) = 0.1, FY (A1) = FY (A2) = 1 .

This yields the following performance score for the arithmetic means A and the
geometric means G:

G X =
√

10 · 0.1 = 1, AX = 1

2
(10+ 0.1) = 5.05, GY = AY = 1 .

Using X as reference computer yields the following execution factors:

FX (P1) = FX (P2) = 1, FY (P1) = 0.1, FY (P2) = 10
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resulting in the following performance scores:

G X = 1, AX = 1, GY =
√

10 · 0.1 = 1, AY = 1

2
(0.1+ 10) = 5.05.

Thus, considering the arithmetic means, using Y as reference computer yields the
statement that X = 5.05 times faster than Y . Using X as reference computer yields
the opposite result. Such contradictory statements are avoided by using the geomet-
ric means, which states that X and Y have the same performance, independently of
the reference computer.

A drawback of the geometric means is that it does not provide information about
the actual execution time of the programs. This can be seen from the example just
given. Executing A1 and A2 only once requires 501 s on X and 60 s on Y , i.e., Y is
more than eight times faster than X . �

A detailed discussion of benchmark programs and program optimization issues
can be found in [42, 92, 69], which also contain references to other literature.

4.2 Performance Metrics for Parallel Programs

An important criterion for the usefulness of a parallel program is its runtime on a
specific execution platform. The parallel runtime Tp(n) of a program is the time
between the start of the program and the end of the execution on all participating
processors; this is the point in time when the last processor finishes its execution
for this program. The parallel runtime is usually expressed for a specific number p
of participating processors as a function of the problem size n. The problem size
is given by the size of the input data, which can for example be the number of
equations of an equation system to be solved. Depending on the architecture of the
execution platform, the parallel runtime comprises the following times:

• the runtime for the execution of local computations of each participating pro-
cessor; these are the computations that each processor performs using data in its
local memory;

• the runtime for the exchange of data between processors, e.g., by performing
explicit communication operations in the case of a distributed address space;

• the runtime for the synchronization of the participating processors when access-
ing shared data structures in the case of a shared address space;

• waiting times occurring because of an unequal load distribution of the processors;
waiting times can also occur when a processor has to wait before it can access a
shared data structure to ensure mutual exclusion.

The time spent for data exchange and synchronization as well as waiting times can
be considered as overhead since they do not contribute directly to the computations
to be performed.
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4.2.1 Speedup and Efficiency

The cost of a parallel program captures the runtime that each participating processor
spends for executing the program.

4.2.1.1 Cost of a Parallel Program

The cost C p(n) of a parallel program with input size n executed on p processors is
defined by

C p(n) = p · Tp(n).

Thus, C p(n) is a measure of the total amount of work performed by all processors.
Therefore, the cost of a parallel program is also called work or processor–runtime
product.

A parallel program is called cost-optimal if Cp(n) = T 	(n), i.e., if it executes
the same total number of operations as the fastest sequential program which has
runtime T 	(n). Using asymptotic execution times, this means that a parallel program
is cost-optimal if T 	(n)/C p(n) ∈ Θ(1) (see Sect. 4.3.1 for the Θ definition).

4.2.1.2 Speedup

For the analysis of parallel programs, a comparison with the execution time of
a sequential implementation is especially important to see the benefit of paral-
lelism. Such a comparison is often based on the relative saving in execution time
as expressed by the notion of speedup. The speedup Sp(n) of a parallel program
with parallel execution time Tp(n) is defined as

Sp(n) = T ∗(n)

Tp(n)
,

where p is the number of processors used to solve a problem of size n. T 	(n) is
the execution time of the best sequential implementation to solve the same problem.
The speedup of a parallel implementation expresses the relative saving of execution
time that can be obtained by using a parallel execution on p processors compared to
the best sequential implementation. The concept of speedup is used both for a theo-
retical analysis of algorithms based on the asymptotic notation and for the practical
evaluation of parallel programs.

Theoretically, Sp(n) ≤ p always holds, since for Sp(n) > p, a new sequential
algorithm could be constructed which is faster than the sequential algorithm that
has been used for the computation of the speedup. The new sequential algorithm is
derived from the parallel algorithm by a round robin simulation of the steps of the
participating p processors, i.e., the new sequential algorithm uses its first p steps
to simulate the first step of all p processors in a fixed order. Similarly, the next p
steps are used to simulate the second step of all p processors, and so on. Thus, the
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new sequential algorithm performs p times more steps than the parallel algorithm.
Because of Sp(n) > p, the new sequential algorithm would have execution time

p · Tp(n) = p · T ∗(n)

Sp(n)
< T ∗(n).

This is a contradiction to the assumption that the best sequential algorithm has been
used for the speedup computation. The new algorithm is faster.

The speedup definition given above requires a comparison with the fastest
sequential algorithm. This algorithm may be difficult to determine or construct.
Possible reasons may be as follows:

• The best sequential algorithm may not be known. There might be the situation
that a lower bound for the execution time of a solution method for a given prob-
lem can be determined, but until now, no algorithm with this asymptotic execu-
tion time has yet been constructed.

• There exists an algorithm with the optimum asymptotic execution time, but
depending on the size and the characteristics of a specific input set, other algo-
rithms lead to lower execution times in practice. For example, the use of balanced
trees for the dynamic management of data sets should be preferred only if the data
set is large enough and if enough access operations are performed.

• The sequential algorithm which leads to the smallest execution times requires a
large effort to be implemented.

Because of these reasons, the speedup is often computed by using a sequential ver-
sion of the parallel implementation instead of the best sequential algorithm.

In practice, superlinear speedup can sometimes be observed, i.e., Sp(n) > p can
occur. The reason for this behavior often lies in cache effects: A typical parallel
program assigns only a fraction of the entire data set to each processor. The fraction
is selected such that the processor performs its computations on its assigned data
set. In this situation, it can occur that the entire data set does not fit into the cache of
a single processor executing the program sequentially, thus leading to cache misses
during the computation. But when several processors execute the program with the
same amount of data in parallel, it may well be that the fraction of the data set
assigned to each processor fits into its local cache, thus avoiding cache misses.
However, superlinear speedup does not occur often. A more typical situation is
that a parallel implementation does not even reach linear speedup (Sp(n) = p),
since the parallel implementation requires additional overhead for the management
of parallelism. This overhead might be caused by the necessity to exchange data
between processors, by synchronization between processors, or by waiting times
caused by an unequal load balancing between the processors. Also, a parallel pro-
gram might have to perform more computations than the sequential program version
because replicated computations are performed to avoid data exchanges. The par-
allel program might also contain computations that must be executed sequentially
by only one of the processors because of data dependencies. During such sequential
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computations, the other processors must wait. Input and output operations are a
typical example for sequential program parts.

4.2.1.3 Efficiency

An alternative measure for the performance of a parallel program is the efficiency.
The efficiency captures the fraction of time for which a processor is usefully
employed by computations that also have to be performed by a sequential program.
The definition of the efficiency is based on the cost of a parallel program and can be
expressed as

E p(n) = T ∗(n)

C p(n)
= Sp(n)

p
= T ∗(n)

p · Tp(n)
,

where T 	(n) is the sequential execution time of the best sequential algorithm and
Tp(n) is the parallel execution time on p processors. If no superlinear speedup
occurs, then E p(n) ≤ 1. An ideal speedup Sp(n) = p corresponds to an efficiency
of E p(n) = 1.

4.2.1.4 Amdahl’s Law

The parallel execution time of programs cannot be arbitrarily reduced by employing
parallel resources. As shown, the number of processors is an upper bound for the
speedup that can be obtained. Other restrictions may come from data dependen-
cies within the algorithm to be implemented, which may limit the degree of paral-
lelism. An important restriction comes from program parts that have to be executed
sequentially. The effect on the obtainable speedup can be captured quantitatively by
Amdahl’s law [15]:

When a (constant) fraction f, 0 ≤ f ≤ 1, of a parallel program must be executed
sequentially, the parallel execution time of the program is composed of a fraction
of the sequential execution time f · T 	(n) and the execution time of the fraction
(1 − f ) · T 	(n), fully parallelized for p processors, i.e., (1 − f )/p · T 	(n). The
attainable speedup is therefore

Sp(n) = T ∗(n)

f · T ∗(n)+ 1− f
p T ∗(n)

= 1

f + 1− f
p

≤ 1

f
.

This estimation assumes that the best sequential algorithm is used and that the par-
allel part of the program can be perfectly parallelized. The effect of the sequential
computations on the attainable speedup can be demonstrated by considering an
example: If 20% of a program must be executed sequentially, then the attainable
speedup is limited to 1/ f = 5 according to Amdahl’s law, no matter how many
processors are used. Program parts that must be executed sequentially must be taken
into account in particular when a large number of processors are employed.
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4.2.2 Scalability of Parallel Programs

The scalability of a parallel program captures the performance behavior for an
increasing number of processors.

4.2.2.1 Scalability

Scalability is a measure describing whether a performance improvement can be
reached that is proportional to the number of processors employed. Scalability
depends on several properties of an algorithm and its parallel execution. Often, for a
fixed problem size n a saturation of the speedup can be observed when the number
p of processors is increased. But increasing the problem size for a fixed number
of processors usually leads to an increase in the attained speedup. In this sense,
scalability captures the property of a parallel implementation that the efficiency can
be kept constant if both the number p of processors and the problem size n are
increased. Thus, scalability is an important property of parallel programs since it
expresses that larger problems can be solved in the same time as smaller problems
if a sufficiently large number of processors are employed.

The increase in the speedup for increasing problem size n cannot be captured
by Amdahl’s law. Instead, a variant of Amdahl’s law can be used which assumes
that the sequential program part is not a constant fraction f of the total amount of
computations, but that it decreases with the input size. In this case, for an arbitrary
number p of processors, the intended speedup ≤ p can be obtained by setting the
problem size to a large enough value.

4.2.2.2 Gustafson’s Law

This behavior is expressed by Gustafson’s law [78] for the special case that the
sequential program part has a constant execution time, independent of the problem
size. If τ f is the constant execution time of the sequential program part and τv(n, p)
is the execution time of the parallelizable program part for problem size n and p
processors, then the scaled speedup of the program is expressed by

Sp(n) = τ f + τv(n, 1)

τ f + τv(n, p)
.

If we assume that the parallel program is perfectly parallelizable, then τv(n, 1) =
T ∗(1)− τ f and τv(n, p) = (T ∗(n)− τ f )/p follow and thus

Sp(n) = τ f + T ∗(n)− τ f

τ f + (T ∗(n)− τ f )/p
=

τ f

T ∗(n)−τ f
+ 1

τ f

T ∗(n)−τ f
+ 1

p

,

and therefore

lim
n→∞ Sp(n) = p,
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if T 	(n) increases strongly monotonically with n. This is for example true for
τv(n, p) = n2/p, which describes the amount of parallel computations for many
iteration methods on two-dimensional meshes:

lim
n→∞ Sp(n) = lim

n→∞
τ f + n2

τ f + n2/p
= lim

n→∞
τ f /n2 + 1

τ f /n2 + 1/p
= p.

There exist more complex scalability analysis methods which try to capture how the
problem size n must be increased relative to the number p of processors to obtain a
constant efficiency. An example is the use of isoefficiency functions as introduced
in [75] which express the required change of the problem size n as a function of the
number of processors p.

4.3 Asymptotic Times for Global Communication

In this section, we consider the analytical modeling of the execution time of paral-
lel programs. For the implementation of parallel programs, many design decisions
have to be made concerning, for example, the distribution of program data and
the mapping of computations to resources of the execution platform. Depending
on these decisions, different communication or synchronization operations must be
performed, and different load balancing may result, leading to different parallel
execution times for different program versions. Analytical modeling can help to
perform a pre-selection by determining which program versions are promising and
which program versions lead to significantly larger execution times, e.g., because of
a potentially large communication overhead. In many situations, analytical model-
ing can help to favor one program version over many others. For distributed memory
organizations, the main difference of the parallel program versions is often the data
distribution and the resulting communication requirements.

For different programming models, different challenges arise for the analytical
modeling. For programming models with a distributed address space, communica-
tion and synchronization operations are called explicitly in the parallel program,
which facilitates the performance modeling. The modeling can capture the actual
communication times quite accurately, if the runtime of the single communication
operations can be modeled quite accurately. This is typically the case for many exe-
cution platforms. For programming models with a shared address space, accesses
to different memory locations may result in different access times, depending on
the memory organization of the execution platform. Therefore, it is typically much
more difficult to analytically capture the access time caused by a memory access. In
the following, we consider programming models with a distributed address space.

The time for the execution of local computations can often be estimated by the
number of (arithmetical or logical) operations to be performed. But there are several
sources of inaccuracy that must be taken into consideration:
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• It may not be possible to determine the number of arithmetical operations exactly,
since loop bounds may not be known at compile time or since adaptive features
are included to adapt the operations to a specific input situation. Therefore, for
some operations or statements, the frequency of execution may not be known.
Different approaches can be used to support analytical modeling in such situa-
tions. One approach is that the programmer can give hints in the program about
the estimated number of iterations of a loop or the likelihood of a condition to be
true or false. These hints can be included by pragma statements and could then
be processed by a modeling tool.
Another possibility is the use of profiling tools with which typical numbers of
loop iterations can be determined for similar or smaller input sets. This informa-
tion can then be used for the modeling of the execution time for larger input sets,
e.g., using extrapolation.

• For different execution platforms, arithmetical operations may have distinct exe-
cution times, depending on their internal implementation. Larger differences may
occur for more complex operations like division, square root, or trigonometric
functions. However, these operations are not used very often. If larger differ-
ences occur, a differentiation between the operations can help for a more precise
performance modeling.

• Each processor typically has a local memory hierarchy with several levels of
caches. This results in varying memory access times for different memory loca-
tions. For the modeling, average access times can be used, computed from cache
miss and cache hit rates, see Sect. 4.1.3. These rates can be obtained by profiling.

The time for data exchange between processors can be modeled by considering the
communication operations executed during program execution in isolation. For a
theoretical analysis of communication operations, asymptotic running times can be
used. We consider these for different interconnection networks in the following.

4.3.1 Implementing Global Communication Operations

In this section, we study the implementation and asymptotic running times of var-
ious global communication operations introduced in Sect. 3.5.2 on static intercon-
nection networks according to [19]. Specifically, we consider the linear array, the
ring, a symmetric mesh, and the hypercube, as defined in Sect. 2.5.2. The parallel
execution of global communication operations depends on the number of processors
and the message size. The parallel execution time also depends on the topology of
the network and the properties of the hardware realization. For the analysis, we
make the following assumptions about the links and input and output ports of the
network.

1. The links of the network are bidirectional, i.e., messages can be sent simulta-
neously in both directions. For real parallel systems, this property is usually
fulfilled.
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2. Each node can simultaneously send out messages on all its outgoing links; this
is also called all-port communication. For parallel computers this can be orga-
nized by separate output buffers for each outgoing link of a node with corre-
sponding controllers responsible for the transmission along that link. The simul-
taneous sending results from controllers working in parallel.

3. Each node can simultaneously receive messages on all its incoming links. In
practice, there is a separate input buffer with controllers for each incoming link
responsible for the receipt of messages.

4. Each message consists of several bytes, which are transmitted along a link with-
out any interruption.

5. The time for transmitting a message consists of the startup time tS , which is
independent of the message size, and the byte transfer time m · tB , which is
proportional to the size of the message m. The time for transmitting a single byte
is denoted by tB . Thus, the time for sending a message of size m from a node
to a directly connected neighbor node takes time T (m) = tS + m · tB , see also
Formula (2.3) in Sect. 2.6.3.

6. Packet switching with store-and-forward is used as switching strategy, see also
Sect. 2.6.3. The message is transmitted along a path in the network from the
source node to a target node, and the length of the path determines the number of
time steps of the transmission. Thus, the time for a communication also depends
on the path length and the number of processors involved.

Given an interconnection network with these properties and parameters tS and tB ,
the time for a communication is mainly determined by the message size m and the
path length p. For an implementation of global communication operations, several
messages have to be transmitted and several paths are involved. For an efficient
implementation, these paths should be planned carefully such that no conflicts occur.
A conflict can occur when two messages are to be sent along the same link in the
same time step; this usually leads to a delay of one of the messages, since the
messages have to be sent one after another. Careful planning of the communica-
tion paths is a crucial point in the following implementation of global communica-
tion operations and the estimations of their running times. The execution times are
given as asymptotic running time, which we briefly summarize now.

4.3.1.1 Asymptotic Notation

Asymptotic running times describe how the execution time of an algorithm increases
with the size of the input, see, e.g., [31]. The notation for the asymptotic run-
ning time uses functions whose domains are the natural numbers N. The function
describes the essential terms for the asymptotic behavior and ignores less important
terms such as constants and terms of lower increase. The asymptotic notation com-
prises the O-notation, the Ω-notation, and the Θ-notation, which describe bound-
aries of the increase of the running time. The asymptotic upper bound is given by the
O-notation:
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O(g(n)) = { f (n) | there exists a positive constant c and n0 ∈ N,

such that for all n ≥ n0 : 0 ≤ f (n) ≤ cg(n)}.

The asymptotic lower bound is given by the Ω-notation:

Ω(g(n)) = { f (n) | there exists a positive constant c and n0 ∈ N,

such that for all n ≥ n0 : 0 ≤ cg(n) ≤ f (n)}.

The Θ-notation bounds the function from above and below:

Θ(g(n)) = { f (n) | there exist positive constants c1, c2 and n0 ∈ N,

such that for all n ≥ n0 : 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}.

Figure 4.1 illustrates the boundaries for the O-notation, the Ω-notation, and the
Θ-notation according to [31].

The asymptotic running times of global communication operations with respect
to the number of processors in the static interconnection network are given in
Table 4.1. Running times for global communication operations are presented often
in the literature, see, e.g., [100, 75]. The analysis of running times mainly differs
in the assumptions made about the interconnection network. In [75], one-port com-
munication is considered, i.e., a node can send out only one message at a specific
time step along one of its output ports; the communication times are given as func-
tions in closed form depending on the number of processors p and the message
size m for store-and-forward as well as cut-through switching. Here we use the
assumptions given above according to [19].

The analysis uses the duality and hierarchy properties of global communication
operation given in Fig. 3.9 in Sect. 3.5.2. Thus, from the asymptotic running times of
one of the global communication operations it follows that a global communication
operation which is less complex can be solved in no additional time and that a
global communication operation which is more complex cannot be solved faster.
For example, the scatter operation is less expensive than a multi-broadcast on the
same network, but more expensive than a single-broadcast operation. Also a global
communication operation has the same asymptotic time as its dual operation in the

f (n)

c g(n) c g(n)

c2 g(n)

c1 g(n)

n
0

n
0

n
0

nnn

f (n) = O(g(n)) f (n) = Ω (g(n)) f (n) = Θ (g(n))f (n)

f (n)

Fig. 4.1 Graphic examples of the O-, Ω-, and Θ-notation. As value for n0 the minimal value
which can be used in the definition is shown
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Table 4.1 Asymptotic running times of the implementation of global communication operations
depending on the number p of processors in the static network. The linear array has the same
asymptotic times as the ring

Operation Ring Mesh Hypercube

Single-broadcast Θ(p) Θ( d
√

p) Θ(logp)
Scatter Θ(p) Θ(p) Θ(p/logp)
Multi-broadcast Θ(p) Θ(p) Θ(p/logp)
Total exchange Θ(p2) Θ(p(d+1)/d ) Θ(p)

hierarchy. For example, the asymptotic time derived for a scatter operation can be
used as asymptotic time of the gather operation.

4.3.1.2 Complete Graph

A complete graph has a direct link between every pair of nodes. With the assumption
of bidirectional links and a simultaneous sending and receiving of each output port, a
total exchange can be implemented in one time step. Thus, all other communication
operations such as broadcast, scatter, and gather operations can also be implemented
in one time step and the asymptotic time is Θ(1).

4.3.1.3 Linear Array

A linear array with p nodes is represented by a graph G = (V, E) with a set of
nodes V = {1, . . . , p} and a set of edges E = {(i, i + 1)|1 ≤ i < p}, i.e., each
node except the first and the final is connected with its left and right neighbors. For
an implementation of a single-broadcast operation, the root processor sends the
message to its left and its right neighbors in the first step; in the next steps each
processor sends the message received from a neighbor in the previous step to its
other neighbor. The number of steps depends on the position of the root processor.
For a root processor at the end of the linear array, the number of steps is p − 1. For
a root processor in the middle of the array, the time is 
 p/2�. Since the diameter of
a linear array is p− 1, the implementation cannot be faster and the asymptotic time
Θ(p) results.

A multi-broadcast operation can also be implemented in p−1 time steps using
the following algorithm. In the first step, each node sends its message to both neigh-
bors. In the step k = 2, . . . , p − 1, each node i with k ≤ i < p sends the message
received in the previous step from its left neighbor to the right neighbor i + 1; this
is the message originating from node i − k + 1. Simultaneously, each node i with
2 ≤ i ≤ p − k + 1 sends the message received in the previous step from its right
neighbor to the left neighbor i − 1; this is the message originally coming from node
i + k − 1. Thus, the messages sent to the right make one hop to the right per time
step and the messages sent to the left make one hop to the left in one time step. After
p − 1 steps, all messages are received by all nodes. Figure 4.2 shows a linear array
with four nodes as example; a multi-broadcast operation on this linear array can be
performed in three time steps.
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Fig. 4.2 Implementation of a multi-broadcast operation in time 3 on a linear array with four nodes

For the scatter operation on a linear array with p nodes, the asymptotic time
Θ(p) results. Since the scatter operation is a specialization of the multi-broadcast
operation it needs at most p − 1 steps, and since the scatter operation is more gen-
eral than a single-broadcast operation, it needs at least p − 1 steps, see also the
hierarchy of global communication operations in Fig. 3.9. When the root node of
the scatter operation is not one of the end nodes of the array, a scatter operation can
be faster. The messages for more distant nodes are sent out earlier from the root
node, i.e., the messages are sent in the reverse order of their distance from the root
node. All other nodes send the messages received in one step from one neighbor to
the other neighbor in the next step.

The number of time steps for a total exchange can be determined by con-
sidering an edge (k, k + 1), 1 ≤ k < p, which separates the linear array into
two subsets with k and p − k nodes. Each node of the subset {1, . . . , k} sends
p − k messages along this edge to the other subset and each node of the sub-
set {k + 1, . . . , p} sends k messages in the other direction along this link. Thus,
a total exchange needs at least k · (p − k) time steps or p2/4 for k = 
 p/2�.
On the other hand, a total exchange can be implemented by p consecutive scat-
ter operations, which lead to p2 steps. Altogether, an asymptotic time Θ(p2)
results.

4.3.1.4 Ring

A ring topology has the nodes and edges of a linear array and an additional edge
between node 1 and node p. All implementations of global communication opera-
tions are similar to the implementations on the linear array, but take one half of the
time due to this additional link.

A single-broadcast operation is implemented by sending the message from
the root node in both directions in the first step; in the following steps each node
sends the message received in the opposite direction. This results in 
 p/2� time
steps. Since the diameter of the ring is �p/2�, the broadcast operation cannot be
implemented faster and the time Θ(p) results.
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A multi-broadcast operation is also implemented as for the array but in 
 p/2�
steps. In the first step, each processor sends its message in both directions. In the
following steps k, 2 ≤ k ≤ 
 p/2�, each processor sends the messages received
in the opposite directions. Since the diameter is �p/2�, the time Θ(p) results.
Figure 4.3 illustrates a multi-broadcast operation for p = 6 processors.
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Fig. 4.3 Implementation of a multi-broadcast operation on a ring with six nodes. The message sent
out by node i is denoted by pi , i = 1, . . . , 6

The scatter operation also needs time Θ(p) since it cannot be faster than a
single-broadcast operation and it is not slower than a multi-broadcast operation. For
a total exchange, the ring is divided into two sets of p/2 nodes each (for p even).
Each node of one of the subsets sends p/2 messages into the other subset across
two links. This results in p2/8 time steps, since one message needs one time step to
be sent along one link. The time is Θ(p2).

4.3.1.5 Mesh

For a d-dimensional mesh with p nodes and d
√

p nodes in each dimension, the diam-
eter is d(p1/d − 1) and, thus, a single-broadcast operation can be executed in time
Θ(p1/d ). For the scatter operation, an upper bound is Θ(p) since a linear array
with p nodes can be embedded into the mesh and a scatter operation needs time p
on the array. A scatter operation also needs at least time p−1, since p−1 messages
have to be sent along the d outgoing links of the root node, which takes � p−1

d � time
steps. The time Θ(p) for the multi-broadcast operation results in a similar way.

For the total exchange, we consider a mesh with an even number of nodes and
subdivide the mesh into two submeshes of dimension d − 1 with p/2 nodes each.
Each node of a submesh sends p/2 messages into the other submesh, which have to
be sent over the links connecting both submeshes. These are ( d

√
p)d−1 links. Thus, at

least p
d+1

d time steps are needed (because of p2/(4p
d−1

d ) = 1/(4p
d−1−2d

d ) = 1
4 p

d+1
d ).

To show that a total exchange can be performed in time O(p
d+1

d ), we consider
an algorithm implementing the total exchange in time p

d+1
d . Such an algorithm can
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be defined inductively from total exchange operations on meshes with lower dimen-
sion. For d = 1, the mesh is identical to a linear array for which the total exchange
has a time complexity O(p2). Now we assume that an implementation on a (d − 1)-
dimensional symmetric mesh with time O(p

d
d−1 ) is given. The total exchange

operation on the d-dimensional symmetric mesh can be executed in two phases.
The d-dimensional symmetric mesh is subdivided into disjoint meshes of dimension
d − 1 which results in d

√
p meshes. This can be done by fixing the value for the

component in the last dimension xd of the nodes (x1, . . . , xd ) to one of the values
xd = 1, . . . , d

√
p. In the first phase, total exchange operations are performed on the

(d − 1)-dimensional meshes in parallel. Since each (d − 1)-dimensional mesh has
p

d−1
d nodes, in one of the total exchange operations p

d−1
d messages are exchanged.

Since p messages have to be exchanged in each d − 1-dimensional mesh, there

are
p

p
d−1

d

= p1/d total exchange operations to perform. Because of the induction

hypothesis, each of the total exchange operations needs time O p
d−1

d

d
d−1 = O(p)

and thus the time p1/d · O(p) = O(p
d+1

d ) for the first phase results. In the sec-
ond phase, the messages between the different submeshes are exchanged. The d-
dimensional mesh consists of p

d−1
d meshes of dimension 1 with d

√
p nodes each;

these are linear arrays of size d
√

p. Each node of a one-dimensional mesh belongs

to a different d − 1-dimensional mesh and has already received p
d−1

d messages
in the first phase. Thus, each node of a one-dimensional mesh has p

d−1
d mes-

sages different from the messages of the other nodes; these messages have to be
exchanged between them. This takes time O(( d

√
p)2) for one message of each

node and in total p
2
d p

d−1
d = p

d+1
d time steps. Thus, the time complexity Θ(p

d+1
d )

results.

4.3.2 Communications Operations on a Hypercube

For a d-dimensional hypercube, we use the bit notation of the p = 2d nodes as d-bit
words α = α1 · · ·αd ∈ {0, 1}d introduced in Sect. 2.5.2.

4.3.2.1 Single-Broadcast Operation

A single-broadcast operation can be implemented using a spanning tree rooted at a
node α that is the root of the broadcast operation. We construct a spanning tree for
α = 00 · · · 0 = 0d and then derive spanning trees for other root nodes. Starting with
root node α = 00 · · · 0 = 0d the children of a node are chosen by inverting one of
the zero bits that are right of the rightmost unity bit. For d = 4 the spanning tree in
Fig. 4.4 results.

The spanning tree with root α = 00 · · · 0 = 0d has the following properties:
The bit names of two nodes connected by an edge differ in exactly one bit, i.e., the
edges of the spanning tree correspond to hypercube links. The construction of the
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Fig. 4.4 Spanning tree for a single-broadcast operation on a hypercube for d = 4

spanning tree creates all nodes of the hypercube. All leaf nodes end with a unity.
The maximal degree of a node is d , since at most d bits can be inverted. Since a
child node has one more unity bit than its parent node, an arbitrary path from the
root to a leaf has a length not larger than d , i.e., the spanning tree has depth d,
since there is one path from the root to node 11 · · · 1 for which all d bits have to be
inverted.

For a single-broadcast operation with an arbitrary root node z, a spanning tree
Tz is constructed from the spanning tree T0 rooted at node 00 · · · 0 by keeping the
structure of the tree but mapping the bit names of the nodes to new bit names in the
following way. A node x of tree T0 is mapped to node x ⊕ z of tree Tz , where ⊕
denotes the bitwise xor operation (exclusive or operation), i.e.,

a1 · · · ad ⊕ b1 · · · bd = c1 · · · cd with ci =
{

1 when ai 	= bi

0 otherwise
for 1 ≤ i ≤ d.

Especially, node α = 00 · · · 0 is mapped to node α ⊕ z = z. The tree structure
of tree Tz remains the same as for tree T0. Since the nodes v,w of T0 connected
by an edge (v,w) differ in exactly one bit position, the nodes v ⊕ z and w ⊕ z
of tree Tz also differ in exactly one bit position and the edge (v ⊕ z, w ⊕ z) is a
hypercube link. Thus, a spanning tree of the d-dimensional hypercube with root z
results.

The spanning tree can be used to implement a single-broadcast operation from
the root node in d time steps. The messages are first sent from the root to all children,
and in the next time steps each node sends the message received to all its children.
Since the diameter of a d-dimensional hypercube is d, the single-broadcast opera-
tion cannot be faster than d and the time Θ(d) = Θ(log(p)) results.

4.3.2.2 Multi-broadcast Operation on a Hypercube

For a multi-broadcast operation, each node receives p − 1 messages from the
other nodes. Since a node has d = log p incoming edges, which can receive
messages simultaneously, an implementation of a multi-broadcast operation on a
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d-dimensional hypercube takes at least �(p − 1)/ log p� time steps. There are algo-
rithms that attain this lower bound and we construct one of them in the following
according to [19].

The multi-broadcast operation is considered as a set of single-broadcast opera-
tions, one for each node in the hypercube. A spanning tree is constructed for the
single-broadcast operations and the message is sent along the links of the tree in a
sequence of time steps as described above for the single-broadcast in isolation. The
idea of the algorithm for the multi-broadcast operation is to construct spanning trees
for the single-broadcast operation such that the single-broadcast operations can be
performed simultaneously. To achieve this, the links of the different spanning trees
used for a transmission in the same time step have to be disjoint. This is the reason
why the spanning trees for the single-broadcast in isolation cannot be used here
as will be seen later. We start by constructing the spanning tree T0 for root node
00 · · · 0.

The spanning tree T0 for root node 00 · · · 0 consists of disjoint sets of edges
A1, . . . , Am , where m is the number of time steps needed for a single-broadcast
and Ai is the set of edges over which the messages are transmitted at time step
i , i = 1, . . . , m. The set of start nodes of the edges in Ai is denoted by Si and
the set of end nodes is denoted by Ei , i = 1, . . . , m, with S1 = {(00 · · · 0)} and
Si ⊂ S1 ∪

⋃i−1
k=1 Ek . The spanning tree Tt with root t ∈ {0, 1}d is constructed from

T0 by mapping the edge sets of T0 to edge sets Ai (t) of Tt using the xor operation,
i.e.,

Ai (t) = {(x ⊕ t, y ⊕ t)|(x, y) ∈ Ai } for 1 ≤ i ≤ m . (4.9)

If T0 is a spanning tree, then Tt is also a spanning tree with root T ∈ {0, 1}d . The
goal is to construct the sets A1, . . . , Am such that for each i ∈ {1, . . . , m} the sets
Ai (t) are pairwise disjoint for all t ∈ {0, 1}d (with Ai = Ai (0), i = 1, . . . , m). This
means that transmission of data can be performed simultaneously on those links. To
get disjoint edges for the same transmission step i , the sets Ai are constructed such
that

– For any two edges (x, y) ∈ Ai and (x ′, y′) ∈ Ai , the bit position in which the
nodes x and y differ is not the same bit position in which the nodes x ′ and y′

differ.

The reason for this requirement is that two edges whose start and end nodes differ
in the same bit position can be mapped onto each other by the xor operation with
an appropriate t . Thus, if such edges would be in set Ai for some i ∈ {1, . . . , m},
then they would be in the set Ai (t) and the sets Ai and Ai (t) would not be disjoint.
This is illustrated in Fig. 4.5 for d = 3 using the spanning trees constructed earlier
for the single-broadcast operations in isolation.
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Fig. 4.5 Spanning tree for the single-broadcast operation in isolation. The start and end nodes
of the edges e1 = ((010), (011)) and e2 = ((100), (101)) differ in the same bit position, which
is the first bit position on the right. The xor operation with new root node t = 110 cre-
ates a tree that contains the same edges e1 and e2 for a data transmission in the second time
step. A delay of the transmission into the third time step would solve this conflict. However,
a new conflict in time step 3 results in the spanning tree with root 010, which has edge e2 in
the third time step, and in spanning tree with root 100, which has edge e1 in the third time
step

There are only d different bit positions so that each set Ai , i = 1, . . . , m, can
only contain at most d edges. Thus, the sets Ai are constructed such that |Ai | = d
for 1 ≤ i < m and |Am | ≤ d . Since the sets A1, . . . , Am should be pairwise disjoint
and the total number of edges in the spanning tree is 2d − 1 (there is an incoming
edge for each node except the root node), we get

∣∣
∣∣∣

m⋃

i=1

Ai

∣∣
∣∣∣
= 2d − 1

and a first estimation for m:

m =
⌈

2d − 1

d

⌉
.

Figure 4.6 shows the eight spanning trees for d = 3 and edge sets A1, A2, A3 with
|A1| = |A2| = 3 and |A3| = 1. In this example, there is no conflict in any of the
three time steps i = 1, 2, 3. These spanning trees can be used simultaneously, and a
multi-broadcast needs m = �(23 − 1)/3� = 3 time steps.

We now construct the edge sets Ai , i = 1, . . . , m, for arbitrary d. The construc-
tion mainly consists of the following arrangement of the nodes of the d-dimensional
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Fig. 4.6 Spanning trees for a multi-broadcast operation on a d-dimensional hypercube with
d = 3. The sets A1, A2, A3 for root 000 are A1 = {(000, 001), (000, 010), (000, 100)}, A2 =
{(001, 101), (010, 011), (100, 110)}, and A3 = {(110, 111)} shown in the upper left corner. The
other trees are constructed according to Formula (4.9)

hypercube. The set of nodes with k unity bits and d − k zero bits is denoted as Nk ,
k = 1, . . . , d, i.e.,

Nk = {t ∈ {0, 1}d | t has k unity bits and d − k zero bits}

for 0 ≤ k ≤ d with N0 = {(00 · · · 0)} and Nd = {(11 · · · 1)}. The number of
elements in Nk is

|Nk | =
(

d
k

)
= d!

k!(d − k)!
.

Each set Nk is further partitioned into disjoint sets Rk1, . . . , Rknk , where one set Rki

contains all elements which result from a bit rotation to the left from each other.
The sets Rki are equivalence classes with respect to the relation rotation to the left.
The first of these equivalence classes Rk1 is chosen to be the set with the element
(0d−k1k), i.e., the rightmost bits are unity bits. Based on these sets, each node t ∈
{0, 1}d is assigned a number n(t) ∈ {0, . . . , 2d − 1} corresponding to its position in
the order
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{α}R11 R21 · · · R2n2 · · · Rk1 · · · Rknk · · · R(d−2)1 · · · R(d−2)nd−2 R(d−1)1{β}, (4.10)

with α = 00 · · · 0 and β = 11 · · · 1 and position numbers n(α) = 0 and n(β) =
2d − 1. Each node t ∈ {0, 1}d , except α, is also assigned a number m(t) with

m(t) = 1+ [(n(t)− 1) mod d] , (4.11)

i.e., the nodes are numbered in a round-robin fashion by 1, . . . , d. So far, there is no
specific order of the nodes within one of the equivalence classes Rk j , k = 1, . . . , d,
j = 1, . . . , nk . Using m(t) we now specify the following order:

– The first element t ∈ Rk j is chosen such that the following condition is satisfied:

The bit at position m(t) from the right is 1. (4.12)

– The subsequent elements of Rk j result from a single bit rotation to the left. Thus,
property (4.12) is satisfied for all elements of Rk j .

For the first equivalence classes Rk1, k = 1, . . . , d, we additionally require the
following:

– The first element t ∈ Rk1 has a zero at the bit position right of position m(t), i.e.,
when m(t) > 1, the bit at position m(t)− 1 is a zero, and when m(t) = 1, the bit
at the leftmost position is a zero.

– The property holds for all elements in Rk1, since they result by a bit rotation to
the left from the first element.

For the case d = 4, the following order of the nodes t ∈ {0, 1}4 and m(t) values
result:

N0

0
(0000)

N1

1
(0001)

2
(0010)

3
(0100)

4
(1000)︸ ︷︷ ︸

R11

N2

1
(0011)

2
(0110)

3
(1100)

4
(1001)︸ ︷︷ ︸

R21

1
(0101)

2
(1010)︸ ︷︷ ︸

R22

N3

3
(1101)

4
(1011)

1
(0111)

2
(1110)︸ ︷︷ ︸

R31

N4

3
(1111) .

Using the numbering n(t) we now define the sets of end nodes E0, E1, . . . , Em of the
edge sets A1, . . . , Am as contiguous blocks of d nodes (or < d nodes for the last set):
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E0 = {(00 · · · 0)},
Ei = {t ∈ {0, 1}d | (i − 1)d + 1 ≤ n(t) ≤ i · d} for 1 ≤ i < m,

Em = {t ∈ {0, 1}d | (m − 1)d + 1 ≤ n(t) ≤ 2d − 1} with m =
⌈

2d − 1

d

⌉
.

The sets of edges Ai , 1 ≤ i ≤ m, are then constructed according to the following:

– The set of edges Ai , 1 ≤ i ≤ m, consists of the edges that
connect an end node t ∈ Ei with the start node t ′ obtained from t by inverting
the bit at position m(t), which is always a unity bit due to the construction.

– As an exception, the end node t = (11 · · · 1) for the case m(11 · · · 1) = d is
connected to the start node t ′ = (1011 · · · 1) (and not (011 · · · 1)).

Due to the construction the start nodes t ′ have one unity bit less than t and, thus,
when t ∈ Nk , then t ′ ∈ Nk−1. Also the edges are links of the hypercube. Figure 4.7
shows the sets of end nodes and the sets of edges for d = 4.

EEE

m(1001)=4 m(1101)=3

m(0011)=1 m(1011)=4 m(1111)=3

m(0110)=2

m(1100)=3

m(0101)=1

m(1010)=2

m(0111)=1

m(1110)=2

EE

m(0001)=1

m(0010)=2

m(0100)=3

m(1000)=4

m(0000)=0

AA AAA 4321

43210

Fig. 4.7 Spanning tree with root node 00 · · · 0 for a multi-broadcast operation on a hypercube with
d = 4. The sets of edges Ai , i = 1, . . . , 4, are indicated by dotted arrows

Next, we show that these sets of edges define a spanning tree with root node
(00 · · · 0) by showing that an end node t ∈ Ei is connected to a start node
t ′ ∈ ⋃i−1

k=1 Ek , i.e., that there exists k < i with t ′ ∈ Ek . Since t ′ has one more
zero than t by construction, n(t ′) < n(t) and thus k > i is not possible, i.e., k ≤ i
holds. It remains to show that k < i .

– For t = 11 · · · 1 and m(t) = d , the set Em contains d nodes, which are node t
and d − 1 other nodes from Rd−1,1. There is one node of Rd−1,1 left, which is in
set Em−1; this node has a 1 at position m(t) from the right and a 0 left of it. Thus,
this node is (1011 · · · 1) which has been chosen as the start node by exception.

– For t = 11 · · · 1 and m(t) = d − k < d , with 1 ≤ k < d, the set Em contains
d−k nodes s with numbers n(s) < d−k. The start node t ′ connected to t has a 0
at the position d−k according to the construction and a 1 at the position d−k−1
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from the right. Thus, m(t ′) = d − k + 1. Since m(t ′) > d − k, the node t ′ cannot
belong to the edge set Em and thus t ′ ∈ Em−1.

For the nodes t 	= 11 · · · 1, we now show that n(t) − n(t ′) ≥ d, i.e., t ′ belongs to a
different set Ek than t , with k < i .

– For t ∈ Rkn with n > 1, all elements of Rk1 are between t and t ′, since t ′ ∈ Nk−1.
This set Rk1 is the equivalence class of nodes (0d−k1k) and contains d elements.
Thus, n(t)− n(t ′) ≥ d .

– For t ∈ Rk1, the start node t ′ is an element of Rk−1,1, since it has one more zero
bit (which is at position m(t)) and according to the internal order in the set Rk−1,1

all remaining unity bits are right of m(t) in a contiguous block of bit positions.
Therefore, all elements of Rk−1,2, . . . , Rk−1,nk−1 are between t and t ′ . These are
|Nk−1| − |Rk−1,1| =

( d
k−1

) − d elements. For 2 < k < d and d ≥ 5, it can be

shown by induction that
( d

k−1

) − d ≥ d . For k = 1, 2, R11 = E1 and R21 = E2

for all d and t ′ ∈ Ek−1 holds. For d = 3 and d = 4, the estimation can be shown
individually; Fig. 4.6 shows the case d = 3 and Fig. 4.7 shows the case d = 4.

Thus, the sets Ai (t), i = 1, . . . , m, can be used for one of the single-broadcast
operations of the multi-broadcast operation. The other sets Ai (t) are constructed
using the xor operation as described above. The trees can be used simultaneously,
since no conflicts result. This can be seen from the construction and the numbers
m(t). The nodes in a set of end nodes Ei of edge set Ai have d different numbers
m(t) = 1, . . . , d and, thus, for each of the nodes t ∈ Ei a bit at a different bit posi-
tion is inverted. Thus, the start and end nodes of the edges in Ai differ in different bit
positions, which is the requirement to get a conflict-free transmission of messages
in time step i . In summary, the single-broadcast operations can be performed in
parallel and the multi-broadcast operation can be performed in m = �(2d − 1)/d�
time steps.

4.3.2.3 Scatter Operation

A scatter operation takes no more time than the multi-broadcast operation, i.e., it
takes no more than �(2d−1)/d� time steps. On the other hand, in a scatter operation
2d − 1 messages have to be sent out from the d outgoing edges of the root node,
which needs at least �(2d − 1)/d� time steps. Thus, the time for a scatter operation
on a d-dimensional hypercube is Θ(�(p − 1)/ log p�).

4.3.2.4 Total Exchange

The total exchange on a d-dimensional hypercube has time Θ(p) = Θ(2d ). The
lower bound results from decomposing the hypercube into two hypercubes of
dimension d − 1 with p/2 = 2d−1 nodes each and 2d−1 edges between them. For
a total exchange, each node of one of the (d − 1)-dimensional hypercubes sends a
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message for each node of the other hypercube; these are (2d−1)2 = 22d−2 messages,
which have to be transmitted along the 2d−1 edges connecting both hypercubes. This
takes at least 22d−2/2d−1 = 2d−1 = p/2 time steps.

An algorithm implementing the total exchange in p − 1 steps can be built recur-
sively. For d = 1, the hypercube consists of 2 nodes for which the total exchange
can be done in one time step, which is 21−1. Next, we assume that there is an imple-
mentation of the total exchange on a d-dimensional hypercube in time ≤ 2d − 1. A
(d + 1)-dimensional hypercube is decomposed into two hypercubes C1 and C2 of
dimension d. The algorithm consists of the three phases:

1. A total exchange within the hypercubes C1 and C2 is performed simultaneously.
2. Each node in C1 ( or C2) sends 2d messages for the nodes in C2 (or C1) to its

counterpart in the other hypercube. Since all nodes used different edges, this
takes time 2d .

3. A total exchange in each of the hypercubes is performed to distribute the mes-
sages received in phase 2.

The phases 1 and 2 can be performed simultaneously and take time 2d . Phase 3
has to be performed after phase 2 and takes time ≤ 2d − 1. In summary, the time
2d + 2d − 1 = 2d+1 − 1 results.

4.4 Analysis of Parallel Execution Times

The time needed for the parallel execution of a parallel program depends on

• the size of the input data n, and possibly further characteristics such as the num-
ber of iterations of an algorithm or the loop bounds;

• the number of processors p; and
• the communication parameters, which describe the specifics of the communica-

tion of a parallel system or a communication library.

For a specific parallel program, the time needed for the parallel execution can be
described as a function T (p, n) depending on p and n. This function can be used
to analyze the parallel execution time and its behavior depending on p and n. As
example, we consider the parallel implementations of a scalar product and of a
matrix–vector product, presented in Sect. 3.6.

4.4.1 Parallel Scalar Product

The parallel scalar product of two vectors a, b ∈ R
n computes a scalar value which

is the sum of the values a j · b j , j = 1, . . . , n. For a parallel computation on p
processors, we assume that n is divisible by p with n = r · p, r ∈ N, and that
the vectors are distributed in a blockwise way, see Sect. 3.4 for a description of data
distributions. Processor Pk stores the elements a j and b j with r ·(k−1)+1 ≤ j ≤ r ·k
and computes the partial scalar products



182 4 Performance Analysis of Parallel Programs

ck =
r ·k∑

j=r ·(k−1)+1

a j · b j ,

so that processor Pk stores value ck . To get the final result c = ∑p
k=1 ck , a single-

accumulation operation is performed and one of the processors stores this value. The
parallel execution time of the implementation depends on the computation time and
the communication time. To build a function T (p, n), we assume that the execution
of an arithmetic operation needs α time units and that sending a floating-point value
to a neighboring processor in the interconnection network needs β time units. The
parallel computation time for the partial scalar product is 2rα, since about r addition
operations and r multiplication operations are performed.

The time for a single-accumulation operation depends on the specific intercon-
nection network and we consider the linear array and the hypercube as examples.
See also Sect. 2.5.2 for the definition of these direct networks.

4.4.1.1 Linear Array

In the linear array, the optimal processor as root node for the single-accumulation
operation is the node in the middle since it has a distance no more than p/2 from
every other node. Each node gets a value from its left (or right) neighbor in time
β, adds the value to the local value in time α, and sends the results to its right (or
left) in the next step. This results in the communication time p

2 (α + β). In total, the
parallel execution time is

T (p, n) = 2
n

p
α + p

2
(α + β). (4.13)

The function T (p, n) shows that the computation time decreases with increasing
number of processors p but that the communication time increases with increasing
number of processors. Thus, this function exhibits the typical situation in a paral-
lel program that an increasing number of processors does not necessarily lead to
faster programs since the communication overhead increases. Usually, the parallel
execution time decreases for increasing p until the influence of the communication
overhead is too large and then the parallel execution time increases again. The value
for p at which the parallel execution time starts to increase again is the optimal value
for p, since more processors do not lead to a faster parallel program.

For Function (4.13), we determine the optimal value of p which minimizes the
parallel execution time for T (p) ≡ T (p, n) using the derivatives of this function.
The first derivative is

T ′(p) = −2nα

p2
+ α + β

2
,
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when considering T (p) as a function of real values. For T ′(p) = 0, we get p∗ =
±
√

4nα
α+β

. The second derivative is T ′′(p) = 4nα
p3 and T ′′(p∗) > 0, meaning that T (p)

has a minimum at p∗. From the formula for p∗, we see that the optimal number

of processors increases with
√

n. We also see that p∗ = 2
√

α
α+β

√
n < 1, if β >

(4n − 1)α, so that the sequential program should be used in this case.

4.4.1.2 Hypercube

For the d-dimensional hypercube with d = log p, the single-accumulation operation
can be performed in log p time steps using a spanning tree, see Sect. 4.3.1. Again,
each step for sending a data value to a neighboring node and the local addition takes
time α+β so that the communication time log p(α+β) results. In total, the parallel
execution time is

T (n, p) = 2nα

p
+ log p · (α + β) . (4.14)

This function shows a slightly different behavior of the overhead than Function
(4.13). The communication overhead increases with the factor log p. The optimal
number of processors is again determined by using the derivatives of T (p) ≡
T (n, p). The first derivative (using log p = ln p/ ln 2 with the natural logarithm) is

T ′(p) = −2nα

p2
+ (α + β)

1

p

1

ln 2
.

For T ′(p) = 0, we get the necessary condition p∗ = 2nα ln 2
α+β

. Since T ′′(p) = 4nα
p3 −

1
p2

α+β

ln2 > 0 for p∗, the function T (p) has a minimum at p∗. This shows that the
optimal number of processors increases with increasing n. This is faster than for the
linear array and is caused by the faster implementation of the single-accumulation
operation.

4.4.2 Parallel Matrix–Vector Product

The parallel implementation of the matrix–vector product A · b = c with A ∈ R
n×n

and b ∈ R
n can be performed with a row-oriented distribution of the matrix A or

with column-oriented distribution of matrix A, see Sect. 3.6. For deriving a function
describing the parallel execution time, we assume that n is a multiple of the number
of processors p with r = n

p and that an arithmetic operation needs α time units.

• For an implementation using a row-oriented distribution of blocks of rows, pro-
cessor Pk stores the rows i with r · (k − 1) + 1 ≤ i ≤ r · k of matrix A and
computes the elements
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ci =
n∑

j=1

ai j · b j

of the result vector c. For each of these r values, the computation needs n mul-
tiplication and n − 1 addition operations so that approximately the computation
time 2nrα is needed. The vector b is replicated for this computation. If the result
vector c has to be replicated as well, a multi-broadcast operation is performed,
for which each processor Pk , k = 1, . . . , p, provides r = n

p elements.
• For an implementation with column-oriented distribution of blocks of columns,

processor Pk stores the columns j with r ·(k−1)+1 ≤ j ≤ r ·k of matrix A as well
as the corresponding elements of b and computes a partial linear combination,
i.e., Pk computes n partial sums dk1, . . . , dkn with

dk j =
r ·k∑

l=r ·(k−1)+1

a jlbl .

The computation of each dk j needs r multiplications and r − 1 additions so that
for all n values the approximate computation time n2rα results. A final multi-
accumulation operation with addition as reduction operation computes the final
result c. Each processor Pk adds the values d1 j , . . . , dnj for (k − 1) · r + 1 ≤ j ≤
k · r , i.e., Pk performs an accumulation with blocks of size r and vector c results
in a blockwise distribution.

Thus, both implementation variants have the same execution time 2 n2

p α. Also, the
communication time is asymptotically identical, since multi-broadcast and multi-
accumulation are dual operations, see Sect. 3.5. For determining a function for the
communication time, we assume that sending r floating-point values to a neighbor-
ing processor in the interconnection network needs β+r ·γ time units and consider
the two networks, a linear array and a hypercube.

4.4.2.1 Linear Array

In the linear array with p processors, a multi-broadcast operation (or a multi-
accumulation) operation can be performed in p steps in each of which messages of
size r are sent. This leads to a communication time p(β + r · γ ). Since the message
size in this example is r = n

p , the following parallel execution time results:

T (n, p) = 2n2

p
α + p ·

(
β + n

p
· γ
)
= 2n2

p
α + p · β + n · γ .

This function shows that the computation time decreases with increasing p but the
communication time increases linearly with increasing p, which is similar as for the
scalar product. But in contrast to the scalar product, the computation time increases
quadratically with the system size n, whereas the communication time increases
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only linearly with the system size n. Thus, the relative communication overhead is
smaller. Still, for a fixed number n, only a limited number of processors p leads to
an increasing speedup.

To determine the optimal number p∗ of processors, we again consider the deriva-
tives of T (p) ≡ T (n, p). The first derivative is

T ′(p) = −2n2α

p2
+ β ,

for which T ′(p) = 0 leads to p∗ =
√

2αn2/β = n · √2α/β . Since T ′′(p) =
4αn2/p3, we get T ′′(n

√
2α/β) > 0 so that p∗ is a minimum of T (p). This shows

that the optimal number of processors increases linearly with n.

4.4.2.2 Hypercube

In a log p-dimensional hypercube, a multi-broadcast (or a multi-accumulation)
operation needs p/ log p steps, see Sect. 4.3, with β + r · γ time units in each
step. This leads to a parallel execution time:

T (n, p) = 2αn2

p
+ p

log p
(β + r · γ )

= 2αn2

p
+ p

log p
· β + γ n

log p
.

The first derivative of T (p) ≡ T (n, p) is

T ′(p) = −2αn2

p2
+ β

log p
− β

log2 p ln 2
− γ n

p · log2 p ln 2
.

For T ′(p) = 0 the equation

−2αn2 log2 p + βp2 log p − βp2 1

ln 2
− γ np

1

ln 2
= 0

needs to be fulfilled. This equation cannot be solved analytically, so that the number
of optimal processors p∗ cannot be expressed in closed form. This is a typical situa-
tion for the analysis of functions for the parallel execution time, and approximations
are used. In this specific case, the function for the linear array can be used since the
hypercube can be embedded into a linear array. This means that the matrix–vector
product on a hypercube is at least as fast as on the linear array.
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4.5 Parallel Computational Models

A computational model of a computer system describes at an abstract level which
basic operations can be performed when the corresponding actions take effect and
how data elements can be accessed and stored [14]. This abstract description does
not consider details of a hardware realization or a supporting runtime system. A
computational model can be used to evaluate algorithms independently of an imple-
mentation in a specific programming language and of the use of a specific computer
system. To be useful, a computational model must abstract from many details of a
specific computer system while on the other hand it should capture those charac-
teristics of a broad class of computer systems which have a larger influence on the
execution time of algorithms.

To evaluate a specific algorithm in a computational model, its execution accord-
ing to the computational model is considered and analyzed concerning a specific
aspect of interest. This could, for example, be the number of operations that must
be performed as a measure for the resulting execution time or the number of data
elements that must be stored as a measure for the memory consumption, both in
relation to the size of the input data. In the following, we give a short overview of
popular parallel computational models, including the PRAM model, the BSP model,
and the LogP model. More information on computational models can be found in
[156].

4.5.1 PRAM Model

The theoretical analysis of sequential algorithms is often based on the RAM (Ran-
dom Access Machine) model which captures the essential features of traditional
sequential computers. The RAM model consists of a single processor and a mem-
ory with a sufficient capacity. Each memory location can be accessed in a random
(direct) way. In each time step, the processor performs one instruction as specified
by a sequential algorithm. Instructions for (read or write) access to the memory as
well as for arithmetic or logical operations are provided. Thus, the RAM model
provides a simple model which abstracts from many details of real computers, like a
fixed memory size, existence of a memory hierarchy with caches, complex address-
ing modes, or multiple functional units. Nevertheless, the RAM model can be used
to perform a runtime analysis of sequential algorithms to describe their asymptotic
behavior, which is also meaningful for real sequential computers.

The RAM model has been extended to the PRAM (Parallel Random Access
Machine) model to analyze parallel algorithms [53, 98, 123]. A PRAM consists
of a bounded set of identical processors {P1, . . . , Pn}, which are controlled by a
global clock. Each processor is a RAM and can access the common memory to read
and write data. All processors execute the same program synchronously. Besides the
common memory of unbounded size, there is a local memory for each processor to
store private data. Each processor can access any location in the common memory
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in unit time, which is the same time needed for an arithmetic operation. The PRAM
executes computation steps one after another. In each step, each processor (a) reads
data from the common memory or its private memory (read phase), (b) performs a
local computation, and (c) writes a result back into the common memory or into its
private memory (write phase). It is important to note that there is no direct connec-
tion between the processors. Instead, communication can only be performed via the
common memory.

Since each processor can access any location in the common memory, mem-
ory access conflicts can occur when multiple processors access the same memory
location at the same time. Such conflicts can occur in both the read phase and the
write phase of a computation step. Depending on how these read conflicts and write
conflicts are handled, several variants of the PRAM model are distinguished. The
EREW (exclusive read, exclusive write) PRAM model forbids simultaneous read
accesses as well as simultaneous write accesses to the same memory location by
more than one processor. Thus, in each step, each processor must read from and
write into a different memory location as the other processors. The CREW (con-
current read, exclusive write) PRAM model allows simultaneous read accesses by
multiple processors to the same memory location in the same step, but simultaneous
write accesses are forbidden within the same step. The ERCW (exclusive read,
concurrent write) PRAM model allows simultaneous write accesses, but forbids
simultaneous read accesses within the same step. The CRCW (concurrent read,
concurrent write) PRAM model allows both simultaneous read and write accesses
within the same step. If simultaneous write accesses are allowed, write conflicts to
the same memory location must be resolved to determine what happens if multiple
processors try to write to the same memory location in the same step. Different
resolution schemes have been proposed:

(1) The common model requires that all processors writing simultaneously to a
common location write the same value.

(2) The arbitrary model allows an arbitrary value to be written by each processor;
if multiple processors simultaneously write to the same location, an arbitrarily
chosen value will succeed.

(3) The combining model assumes that the values written simultaneously to the
same memory location in the same step are combined by summing them up and
the combined value is written.

(4) The priority model assigns priorities to the processors and in the case of simul-
taneous writes the processor with the highest priority succeeds.

In the PRAM model, the cost of an algorithm is defined as the number of PRAM
steps to be performed for the execution of an algorithm. As described above, each
step consists of a read phase, a local computation, and a write phase. Usually,
the costs are specified as asymptotic execution time with respect to the size of
the input data. The theoretical PRAM model has been used as a concept to build
the SB-PRAM as a real parallel machine which behaves like the PRAM model
[1, 101]. This machine is an example for simultaneous multi-threading, since the
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unit memory access time has been reached by introducing logical processors which
are simulated in a round-robin fashion and, thus, hide the memory latency.

A useful class of operations for PRAM models or PRAM-like machines is the
multi-prefix operations which can be defined for different basic operations. We con-
sider an MPADD operation as example. This operation works on a variable s in the
common memory. The variable s is initialized to the value o. Each of the processors
Pi , i = 1, . . . , n, participating in the operation provides a value oi . The operation is
synchronously executed and has the effect that processor Pj obtains the value

o+
j−1∑

i=1

oi .

After the operation, the variable s has the value o +∑n
i=1 oi . Multi-prefix oper-

ations can be used for the implementation of synchronization operations and par-
allel data structures that can be accessed by multiple processors simultaneously
without causing race conditions [76]. For an efficient implementation, hardware
support or even a hardware implementation for multi-prefix operations is useful
as has been provided by the SB-PRAM prototype [1]. Multi-prefix operations are
also useful for the implementation of a parallel task pool providing a dynamic load
balancing for application programs with an irregular computational behavior, see
[76, 102, 141, 149]. An example for such an application is the Cholesky factor-
ization for sparse matrices for which the computational behavior depends on the
sparsity structure of the matrix to be factorized. Section 7.5 gives a detailed descrip-
tion of this application. The implementation of task pools in Pthreads is considered
in Sect. 6.1.6.

A theoretical runtime analysis based on the PRAM model provides useful infor-
mation on the asymptotic behavior of parallel algorithms. But the PRAM model
has its limitations concerning a realistic performance estimation of application pro-
grams on real parallel machines. One of the main reasons for these limitations is
the assumption that each processor can access any location in the common memory
in unit time. Real parallel machines do not provide memory access in unit time.
Instead, large variations in memory access time often occur, and accesses to a global
memory or to the local memory of other processors are usually much slower than
accesses to the local memory of the accessing processor. Moreover, real parallel
machines use a memory hierarchy with several levels of caches with different access
times. This cannot be modeled with the PRAM model. Therefore, the PRAM model
cannot be used to evaluate the locality behavior of the memory accesses of a parallel
application program. Other unrealistic assumptions of the PRAM model are the syn-
chronous execution of the processors and the absence of collisions when multiple
processors access the common memory simultaneously. Because of these structures,
several extensions of the original PRAM model have been proposed. The missing
synchronicity of instruction execution in real parallel machines is addressed in the
phase PRAM model [66], in which the computations are partitioned into phases
such that the processors work asynchronously within the phases. At the end of each
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phase, a barrier synchronization is performed. The delay PRAM model [136] tries
to model delays in memory access times by introducing a communication delay
between the time at which a data element is produced by a processor and the time
at which another processor can use this data element. A similar approach is used for
the local memory PRAM and the block PRAM model [4, 5]. For the block PRAM,
each access to the common memory takes time l + b, where l is a startup time and
b is the size of the memory block addressed. A more detailed description of PRAM
models can be found in [29].

4.5.2 BSP Model

None of the PRAM models proposed has really been able to capture the behavior
of real parallel machines for a large class of application areas in a satisfactory way.
One of the reasons is that there is a large variety of different architectures for parallel
machines and the architectures are steadily evolving. To avoid that the computa-
tional model design constantly drags behind the development of parallel computer
architecture, the BSP model (bulk synchronously parallel) has been proposed as
a bridging model between hardware architecture and software development [171].
The idea is to provide a standard on which both hardware architects and software
developers can agree. Thus, software development can be decoupled from the details
of a specific architecture, and software does not have to be adapted when porting it
to a new parallel machine.

The BSP model is an abstraction of a parallel machine with a physically
distributed memory organization. Communication between the processors is not
performed as separate point-to-point transfers, but is bundled in a step-oriented way.
In the BSP model, a parallel computer consists of a number of components (proces-
sors), each of which can perform processing or memory functions. The components
are connected by a router (interconnection network) which can send point-to-point
messages between pairs of components. There is also a synchronization unit, which
supports the synchronization of all or a subset of the components. A computation
in the BSP model consists of a sequence of supersteps, see Fig. 4.8 for an illus-
tration. In each superstep, each component performs local computations and can
participate in point-to-point message transmissions. A local computation can be
performed in one time unit. The effect of message transmissions becomes visible
in the next time step, i.e., a receiver of a message can use the received data not
before the next superstep. At the end of each superstep, a barrier synchronization
is performed. There is a periodicity parameter L which determines the length of the
supersteps in time units. Thus, L determines the granularity of the computations.
The BSP model allows that the value of L can be controlled by the program to be
executed, even at runtime. There may be a lower bound for L given by the hardware.
The parallel program to be executed should set an upper bound for L such that in
each superstep, computations with approximately L steps can be assigned to each
processor.
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Fig. 4.8 In the BSP model, computations are performed in supersteps where each superstep con-
sists of three phases: (1) simultaneous local computations of each processor, (2) communication
operations for data exchange between processors, and (3) a barrier synchronization to terminate
the communication operations and to make the data sent visible to the receiving processors. The
communication pattern shown for the communication phase represents an h-relation with h = 3

In each superstep, the router can implement arbitrary h-relations capturing com-
munication patterns, where each processor sends or receives at most h messages. A
computation in the BSP model can be characterized by four parameters [89]:

• p: the number of (virtual) processors used within the supersteps to perform com-
putations;

• s: the execution speed of the processors expressed as the number of computation
steps per seconds that each processor can perform, where each computation step
performs an (arithmetic or logical) operation on a local data element;

• l: the number of steps required for the execution of a barrier synchronization;
• g: the number of steps required on the average for the transfer of a memory word

in the context of an h-relation.

The parameter g is determined such that the execution of an h-relation with m
words per message takes l · m · g steps. For a real parallel computer, the value of
g depends not only on the bisection bandwidth of the interconnection network, see
p. 30, but also on the communication protocol used and on the implementation of
the communication library. The value of l is influenced not only by the diameter of
the interconnection network, but also by the implementation of the communication
library. Both l and g can be determined by suitable benchmark programs. Only p, l,
and g are independent parameters; the value of s is used for the normalization of the
values of l and g.

The execution time of a BSP program is specified as the sum of the execution
times of the supersteps which are performed for executing the program. The exe-
cution time Tsuperstep of a single superstep consists of three terms: (1) the maximum
of the execution time wi for performing local computations of processor Pi , (2) the
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time for global communication for the implementation of an h-relation, and (3) the
time for the barrier synchronization at the end of each superstep. This results in

Tsuperstep = max
processors

wi + h · g + l.

The BSP model is a general model that can be used as a basis for different
programming models. To support the development of efficient parallel programs
with the BSP model, the BSPLib library has been developed [74, 89], which pro-
vides operations for the initialization of a superstep, for performing communication
operations, and for participating in the barrier synchronization at the end of each
superstep.

The BSP model has been extended to the Multi-BSP model, which extends the
original BSP model to capture important characteristics of modern architectures, in
particular multicore architectures [172]. In particular, the model is extended to a
hierarchical model with an arbitrary number d of levels modeling multiple memory
and cache levels. Moreover, at each level the memory size is incorporated as an addi-
tional parameter. The entire model is based on a tree of depth d with memory/caches
at the internal nodes and processors at the leaves.

4.5.3 LogP Model

In [34], several concerns about the BSP model are formulated. First, the length
of the supersteps must be sufficiently large to accommodate arbitrary h-relations.
This has the effect that the granularity cannot be decreased below a certain value.
Second, messages sent within a superstep can only be used in the next superstep,
even if the interconnection network is fast enough to deliver messages within the
same superstep. Third, the BSP model expects hardware support for synchronization
at the end of each superstep. Such support may not be available for some parallel
machines. Because of these concerns, the BSP model has been extended to the LogP
model to provide a more realistic modeling of real parallel machines.

Similar to the BSP model, the LogP model is based on the assumption that a
parallel computer consists of a set of processors with local memory that can com-
municate by exchanging point-to-point messages over an interconnection network.
Thus, the LogP model is also intended for the modeling of parallel computers
with a distributed memory. The communication behavior of a parallel computer is
described by four parameters:

• L (latency) is an upper bound on the latency of the network capturing the delay
observed when transmitting a small message over the network;

• o (overhead) is the management overhead that a processor needs for sending
or receiving a message; during this time, a processor cannot perform any other
operation;

• g (gap) is the minimum time interval between consecutive send or receive oper-
ations of a processor;

• P (processors) is the number of processors of the parallel machine.



192 4 Performance Analysis of Parallel Programs
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Figure 4.9 illustrates the meaning of these parameters [33]. All parameters except
P are measured in time units or as multiples of the machine cycle time. Furthermore
it is assumed that the network has a finite capacity which means that between any
pair of processors at most [L/g] messages are allowed to be in transmission at
any time. If a processor tries to send a message that would exceed this limit, it is
blocked until the message can be transmitted without exceeding the limit. The LogP
model assumes that the processors exchange small messages that do not exceed
a predefined size. Larger messages must be split into several smaller messages.
The processors work asynchronously with each other. The latency of any single
message cannot be predicted in advance, but is bounded by L if there is no blocking
because of the finite capacity. This includes that messages do not necessarily arrive
in the same order in which they have been sent. The values of the parameters L , o,
and g depend not only on the hardware characteristics of the network, but also on
the communication library and its implementation.

The execution time of an algorithm in the LogP model is determined by the maxi-
mum of the execution times of the participating processors. An access by a processor
P1 to a data element that is stored in the local memory of another processor P2 takes
time 2 · L+ 4 · o; half of this time is needed to bring the data element from P2 to P1,
the other half is needed to bring the data element from P1 back to P2. A sequence
of n messages can be transmitted in time L + 2 · o+ (n − 1) · g, see Fig. 4.10.

A drawback of the original LogP model is that it is based on the assumption that
the messages are small and that only point-to-point messages are allowed. More
complex communication patterns must be assembled from point-to-point messages.

Fig. 4.10 Transmission of a
larger message as a sequence
of n smaller messages in the
LogP model. The
transmission of the last
smaller message is started at
time (n − 1) · g and reaches
its destination 2 · o+ L time
units later
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Fig. 4.11 Illustration of the transmission of a message with n bytes in the LogGP model. The
transmission of the last byte of the message is started at time o + (n − 1) · G and reaches its
destination o + L time units later. Between the transmission of the last byte of a message and the
start of the transmission of the next message at least g time units must have elapsed

To release the restriction to small messages, the LogP model has been extended to
the LogGP model [10], which contains an additional parameter G (Gap per byte).
This parameter specifies the transmission time per byte for long messages. 1/G is
the bandwidth available per processor. The time for the transmission of a message
with n bytes takes time o+ (n − 1)G + L + o, see Fig. 4.11.

The LogGP model has been successfully used to analyze the performance of
message-passing programs [9, 104]. The LogGP model has been further extended
to the LogGPS model [96] by adding a parameter S to capture synchronization that
must be performed when sending large messages. The parameter S is the threshold
for the message length above which a synchronization between sender and receiver
is performed before message transmission starts.

4.6 Exercises for Chap. 4

Exercise 4.1 We consider two processors P1 and P2 which have the same set of
instructions. P1 has a clock rate of 4 GHz, P2 has a clock rate of 2 GHz. The
instructions of the processors can be partitioned into three classes A, B, and C .
The following table specifies for each class the CPI values for both processors. We
assume that there are three compilers C1, C2, and C3 available for both processors.
We consider a specific program X . All three compilers generate machine programs
which lead to the execution of the same number of instructions. But the instruction
classes are represented with different proportions according to the following table:

Class CPI for P1 CPI for P2 C1 (%) C2 (%) C3 (%)

A 4 2 30 30 50
B 6 4 50 20 30
C 8 3 20 50 20

(a) If C1 is used for both processors, how much faster is P1 than P2?
(b) If C2 is used for both processors, how much faster is P2 than P2?
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(c) Which of the three compilers is best for P1?
(d) Which of the three compilers is best for P2?

Exercise 4.2 Consider the MIPS (Million Instructions Per Second) rate for esti-
mating the performance of computer systems for a computer with instructions
I1, . . . , Im . Let pk be the proportion with which instruction Ik(1 ≤ k ≤ m) is
represented in the machine program for a specific program X with 0 ≤ pk ≤ 1. Let
CPIk be the CPI value for Ik and let tc be the cycle time of the computer system in
nanoseconds (10−9).

(a) Show that the MIPS rate for program X can be expressed as

MIPS(X) = 1000

(p1 · CPI1 + · · · + pmCPIm) · tc[ns]
.

(b) Consider a computer with a clock rate of 3.3 GHz. The CPI values and propor-
tion of occurrence of the different instructions for program X are given in the
following table

Instruction Ik pn CPIn

Load and store 20.4 2.5
Integer add and subtract 18.0 1
Integer multiply and divide 10.7 9
Floating-point add and subtract 3.5 7
Floating-point multiply and divide 4.6 17
Logical operations 6.0 1
Branch instruction 20.0 1.5
Compare and shift 16.8 2

Compute the resulting MIPS rate for program X .

Exercise 4.3 There is a SPEC benchmark suite MPI2007 for evaluating the MPI
performance of parallel systems for floating-point, compute-intensive programs.
Visit the SPEC web page at www.spec.org and collect information on the bench-
mark programs included in the benchmark suite. Write a short summary for each of
the benchmarks with computations performed, programming language used, MPI
usage, and input description. What criteria were used to select the benchmarks?
Which information is obtained by running the benchmarks?

Exercise 4.4 There is a SPEC benchmark suite to evaluate the performance of par-
allel systems with a shared address space based on OpenMP applications. Visit the
SPEC web page at www.spec.org and collect information about this benchmark
suite. Which applications are included and what information is obtained by running
the benchmark?

Exercise 4.5 The SPEC CPU2006 is the standard benchmark suite to evaluate the
performance of computer systems. Visit the SPEC web page at www.spec.org
and collect the following information:
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(a) Which benchmark programs are used in CINT2006 to evaluate the integer
performance? Give a short characteristic of each of the benchmarks.

(b) Which benchmark programs are used in CFP2006 to evaluate the floating-point
performance? Give a short characteristic of each of the benchmarks.

(c) Which performance results have been submitted for your favorite desktop com-
puter?

Exercise 4.6 Consider a ring topology and assume that each processor can transmit
at most one message at any time along an incoming or outgoing link (one-port com-
munication). Show that the running time for a single-broadcast, a scatter operation,
or a multi-broadcast takes time Θ(p). Show that a total exchange needs time Θ(p2).

Exercise 4.7 Give an algorithm for a scatter operation on a linear array which sends
the message from the root node for more distant nodes first and determine the
asymptotic running time.

Exercise 4.8 Given a two-dimensional mesh with wraparound arrows forming a
torus consisting of n×n nodes. Construct spanning trees for a multi-broadcast oper-
ation according to the construction in Sect. 4.3.2.2, p. 174, and give a corresponding
algorithm for the communication operation which takes time (n2 − 1)/4 for n odd
and n2/4 for n even [19].

Exercise 4.9 Consider a d-dimensional mesh network with d
√

p processors in each
of the d dimensions. Show that a multi-broadcast operation requires at least
�(p−1)/d� steps to be implemented. Construct an algorithm for the implementation
of a multi-broadcast that performs the operation with this number of steps.

Exercise 4.10 Consider the construction of a spanning tree in Sect. 4.3.2, p. 173, and
Fig. 4.4. Use this construction to determine the spanning tree for a five-dimensional
hypercube network.

Exercise 4.11 For the construction of the spanning trees for the realization of a
multi-broadcast operation on a d-dimensional hypercube network, we have used
the relation

(
d

k − 1

)
− d ≥ d

for 2 < k < d and d ≥ 5, see Sect. 4.3.2, p. 180. Show by induction that this
relation is true.(

Hint : I tis

(
d

k − 1

)
=
(

d − 1
k − 1

)
+
(

d − 1
k − 2

)
.

)

Exercise 4.12 Consider a complete binary tree with p processors [19].

a) Show that a single-broadcast operation takes time Θ(log p).
b) Give an algorithm for a scatter operation with time Θ(p). (Hint: Send the more

distant messages first.)
c) Show that an optimal algorithm for a multi-broadcast operation takes p− 1 time

steps.
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d) Show that a total exchange needs at least time Ω(p2). (Hint: Count the number
of messages that must be transmitted along the incoming links of a node.)

e) Show that a total exchange needs at most time Ω(p2). (Hint: Use an embedding
of a ring topology into the tree.)

Exercise 4.13 Consider a scalar product and a matrix–vector multiplication and
derive the formula for the running time on a mesh topology.

Exercise 4.14 Develop a runtime function to capture the execution time of a parallel
matrix–matrix computation C = A · B for a distributed address space. Assume a
hypercube network as interconnection. Consider the following distributions for A
and B:

(a) A is distributed in column-blockwise, B in row-blockwise order.
(b) Both A and B are distributed in checkerboard order.

Compare the resulting runtime functions and try to identify situations in which one
or the other distribution results in a faster parallel program.

Exercise 4.15 The multi-prefix operation leads to the effect that each participating

processor Pj obtains the value σ +
j−1∑

i=1
σi where processor Pi contributes values σi

and σ is the initial value of the memory location used, see also p. 188. Illustrate the
effect of a multi-prefix operation with an exchange diagram similar to those used in
Sect. 3.5.2. The effect of multi-prefix operations can be used for the implementation
of parallel loops where each processor gets iterations to be executed. Explain this
usage in more detail.



Chapter 5
Message-Passing Programming

The message-passing programming model is based on the abstraction of a parallel
computer with a distributed address space where each processor has a local memory
to which it has exclusive access, see Sect. 2.3.1. There is no global memory. Data
exchange must be performed by message-passing: To transfer data from the local
memory of one processor A to the local memory of another processor B, A must
send a message containing the data to B, and B must receive the data in a buffer
in its local memory. To guarantee portability of programs, no assumptions on the
topology of the interconnection network is made. Instead, it is assumed that each
processor can send a message to any other processor.

A message-passing program is executed by a set of processes where each process
has its own local data. Usually, one process is executed on one processor or core of
the execution platform. The number of processes is often fixed when starting the
program. Each process can access its local data and can exchange information and
data with other processes by sending and receiving messages. In principle, each of
the processes could execute a different program (MPMD, multiple program multiple
data). But to make program design easier, it is usually assumed that each of the
processes executes the same program (SPMD, single program, multiple data), see
also Sect. 2.2. In practice, this is not really a restriction, since each process can still
execute different parts of the program, selected, for example, by its process rank.

The processes executing a message-passing program can exchange local data
by using communication operations. These could be provided by a communication
library. To activate a specific communication operation, the participating processes
call the corresponding communication function provided by the library. In the sim-
plest case, this could be a point-to-point transfer of data from a process A to a
process B. In this case, A calls a send operation, and B calls a corresponding receive
operation. Communication libraries often provide a large set of communication
functions to support different point-to-point transfers and also global communica-
tion operations like broadcast in which more than two processes are involved, see
Sect. 3.5.2 for a typical set of global communication operations.

A communication library could be vendor or hardware specific, but in most cases
portable libraries are used, which define syntax and semantics of communication
functions and which are supported for a large class of parallel computers. By far the
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most popular portable communication library is MPI (Message-Passing Interface)
[55, 56], but PVM (Parallel Virtual Machine) is also often used, see [63]. In this
chapter, we give an introduction to MPI and show how parallel programs with MPI
can be developed. The description includes point-to-point and global communica-
tion operations, but also more advanced features like process groups and communi-
cators are covered.

5.1 Introduction to MPI

The Message-Passing Interface (MPI) is a standardization of a message-passing
library interface specification. MPI defines the syntax and semantics of library
routines for standard communication patterns as they have been considered in
Sect. 3.5.2. Language bindings for C, C++, Fortran-77, and Fortran-95 are sup-
ported. In the following, we concentrate on the interface for C and describe the
most important features. For a detailed description, we refer to the official MPI doc-
uments, see www.mpi-forum.org. There are two versions of the MPI standard:
MPI-1 defines standard communication operations and is based on a static process
model. MPI-2 extends MPI-1 and provides additional support for dynamic process
management, one-sided communication, and parallel I/O. MPI is an interface spec-
ification for the syntax and semantics of communication operations, but leaves the
details of the implementation open. Thus, different MPI libraries can use differ-
ent implementations, possibly using specific optimizations for specific hardware
platforms. For the programmer, MPI provides a standard interface, thus ensuring
the portability of MPI programs. Freely available MPI libraries are MPICH (see
www-unix.mcs.anl.gov/mpi/mpich2), LAM/MPI (see www.lam-mpi.
org), and OpenMPI (see www.open-mpi.org).

In this section, we give an overview of MPI according to [55, 56]. An MPI pro-
gram consists of a collection of processes that can exchange messages. For MPI-1, a
static process model is used, which means that the number of processes is set when
starting the MPI program and cannot be changed during program execution. Thus,
MPI-1 does not support dynamic process creation during program execution. Such
a feature is added by MPI-2. Normally, each processor of a parallel system executes
one MPI process, and the number of MPI processes started should be adapted to
the number of processors that are available. Typically, all MPI processes execute
the same program in an SPMD style. In principle, each process can read and write
data from/into files. For a coordinated I/O behavior, it is essential that only one
specific process perform the input or output operations. To support portability, MPI
programs should be written for an arbitrary number of processes. The actual number
of processes used for a specific program execution is set when starting the program.

On many parallel systems, an MPI program can be started from the command
line. The following two commands are common or widely used:

mpiexec -n 4 programname programarguments
mpirun -np 4 programname programarguments.
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This call starts the MPI program programname with p = 4 processes. The spe-
cific command to start an MPI program on a parallel system can differ.

A significant part of the operations provided by MPI is the operations for the
exchange of data between processes. In the following, we describe the most impor-
tant MPI operations. For a more detailed description of all MPI operations, we refer
to [135, 162, 163]. In particular the official description of the MPI standard provides
many more details that cannot be covered in our short description, see [56]. Most
examples given in this chapter are taken from these sources. Before describing the
individual MPI operations, we first introduce some semantic terms that are used for
the description of MPI operations:

• Blocking operation: An MPI communication operation is blocking, if return of
control to the calling process indicates that all resources, such as buffers, spec-
ified in the call can be reused, e.g., for other operations. In particular, all state
transitions initiated by a blocking operation are completed before control returns
to the calling process.

• Non-blocking operation: An MPI communication operation is non-blocking, if
the corresponding call may return before all effects of the operation are com-
pleted and before the resources used by the call can be reused. Thus, a call of
a non-blocking operation only starts the operation. The operation itself is com-
pleted not before all state transitions caused are completed and the resources
specified can be reused.

The terms blocking and non-blocking describe the behavior of operations from the
local view of the executing process, without taking the effects on other processes
into account. But it is also useful to consider the effect of communication operations
from a global viewpoint. In this context, it is reasonable to distinguish between
synchronous and asynchronous communications:

• Synchronous communication: The communication between a sending process
and a receiving process is performed such that the communication operation does
not complete before both processes have started their communication operation.
This means in particular that the completion of a synchronous send indicates not
only that the send buffer can be reused, but also that the receiving process has
started the execution of the corresponding receive operation.

• Asynchronous communication: Using asynchronous communication, the send-
er can execute its communication operation without any coordination with the
receiving process.

In the next section, we consider single transfer operations provided by MPI, which
are also called point-to-point communication operations.

5.1.1 MPI Point-to-Point Communication

In MPI, all communication operations are executed using a communicator. A
communicator represents a communication domain which is essentially a set of
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processes that exchange messages between each other. In this section, we assume
that the MPI default communicator MPI COMM WORLD is used for the communi-
cation. This communicator captures all processes executing a parallel program. In
Sect. 5.3, the grouping of processes and the corresponding communicators are con-
sidered in more detail.

The most basic form of data exchange between processes is provided by point-
to-point communication. Two processes participate in this communication opera-
tion: A sending process executes a send operation and a receiving process exe-
cutes a corresponding receive operation. The send operation is blocking and has the
syntax:

int MPI Send(void *smessage,
int count,
MPI Datatype datatype,
int dest,
int tag,
MPI Comm comm).

The parameters have the following meaning:

• smessage specifies a send buffer which contains the data elements to be sent
in successive order;

• count is the number of elements to be sent from the send buffer;
• datatype is the data type of each entry of the send buffer; all entries have the

same data type;
• dest specifies the rank of the target process which should receive the data; each

process of a communicator has a unique rank; the ranks are numbered from 0 to
the number of processes minus one;

• tag is a message tag which can be used by the receiver to distinguish different
messages from the same sender;

• comm specifies the communicator used for the communication.

The size of the message in bytes can be computed by multiplying the number
count of entries with the number of bytes used for type datatype. The tag
parameter should be an integer value between 0 and 32,767. Larger values can be
permitted by specific MPI libraries.

To receive a message, a process executes the following operation:

int MPI Recv(void *rmessage,
int count,
MPI Datatype datatype,
int source,
int tag,
MPI Comm comm,
MPI Status *status).

This operation is also blocking. The parameters have the following meaning:
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• rmessage specifies the receive buffer in which the message should be stored;
• count is the maximum number of elements that should be received;
• datatype is the data type of the elements to be received;
• source specifies the rank of the sending process which sends the message;
• tag is the message tag that the message to be received must have;
• comm is the communicator used for the communication;
• status specifies a data structure which contains information about a message

after the completion of the receive operation.

The predefined MPI data types and the corresponding C data types are shown in
Table 5.1. There is no corresponding C data type for MPI PACKED and MPI BYTE.
The type MPI BYTE represents a single byte value. The type MPI PACKED is used
by special MPI pack operations.

Table 5.1 Predefined data types for MPI

MPI Datentyp C-Datentyp

MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI LONG LONG INT long long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI UNSIGNED LONG LONG unsigned long long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI WCHAR wide char
MPI PACKED special data type for packing
MPI BYTE single byte value

By using source = MPI ANY SOURCE, a process can receive a message from
any arbitrary process. Similarly, by using tag = MPI ANY TAG, a process can
receive a message with an arbitrary tag. In both cases, the status data structure
contains the information, from which process the message received has been sent
and which tag has been used by the sender. After completion of MPI Recv(),
status contains the following information:

• status.MPI SOURCE specifies the rank of the sending process;
• status.MPI TAG specifies the tag of the message received;
• status.MPI ERROR contains an error code.

The status data structure also contains information about the length of the mes-
sage received. This can be obtained by calling the MPI function
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int MPI Get count (MPI Status *status,
MPI Datatype datatype,
int *count ptr),

where status is a pointer to the data structure status returned by MPI Recv().
The function returns the number of elements received in the variable pointed to by
count ptr.

Internally a message transfer in MPI is usually performed in three steps:

1. The data elements to be sent are copied from the send buffer smessage speci-
fied as parameter into a system buffer of the MPI runtime system. The message
is assembled by adding a header with information on the sending process, the
receiving process, the tag, and the communicator used.

2. The message is sent via the network from the sending process to the receiving
process.

3. At the receiving side, the data entries of the message are copied from the system
buffer into the receive buffer rmessage specified by MPI Recv().

Both MPI Send() and MPI Recv() are blocking, asynchronous operations.
This means that an MPI Recv() operation can also be started when the corre-
sponding MPI Send() operation has not yet been started. The process executing
the MPI Recv() operation is blocked until the specified receive buffer contains the
data elements sent. Similarly, an MPI Send() operation can also be started when
the corresponding MPI Recv() operation has not yet been started. The process
executing the MPI Send() operation is blocked until the specified send buffer
can be reused. The exact behavior depends on the specific MPI library used. The
following two behaviors can often be observed:

• If the message is sent directly from the send buffer specified without using an
internal system buffer, then the MPI Send() operation is blocked until the
entire message has been copied into a receive buffer at the receiving side. In
particular, this requires that the receiving process has started the corresponding
MPI Recv() operation.

• If the message is first copied into an internal system buffer of the runtime system,
the sender can continue its operations as soon as the copy operation into the sys-
tem buffer is completed. Thus, the corresponding MPI Recv() operation does
not need to be started. This has the advantage that the sender is not blocked for a
long period of time. The drawback of this version is that the system buffer needs
additional memory space and that the copying into the system buffer requires
additional execution time.

Example Figure 5.1 shows a first MPI program in which the process with rank 0
uses MPI Send() to send a message to the process with rank 1. This process uses
MPI Recv() to receive a message. The MPI program shown is executed by all
participating processes, i.e., each process executes the same program. But different
processes may execute different program parts, e.g., depending on the values of local
variables. The program defines a variable status of type MPI Status, which is



5.1 Introduction to MPI 203

Fig. 5.1 A first MPI program: message passing from process 0 to process 1

used for the MPI Recv() operation. Any MPI program must include <mpi.h>.
The MPI function MPI Init() must be called before any other MPI function to
initialize the MPI runtime system. The call MPI Comm rank(MPI COMM WORLD,
&my rank) returns the rank of the calling process in the communicator specified,
which is MPI COMM WORLD here. The rank is returned in the variable my rank.
The function MPI Comm size(MPI COMM WORLD, &p) returns the total num-
ber of processes in the specified communicator in variable p. In the example pro-
gram, different processes execute different parts of the program depending on their
rank stored in my rank: Process 0 executes a string copy and an MPI Send()
operation; process 1 executes a corresponding MPI Recv() operation. The MPI
Send() operation specifies in its fourth parameter that the receiving process
has rank 1. The MPI Recv() operation specifies in its fourth parameter that
the sending process should have rank 0. The last operation in the example pro-
gram is MPI Finalize() which should be the last MPI operation in any MPI
program.

��
An important property to be fulfilled by any MPI library is that messages are

delivered in the order in which they have been sent. If a sender sends two messages
one after another to the same receiver and both messages fit to the first MPI Recv()
called by the receiver, the MPI runtime system ensures that the first message sent
will always be received first. But this order can be disturbed if more than two pro-
cesses are involved. This can be illustrated with the following program fragment:
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/* example to demonstrate the order of receive operations */
MPI Comm rank (comm, &my rank);
if (my rank == 0) {

MPI Send (sendbuf1, count, MPI INT, 2, tag, comm);
MPI Send (sendbuf2, count, MPI INT, 1, tag, comm);

}
else if (my rank == 1) {

MPI Recv (recvbuf1, count, MPI INT, 0, tag, comm, &status);
MPI Send (recvbuf1, count, MPI INT, 2, tag, comm);

}
else if (my rank == 2) {

MPI Recv (recvbuf1, count, MPI INT, MPI ANY SOURCE, tag, comm,
&status);

MPI Recv (recvbuf2, count, MPI INT, MPI ANY SOURCE, tag, comm,
&status);

}

Process 0 first sends a message to process 2 and then to process 1. Process 1 receives
a message from process 0 and forwards it to process 2. Process 2 receives two mes-
sages in the order in which they arrive using MPI ANY SOURCE. In this scenario,
it can be expected that process 2 first receives the message that has been sent by
process 0 directly to process 2, since process 0 sends this message first and since the
second message sent by process 0 has to be forwarded by process 1 before arriving
at process 2. But this must not necessarily be the case, since the first message sent
by process 0 might be delayed because of a collision in the network whereas the
second message sent by process 0 might be delivered without delay. Therefore, it
can happen that process 2 first receives the message of process 0 that has been
forwarded by process 1. Thus, if more than two processes are involved, there is
no guaranteed delivery order. In the example, the expected order of arrival can be
ensured if process 2 specifies the expected sender in the MPI Recv() operation
instead of MPI ANY SOURCE.

5.1.2 Deadlocks with Point-to-Point Communications

Send and receive operations must be used with care, since deadlocks can occur in
ill-constructed programs. This can be illustrated by the following example:

/* program fragment which always causes a deadlock */
MPI Comm rank (comm, &my rank);
if (my rank == 0) {

MPI Recv (recvbuf, count, MPI INT, 1, tag, comm, &status);
MPI Send (sendbuf, count, MPI INT, 1, tag, comm);

}
else if (my rank == 1) {

MPI Recv (recvbuf, count, MPI INT, 0, tag, comm, &status);
MPI Send (sendbuf, count, MPI INT, 0, tag, comm);

}
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Both processes 0 and 1 execute an MPI Recv() operation before an MPI Send()
operation. This leads to a deadlock because of mutual waiting: For process 0, the
MPI Send() operation can be started not before the preceding MPI Recv()
operation has been completed. This is only possible when process 1 executes its
MPI Send() operation. But this cannot happen because process 1 also has to com-
plete its preceding MPI Recv() operation first which can happen only if process 0
executes its MPI Send() operation. Thus, cyclic waiting occurs, and this program
always leads to a deadlock.

The occurrence of a deadlock might also depend on the question whether the
runtime system uses internal system buffers or not. This can be illustrated by the
following example:

/* program fragment for which the occurrence of a deadlock
depends on the implementation */

MPI Comm rank (comm, &my rank);
if (my rank == 0) {

MPI Send (sendbuf, count, MPI INT, 1, tag, comm);
MPI Recv (recvbuf, count, MPI INT, 1, tag, comm, &status);

}
else if (my rank == 1) {

MPI Send (sendbuf, count, MPI INT, 0, tag, comm);
MPI Recv (recvbuf, count, MPI INT, 0, tag, comm, &status);

}

Message transmission is performed correctly here without deadlock, if the MPI
runtime system uses system buffers. In this case, the messages sent by processes
0 and 1 are first copied from the specified send buffer sendbuf into a system
buffer before the actual transmission. After this copy operation, the MPI Send()
operation is completed because the send buffers can be reused. Thus, both processes
0 and 1 can execute their MPI Recv() operation and no deadlock occurs. But a
deadlock occurs, if the runtime system does not use system buffers or if the system
buffers used are too small. In this case, none of the two processes can complete its
MPI Send() operation, since the corresponding MPI Recv() cannot be executed
by the other process.

A secure implementation which does not cause deadlocks even if no system
buffers are used is the following:

/* program fragment that does not cause a deadlock */
MPI Comm rank (comm, &myrank);
if (my rank == 0) {

MPI Send (sendbuf, count, MPI INT, 1, tag, comm);
MPI Recv (recvbuf, count, MPI INT, 1, tag, comm, &status);

}
else if (my rank == 1) {

MPI Recv (recvbuf, count, MPI INT, 0, tag, comm, &status);
MPI Send (sendbuf, count, MPI INT, 0, tag, comm);

}
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An MPI program is called secure if the correctness of the program does not
depend on assumptions about specific properties of the MPI runtime system, like
the existence of system buffers or the size of system buffers. Thus, secure MPI
programs work correctly even if no system buffers are used. If more than two pro-
cesses exchange messages such that each process sends and receives a message,
the program must exactly specify in which order the send and receive operations
are to be executed to avoid deadlocks. As example, we consider a program with p
processes where process i sends a message to process (i + 1) mod p and receives a
message from process (i −1) mod p for 0 ≤ i ≤ p−1. Thus, the messages are sent
in a logical ring. A secure implementation can be obtained if processes with an even
rank first execute their send and then their receive operation, whereas processes with
an odd rank first execute their receive and then their send operation. This leads to
a communication with two phases and to the following exchange scheme for four
processes:

Phase Process 0 Process 1 Process 2 Process 3

1 MPI Send() to 1 MPI Recv() from 0 MPI Send() to 3 MPI Recv() from 2
2 MPI Recv() from 3 MPI Send() to 2 MPI Recv() from 1 MPI Send() to 0

The described execution order leads to a secure implementation also for an odd
number of processes. For three processes, the following exchange scheme results:

Phase Process 0 Process 1 Process 2

1 MPI Send() to 1 MPI Recv() from 0 MPI Send() to 0
2 MPI Recv() from 2 MPI Send() to 2 -wait-
3 -wait- MPI Recv() from 1

In this scheme, some communication operations like the MPI Send() operation of
process 2 can be delayed because the receiver calls the corresponding MPI Recv()
operation at a later time. But a deadlock cannot occur.

In many situations, processes both send and receive data. MPI provides the fol-
lowing operations to support this behavior:

int MPI Sendrecv (void *sendbuf,
int sendcount,
MPI Datatype sendtype,
int dest,
int sendtag,
void *recvbuf,
int recvcount,
MPI Datatype recvtype,
int source,
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int recvtag,
MPI Comm comm,
MPI Status *status).

This operation is blocking and combines a send and a receive operation in one call.
The parameters have the following meaning:

• sendbuf specifies a send buffer in which the data elements to be sent are stored;
• sendcount is the number of elements to be sent;
• sendtype is the data type of the elements in the send buffer;
• dest is the rank of the target process to which the data elements are sent;
• sendtag is the tag for the message to be sent;
• recvbuf is the receive buffer for the message to be received;
• recvcount is the maximum number of elements to be received;
• recvtype is the data type of elements to be received;
• source is the rank of the process from which the message is expected;
• recvtag is the expected tag of the message to be received;
• comm is the communicator used for the communication;
• status specifies the data structure to store the information on the message

received.

Using MPI Sendrecv(), the programmer does not need to worry about the
order of the send and receive operations. The MPI runtime system guarantees
deadlock freedom, also for the case that no internal system buffers are used. The
parameters sendbuf and recvbuf, specifying the send and receive buffers of
the executing process, must be disjoint, non-overlapping memory locations. But the
buffers may have different lengths, and the entries stored may even contain elements
of different data types. There is a variant of MPI Sendrecv() for which the send
buffer and the receive buffer are identical. This operation is also blocking and has
the following syntax:

int MPI Sendrecv replace (void *buffer,
int count,
MPI Datatype type,
int dest,
int sendtag,
int source,
int recvtag,
MPI Comm comm,
MPI Status *status).

Here, buffer specifies the buffer that is used as both send and receive buffer. For
this function, count is the number of elements to be sent and to be received; these
elements now should have identical type type.
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5.1.3 Non-blocking Operations and Communication Modes

The use of blocking communication operations can lead to waiting times in which
the blocked process does not perform useful work. For example, a process executing
a blocking send operation must wait until the send buffer has been copied into a
system buffer or even until the message has completely arrived at the receiving
process if no system buffers are used. Often, it is desirable to fill the waiting times
with useful operations of the waiting process, e.g., by overlapping communica-
tions and computations. This can be achieved by using non-blocking communication
operations.

A non-blocking send operation initiates the sending of a message and returns
control to the sending process as soon as possible. Upon return, the send operation
has been started, but the send buffer specified cannot be reused safely, i.e., the trans-
fer into an internal system buffer may still be in progress. A separate completion
operation is provided to test whether the send operation has been completed locally.
A non-blocking send has the advantage that control is returned as fast as possible to
the calling process which can then execute other useful operations. A non-blocking
send is performed by calling the following MPI function:

int MPI Isend (void *buffer,
int count,
MPI Datatype type,
int dest,
int tag,
MPI Comm comm,
MPI Request *request).

The parameters have the same meaning as for MPI Send(). There is an additional
parameter of type MPI Request which denotes an opaque object that can be used
for the identification of a specific communication operation. This request object is
also used by the MPI runtime system to report information on the status of the
communication operation.

A non-blocking receive operation initiates the receiving of a message and
returns control to the receiving process as soon as possible. Upon return, the receive
operation has been started and the runtime system has been informed that the receive
buffer specified is ready to receive data. But the return of the call does not indicate
that the receive buffer already contains the data, i.e., the message to be received
cannot be used yet. A non-blocking receive is provided by MPI using the function

int MPI Irecv (void *buffer,
int count,
MPI Datatype type,
int source,
int tag,
MPI Comm comm,
MPI Request *request)
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where the parameters have the same meaning as for MPI Recv(). Again, a request
object is used for the identification of the operation. Before reusing a send or receive
buffer specified in a non-blocking send or receive operation, the calling process
must test the completion of the operation. The request objects returned are used for
the identification of the communication operations to be tested for completion. The
following MPI function can be used to test for the completion of a non-blocking
communication operation:

int MPI Test (MPI Request *request,
int *flag,
MPI Status *status).

The call returns flag = 1 (true), if the communication operation identified by
request has been completed. Otherwise, flag = 0 (false) is returned. If
request denotes a receive operation and flag = 1 is returned, the parameter
status contains information on the message received as described for
MPI Recv(). The parameter status is undefined if the specified receive opera-
tion has not yet been completed. If request denotes a send operation, all entries
of status except status.MPI ERROR are undefined. The MPI function

int MPI Wait (MPI Request *request, MPI Status *status)

can be used to wait for the completion of a non-blocking communication opera-
tion. When calling this function, the calling process is blocked until the operation
identified by request has been completed. For a non-blocking send operation, the
send buffer can be reused after MPI Wait() returns. Similarly for a non-blocking
receive, the receive buffer contains the message after MPI Wait() returns.

MPI also ensures for non-blocking communication operations that messages are
non-overtaking. Blocking and non-blocking operations can be mixed, i.e., data sent
by MPI Isend() can be received by MPI Recv() and data sent by MPI Send()
can be received by MPI Irecv().

Example As example for the use of non-blocking communication operations, we
consider the collection of information from different processes such that each pro-
cess gets all available information [135]. We consider p processes and assume that
each process has computed the same number of floating-point values. These values
should be communicated such that each process gets the values of all other pro-
cesses. To reach this goal, p− 1 steps are performed and the processes are logically
arranged in a ring. In the first step, each process sends its local data to its successor
process in the ring. In the following steps, each process forwards the data that it has
received in the previous step from its predecessor to its successor. After p−1 steps,
each process has received all the data.

The steps to be performed are illustrated in Fig. 5.2 for four processes. For the
implementation, we assume that each process provides its local data in an array x
and that the entire data is collected in an array y of size p times the size of x.

Figure 5.3 shows an implementation with blocking send and receive opera-
tions. The size of the local data blocks of each process is given by parameter
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step 2step 1
P3 x3 ← x2 P2 P3 x2, x3 ← x1, x2 P2

↓ ↑ ↓ ↑
P0 x0 → x1 P1 P0 x3, x0 → x0, x1 P1

step 4step 3
P3 x1, x2, x3 ← x0, x1, x2 P2 P3 x0, x1, x2, x3 ← x3, x0, x1, x2 P2

↓ ↑ ↓ ↑
P0 x2, x3, x0 → x3, x0, x1 P1 P0 x1, x2, x3, x0 → x2, x3, x0, x1 P1

Fig. 5.2 Illustration for the collection of data in a logical ring structure for p = 4 processes

Fig. 5.3 MPI program for the collection of distributed data blocks. The participating processes
are logically arranged as a ring. The communication is performed with blocking point-to-point
operations. Deadlock freedom is ensured only if the MPI runtime system uses system buffers that
are large enough



5.1 Introduction to MPI 211

blocksize. First, each process copies its local block x into the corresponding
position in y and determines its predecessor process pred as well as its succes-
sors process succ in the ring. Then, a loop with p − 1 steps is performed. In
each step, the data block received in the previous step is sent to the successor
process, and a new block is received from the predecessor process and stored in
the next block position to the left in y. It should be noted that this implementation
requires the use of system buffers that are large enough to store the data blocks to
be sent.

An implementation with non-blocking communication operations is shown in
Fig. 5.4. This implementation allows an overlapping of communication with local
computations. In this example, the local computations overlapped are the compu-
tations of the positions of send offset and recv offset of the next blocks
to be sent or to be received in array y. The send and receive operations are

Fig. 5.4 MPI program for the collection of distributed data blocks, see Fig. 5.3. Non-blocking
communication operations are used instead of blocking operations
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started with MPI Isend() and MPI Irecv(), respectively. After control returns
from these operations, send offset and recv offset are re-computed and
MPI Wait() is used to wait for the completion of the send and receive operations.
According to [135], the non-blocking version leads to a smaller execution time than
the blocking version on an Intel Paragon and IBM SP2 machine. ��

5.1.4 Communication Mode

MPI provides different communication modes for both blocking and non-blocking
communication operations. These communication modes determine the coordina-
tion between a send and its corresponding receive operation. The following three
modes are available.

5.1.4.1 Standard Mode

The communication operations described until now use the standard mode of com-
munication. In this mode, the MPI runtime system decides whether outgoing mes-
sages are buffered in a local system buffer or not. The runtime system could, for
example, decide to buffer small messages up to a predefined size, but not large
messages. For the programmer, this means that he cannot rely on a buffering of
messages. Hence, programs should be written in such a way that they also work if
no buffering is used.

5.1.4.2 Synchronous Mode

In the standard mode, a send operation can be completed even if the corresponding
receive operation has not yet been started (if system buffers are used). In contrast, in
synchronous mode, a send operation will be completed not before the corresponding
receive operation has been started and the receiving process has started to receive the
data sent. Thus, the execution of a send and receive operation in synchronous mode
leads to a form of synchronization between the sending and the receiving processes:
The return of a send operation in synchronous mode indicates that the receiver has
started to store the message in its local receive buffer. A blocking send operation in
synchronous mode is provided in MPI by the function MPI Ssend(), which has
the same parameters as MPI Send() with the same meaning. A non-blocking send
operation in synchronous mode is provided by the MPI function MPI Issend(),
which has the same parameters as MPI Isend() with the same meaning. Similar
to a non-blocking send operation in standard mode, control is returned to the calling
process as soon as possible, i.e., in synchronous mode there is no synchronization
between MPI Issend() and MPI Irecv(). Instead, synchronization between
sender and receiver is performed when the sender calls MPI Wait(). When calling
MPI Wait() for a non-blocking send operation in synchronous mode, control is
returned to the calling process not before the receiver has called the corresponding
MPI Recv() or MPI Irecv() operation.
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5.1.4.3 Buffered Mode

In buffered mode, the local execution and termination of a send operation is not
influenced by non-local events as is the case for the synchronous mode and can
be the case for standard mode if no or too small system buffers are used. Thus,
when starting a send operation in buffered mode, control will be returned to the
calling process even if the corresponding receive operation has not yet been started.
Moreover, the send buffer can be reused immediately after control returns, even if a
non-blocking send is used. If the corresponding receive operation has not yet been
started, the runtime system must buffer the outgoing message. A blocking send oper-
ation in buffered mode is performed by calling the MPI function MPI Bsend(),
which has the same parameters as MPI Send() with the same meaning. A non-
blocking send operation in buffered mode is performed by calling MPI Ibsend(),
which has the same parameters as MPI Isend(). In buffered mode, the buffer
space to be used by the runtime system must be provided by the programmer. Thus,
it is the programmer who is responsible that a sufficiently large buffer is available.
In particular, a send operation in buffered mode may fail if the buffer provided by
the programmer is too small to store the message. The buffer for the buffering of
messages by the sender is provided by calling the MPI function

int MPI Buffer attach (void *buffer, int buffersize),

where buffersize is the size of the buffer buffer in bytes. Only one buffer can
be attached by each process at a time. A buffer previously provided can be detached
again by calling the function

int MPI Buffer detach (void *buffer, int *buffersize),

where buffer is the address of the buffer pointer used in MPI Buffer
attach(); the size of the buffer detached is returned in the parameter
buffer-size. A process calling MPI Buffer detach() is blocked until all
messages that are currently stored in the buffer have been transmitted.
For receive operations, MPI provides the standard mode only.

5.2 Collective Communication Operations

A communication operation is called collective or global if all or a subset of the
processes of a parallel program are involved. In Sect. 3.5.2, we have shown global
communication operations which are often used. In this section, we show how
these communication operations can be used in MPI. The following table gives an
overview of the operations supported:
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Global communication operation MPI function

Broadcast operation MPI Bcast()
Accumulation operation MPI Reduce()
Gather operation MPI Gather()
Scatter operation MPI Scatter()
Multi-broadcast operation MPI Allgather()
Multi-accumulation operation MPI Allreduce()
Total exchange MPI Alltoall()

5.2.1 Collective Communication in MPI

5.2.1.1 Broadcast Operation

For a broadcast operation, one specific process of a group of processes sends the
same data block to all other processes of the group, see Sect. 3.5.2. In MPI, a broad-
cast is performed by calling the following MPI function:

int MPI Bcast (void *message,
int count,
MPI Datatype type,
int root,
MPI Comm comm),

where root denotes the process which sends the data block. This process provides
the data block to be sent in parameter message. The other processes specify in
message their receive buffer. The parameter count denotes the number of ele-
ments in the data block, type is the data type of the elements of the data block.
MPI Bcast() is a collective communication operation, i.e., each process of the
communicator comm must call the MPI Bcast() operation. Each process must
specify the same root process and must use the same communicator. Similarly, the
type type and number count specified by any process including the root process
must be the same for all processes. Data blocks sent by MPI Bcast() cannot be
received by an MPI Recv() operation.

As can be seen in the parameter list of MPI Bcast(), no tag information is
used as is the case for point-to-point communication operations. Thus, the receiving
processes cannot distinguish between different broadcast messages based on tags.

The MPI runtime system guarantees that broadcast messages are received in the
same order in which they have been sent by the root process, even if the correspond-
ing broadcast operations are not executed at the same time. Figure 5.5 shows as
example a program part in which process 0 sends two data blocks x and y by two
successive broadcast operations to process 1 and process 2 [135].

Process 1 first performs local computations by local work() and then stores
the first broadcast message in its local variable y, the second one in x. Process 2
stores the broadcast messages in the same local variables from which they have been
sent by process 0. Thus, process 1 will store the messages in other local variables
as process 2. Although there is no explicit synchronization between the processes
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Fig. 5.5 Example for the
receive order with several
broadcast operations

executing MPI Bcast(), synchronous execution semantics is used, i.e., the order
of the MPI Bcast() operations is such as if there were a synchronization between
the executing processes.

Collective MPI communication operations are always blocking; no non-blocking
versions are provided as is the case for point-to-point operations. The main reason
for this is to avoid a large number of additional MPI functions. For the same rea-
son, only the standard modus is supported for collective communication operations.
A process participating in a collective communication operation can complete the
operation and return control as soon as its local participation has been completed, no
matter what the status of the other participating processes is. For the root process,
this means that control can be returned as soon as the message has been copied into
a system buffer and the send buffer specified as parameter can be reused. The other
processes need not have received the message before the root process can continue
its computations. For a receiving process, this means that control can be returned
as soon as the message has been transferred into the local receive buffer, even if
other receiving processes have not even started their corresponding MPI Bcast()
operation. Thus, the execution of a collective communication operation does not
involve a synchronization of the participating processes.

5.2.1.2 Reduction Operation

An accumulation operation is also called global reduction operation. For such an
operation, each participating process provides a block of data that is combined with
the other blocks using a binary reduction operation. The accumulated result is col-
lected at a root process, see also Sect. 3.5.2. In MPI, a global reduction operation is
performed by letting each participating process call the function

int MPI Reduce (void *sendbuf,
void *recvbuf,
int count,
MPI Datatype type,
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MPI Op op,
int root,
MPI Comm comm),

where sendbuf is a send buffer in which each process provides its local data for the
reduction. The parameter recvbuf specifies the receive buffer which is provided
by the root process root. The parameter count specifies the number of elements
provided by each process; type is the data type of each of these elements. The
parameter op specifies the reduction operation to be performed for the accumula-
tion. This must be an associative operation. MPI provides a number of predefined
reduction operations which are also commutative:

Representation Operation

MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bit-wise and
MPI LOR Logical or
MPI BOR Bit-wise or
MPI LXOR Logical exclusive or
MPI BXOR Bit-wise exclusive or
MPI MAXLOC Maximum value and corresponding index
MPI MINLOC Minimum value and corresponding index

The predefined reduction operations MPI MAXLOC and MPI MINLOC can be
used to determine a global maximum or minimum value and also an additional index
attached to this value. This will be used in Chap. 7 in Gaussian elimination to deter-
mine a global pivot element of a row as well as the process which owns this pivot
element and which is then used as the root of a broadcast operation. In this case,
the additional index value is a process rank. Another use could be to determine the
maximum value of a distributed array as well as the corresponding index position.
In this case, the additional index value is an array index. The operation defined by
MPI MAXLOC is

(u, i) ◦max (v, j) = (w, k),

where w = max(u, v) and k =
⎧
⎨

⎩

i if u > v

min(i, j) if u = v

j if u < v

.

Analogously, the operation defined by MPI MINLOC is
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(u, i) ◦min (v, j) = (w, k),

where w = min(u, v) and k =
⎧
⎨

⎩

i if u < v

min(i, j) if u = v

j if u > v

.

Thus, both operations work on pairs of values, consisting of a value and an index.
Therefore the data type provided as parameter of MPI Reduce() must represent
such a pair of values. MPI provides the following pairs of data types:

MPI FLOAT INT (float,int)
MPI DOUBLE INT (double,int)
MPI LONG INT (long,int)
MPI SHORT INT (short,int)
MPI LONG DOUBLE INT (long double,int)
MPI 2INT (int,int)

For an MPI Reduce() operation, all participating processes must specify the
same values for the parameters count, type, op, and root. The send buffers
sendbuf and the receive buffer recvbuf must have the same size. At the root
process, they must denote disjoint memory areas. An in-place version can be acti-
vated by passing MPI IN PLACE for sendbuf at the root process. In this case, the
input data block is taken from the recvbuf parameter at the root process, and the
resulting accumulated value then replaces this input data block after the completion
of MPI Reduce().

Example As example, we consider the use of a global reduction operation using
MPI MAXLOC, see Fig. 5.6. Each process has an array of 30 values of type double,
stored in array ain of length 30. The program part computes the maximum value
for each of the 30 array positions as well as the rank of the process that stores this

Fig. 5.6 Example for the use of MPI Reduce() using MPI MAXLOC as reduction operator
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maximum value. The information is collected at process 0: The maximum values
are stored in array aout and the corresponding process ranks are stored in array
ind. For the collection of the information based on value pairs, a data structure is
defined for the elements of arrays in and out, consisting of a double and an int
value. ��

MPI supports the definition of user-defined reduction operations using the fol-
lowing MPI function:

int MPI Op create (MPI User function *function,
int commute,
MPI Op *op).

The parameter function specifies a user-defined function which must define the
following four parameters:

void *in, void *out, int *len, MPI Datatype *type.
The user-defined function must be associative. The parameter commute
specifies whether the function is also commutative (commute=1) or not
(commute=0). The call of MPI Op create() returns a reduction operation op
which can then be used as parameter of MPI Reduce().

Example We consider the parallel computation of the scalar product of two vectors
x and y of length m using p processes. Both vectors are partitioned into blocks of
size local m = m/p. Each block is stored by a separate process such that each
process stores its local blocks of x and y in local vectors local x and local y.
Thus, the process with rank my rank stores the following parts of x and y:

local x[j] = x[j + my rank * local m];
local y[j] = y[j + my rank * local m];

for 0 ≤ j < local m.

Fig. 5.7 MPI program for the parallel computation of a scalar product
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Figure 5.7 shows a program part for the computation of a scalar product.
Each process executes this program part and computes a scalar product for its
local blocks in local x and local y. The result is stored in local dot. An
MPI Reduce() operation with reduction operation MPI SUM is then used to add
up the local results. The final result is collected at process 0 in variable dot. ��

5.2.1.3 Gather Operation

For a gather operation, each process provides a block of data collected at a root
process, see Sect. 3.5.2. In contrast to MPI Reduce(), no reduction operation is
applied. Thus, for p processes, the data block collected at the root process is p times
larger than the individual blocks provided by each process. A gather operation is
performed by calling the following MPI function :

int MPI Gather(void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int recvcount,
MPI Datatype recvtype,
int root,
MPI Comm comm).

The parameter sendbuf specifies the send buffer which is provided by each partic-
ipating process. Each process provides sendcount elements of type sendtype.
The parameter recvbuf is the receive buffer that is provided by the root pro-
cess. No other process must provide a receive buffer. The root process receives
recvcount elements of type recvtype from each process of communicator
comm and stores them in the order of the ranks of the processes according to comm.
For p processes the effect of the MPI Gather() call can also be achieved if each
process, including the root process, calls a send operation

MPI Send (sendbuf, sendcount, sendtype, root, my rank, comm)

and the root process executes p receive operations

MPI Recv (recvbuf+i*recvcount*extent,
recvcount, recvtype, i, i, comm, &status),

where i enumerates all processes of comm. The number of bytes used for each
element of the data blocks is stored in extend and can be determined by calling the
function MPI Type extent(recvtype, &extent). For a correct execution
of MPI Gather(), each process must specify the same root process root. More-
over, each process must specify the same element data type and the same number
of elements to be sent. Figure 5.8 shows a program part in which process 0 collects
100 integer values from each process of a communicator.
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Fig. 5.8 Example for the application of MPI Gather()

MPI provides a variant of MPI Gather() for which each process can provide
a different number of elements to be collected. The variant is MPI Gatherv(),
which uses the same parameters as MPI Gather() with the following two
changes:

• the integer parameter recvcount is replaced by an integer array recvcounts
of length p where recvcounts[i] denotes the number of elements provided
by process i;

• there is an additional parameter displs after recvcounts. This is also an
integer array of length p and displs[i] specifies at which position of the
receive buffer of the root process the data block of process i is stored. Only the
root process must specify the array parameters recvcounts and displs.

The effect of an MPI Gatherv() operation can also be achieved if each pro-
cess executes the send operation described above and the root process executes the
following p receive operations:

MPI Recv(recvbuf+displs[i]*extent, recvcounts[i], recvtype, i, i,
comm, &status).

For a correct execution of MPI Gatherv(), the parameter sendcount specified
by process i must be equal to the value of recvcounts[i] specified by the root
process. Moreover, the send and receive types must be identical for all processes.
The array parameters recvcounts and displs specified by the root process
must be chosen such that no location in the receive buffer is written more than once,
i.e., an overlapping of received data blocks is not allowed.

Figure 5.9 shows an example for the use of MPI Gatherv() which is a gen-
eralization of the example in Fig. 5.8: Each process provides 100 integer values,
but the blocks received are stored in the receive buffer in such a way that there is
a free gap between neighboring blocks; the size of the gaps can be controlled by
parameter displs. In Fig. 5.9, stride is used to define the size of the gap, and
the gap size is set to 10. An error occurs for stride < 100, since this would
lead to an overlapping in the receive buffer.
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Fig. 5.9 Example for the use of MPI Gatherv()

5.2.1.4 Scatter Operation

For a scatter operation, a root process provides a different data block for each partic-
ipating process. By executing the scatter operation, the data blocks are distributed to
these processes, see Sect. 3.5.2. In MPI, a scatter operation is performed by calling

int MPI Scatter (void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int recvcount,
MPI Datatype recvtype,
int root,
MPI Comm comm),

where sendbuf is the send buffer provided by the root process root which con-
tains a data block for each process of the communicator comm. Each data block
contains sendcount elements of type sendtype. In the send buffer, the blocks
are ordered in rank order of the receiving process. The data blocks are received in
the receive buffer recvbuf provided by the corresponding process. Each partici-
pating process including the root process must provide such a receive buffer. For p
processes, the effects of MPI Scatter() can also be achieved by letting the root
process execute p send operations

MPI Send (sendbuf+i*sendcount*extent, sendcount, sendtype, i, i,
comm)

for i= 0, . . . , p−1. Each participating process executes the corresponding receive
operation
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MPI Recv (recvbuf, recvcount, recvtype, root, my rank, comm,
&status).

For a correct execution of MPI Scatter(), each process must specify the same
root, the same data types, and the same number of elements.

Similar to MPI Gather(), there is a generalized version MPI Scatterv()
of MPI Scatter() for which the root process can provide data blocks of different
sizes. MPI Scatterv() uses the same parameters as MPI Scatter() with the
following two changes:

• The integer parameter sendcount is replaced by the integer array send-
counts where sendcounts[i] denotes the number of elements sent to pro-
cess i for i = 0, . . . , p − 1.

• There is an additional parameter displs after sendcounts which is also an
integer array with p entries; displs[i] specifies from which position in the
send buffer of the root process the data block for process i should be taken.

The effect of an MPI Scatterv() operation can also be achieved by point-to-
point operations: The root process executes p send operations

MPI Send (sendbuf+displs[i]*extent,sendcounts[i],sendtype,i,
i,comm)

and each process executes the receive operation described above.
For a correct execution of MPI Scatterv(), the entry sendcounts[i]

specified by the root process for process imust be equal to the value of recvcount
specified by process i. In accordance with MPI Gatherv(), it is required that the
arrays sendcounts and displs are chosen such that no entry of the send buffer
is sent to more than one process. This restriction is imposed for symmetry reasons
with MPI Gatherv() although this is not essential for a correct behavior. The
program in Fig. 5.10 illustrates the use of a scatter operation. Process 0 distributes

Fig. 5.10 Example for the use of an MPI Scatterv() operation
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100 integer values to each other process such that there is a gap of 10 elements
between neighboring send blocks.

5.2.1.5 Multi-broadcast Operation

For a multi-broadcast operation, each participating process contributes a block of
data which could, for example, be a partial result from a local computation. By exe-
cuting the multi-broadcast operation, all blocks will be provided to all processes.
There is no distinguished root process, since each process obtains all blocks pro-
vided. In MPI, a multi-broadcast operation is performed by calling the function

int MPI Allgather (void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int recvcount,
MPI Datatype recvtype,
MPI Comm comm),

where sendbuf is the send buffer provided by each process containing the block
of data. The send buffer contains sendcount elements of type sendtype. Each
process also provides a receive buffer recvbuf in which all received data blocks
are collected in the order of the ranks of the sending processes. The values of
the parameters sendcount and sendtype must be the same as the values of
recvcount and recvtype. In the following example, each process contributes
a send buffer with 100 integer values which are collected by a multi-broadcast oper-
ation at each process:

int sbuf[100], gsize, *rbuf;
MPI Comm size (comm, &gsize);
rbuf = (int*) malloc (gsize*100*sizeof(int));
MPI Allgather (sbuf, 100, MPI INT, rbuf, 100, MPI INT, comm);

For an MPI Allgather() operation, each process must contribute a data block of
the same size. There is a vector version of MPI Allgather() which allows each
process to contribute a data block of a different size. This vector version is obtained
by a similar generalization as MPI Gatherv() and is performed by calling the
following function:

int MPI Allgatherv (void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int *recvcounts,
int *displs,
MPI Datatype recvtype,
MPI Comm comm).

The parameters have the same meaning as for MPI Gatherv().
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5.2.1.6 Multi-accumulation Operation

For a multi-accumulation operation, each participating process performs a separate
single-accumulation operation for which each process provides a different block
of data, see Sect. 3.5.2. MPI provides a version of multi-accumulation with a
restricted functionality: Each process provides the same data block for each single-
accumulation operation. This can be illustrated by the following diagram:

P0 : x0 P0 : x0 + x1 + · · · + x p−1

P1 : x1 P1 : x0 + x1 + · · · + x p−1
...

MPI−accumulation(+)=⇒ ...
Pp−1 : xn Pp−1 : x0 + x1 + · · · + x p−1

In contrast to the general version described in Sect. 3.5.2, each of the processes
P0, . . . , Pp−1 only provides one data block for k = 0, . . . , p − 1, expressed as
Pk : xk . After the operation, each process has accumulated the same result block,
represented by Pk : x0 + x1 + · · · + x p−1. Thus, a multi-accumulation operation in
MPI has the same effect as a single-accumulation operation followed by a single-
broadcast operation which distributes the accumulated data block to all processes.
The MPI operation provided has the following syntax:

int MPI Allreduce (void *sendbuf,
void *recvbuf,
int count,
MPI Datatype type,
MPI Op op,
MPI Comm comm),

where sendbuf is the send buffer in which each process provides its local data
block. The parameter recvbuf specifies the receive buffer in which each process
of the communicator comm collects the accumulated result. Both buffers contain
count elements of type type. The reduction operation op is used. Each process
must specify the same size and type for the data block.

Example We consider the use of a multi-accumulation operation for the parallel
computation of a matrix–vector multiplication c = A · b of an n × m matrix
A with an m-dimensional vector b. The result is stored in the n-dimensional
vector c. We assume that A is distributed in a column-oriented blockwise way
such that each of the p processes stores local m = m/p contiguous columns
of A in its local memory, see also Sect. 3.4 on data distributions. Correspondingly,
vector b is distributed in a blockwise way among the processes. The matrix–vector
multiplication is performed in parallel as described in Sect. 3.6, see also Fig. 3.13.
Figure 5.11 shows an outline of an MPI implementation. The blocks of columns
stored by each process are stored in the two-dimensional array a which contains n
rows and local m columns. Each process stores its local columns consecutively in
this array. The one-dimensional array local b contains for each process its block
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Fig. 5.11 MPI program piece
to compute a matrix–vector
multiplication with a
column-blockwise
distribution of the matrix
using an
MPI Allreduce()
operation

of b of length local m. Each process computes n partial scalar products for its
local block of columns using partial vectors of length local m. The global accu-
mulation to the final result is performed with an MPI Allreduce() operation,
providing the result to all processes in a replicated way. ��

5.2.1.7 Total Exchange

For a total exchange operation, each process provides a different block of data for
each other process, see Sect. 3.5.2. The operation has the same effect as if each
process performs a separate scatter operation (sender view) or as if each process
performs a separate gather operation (receiver view). In MPI, a total exchange is
performed by calling the function

int MPI Alltoall (void *sendbuf,
int sendcount,
MPI Datatype sendtype,
void *recvbuf,
int recvcount,
MPI Datatype recvtype,
MPI Comm comm),

where sendbuf is the send buffer in which each process provides for each process
(including itself) a block of data with sendcount elements of type sendtype.
The blocks are arranged in rank order of the target process. Each process also pro-
vides a receive buffer recvbuf in which the data blocks received from the other
processes are stored. Again, the blocks received are stored in rank order of the send-
ing processes. For p processes, the effect of a total exchange can also be achieved
if each of the p processes executes p send operations

MPI Send (sendbuf+i*sendcount*extent, sendcount, sendtype,
i, my rank, comm)

as well as p receive operations
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MPI Recv (recvbuf+i*recvcount*extent, recvcount, recvtype,
i, i, comm, &status),

where i is the rank of one of the p processes and therefore lies between 0 and p−1.
For a correct execution, each participating process must provide for each other

process data blocks of the same size and must also receive from each other process
data blocks of the same size. Thus, all processes must specify the same values for
sendcount and recvcount. Similarly, sendtype and recvtype must be
the same for all processes. If data blocks of different sizes should be exchanged, the
vector version must be used. This has the following syntax:

int MPI Alltoallv (void *sendbuf,
int *scounts,
int *sdispls,
MPI Datatype sendtype,
void *recvbuf,
int *rcounts,
int *rdispls,
MPI Datatype recvtype,
MPI Comm comm).

For each process i, the entry scounts[j] specifies how many elements of type
sendtype process i sends to process j. The entry sdispls[j] specifies the
start position of the data block for process j in the send buffer of process i. The
entry rcounts[j] at process i specifies how many elements of type recvtype
process i receives from process j. The entry rdispls[j] at process i specifies
at which position in the receive buffer of process i the data block from process j is
stored.

For a correct execution of MPI Alltoallv(), scounts[j] at process i
must have the same value as rcounts[i] at process j. For p processes, the effect
of Alltoallv() can also be achieved, if each of the processes executes p send
operations

MPI Send (sendbuf+sdispls[i]*sextent, scounts[i],
sendtype, i, my rank, comm)

and p receive operations

MPI Recv (recvbuf+rdispls[i]*rextent, rcounts[i],
recvtype, i, i, comm, &status),

where i is the rank of one of the p processes and therefore lies between 0 and p−1.
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5.2.2 Deadlocks with Collective Communication

Similar to single transfer operations, different behavior can be observed for col-
lective communication operations, depending on the use of internal system buffers
by the MPI implementation. A careless use of collective communication operations
may lead to deadlocks, see also Sect. 3.7.4 (p. 140) for the occurrence of dead-
locks with single transfer operations. This can be illustrated for MPI Bcast()
operations: We consider two MPI processes which execute two MPI Bcast()
operations in opposite order

switch (my rank) {
case 0: MPI Bcast (buf1, count, type, 0, comm);

MPI Bcast (buf2, count, type, 1, comm);
break;

case 1: MPI Bcast (buf2, count, type, 1, comm);
MPI Bcast (buf1, count, type, 0, comm);

}

Executing this piece of program may lead to two different error situations:

1. The MPI runtime system may match the first MPI Bcast() call of each pro-
cess. Doing this results in an error, since the two processes specify different
roots.

2. The runtime system may match the MPI Bcast() calls with the same root, as
it has probably been intended by the programmer. Then a deadlock may occur
if no system buffers are used or if the system buffers are too small. Collective
communication operations are always blocking; thus, the operations are syn-
chronizing if no or too small system buffers are used. Therefore, the first call
of MPI Bcast() blocks the process with rank 0 until the process with rank 1
has called the corresponding MPI Bcast() with the same root. But this cannot
happen, since process 1 is blocked due to its first MPI Bcast() operation, wait-
ing for process 0 to call its second MPI Bcast(). Thus, a classical deadlock
situation with cyclic waiting results.

The error or deadlock situation can be avoided in this example by letting the partici-
pating processes call the matching collective communication operations in the same
order.

Deadlocks can also occur when mixing collective communication and single-
transfer operations. This can be illustrated by the following example:

switch (my rank) {
case 0: MPI Bcast (buf1, count, type, 0, comm);

MPI Send (buf2, count, type, 1, tag, comm);
break;

case 1: MPI Recv (buf2, count, type, 0, tag, comm, &status);
MPI Bcast (buf1, count, type, 0, comm);

}
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If no system buffers are used by the MPI implementation, a deadlock because of
cyclic waiting occurs: Process 0 blocks when executing MPI Bcast(), until pro-
cess 1 executes the corresponding MPI Bcast() operation. Process 1 blocks when
executing MPI Recv() until process 0 executes the corresponding MPI Send()
operation, resulting in cyclic waiting. This can be avoided if both processes execute
their corresponding communication operations in the same order.

The synchronization behavior of collective communication operations depends
on the use of system buffers by the MPI runtime system. If no internal system buffers
are used or if the system buffers are too small, collective communication operations
may lead to the synchronization of the participating processes. If system buffers
are used, there is not necessarily a synchronization. This can be illustrated by the
following example:

switch (my rank) {
case 0: MPI Bcast (buf1, count, type, 0, comm);

MPI Send (buf2, count, type, 1, tag, comm);
break;

case 1: MPI Recv (buf2, count, type, MPI ANY SOURCE, tag,
comm, &status);

MPI Bcast (buf1, count, type, 0, comm);
MPI Recv (buf2, count, type, MPI ANY SOURCE, tag,

comm, &status);
break;

case 2: MPI Send (buf2, count, type, 1, tag, comm);
MPI Bcast (buf1, count, type, 0, comm);

}

After having executed MPI Bcast(), process 0 sends a message to process 1
using MPI Send(). Process 2 sends a message to process 1 before executing
an MPI Bcast() operation. Process 1 receives two messages from MPI ANY
SOURCE, one before and one after the MPI Bcast() operation. The question

is which message will be received from process 1 by which MPI Recv(). Two
execution orders are possible:

1. Process 1 first receives the message from process 2:
process 0 process 1 process 2

MPI Recv() ⇐= MPI Send()
MPI Bcast() MPI Bcast() MPI Bcast()
MPI Send() =⇒ MPI Recv()

This execution order may occur independent of whether system buffers are
used or not. In particular, this execution order is possible also if the calls of
MPI Bcast() are synchronizing.

2. Process 1 first receives the message from process 0:
process 0 process 1 process 2

MPI Bcast()

MPI Send() =⇒ MPI Recv()

MPI Bcast()

MPI Recv() ⇐= MPI Send()

MPI Bcast()
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This execution order can only occur, if large enough system buffers are used,
because otherwise process 0 cannot finish its MPI Bcast() call before process
1 has started its corresponding MPI Bcast().

Thus, a non-deterministic program behavior results depending on the use of sys-
tem buffers. Such a program is correct only if both execution orders lead to the
intended result. The previous examples have shown that collective communication
operations are synchronizing only if the MPI runtime system does not use system
buffers to store messages locally before their actual transmission. Thus, when writ-
ing a parallel program, the programmer cannot rely on the expectation that collective
communication operations lead to a synchronization of the participating processes.

To synchronize a group of processes, MPI provides the operation

MPI Barrier (MPI Comm comm).

The effect of this operation is that all processes belonging to the group of communi-
cator comm are blocked until all other processes of this group also have called this
operation.

5.3 Process Groups and Communicators

MPI allows the construction of subsets of processes by defining groups and com-
municators. A process group (or group for short) is an ordered set of processes of
an application program. Each process of a group gets an uniquely defined process
number which is also called rank. The ranks of a group always start with 0 and
continue consecutively up to the number of processes minus one. A process may
be a member of multiple groups and may have different ranks in each of these
groups. The MPI system handles the representation and management of process
groups. For the programmer, a group is an object of type MPI Group which can
only be accessed via a handle which may be internally implemented by the MPI
system as an index or a reference. Process groups are useful for the implementation
of task-parallel programs and are the basis for the communication mechanism
of MPI.

In many situations, it is useful to partition the processes executing a parallel pro-
gram into disjoint subsets (groups) which perform independent tasks of the program.
This is called task parallelism, see also Sect. 3.3.4. The execution of task-parallel
program parts can be obtained by letting the processes of a program call different
functions or communication operations, depending on their process numbers. But
task parallelism can be implemented much easier using the group concept.

5.3.1 Process Groups in MPI

MPI provides a lot of support for process groups. In particular, collective commu-
nication operations can be restricted to process groups by using the corresponding
communicators. This is important for program libraries where the communication
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operations of the calling application program and the communication operations of
functions of the program library must be distinguished. If the same communicator
is used, an error may occur, e.g., if the application program calls MPI Irecv()
with communicator MPI COMM WORLD using source MPI ANY SOURCE and tag
MPI ANY TAG immediately before calling a library function. This is dangerous, if
the library functions also use MPI COMM WORLD and if the library function called
sends data to the process which executes MPI Irecv() as mentioned above, since
this process may then receive library-internal data. This can be avoided by using
separate communicators.

In MPI, each point-to-point communication as well as each collective communi-
cation is executed in a communication domain. There is a separate communica-
tion domain for each process group using the ranks of the group. For each process
of a group, the corresponding communication domain is locally represented by a
communicator. In MPI, there is a communicator for each process group and each
communicator defines a process group. A communicator knows all other commu-
nicators of the same communication domain. This may be required for the internal
implementation of communication operations. Internally, a group may be imple-
mented as an array of process numbers where each array entry specifies the global
process number of one process of the group.

For the programmer, an MPI communicator is an opaque data object of type
MPI Comm. MPI distinguishes between intra-communicators and inter-communi-
cators. Intra-communicators support the execution of arbitrary collective commu-
nication operations on a single group of processes. Inter-communicators support the
execution of point-to-point communication operations between two process groups.
In the following, we only consider intra-communicators which we call communica-
tors for short.

In the preceding sections, we have always used the predefined communica-
tor MPI COMM WORLD for communication. This communicator comprises all pro-
cesses participating in the execution of a parallel program. MPI provides several
operations to build additional process groups and communicators. These operations
are all based on existing groups and communicators. The predefined communica-
tor MPI COMM WORLD and the corresponding group are normally used as starting
point. The process group to a given communicator can be obtained by calling

int MPI Comm group (MPI Comm comm, MPI Group *group),

where comm is the given communicator and group is a pointer to a previously
declared object of type MPI Group which will be filled by the MPI call. A prede-
fined group is MPI GROUP EMPTY which denotes an empty process group.

5.3.1.1 Operations on Process Groups

MPI provides operations to construct new process groups based on existing groups.
The predefined empty group MPI GROUP EMPTY can also be used. The union of
two existing groups group1 and group2 can be obtained by calling
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int MPI Group union (MPI Group group1,
MPI Group group2,
MPI Group *new group).

The ranks in the new group new group are set such that the processes in group1
keep their ranks. The processes from group2 which are not in group1 get sub-
sequent ranks in consecutive order. The intersection of two groups is obtained by
calling

int MPI Group intersection (MPI Group group1,
MPI Group group2,
MPI Group *new group),

where the process order from group1 is kept for new group. The processes in
new group get successive ranks starting from 0. The set difference of two groups
is obtained by calling

int MPI Group difference (MPI Group group1,
MPI Group group2,
MPI Group *new group).

Again, the process order from group1 is kept. A sub group of an existing group
can be obtained by calling

int MPI Group incl (MPI Group group,
int p,
int *ranks,
MPI Group *new group),

where ranks is an integer array with p entries. The call of this function creates a
new group new group with p processes which have ranks from 0 to p-1. Process
i is the process which has rank ranks[i] in the given group group. For a correct
execution of this operation, group must contain at least p processes, and for 0 ≤
i<p, the values ranks[i] must be valid process numbers in group which are
different from each other. Processes can be deleted from a given group by calling

int MPI Group excl (MPI Group group,
int p,
int *ranks,
MPI Group *new group).

This function call generates a new group new group which is obtained from
group by deleting the processes with ranks ranks[0], . . . , ranks[p-1].
Again, the entries ranks[i] must be valid process ranks in group which are
different from each other.
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Data structures of type MPI Group cannot be directly accessed by the program-
mer. But MPI provides operations to obtain information about process groups. The
size of a process group can be obtained by calling

int MPI Group size (MPI Group group, int *size),

where the size of the group is returned in parameter size. The rank of the calling
process in a group can be obtained by calling

int MPI Group rank (MPI Group group, int *rank),

where the rank is returned in parameter rank. The function

intMPI Group compare (MPI Group group1,MPI Group group2,int*res)

can be used to check whether two group representations group1 and group2
describe the same group. The parameter value res = MPI IDENT is returned if
both groups contain the same processes in the same order. The parameter value
res = MPI SIMILAR is returned if both groups contain the same processes,
but group1 uses a different order than group2. The parameter value res =
MPI UNEQUALmeans that the two groups contain different processes. The function

int MPI Group free (MPI Group *group)

can be used to free a group representation if it is no longer needed. The group handle
is set to MPI GROUP NULL.

5.3.1.2 Operations on Communicators

A new intra-communicator to a given group of processes can be generated by calling

int MPI Comm create (MPI Comm comm,
MPI Group group,
MPI Comm *new comm),

where comm specifies an existing communicator. The parameter group must spec-
ify a process group which is a subset of the process group associated with comm.
For a correct execution, it is required that all processes of comm perform the call of
MPI Comm create() and that each of these processes specifies the same group
argument. As a result of this call, each calling process which is a member of group
obtains a pointer to the new communicator in new comm. Processes not belonging
to group get MPI COMM NULL as return value in new comm.

MPI also provides functions to get information about communicators. These
functions are implemented as local operations which do not involve communication
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to be executed. The size of the process group associated with a communicator comm
can be requested by calling the function

int MPI Comm size (MPI Comm comm, int *size).

The size of the group is returned in parameter size. For comm = MPI COMM
WORLD the total number of processes executing the program is returned. The rank

of a process in a particular group associated with a communicator comm can be
obtained by calling

int MPI Comm rank (MPI Comm comm, int *rank).

The group rank of the calling process is returned in rank. In previous examples,
we have used this function to obtain the global rank of processes of MPI COMM
WORLD. Two communicators comm1 and comm2 can be compared by calling

int MPI Comm compare (MPI Comm comm1, MPI Comm comm2, int *res).

The result of the comparison is returned in parameter res; res = MPI IDENT
is returned, if comm1 and comm2 denote the same communicator data struc-
ture. The value res = MPI CONGRUENT is returned, if the associated groups of
comm1 and comm2 contain the same processes with the same rank order. If the
two associated groups contain the same processes in different rank order, res =
MPI SIMILAR is returned. If the two groups contain different processes, res =
MPI UNEQUAL is returned.

For the direct construction of communicators, MPI provides operations for the
duplication, deletion, and splitting of communicators. A communicator can be
duplicated by calling the function

int MPI Comm dup (MPI Comm comm, MPI Comm *new comm),

which creates a new intra-communicator new comm with the same characteris-
tics (assigned group and topology) as comm. The new communicator new comm
represents a new distinct communication domain. Duplicating a communicator
allows the programmer to separate communication operations executed by a library
from communication operations executed by the application program itself, thus
avoiding any conflict. A communicator can be deallocated by calling the MPI
operation

int MPI Comm free (MPI Comm *comm).

This operation has the effect that the communicator data structure comm is freed as
soon as all pending communication operations performed with this communicator
are completed. This operation could, e.g., be used to free a communicator which has
previously been generated by duplication to separate library communication from
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communication of the application program. Communicators should not be assigned
by simple assignments of the form comm1 = comm2, since a deallocation of one
of the two communicators involved with MPI Comm free() would have a side
effect on the other communicator, even if this is not intended. A splitting of a
communicator can be obtained by calling the function

int MPI Comm split (MPI Comm comm,
int color,
int key,
MPI Comm *new comm).

The effect is that the process group associated with comm is partitioned into disjoint
subgroups. The number of subgroups is determined by the number of different val-
ues of color. Each subgroup contains all processes which specify the same value
for color. Within each subgroup, the processes are ranked in the order defined by
argument value key. If two processes in a subgroup specify the same value for key,
the order in the original group is used. If a process of comm specifies color =
MPI UNDEFINED, it is not a member of any of the subgroups generated. The
subgroups are not directly provided in the form of an MPI GROUP representation.
Instead, each process of comm gets a pointer new comm to the communicator of
that subgroup which the process belongs to. For color = MPI UNDEFINED,
MPI COMM NULL is returned as new comm.

Example We consider a group of 10 processes each of which calls the operation
MPI Comm split() with the following argument values [163]:

process a b c d e f g h i j
rank 0 1 2 3 4 5 6 7 8 9
color 0 ⊥ 3 0 3 0 0 5 3 ⊥
key 3 1 2 5 1 1 1 2 1 0

This call generates three subgroups {f, g, a, d}, {e, i, c}, and {h} which con-
tain the processes in this order. In the table, the entry ⊥ represents color =
MPI UNDEFINED. ��

The operation MPI Comm split() can be used to prepare a task-parallel exe-
cution. The different communicators generated can be used to perform communica-
tion within the task-parallel parts, thus separating the communication domains.

5.3.2 Process Topologies

Each process of a process group has a unique rank within this group which can be
used for communication with this process. Although a process is uniquely defined
by its group rank, it is often useful to have an alternative representation and access.
This is the case if an algorithm performs computations and communication on a two-
dimensional or a three-dimensional grid where grid points are assigned to different
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processes and the processes exchange data with their neighboring processes in each
dimension by communication. In such situations, it is useful if the processes can
be arranged according to the communication pattern in a grid structure such that
they can be addressed via two-dimensional or three-dimensional coordinates. Then
each process can easily address its neighboring processes in each dimension. MPI
supports such a logical arrangement of processes by defining virtual topologies for
intra-communicators, which can be used for communication within the associated
process group.

A virtual Cartesian grid structure of arbitrary dimension can be generated by
calling

int MPI Cart create (MPI Comm comm,
int ndims,
int *dims,
int *periods,
int reorder,
MPI Comm *new comm)

where comm is the original communicator without topology, ndims specifies the
number of dimensions of the grid to be generated, dims is an integer array of
size ndims such that dims[i] is the number of processes in dimension i. The
entries of dims must be set such that the product of all entries is the number of
processes contained in the new communicator new comm. In particular, this product
must not exceed the number of processes of the original communicator comm. The
boolean array periods of size ndims specifies for each dimension whether the
grid is periodic (entry 1 or true) or not (entry 0 or false) in this dimension. For
reorder = false, the processes in new comm have the same rank as in comm.
For reorder = true, the runtime system is allowed to reorder processes, e.g.,
to obtain a better mapping of the process topology to the physical network of the
parallel machine.

Example We consider a communicator with 12 processes [163]. For ndims=2,
using the initializations dims[0]=3, dims[1]=4, periods[0]=periods
[1]=0, reorder=0, the call

MPI Cart create (comm, ndims, dims, periods, reorder, &new comm)

generates a virtual 3×4 grid with the following group ranks and coordinates:

0 1 2 3
(0,0) (0,1) (0,2) (0,3)

4 5 6 7
(1,0) (1,1) (1,2) (1,3)

8 9 10 11
(2,0) (2,1) (2,2) (2,3)



236 5 Message-Passing Programming

The Cartesian coordinates are represented in the form (row, column). In the com-
municator, the processes are ordered according to their rank rowwise in increasing
order. ��

To help the programmer to select a balanced distribution of the processes for the
different dimensions, MPI provides the function

int MPI Dims create (int nnodes, int ndims, int *dims)

where ndims is the number of dimensions in the grid and nnodes is the total num-
ber of processes available. The parameter dims is an integer array of size ndims.
After the call, the entries of dims are set such that the nnodes processes are bal-
anced as much as possible among the different dimensions, i.e., each dimension has
about equal size. But the size of a dimension i is set only if dims[i] = 0 when
calling MPI Dims create(). The number of processes in a dimension j can be
fixed by setting dims[j] to a positive value before the call. This entry is then not
modified by this call and the other entries of dims are set by the call accordingly.

When defining a virtual topology, each process has a group rank, and also a posi-
tion in the virtual grid topology which can be expressed by its Cartesian coordinates.
For the translation between group ranks and Cartesian coordinates, MPI provides
two operations. The operation

int MPI Cart rank (MPI Comm comm, int *coords, int *rank)

translates the Cartesian coordinates provided in the integer array coords into a
group rank and returns it in parameter rank. The parameter comm specifies the
communicator with Cartesian topology. For the opposite direction, the operation

int MPI Cart coords (MPI Comm comm,
int rank,
int ndims,
int *coords)

translates the group rank provided in rank into Cartesian coordinates, returned in
integer array coords, for a virtual grid; ndims is the number of dimensions of the
virtual grid defined for communicator comm.

Virtual topologies are typically defined to facilitate the determination of commu-
nication partners of processes. A typical communication pattern in many grid-based
algorithms is that processes communicate with their neighboring processes in a
specific dimension. To determine these neighboring processes, MPI provides the
operation

int MPI Cart shift (MPI Comm comm,
int dir,
int displ,
int *rank source,
int *rank dest)
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where dir specifies the dimension for which the neighboring process should be
determined. The parameter displ specifies the displacement, i.e., the distance
to the neighbor. Positive values of displ request the neighbor in upward direc-
tion, negative values request for downward direction. Thus, displ = -1 requests
the neighbor immediately preceding, displ = 1 requests the neighboring pro-
cess which follows directly. The result of the call is that rank dest contains the
group rank of the neighboring process in the specified dimension and distance.
The rank of the process for which the calling process is the neighboring process
in the specified dimension and distance is returned in rank source. Thus, the
group ranks returned in rank dest and rank source can be used as parameters
for MPI Sendrecv(), as well as for separate MPI Send() and MPI Recv(),
respectively.

Example As example, we consider 12 processes that are arranged in a 3×4 grid
structure with periodic connections [163]. Each process stores a floating-point value
which is exchanged with the neighboring process in dimension 0, i.e., within the
columns of the grid:

int coords[2], dims[2], periods[2], source, dest, my rank,
reorder;

MPI Comm comm 2d;
MPI status status;
float a, b;
MPI Comm rank (MPI COMM WORLD, &my rank);
dims[0] = 3; dims[1] = 4;
periods[0] = periods[1] = 1;
reorder = 0;
MPI Cart create (MPI COMM WORLD, 2, dims, periods, reorder,

&comm 2d);
MPI Cart coords (comm 2d, my rank, 2, coords);
MPI Cart shift (comm 2d, 0, coords[1], &source, &dest);
a = my rank;
MPI Sendrecv (&a, 1, MPI FLOAT, dest, 0, &b, 1, MPI FLOAT,

source, 0, comm 2d, &status);

In this example, the specification displs = coord[1] is used as displace-
ment for MPI Cart shift(), i.e., the position in dimension 1 is used as dis-
placement. Thus, the displacement increases with column position, and in each
column of the grid, a different exchange is executed. MPI Cart shift() is
used to determine the communication partners dest and source for each pro-
cess. These are then used as parameters for MPI Sendrecv(). The following
diagram illustrates the exchange. For each process, its rank, its Cartesian coor-
dinates, and its communication partners in the form source/dest are given in this
order. For example, for the process with rank=5, it is coords[1]=1, and there-
fore source=9 (lower neighbor in dimension 0) and dest=1 (upper neighbor in
dimension 0).

��
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0 1 2 3
(0,0) (0,1) (0,2) (0,3)
0|0 9|5 6|10 3|3
4 5 6 7

(1,0) (1,1) (1,2) (1,3)
4|4 1|9 10|2 7|7
8 9 10 11

(2,0) (2,1) (2,2) (2,3)
8|8 5|1 2|6 11|11

If a virtual topology has been defined for a communicator, the corresponding grid
can be partitioned into subgrids by using the MPI function

int MPI Cart sub (MPI Comm comm,
int *remain dims,
MPI Comm *new comm).

The parameter comm denotes the communicator for which the virtual topology has
been defined. The subgrid selection is controlled by the integer array remain dims
which contains an entry for each dimension of the original grid.

Setting remain dims[i] = 1 means that the ith dimension is kept in the
subgrid; remain dims[i] = 0 means that the ith dimension is dropped in the
subgrid. In this case, the size of this dimension determines the number of sub-
grids generated in this dimension. A call of MPI Cart sub() generates a new
communicator new comm for each calling process, representing the corresponding
subgroup of the subgrid to which the calling process belongs. The dimensions of
the different subgrids result from the dimensions for which remain dims[i] has
been set to 1. The total number of subgrids generated is defined by the product of
the number of processes in all dimensions i for which remain dims[i] has been
set to 0.

Example We consider a communicator comm for which a 2 × 3 × 4 virtual grid
topology has been defined. Calling

int MPI Cart sub (comm 3d, remain dims, &new comm)

with remain dims=(1,0,1) generates three 2 × 4 grids and each process gets
a communicator for its corresponding subgrid, see Fig. 5.12 for an illustration. ��

MPI also provides functions to inquire information about a virtual topology that
has been defined for a communicator. The MPI function

int MPI Cartdim get (MPI Comm comm,int *ndims)

returns in parameter ndims the number of dimensions of the virtual grid associated
with communicator comm. The MPI function
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int MPI Cart get (MPI Comm comm,
int maxdims,
int *dims,
int *periods,
int *coords)

returns information about the virtual topology defined for communicator comm.
This virtual topology should have maxdims dimensions, and the arrays dims,
periods, and coords should have this size. The following information is returned
by this call: Integer array dims contains the number of processes in each dimension
of the virtual grid, the boolean array periods contains the corresponding period-
icity information. The integer array coords contains the Cartesian coordinates of
the calling process.

Fig. 5.12 Partitioning of a
three-dimensional grid of size
2× 3× 4 into three
two-dimensional grids of size
2× 4 each

0

2

1

This
figure
will be
printed
in b/w

5.3.3 Timings and Aborting Processes

To measure the parallel execution times of program parts, MPI provides the function

double MPI Wtime (void)

which returns as a floating-point value the number of seconds elapsed since a fixed
point in time in the past. A typical usage for timing would be:

start = MPI Wtime();
part to measure();
end = MPI Wtime();

MPI Wtime() does not return a system time, but the absolute time elapsed
between the start and the end of a program part, including times at which the
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process executing part to measure() has been interrupted. The resolution of
MPI Wtime() can be requested by calling

double MPI Wtick (void)

which returns the time between successive clock ticks in seconds as floating-point
value. If the resolution is a microsecond, MPI Wtick() will return 10−6. The
execution of all processes of a communicator can be aborted by calling the MPI
function

int MPI Abort (MPI Comm comm, int error code)

where error code specifies the error code to be used, i.e., the behavior is as if
the main program has been terminated with return error code.

5.4 Introduction to MPI-2

For a continuous development of MPI, the MPI Forum has defined extensions to
MPI as described in the previous sections. These extensions are often referred to as
MPI-2. The original MPI standard is referred to as MPI-1. The current version of
MPI-1 is described in the MPI document, version 1.3 [55]. Since MPI-2 comprises
all MPI-1 operations, each correct MPI-1 program is also a correct MPI-2 program.
The most important extensions contained in MPI-2 are dynamic process manage-
ment, one-sided communications, parallel I/O, and extended collective communica-
tions. In the following, we give a short overview of the most important extensions.
For a more detailed description, we refer to the current version of the MPI-2 docu-
ment, version 2.1, see [56].

5.4.1 Dynamic Process Generation and Management

MPI-1 is based on a static process model: The processes used for the execution of
a parallel program are implicitly created before starting the program. No processes
can be added during program execution. Inspired by PVM [63], MPI-2 extends this
process model to a dynamic process model which allows the creation and deletion
of processes at any time during program execution. MPI-2 defines the interface for
dynamic process management as a collection of suitable functions and gives some
advice for an implementation. But not all implementation details are fixed to support
an implementation for different operating systems.

5.4.1.1 MPI Info Objects

Many MPI-2 functions use an additional argument of type MPI Info which allows
the provision of additional information for the function, depending on the spe-
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cific operating system used. But using this feature may lead to non-portable MPI
programs. MPI Info provides opaque objects where each object can store arbi-
trary (key, value) pairs. In C, both entries are strings of type char, terminated
with \0. Since MPI Info objects are opaque, their implementation is hidden from
the user. Instead, some functions are provided for access and manipulation. The
most important ones are described in the following. The function

int MPI Info create (MPI Info *info)

can be used to generate a new object of type MPI Info. Calling the function

int MPI Info set (MPI Info info, char *key, char *value)

adds a new (key, value) pair to the MPI Info structure info. If a value for the
same key was previously stored, the old value is overwritten. The function

int MPI Info get (MPI Info info,
char *key,
int valuelen,
char *value,
int *flag)

can be used to retrieve a stored pair (key, value) from info. The programmer
specifies the value of key and the maximum length valuelen of the value entry.
If the specified key exists in info, the associated value is returned in parameter
value. If the associated value string is longer than valuelen, the returned
string is truncated after valuelen characters. If the specified key exists in info,
true is returned in parameter flag; otherwise, false is returned. The function

int MPI Info delete(MPI Info info, char *key)

can be used to delete an entry (key, value) from info. Only the key has to be
specified.

5.4.1.2 Process Creation and Management

A number of MPI processes can be started by calling the function

int MPI Comm spawn (char *command,
char *argv[],
int maxprocs,
MPI Info info,
int root,
MPI Comm comm,
MPI Comm *intercomm,
int errcodes[]).
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The parameter command specifies the name of the program to be executed by each
of the processes, argv[] contains the arguments for this program. In contrast to the
standard C convention, argv[0] is not the program name but the first argument for
the program. An empty argument list is specified by MPI ARGV NULL. The param-
eter maxprocs specifies the number of processes to be started. If the MPI runtime
system is not able to start maxprocs processes, an error message is generated.
The parameter info specifies an MPI Info data structure with (key, value)
pairs providing additional instructions for the MPI runtime system on how to start
the processes. This parameter could be used to specify the path of the program
file as well as its arguments, but this may lead to non-portable programs. Portable
programs should use MPI INFO NULL.

The parameter root specifies the number of the root process from which the
new processes are spawned. Only this root process provides values for the preced-
ing parameters. But the function MPI Comm spawn() is a collective operation,
i.e., all processes belonging to the group of the communicator comm must call the
function. The parameter intercomm contains an intercommunicator after the suc-
cessful termination of the function call. This intercommunicator can be used for
communication between the original group of comm and the group of processes just
spawned.

The parameter errcodes is an array with maxprocs entries in which the
status of each process to be spawned is reported. When a process could be spawned
successfully, its corresponding entry in errcodes will be set to MPI SUCCESS.
Otherwise, an implementation-specific error code will be reported.

A successful call of MPI Comm spawn() starts maxprocs identical copies of
the specified program and creates an intercommunicator, which is provided to all
calling processes. The new processes belong to a separate group and have a separate
MPI COMM WORLD communicator comprising all processes spawned. The spawned
processes can access the intercommunicator created by MPI Comm spawn() by
calling the function

int MPI Comm get parent(MPI Comm *parent).

The requested intercommunicator is returned in parameter parent. Multiple MPI
programs or MPI programs with different argument values can be spawned by call-
ing the function

int MPI Comm spawn multiple (int count,
char *commands[],
char **argv[],
int maxprocs[],
MPI Info infos[],
int root,
MPI Comm comm,
MPI Comm *intercomm,
int errcodes[])
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where count specifies the number of different programs to be started. Each
of the following four arguments specifies an array with count entries where
each entry has the same type and meaning as the corresponding parameters for
MPI Comm spawn(): The argument commands[] specifies the names of the
programs to be started, argv[] contains the corresponding arguments,
maxprocs[] defines the number of copies to be started for each program, and
infos[] provides additional instructions for each program. The other arguments
have the same meaning as for MPI comm spawn().

After the call of MPI Comm spawn multiple() has been terminated, the
array errcodes[] contains an error status entry for each process created. The
entries are arranged in the order given by the commands[] array. In total,
errcodes[] contains

count-1∑

i=0

maxprocs[i]

entries. There is a difference between calling MPI Comm spawn() multiple times
and calling MPI Comm spawn multiple() with the same arguments. Calling
the function MPI Comm spawn multiple() creates one communicator MPI
COMM WORLD for all newly created processes. Multiple calls of MPI Comm
spawn() generate separate communicators MPI COMM WORLD, one for each pro-

cess group created.
The attribute MPI UNIVERSE SIZE specifies the maximum number of pro-

cesses that can be started in total for a given application program. The attribute
is initialized by MPI Init().

5.4.2 One-Sided Communication

MPI provides single transfer and collective communication operations as described
in the previous sections. For collective communication operations, each process of
a communicator calls the communication operation to be performed. For single-
transfer operations, a sender and a receiver process must cooperate and actively
execute communication operations: In the simplest case, the sender executes an
MPI Send() operation, and the receiver executes an MPI Recv() operation.
Therefore, this form of communication is also called two-sided communication. The
position of the MPI Send() operation in the sender process determines at which
time the data is sent. Similarly, the position of the MPI Recv() operation in the
receiver process determines at which time the receiver stores the received data in its
local address space.

In addition to two-sided communication, MPI-2 supports one-sided communica-
tion. Using this form of communication, a source process can access the address
space at a target process without an active participation of the target process.
This form of communication is also called Remote Memory Access (RMA). RMA
facilitates communication for applications with dynamically changing data access
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patterns by supporting a flexible dynamic distribution of program data among the
address spaces of the participating processes. But the programmer is responsible
for the coordinated memory access. In particular, a concurrent manipulation of the
same address area by different processes at the same time must be avoided to inhibit
race conditions. Such race conditions cannot occur for two-sided communications.

5.4.2.1 Window Objects

If a process A should be allowed to access a specific memory region of a process
B using one-sided communication, process B must expose this memory region for
external access. Such a memory region is called window. A window can be exposed
by calling the function

int MPI Win create (void *base,
MPI Aint size,
int displ unit,
MPI Info info,
MPI Comm comm,
MPI Win *win).

This is a collective call which must be executed by each process of the communica-
tor comm. Each process specifies a window in its local address space that it exposes
for RMA by other processes of the same communicator.

The starting address of the window is specified in parameter base. The size of
the window is given in parameter size as number of bytes. For the size spec-
ification, the predefined MPI type MPI Aint is used instead of int to allow
window sizes of more than 232 bytes. The parameter displ unit specifies the
displacement (in bytes) between neighboring window entries used for one-sided
memory accesses. Typically, displ unit is set to 1 if bytes are used as unit or
to sizeof(type) if the window consists of entries of type type. The parameter
info can be used to provide additional information for the runtime system. Usually,
info=MPI INFO NULL is used. The parameter comm specifies the communicator
of the processes which participate in the MPI Win create() operation. The call
of MPI Win create() returns a window object of type MPI Win in parameter
win to the calling process. This window object can then be used for RMA to mem-
ory regions of other processes of comm.

A window exposed for external accesses can be closed by letting all processes of
the corresponding communicator call the function

int MPI Win free (MPI Win *win)

thus freeing the corresponding window object win. Before calling MPI Win
free(), the calling process must have finished all operations on the specified

window.
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5.4.2.2 RMA Operations

For the actual one-sided data transfer, MPI provides three non-blocking RMA oper-
ations: MPI Put() transfers data from the memory of the calling process into the
window of another process; MPI Get() transfers data from the window of a target
process into the memory of the calling process; MPI Accumulate() supports
the accumulation of data in the window of the target process. These operations
are non-blocking: When control is returned to the calling process, this does not
necessarily mean that the operation is completed. To test for the completion of the
operation, additional synchronization operations like MPI Win fence() are pro-
vided as described below. Thus, a similar usage model as for non-blocking two-sided
communication can be used. The local buffer of an RMA communication operation
should not be updated or accessed until the subsequent synchronization call returns.

The transfer of a data block into the window of another process can be performed
by calling the function

int MPI Put (void *origin addr,
int origin count,
MPI Datatype origin type,
int target rank,
MPI Aint target displ,
int target count,
MPI Datatype target type,
MPI Win win)

where origin addr specifies the start address of the data buffer provided by the
calling process and origin count is the number of buffer entries to be trans-
ferred. The parameter origin type defines the type of the entries. The parameter
target rank specifies the rank of the target process which should receive the
data block. This process must have created the window object win by a preceding
MPI Win create() operation, together with all processes of the communicator
group to which the process calling MPI Put() also belongs to. The remaining
parameters define the position and size of the target buffer provided by the target
process in its window: target displ defines the displacement from the start of
the window to the start of the target buffer, target count specifies the num-
ber of entries in the target buffer, target type defines the type of each entry
in the target buffer. The data block transferred is stored in the memory of the tar-
get process at position target addr := window base + target displ *
displ unitwhere window base is the start address of the window in the mem-
ory of the target process and displ unit is the distance between neighboring
window entries as defined by the target process when creating the window with
MPI Win create(). The execution of an MPI Put() operation by a process
source has the same effect as a two-sided communication for which process
source executes the send operation

int MPI Isend (origin addr, origin count, origin type,
target rank, tag, comm)
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and the target process executes the receive operation

int MPI Recv (target addr, target count, target type,
source, tag, comm, &status)

where comm is the communicator for which the window object has been defined.
For a correct execution of the operation, some constraints must be satisfied: The
target buffer defined must fit in the window of the target process and the data
block provided by the calling process must fit into the target buffer. In contrast
to MPI Isend() operations, the send buffers of multiple successive MPI Put()
operations may overlap, even if there is no synchronization in between. Source and
target processes of an MPI Put() operation may be identical.

To transfer a data block from the window of another process into a local data
buffer, the MPI function

int MPI Get (void *origin addr,
int origin count,
MPI Datatype origin type,
int target rank,
MPI Aint target displ,
int target count,
MPI Datatype target type,
MPI Win win)

is provided. The parameter origin addr specifies the start address of the receive
buffer in the local memory of the calling process; origin count defines the num-
ber of elements to be received; origin type is the type of each of the elements.
Similar to MPI Put(), target rank specifies the rank of the target process
which provides the data and win is the window object previously created. The
remaining parameters define the position and size of the data block to be transferred
out of the window of the target process. The start address of the data block in the
memory of the target process is given by target addr := window base +
target displ * displ unit.

For the accumulation of data values in the memory of another process, MPI pro-
vides the operation

int MPI Accumulate (void *origin addr,
int origin count,
MPI Datatype origin type,
int target rank,
MPI Aint target displ,
int target count,
MPI Datatype target type,
MPI Op op,
MPI Win win)
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The parameters have the same meaning as for MPI Put(). The additional parame-
ter op specifies the reduction operation to be applied for the accumulation. The same
predefined reduction operations as for MPI Reduce() can be used, see Sect. 5.2,
p. 215. Examples are MPI MAX and MPI SUM. User-defined reduction operations
cannot be used. The execution of an MPI Accumulate() has the effect that the
specified reduction operation is applied to corresponding entries of the source buffer
and the target buffer and that the result is written back into the target buffer. Thus,
data values can be accumulated in the target buffer provided by another process.
There is an additional reduction operation MPI REPLACEwhich allows the replace-
ment of buffer entries in the target buffer, without taking the previous values of
the entries into account. Thus, MPI Put() can be considered as a special case of
MPI Accumulate() with reduction operation MPI REPLACE.

There are some constraints for the execution of one-sided communication oper-
ations by different processes to avoid race conditions and to support an efficient
implementation of the operations. Concurrent conflicting accesses to the same mem-
ory location in a window are not allowed. At each point in time during program
execution, each memory location of a window can be used as target of at most
one one-sided communication operation. Exceptions are accumulation operations:
Multiple concurrent MPI Accumulate() operations can be executed at the same
time for the same memory location. The result is obtained by using an arbitrary
order of the executed accumulation operations. The final accumulated value is the
same for all orders, since the predefined reduction operations are commutative.
A window of a process P cannot be used concurrently by an MPI Put() or
MPI Accumulate() operation of another process and by a local store operation
of P , even if different locations in the window are addressed.

MPI provides three synchronization mechanisms for the coordination of one-
sided communication operations executed in the windows of a group of processes.
These three mechanisms are described in the following.

5.4.2.3 Global Synchronization

A global synchronization of all processes of the group of a window object can be
obtained by calling the MPI function

int MPI Win fence (int assert, MPI Win win)

where win specifies the window object. MPI Win fence() is a collective oper-
ation to be performed by all processes of the group of win. The effect of the
call is that all RMA operations originating from the calling process and started
before the MPI Win fence() call are locally completed at the calling process
before control is returned to the calling process. RMA operations started after the
MPI Win fence() call accesses the specified target window only after the cor-
responding target process has called its corresponding MPI Win fence() oper-
ation. The intended use of MPI Win fence() is the definition of program areas
in which one-sided communication operations are executed. Such program areas
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are surrounded by calls of MPI Win fence(), thus establishing communication
phases that can be mixed with computation phases during which no communica-
tion is required. Such communication phases are also referred to as access epochs
in MPI. The parameter assert can be used to specify assertions on the con-
text of the call of MPI Win fence() which can be used for optimizations by
the MPI runtime system. Usually, assert=0 is used, not providing additional
assertions.

Global synchronization with MPI Win fence() is useful in particular for
applications with regular communication pattern in which computation phases alter-
nate with communication phases.

Example As example, we consider an iterative computation of a distributed data
structure A. In each iteration step, each participating process updates its local part of
the data structure using the function update(). Then, parts of the local data struc-
ture are transferred into the windows of neighboring processes using MPI Put().
Before the transfer, the elements to be transferred are copied into a contiguous
buffer. This copy operation is performed by update buffer(). The commu-
nication operations are surrounded by MPI Win fence() operations to separate
the communication phases of successive iterations from each other. This results in
the following program structure:

while (!converged(A)) {
update(A);
update buffer(A, from buf);
MPI Win fence(0, win);
for (i=0; i<num neighbors; i++)

MPI Put(&from buf[i], size[i], MPI INT, neighbor[i],
to disp[i],

size[i], MPI INT, win);
MPI Win fence(0, win);

}

The iteration is controlled by the function converged().

5.4.2.4 Loose Synchronization

MPI also supports a loose synchronization which is restricted to pairs of commu-
nicating processes. To perform this form of synchronization, an accessing process
defines the start and the end of an access epoch by a call to MPI Win start() and
MPI Win complete(), respectively. The target process of the communication
defines a corresponding exposure epoch by calling MPI Win post() to start the
exposure epoch and MPI Win wait() to end the exposure epoch. A synchro-
nization is established between MPI Win start() and MPI Win post() in the
sense that all RMAs which the accessing process issues after its MPI Win start()
call are executed not before the target process has completed its MPI Win
post() call. Similarly, a synchronization between MPI Win complete() and
MPI Win wait() is established in the sense that the MPI Win wait() call is
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completed at the target process not before all RMAs of the accessing process in the
corresponding access epoch are terminated.

To use this form of synchronization, before performing an RMA, a process
defines the start of an access epoch by calling the function

int MPI Win start (MPI Group group,
int assert,
MPI Win win)

where group is a group of target processes. Each of the processes in group must
issue a matching call of MPI Win post(). The parameter win specifies the win-
dow object to which the RMA is made. MPI supports a blocking and a non-blocking
behavior of MPI Win start():

• Blocking behavior: The call of MPI Win start() is blocked until all processes
of group have completed their corresponding calls of MPI Win post().

• Non-blocking behavior: The call of MPI Win start() is completed at the
accessing process without blocking, even if there are processes in group which
have not yet issued or finished their corresponding call of MPI Win post().
Control is returned to the accessing process and this process can issue RMA
operations like MPI Put() or MPI Get(). These calls are then delayed until
the target process has finished its MPI Win post() call.

The exact behavior depends on the MPI implementation. The end of an access epoch
is indicated by the accessing process by calling

int MPI Win complete (MPI Win win)

where win is the window object which has been accessed during this access epoch.
Between the call of MPI Win start() and MPI Win complete(), only RMA
operations to the window win of processes belonging to group are allowed. When
calling MPI Win complete(), the calling process is blocked until all RMA oper-
ations to win issued in the corresponding access epoch have been completed at the
accessing process. An MPI Put() call issued in the access epoch can be completed
at the calling process as soon as the local data buffer provided can be reused. But this
does not necessarily mean that the data buffer has already been stored in the window
of the target process. It might as well have been stored in a local system buffer of
the MPI runtime system. Thus, the termination of MPI Win complete() does
not imply that all RMA operations have taken effect at the target processes.

A process indicates the start of an RMA exposure epoch for a local window win
by calling the function

int MPI Win post (MPI Group group,
int assert,
MPI Win win).
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Only processes in group are allowed to access the window during this exposure
epoch. Each of the processes in group must issue a matching call of the function
MPI Win start(). The call of MPI Win post() is non-blocking. A process
indicates the end of an RMA exposure epoch for a local window win by calling the
function

int MPI Win wait (MPI Win win).

This call blocks until all processes of the group defined in the corresponding
MPI Win post() call have issued their corresponding MPI Win complete()
calls. This ensures that all these processes have terminated the RMA operations of
their corresponding access epoch to the specified window. Thus, after the termi-
nation of MPI Win wait(), the calling process can reuse the entries of its local
window, e.g., by performing local accesses. During an exposure epoch, indicated
by surrounding MPI Win post() and MPI Win wait() calls, a process should
not perform local operations on the specified window to avoid access conflicts with
other processes.

By calling the function

int MPI Win test (MPI Win win, int *flag)

a process can test whether the RMA operation of other processes to a local win-
dow has been completed or not. This call can be considered as the non-blocking
version of MPI Win wait(). The parameter flag=1 is returned by the call if all
RMA operations to win have been terminated. In this case, MPI Win test() has
the same effect as MPI Win wait() and should not be called again for the same
exposure epoch. The parameter flag=0 is returned if not all RMA operations to
win have been finished yet. In this case, the call has no further effect and can be
repeated later.

The synchronization mechanism described can be used for arbitrary communi-
cation patterns on a group of processes. A communication pattern can be described
by a directed graph G = (V, E) where V is the set of participating processes.
There exists an edge (i, j) ∈ E from process i to process j , if i accesses the
window of j by an RMA operation. Assuming that the RMA operations are per-
formed on window win, the required synchronization can be reached by letting each
participating process execute MPI Win start(target group,0,win) fol-
lowed by MPI Win post(source group,0,win) where source group=
{i ; (i, j) ∈ E} denotes the set of accessing processes and target group=
{ j ; (i, j) ∈ E} denotes the set of target processes.

Example This form of synchronization is illustrated by the following example,
which is a variation of the previous example describing the iterative computation
of a distributed data structure:
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while (!converged (A)) {
update(A);
update buffer(A, from buf);
MPI Win start(target group, 0, win);
MPI Win post(source group, 0, win);
for (i=0; i<num neighbors; i++)

MPI Put(&from buf[i], size[i], MPI INT, neighbor[i], to
disp[i],

size[i], MPI INT, win);
MPI Win complete(win);
MPI Win wait(win);

}

In the example, it is assumed that source group and target group have
been defined according to the communication pattern used by all processes as
described above. An alternative would be that each process defines a set source
group of processes which are allowed to access its local window and a set
target group of processes whose window the process is going to access. Thus,
each process potentially defines different source and target groups, leading to a
weaker form of synchronization as for the case that all processes define the same
source and target groups. ��

5.4.2.5 Lock Synchronization

To support the model of a shared address space, MPI provides a synchronization
mechanism for which only the accessing process actively executes communication
operations. Using this form of synchronization, it is possible that two processes
exchange data via RMA operations executed on the window of a third process
without an active participation of the third process. To avoid access conflicts, a
lock mechanism is provided as typically used in programming environments for
shared address spaces, see Chap. 6. This means that the accessing process locks the
accessed window before the actual access and releases the lock again afterwards. To
lock a window before an RMA operation, MPI provides the operation

int MPI Win lock (int lock type,
int rank,
int assert,
MPI Win win).

A call of this function starts an RMA access epoch for the window win at the
process with rank rank. Two lock types are supported, which can be specified
by parameter lock type. An exclusive lock is indicated by lock type=MPI
LOCK EXCLUSIVE. This lock type guarantees that the following RMA operations
executed by the calling process are protected from RMA operations of other pro-
cesses, i.e., exclusive access to the window is ensured. Exclusive locks should
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be used if the executing process will change the value of window entries using
MPI Put() and if these entries could also be accessed by other processes.

A shared lock is indicated by lock type=MPI LOCK SHARED. This lock
type guarantees that the following RMA operations of the calling process are pro-
tected from exclusive RMA operations of other processes, i.e., other processes are
not allowed to change entries of the window via RMA operations that are protected
by an exclusive lock. But other processes are allowed to perform RMA operations
on the same window that are also protected by a shared lock.

Shared locks should be used if the executing process accesses window entries
only by MPI Get() or MPI Accumulate(). When a process wants to read or
manipulate entries of its local window using local operations, it must protect these
local operations with a lock mechanism, if these entries can also be accessed by
other processes.

An access epoch started by MPI Win lock() for a window win can be termi-
nated by calling the MPI function

int MPI Win unlock (int rank,
MPI Win win)

where rank is the rank of the target process. The call of this function blocks until
all RMA operations issued by the calling process on the specified window have been
completed both at the calling process and at the target process. This guarantees that
all manipulations of window entries issued by the calling process have taken effect
at the target process.

Example The use of lock synchronization for the iterative computation of a dis-
tributed data structure is illustrated in the following example which is a variation
of the previous examples. Here, an exclusive lock is used to protect the RMA
operations:

while (!converged (A)) {
update(A);
update buffer(A, from buf);
MPI Win start(target group, 0, win);
for (i=0; i<num neighbors; i++) {

MPI Win lock(MPI LOCK EXCLUSIVE, neighbor[i], 0, win);
MPI Put(&from buf[i], size[i], MPI INT, neighbor[i], to
disp[i],

size[i], MPI INT, win);
MPI Win unlock(neighbor[i], win);

}
}

5.5 Exercises for Chap. 5

Exercise 5.1 Consider the following incomplete piece of an MPI program:
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int rank, p, size=8;
int left, right;
char send buffer1[8], recv buffer1[8];
char send buffer2[8], recv buffer2[8];
...
MPI Comm rank(MPI COMM WORLD, 8 rank);
MPI Comm size(MPI COMM WORLD, & p);
left = (rank-1 + p) % p;
right = (rank+1) % p;
...
MPI Send(send buffer1, size, MPI CHAR, left, ...);
MPI Recv(recv buffer1, size, MPI CHAR, right, ...);

MPI Send(send buffer2, size, MPI CHAR, right, ...);
MPI Recv(recv buffer2, size, MPI CHAR, left, ...);
...

(a) In the program, the processors are arranged in a logical ring and each
processor should exchange its name with its neighbor to the left and its neighbor
to the right. Assign a unique name to each MPI process and fill out the missing
pieces of the program such that each process prints its own name as well as its
neighbors’ names.

(b) In the given program piece, the MPI Send() and MPI Recv() operations
are arranged such that depending on the implementation a deadlock can occur.
Describe how a deadlock may occur.

(c) Change the program such that no deadlock is possible by arranging the order of
the MPI Send() and MPI Recv() operations appropriately.

(d) Change the program such that MPI Sendrecv() is used to avoid deadlocks.
(e) Change the program such that MPI Isend() and MPI Irecv() are used.

Exercise 5.2 Consider the MPI program in Fig. 5.3 for the collection of distributed
data block with point-to-point messages. The program assumes that all data blocks
have the same size blocksize. Generalize the program such that each process can
contribute a data block of a size different from the data blocks of the other processes.
To do so, assume that each process has a local variable which specifies the size of
its data block.

(Hint: First make the size of each data block available to each process in a
pre-collection phase with a similar communication pattern as in Fig. 5.3 and then
perform the actual collection of the data blocks.)

Exercise 5.3 Modify the program from the previous exercise for the collection of
data blocks of different sizes such that no pre-collection phase is used. Instead,
use MPI Get count() to determine the size of the data block received in each
step. Compare the resulting execution time with the execution time of the program
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from the previous exercise for different data block sizes and different numbers of
processors. Which of the programs is faster?

Exercise 5.4 Consider the program Gather ring() from Fig. 5.3. As described
in the text, this program does not avoid deadlocks if the runtime system does not
use internal system buffers. Change the program such that deadlocks are avoided in
any case by arranging the order of the MPI Send() and MPI Recv() operations
appropriately.

Exercise 5.5 The program in Fig. 5.3 arranges the processors logically in a ring to
perform the collection. Modify the program such that the processors are logically
arranged in a logical two-dimensional torus network. For simplicity, assume that all
data blocks have the same size. Develop a mechanism with which each processor
can determine its predecessor and successor in x and y directions. Perform the col-
lection of the data blocks in two phases, the first phase with communication in x
direction, the second phase with communication in y direction.

In both directions, communication in different rows or columns of the processor
torus can be performed concurrently. For the communication in y direction, each
process distributes all blocks that it has collected in the x direction phase. Use the
normal blocking send and receive operations for the communication. Compare the
resulting execution time with the execution time of the ring implementation from
Fig. 5.3 for different data block sizes and different numbers of processors. Which of
the programs is faster?

Exercise 5.6 Modify the program from the previous exercise such that non-blocking
communication operations are used.

Exercise 5.7 Consider the parallel computation of a matrix–vector multiplication
A · b using a distribution of the scalar products based on a rowwise distribution of
A, see Fig. 3.10, p. 127 for a sketch of a parallel pseudo program. Transform this
program into a running MPI program. Select the MPI communication operations for
the multi-broadcast operations appropriately.

Exercise 5.8 Similar to the preceding exercise, consider a matrix–vector multipli-
cation using a distribution of the linear combinations based on a columnwise distri-
bution of the matrix. Transform the pseudo program from Fig. 3.12, p. 129 to a run-
ning MPI program. Use appropriate MPI operations for the single-accumulation and
single-broadcast operations. Compare the execution time with the execution time of
the MPI program from the preceding exercise for different sizes of the matrix.

Exercise 5.9 For a broadcast operation a root process sends the same data block to
all other processes. Implement a broadcast operation by using point-to-point send
and receive operations (MPI Send() and MPI Recv()) such that the same effect
as MPI Bcast() is obtained. For the processes, use a logical ring arrangement
similar to Fig. 5.3.

Exercise 5.10 Modify the program from the previous exercise such that two other
logical arrangements are used for the processes: a two-dimensional mesh and a
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three-dimensional hypercube. Measure the execution time of the three different ver-
sions (ring, mesh, hypercube) for eight processors for different sizes of the data
block and make a comparison by drawing a diagram. Use MPI Wtime() for the
timing.

Exercise 5.11 Consider the construction of conflict-free spanning trees in a d-
dimensional hypercube network for the implementation of a multi-broadcast opera-
tion, see Sect. 4.3.2, p. 177, and Fig. 4.6. For d = 3, d = 4, and d = 5 write an MPI
program with 8, 16, and 32 processes, respectively, that uses these spanning trees
for a multi-broadcast operation.

(a) Implement the multi-broadcast by concurrent single-to-single transfers along
the spanning trees and measure the resulting execution time for different mes-
sage sizes.

(b) Implement the multi-broadcast by using multiple broadcast operations where
each broadcast operation is implemented by single-to-single transfers along the
usual spanning trees for hypercube networks as defined in p. 174, see Fig. 4.4.
These spanning trees do not avoid conflicts in the network. Measure the result-
ing execution time for different message sizes and compare them with the exe-
cution times from (a).

(c) Compare the execution times from (a) and (b) with the execution time of an
MPI Allgather() operation to perform the same communication.

Exercise 5.12 For a global exchange operation, each process provides a potentially
different block of data for each other process, see pp. 122 and 225 for a detailed
explanation. Implement a global exchange operation by using point-to-point send
and receive operations (MPI Send() and MPI Recv()) such that the same effect
as MPI Alltoall() is obtained. For the processes, use a logical ring arrangement
similar to Fig. 5.3.

Exercise 5.13 Modify the program Gather ring() from Fig. 5.3 such that syn-
chronous send operations (MPI Send() and MPI Recv()) are used. Compare the
resulting execution time with the execution time obtained for the standard send and
receive operations from Fig. 5.3.

Exercise 5.14 Repeat the previous exercise with buffered send operations.

Exercise 5.15 Modify the program Gather ring() from Fig. 5.3 such that the
MPI operation MPI Test() is used instead of MPI Wait(). When a non-blocking
receive operation is found by MPI Test() to be completed, the process sends the
received data block to the next process.

Exercise 5.16 Write an MPI program which implements a broadcast operation with
MPI Send() and MPI Recv() operations. The program should use n = 2k pro-
cesses which should logically be arranged as a hypercube network. Based on this
arrangement the program should define a spanning tree in the network with root 0,
see Fig. 3.8 and p. 123, and should use this spanning tree to transfer a message
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stepwise from the root along the tree edges up to the leaves. Each node in the
tree receives the message from its parent node and forwards it to its child nodes.
Measure the resulting runtime for different message sizes up to 1 MB for different
numbers of processors using MPI Wtime() and compare the execution times with
the execution times of MPI Bcast() performing the same operation.

Exercise 5.17 The execution time of point-to-point communication operations
between two processors can normally be described by a linear function of the form

ts2s(m) = τ + tc · m,

where m is the size of the message; τ is a startup time, which is independent of the
message size; and tc is the inverse of the network bandwidth. Verify this function by
measuring the time for a ping-pong message transmission where process A sends a
message to process B, and B sends the same message back to A. Use different mes-
sage sizes and draw a diagram which shows the dependence of the communication
time on the message size. Determine the size of τ and tc on your parallel computer.

Exercise 5.18 Write an MPI program which arranges 24 processes in a (periodic)
Cartesian grid structure of dimension 2×3×4 using MPI Cart create(). Each
process should determine and print the process rank of its two neighbors in x, y, and
z directions.

For each of the three sub-grids in y-direction, a communicator should be defined.
This communicator should then be used to determine the maximum rank of the
processes in the sub-grid by using an appropriate MPI Reduce() operation. This
maximum rank should be printed out.

Exercise 5.19 Write an MPI program which arranges the MPI processes in a two-
dimensional torus of size

√
p × √p where p is the number of processes. Each

process exchanges its rank with its two neighbors in x and y dimensions. For the
exchange, one-sided communication operations should be used. Implement three
different schemes for the exchange with the following one-sided communication
operations:

(a) global synchronization with MPI Win fence();
(b) loose synchronization by using MPI Win start(), MPI Win post(),

MPI Win complete(), and MPI Win wait();
(c) lock synchronization with MPI Win lock() and MPI Win unlock().

Test your program for p = 16 processors, i.e., for a 4× 4 torus network.



Chapter 6
Thread Programming

Several parallel computing platforms, in particular multicore platforms, offer a
shared address space. A natural programming model for these architectures is a
thread model in which all threads have access to shared variables. These shared
variables are then used for information and data exchange. To coordinate the access
to shared variables, synchronization mechanisms have to be used to avoid race con-
ditions in case of concurrent accesses. Basic synchronization mechanisms are lock
synchronization and condition synchronization, see Sect. 3.7 for an overview.

In this chapter, we consider thread programming in more detail. In particu-
lar, we have a closer look at synchronization problems like deadlocks or prior-
ity inversion that might occur and present programming techniques to avoid such
problems. Moreover, we show how basic synchronization mechanisms like lock
synchronization or condition synchronization can be used to build more complex
synchronization mechanisms like read/write locks. We also present a set of paral-
lel patterns like task-based or pipelined processing that can be used to structure a
parallel application. These issues are considered in the context of popular program-
ming environments for thread-based programming to directly show the usage of the
mechanisms in practice. The programming environments Pthreads, Java threads, and
OpenMP are introduced in detail. For Java, we also give an overview of the pack-
age java.util.concurrent which provides many advanced synchronization
mechanisms as well as a task-based execution environment. The goal of the chapter
is to enable the reader to develop correct and efficient thread programs that can be
used, for example, on multicore architectures.

6.1 Programming with Pthreads

POSIX threads (also called Pthreads) define a standard for the programming with
threads, based on the programming language C. The threads of a process share a
common address space. Thus, the global variables and dynamically generated data
objects can be accessed by all threads of a process. In addition, each thread has a
separate runtime stack which is used to control the functions activated and to store
their local variables. These variables declared locally within the functions are local
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data of the executing thread and cannot be accessed directly by other threads. Since
the runtime stack of a thread is deleted after a thread is terminated, it is dangerous
to pass a reference to a local variable in the runtime stack of a thread A to another
thread B.

The data types, interface definitions, and macros of Pthreads are usually available
via the header file <pthread.h>. This header file must therefore be included into
a Pthreads program. The functions and data types of Pthreads are defined according
to a naming convention. According to this convention, Pthreads functions are named
in the form

pthread[ <object>] <operation> (),

where <operation> describes the operation to be performed and the optional
<object> describes the object to which this operation is applied. For example,
pthread mutex init() is a function for the initialization of a mutex variable;
thus, the <object> is mutex and the <operation> is init; we give a more
detailed description later.

For functions which are involved in the manipulation of threads, the specification
of <object> is omitted. For example, the function for the generation of a thread
is pthread create(). All Pthread functions yield a return value 0, if they are
executed without failure. In case of a failure, an error code from <error.h> will
be returned. Thus, this header file should also be included in the program. Pthread
data types describe, similarly to MPI, opaque objects whose exact implementation
is hidden from the programmer. Data types are named according to the syntax form

pthread <object> t,

where <object> specifies the specific data object. For example, a mutex variable
is described by the data type pthread mutex t. If <object> is omitted, the
data type pthread t for threads results. The following table contains important
Pthread data types which will be described in more detail later.

Pthread data types Meaning

pthread t Thread ID
pthread mutex t Mutex variable
pthread cond t Condition variable
pthread key t Access key
pthread attr t Thread attributes object
pthread mutexattr t Mutex attributes object
pthread condattr t Condition variable attributes object
pthread once t One-time initialization control context

For the execution of threads, we assume a two-step scheduling method accord-
ing to Fig. 3.16 in Chap. 3, as this is the most general case. In this model, the
programmer has to partition the program into a suitable number of user threads
which can be executed concurrently with each other. The user threads are mapped
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by the library scheduler to system threads which are then brought to execution on the
processors of the computing system by the scheduler of the operating system. The
programmer cannot control the scheduler of the operating system and has only little
influence on the library scheduler. Thus, the programmer cannot directly perform the
mapping of the user-level threads to the processors of the computing system, e.g.,
by a scheduling at program level. This facilitates program development, but also
prevents an efficient mapping directly by the programmer according to his specific
needs. It should be noted that there are operating system–specific extensions that
allow thread execution to be bound to specific processors. But in most cases, the
scheduling provided by the library and the operating system leads to good results
and relieves the programmer from additional programming effort, thus providing
more benefits than drawbacks.

In this section, we give an overview of the programming with Pthreads. Sec-
tion 6.1.1 describes thread generation and management in Pthreads. Section 6.1.2
describes the lock mechanism for the synchronization of threads accessing shared
variables. Sections 6.1.3 and 6.1.4 introduce Pthreads condition variables and an
extended lock mechanism using condition variables, respectively. Sections 6.1.6,
6.1.7, and 6.1.8 describe the use of the basic synchronization techniques in the
context of more advanced synchronization patterns, like task pools, pipelining, and
client–server coordination. Section 6.1.9 discusses additional mechanisms for the
control of threads, including scheduling strategies. We describe in Sect. 6.1.10 how
the programmer can influence the scheduling controlled by the library. The phe-
nomenon of priority inversion is then explained in Sect. 6.1.11 and finally thread-
specific data is considered in Sect. 6.1.12. Only the most important mechanisms
of the Pthreads standard are described; for a more detailed description, we refer to
[25, 105, 117, 126, 143].

6.1.1 Creating and Merging Threads

When a Pthreads program is started, a single main thread is active, executing the
main() function of the program. The main thread can generate more threads by
calling the function

int pthread create (pthread t *thread,
const pthread attr t *attr,
void *(*start routine)(void *),
void *arg).

The first argument is a pointer to an object of type pthread t which is also
referred to as thread identifier (TID); this TID is generated bypthread create()
and can later be used by other Pthreads functions to identify the generated thread.
The second argument is a pointer to a previously allocated and initialized attribute
object of type pthread attr t, defining the desired attributes of the generated
thread. The argument value NULL causes the generation of a thread with default
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attributes. If different attribute values are desired, an attribute data structure has to
be created and initialized before calling pthread create(); this mechanism
is described in more detail in Sect. 6.1.9. The third argument specifies the function
start routine()which will be executed by the generated thread. The specified
function should expect a single argument of type void * and should have a return
value of the same type. The fourth argument is a pointer to the argument value with
which the thread function start routine() will be executed.

To execute a thread function with more than one argument, all arguments must
be put into a single data structure; the address of this data structure can then be
specified as argument of the thread function. If several threads are started by a parent
thread using the same thread function but different argument values, separate data
structures should be used for each of the threads to specify the arguments. This
avoids situations where argument values are overwritten too early by the parent
thread before they are read by the child threads or where different child threads
manipulate the argument values in a common data structure concurrently.

A thread can determine its own thread identifier by calling the function

pthread t pthread self().

This function returns the thread ID of the calling thread. To compare the thread ID
of two threads, the function

int pthread equal (pthread t t1, pthread t t2)

can be used. This function returns the value 0 if t1 and t2 do not refer to the same
thread. Otherwise, a non-zero value is returned. Since pthread t is an opaque
data structure, only pthread equal should be used to compare thread IDs. The
number of threads that can be generated by a process is typically limited by the sys-
tem. The Pthreads standard determines that at least 64 threads can be generated by
any process. But depending on the specific system used, this limit may be larger. For
most systems, the maximum number of threads that can be started can be determined
by calling

maxThreads = sysconf ( SC THREAD THREADS MAX)

in the program. Knowing this limit, the program can avoid to start more than
maxThreads threads. If the limit is reached, a call of the pthread create()
function returns the error value EAGAIN. A thread is terminated if its thread func-
tion terminates, e.g., by calling return. A thread can terminate itself explicitly by
calling the function

void pthread exit (void *valuep)

The argument valuep specifies the value that will be returned to another thread
which waits for the termination of this thread using pthread join(). When
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a thread terminates its thread function, the function pthread exit() is called
implicitly, and the return value of the thread function is used as argument of this
implicit call of pthread exit(). After the call to pthread exit(), the call-
ing thread is terminated, and its runtime stack is freed and can be used by other
threads. Therefore, the return value of the thread should not be a pointer to a local
variable of the thread function or another function called by the thread function.
These local variables are stored on the runtime stack and may not exist any longer
after the termination of the thread. Moreover, the memory space of local variables
can be reused by other threads, and it can usually not be determined when the mem-
ory space is overwritten, thereby destroying the original value of the local variable.
Instead of a local variable, a global variable or a variable that has been dynamically
allocated should be used.

A thread can wait for the termination of another thread by calling the function

int pthread join (pthread t thread, void **valuep).

The argument thread specifies the thread ID of the thread for which the call-
ing thread waits to be terminated. The argument valuep specifies a memory
address where the return value of this thread should be stored. The thread call-
ing pthread join() is blocked until the specified thread has terminated. Thus,
pthread join() provides a possibility for the synchronization of threads. After
the thread with TID thread has terminated, its return value is stored at the
specified memory address. If several threads wait for the termination of the same
thread, using pthread join(), all waiting threads are blocked until the specified
thread has terminated. But only one of the waiting threads successfully stores the
return value. For all other waiting threads, the return value of pthread join()
is the error value ESRCH. The runtime system of the Pthreads library allocates
for each thread an internal data structure to store information and data needed to
control the execution of the thread. This internal data structure is preserved by
the runtime system also after the termination of the thread to ensure that another
thread can later successfully access the return value of the terminated thread using
pthread join().

After the call to pthread join(), the internal data structure of the terminated
thread is released and can no longer be accessed. If there is no pthread join()
for a specific thread, its internal data structure is not released after its termination
and occupies memory space until the complete process is terminated. This can be
a problem for large programs with many thread creations and terminations without
corresponding calls to pthread join(). The preservation of the internal data
structure of a thread after its termination can be avoided by calling the function

int pthread detach (pthread t thread).

This function notifies the runtime system that the internal data structure of the thread
with TID thread can be detached as soon as the thread has terminated. A thread
may detach itself, and any thread may detach any other thread. After a thread has
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Fig. 6.1 Pthreads program for the multiplication of two matrices MA and MB. A separate thread is
created for each element of the output matrix MC. A separate data structure work is provided for
each of the threads created

been set into a detached state, calling pthread join() for this thread returns the
error value EINVAL.

Example We give a first example for a Pthreads program; Fig. 6.1 shows a program
fragment for the multiplication of two matrices, see also [126]. The matrices MA
and MB to be multiplied have a fixed size of eight rows and eight columns. For each
of the elements of the result matrix MC, a separate thread is created. The IDs of
these threads are stored in the array thread. Each thread obtains a separate data
structure of type matrix type t which contains pointers to the input matrices
MA and MB, the output matrix MC, and the row and column position of the entry
of MC to be computed by the corresponding thread. Each thread executes the same
thread function thread mult() which computes the scalar product of one row of
MA and one column of MB. After creating a new thread for each of the 64 elements
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of MC to be computed, the main thread waits for the termination of each of these
threads using pthread join(). The program in Fig. 6.1 creates 64 threads which
is exactly the limit defined by the Pthreads standard for the number of threads that
must be supported by each implementation of the standard. Thus, the given pro-
gram works correctly. But it is not scalable in the sense that it can be extended
to the multiplication of matrices of any size. Since a separate thread is created for
each element of the output matrix, it can be expected that the upper limit for the
number of threads that can be generated will be reached even for matrices of mod-
erate size. Therefore, the program should be re-written when using larger matrices
such that a fixed number of threads is used and each thread computes a block of
entries of the output matrix; the size of the blocks increases with the size of the
matrices. ��

6.1.2 Thread Coordination with Pthreads

The threads of a process share a common address space. Therefore, they can concur-
rently access shared variables. To avoid race conditions, these concurrent accesses
must be coordinated. To perform such coordinations, Pthreads provide mutex vari-
ables and condition variables.

6.1.2.1 Mutex Variables

In Pthreads, a mutex variable denotes a data structure of the predefined opaque
type pthread mutex t. Such a mutex variable can be used to ensure mutual
exclusion when accessing common data, i.e., it can be ensured that only one thread
at a time has exclusive access to a common data structure, all other threads have to
wait. A mutex variable can be in one of two states: locked and unlocked. To ensure
mutual exclusion when accessing a common data structure, a separate mutex vari-
able is assigned to the data structure. All accessing threads must behave as follows:
Before an access to the common data structure, the accessing thread locks the corre-
sponding mutex variable using a specific Pthreads function. When this is successful,
the thread is the owner of the mutex variable. After each access to the common data
structure, the accessing thread unlocks the corresponding mutex variable. After the
unlocking, it is no longer the owner of the mutex variable, and another thread can
become the owner and is allowed to access the data structure.

When a thread A tries to lock a mutex variable that is already owned by another
thread B, thread A is blocked until thread B unlocks the mutex variable. The
Pthreads runtime system ensures that only one thread at a time is the owner of a
specific mutex variable. Thus, a conflicting manipulation of a common data struc-
ture is avoided if each thread uses the described behavior. But if a thread accesses
the data structure without locking the mutex variable before, mutual exclusion is no
longer guaranteed.

The assignment of mutex variables to data structures is done implicitly by the
programmer by protecting accesses to the data structure with locking and unlocking
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operations of a specific mutex variable. There is no explicit assignment of mutex
variables to data structures. The programmer can improve the readability of Pthreads
programs by grouping a common data structure and the protecting mutex variable
into a new structure.

In Pthreads, mutex variables have the predefined type pthread mutex t. Like
normal variables, they can be statically declared or dynamically generated. Before a
mutex variable can be used, it must be initialized. For a mutex variable mutex that
is allocated statically, this can be done by

mutex = PTHREAD MUTEX INITIALIZER

where PTHREAD MUTEX INITIALIZER is a predefined macro. For arbitrary
mutex variables (statically allocated or dynamically generated), an initialization can
be performed dynamically by calling the function

int pthread mutex init (pthread mutex t *mutex,
constpthread mutexattr t*attr).

For attr = NULL, a mutex variable with default properties results. The proper-
ties of mutex variables can be influenced by using different attribute values, see
Sect. 6.1.9. If a mutex variable that has been initialized dynamically is no longer
needed, it can be destroyed by calling the function

int pthread mutex destroy (pthread mutex t *mutex).

A mutex variable should only be destroyed if none of the threads is waiting for the
mutex variable to become owner and if there is currently no owner of the mutex
variable. A mutex variable that has been destroyed can later be re-used after a new
initialization. A thread can lock a mutex variable mutex by calling the function

int pthread mutex lock (pthread mutex t *mutex).

If another thread B is owner of the mutex variable mutex when a thread A issues
the call of pthread mutex lock(), then thread A is blocked until thread B
unlocks mutex. When several threads T1, . . . , Tn try to lock a mutex variable which
is owned by another thread, all threads T1, . . . , Tn are blocked and are stored in a
waiting queue for this mutex variable. When the owner releases the mutex variable,
one of the blocked threads in the waiting queue is unblocked and becomes the new
owner of the mutex variable. Which one of the waiting threads is unblocked may
depend on their priorities and the scheduling strategies used, see Sect. 6.1.9 for more
information. The order in which waiting threads become owner of a mutex variable
is not defined in the Pthreads standard and may depend on the specific Pthreads
library used.
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A thread should not try to lock a mutex variable when it is already the owner.
Depending on the specific runtime system, this may lead to an error return value
EDEADLK or may even cause a self-deadlock. A thread which is owner of a mutex
variable mutex can unlock mutex by calling the function

int pthread mutex unlock (pthread mutex t *mutex).

After this call, mutex is in the state unlocked. If there is no other thread waiting for
mutex, there is no owner of mutex after this call. If there are threads waiting for
mutex, one of these threads is woken up and becomes the new owner of mutex.
In some situations, it is useful that a thread can check without blocking whether
a mutex variable is owned by another thread. This can be achieved by calling the
function

int pthread mutex trylock (pthread mutex t *mutex).

If the specified mutex variable is currently not held by another thread, the calling
thread becomes the owner of the mutex variable. This is the same behavior as for
pthread mutex lock(). But different from pthread mutex lock(), the
calling thread is not blocked if another thread already holds the mutex variable.
Instead, the call returns with error return value EBUSYwithout blocking. The calling
thread can then perform other computations and can later retry to lock the mutex
variable. The calling thread can also repeatedly try to lock the mutex variable until
it is successful (spinlock).

Example Figure 6.2 shows a simple program fragment to illustrate the use of mutex
variables to ensure mutual exclusion when concurrently accessing a common data
structure, see also [126]. In the example, the common data structure is a linked
list. The nodes of the list have type node t. The complete list is protected by a
single mutex variable. To indicate this, the pointer to the first element of the list
(first) is combined with the mutex variable (mutex) into a data structure of
type list t. The linked list will be kept sorted according to increasing values of
the node entry index. The function list insert() inserts a new element into
the list while keeping the sorting. Before the first call to list insert(), the list
must be initialized by calling list init(), e.g., in the main thread. This call also
initializes the mutex variable. In list insert(), the executing thread first locks
the mutex variable of the list before performing the actual insertion. After the inser-
tion, the mutex variable is released again using pthread mutex unlock().
This procedure ensures that it is not possible for different threads to insert new ele-
ments at the same time. Hence, the list operations are sequentialized. The function
list insert() is a thread-safe function, since a program can use this function
without performing additional synchronization.

In general, a (library) function is thread-safe if it can be called by differ-
ent threads concurrently, without performing additional operations to avoid race
conditions. ��
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Fig. 6.2 Pthreads implementation of a linked list. The function list insert() can be called
by different threads concurrently which insert new elements into the list. In the form presented,
list insert() cannot be used as the start function of a thread, since the function has more
than one argument. To be used as start function, the arguments of list insert() have to be
put into a new data structure which is then passed as argument. The original arguments could then
be extracted from this data structure at the beginning of list insert()
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In Fig. 6.2, a single mutex variable is used to control the complete list. This
results in a coarse-grain lock granularity. Only a single insert operation can happen
at a time, independently of the length of the list. An alternative could be to partition
the list into fixed-size areas and protect each area with a mutex variable or even to
protect each single element of the list with a separate mutex variable. In this case,
the granularity would be fine-grained, and several threads could access different
parts of the list concurrently. But this also requires a substantial re-organization of
the synchronization, possibly leading to a larger overhead.

6.1.2.2 Mutex Variables and Deadlocks

When multiple threads work with different data structures each of which is protected
by a separate mutex variable, caution has to be taken to avoid deadlocks. A deadlock
may occur if the threads use a different order for locking the mutex variables. This
can be seen for two threads T1 and T2 and two mutex variables ma and mb as
follows:

• thread T1 first locks ma and then mb;
• thread T2 first locks mb and then ma.

If T1 is interrupted by the scheduler of the runtime system after locking ma such
that T2 is able to successfully lock mb, a deadlock occurs:
T2 will be blocked when it is trying to lock ma, since ma is already locked by T1;
similarly, T1 will be blocked when it is trying to lock mb after it has been woken up
again, since mb has already been locked by T2. In effect, both threads are blocked
forever and are mutually waiting for each other. The occurrence of deadlocks can
be avoided by using a fixed locking order for all threads or by employing a backoff
strategy.

When using a fixed locking order, each thread locks the critical mutex variables
always in the same predefined order. Using this approach for the example above,
thread T2 must lock the two mutex variables ma and mb in the same order as T1,
e.g., both threads must first lock ma and then mb. The deadlock described above
cannot occur now, since T2 cannot lock mb if ma has previously been locked by
T1. To lock mb, T2 must first lock ma. If ma has already been locked by T1, T2

will be blocked when trying to lock ma and, hence, cannot lock mb. The specific
locking order used can in principle be arbitrarily selected, but to avoid deadlocks
it is important that the order selected is used throughout the entire program. If this
does not conform to the program structure, a backoff strategy should be used.

When using a backoff strategy, each participating thread can lock the mutex
variables in its individual order, and it is not necessary to use the same predefined
order for each thread. But a thread must back off when its attempt to lock a mutex
variable fails. In this case, the thread must release all mutex variables that it has
previously locked successfully. After the backoff, the thread starts the entire lock
procedure from the beginning by trying to lock the first mutex variable again. To
implement a backoff strategy, each thread uses pthread mutex lock() to lock
its first mutex variable and pthread mutex trylock() to lock the remaining
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mutex variables needed. If pthread mutex trylock() returns EBUSY, this
means that this mutex variable is already locked by another thread. In this case, the
calling thread releases all mutex variables that it has previously locked successfully
using pthread mutex unlock().

Example Backoff strategy (see Figs. 6.3 and 6.4):
The use of a backoff strategy is demonstrated in Fig. 6.3 for two threads f and
b which lock three mutex variables m[0], m[1], and m[2] in different orders,
see [25]. The thread f (forward) locks the mutex variables in the order m[0],
m[1], and m[2] by calling the function lock forward(). The thread b (back-
ward) locks the mutex variables in the opposite order m[2], m[1], and m[0]
by calling the function lock backward(), see Fig. 6.4. Both threads repeat
the locking 10 times. The main program in Fig. 6.3 uses two control variables
backoff and yield flag which are read in as arguments. The control variable
backoff determines whether a backoff strategy is used (value 1) or not (value 0).
For backoff = 1, no deadlock occurs when running the program because of the
backoff strategy. For backoff = 0, a deadlock occurs in most cases, in particular
if f succeeds in locking m[0] and b succeeds in locking m[2].

But depending on the specific scheduling situation concerning f and b, no dead-
lock may occur even if no backoff strategy is used. This happens when both threads
succeed in locking all three mutex variables, before the other thread is executed.
To illustrate this dependence of deadlock occurrence from the specific scheduling
situation, the example in Figs. 6.3 and 6.4 contains a mechanism to influence the
scheduling of f and b. This mechanism is activated by using the control variable
yield flag. For yield flag = 0, each thread tries to lock the mutex vari-
ables without interruption. This is the behavior described so far. For yield flag
= 1, each thread calls sched yield() after having locked a mutex variable, thus
transferring control to another thread with the same priority. Therefore, the other

Fig. 6.3 Control program to illustrate the use of a backoff strategy
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Fig. 6.4 Functions lock forward and lock backward to lock mutex variables in opposite
directions

thread has a chance to lock a mutex variable. For yield flag = -1, each thread
calls sleep(1) after having locked a mutex variable, thus waiting for 1 s. In this
time, the other thread can run and has a chance to lock another mutex variable. In
both cases, a deadlock will likely occur if no backoff strategy is used.

Calling pthread exit() in the main thread causes the termination of the
main thread, but not of the entire process. Instead, using a normal return would
terminate the entire process, including the threads f and b. ��

Compared to a fixed locking order, the use of a backoff strategy typically leads
to larger execution times, since threads have to back off when they do not succeed
in locking a mutex variable. In this case, the locking of the mutex variables has to
be started from the beginning.

But using a backoff strategy leads to an increased flexibility, since no fixed
locking order has to be ensured. Both techniques can also be used in combination
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by using a fixed locking order in code regions where this is not a problem and using
a backoff strategy where the additional flexibility is beneficial.

6.1.3 Condition Variables

Mutex variables are typically used to ensure mutual exclusion when accessing
global data structures concurrently. But mutex variables can also be used to wait for
the occurrence of a specific condition which depends on the state of a global data
structure and which has to be fulfilled before a certain operation can be applied.
An example might be a shared buffer from which a consumer thread can remove
entries only if the buffer is not empty. To apply this mechanism, the shared data
structure is protected by one or several mutex variables, depending on the specific
situation. To check whether the condition is fulfilled, the executing thread locks the
mutex variable(s) and then evaluates the condition. If the condition is fulfilled, the
intended operation can be performed. Otherwise, the mutex variable(s) are released
again and the thread repeats this procedure again at a later time. This method has the
drawback that the thread which is waiting for the condition to be fulfilled may have
to repeat the evaluation of the condition quite often before the condition becomes
true. This consumes execution time (active waiting), in particular because the mutex
variable(s) have to be locked before the condition can be evaluated. To enable
a more efficient method for waiting for a condition, Pthreads provide condition
variables.

A condition variable is an opaque data structure which enables a thread to wait
for the occurrence of an arbitrary condition without active waiting. Instead, a sig-
naling mechanism is provided which blocks the executing thread during the waiting
time, so that it does not consume CPU time. The waiting thread is woken up again
as soon as the condition is fulfilled. To use this mechanism, the executing thread
must define a condition variable and a mutex variable. The mutex variable is used to
protect the evaluation of the specific condition which is waiting to be fulfilled. The
use of the mutex variable is necessary, since the evaluation of a condition usually
requires to access shared data which may be modified by other threads concurrently.

A condition variable has type pthread cond t. After the declaration or the
dynamic generation of a condition variable, it must be initialized before it can be
used. This can be done dynamically by calling the function

int pthread cond init (pthread cond t *cond,
const pthread condattr t *attr)

where cond is the address of the condition variable to be initialized and attr is
the address of an attribute data structure for condition variables. Using attr=NULL
leads to an initialization with the default attributes. For a condition variable cond
that has been declared statically, the initialization can also be obtained by using
the PTHREAD COND INITIALIZER initialization macro. This can also be done
directly with the declaration
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pthread cond t cond = PTHREAD COND INITIALIZER.

The initialization macro cannot be used for condition variables that have been gener-
ated dynamically using, e.g., malloc(). A condition variable cond that has been
initialized with pthread cond init() can be destroyed by calling the function

int pthread cond destroy (pthread cond t *cond)

if it is no longer needed. In this case, the runtime system can free the information
stored for this condition variable. Condition variables that have been initialized stat-
ically with the initialization macro do not need to be destroyed.

Each condition variable must be uniquely associated with a specific mutex vari-
able. All threads which wait for a condition variable at the same time must use
the same associated mutex variable. It is not allowed that different threads asso-
ciate different mutex variables with a condition variable at the same time. But a
mutex variable can be associated with different condition variables. A condition
variable should only be used for a single condition to avoid deadlocks or race con-
ditions [25]. A thread must first lock the associated mutex variable mutex with
pthread mutex lock() before it can wait for a specific condition to be fulfilled
using the function

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex)

where cond is the condition variable used and mutex is the associated mutex vari-
able. The condition is typically embedded into a surrounding control statement. A
standard usage pattern is

pthread mutex lock (&mutex);
while (!condition())

pthread cond wait (&cond, &mutex);
compute something();
pthread mutex unlock (&mutex);

The evaluation of the condition and the call of pthread cond wait() are pro-
tected by the mutex variable mutex to ensure that the condition does not change
between the evaluation and the call of pthread cond wait(), e.g., because
another thread changes the value of a variable that is used within the condition.
Therefore, each thread must use this mutex variable mutex to protect the manip-
ulation of each variable that is used within the condition. Two cases can occur for
this usage pattern for condition variables:

• If the specified condition is fulfilled when executing the code segment from
above, the function pthread cond wait() is not called. The executing



272 6 Thread Programming

thread releases the mutex variable and proceeds with the execution of the suc-
ceeding program part.

• If the specified condition is not fulfilled, pthread cond wait() is called.
This call has the effect that the specified mutex variable mutex is implicitly
released and that the executing thread is blocked, waiting for the condition vari-
able until another thread sends a signal using pthread cond signal() to
notify the blocked thread that the condition may now be fulfilled. When the
blocked thread is woken up again in this way, it implicitly tries to lock the mutex
variable mutex again. If this is owned by another thread, the woken-up thread
is blocked again, now waiting for the mutex variable to be released. As soon
as the thread becomes the owner of the mutex variable mutex, it continues the
execution of the program. In the context of the usage pattern from above, this
results in a new evaluation of the condition because of the while loop.

In a Pthreads program, it should be ensured that a thread which is waiting for
a condition variable is woken up only if the specified condition is fulfilled. Nev-
ertheless, it is useful to evaluate the condition again after the wake up because
there are other threads working concurrently. One of these threads might become
the owner of the mutex variable before the woken-up thread. Thus the woken-up
thread is blocked again. During the blocking time, the owner of the mutex variable
may modify common data such that the condition is no longer fulfilled. Thus, from
the perspective of the executing thread, the state of the condition may change in the
time interval between being woken up and becoming owner of the associated mutex
variable. Therefore, the thread must again evaluate the condition to be sure that it
is still fulfilled. If the condition is fulfilled, it cannot change before the executing
thread calls pthread mutex unlock() or pthread cond wait() for the
same condition variable, since each thread must be the owner of the associated
mutex variable to modify a variable used in the evaluation of the condition.

Pthreads provide two functions to wake up (signal) a thread waiting on a condi-
tion variable:

int pthread cond signal (pthread cond t *cond)
int pthread cond broadcast (pthread cond t *cond).

A call of pthread cond signal() wakes up a single thread waiting on the
condition variable cond. A call of this function has no effect, if there are no
threads waiting for cond. If there are several threads waiting for cond, one of
them is selected to be woken up. For the selection, the priorities of the wait-
ing threads and the scheduling method used are taken into account. A call of
pthread cond broadcast() wakes up all threads waiting on the condition
variable cond. If several threads are woken up, only one of them can become owner
of the associated mutex variable. All other threads that have been woken up are
blocked on the mutex variable.
The functions pthread cond signal() and pthread cond broadcast()
should only be called if the condition associated with cond is fulfilled. Thus,
before calling one of these functions, a thread should evaluate the condition. To
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do so safely, it must first lock the mutex variable associated with the condition
variable to ensure a consistent evaluation of the condition. The actual call of
pthread cond signal() or pthread cond broadcast() does not need
to be protected by the mutex variable. Issuing a call without protection by the
mutex variable has the drawback that another thread may become the owner of
the mutex variable when it has been released after the evaluation of the condi-
tion, but before the signaling call. In this situation, the new owner thread can
modify shared variables such that the condition is no longer fulfilled. This does
not lead to an error, since the woken-up thread will again evaluate the condi-
tion. The advantage of not protecting the call of pthread cond signal() or
pthread cond broadcast() by the mutex variable is the chance that the
mutex variable may not have an owner when the waiting thread is woken up. Thus,
there is a chance that this thread becomes the owner of the mutex variable without
waiting. If mutex protection is used, the signaling thread is the owner of the mutex
variable when the signal arrives, so the woken-up thread must block on the mutex
variable immediately after being woken up.

To wait for a condition, Pthreads also provide the function

int pthread cond timedwait(pthread cond t *cond,
pthread mutex t *mutex,
const struct timespec *time).

The difference from pthread cond wait() is that the blocking on the condi-
tion variable cond is ended with return value ETIMEDOUT after the specified time
interval time has elapsed. This maximum waiting time is specified using type

struct timespec {
time t tv sec;
long tv nsec;

}

where tv sec specifies the number of seconds and tv nsec specifies the num-
ber of additional nanoseconds. The time parameter of pthread cond timed
wait() specifies an absolute clock time rather than a time interval. A typical use
may look as follows:

pthread mutex t m = PTHREAD MUTEX INITIALIZER;
pthread cond t c = PTHREAD COND INITIALIZER;
struct timespec time;
pthread mutex lock (&m);
time.tv sec = time (NULL) + 10;
time.tv nsec = 0;
while (!Bedingung)
if (pthread cond timedwait (&c, &m, &time) == ETIMEDOUT)
timed out work();

pthread mutex unlock (&m);
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In this example, the executing thread waits at most 10 s for the condition to be
fulfilled. The function time() from <time.h> is used to define time.tv sec.
The call time(NULL) yields the absolute time in seconds elapsed since Jan 1,
1970. If no signal arrives after 10 s, the function timed out work() is called
before the condition is evaluated again.

6.1.4 Extended Lock Mechanism

Condition variables can be used to implement more complex synchronization mech-
anisms that are not directly supported by Pthreads. In the following, we con-
sider a read/write lock mechanism as an example for an extension of the standard
lock mechanism provided by normal mutex variables. If we use a normal mutex
variable to protect a shared data structure, only one thread at a time can access
(read or write) the shared data structure. The following user-defined read/write
locks extend this mechanism by allowing an arbitrary number of reading threads
at a time. But only one thread at a time is allowed to write to the data struc-
ture. In the following, we describe a simple implementation of this extension, see
also [126]. For more complex and more efficient implementations, we refer to
[25, 105].

For the implementation of read/write locks, we define read/write lock variables
(r/w lock variables) by combining a mutex variable and a condition variable as fol-
lows:

typedef struct rw lock {
int num r, num w;
pthread mutex t mutex;
pthread cond t cond;

} rw lock t;

Here, num r specifies the current number of read permits, and num w specifies
the current number of write permits; num w should have a maximum value of 1.
The mutex variable mutex is used to protect the access to num r and num w. The
condition variable cond coordinates the access to the r/w lock variable.

Figure 6.5 shows the functions that can be used to implement the read/write lock
mechanism. The function rw lock init() initializes a read/write lock variable.
The function rw lock rlock() requests a read permit to the common data struc-
ture. The read permit is granted only if there is no other thread that currently has
a write permit. Otherwise the calling thread is blocked until the write permit is
returned. The function rw lock wlock() requests a write permit to the common
data structure. The write permit is granted only if there is no other thread that cur-
rently has a read or write permit.

The function rw lock runlock() is used to return a read permit. This may
cause the number of threads with a read permit to decrease to zero. In this case, a
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Fig. 6.5 Function for the
control of read/write lock
variables

thread which is waiting for a write permit is woken up by pthread cond signal().
The function rw lock wunlock() is used to return a write permit. Since only
one thread with a write permit is allowed, there cannot be a thread with a write
permit after this operation. Therefore, all threads waiting for a read or write permit
can be woken up using pthread cond broadcast().

The implementation sketched in Fig. 6.5 favors read requests over write requests:
If a thread A has a read permit and a thread B waits for a write permit, then other
threads will obtain a read permit without waiting, even if they put their read request
long after B has put its write request. Thread B will get a write permit only if there
are no other threads requesting a read permit. Depending on the intended usage, it
might also be useful to give write requests priority over read requests to keep a data
structure up to date. An implementation for this is given in [25].
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The r/w lock mechanism can be used for the implementation of a shared linked
list, see Fig. 6.2, by replacing the mutex variable mutex by a r/w lock vari-
able. In the list insert() function, the list access will then be protected by
rw lock wlock() and rw lock wunlock(). A function to search for a spe-
cific entry in the list could use rw lock rlock() and tw lock runlock(),
since no entry of the list will be modified when searching.

6.1.5 One-Time Initialization

In some situations, it is useful to perform an operation only once, no matter how
many threads are involved. This is useful for initialization operations or opening a
file. If several threads are involved, it sometimes cannot be determined in advance
which of the threads is first ready to perform an operation. A one-time initialization
can be achieved using a boolean variable initialized to 0 and protected by a mutex
variable. The first thread arriving at the critical operation sets the boolean variable
to 1, protected by the mutex variable, and then performs the one-time operation. If
a thread arriving at the critical operation finds that the boolean variable has value
1, it does not perform the operation. Pthreads provide another solution for one-time
operations by using a control variable of the predefined type pthread once t.
This control variable must be statically initialized using the initialization macro
PTHREAD ONCE INIT:

pthread once t once control = PTHREAD ONCE INIT

The code to perform the one-time operation must be put into a separate function
without parameter. We call this function once routine() in the following. The
one-time operation is then performed by calling the function

pthread once (pthread once t *once control,
void (*once routine)(void)).

This function can be called by several threads. If the execution of once routine()
has already been completed, then control is directly returned to the calling thread. If
the execution of once routine() has not yet been started, once routine()
is executed by the calling thread. If the execution of the function once routine()
has been started by another thread, but is not finished yet, then the thread execut-
ing pthread once() waits until the other thread has finished its execution of
once routine().

6.1.6 Implementation of a Task Pool

A thread program usually has to perform several operations or tasks. A simple
structure results if each task is put into a separate function which is then called by a
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separate thread which executes exactly this function and then terminates. Depending
on the granularity of the tasks, this may lead to the generation and termination of
a large number of threads, causing a significant overhead. For many applications,
a more efficient implementation can be obtained by using a task pool (also called
work crew). The idea is to use a specific data structure (task pool) to store the tasks
that are ready for execution. For task execution, a fixed number of threads is used
which are generated by the main thread at program start and exist until the program
terminates. The threads access the task pool to retrieve tasks for execution. During
the execution of a task, new tasks may be generated which are then inserted into
the task pool. The execution of the parallel program is terminated if the task pool is
empty and each thread has finished the execution of its task.

The advantage of this execution scheme is that a fixed number of threads is
used, no matter how many tasks are generated. This keeps the overhead for thread
management small, independent of the number of tasks. Moreover, tasks can be
generated dynamically, thus enabling the realization of adaptive and irregular appli-
cations. In the following, we describe a simple implementation of a task pool, see
also [126]. More advanced implementations are described in [25, 105].

Figure 6.6 presents the data structure that can be used for the task pool and a func-
tion for the initialization of the task pool. The data type work t represents a single
task. It contains a reference routine to the function containing the code of the task
and the argument arg of this function. The tasks are organized as a linked list, and
next is a pointer to the next task element. The data type tpool t represents the
actual task pool. It contains pointers head and tail to the first and last elements of
the task list, respectively. The entry num threads specifies the number of threads
used for execution of the tasks. The array threads contains the reference to the
thread IDs of these threads. The entries max size and current size specify
the maximum and current number of tasks contained in the task pool.

The mutex variable lock is used to ensure mutual exclusion when accessing the
task pool. If a thread attempts to retrieve a task from an empty task pool, it is blocked
on the condition variable not empty. If a thread inserts a task into an empty task
pool, it wakes up a thread that is blocked on not empty. If a thread attempts to
insert a task into a full task pool, it is blocked on the condition variable not full.
If a thread retrieves a task from a full task pool, it wakes up a thread that is blocked
on not full.

The function tpool init() in Fig. 6.6 initializes the task pool by allocating
the data structure and initializing it with the argument values provided. Moreover,
the threads used for the execution of the tasks are generated and their IDs are stored
in tpl->threads[i] for i=0,...,num threads-1. Each of these threads
uses the function tpool thread() as start function, see Fig. 6.7. This function
has one argument specifying the task pool data structure to be used. Task execution
is performed in an infinite loop. In each iteration of the loop, a task is retrieved
from the head of the task list. If the task list is empty, the executing thread is
blocked on the condition variable not empty as described above. Otherwise, a
task wl is retrieved from the list. If the task pool has been full before the retrieval,
all threads blocked on not full, waiting to insert a task, are woken up using
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Fig. 6.6 Implementation of a task pool (part 1): The data structure work t represents a task to
be executed. The task pool data structure tpool t contains a list of tasks with head pointing to
the first element and tail pointing to the last element, as well as a set of threads threads to
execute the tasks. The function tpool init() is used to initialize a task pool data structure tpl

pthread cond broadcast(). The access to the task pool structure is protected
by the mutex variable tpl->lock. The retrieved task wl is executed by calling the
stored task function wl->routine() using the stored argument wl->arg. The
execution of the retrieved task wl may lead to the generation of new tasks which are
then inserted into the task pool using tpool insert() by the executing thread.

The function tpool insert() is used to insert tasks into the task pool. If
the task pool is full when calling this function, the executing thread is blocked on
the condition variable not full. If the task pool is not full, a new task structure
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Fig. 6.7 Implementation of a task pool (part 2): The function tpool thread() is used to extract
and execute tasks. The function tpool insert() is used to insert tasks into the task pool
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is generated and filled and is inserted at the end of the task list. If the task pool
has been empty before the insertion, one of the threads blocked on the condition
variable not empty is woken up using pthread cond signal(). The access
to the task pool tpl is protected by the mutex variable tpl->lock.

The described implementation is especially suited for a master–slave model. A
master thread uses tpool init() to generate a number of slave threads each
of which executes the function tpool thread(). The tasks to be executed are
defined according to the specific requirements of the application problem and are
inserted in the task pool by the master thread using tpool insert(). Tasks
can also be inserted by the slave threads when the execution of a task leads to the
generation of new tasks. After the execution of all tasks is completed, the master
thread terminates the slave threads. To do so, the master thread wakes up all threads
blocked on the condition variables not full and not empty and terminates
them. Threads that are just executing a task are terminated as soon as they have
finished the execution of this task.

6.1.7 Parallelism by Pipelining

In the pipelining model, a stream of data items is processed one after another by a
sequence of threads T1, . . . , Tn where each thread Ti performs a specific operation
on each element of the data stream and passes the element onto the next thread Ti+1:

. . .T T1 T2 n

data

pipeline stage 1 pipeline stage 2 pipeline stage n pipeline stage n+1

thread
output sequence

thread datadata datathreadinput sequence data

This results in an input/output relation between the threads: Thread Ti receives the
output of thread Ti+1 as input and produces data elements for thread Ti+1, 1 < i <

n. Thread T1 reads the sequence of input elements, thread Tn produces the sequence
of output elements. After a start-up phase with n steps, all threads can work in
parallel and can be executed by different processors in parallel. The pipeline model
requires some coordination between the cooperating threads: Thread Ti can start
the computation of its corresponding stage only if the predecessor thread Ti−1 has
provided the input data element. Moreover, thread Ti can forward its output element
to the successor thread Ti+1, only if Ti+1 has finished its computation of the previous
data item and is ready to receive a new data element.

The coordination of the threads of the pipeline stages can be organized with the
help of condition variables. This will be demonstrated in the following for a simple
example in which a sequence of integer values is incremented step by step in each
pipeline stage, see also [25]. Thus, in each pipeline stage, the same computation
is performed. But the coordination mechanism can also be applied if each pipeline
stage performs a different computation.
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Fig. 6.8 Implementation of a pipeline (part 1): data structures for the implementation of a pipeline
model in Pthreads

For each stage of the pipeline, a data structure of type stage t is used, see
Fig. 6.8. This data structure contains a mutex variable m for synchronizing the access
to the stage and two condition variables avail and ready for synchronizing the
threads of neighboring stages. The condition variable avail is used to notify a
thread that a data element is available to be processed by its pipeline stage. Thus,
the thread can start the computation. A thread is blocked on the condition variable
avail if no data element from the predecessor stage is available. The condition
variable ready is used to notify the thread of the preceding pipeline stage that
it can forward its output to the next pipeline stage. The thread of the preceding
pipeline stage is blocked on this condition variable if it cannot directly forward its
output data element to the next stage. The entry data ready in the data structure
for a stage is used to record whether a data element is currently available (value
1) for this pipeline stage or not (value 0). The entry data contains the actual data
element to be processed. For the simple example discussed here, this is a single
integer value, but this could be any data element for more complex applications. The
entry thread is the TID of the thread used for this stage, and next is a reference to
the next pipeline stage.

The entire pipeline is represented by the data structure pipe t containing a
mutex variable m and two pointers head and tail to the first and the last stages
of the pipeline, respectively. The last stage of the pipeline is used to store the final
result of the computation performed for each data element. There is no computation
performed in this last stage, and there is no corresponding thread associated with
this stage.
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Fig. 6.9 Implementation of a pipeline (part 2): functions to forward data elements to a pipeline
stage and thread functions for the pipeline stages

The function pipe send(), shown in Fig. 6.9, is used to send a data element
to a stage of the pipeline. This function is used to send a data element to the first
stage of the pipeline, and it is also used to pass a data element to the next stage of the
pipeline after the computation of a stage has been completed. The stage receiving
the data element is identified by the parameter nstage. Before inserting the data
element, the mutex variable m of the receiving stage is locked to ensure that only
one thread at a time is accessing the stage. A data element can be written into the
receiving stage only if the computation of the previous data element in this stage has
been finished. This is indicated by the condition data ready=0. If this is not the
case, the sending thread is blocked on the condition variable ready of the receiving
stage. If the receiving stage is ready to receive the data element, the sending thread
writes the element into the stage and wakes up the thread of the receiving stage if it
is blocked on the condition variable avail.
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Each of the threads participating in the pipeline computation executes the func-
tion pipe stage(), see Fig. 6.9. The same function can be used for each stage
for our example, since each stage performs the same computations. The function
receives a pointer to its corresponding pipeline stage as an argument. A thread exe-
cuting the function performs an infinite loop waiting for the arrival of data elements
to be processed. The thread blocks on the condition variable avail if there is cur-
rently no data element available. If a data element is available, the thread performs
its computation (increment by 1) and sends the result to the next pipeline stage
stage->next using pipe send(). Then it sends a notification to the thread
associated with the next stage, which may be blocked on the condition variable
ready. The notified thread can then continue its computation.

Thus, the synchronization of two neighboring threads is performed by using
the condition variables avail and ready of the corresponding pipeline stages.
The entry data ready is used for the condition and determines which of the
two threads is blocked and woken up. The entry of a stage is set to 0 if the stage
is ready to receive a new data element to be processed by the associated thread.
The entry data ready of the next stage is set to 1 by the associated thread of
the preceding stage if a new data element has been put into the next stage and is
ready to be processed. In the simple example given here, the same computations are
performed in each stage, i.e., all corresponding threads execute the same function
pipe stage(). For more complex scenarios, it is also possible that the different
threads execute different functions, thus performing different computations in each
pipeline stage.

The generation of a pipeline with a given number of stages can be achieved
by calling the function pipe create(), see Fig. 6.10. This function generates
and initializes the data structures for the representation of the different stages. An
additional stage is generated to hold the final result of the pipeline computation,
i.e., the total number of stages is stages+1. For each stage except for the last
additional stage, a thread is created. Each of these threads executes the function
pipe stage().

The function pipe start() is used to transfer a data element to the first stage
of the pipeline, see Fig. 6.10. The actual transfer of the data element is done by call-
ing the function pipe send(). The thread executing pipe start() does not
wait for the result of the pipeline computation. Instead, pipe start() returns
control immediately. Thus, the pipeline works asynchronously with the thread
which transfers data elements to the pipeline for computation. The synchronization
between this thread and the thread of the first pipeline stage is performed within the
function pipe send().

The function pipe result() is used to take a result value out of the last
stage of the pipeline, see Fig. 6.11. The entry active in the pipeline data struc-
ture pipe t is used to count the number of data elements currently stored in the
different pipeline stages. For pipe->active = 0, no data element is stored in
the pipeline. In this case, pipe result() immediately returns without providing
a data element. For pipe->active > 0, pipe result() is blocked on the
condition variable avail of the last pipeline stage until a data element arrives at



284 6 Thread Programming

Fig. 6.10 Implementation of a pipeline (part 3): Pthreads functions to generate and start a pipeline
computation

this stage. This happens if the thread associated with the next to the last stage uses
pipe send() to transfer a processed data element to the last pipeline stage, see
Fig. 6.9. By doing so, this thread wakes up a thread that is blocked on the condition
variable avail of the last stage, if there is a thread waiting. If so, the woken-
up thread is the one which tries to take a result value out of the last stage using
pipe result().

The main program of the pipeline example is given in Fig. 6.11. It first uses
pipe create() to generate a pipeline with a given number of stages. Then it
reads from stdin lines with numbers, which are the data elements to be pro-
cessed. Each such data element is forwarded to the first stage of the pipeline using
pipe start(). Doing so, the executing main thread may be blocked on the con-
dition variable ready of the first stage until the stage is ready to receive the data
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Fig. 6.11 Implementation of a pipeline (part 4): main program and Pthreads function to remove a
result element from the pipeline

element. An input line with a single character ‘=’ causes the main thread to call
pipe result() to take a result element out of the last stage, if present.

Figure 6.12 illustrates the synchronization between neighboring pipeline threads
as well as between the main thread and the threads of the first or the next to last
stage for a pipeline with three stages and two pipeline threads T1 and T2. The figure
shows the relevant entries of the data structure stage t for each stage. The order
of the access and synchronization operations performed by the pipeline threads
is determined by the statements in pipe stage() and is illustrated by circled
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Fig. 6.12 Illustration of the synchronization between the pipeline threads for a pipeline with two
pipeline threads and three stages, from the view of the data structures used. The circled numbers
describe the order in which the synchronization steps are executed by the different threads accord-
ing to the corresponding thread functions

numbers. The access and synchronization operations of the main thread result from
the statements in pipe start() and pipe result().

6.1.8 Implementation of a Client–Server Model

In a client–server system, we can distinguish between client threads and server
threads. In a typical scenario, there are several server threads and several client
threads. Server threads process requests that have been issued by the client threads.
Client threads often represent the interface to the users of a system. During the
processing of a request by a server thread, the issuing client thread can either wait
for the request to be finished or can perform other operations, working concurrently
with the server, and can collect the result at a later time when it is required. In the
following, we illustrate the implementation of a client–server model for a simple
example, see also [25].

Several threads repeatedly read input lines from stdin and output result lines
to stdout. Before reading, a thread outputs a prompt to indicate which input is
expected from the user. Server threads can be used to ensure the synchronization
between the output of a prompt and the reading of the corresponding input line
so that no output of another thread can occur in between. Client threads forward
requests to the server threads to output a prompt or to read an input line. The
server threads are terminated by a specific QUIT command. Figure 6.13 shows
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Fig. 6.13 Implementation of a client–server system (part 1): data structure for the implementation
of a client–server model with Pthreads

the data structures used for an implementation with Pthreads. The data structure
request t represents requests from the clients for the servers. The entry op
specifies the requested operation to be performed (REQ READ, REQ WRITE, or
REQ QUIT). The entry synchronous indicates whether the client waits for the
termination of the request (value 1) or not (value 0). The condition variable done
is used for the synchronization between client and server, i.e., the client thread is
blocked on done to wait until the server has finished the execution of the request.
The entries prompt and text are used to store a prompt to be output or a text read
in by the server, respectively. The data structure tty server t is used to store the
requests sent to a server. The requests are stored in a FIFO (first-in, first-out) queue
which can be accessed by first and last. The server thread is blocked on the
condition variable request if the request queue is empty. The entry running
indicates whether the corresponding server is running (value 1) or not (value 0).
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Fig. 6.14 Implementation of a client–server system (part 2): server thread to process client requests
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Fig. 6.15 Implementation of a client–server system (part 3): forwarding of a request to the server
thread
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The program described in the following works with a single server thread, but can
in principle be extended to an arbitrary number of servers.

The server thread executes the function tty server routine(), see
Fig. 6.14. The server is blocked on the condition variable request as long as
there are no requests to be processed. If there are requests, the server removes the
first request from the queue and executes the operation (REQ READ, REQ WRITE,
or REQ QUIT) specified in the request. For the REQ READ operation, the prompt
specified with the request is output and a line is read in and stored into the text
entry of the request structure. For a REQ WRITE operation, the line stored in the
text entry is written to stdout. The operation REQ QUIT causes the server to
finish its execution. If an issuing client waits for the termination of a request (entry
synchronous), it is blocked on the condition variable done in the corresponding
request structure. In this case, the server thread wakes up the blocked client thread
using pthread cond signal() after the request has been processed. For asyn-
chronous requests, the server thread is responsible to free the request data structure.

The client threads use the function tty server request() to forward a
request to the server, see Fig. 6.15. If the server thread is not running yet, it will be
started in tty server request(). The function allocates a request structure of
type request t and initializes it according to the requested operation. The request
structure is then inserted into the request queue of the server. If the server is blocked
waiting for requests to arrive, it is woken up using pthread cond signal(). If
the client wants to wait for the termination of the request by the server, it is blocked
on the condition variable done in the request structure, waiting for the server to
wake it up again. The client threads execute the function client routine(),
see Fig. 6.16. Each client sends read and write requests to the server using the
function tty server request() until the user terminates the client thread
by specifying an empty line as input. When the last client thread has been termi-
nated, the main thread which is blocked on the condition variable client done
is woken up again. The main thread generates the client threads and then waits
until all client threads have been terminated. The server thread is not started by
the main thread, but by the client thread which sends the first request to the server
using tty server routine(). After all client threads are terminated, the server
thread is terminated by the main thread by sending a REQ QUIT request.

6.1.9 Thread Attributes and Cancellation

Threads are created using pthread create(). In the previous sections, we have
specified NULL as the second argument, thus leading to the generation of threads
with default characteristics. These characteristics can be changed with the help
of attribute objects. To do so, an attribute object has to be allocated and initial-
ized before using the attribute object as parameter of pthread create(). An
attribute object for threads has type pthread attr t. Before an attribute object
can be used, it must first be initialized by calling the function
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Fig. 6.16 Implementation of a client–server system (part 4): client thread and main thread
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int pthread attr init (pthread attr t *attr).

This leads to an initialization with the default attributes, corresponding to the default
characteristics. By changing an attribute value, the characteristics can be changed.
Pthreads provide attributes to influence the return value of threads, setting the size
and address of the runtime stack, or the cancellation behavior of the thread. For
each attribute, Pthreads define functions to get and set the current attribute value.
But Pthreads implementations are not required to support the modification of all
attributes. In the following, the most important aspects are described.

6.1.9.1 Return Value

An important property of a thread is its behavior concerning thread termination.
This is captured by the attribute detachstate. This attribute can be influenced
by all Pthreads libraries. By default, the runtime system assumes that the return
value of a thread T1 may be used by another thread after the termination of T1.
Therefore, the internal data structure maintained for a thread will be kept by the
runtime system after the termination of a thread until another thread retrieves the
return value using pthread join(), see Sect. 6.1.1. Thus, a thread may bind
resources even after its termination. This can be avoided if the programmer knows
in advance that the return value of a thread will not be needed. If so, the thread
can be generated such that its resources are immediately returned to the runtime
system after its termination. This can be achieved by changing the detachstate
attribute. The following two functions are provided to get or set this attribute value:

int pthread attr getdetachstate (const pthread attr t *attr,
int *detachstate)

int pthread attr setdetachstate (pthread attr t *attr,
int detachstate).

The attribute value detachstate=PTHREAD CREATE JOINABLE means that
the return value of the thread is kept until it is joined by another thread. The
attribute value detachstate=PTHREAD CREATE DETACHED means that the
thread resources are freed immediately after thread termination.

6.1.9.2 Stack Characteristics

The different threads of a process have a shared program and data memory and a
shared heap, but each thread has its own runtime stack. For most Pthreads libraries,
the size and address of the local stack of a thread can be changed, but it is not
required that a Pthreads library support this option. The local stack of a thread
is used to store local variables of functions whose execution has not yet been
terminated. The size required for the local stack is influenced by the size of the
local variables and the nesting depth of function calls to be executed. This size
may be large for recursive functions. If the default stack size is too small, it can be
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increased by changing the corresponding attribute value. The Pthreads library that
is used supports this if the macro

POSIX THREAD ATTR STACKSIZE

is defined in <unistd.h>. This can be checked by

#ifdef POSIX THREAD ATTR STACKSIZE or
if (sysconf ( SC THREAD ATTR STACKSIZE) == -1)

in the program. If it is supported, the current stack size stored in an attribute object
can be retrieved or set by calling the functions

int pthread attr getstacksize (const pthread attr t *attr,
size t *stacksize)

int pthread attr setstacksize (pthread attr t *attr,
size t stacksize).

Here, size t is a data type defined in <unistd.h> which is usually imple-
mented as unsigned int. The parameter stacksize is the size of the stack in
bytes. The value of stacksize should be at least PTHREAD STACK MIN which
is predefined by Pthreads as the minimum stack size required by a thread. Moreover,
if the macro

POSIX THREAD ATTR STACKADDR

is defined in <unistd.h>, the address of the local stack of a thread can also be
influenced. The following two functions

int pthread attr getstackaddr (const pthread attr t *attr,
size t **stackaddr)

int pthread attr setstackaddr (pthread attr t *attr,
size t *stackaddr)

are provided to get or set the current stack address stored in an attribute object. The
modification of stack-related attributes should be used with caution, since such mod-
ification can result in non-portable programs. Moreover, the option is not supported
by all Pthreads libraries.

After the modification of specific attribute values in an attribute object a thread
with the chosen characteristics can be generated by specifying the attribute object as
second parameter of pthread create(). The characteristics of the new thread
are defined by the attribute values stored in the attribute object at the time at which
pthread create() is called. These characteristics cannot be changed at a later
time by changing attribute values in the attribute object.
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6.1.9.3 Thread Cancellation

In some situations, it is useful to stop the execution of a thread from outside, e.g., if
the result of the operation performed is no longer needed. An example could be an
application where several threads are used to search in a data structure for a specific
entry. As soon as the entry is found by one of the threads, all other threads can stop
execution to save execution time. This can be reached by sending a cancellation
request to these threads.

In Pthreads, a thread can send a cancellation request to another thread by calling
the function

int pthread cancel (pthread t thread)

where thread is the thread ID of the thread to be terminated. A call of this
function does not necessarily lead to an immediate termination of the specified
target thread. The exact behavior depends on the cancellation type of this thread.
In any case, control immediately returns to the calling thread, i.e., the thread issuing
the cancellation request does not wait for the cancelled thread to be terminated.
By default, the cancellation type of the thread is deferred. This means that the
thread can only be cancelled at specific cancellation points in the program. After
the arrival of a cancellation request, thread execution continues until the next can-
cellation point is reached. The Pthreads standard defines obligatory and optional
cancellation points. Obligatory cancellation points typically include all functions at
which the executing thread may be blocked for a substantial amount of time. Exam-
ples are pthread cond wait(), pthread cond timedwait(), open(),
read(), wait(), or pthread join(), see [25] for a complete list. Optional
cancellation points include many file and I/O operations. The programmer can insert
additional cancellation points into the program by calling the function

void pthread testcancel().

When calling this function, the executing thread checks whether a cancellation
request has been sent to it. If so, the thread is terminated. If not, the function
has no effect. Similarly, at predefined cancellation points the executing thread also
checks for cancellation requests. A thread can set its cancellation type by calling the
function

int pthread setcancelstate (int state, int *oldstate).

A call with state = PTHREAD CANCEL DISABLE disables the cancelability
of the calling thread. The previous cancellation type is stored in *oldstate. If
the cancelability of a thread is disabled, it does not check for cancellation requests
when reaching a cancellation point or when calling pthread testcancel(),
i.e., the thread cannot be cancelled from outside. The cancelability of a thread can
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be enabled again by calling pthread setcancelstate() with the parameter
value state = PTHREAD CANCEL ENABLE.

By default, the cancellation type of a thread is deferred. This can be changed to
asynchronous cancellation by calling the function

int pthread setcanceltype (int type, int *oldtype)

with type=PTHREAD CANCEL ASYNCHRONOUS. This means that this thread can
be cancelled not only at cancellation points. Instead, the thread is terminated imme-
diately after the cancellation request arrives, even if the thread is just performing
computations within a critical section. This may lead to inconsistent states caus-
ing errors for other threads. Therefore, asynchronous cancellation may be harmful
and should be avoided. Calling pthread setcanceltype() with type =
PTHREAD CANCEL DEFERRED sets a thread to the usual deferred cancellation
type.

6.1.9.4 Cleanup Stack

In some situations, a thread may need to restore some state when it is cancelled.
For example, a thread may have to release a mutex variable when it is the owner
before being cancelled. To support such state restorations, a cleanup stack is asso-
ciated with each thread, containing function calls to be executed just before thread
cancellation. These function calls can be used to establish a consistent state at thread
cancellation, e.g., by unlocking mutex variables that have previously been locked.
This is necessary if there is a cancellation point between acquiring and releasing a
mutex variable. If a cancellation happens at such a cancellation point without releas-
ing the mutex variable, another thread might wait forever to become the owner. To
avoid such situations, the cleanup stack can be used: When acquiring the mutex
variable, a function call (cleanup handler) to release it is put onto the cleanup stack.
This function call is executed when the thread is cancelled. A cleanup handler is put
onto the cleanup stack by calling the function

void pthread cleanup push (void (*routine) (void *), void *arg)

where routine is a pointer to the function used as cleanup handler and arg spec-
ifies the corresponding argument values. The cleanup handlers on the cleanup stack
are organized in LIFO (last-in, first-out) order, i.e., the handlers are executed in the
opposite order of their placement, beginning with the most recently added handler.
The handlers on the cleanup stack are automatically executed when the correspond-
ing thread is cancelled or when it exits by calling pthread exit(). A cleanup
handler can be removed from the cleanup stack by calling the function

void pthread cleanup pop (int execute).
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This call removes the most recently added handler from the cleanup stack. For
execute	=0, this handler will be executed when it is removed. For execute=0,
this handler will be removed without execution. To produce portable programs,
corresponding calls of pthread cleanup push() and pthread cleanup
pop() should be organized in pairs within the same function.

Example To illustrate the use of cleanup handlers, we consider the implementa-
tion of a semaphore mechanism in the following. A (counting) semaphore is a data
type with a counter which can have non-negative integer values and which can be
modified by two operations: A signal operation increments the counter and wakes
up a thread which is blocked on the semaphore, if there is such a thread; a wait
operation blocks the executing thread until the counter has a value > 0, and then
decrements the counter. Counting semaphores can be used for the management of
limited resources. In this case, the counter is initialized to the number of available
resources. Binary semaphores, on the other hand, can only have value 0 or 1. They
can be used to ensure mutual exclusion when executing critical sections.

Figure 6.17 illustrates the use of cleanup handlers to implement a semaphore
mechanism based on condition variables, see also [143]. A semaphore is represented
by the data type sema t. The function AcquireSemaphore() waits until the
counter has values > 0, before decrementing the counter. The function Release

Fig. 6.17 Use of a cleanup
handler for the
implementation of a
semaphore mechanism. The
function
AquireSemaphore()
implements the access to the
semaphore. The call of
pthread cond wait()
ensures that the access is
performed not before the
value count of the
semaphore is larger than zero.
The function
ReleaseSemaphore()
implements the release of the
semaphore
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Semaphore() increments the counter and then wakes up a waiting thread using
pthread cond signal(). The access to the semaphore data structure is pro-
tected by a mutex variable in both cases, to avoid inconsistent states by concur-
rent accesses. At the beginning, both functions call pthread mutex lock() to
lock the mutex variable. At the end, the call pthread cleanup pop(1) leads
to the execution of pthread mutex unlock(), thus releasing the mutex vari-
able again. If a thread is blocked in AcquireSemaphore() when executing the
function pthread cond wait(&(ps->cond),&(ps->mutex)) it implic-
itly releases the mutex variable ps->mutex. When the thread is woken up again,
it first tries to become owner of this mutex variable again. Since pthread cond
wait() is a cancellation point, a thread might be cancelled while waiting for the

condition variable ps->cond. In this case, the thread first becomes the owner of the
mutex variable before termination. Therefore, a cleanup handler is used to release
the mutex variable again. This is obtained by the function Cleanup Handler()
in Fig. 6.17. ��

6.1.9.5 Producer–Consumer Threads

The semaphore mechanism from Fig. 6.17 can be used for the synchronization
between producer and consumer threads, see Fig. 6.18. A producer thread inserts
entries into a buffer of fixed length. A consumer thread removes entries from the
buffer for further processing. A producer can insert entries only if the buffer is not
full. A consumer can remove entries only if the buffer is not empty. To control
this, two semaphores full and empty are used. The semaphore full counts the
number of occupied entries in the buffer. It is initialized to 0 at program start. The
semaphore empty counts the number of free entries in the buffer. It is initialized to
the buffer capacity. In the example, the buffer is implemented as an array of length
100, storing entries of type ENTRY. The corresponding data structure buffer also
contains the two semaphores full and empty.

As long as the buffer is not full, a producer thread produces entries and inserts
them into the shared buffer using produce item(). For each insert opera-
tion, empty is decremented by using AcquireSemaphore() and full is
incremented by using ReleaseSemaphore(). If the buffer is full, a producer
thread will be blocked when calling AcquireSemaphore() for empty. As
long as the buffer is not empty, a consumer thread removes entries from the
buffer and processes them using comsume item(). For each remove operation,
full is decremented using AcquireSemaphore() and empty is incremented
using ReleaseSemaphore(). If the buffer is empty, a consumer thread will
be blocked when calling the function AcquireSemaphore() for full. The
internal buffer management is hidden in the functions produce item() and
consume item().

After a producer thread has inserted an entry into the buffer, it wakes up a con-
sumer thread which is waiting for the semaphore full by calling the function
ReleaseSemaphore(&buffer.full), if there is such a waiting consumer.
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Fig. 6.18 Implementation of producer–consumer threads using the semaphore operations from
Fig. 6.17

After a consumer has removed an entry from the buffer, it wakes up a producer
which is waiting for empty by calling ReleaseSemaphore(&buffer.empty),
if there is such a waiting producer. The program in Fig. 6.18 uses one producer
and one consumer thread, but it can easily be generalized to an arbitrary number of
producer and consumer threads.
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6.1.10 Thread Scheduling with Pthreads

The user threads defined by the programmer for each process are mapped to kernel
threads by the library scheduler. The kernel threads are then brought to execution
on the available processors by the scheduler of the operating system. For many
Pthreads libraries, the programmer can influence the mapping of user threads to ker-
nel threads using scheduling attributes. The Pthreads standard specifies a schedul-
ing interface for this, but this is not necessarily supported by all Pthreads libraries.
A specific Pthreads library supports the scheduling programming interface, if the
macro POSIX THREAD PRIORITY SCHEDULING is defined in <unistd.h>.
This can also be checked dynamically in the program using sysconf() with
parameter SC THREAD PRIORITY SCHEDULING. If the scheduling program-
ming interface is supported and shall be used, the header file <sched.h> must
be included into the program.

Scheduling attributes are stored in data structures of type struct sched param

which must be provided by the Pthreads library if the scheduling interface is sup-
ported. This type must at least have the entry

int sched priority;

The scheduling attributes can be used to assign scheduling priorities to threads and
to define scheduling policies and scheduling scopes. This can be set when a thread
is created, but it can also be changed dynamically during thread execution.

6.1.10.1 Explicit Setting of Scheduling Attributes

In the following, we first describe how scheduling attributes can be set explicitly at
thread creation.

The scheduling priority of a thread determines how privileged the library sched-
uler treats the execution of a thread compared to other threads. The priority of a
thread is defined by an integer value which is stored in the sched priority
entry of the sched param data structure and which must lie between a minimum
and maximum value. These minimum and maximum values allowed for a specific
scheduling policy can be determined by calling the functions

int sched get priority min (int policy)
int sched get priority max (int policy)

where policy specifies the scheduling policy. The minimum or maximum priority
values are given as return value of these functions. The library scheduler maintains
for each priority value a separate queue of threads with this priority that are ready
for execution. When looking for a new thread to be executed, the library sched-
uler accesses the thread queue with the highest priority that is not empty. If this
queue contains several threads, one of them is selected for execution according to
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the scheduling policy. If there are always enough executable threads available at
each point in program execution, it can happen that threads of low priority are not
executed for quite a long time. The two functions

int pthread attr getschedparam (const pthread attr t *attr,
struct sched param *param)

int pthread attr setschedparam (pthread attr t *attr,
const struct sched param *param)

can be used to extract or set the priority value of an attribute data structure attr.
To set the priority value, the entry param->sched priority must be set to the
chosen priority value before calling pthread attr setschedparam().

The scheduling policy of a thread determines how threads of the same
priority are executed and share the available resources. In particular, the scheduling
policy determines how long a thread is executed if it is selected by the
library scheduler for execution. Pthreads support three different scheduling
policies:

• SCHED FIFO (first-in, first-out): The executable threads of the same priority
are stored in a FIFO queue. A new thread to be executed is selected from the
beginning of the thread queue with the highest priority. The selected thread is
executed until it either exits or blocks or until a thread with a higher priority
becomes ready for execution. In the latter case, the currently executed thread
with lower priority is interrupted and stored at the beginning of the corresponding
thread queue. Then, the thread of higher priority starts execution. If a thread
that has been blocked, e.g., waiting on a condition variable, becomes ready for
execution again, it is stored at the end of the thread queue of its priority. If the
priority of a thread is dynamically changed, it is stored at the end of the thread
queue with the new priority.

• SCHED RR (round robin): The thread management is similar to the policy
SCHED FIFO. The difference is that each thread is allowed to run for only a
fixed amount of time, given by a predefined timeslice interval. After the interval
has elapsed, and another thread of the same priority is ready for execution, the
running thread will be interrupted and put at the end of the corresponding thread
queue. The timeslice intervals are defined by the library scheduler. All threads
of the same process use the same timeslice interval. The length of a timeslice
interval of a process can be queried with the function

int sched rr get interval (pid t pid, struct timespec *quantum)

where pid is the process ID of the process. For pid=0, the information for that
process is returned to the calling thread to which it belongs. The data structure of
type timespec is defined as

struct timespec { time t tv sec; long tv nsec; } .
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• SCHED OTHER: Pthreads allow an additional scheduling policy, the behavior
of which is not specified by the standard, but completely depends on the specific
Pthreads library used. This allows the adaptation of the scheduling to a specific
operating system. Often, a scheduling strategy is used which adapts the priorities
of the threads to their I/O behavior, such that interactive threads get a higher
priority as compute-intensive threads. This scheduling policy is often used as
default for newly created threads.

The scheduling policy used for a thread is set when the thread is created. If the
programmer wants to use a scheduling policy other than the default he can achieve
this by creating an attribute data structure with the appropriate values and providing
this data structure as argument for pthread create(). The two functions

int pthread attr getschedpolicy (const pthread attr t *attr,
int *schedpolicy)

int pthread attr setschedpolicy (pthread attr t *attr,
int schedpolicy)

can be used to extract or set the scheduling policy of an attribute data structure
attr. On some Unix systems, setting the scheduling policy may require superuser
rights.

The contention scope of a thread determines which other threads are taken into
consideration for the scheduling of a thread. Two options are provided: The thread
may compete for processor resources with the threads of the corresponding process
(process contention scope) or with the threads of all processes on the system (system
contention scope). Two functions can be used to extract or set the contention scope
of an attribute data structure attr:

int pthread attr getscope (const pthread attr t *attr,
int *contentionscope)

int pthread attr setscope (pthread attr t *attr,
int contentionscope).

The parameter value contentionscope=PTHREAD SCOPE PROCESS cor-
responds to a process contention scope, whereas a system contention scope can be
obtained by the parameter value contentionscope=PTHREAD SCOPE SYSTEM.
Typically, using a process contention scope leads to better performance than a sys-
tem contention scope, since the library scheduler can switch between the threads of
a process without calling the operating system, whereas switching between threads
of different processes usually requires a call of the operating system, and this is
usually relatively expensive [25]. A Pthreads library only needs to support one of
the two contention scopes. If a call of pthread attr setscope() tries to set
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a contention scope that is not supported by the specific Pthreads library, the error
value ENOTSUP is returned.

6.1.10.2 Implicit Setting of Scheduling Attributes

Some application codes create a lot of threads for specific tasks. To avoid setting the
scheduling attributes before each thread creation, Pthreads support the inheritance
of scheduling information from the creating thread. The two functions

int pthread attr getinheritsched (const pthread attr t *attr,
int *inheritsched)

int pthread attr setinheritsched (pthread attr t *attr,
int inheritsched)

can be used to extract or set the inheritance status of an attribute data structure
attr. Here, inheritsched=PTHREAD INHERIT SCHED means that a thread
creation with this attribute structure generates a thread with the scheduling attributes
of the creating thread, ignoring the scheduling attributes in the attribute struc-
ture. The parameter value inheritsched=PTHREAD EXPLICIT SCHED dis-
ables the inheritance, i.e., the scheduling attributes of the created thread must be set
explicitly if they should be different from the default setting. The Pthreads standard
does not specify a default value for the inheritance status. Therefore, if a specific
behavior is required, the inheritance status must be set explicitly.

6.1.10.3 Dynamic Setting of Scheduling Attributes

The priority of a thread and the scheduling policy used can also be changed dynam-
ically during the execution of a thread. The two functions

int pthread getschedparam (pthread t thread, int *policy,
struct sched param *param)

int pthread setschedparam (pthread t thread, int policy,
const struct sched param *param)

can be used to dynamically extract or set the scheduling attributes of a thread with
TID thread. The parameter policy defines the scheduling policy; param con-
tains the priority value.

Figure 6.19 illustrates how the scheduling attributes can be set explicitly before
the creation of a thread. In the example, SCHED RR is used as scheduling policy.
Moreover, a medium priority value is used for the thread with ID thread id. The
inheritance status is set to PTHREAD EXPLICIT SCHED to transfer the scheduling
attributes from attr to the newly created thread thread id.
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Fig. 6.19 Use of scheduling attributes to define the scheduling behavior of a generated thread

6.1.11 Priority Inversion

When scheduling several threads with different priorities, it can happen with an
unsuitable order of synchronization operations that a thread of lower priority pre-
vents a thread of higher priority from being executed. This phenomenon is called
priority inversion, indicating that a thread of lower priority is running although a
thread of higher priority is ready for execution. This phenomenon is illustrated in
the following example, see also [126].

Example We consider the execution of three threads A, B, C with high, medium,
and low priority, respectively, on a single processor competing for a mutex vari-
able m. The threads perform at program points t1, . . . , t6 the following actions, see
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Point Event Thread A Thread B Thread C Mutex
in time high medium low variable m

priority priority priority
t1 Start / / / Free
t2 Start C / / Running Free
t3 C locks m / / Running Locked by C
t4 Start A Running / Ready for execution Locked by C
t5 A locks m Blocked / Running Locked by C
t6 Start B Blocked Running Ready for execution Locked by C

Fig. 6.20 Illustration of a priority inversion

Fig. 6.20 for an illustration. After the start of the program at time t1, thread C of low
priority is started at time t2. At time t3, thread C calls pthread mutex lock(m)
to lock m. Since m has not been locked before, C becomes the owner of m and con-
tinues execution. At time t4, thread A of high priority is started. Since A has a higher
priority than C , C is blocked and A is executed. The mutex variable m is still locked
by C . At time t5, thread A tries to lock m using pthread mutex lock(m).
Since m has already been locked by C , A blocks on m. The execution of C resumes.
At time t6, thread B of medium priority is started. Since B has a higher priority
than C , C is blocked and B is executed. C is still the owner of m. If B does not
try to lock m, it may be executed for quite some time, even if there is a thread A of
higher priority. But A cannot be executed, since it waits for the release of m by C .
But C cannot release m, since C is not executed. Thus, the processor is continuously
executing B and not A, although A has a higher priority than B. ��

Pthreads provide two mechanisms to avoid priority inversion: priority ceiling and
priority inheritance. Both mechanisms are optional, i.e., they are not necessarily
supported by each Pthreads library. We describe both mechanisms in the following.

6.1.11.1 Priority Ceiling

The mechanism of priority ceiling is available for a specific Pthreads library if the
macro

POSIX THREAD PRIO PROTECT

is defined in <unistd.h>. If priority ceiling is used, each mutex variable gets a
priority value. The priority of a thread is automatically raised to this priority ceiling
value of a mutex variable, whenever the thread locks the mutex variable. The thread
keeps this priority as long as it is the owner of the mutex variable. Thus, a thread
X cannot be interrupted by another thread Y with a lower priority than the priority
of the mutex variable as long as X is the owner of the mutex variable. The owning
thread can therefore work without interruption and can release the mutex variable
as soon as possible.

In the example given above, priority inversion is avoided with priority ceiling if
a priority ceiling value is used which is equal to or larger than the priority of thread
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A. In the general case, priority inversion is avoided if the highest priority at which a
thread will ever be running is used as priority ceiling value.

To use priority ceiling for a mutex variable, it must be initialized appropriately
using a mutex attribute data structure of type pthread mutex attr t. This data
structure must first be declared and initialized using the function

int pthread mutex attr init(pthread mutex attr t attr)

where attr is the mutex attribute data structure. The default priority protocol used
for attr can be extracted by calling the function

int pthread mutexattr getprotocol(const pthread mutex attr t

*attr, int *prio)

which returns the protocol in the parameter prio. The following three values are
possible for prio:

• PTHREAD PRIO PROTECT: the priority ceiling protocol is used;
• PTHREAD PRIO INHERIT: the priority inheritance protocol is used;
• PTHREAD PRIO NONE: none of the two protocols is used, i.e., the priority of a

thread does not change if it locks a mutex variable.

The function

int pthread mutexattr setprotocol(pthread mutex attr t *attr,
int prio)

can be used to set the priority protocol of a mutex attribute data structure attr
where prio has one of the three values just described. When using the priority
ceiling protocol, the two functions

int pthread mutexattr getprioceiling(const pthread mutex attr t

*attr, int *prio)
int pthread mutexattr setprioceiling(pthread mutex attr t *attr,

int prio)

can be used to extract or set the priority ceiling value stored in the attribute structure
attr. The ceiling value specified in prio must be a valid priority value. After a
mutex attributed data structure attr has been initialized and possibly modified, it
can be used for the initialization of a mutex variable with the specified properties,
using the function

pthread mutex init (pthread mutex t *m, pthread mutexattr t

*attr)

see also Sect. 6.1.2.
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6.1.11.2 Priority Inheritance

When using the priority inheritance protocol, the priority of a thread which is the
owner of a mutex variable is automatically raised, if a thread with a higher priority
tries to lock the mutex variable and is therefore blocked on the mutex variable. In
this situation, the priority of the owner thread is raised to the priority of the blocked
thread. Thus, the owner of a mutex variable always has the maximum priority of
all threads waiting for the mutex variable. Therefore, the owner thread cannot be
interrupted by one of the waiting threads, and priority inversion cannot occur. When
the owner thread releases the mutex variable again, its priority is decreased again to
the original priority value.

The priority inheritance protocol can be used if the macro

POSIX THREAD PRIO INHERIT

is defined in <unistd.h>. If supported, priority inheritance can be activated
by calling the function pthread mutexattr setprotocol() with param-
eter value prio = PTHREAD PRIO INHERIT as described above. Compared to
priority ceiling, priority inheritance has the advantage that no fixed priority ceiling
value has to be specified in the program. Priority inversion is avoided also for threads
with unknown priority values. But the implementation of priority inheritance in the
Pthreads library is more complicated and expensive and therefore usually leads to a
larger overhead than priority ceiling.

6.1.12 Thread-Specific Data

The threads of a process share a common address space. Thus, global and dynam-
ically allocated variables can be accessed by each thread of a process. For each
thread, a private stack is maintained for the organization of function calls performed
by the thread. The local variables of a function are stored in the private stack of
the calling thread. Thus, they can only be accessed by this thread, if this thread
does not expose the address of a local variable to another thread. But the lifetime of
local variables is only the lifetime of the corresponding function activation. Thus,
local variables do not provide a persistent thread-local storage. To use the value of
a local variable throughout the lifetime of a thread, it has to be declared in the start
function of the thread and passed as parameter to all functions called by this thread.
But depending on the application, this would be quite tedious and would artificially
increase the number of parameters. Pthreads supports the use of thread-specific data
with an additional mechanism.

To generate thread-specific data, Pthreads provide the concept of keys that are
maintained in a process-global way. After the creation of a key it can be accessed by
each thread of the corresponding process. Each thread can associate thread-specific
data to a key. If two threads associate different data to the same key, each of the two
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threads gets only its own data when accessing the key. The Pthreads library handles
the management and storage of the keys and their associated data.

In Pthreads, keys are represented by the predefined data type pthread key t.
A key is generated by calling the function

int pthread key create (pthread key t *key,
void (*destructor)(void *)).

The generated key is returned in the parameter key. If the key is used by sev-
eral threads, the address of a global variable or a dynamically allocated vari-
able must be passed as key. The function pthread key create() should
only be called once for each pthread key t variable. This can be ensured
with the pthread once() mechanism, see Sect. 6.1.4. The optional parameter
destructor can be used to assign a deallocation function to the key to clean up
the data stored when the thread terminates. If no deallocation is required, NULL
should be specified. A key can be deleted by calling the function

int pthread key delete (pthread key t key).

After the creation of a key, its associated data is initialized to NULL. Each thread
can associate new data value to the key by calling the function

int pthread setspecific (pthread key t key, void *value).

Typically, the address of a dynamically generated data object will be passed as
value. Passing the address of a local variable should be avoided, since this address
is no longer valid after the corresponding function has been terminated. The data
associated with a key can be retrieved by calling the function

void *pthread getspecific (pthread key t key).

The calling thread always obtains the data value that it has previously associated
with the key using pthread setspecific(). When no data has been asso-
ciated yet, NULL is returned. NULL is also returned, if another thread has associ-
ated data with the key, but not the calling thread. When a thread uses the func-
tion pthread setspecific() to associate new data to a key, data that has
previously been associated with this key by this thread will be overwritten and is
lost.

An alternative to thread-specific data is the use of thread-local storage (TLS)
which is provided since the C99 standard. This mechanism allows the declaration of
variables with the storage class keyword thread with the effect that each thread
gets a separate instance of the variable. The instance is deleted as soon as the thread
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terminates. The thread storage class keyword can be applied to global variables
and static variables. It cannot be applied to block-scoped automatic or non-static
variables.

6.2 Java Threads

Java supports the development of multi-threaded programs at the language level.
Java provides language constructs for the synchronized execution of program parts
and supports the creation and management of threads by predefined classes. In this
chapter, we demonstrate the use of Java threads for the development of parallel
programs for a shared address space. We assume that the reader knows the principles
of object-oriented programming as well as the standard language elements of Java.
We concentrate on the mechanisms for the development of multi-threaded programs
and describe the most important elements. We refer to [129, 113] for a more detailed
description. For a detailed description of Java, we refer to [51].

6.2.1 Thread Generation in Java

Each Java program in execution consists of at least one thread of execution, the main
thread. This is the thread which executes the main() method of the class which
has been given to the Java Virtual Machine (JVM) as start argument.

More user threads can be created explicitly by the main thread or other user
threads that have been started earlier. The creation of threads is supported by the
predefined class Thread from the standard package java.lang. This class is
used for the representation of threads and provides methods for the creation and
management of threads.

The interface Runnable from java.lang is used to represent the program
code executed by a thread; this code is provided by a run()method and is executed
asynchronously by a separate thread. There are two possibilities to arrange this:
inheriting from the Thread class or using the interface Runnable.

6.2.1.1 Inheriting from the Thread Class

One possibility to obtain a new thread is to define a new class NewClass which
inherits from the predefined class Thread and which defines a method run()
containing the statements to be executed by the new thread. The run() method
defined in NewClass overwrites the predefined run() method from Thread.

The Thread class also contains a method start() which creates a new thread
executing the given run() method.

The newly created thread is executed asynchronously with the generating thread.
After the execution of start() and the creation of the new thread, the control
will be immediately returned to the generating thread. Thus, the generating thread
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Fig. 6.21 Thread creation by
overwriting the run()
method of the Thread class

resumes execution usually before the new thread has terminated, i.e., the generating
thread and the new thread are executed concurrently with each other.

The new thread is terminated when the execution of the run() method has been
finished. This mechanism for thread creation is illustrated in Fig. 6.21 with a class
NewClass whose main() method generates an object of NewClass and whose
run() method is activated by calling the start() method of the newly created
object. Thus, thread creation can be performed in two steps:

(1) definition of a class NewClass which inherits from Thread and which
defines a run() method for the new thread;

(2) instantiation of an object nc of class NewClass and activation of nc.
start().

The creation method just described requires that the class NewClass inherits from
Thread. Since Java does not support multiple inheritance, this method has the
drawback that NewClass cannot be embedded into another inheritance hierarchy.
Java provides interfaces to obtain a similar mechanism as multiple inheritance. For
thread creation, the interface Runnable is used.

6.2.1.2 Using the Interface Runnable

The interface Runnable defines an abstract run() method as follows:

public interface Runnable {
public abstract void run();

}

The predefined class Thread implements the interface Runnable. Therefore,
each class which inherits from Thread, also implements the interface Runnable.
Hence, instead of inheriting from Thread the newly defined class NewClass can
directly implement the interface Runnable.

This way, objects of class NewClass are not thread objects. The creation of a
new thread requires the generation of a new Thread object to which the object
NewClass is passed as parameter. This is obtained by using the constructor
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public Thread (Runnable target).

Using this constructor, the start() method of Thread activates the run()
method of the Runnable object which has been passed as argument to the con-
structor.

This is obtained by the run() method of Thread which is specified as fol-
lows:

public void run() {
if (target != null) target.run();

}

After activating start(), the run() method is executed by a separate thread
which runs asynchronously with the calling thread. Thus, thread creation can be
performed by the following steps:

(1) definition of a class NewClass which implements Runnable and which
defines a run() method containing the code to be executed by the new thread;

(2) instantiation of a Thread object using the constructor Thread (Runnable
target) and of an object of NewClass which is passed to the Thread
constructor;

(3) activation of the start() method of the Thread object.

This is illustrated in Fig. 6.22 for a class NewClass. An object of this class is
passed to the Thread constructor as parameter.

Fig. 6.22 Thread creation by using the interface Runnable based on the definition of a new class
NewClass
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6.2.1.3 Further Methods of the Thread Class

A Java thread can wait for the termination of another Java thread t by calling
t.join(). This call blocks the calling thread until the execution of t is termi-
nated. There are three variants of this method:

• void join(): the calling thread is blocked until the target thread is termi-
nated;

• void join (long timeout): the calling thread is blocked until the target
thread is terminated or the given time interval timeout has passed; the time
interval is given in milliseconds;

• void join (long timeout, int nanos): the behavior is similar to
void join (long timeout); the additional parameter allows a more exact
specification of the time interval using an additional specification in nanoseconds.

The calling thread will not be blocked if the target thread has not yet been started.
The method

boolean isAlive()

of the Thread class gives information about the execution status of a thread: The
method returns true if the target thread has been started but has not yet been ter-
minated; otherwise, false is returned. The join() and isAlive() methods
have no effect on the calling thread. A name can be assigned to a specific thread and
can later be retrieved by using the methods

void setName (String name);
String getName();

An assigned name can later be used to identify the thread. A name can also be
assigned at thread creation by using the constructor Thread (String name).
The Thread class defines static methods which affect the calling thread or provide
information about program execution:

static Thread currentThread();
static void sleep (long milliseconds);
static void yield();
static int enumerate (Thread[] th_array);
static int activeCount();

Since these methods are static, they can be called without using a target Thread
object. The call of currentThread() returns a reference to the Thread object
of the calling thread. This reference can later be used to call non-static methods
of the Thread object. The method sleep() blocks the execution of the calling
thread until the specified time interval has passed; at this time, the thread again
becomes ready for execution and can be assigned to an execution core or processor.
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The method yield() is a directive to the Java Virtual Machine (JVM) to assign
another thread with the same priority to the processor. If such a thread exists, then
the scheduler of the JVM can bring this thread to execution. The use of yield()
is useful for JVM implementations without a time-sliced scheduling, if threads per-
form long-running computations which do not block. The method enumerate()
yields a list of all active threads of the program. The return value specifies the num-
ber of Thread objects collected in the parameter array th array. The method
activeCount() returns the number of active threads in the program. The method
can be used to determine the required size of the parameter array before calling
enumerate().

Example Figure 6.23 gives an example of a class for performing a matrix multi-
plication with multiple threads. The input matrices are read into in1 and in2 by
the main thread using the static method ReadMatrix(). The thread creation is
performed by the constructor of the MatMult class such that each thread computes
one row of the result matrix. The corresponding computations are specified in the
run() method. All threads access the same matrices in1, in2, and out that have
been allocated by the main thread. No synchronization is required, since each thread
writes to a separate area of the result matrix out. ��

6.2.2 Synchronization of Java Threads

The threads of a Java program access a shared address space. Suitable synchro-
nization mechanisms have to be applied to avoid race conditions when a variable
is accessed by several threads concurrently. Java provides synchronized blocks
and methods to guarantee mutual exclusion for threads accessing shared data. A
synchronized block or method avoids a concurrent execution of the block or
method by two or more threads. A data structure can be protected by putting all
accesses to it into synchronized blocks or methods, thus ensuring mutual exclu-
sion. A synchronized increment operation of a counter can be realized by the fol-
lowing method incr():

public class Counter {
private int value = 0;
public synchronized int incr() {

value = value + 1;
return value;

}
}

Java implements the synchronization by assigning to each Java object an implicit
mutex variable. This is achieved by providing the general class Object with an
implicit mutex variable. Since each class is directly or indirectly derived from the
class Object, each class inherits this implicit mutex variable, and every object
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Fig. 6.23 Parallel matrix multiplication in Java
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instantiated from any class implicitly possesses its own mutex variable. The activa-
tion of a synchronized method of an object Ob by a thread t has the following
effects:

• When starting the synchronized method, t implicitly tries to lock the mutex
variable of Ob. If the mutex variable is already locked by another thread s, thread
t is blocked. The blocked thread becomes ready for execution again when the
mutex variable is released by the locking thread s. The called synchronized
method will only be executed after successfully locking the mutex variable of
Ob.

• When t leaves the synchronized method called, it implicitly releases the mutex
variable of Ob so that it can be locked by another thread.

A synchronized access to an object can be realized by declaring all methods access-
ing the object as synchronized. The object should only be accessed with these
methods to guarantee mutual exclusion.

In addition to synchronizedmethods, Java provides synchronized blocks:
Such a block is started with the keyword synchronized and the specification of
an arbitrary object that is used for the synchronization in parenthesis. Instead of
an arbitrary object, the synchronization is usually performed with the object whose
method contains the synchronized block. The above method for the incremen-
tation of a counter variable can be realized using a synchronized block as
follows:

public int incr() {
synchronized (this) {

value = value + 1; return value;
}

}

The synchronization mechanism of Java can be used for the realization of fully
synchronized objects (also called atomar objects); these can be accessed by an
arbitrary number of threads without any additional synchronization. To avoid race
conditions, the synchronization has to be performed within the methods of the cor-
responding class of the objects. This class must have the following properties:

• all methods must be declared synchronized;
• no public entries are allowed that can be accessed without using a local method;
• all entries are consistently initialized by the constructors of the class;
• the objects remain in a consistent state also in case of exceptions.

Figure 6.24 demonstrates the concept of fully synchronized objects for the exam-
ple of a class ExpandableArray; this is a simplified version of the predefined
synchronized class java.util.Vector, see also [113]. The class implements
an adaptable array of arbitrary objects, i.e., the size of the array can be increased
or decreased according to the number of objects to be stored. The adaptation is
realized by the method add(): If the array data is fully occupied when trying
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Fig. 6.24 Example for a fully
synchronized class

to add a new object, the size of the array will be increased by allocating a larger
array and using the method arraycopy() from the java.lang.System class
to copy the content of the old array into the new array. Without the synchronization
included, the class cannot be used concurrently by more than one thread safely. A
conflict could occur if, e.g., two threads tried to perform an add() operation at the
same time.

6.2.2.1 Deadlocks

The use of fully synchronized classes avoids the occurrence of race conditions,
but may lead to deadlocks when threads are synchronized with different objects.
This is illustrated in Fig. 6.25 for a class Account which provides a method
swapBalance() to swap account balances, see [113]. A deadlock can occur
when swapBalance() is executed by two threads A and B concurrently: For
two account objects a and b, if A calls a.swapBalance(b) and B calls b.swap
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Fig. 6.25 Example for a
deadlock situation

Balance(a) and A and B are executed on different processors or cores, a dead-
lock occurs with the following execution order:

• time T1: thread A calls a.swapBalance(b) and locks the mutex variable of
object a;

• time T2: thread A calls getBalance() for object a and executes this function;
• time T2: thread B calls b.swapBalance(a) and locks the mutex variable of

object b;
• time T3: thread A calls b.getBalance() and blocks because the mutex vari-

able of b has previously been locked by thread B;
• time T3: thread B calls getBalance() for object b and executes this function;
• time T4: thread B calls a.getBalance() and blocks because the mutex vari-

able of a has previously been locked by thread A.

The execution order is illustrated in Fig. 6.26. After time T4, both threads are
blocked: Thread A is blocked, since it could not acquire the mutex variable of object
b. This mutex variable is owned by thread B and only B can free it. Thread B is
blocked, since it could not acquire the mutex variable of object a. This mutex vari-
able is owned by thread A, and only A can free it. Thus, both threads are blocked
and none of them can proceed; a deadlock has occurred.

Deadlocks typically occur if different threads try to lock the mutex variables of
the same objects in different orders. For the example in Fig. 6.25, thread A tries to
lock first a and then b, whereas thread B tries to lock first b and then a. In this
situation, a deadlock can be avoided by a backoff strategy or by using the same

operation operation owner owner
Time Thread A Thread B mutex a mutex b

T1 a.swapBalance(b) A –
T2 t = getBalance() b.swapBalance(a) A B
T3 Blocked with respect tob t = getBalance() A B
T4 Blocked with respect toa A B

Fig. 6.26 Execution order to cause a deadlock situation for the class in Fig. 6.25
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locking order for each thread, see also Sect. 6.1.2. A unique ordering of objects can
be obtained by using the Java method System.identityHashCode() which
refers to the default implementation Object.hashCode(), see [113]. But any
other unique object ordering can also be used. Thus, we can give an alternative
formulation of swapBalance() which avoids deadlocks, see Fig. 6.27. The new
formulation also contains an alias check to ensure that the operation is only exe-
cuted if different objects are used. The method swapBalance() is not declared
synchronized any more.

Fig. 6.27 Deadlock-free implementation of swapBalance() from Fig. 6.25

For the synchronization of Java methods, several issues should be considered to
make the resulting programs efficient and safe:

• Synchronization is expensive. Therefore, synchronized methods should only
be used for methods that can be called concurrently by several threads and that
may manipulate common object data.
If an application ensures that a method is always executed by a single thread at
each point in time, then a synchronization can be avoided to increase efficiency.

• Synchronization should be restricted to critical regions to reduce the time interval
of locking. For larger methods, the use of synchronized blocks instead of
synchronized methods should be considered.

• To avoid unnecessary sequentializations, the mutex variable of the same object
should not be used for the synchronization of different, non-contiguous critical
sections.

• Several Java classes are internally synchronized; examples are Hashtable,
Vector, and StringBuffer. No additional synchronization is required for
objects of these classes.

• If an object requires synchronization, the object data should be put into private
or protected instance fields to inhibit non-synchronized accesses from out-
side. All object methods accessing the instance fields should be declared as
synchronized.

• For cases in which different threads access several objects in different orders,
deadlocks can be prevented by using the same lock order for each thread.
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6.2.2.2 Synchronization with Variable Lock Granularity

To illustrate the use of the synchronization mechanism of Java, we consider a
synchronization class with a variable lock granularity, which has been adapted
from [129].

The new class MyMutex allows the synchronization of arbitrary object accesses
by explicitly acquiring and releasing objects of the class MyMutex, thus realizing a
lock mechanism similar to mutex variables in Pthreads, see Sect. 6.1.2, p. 263. The
new class also enables the synchronization of threads accessing different objects.
The class MyMutex uses an instance field OwnerThread which indicates which
thread has currently acquired the synchronization object. Figure 6.28 shows a first
draft of the implementation of MyMutex.

The method getMyMutex can be used to acquire the explicit lock of the syn-
chronization object for the calling thread. The lock is given to the calling thread by
assigning Thread.currentThread() to the instance field OwnerThread.
The synchronized method freeMyMutex() can be used to release a pre-
viously acquired explicit lock; this is implemented by assigning null to the
instance field OwnerThread. If a synchronization object has already been locked
by another thread, getMyMutex() repeatedly tries to acquire the explicit lock
after a fixed time interval of 100 ms. The method getMyMutex() is not declared
synchronized. The synchronized method tryGetMyMutex() is used
to access the instance field OwnerThread. This protects the critical section for
acquiring the explicit lock by using the implicit mutex variable of the synchro-
nization object. This mutex variable is used for both tryGetMyMutex() and
freeMyMutex().

Fig. 6.28 Synchronization
class with variable lock
granularity
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Fig. 6.29 Implementation
variant of getMyMutex()

Fig. 6.30 Implementation of
a counter class with
synchronization by an object
of class MyMutex

If getMyMutex() had been declared synchronized, the activation of
getMyMutex() by a thread T1 would lock the implicit mutex variable of the syn-
chronization object of the class MyMutex before entering the method. If another
thread T2 holds the explicit lock of the synchronization object, T2 cannot release
this lock with freeMyMutex() since this would require to lock the implicit mutex
variable which is held by T1. Thus, a deadlock would result. The use of an additional
method tryGetMyMutex() can be avoided by using a synchronized block
within getMyMutex(), see Fig. 6.29.

Objects of the new synchronization class MyMutex can be used for the explicit
protection of critical sections. This can be illustrated for a counter class Counter
to protect the counter manipulation, see Fig. 6.30.

6.2.2.3 Synchronization of Static Methods

The implementation of synchronized blocks and methods based on the implicit
object mutex variables works for all methods that are activated with respect to an
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Fig. 6.31 Synchronization of static methods

object. Static methods of a class are not activated with respect to an object and
thus, there is no implicit object mutex variable. Nevertheless, static methods can
also be declared synchronized. In this case, the synchronization is implemented
by using the implicit mutex variable of the corresponding class object of the class
java.lang.Class (Class mutex variable). An object of this class is automat-
ically generated for each class defined in a Java program.

Thus, static and non-static methods of a class are synchronized by using different
implicit mutex variables. A static synchronized method can acquire the mutex
variable of the Class object and of an object of this class by using an object of this
class for a synchronized block or by activating a synchronized non-static
method for an object of this class. This is illustrated in Fig. 6.31 see [129]. Similarly,
a synchronized non-static method can also acquire both the mutex variables of
the object and of the Class object by calling a synchronized static method.
For an arbitrary class Cl, the Class mutex variable can be directly used for a
synchronized block by using

synchronized (Cl.class) {/*Code*/}

6.2.3 Wait and Notify

In some situations, it is useful for a thread to wait for an event or condition. As soon
as the event occurs, the thread executes a predefined action. The thread waits as long
as the event does not occur or the condition is not fulfilled. The event can be signaled
by another thread; similarly, another thread can make the condition to be fulfilled.
Pthreads provide condition variables for these situations. Java provides a similar
mechanism via the methods wait() and notify() of the predefined Object
class. These methods are available for each object of any class which is explicitly or
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implicitly derived from the Object class. Both methods can only be used within
synchronized blocks or methods. A typical usage pattern for wait() is

synchronized (lockObject) {
while (!condition) { lockObject.wait(); }
Action();

}

The call of wait() blocks the calling thread until another thread calls notify()
for the same object. When a thread blocks by calling wait(), it releases the
implicit mutex variable of the object used for the synchronization of the surrounding
synchronized method or block. Thus, this mutex variable can be acquired by
another thread.

Several threads may block waiting for the same object. Each object maintains
a list of waiting threads. When another thread calls the notify() method of the
same object, one of the waiting threads of this object is woken up and can continue
running. Before resuming its execution, this thread first acquires the implicit mutex
variable of the object. If this is successful, the thread performs the action specified
in the program. If this is not successful, the thread blocks and waits until the implicit
mutex variable is released by the owning thread by leaving a synchronized
method or block.

The methods wait() and notify()work similarly as the operations pthread -
cond wait() and pthread cond signal() for condition variables in
Pthreads, see Sect. 6.1.3, p. 270. The methods wait() and notify() are imple-
mented using an implicit waiting queue for each object this waiting queue contains
all blocked threads waiting to be woken up by a notify() operation. The waiting
queue does not contain those threads that are blocked waiting for the implicit mutex
variable of the object.

The Java language specification does not specify which of the threads in the
waiting queue is woken up if notify() is called by another thread. The method
notifyAll() can be used to wake up all threads in the waiting queue; this
has a similar effect as pthread cond broadcast() in Pthreads. The method
notifyAll() also has to be called in a synchronized block or method.

6.2.3.1 Producer–Consumer Pattern

The Java waiting and notification mechanism described above can be used for
the implementation of a producer–consumer pattern using an item buffer of fixed
size. Producer threads can put new items into the buffer and consumer threads can
remove items from the buffer. Figure 6.32 shows a thread-safe implementation of
such a buffer mechanism adapted from [113] using the wait() and notify()
methods of Java. When creating an object of the class BoundedBufferSignal,
an array array of a given size capacity is generated; this array is used as
buffer.
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Fig. 6.32 Realization of a
thread-safe buffer mechanism
using Java wait() and
notify()

The class provides a put() method to enable a producer to enter an item into
the buffer and a take() method to enable a consumer to remove an item from
the buffer. A buffer object can have one of three states: full, partially full, and
empty. Figure 6.33 illustrates the possible transitions between the states when call-
ing take() or put(). The states are characterized by the following conditions:

State Condition Put Take
possible possible

Full size == capacity No Yes
Partially full 0 < size < capacity Yes Yes
Empty size == 0 Yes No

If the buffer is full, the execution of the put() method by a producer thread
will block the executing thread; this is implemented by a wait() operation. If the
put() method is executed for a previously empty buffer, all waiting (consumer)
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Fig. 6.33 Illustration of the
states of a thread-safe buffer
mechanism

threads will be woken up using notifyAll() after the item has been entered
into the buffer. If the buffer is empty, the execution of the take() method by a
consumer thread will block the executing thread using wait(). If the take()
method is executed for a previously full buffer, all waiting (producer) threads will
be woken up using notifyAll() after the item has been removed from the buffer.
The implementation of put() and take() ensures that each object of the class
BoundedBufferSignal can be accessed concurrently by an arbitrary number
of threads without race conditions.

6.2.3.2 Modification of the MyMutex Class

The methods wait() and notify() can be used to improve the synchroniza-
tion class MyMutex from Fig. 6.28 by avoiding the active waiting in the method
getMyMutex(), see Fig. 6.34 (according to [129]).

Fig. 6.34 Realization of the
synchronization class
MyMutex with wait() and
notify() avoiding active
waiting



324 6 Thread Programming

Additionally, the modified implementation realizes a nested locking mechanism
which allows multiple locking of a synchronization object by the same thread. The
number of locks is counted in the variable lockCount; this variable is initial-
ized to 0 and is incremented or decremented by each call of getMyMutex() or
freeMyMutex(), respectively. In Fig. 6.34, the method getMyMutex() is now
also declared synchronized. With the implementation in Fig. 6.28, this would
lead to a deadlock. But in Fig. 6.34, no deadlock can occur, since the activation of
wait() releases the implicit mutex variable before the thread is suspended and
inserted into the waiting queue of the object.

6.2.3.3 Barrier Synchronization

A barrier synchronization is a synchronization point at which each thread waits
until all participating threads have reached this synchronization point. Only then
the threads proceed with their execution. A barrier synchronization can be imple-
mented in Java using wait() and notify(). This is shown in Fig. 6.35 for a
class Barrier, see also [129]. The Barrier class contains a constructor which
initializes a Barrier object with the number of threads to wait for (t2w4). The
actual synchronization is provided by the method waitForRest(). This method
must be called by each thread at the intended synchronization point. Within the

Fig. 6.35 Realization of a barrier synchronization in Java with wait() and notify()
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Fig. 6.36 Use of the
Barrier class for the
realization of a multi-phase
algorithm

method, each thread decrements t2w4 and calls wait() if t2w4 is > 0. This
blocks each arriving thread within the Barrier object. The last arriving thread
wakes up all waiting threads using notifyAll().

Objects of the Barrier class can be used only once, since the synchronization
counter t2w4 is decremented to 0 during the synchronization process. An example
for the use of the Barrier class for the synchronization of a multi-phase compu-
tation is given in Fig. 6.36, see also [129]. The program illustrates an algorithm with
three phases (doPhase1(), doPhase2(), doPhase3()) which are separated
from each other by a barrier synchronization using Barrier objects bp1, bp2,
and bpEnd. Each of the threads created in the constructor of ProcessIt executes
the three phases.

6.2.3.4 Condition Variables

The mechanism provided by wait() and notify() in Java has some similarities
to the synchronization mechanism of condition variables in Pthreads, see Sect. 6.1.3,
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p. 270. The main difference lies in the fact that wait() and notify() are pro-
vided by the general Object class. Thus, the mechanism is implicitly bound to
the internal mutex variable of the object for which wait() and notify() are
activated. This facilitates the use of this mechanism by avoiding the explicit asso-
ciation of a mutex variable as needed when using the corresponding mechanism in
Pthreads. But the fixed binding of wait() and notify() to a specific mutex
variable also reduces the flexibility, since it is not possible to combine an arbitrary
mutex variable with the waiting queue of an object.

When calling wait() or notify(), a Java thread must be the owner of the
mutex variable of the corresponding object; otherwise an exception Illegal-
MonitorStateException is raised. With the mechanism of wait() and
notify() it is not possible to use the same mutex variable for the synchro-
nization of the waiting queues of different objects. This would be useful, e.g.,
for the implementation of producer and consumer threads with a common data
buffer, see, e.g., Fig. 6.18. But wait() and notify() can be used for the
realization of a new class which mimics the mechanism of condition variables in
Pthreads. Figure 6.37 shows an implementation of such a class CondVar, see also
[129, 113]. The class CondVar provides the methods cvWait(), cvSignal(),
and cvBroadcast() which mimic the behavior of pthread cond wait(),
pthread cond signal(), and pthread cond broadcast(), respectively.
These methods allow the use of an arbitrary mutex variable for the synchronization.
This mutex variable is provided as a parameter of type MyMutex for each of the
methods, see Fig. 6.37.

Thus a single mutex variable of type MyMutex can be used for the synchroniza-
tion of several condition variables of type CondVar. When calling cvWait(), a
thread will be blocked and put in the waiting queue of the corresponding object of
type CondVar. The internal synchronization within cvWait() is performed with
the internal mutex variable of this object. The class CondVar also allows a simple
porting of Pthreads programs with condition variables to Java programs.

Figure 6.38 shows as example the realization of a buffer mechanism with pro-
ducer and consumer threads by using the new class CondVar, see also [113]. A
producer thread can insert objects into the buffer by using the method put(). A
consumer thread can remove objects from the buffer by using the method take().
The condition objects notFull and notEmpty of type CondVar use the same
mutex variable mutex for synchronization.

6.2.4 Extended Synchronization Patterns

The synchronization mechanisms provided by Java can be used to implement
more complex synchronization patterns which can then be used in parallel appli-
cation programs. This will be demonstrated in the following for the example of a
semaphore mechanism, see p. 138.
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Fig. 6.37 Class CondVar for the realization of the Pthreads condition variable mechanism using
the Java signaling mechanism
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Fig. 6.38 Implementation of a buffer mechanism for producer and consumer threads
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Fig. 6.39 Implementation of
a semaphore mechanism

A semaphore mechanism can be implemented in Java by using wait() and
notify(). Figure 6.39 shows a simple implementation, see also [113, 129].
The method acquire() waits (if necessary), until the internal counter of the
semaphore object has reached at least the value 1. As soon as this is the case, the
counter is decremented. The method release() increments the counter and uses
notify() to wake up a waiting thread that has been blocked in acquire() by
calling wait(). A waiting thread can only exist, if the counter had the value 0
before incrementing it. Only in this case, it can be blocked in acquire(). Since
the counter is only incremented by one, it is sufficient to wake up a single waiting
thread. An alternative would be to use notifyAll(), which wakes up all wait-
ing threads. Only one of these threads would succeed in decrementing the counter,
which would then have the value 0 again. Thus, all other threads that had been
woken up would be blocked again by calling wait().

The semaphore mechanism shown in Fig. 6.39 can be used for the synchro-
nization of producer and consumer threads. A similar mechanism has already been
implemented in Fig. 6.32 by using wait() and notify() directly. Figure 6.41
shows an alternative implementation with semaphores, see [113]. The producer
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Fig. 6.40 Class
BufferArray for buffer
management

stores the objects generated into a buffer of fixed size, the consumer retrieves objects
from this buffer for further processing. The producer can only store objects in the
buffer, if the buffer is not full. The consumer can only retrieve objects from the
buffer, if the buffer is not empty. The actual buffer management is done by a sepa-
rate class BufferArray which provides methods insert() and extract()
to insert and retrieve objects, see Fig. 6.40. Both methods are synchronized,
so multiple threads can access objects of this class without conflicts. The class
BufferArray does not provide a mechanism to control buffer overflow.

The class BoundedBufferSema in Fig. 6.41 provides the methods put()
and take() to store and retrieve objects in a buffer. Two semaphores putPermits
and takePermits are used to control the buffer management. At each point in
time, these semaphores count the number of permits to store (producer) and retrieve
(consumer) objects. The semaphore putPermits is initialized to the buffer size,
the semaphore takePermits is initialized to 0. When storing an object by using
put(), the semaphore putPermits is decremented with acquire(); if the
buffer is full, the calling thread is blocked when doing this. After an object has
been stored in the buffer with insert(), a waiting consumer thread (if present) is
woken up by calling release() for the semaphore takePermits. Retrieving
an object with take() works similarly with the role of the semaphores exchanged.

In comparison to the implementation in Fig. 6.32, the new implementation
in Fig. 6.41 uses two separate objects (of type Semaphore) for buffer control.
Depending on the specific situation, this can lead to a reduction of the
synchronization overhead: In the implementation from Fig. 6.32 all waiting threads
are woken up in put() and take(). But only one of these can proceed and
retrieve an object from the buffer (consumer) or store an object into the buffer (pro-
ducer). All other threads are blocked again. In the implementation from Fig. 6.41,
only one thread is woken up.
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Fig. 6.41 Buffer
management with
semaphores

6.2.5 Thread Scheduling in Java

A Java program may consist of several threads which can be executed on one or
several of the processors of the execution platform. The threads which are ready
for execution compete for execution on a free processor. The programmer can influ-
ence the mapping of threads to processors by assigning priorities to the threads.
The minimum, maximum, and default priorities for Java threads are specified in the
following fields of the Thread class:

public static final int MIN PRIORITY // normally 1
public static final int MAX PRIORITY // normally 10
public static final int NORM PRIORITY // normally 5

A large priority value corresponds to a high priority. The thread which exe-
cutes the main() method of a class has by default the priority Thread.NORM
PRIORITY. A newly created thread has by default the same priority as the generat-
ing thread. The current priority of a thread can be retrieved or dynamically changed
by using the methods
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public int getPriority();
public int setPriority(int prio);

of the Thread class. If there are more executable threads than free processors, a
thread with a larger priority is usually favored by the scheduler of the JVM. The
exact mechanism for selecting a thread for execution may depend on the implemen-
tation of a specific JVM. The Java specification does not define an exact scheduling
mechanism to increase flexibility for the implementation of the JVM on different
operating systems and different execution platforms. For example, the scheduler
might always bring the thread with the largest priority to execution, but it could also
integrate an aging mechanism to ensure that threads with a lower priority will be
mapped to a processor from time to time to avoid starvation and implement fairness.

Since there is no exact specification for the scheduling of threads with different
priorities, priorities cannot be used to replace synchronization mechanisms. Instead,
priorities can only be used to express the relative importance of different threads to
bring the most important thread to execution in case of doubt.

When using threads with different priorities, the problem of priority inversion
can occur, see also Sect. 6.1.11, p. 303. A priority inversion happens if a thread with
a high priority is blocked to wait for a thread with a low priority, e.g., because this
thread has locked the same mutex variable that the thread with the high priority tries
to lock. The thread with a low priority can be inhibited from proceeding its execution
and releasing the mutex variable as soon as a thread with a medium priority is ready
for execution. In this constellation, the thread with high priority can be prevented
from execution in favor of the thread with a medium priority.

The problem of priority inversion can be avoided by using priority inheritance,
see also Sect. 6.1.11: If a thread with high priority is blocked, e.g., because of
an activation of a synchronized method, then the priority of the thread that
currently controls the critical synchronization object will be increased to the high
priority of the blocked thread. Then, no thread with medium priority can inhibit the
thread with high priority from execution. Many JVMs use this method, but this is
not guaranteed by to the Java specification.

6.2.6 Package java.util.concurrent

The java.util.concurrent package provides additional synchronization
mechanisms and classes which are based on the standard synchronization mech-
anisms described in the previous section, like synchronized blocks, wait()
and notify(). The package is available for Java platforms starting with the Java2
platform (Java2 Standard Edition 5.0, J2SE 5.0).

The additional mechanisms provide more abstract and flexible synchronization
operations, including atomic variables, lock variables, barrier synchronization, con-
dition variables, and semaphores, as well as different thread-safe data structures
like queues, hash-maps, or array lists. The additional classes are similar to those
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described in [113]. In the following, we give a short overview of the package and
refer to [70] for a more detailed description.

6.2.6.1 Semaphore Mechanism

The class Semaphore provides an implementation of a counting semaphore, which
is similar to the mechanism given in Fig. 6.17. Internally, a Semaphore object
maintains a counter which counts the number of permits. The most important meth-
ods of the Semaphore class are

void acquire();
void release();
boolean tryAcquire();
boolean tryAcquire(int permits, long timeout,

TimeUnit unit)

The method acquire() asks for a permit and blocks the calling thread if no permit
is available. If a permit is currently available, the internal counter for the number of
available permits is decremented and control is returned to the calling thread.

The method release() adds a permit to the semaphore by incrementing the
internal counter. If another thread is waiting for a permit of this semaphore, this
thread is woken up. The method tryAcquire() asks for a permit to a semaphore
object. If a permit is available, a permit is acquired by the calling thread and control
is returned immediately with return value true. If no permit is available, con-
trol is also returned immediately, but with return value false; thus, in contrast to
acquire(), the calling thread is not blocked. There exist different variants of the
method tryAcquire() with varying parameters allowing the additional speci-
fication of a number of permits to acquire (parameter permits), a waiting time
(parameter timeout) after which the attempt of acquiring the specified number
of permits is given up with return value false, as well as a time unit (parameter
unit) for the waiting time. If not enough permits are available when calling a
timed tryAcquire(), the calling thread is blocked until one of the following
events occurs:

• the number of requested permits becomes available because other threads call
release() for this semaphore; in this case, control is returned to the calling
thread with return value true;

• the specified waiting time elapses; in this case, control is returned with return
value false; no permit is acquired in this case, also if some of the requested
permits would have been available.

6.2.6.2 Barrier Synchronization

The class CyclicBarrier provides an implementation of a barrier synchroniza-
tion. The prefix cyclic refers to the fact that an object of this class can be re-used
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again after all participating threads have passed the barrier. The constructors of the
class

public CyclicBarrier (int n);
public CyclicBarrier (int n, Runnable action);

allow the specification of a number n of threads that must pass the barrier before exe-
cution continues after the barrier. The second constructor allows the additional spec-
ification of an operation action that is executed as soon as all threads have passed
the barrier. The most important methods of CyclicBarrier are await() and
reset(). By calling await() a thread waits at the barrier until the specified
number of threads have reached the barrier. A barrier object can be reset into its
original state by calling reset().

6.2.6.3 Lock Mechanisms

The package java.util.concurrent.locks contains interfaces and classes
for locks and for waiting for the occurrence of conditions. The interface Lock
defines locking mechanisms which go beyond the standard synchronized meth-
ods and blocks and are not limited to the synchronization with the implicit mutex
variables of the objects used. The most important methods of Lock are

void lock();
boolean tryLock();
boolean tryLock(long time, TimeUnit unit);
void unlock();

The method lock() tries to lock the corresponding lock object. If the lock has
already been set by another thread, the executing thread is blocked until the locking
thread releases the lock by calling unlock(). If the lock object has not been set
by another thread when calling lock(), the executing thread becomes the owner
of the lock without waiting.

The method tryLock() also tries to lock a lock object. If this is successful,
the return value is true. If the lock object is already set by another thread, the
return value is false; in contrast to lock(), the calling thread is not blocked in
this case. For the method tryLock(), additional parameters can be specified to
set a waiting time after which control is resumed also if the lock is not available,
see tryAcquire() of the class Semaphore. The method unlock() releases
a lock which has previously been set by the calling thread.

The class ReentrantLock() provides an implementation of the interface
Lock. The constructors of this class

public ReentrantLock();
public ReentrantLock(boolean fairness);
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Fig. 6.42 Illustration of the
use of ReentrantLock
objects

allow the specification of an additional fairness parameter fairness. If this is
set to true, the thread with the longest waiting time can access the lock object
if several threads are waiting concurrently for the same lock object. If the fair-
ness parameter is not used, no specific access order can be assumed. Using the
fairness parameter can lead to an additional management overhead and hence to a
reduced throughput. A typical usage of the class ReentrantLock is illustrated in
Fig. 6.42.

6.2.6.4 Signal Mechanism

The interface Condition from the package java.util.concurrent.
locks defines a signal mechanism with condition variables which allows a thread
to wait for a specific condition. The occurrence of this condition is shown by a signal
of another thread, similar to the functionality of condition variables in Pthreads,
see Sect. 6.1.3, p. 270. A condition variable is always bound to a lock object, see
interface Lock. A condition variable to a lock object can be created by calling the
method

Condition newCondition().

This method is provided by all classes which implement the interface Lock. The
condition variable returned by the method is bound to the lock object for which the
method newCondition() has been called. For condition variables, the following
methods are available:

void await();
void await(long time, TimeUnit unit);
void signal();
void signalAll();

The method await() blocks the executing thread until it is woken up by
another thread by signal(). Before blocking, the executing thread releases the
lock object as an atomic operation. Thus, the executing thread has to be the owner
of the lock object before calling await(). After the blocked thread is woken up
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Fig. 6.43 Realization of a buffer mechanism by using condition variables

again by a signal() of another thread, it first must try to set the lock object again.
Only after this is successful, the thread can proceed with its computations.

There is a variant of await() which allows the additional specification of a
waiting time. If this variant is used, the calling thread is woken up after the time
interval has elapsed and if no signal() of another thread has arrived in the mean-
time. By calling signal(), a thread can wake up another thread which is waiting
for a condition variable. By calling signalAll(), all waiting threads of the con-
dition variable are woken up. The use of condition variables for the realization of
a buffer mechanism is illustrated in Fig. 6.43, see [70]. The condition variables are
used in a similar way as the semaphore objects in Fig. 6.41.

6.2.6.5 Atomic Operations

The package java.util.concurrent.atomic provides atomic operations
for simple data types, allowing a lock-free access to single variables. An example is
the class AtomicInteger which comprises the following methods:
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boolean compareAndSet (int expect, int update);
int getAndIncrement();

The first method sets the value of the variable to the value update, if the variable
previously had the value expect. In this case, the return value is true. If the
variable does not have the expected value, the return value is false; no operation
is performed. The operation is performed atomically, i.e., during the execution, the
operation cannot be interrupted.

The second method increments the value of the variable atomically and returns
the previous value of the variable as a result. The class AtomicInteger provides
plenty of similar methods.

6.2.6.6 Task-Based Execution of Programs

The package java.util.concurrent also provides a mechanism for a task-
based formulation of programs. A task is a sequence of operations of the program
which can be executed by an arbitrary thread. The execution of tasks is supported
by the interface Executor:

public interface Executor {
void execute (Runnable command);

}

where command is the task which is brought to execution by calling execute().
A simple implementation of the method execute() might merely activate the
method command.run() in the current thread. More sophisticated implementa-
tions may queue command for execution by one of a set of threads. For multicore
processors, several threads are typically available for the execution of tasks. These
threads can be combined in a thread pool where each thread of the pool can execute
an arbitrary task.

Compared to the execution of each task by a separate thread, the use of task pools
typically leads to a smaller management overhead, particularly if the tasks consist of
only a few operations. For the organization of thread pools, the class Executors
can be used. This class provides methods for the generation and management of
thread pools. Important methods are

static ExecutorService newFixedThreadPool(int n);
static ExecutorService newCachedThreadPool();
static ExecutorService newSingleThreadExecutor();

The first method generates a thread pool which creates new threads when executing
tasks until the maximum number n of threads has been reached. The second method
generates a thread pool for which the number of threads is dynamically adapted
to the number of tasks to be executed. Threads are terminated if they are not used
for a specific amount of time (60 s). The third method generates a single thread
which executes a set of tasks. To support the execution of task-based programs the
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interface ExecutorService is provided. This interface inherits from the inter-
face Executor and comprises methods for the termination of thread pools. The
most important methods are

void shutdown();
List<Runnable> shutdownNow();

The method shutdown() has the effect that the thread pool does not accept
further tasks for execution. Tasks which have already been submitted are still exe-
cuted before the shutdown. In contrast, the method shutdownNow() additionally
stops the tasks which are currently in execution; the execution of waiting tasks is
not started. The set of waiting tasks is provided in the form of a list as return
value. The class ThreadPoolExecutor is an implementation of the interface
ExecutorService.

Fig. 6.44 Draft of a task-based web server
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Figure 6.44 illustrates the use of a thread pool for the realization of a web server,
see [70], which waits for connection requests of clients at a ServerSocket
object. If a client request arrives, it is computed as a separate task by submitting this
task with execute() to a thread pool. Each task is generated as a Runnable
object. The operation handleRequest() to be executed for the request is speci-
fied as run() method. The maximum size of the thread pool is set to 10.

6.3 OpenMP

OpenMP is a portable standard for the programming of shared memory systems.
The OpenMP API (application program interface) provides a collection of com-
piler directives, library routines, and environmental variables. The compiler direc-
tives can be used to extend the sequential languages Fortran, C, and C++ with
single program multiple data (SPMD) constructs, tasking constructs, work-sharing
constructs, and synchronization constructs. The use of shared and private data is
supported. The library routines and the environmental variable control the runtime
system.

The OpenMP standard was designed in 1997 and is owned and maintained by
the OpenMP Architecture Review Board (ARB). Since then many vendors have
included the OpenMP standard in their compilers. Currently most compilers support
Version 2.5 from May 2005 [131]. The most recent update is Version 3.0 from May
2008 [132]. Information about OpenMP and the standard definition can be found at
the following web site: http://www.openmp.org.

The programming model of OpenMP is based on cooperating threads running
simultaneously on multiple processors or cores. Threads are created and destroyed
in a fork–join pattern. The execution of an OpenMP program begins with a sin-
gle thread, the initial thread, which executes the program sequentially until a first
parallel construct is encountered. At the parallel construct the initial thread cre-
ates a team of threads consisting of a certain number of new threads and the initial
thread itself. The initial thread becomes the master thread of the team. This fork
operation is performed implicitly. The program code inside the parallel construct
is called a parallel region and is executed in parallel by all threads of the team.
The parallel execution mode can be an SPMD style; but an assignment of different
tasks to different threads is also possible. OpenMP provides directives for different
execution modes, which will be described below. At the end of a parallel region there
is an implicit barrier synchronization, and only the master thread continues its exe-
cution after this region (implicit join operation). Parallel regions can be nested and
each thread encountering a parallel construct creates a team of threads as described
above.

The memory model of OpenMP distinguishes between shared memory and pri-
vate memory. All OpenMP threads of a program have access to the same shared
memory. To avoid conflicts, race conditions, or deadlocks, synchronization mech-
anisms have to be employed, for which the OpenMP standard provides appropri-
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ate library routines. In addition to shared variables, the threads can also use pri-
vate variables in the threadprivate memory, which cannot be accessed by other
threads.

An OpenMP program needs to include the header file <omp.h>. The compila-
tion with appropriate options translates the OpenMP source code into multithreaded
code. This is supported by several compilers. The Version 4.2 of GCC and newer
versions support OpenMP; the option -fopenmp has to be used. Intel’s C++ com-
piler Version 8 and newer versions also support the OpenMP standard and provide
additional Intel-specific directives. A compiler supporting OpenMP defines the vari-
able OPENMP if the OpenMP option is activated.

An OpenMP program can also be compiled into sequential code by a translation
without the OpenMP option. The translation ignores all OpenMP directives. How-
ever, for the translation into correct sequential code special care has to be taken for
some OpenMP runtime functions. The variable OPENMP can be used to control the
translation into sequential or parallel code.

6.3.1 Compiler Directives

In OpenMP, parallelism is controlled by compiler directives. For C and C++,
OpenMP directives are specified with the #pragma mechanism of the C and C++
standards. The general form of an OpenMP directive is

#pragma omp directive [clauses [ ] ...]

written in a single line. The clauses are optional and are different for different
directives. Clauses are used to influence the behavior of a directive. In C and
C++, the directives are case sensitive and apply only to the next code line or to
the block of code (written within brackets { and } ) immediately following the
directive.

6.3.1.1 Parallel Region

The most important directive is the parallel construct mentioned before with
syntax

#pragma omp parallel [clause [clause] ... ]
{ // structured block ... }

The parallel construct is used to specify a program part that should be executed
in parallel. Such a program part is called a parallel region. A team of threads is
created to execute the parallel region in parallel. Each thread of the team is assigned
a unique thread number, starting from zero for the master thread up to the number of
threads minus one. The parallel construct ensures the creation of the team but does
not distribute the work of the parallel region among the threads of the team. If there
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is no further explicit distribution of work (which can be done by other directives),
all threads of the team execute the same code on possibly different data in an SPMD
mode. One usual way to execute on different data is to employ the thread number
also called thread id. The user-level library routine

int omp get thread num()

returns the thread id of the calling thread as integer value. The number of threads
remains unchanged during the execution of one parallel region but may be different
for another parallel region. The number of threads can be set with the clause

num threads(expression)

The user-level library routine

int omp get num threads()

returns the number of threads in the current team as integer value, which can be
used in the code for SPMD computations. At the end of a parallel region there is
an implicit barrier synchronization and the master thread is the only thread which
continues the execution of the subsequent program code.

The clauses of a parallel directive include clauses which specify whether data will
be private for each thread or shared among the threads executing the parallel region.
Private variables of the threads of a parallel region are specified by the private
clause with syntax

private(list of variables)

where list of variables is an arbitrary list of variables declared before. The
private clause has the effect that for each private variable a new version of the
original variable with the same type and size is created in the memory of each thread
belonging to the parallel region. The private copy can be accessed and modified only
by the thread owning the private copy. Shared variables of the team of threads are
specified by the shared clause with the syntax

shared(list of variables)

where list of variables is a list of variables declared before. The effect of
this clause is that the threads of the team access and modify the same original
variable in the shared memory. The default clause can be used to specify whether
variables in a parallel region are shared or private by default. The clause

default(shared)
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causes all variables referenced in the construct to be shared except the private vari-
ables which are specified explicitly. The clause

default(none)

requires each variable in the construct to be specified explicitly as shared or private.
The following example shows a first OpenMP program with a parallel region, in
which multiple threads perform an SPMD computation on shared and private data.

Example The program code in Fig. 6.45 uses a parallel construct for a par-
allel SPMD execution on an array x. The input values are read in the function
initialize() by the master thread. Within the parallel region the variables x
and npoints are specified as shared and the variables iam, np, and mypoints
are specified as private. All threads of the team of threads executing the parallel
region store the number of threads in the variable np and their own thread id in
the variable iam. The private variable mypoints is set to the number of points
assigned to a thread. The function compute subdomain() is executed by each
thread of the team using its own private variables iam and mypoints. The actual
computations are performed on the shared array x. ��

Fig. 6.45 OpenMP program with parallel construct

A nesting of parallel regions by calling a parallel construct within a parallel
region is possible. However, the default execution mode assigns only one thread to
the team of the inner parallel region. The library function

void omp set nested(int nested)
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with a parameter nested 	= 0 can be used to change the default execution mode to
more than one thread for the inner region. The actual number of threads assigned to
the inner region depends on the specific OpenMP implementation.

6.3.1.2 Parallel Loops

OpenMP provides constructs which can be used within a parallel region to distribute
the work across threads that already exist in the team of threads executing the paral-
lel region. The loop construct causes a distribution of the iterates of a parallel loop
and has the syntax

#pragma omp for [clause [clause] ... ]
for (i = lower bound; i op upper bound; incr expr) {
{ // loop iterate ... }

}

The use of the for construct is restricted to loops which are parallel loops, in which
the iterates of the loop are independent of each other and for which the total number
of iterates is known in advance. The effect of the for construct is that the iterates of
the loop are assigned to the threads of the parallel region and are executed in parallel.
The index variable i should not be changed within the loop and is considered as
private variable of the thread executing the corresponding iterate. The expressions
lower bound and upper bound are integer expressions, whose values should
not be changed during the execution of the loop. The operator op is a boolean
operator from the set { <, <=, >, >= }. The increment expression incr expr
can be of the form

++i, i++, --i, i--, i += incr, i -= incr,
i = i + incr, i = incr + i, i = i - incr,

with an integer expression incr that remains unchanged within the loop. The par-
allel loop of a for construct should not be finished with a break command. The
parallel loop ends with an implicit synchronization of all threads executing the loop,
and the program code following the parallel loop is only executed if all threads have
finished the loop. The nowait clause given as clause of the for construct can be
used to avoid this synchronization.

The specific distribution of iterates to threads is done by a scheduling strat-
egy. OpenMP supports different scheduling strategies specified by the schedule
parameters of the following list:

• schedule(static, block size) specifies a static distribution of iterates
to threads which assigns blocks of size block size in a round-robin fashion to
the threads available. When block size is not given, blocks of almost equal
size are formed and assigned to the threads in a blockwise distribution.
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• schedule(dynamic, block size) specifies a dynamic distribution of
blocks to threads. A new block of size block size is assigned to a thread as
soon as the thread has finished the computation of the previously assigned block.
When block size is not provided, blocks of size one, i.e., consisting of only
one iterate, are used.

• schedule(guided, block size) specifies a dynamic scheduling of blocks
with decreasing size. For the parameter value block size =1, the new block
assigned to a thread has a size which is the quotient of the number of iterates
not assigned yet and the number of threads executing the parallel loop. For a
parameter value block size = k > 1, the size of the blocks is determined
in the same way, but a block never contains fewer than k iterates (except for the
last block which may contain fewer than k iterates). When no block size is
given, the blocks consist of one iterate each.

• schedule(auto) delegates the scheduling decision to the compiler and/or
runtime system. Thus, any possible mapping of iterates to threads can be chosen.

• schedule(runtime) specifies a scheduling at runtime. At runtime the envi-
ronmental variable OMP SCHEDULE, which has to contain a character string
describing one of the formats given above, is evaluated. Examples are

setenv OMP SCHEDULE "dynamic, 4"
setenv OMP SCHEDULE "guided"

When the variable OMP SCHEDULE is not specified, the scheduling used depends
on the specific implementation of the OpenMP library.

A for construct without any schedule parameter is executed according to a
default scheduling method also depending on the specific implementation of the
OpenMP library. The use of the for construct is illustrated with the following
example coding a matrix multiplication.

Example The code fragment in Fig. 6.46 shows a multiplication of a 100 × 100
matrix MA with a 100× 100 matrix MB resulting in a matrix MC of the same dimen-
sion. The parallel region specifies MA, MB, MC as shared variables and the indices
row, col,i as private. The two parallel loops use static scheduling with
blocks of row. The first parallel loop initializes the result matrix MC with 0. The
second parallel loop performs the matrix multiplication in a nested for loop. The
for construct applies to the first for loop with iteration variable row and, thus, the
iterates of the parallel loop are the nested loops of the iteration variables col and i.
The static scheduling leads to a row-blockwise computation of the matrix MC. The
first loop ends with an implicit synchronization. Since it is not clear that the first
and second parallel loops have exactly the same assignment of iterates to threads,
a nowait clause should be avoided to guarantee that the initialization is finished
before the multiplication starts. ��

The nesting of the for construct within the same parallel construct is not
allowed. The nesting of parallel loops can be achieved by nesting parallel con-
structs so that each parallel construct contains exactly one for construct. This
is illustrated by the following example.
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Fig. 6.46 OpenMP program for a parallel matrix multiplication using a parallel region with two
inner for constructs

Example The program code in Fig. 6.47 shows a modified version of the matrix
multiplication in the last example. Again, the for construct applies to the for loop
with the iteration index row. The iterates of this parallel loop start with another
parallel construct which contains a second for construct applying to the loop
with iteration index col. This leads to a parallel computation, in which each entry
of MC can be computed by a different thread. There is no need for a synchronization
between initialization and computation.

The OpenMP program in Fig. 6.47 implements the same parallelism as the
Pthreads program for matrix multiplication in Fig. 6.1, see p. 262. A difference
between the two programs is that the Pthreads program starts the threads explicitly.
The thread creation in the OpenMP program is done implicitly by the OpenMP
library which deals with the implementation of the nested loop and guarantees the
correct execution. Another difference is that there is a limitation for the number of
threads in the Pthreads program. The matrix size 8×8 in the Pthreads program from
Fig. 6.1 leads to a correct program. A matrix size 100 × 100, however, would lead
to the start of 10,000 threads, which is too large for most Pthreads implementations.
There is no such limitation in the OpenMP program.
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Fig. 6.47 OpenMP program
for a parallel matrix
multiplication with nested
parallel loops

6.3.1.3 Non-iterative Work-Sharing Constructs

The OpenMP library provides the sections construct to distribute non-iterative
tasks to threads. Within the sections construct different code blocks are indicated
by the section construct as tasks to be distributed. The syntax for the use of a
sections construct is the following:

#pragma omp sections [clause [clause] ... ]
{
[#pragma omp section]
{ // structured block ... }
[#pragma omp section
{ // structured block ... }
...
]

}

The section constructs denote structured blocks which are independent of each
other and can be executed in parallel by different threads. Each structured block
starts with #pragma omp section, which can be omitted for the first block.
The sections construct ends with an implicit synchronization unless a nowait
clause is specified.
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6.3.1.4 Single Execution

The single construct is used to specify that a specific structured block is executed
by only one thread of the team, which is not necessarily the master thread. This can
be useful for tasks like control messages during a parallel execution. The single
construct has the syntax

#pragma omp single [Parameter [Parameter] ... ]
{ // structured block ... }

and can be used within a parallel region. The single construct also ends with an
implicit synchronization unless a nowait clause is specified. The execution of a
structured block within a parallel region by the master thread only is specified by

#pragma omp master
{ // structured block ... }

All other threads ignore the construct. There is no implicit synchronization of the
master threads and the other threads of the team.

6.3.1.5 Syntactic Abbreviations

OpenMP provides abbreviated syntax for parallel regions containing only one for
construct or only one sections construct. A parallel region with one for con-
struct can be specified as

#pragma omp parallel for [clause [clause] · · · ]
for (i = lower bound; i op upper bound; incr expr) {
{ // loop body ... }

}

All clauses of the parallel construct or the for construct can be used. A parallel
region with only one sections construct can be specified as

#pragma omp parallel sections [clause [clause] · · · ]
{
[#pragma omp section]
{ // structured block ... }
[#pragma omp section
{ // structured block ... }
...
]

}
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6.3.2 Execution Environment Routines

The OpenMP library provides several execution environment routines that can be
used to query and control the parallel execution environment. We present a few of
them. The function

void omp set dynamic (int dynamic threads)

can be used to set a dynamic adjustment of the number of threads by the run-
time system and is called outside a parallel region. A parameter value dynamic
threads 	= 0 allows the dynamic adjustment of the number of threads for the
subsequent parallel region. However, the number of threads within the same parallel
region remains constant. The parameter value dynamic threads = 0 disables
the dynamic adjustment of the number of threads. The default case depends on the
specific OpenMP implementation. The routine

int omp get dynamic (void)

returns information about the current status of the dynamic adjustment. The return
value 0 denotes that no dynamic adjustment is set; a return value 	= 0 denotes that
the dynamic adjustment is set. The number of threads can be set with the routine

void omp set num threads (int num threads)

which has to be called outside a parallel region and influences the number of threads
in the subsequent parallel region (without a num threads clause). The effect of
this routine depends on the status of the dynamic adjustment. If the dynamic adjust-
ment is set, the value of the parameter num threads is the maximum number of
threads to be used. If the dynamic adjustment is not set, the value of num threads
denotes the number of threads to be used in the subsequent parallel region. The
routine

void omp set nested (int nested)

influences the number of threads in nested parallel regions. The parameter value
nested = 0 means that the execution of the inner parallel region is executed by
one thread sequentially. This is the default. A parameter value nested 	= 0 allows
a nested parallel execution and the runtime system can use more than one thread for
the inner parallel region. The actual behavior depends on the implementation. The
routine

int omp get nested (void)

returns the current status of the nesting strategy for nested parallel regions.
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6.3.3 Coordination and Synchronization of Threads

A parallel region is executed by multiple threads accessing the same shared data,
so that there is need for synchronization in order to protect critical regions or avoid
race condition, see also Chap. 3. OpenMP offers several constructs which can be
used for synchronization and coordination of threads within a parallel region. The
critical construct specifies a critical region which can be executed only by a
single thread at a time. The syntax is

#pragma omp critical [(name)]
structured block

An optional name can be used to identify a specific critical region. When a thread
encounters a critical construct, it waits until no other thread executes a critical
region of the same name name and then executes the code of the critical region.
Unnamed critical regions are considered to be one critical region with the same
unspecified name. The barrier construct with syntax

#pragma omp barrier

can be used to synchronize the threads at a certain point of execution. At such an
explicit barrier construct all threads wait until all other threads of the team have
reached the barrier and only then they continue the execution of the subsequent
program code. The atomic construct can be used to specify that a single assign-
ment statement is an atomic operation. The syntax is

#pragma omp atomic
statement

and can contain statements of the form

x binop= E,
x++, ++x, x--, --x,

with an arbitrary variable x, a scalar expression E not containing x, and a binary
operator binop ∈ {+, -, *, /, &, ˆ, |, <<, >>}. The atomic construct ensures
that the storage location x addressed in the statement belonging to the construct is
updated atomically, which means that the load and store operations for x are atomic
but not the evaluation of the expression E. No interruption is allowed between the
load and store operations for variable x. However, the atomic construct does
not enforce exclusive access to x with respect to a critical region specified by a
critical construct. An advantage of the atomic construct over the critical
construct is that parts of an array variable can also be specified as being atomically
updated. The use of a critical construct would protect the entire array.
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Example The following example shows an atomic update of a single array element
a[index[i]] += b.

extern float a[], *p=a, b; int index[];
#pragma omp atomic
a[index[i]] += b;
#pragma omp atomic
p[i] -= 1.0; ��
A typical calculation which needs to be synchronized is a global reduction oper-

ation performed in parallel by the threads of a team. For this kind of calculation
OpenMP provides the reduction clause, which can be used for parallel,
sections, and for constructs. The syntax of the clause is

reduction (op: list)

where op ∈{+, -, *, &, ˆ, |, &&, ||} is a reduction operator to be applied and list
is a list of reduction variables which have to be declared as shared. For each of the
variables in list, a private copy is created for each thread of the team. The private
copies are initialized to the neutral element of the operation op and can be updated
by the owning thread. At the end of the region for which the reduction clause is
specified, the local values of the reduction variables are combined according to the
operator op and the result of the reduction is written into the original shared vari-
able. The OpenMP compiler creates efficient code for executing the global reduction
operation. No additional synchronization, such as the critical construct, has
to be used to guarantee a correct result of the reduction. The following example
illustrates the accumulation of values.

Example Figure 6.48 shows the accumulation of values in a for construct with the
results written into the variables a, y, and am. Local reduction operations are per-
formed by the threads of the team executing the for construct using private copies
of a, y, and am for the local results. It is possible that a reduction operation is per-
formed within a function, such as the function sum used for the accumulation onto
y. At the end of the for loop, the values of the private copies of a, y, and am are
accumulated according to + or ||, respectively, and the final values are written into
the original shared variables a, y, and am. ��

Fig. 6.48 Program fragment for the use of the reduction clause
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The shared memory model of OpenMP might also require to coordinate the mem-
ory view of the threads. OpenMP provides the flush construct with the syntax

#pragma omp flush [(list)]

to produce a consistent view of the memory where list is a list of variables whose
values should be made consistent. For pointers in the list list only the pointer
value is updated. If no list is given, all variables are updated. An inconsistent view
can occur since modern computers provide memory hierarchies. Updates are usually
done in the faster memory parts, like registers or caches, which are not immediately
visible to all threads. OpenMP has a specific relaxed-consistency shared memory
in which updated values are written back later. But to make sure at a specific pro-
gram point that a value written by one thread is actually read by another thread,
the flush construct has to be used. It should be noted that no synchronization is
provided if several threads execute the flush construct.

Example Figure 6.49 shows an example adopted from the OpenMP specification
[130]. Two threads i (i = 0, 1) compute work[i] of array work which is
written back to memory by the flush construct. The following update of array
sync[iam] indicates that the computation of work[iam] is ready and written
back to memory. The array sync is also written back by a second flush construct.
In the while loop, a thread waits for the other thread to have updated its part of
sync. The array work is then used in the function combine() only after both
threads have updated their elements of work. ��

Fig. 6.49 Program fragment for the use of the flush construct
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Besides the explicit flush construct there is an implicit flush at several points
of the program code, which are

• a barrier construct;
• entry to and exit from a critical region;
• at the end of a parallel region;
• at the end of a for, sections, or single construct without nowait clause;
• entry and exit of lock routines (which will be introduced below).

6.3.3.1 Locking Mechanism

The OpenMP runtime system also provides runtime library functions for a synchro-
nization of threads with the locking mechanism. The locking mechanism has been
described in Sect. 4.3 and in this chapter for Pthreads and Java threads. The specific
locking mechanism of the OpenMP library provides two kinds of lock variables
on which the locking runtime routines operate. Simple locks of type omp lock t
can be locked only once. Nestable locks of type omp nest lock t can be locked
multiple times by the same thread. OpenMP lock variables should be accessed only
by OpenMP locking routines. A lock variable is initialized by one of the following
initialization routines:

void omp init lock (omp lock t *lock)
void omp init nest lock (omp nest lock t *lock)

for simple and nestable locks, respectively. A lock variable is removed with the
routines

void omp destroy lock (omp lock t *lock)
void omp destroy nest lock (omp nest lock t *lock).

An initialized lock variable can be in the states locked or unlocked. At the begin-
ning, the lock variable is in the state unlocked. A lock variable can be used for the
synchronization of threads by locking and unlocking. To lock a lock variable the
functions

void omp set lock (omp lock t *lock)
void omp set nest lock (omp nest lock t *lock)

are provided. If the lock variable is available, the thread calling the lock routine
locks the variable. Otherwise, the calling thread blocks. A simple lock is available
when no other thread has locked the variable before without unlocking it. A nestable
lock variable is available when no other thread has locked the variable without
unlocking it or when the calling thread has locked the variable, i.e., multiple locks
for one nestable variable by the same thread are possible counted by an internal
counter. When a thread uses a lock routine to lock a variable successfully, this thread
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is said to own the lock variable. A thread owning a lock variable can unlock this
variable with the routines

void omp unset lock (omp lock t *lock)
void omp unset nest lock (omp nest lock t *lock).

For a nestable lock, the routine omp unset nest lock () decrements the inter-
nal counter of the lock. If the counter has the value 0 afterwards, the lock variable
is in the state unlocked. The locking of a lock variable without a possible blocking
of the calling thread can be performed by one of the routines

void omp test lock (omp lock t *lock)
void omp test nest lock (omp nest lock t *lock)

for simple and nestable lock variables, respectively. When the lock is available, the
routines lock the variable or increment the internal counter and return a result value
	= 1. When the lock is not available, the test routine returns 0 and the calling
thread is not blocked.

Example Figure 6.50 illustrates the use of nestable lock variables, see [130]. A
data structure pair consists of two integers a and b and a nestable lock vari-
able l, which is used to synchronize the updates of a, b, or the entire pair.
It is assumed that the lock variable l has been initialized before calling f(). The
increment functions incr a() for incrementing a, incr b() for incrementing b,
and incr pair() for incrementing both integer variables are given. The function
incr a() is only called from incr pair() and does not need an additional
locking. The functions incr b() and incr pair() are protected by the lock
since they can be called concurrently. ��

6.4 Exercises for Chap. 6

Exercise 6.1 Modify the matrix multiplication program from Fig. 6.1 on p. 262 so
that a fixed number of threads is used for the multiplication of matrices of arbitrary
size. For the modification, let each thread compute the rows of the result matrix
instead of a single entry. Compute the number of rows that each thread must com-
pute such that each thread has about the same number of rows to compute. Is there
any synchronization required in the program?

Exercise 6.2 Use the task pool implementation from Sect. 6.1.6 on p. 276 to imple-
ment a parallel matrix multiplication. To do so, use the function thread mult()
from Fig. 6.1 to define a task as the computation of one entry of the result matrix
and modify the function if necessary so that it fits to the requirements of the task
pool. Modify the main program so that all tasks are generated and inserted into the
task pool before the threads to perform the computations are started. Measure the
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Fig. 6.50 Program fragment
illustrating the use of nestable
lock variables

resulting execution time for different numbers of threads and different matrix sizes
and compare the execution time with the execution time of the implementation of
the last exercise.

Exercise 6.3 Consider the r/w lock mechanism in Fig. 6.5. The implementation
given does not provide operations that are equivalent to the function pthread mutex

trylock(). Extend the implementation from Fig. 6.5 by specifying functions
rw lock rtrylock() and rw lock wtrylock() which return EBUSY if the
requested read or write permit cannot be granted.

Exercise 6.4 Consider the r/w lock mechanism in Fig. 6.5. The implementation
given favors read requests over write requests in the sense that a thread will get
a write permit only if no other thread requests a read permit, but read permits
are given without waiting also in the presence of other read permits. Change the
implementation such that write permits have priority, i.e., as soon as a write permit
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arrives, no more read permits are granted until the write permit has been granted and
the corresponding write operation is finished. To test the new implementation write
a program which starts three threads, two read threads, and one write thread. The
first read thread requests five read permits one after another. As soon as it gets the
read permits it prints a control message and waits for 2 s (use sleep(2)) before
requesting the next read permit. The second read thread does the same except that
it only waits 1 s after the first read permit and 2 s otherwise. The write thread first
waits 5 s and then requests a write permit and prints a control message after it has
obtained the write permit; then the write permit is released again immediately.

Exercise 6.5 An r/w lock mechanism allows multiple readers to access a data struc-
ture concurrently, but only a single writer is allowed to access the data structures at
a time. We have seen a simple implementation of r/w locks in Pthreads in Fig. 6.5.
Transfer this implementation to Java threads by writing a new class RWlock with
entries num r and num w to count the current number of read and write permits
given. The class RWlock should provide methods similar to the functions in Fig. 6.5
to request or release a read or write permit.

Exercise 6.6 Consider the pipelining programming pattern and its Pthreads imple-
mentation in Sect. 6.1.7. In the example given, each pipeline stage adds 1 to the
integer value received from the predecessor stage. Modify the example such that
pipeline stage i adds the value i to the value received from the predecessor. In the
modification, there should still be only one function pipe stage() expressing
the computations of a pipeline stage. This function must receive an appropriate
parameter for the modification.

Exercise 6.7 Use the task pool implementation from Sect. 6.1.6 to define a parallel
loop pattern. The loop body should be specified as function with the loop variable as
parameter. The iteration space of the parallel loop is defined as the set of all values
that the loop variable can have. To execute a parallel loop, all possible indices are
stored in a parallel data structure similar to a task pool which can be accessed by all
threads. For the access, a suitable synchronization must be used.

(a) Modify the task pool implementation accordingly such that functions for the
definition of a parallel loop and for retrieving an iteration from the parallel loop
are provided. The thread function should also be provided.

(b) The parallel loop pattern from (a) performs a dynamic load balancing since a
thread can retrieve the next iteration as soon as its current iteration is finished.
Modify this operation such that a thread retrieves a chunk of iterations instead
of a single operation to reduce the overhead of load balancing for fine-grained
iterations.

(c) Include guided self-scheduling (GSS) in your parallel loop pattern. GSS adapts
the number of iterations retrieved by a thread to the total number of iterations
that are still available. If n threads are used and there are Ri remaining iterations,
the next thread retrieves
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xi =
⌈

Ri

n

⌉

iterations, i = 1, 2,... . For the next retrieval, Ri+1 = Ri − xi iterations remain.
R1 is the initial number of iterations to be executed.

(d) Use the parallel loop pattern to express the computation of a matrix multiplica-
tion where the computation of each matrix entry can be expressed as an iteration
of a parallel loop. Measure the resulting execution time for different matrix
sizes. Compare the execution time for the two load balancing schemes (standard
and GSS) implemented.

Exercise 6.8 Consider the client–server pattern and its Pthreads implementation in
Sect. 6.1.8. Extend the implementation given in this section by allowing a cancel-
lation with deferred characteristics. To be cancellation-safe, mutex variables that
have been locked must be released again by an appropriate cleanup handler. When
a cancellation occurs, allocated memory space should also be released. In the server
function tty server routine(), the variable running should be reset when
a cancellation occurs. Note that this may create a concurrent access. If a cancellation
request arrives during the execution of a synchronous request of a client, the client
thread should be informed that a cancellation has occurred. For a cancellation in the
function client routine(), the counter client threads should be kept
consistent.

Exercise 6.9 Consider the task pool pattern and its implementation in Pthreads in
Sect. 6.1.6. Implement a Java class TaskPool with the same functionality. The
task pool should accept each object of a class which implements the interface
Runnable as task. The tasks should be stored in an array final Runnable
tasks[]. A constructor TaskPool(int p, int n) should be implemented
that allocates a task array of size n and creates p threads which access the task
pool. The methods run() and insert(Runnable w) should be implemented
according to the Pthreads functions tpool thread() and tpool insert()
from Fig. 6.7. Additionally, a method terminate() should be provided to termi-
nate the threads that have been started in the constructor. For each access to the task
pool, a thread should check whether a termination request has been set.

Exercise 6.10 Transfer the pipelining pattern from Sect. 6.1.7 for which Figs. 6.8,
6.9, 6.10, and 6.11 give an implementation in Pthreads to Java. For the Java imple-
mentation, define classes for a pipeline stage as well as for the entire pipeline which
provide the appropriate method to perform the computation of a pipeline stage, to
send data into the pipeline, and to retrieve a result from the last stage of the pipeline.

Exercise 6.11 Transfer the client–server pattern for which Figs. 6.13, 6.14, 6.15,
and 6.16 give a Pthreads implementation to Java threads. Define classes to store a
request and for the server implementation explain the synchronizations performed
and give reasons that no deadlock can occur.

Exercise 6.12 Consider the following OpenMP program piece:
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int x=0;
int y=0;

void foo1() {
#pragma omp critical (x)

{ foo2(); x+=1; }
}
void foo2() {
#pragma omp critical(y)

{ y+=1; }
}
void foo3() {
#pragma omp critical(y)

{ y-=1; foo4(); }
}
void foo4() {
#pragma omp critical(x)

{ x-=1; }
}
int main(int argx, char **argv) {

int x;
#pragma omp parallel private(i) {

for (i=0; i<10; i++)
{ foo1(), foo3(); }

}
printf(’’%d %d \n’’, x,y )
}

We assume that two threads execute this piece of code on two cores of a multicore
processor. Can a deadlock situation occur? If so, describe the execution order which
leads to the deadlock. If not, give reasons why a deadlock is not possible.



Chapter 7
Algorithms for Systems of Linear Equations

The solution of a system of simultaneous linear equations is a fundamental problem
in numerical linear algebra and is a basic ingredient of many scientific simulations.
Examples are scientific or engineering problems modeled by ordinary or partial dif-
ferential equations. The numerical solution is often based on discretization methods
leading to a system of linear equations. In this chapter, we present several standard
methods for solving systems of linear equations of the form

Ax = b, (7.1)

where A ∈ R
n×n is an (n × n) matrix of real numbers, b ∈ R

n is a vector of
size n, and x ∈ R

n is an unknown solution vector of size n specified by the lin-
ear system (7.1) to be determined by a solution method. There exists a solution x
for Eq. (7.1) if the matrix A is non-singular, which means that a matrix A−1 with
A · A−1 = I exists; I denotes the n-dimensional identity matrix and · denotes the
matrix product. Equivalently, the determinant of matrix A is not equal to zero. For
the exact mathematical properties we refer to a standard book for linear algebra
[71]. The emphasis of the presentation in this chapter is on parallel implementation
schemes for linear system solvers.

The solution methods for linear systems are classified as direct and iterative.
Direct solution methods determine the exact solution (except rounding errors) in a
fixed number of steps depending on the size n of the system. Elimination methods
and factorization methods are considered in the following. Iterative solution meth-
ods determine an approximation of the exact solution. Starting with a start vector, a
sequence of vectors is computed which converges to the exact solution. The compu-
tation is stopped if the approximation has an acceptable precision. Often, iterative
solution methods are faster than direct methods and their parallel implementation
is straightforward. On the other hand, the system of linear equations needs to fulfill
some mathematical properties in order to guarantee the convergence to the exact
solution. For sparse matrices, in which many entries are zeros, there is an advantage
for iterative methods since they avoid a fill-in of the matrix with non-zero elements.

This chapter starts with a presentation of Gaussian elimination, a direct solver,
and its parallel implementation with different data distribution patterns. In Sect. 7.2,
direct solution methods for linear systems with tridiagonal structure or banded
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matrices, in particular cyclic reduction and recursive doubling, are discussed.
Section 7.3 is devoted to iterative solution methods, Sect. 7.5 presents the Cholesky
factorization, and Sect. 7.4 introduces the conjugate gradient method. All presenta-
tions mainly concentrate on the aspects of a parallel implementation.

7.1 Gaussian Elimination

For the well-known Gaussian elimination, we briefly present the sequential method
and then discuss parallel implementations with different data distributions. The
section closes with an analysis of the parallel runtime of the Gaussian elimination
with double-cyclic data distribution.

7.1.1 Gaussian Elimination and LU Decomposition

Written out in full the linear system Ax = b has the form

a11x1 + a12x2 + · · · + a1n xn = b1
...

...
...

...
ai1x1 + ai2x2 + · · · + ain xn = bi

...
...

...
...

an1x1 + an2x2 + · · · + ann xn = bn

.

The Gaussian elimination consists of two phases, the forward elimination and the
backward substitution. The forward elimination transforms the linear system (7.1)
into a linear system U x = b′ with an (n×n) matrix U in upper triangular form. The
transformation employs reordering of equations or operations that add a multiple of
one equation to another. Hence, the solution vector remains unchanged. In detail, the
forward elimination performs the following n − 1 steps. The matrix A(1) := A =
(ai j ) and the vector b(1) := b = (bi ) are subsequently transformed into matrices
A(2), . . . , A(n) and vectors b(2), . . . , b(n), respectively. The linear equation systems
A(k)x = b(k) have the same solution as Eq. (7.1) for k = 2, . . . , n. The matrix A(k)

computed in step k − 1 has the form

A(k) =

⎡

⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎢
⎢⎢⎢
⎣

a11 a12 · · · a1,k−1 a1k · · · a1n

0 a(2)
22 · · · a(2)

2,k−1 a(2)
2k · · · a(2)

2n
...

. . .
. . .

...
...

...
...

. . . a(k−1)
k−1,k−1 a(k−1)

k−1,k · · · a(k−1)
k−1,n

... 0 a(k)
kk · · · a(k)

kn
...

...
...

. . .
...

0 · · · · · · 0 a(k)
nk · · · a(k)

nn

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.
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The first k − 1 rows are identical to the rows in matrix A(k−1). In the first k − 1
columns, all elements below the diagonal element are zero. Thus, the last matrix
A(n) has upper triangular form. The matrix A(k+1) and the vector b(k+1) are cal-
culated from A(k) and b(k), k = 1, . . . , n − 1, by subtracting suitable multiples
of row k of A(k) and element k of b(k) from the rows k + 1, k + 2, . . . , n of
A and elements b(k)

k+1, b(k)
k+2, . . . , b(k)

n , respectively. The elimination factors for row
i are

lik = a(k)
ik /a(k)

kk , i = k + 1, . . . , n . (7.2)

They are chosen such that the coefficient of xk of the unknown vector x is eliminated
from equations k + 1, k + 2, . . . , n. The rows of A(k+1) and the entries of b(k+1) are
calculated according to

a(k+1)
i j = a(k)

i j − lika(k)
k j , (7.3)

b(k+1)
i = b(k)

i − likb(k)
k (7.4)

for k < j ≤ n and k < i ≤ n. Using the equation system A(n)x = b(n), the result
vector x is calculated in the backward substitution in the order xn, xn−1, . . . , x1

according to

xk = 1

a(n)
kk

⎛

⎝b(n)
k −

n∑

j=k+1

a(n)
k j x j

⎞

⎠ . (7.5)

Figure 7.1 shows a program fragment in C for a sequential Gaussian elimination.
The inner loop computing the matrix elements is iterated approximately k2 times so
that the entire loop has runtime

∑n
k=1 k2 = 1

6 n(n + 1)(2n + 1) ≈ n3/3 which leads
to an asymptotic runtime O(n3).

7.1.1.1 LU Decomposition and Triangularization

The matrix A can be represented as the matrix product of an upper triangular matrix
U := A(n) and a lower triangular matrix L which consists of the elimination factors
(7.2) in the following way:

L =

⎡

⎢
⎢
⎢⎢⎢
⎣

1 0 0 . . . 0
l21 1 0 . . . 0
l31 l32 1 0
...

...
. . .

. . . 0
ln1 ln2 ln3 . . . ln,n−1 1

⎤

⎥
⎥⎥
⎥⎥
⎦

.

The matrix representation A = L ·U is called triangularization or LU decompo-
sition. When only the LU decomposition is needed, the right-hand side of the linear
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Fig. 7.1 Program fragment in C notation for a sequential Gaussian elimination of the linear system
Ax = b. The matrix A is stored in array a, the vector b is stored in array b. The indices start
with 0. The functions max col(a,k) and exchange row(a,b,r,k) implement pivoting.
The function max col(a,k) returns the index r with |ark | = maxk≤s≤n(|ask |). The function
exchange row(a,b,r,k) exchanges the rows r and k of A and the corresponding elements
br and bk of the right-hand side

system does not have to be transformed. Using the LU decomposition, the linear
system Ax = b can be rewritten as

Ax = L A(n)x = Ly = b with y = A(n)x (7.6)

and the solution can be determined in two steps. In the first step, the vector y is
obtained by solving the triangular system Ly = b by forward substitution. The
forward substitution corresponds to the calculation of y = b(n) from Eq. (7.4).
In the second step, the vector x is determined from the upper triangular system
A(n)x = y by backward substitution. The advantage of the LU factorization over
the elimination method is that the factorization into L and U is done only once but
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can be used to solve several linear systems with the same matrix A and different
right-hand side vectors b without repeating the elimination process.

7.1.1.2 Pivoting

Forward elimination and LU decomposition require the division by a(k)
kk and so these

methods can only be applied when a(k)
kk 	= 0. That is, even if det A 	= 0 and the

system Ax = y is solvable, there does not need to exist a decomposition A = LU
when a(k)

kk is a zero element. However, for a solvable linear system, there exists a
matrix resulting from permutations of rows of A, for which an LU decomposition is
possible, i.e., B A = LU with a permutation matrix B describing the permutation of
rows of A. The permutation of rows of A, if necessary, is included in the elimination
process. In each elimination step, a pivot element is determined to substitute a(k)

kk .
A pivot element is needed when a(k)

kk = 0 and when a(k)
kk is very small which would

induce an elimination factor, which is very large leading to imprecise computations.
Pivoting strategies are used to find an appropriate pivot element. Typical strategies
are column pivoting, row pivoting, and total pivoting.

Column pivoting considers the elements a(k)
kk · · · a(k)

nk of column k and determines
the element a(k)

rk , k ≤ r ≤ n, with the maximum absolute value. If r 	= k, the rows r
and k of matrix A(k) and the values b(k)

k and b(k)
r of the vector b(k) are exchanged. Row

pivoting determines a pivot element a(k)
kr , k ≤ r ≤ n, within the elements a(k)

kk · · · a(k)
kn

of row k of matrix A(k) with the maximum absolute value. If r 	= k, the columns k
and r of A(k) are exchanged. This corresponds to an exchange of the enumeration of
the unknowns xk and xr of vector x . Total pivoting determines the element with the
maximum absolute value in the matrix Ã(k) = (a(k)

i j ), k ≤ i, j ≤ n, and exchanges
columns and rows of A(k) depending on i 	= k and j 	= k. In practice, row or column
pivoting is used instead of total pivoting, since they have smaller computation time,
and total pivoting may also destroy special matrix structures like banded structures.

The implementation of pivoting avoids the actual exchange of rows or columns
in memory and uses index vectors pointing to the current rows of the matrix. The
indexed access to matrix elements is more expensive but in total the indexed access
is usually less expensive than moving entire rows in each elimination step. When
supported by the programming language, a dynamic data storage in the form of
separate vectors for rows of the matrix, which can be accessed through a vector
pointing to the rows, may lead to more efficient implementations. The advantage is
that matrix elements can still be accessed with a two-dimensional index expression
but the exchange of rows corresponds to a simple exchange of pointers.

7.1.2 Parallel Row-Cyclic Implementation

A parallel implementation of the Gaussian elimination is based on a data distribution
of matrix A and of the sequence of matrices A(k), k = 2, . . . , n, which can be a
row-oriented, a column-oriented, or a checkerboard distribution, see Sect. 3.4. In
this section, we consider a row-oriented distribution.
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From the structure of the matrices A(k) it can be seen that a blockwise row-
oriented data distribution is not suitable because of load imbalances: For a blockwise
row-oriented distribution processor Pq , 1 ≤ q ≤ p, owns the rows (q − 1) · n/p +
1, . . . , q · n/p so that after the computation of A(k) with k = q · n/p+ 1 there is no
computation left for this processor and it becomes idle. For a row-cyclic distribution,
there is a better load balance, since processor Pq , 1 ≤ q ≤ p, owns the rows q, q+p,
q+2p, . . ., i.e., it owns all rows i with 1 ≤ i ≤ n, and q = ((i−1) mod p)+1. The
processors begin to get idle only after the first n− p stages, which is reasonable for
p � n. Thus, we consider a parallel implementation of the Gaussian elimination
with a row-cyclic distribution of matrix A and a column-oriented pivoting. One
step of the forward elimination computing A(k+1) and b(k+1) for given A(k) and b(k)

performs the following computation and communication phases:

1. Determination of the local pivot element: Each processor considers its local
elements of column k in the rows k, . . . , n and determines the element (and its
position) with the largest absolute value.

2. Determination of the global pivot element: The global pivot element is the
local pivot element which has the largest absolute value. A single-accumulation
operation with the maximum operation as reduction determines this global pivot
element. The root processor of this global communication operation sends the
result to all other processors.

3. Exchange of the pivot row: If k 	= r for a pivot element a(k)
rk , the row k owned by

processor Pq and the pivot row r owned by processor Pq ′ have to be exchanged.
When q = q ′, the exchange can be done locally by processor Pq . When q 	= q ′,
then communication with single transfer operations is required. The elements bk

and br are exchanged accordingly.
4. Distribution of the pivot row: Since the pivot row (now row k) is required by all

processors for the local elimination operations, processor Pq sends the elements
a(k)

kk , . . . , a(k)
kn of row k and the element b(k)

k to all other processors.
5. Computation of the elimination factors: Each processor locally computes the

elimination factors lik for which it owns the row i according to Formula (7.2).
6. Computation of the matrix elements: Each processor locally computes the

elements of A(k+1) and b(k+1) using its elements of A(k) and b(k) according to
Formulas (7.3) and (7.4).

The computation of the solution vector x in the backward substitution is inherently
sequential, since the values xk , k = n, . . . , 1, depend on each other and are com-
puted one after another. In step k, processor Pq owning row k computes the value xk

according to Formula (7.5) and sends the value to all other processors by a single-
broadcast operation.

A program fragment implementing the computation phases 1–6 and the back-
ward substitution is given in Fig. 7.2. The matrix A and the vector b are stored in a
two- and a one-dimensional array a and b, respectively. Some of the local functions
are already introduced in the program in Fig. 7.1. The SPMD program uses the
variable me to store the individual processor number. This processor number, the
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Fig. 7.2 Program fragment with C notation and MPI operations for the Gaussian elimination with
row-cyclic distribution
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current value of k, and the pivot row are used to distinguish between different com-
putations for the single processors. The global variables n and p are the system size
and the number of processors executing the parallel program. The parallel algorithm
is implemented in the program in Fig. 7.2 in the following way:

1. Determination of the local pivot element: The function max col loc(a,k)
determines the row index r of the element a[r][k], which has the largest local
absolute value in column k for the rows ≥ k. When a processor has no element
of column k for rows ≥ k, the function returns −1.

2. Determination of the global pivot element: The global pivoting is performed
by an MPI Allreduce() operation, implementing a single-accumulation with
a subsequent single-broadcast. The MPI reduction operation MPI MAXLOC for
data type MPI DOUBLE INT consisting of one double value and one integer
value is used. The MPI operations have been introduced in Sect. 5.2. The
MPI Allreduce() operation returns y with the pivot element in y.val
and the processor owning the corresponding row in y.node. Thus, after this
step all processors know the global pivot element and the owner for possible
communication.

3. Exchange of the pivot row: Two cases are considered:

• If the owner of the pivot row is the processor also owning row k (i.e., k%p ==
y.node), the rows k and r are exchanged locally by this processor for r 	= k.
Row k is now the pivot row. The function copy row(a,b,k,buf) copies
the pivot row into the buffer buf, which is used for further communication.

• If different processors own the row k and the pivot row r , row k is sent to
the processor y.node owning the pivot row with MPI Send and MPI Recv
operations. Before the send operation, the function copy row(a,b,k,buf)
copies row k of array a and element k of array b into a common buffer buf
so that only one communication operation needs to be applied. After the com-
munication, the processor y.node finalizes its exchange with the pivot row.
The function copy exchange row(a,b,r,buf,k) exchanges the row
r (still the pivot row) and the buffer buf. The appropriate row index r is
known from the former local determination of the pivot row. Now the former
row k is the row r and the buffer buf contains the pivot row.

Thus, in both cases the pivot row is stored in buffer buf.
4. Distribution of the pivot row: Processor y.node sends the buffer buf to all

other processors by an MPI Bcast() operation. For the case of the pivot row
being owned by a different processor than the owner of row k, the content of
buf is copied into row k by this processor using copy back row().

5. and 6. Computation of the elimination factors and the matrix elements: The
computation of the elimination factors and the new arrays a and b is done in
parallel. Processor Pq starts this computation with the first row i > k with i mod
p = q.

For a row-cyclic implementation of the Gaussian elimination, an alternative way
of storing array a and vector b can be used. The alternative data structure consists
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Fig. 7.3 Data structure for
the Gaussian elimination with
n = 8 and p = 4 showing the
rows stored by processor P1.
Each row stores n + 1
elements consisting of one
row of the matrix a and the
corresponding element of b

b

1ba

a

aa11

a

18

55851

of a one-dimensional array of pointers and n one-dimensional arrays of length n+1
each containing one row of a and the corresponding element of b. The entries in the
pointer-array point to the row-arrays. This storage scheme not only facilitates the
exchange of rows but is also convenient for a distributed storage. For a distributed
memory, each processor Pq stores the entire array of pointers but only the rows
i with i mod p = q; all other pointers are NULL-pointers. Figure 7.3 illustrates
this storage scheme for n = 8. The advantage of storing an element of b together
with a is that the copy operation into a common buffer can be avoided. Also the
computation of the new values for a and b is now only one loop with n+1 iterations.
This implementation variant is not shown in Fig. 7.2.

7.1.3 Parallel Implementation with Checkerboard Distribution

A parallel implementation using a block–cyclic checkerboard distribution for matrix
A can be described with the parameterized data distribution introduced in Sect. 3.4.
The parameterized data distribution is given by a distribution vector

((p1, b1), (p2, b2)) (7.7)

with a p1 × p2 virtual processor mesh with p1 rows, p2 columns, and p1 · p2 = p
processors. The numbers b1 and b2 are the sizes of a block of data with b1 rows and
b2 columns. The function G : P → N

2 maps each processor to a unique position in
the processor mesh. This leads to the definition of p1 row groups

Rq = {Q ∈ P | G(Q) = (q, ·)}

with |Rq | = p2 for 1 ≤ q ≤ p1 and p2 column groups

Cq = {Q ∈ P | G(Q) = (·, q)}

with |Cq | = p1 for 1 ≤ q ≤ p2. The row groups as well as the column groups are a
partition of the entire set of processors, i.e.,
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p1⋃

q=1

Rq =
p2⋃

q=1

Cq = P

and Rq ∩ Rq ′ = ∅ = Cq ∩Cq ′ for q 	= q ′. Row i of the matrix A is distributed across
the local memories of the processors of only one row group, denoted Ro(i) in the

following. This is the row group Rk with k =
⌊

i−1
b1

⌋
mod p1 + 1. Analogously,

column j is distributed within one column group, denoted as Co( j), which is the

column group Ck with k =
⌊

j−1
b2

⌋
mod p2 + 1.

Example For a matrix of size 12×12 (i.e., n = 12), p = 4 processors {P1, P2, P3, P4}
and distribution vector ((p1, b1), (p2, b2)) = ((2, 2), (2, 3)), the virtual processor
mesh has size 2× 2 and the data blocks have size 2× 3. There are two row groups
and two column groups:

R1 = {Q ∈ P | G(Q) = (1, j), j = 1, 2},
R2 = {Q ∈ P | G(Q) = (2, j), j = 1, 2},
C1 = {Q ∈ P | G(Q) = ( j, 1), j = 1, 2},
C2 = {Q ∈ P | G(Q) = ( j, 2), j = 1, 2} .

The distribution of matrix A is shown in Fig. 7.4. It can be seen that row 5 is dis-
tributed in row group R1 and that column 7 is distributed in column group C1.�

Using a checkerboard distribution with distribution vector (7.7), the computation
of A(k) has the following implementation, which has a different communication pat-
tern than the previous implementation. Figure 7.5 illustrates the communication and
computation phases of the Gaussian elimination with checkerboard distribution.

Fig. 7.4 Illustration of a
checkerboard distribution for
a 12× 12 matrix. The tuples
denote the position of the
processors in the processor
mesh owning the data block
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Fig. 7.5 Computation phases
of the Gaussian elimination
with checkerboard
distribution
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1. Determination of the local pivot element: Since column k is distributed across
the processors of column group Co(k), only these processors determine the
element with the largest absolute value for row ≥ k within their local elements
of column k.

2. Determination of the global pivot element: The processors in group Co(k)
perform a single-accumulation operation within this group, for which each pro-
cessor in the group provides its local pivot element from phase 1. The reduction
operation is the maximum operation also determining the index of the pivot
row (and not the number of the owning processor as before). The root processor
of the single-accumulation operation is the processor owning the element a(k)

kk .
After the single-accumulation, the root processor knows the pivot element a(k)

rk
and its row index. This information is sent to all other processors.

3. Exchange of the pivot row: The pivot row r containing the pivot element a(k)
rk

is distributed across row group Ro(r ). Row k is distributed across the row group
Ro(k), which may be different from Ro(r ). If Ro(r ) = Ro(k), the processors
of Ro(k) exchange the elements of the rows k and r locally within the columns
they own. If Ro(r ) 	= Ro(k), each processor in Ro(k) sends its part of row
k to the corresponding processor in Ro(r ); this is the unique processor which
belongs to the same column group.

4. Distribution of the pivot row: The pivot row is needed for the recalculation of
matrix A, but each processor needs only those elements with column indices for
which it owns elements. Therefore, each processor in Ro(r ) performs a group-
oriented single-broadcast operation within its column group sending its part of
the pivot row to the other processors.

5. Computation of the elimination factors: The processors of column group
Co(k) locally compute the elimination factors lik for their elements i of column
k according to Formula (7.2).

5a. Distribution of the elimination factors: The elimination factors lik are needed
by all processors in the row group Ro(i). Since the elements of row i are dis-
tributed across the row group Ro(i), each processor of column group Co(k)
performs a group-oriented single-broadcast operation in its row group Ro(i) to
broadcast its elimination factors lik within this row group.

6. Computation of the matrix elements: Each processor locally computes the
elements of A(k+1) and b(k+1) using its elements of A(k) and b(k) according to
Formulas (7.3) and (7.4).

The backward substitution for computing the n elements of the result vector x is
done in n consecutive steps where each step consists of the following computations:

1. Each processor of the row group Ro(k) computes that part of the sum∑n
j=k+1 a(n)

k j x j which contains its local elements of row k.

2. The entire sum
∑n

j=k+1 a(n)
k j x j is determined by the processors of row group

Ro(k) by a group-oriented single-accumulation operation with the processor Pq

as root which stores the element a(n)
kk . Addition is used as reduction operation.
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3. Processor Pq computes the value of xk according to Formula (7.5).
4. Processor Pq sends the value of xk to all other processors by a single-broadcast

operation.

A pseudocode for an SPMD program in C notation with MPI operations imple-
menting the Gaussian elimination with checkerboard distribution of matrix A is
given in Fig. 7.6. The computations correspond to those given in the pseudocode for
the row-cyclic distribution in Fig. 7.2, but the pseudocode additionally uses several
functions organizing the computations on the groups of processors. The functions
Co(k) and Ro(k) denote the column or row groups owning column k or row
k, respectively. The function member(me,G) determines whether processor me
belongs to group G. The function grp leader() determines the first processor in
a group. The functions Cop(q) and Rop(q) determine the column or row group,
respectively, to which a processor q belongs. The function rank(q,G) returns the
local processor number (rank) of a processor in a group G.

1. Determination of the local pivot element: The determination of the local pivot
element is performed only by the processors in column group Co(k).

2. Determination of the global pivot element: The global pivot element is again
computed by an MPI MAXLOC reduction operation, but in contrast to Fig. 7.2 the
index of the row of the pivot element is calculated and not the processor number
owning the pivot element. The reason is that all processors which own a part of
the pivot row need to know that some of their data belongs to the current pivot
row; this information is used in further communication.

3. Exchange of the pivot row: For the exchange and distribution of the pivot row
r , the cases Ro(k) == Ro(r) and Ro(k)! = Ro(r) are distinguished.

• When the pivot row and the row k are stored by the same row group,
each processor of this group exchanges its data elements of row k and row
r locally using the function exchange row loc() and copies the ele-
ments of the pivot row (now row k) into the buffer buf using the function
copy row loc(). Only the elements in column k or higher are considered.

• When the pivot row and the row k are stored by different row groups,
communication is required for the exchange of the pivot row. The function
compute partner(Ro(r),me) computes the communication partner
for the calling processor me, which is the processor q ∈ Ro(r ) belonging to
the same column group as me. The function compute size(n,k,Ro(k))
computes the number of elements of the pivot row, which is stored for the call-
ing processor in columns greater than k; this number depends on the size of
the row group Ro(k), the block size, and the position k. The same function is
used later to determine the number of elimination factors to be communicated.

4. Distribution of the pivot row: For the distribution of the pivot row r , a processor
takes part in a single-broadcast operation in its column group. The roots of the
broadcast operation performed in parallel are the processors q ∈ Ro(r). The
participants of a broadcast are the processors q ′ ∈ Cop(q), either as root when
q ′ ∈ Ro(r) or as recipient otherwise.
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Fig. 7.6 Program of the Gaussian elimination with checkerboard distribution
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5. Computation of the elimination factors: The function compute elim fact
loc() is used to compute the elimination factors lik for all elements aik owned

by the processor. The elimination factors are stored in buffer elim buf.
5a. Distribution of the elimination factors: A single-broadcast operation is used

to send the elimination factors to all processors in the same row group Rop(q);
the corresponding communicator comm(Rop(q)) is used. The number (rank)
of the root processor q for this broadcast operation in a group G is determined
by the function rank(q,G).

6. Computation of the matrix elements: The computation of the matrix elements
by compute local entries() and the backward substitution performed
by backward substitution() are similar to the pseudocode in Fig. 7.2.

The main differences to the program in Fig. 7.2 are that more communication is
required and that almost all collective communication operations are performed on
subgroups of the set of processors and not on the entire set of processors.

7.1.4 Analysis of the Parallel Execution Time

The analysis of the parallel execution time of the Gaussian elimination uses func-
tions expressing the computation and communication times depending on the char-
acteristics of the parallel machine, see also Sect. 4.4. The function describing the
parallel execution time of the program in Fig. 7.6 additionally contains the param-
eters p1, p2, b1, and b2 of the parameterized data distribution in Formula (7.7). In
the following, we model the parallel execution time of the Gaussian elimination
with checkerboard distribution, neglecting pivoting and backward substitution for
simplicity, see also [147]. These are the phases 4, 5, 5a, and 6 of the Gaussian
elimination. For the derivation of functions reflecting the parallel execution time,
these four SPMD computation phases can be considered separately, since there is a
barrier synchronization after each phase.

For a communication phase, a formula describing the time of a collective com-
munication operation is used which describes the communication time as a function
of the number of processors and the message size. For the Gaussian elimination
(without pivoting), the phases 4 and 5a implement communication with a single-
broadcast operation. The communication time for a single-broadcast with p pro-
cessors and message size m is denoted as Tsb(p, m). We assume that independent
communication operations on disjoint processor sets can be done in parallel. The
values for p and m have to be determined for the specific situation. These parame-
ters depend on the data distribution and the corresponding sizes of row and column
groups as well as on the step k, k = 1, . . . , n, of the Gaussian elimination, since
messages get smaller for increasing k.

Also, the modeling of the computation times of phases 5 and 6 depends on the
step number k, since less elimination factors or matrix elements have to be computed
for increasing k and thus the number of arithmetic operations decreases with increas-
ing k. The time for an arithmetic operation is denoted as top. Since the processors
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perform an SPMD program, the processor computing the most arithmetic operations
determines the computation time for the specific computation phase. The following
modeling of communication and computation times for one step k uses the index sets

Iq = {(i, j) ∈ {1 . . . n} × {1 . . . n} | Pq owns ai j } ,

which contain the indices of the matrix elements stored locally in the memory of
processor Pq :

• The broadcasting of the pivot row k in phase 4 of step k sends the elements of
row k with column index≥ k to the processors needing the data for computations
in rows ≥ k. Since the pivot row is distributed across the processors of the row
group Ro(k), all the processors of Ro(k) send their part of row k. The amount of
data sent by one processor q ∈ Ro(k) is the number of elements of row k with
column indices ≥ k (i.e., with indices ((k, k), . . . , (k, n))) owned by processor q.
This is the number

N row≥k
q := #{(k, j) ∈ Iq | j ≥ k} . (7.8)

(The symbol #X for a set X denotes the number of elements of this set X .) The
processor q ∈ Ro(k) sends its data to those processors owning elements in the
rows with row index ≥ k which have the same column indices as the elements
of processor q. These are the processors in the column group Cop(q) of the
processor q and thus these processors are the recipients of the single-broadcast
operation of processor q . Since all column groups of the processors q ∈ Ro(k) are
disjoint, the broadcast operation can be done in parallel and the communication
time is

max
q∈Ro(k)

Tsb(#Cop(q), N row≥k
q ) .

• In phase 5 of step k, the elimination factors using the elements a(k)
kk and the ele-

ments a(k)
ik for i > k are computed by the processors owning these elements of

column k, i.e., by the processors q ∈ Co(k), according to Formula (7.2). Each of
the processors computes the elimination factors of its part, which are

N col>k
q := #{(i, k) ∈ Iq |i > k} (7.9)

elimination factors for processor q ∈ Co(k). Since the computations are done in
parallel, this results in the computation time

max
q∈Co(k)

N col>k
q · top .

• In phase 5a the elimination factors are sent to all processors which recalculate
the matrix elements with indices (i, j), i > k, j > k. Since the elimination
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factors l (k)
ik , l = k + 1, . . . , n, are needed within the same row i , a row-oriented

single-broadcast operation is used to send the data to the processors owning parts
of row i . A processor q ∈ Co(k) sends its data to the processors in its row group
Rop(q). These are the data elements computed in the previous phase, i.e., N col>k

q
data elements, and the communication time is

max
q∈Co(k)

Tsb(#Rop(q), N col>k
q ) .

• In phase 6 of step k, all matrix elements in the lower right rectangular area are
recalculated. Each processor q recalculates the entries it owns; these are the num-
ber of elements per column for rows with indices > k (i.e., N col>k

q ) multiplied by
the number of elements per row for columns with indices > k (i.e., N row>k

q ). Since
two arithmetic operations are performed for one entry according to Formula (7.4),
the computation time is

max
q∈P

N col>k
q · N row>k

q · 2top .

In total, the parallel execution for all phases and all steps is

T (n, p) =
n−1∑

k=1

{
max

q∈Ro(k)
Tsb(#Cop(q), N row≥k

q )

+ max
q∈Co(k)

N col>k
q · top (7.10)

+ max
q∈Co(k)

Tsb(#Rop(q), N col>k
q )

+max
q∈P

N col>k
q · N row>k

q · 2top
}
.

This parallel execution time can be expressed in terms of the parameters of the
data distribution ((p1, b1), (p2, b2)), the problem size n, and the step number k by
estimating the sizes of messages and the number of arithmetic operations. For the
estimation, larger blocks of data, called superblocks, are considered. Superblocks
consist of p1 × p2 consecutive blocks of size b1 × b2, i.e., it has p1b1 rows and

p2b2 columns. There are
⌈

n
p1b1

⌉
superblocks in the row direction and

⌈
n

p2b2

⌉
in the

column direction. Each of the p processors owns one data block of size b1 × b2 of
a superblock. The two-dimensional matrix A is covered by these superblocks and
from this covering, it can be estimated how many elements of smaller matrices A(k)

are owned by a specific processor.
The number of elements owned by a processor q in row k for column indices≥ k

can be estimated by

N row≥k
q ≤

⌈
n−k+1

p2b2

⌉
b2 ≤

(
n−k+1

p2b2
+ 1

)
b2 = n−k+1

p2
+ b2, (7.11)
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where
⌈

n−k+1
p2b2

⌉
is the number of superblocks covering row k for column indices

≥ k, which are n−k+1 indices, and b2 is the number of column elements that each
processor of Ro(k) owns in a complete superblock. For the covering of one row, the
number of columns p2b2 of a superblock is needed. Analogously, the number of ele-
ments owned by a processor q in column k for row indices > k can be estimated by

N col>k
q ≤

⌈
n−k

p1b1

⌉
b1 ≤

(
n−k

p1b1
+ 1

)
b1 = n − k

p1
+ b1, (7.12)

where
⌈

n−k
p1b1

⌉
is the number of superblocks covering column k for row indices > k,

which are n− k row indices, and b1 is the number of row elements that each proces-
sor of Co(k) owns in a complete superblock. Using these estimations, the parallel
execution time in Formula (7.10) can be approximated by

T (n, p) ≈
n−1∑

k=1

(
Tsb

(
p1,

n − k + 1

p2
+ b2

)
+
(

n − k

p1
+ b1

)
· top

+ Tsb

(
p2,

n − k

p1
+ b1

)
+
(

n − k

p1
+ b1

)(
n − k

p2
+ b2

)
· 2top

)
.

Suitable parameters leading to a good performance can be derived from this mod-
eling. For the communication time of a single-broadcast operation, we assume a
communication time

Tsb(p, m) = log p · (τ + m · tc)

with a startup time τ and a transfer time tc. This formula models the communication
time in many interconnection networks, like a hypercube. Using the summation for-
mula

∑n−1
k=1(n− k+ 1) =∑n

k=2 k = (
∑n

k=1 k)− 1 = n(n+1)
2 − 1 the communication

time in phase 4 results in

n−1∑

k=1

Tsb

(
p1,

n − k + 1

p2
+ b2

)

=
n−1∑

k=1

log p1

((
n − k + 1

p2
+ b2

)
tc + τ

)

= log p1

((
n(n + 1)

2
− 1

)
1

p2
tc + (n − 1)b2tc + (n − 1)τ

)
.

For the second and third terms the summation formula
∑n−1

k=1(n − k) = n(n−1)
2 is

used, so that the computation time
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n−1∑

k=1

(
n − k

p1
+ b1

)
· top =

(
n(n − 1)

2p1
+ (n − 1)b1

)
· top

and the communication time

n−1∑

k=1

Tsb

(
p2,

n − k

p1
+ b1

)

=
n−1∑

k=1

log p2

((
n − k

p1
+ b1

)
tc + τ

)

= log p2

((
n(n − 1)

2

)
1

p1
tc + (n − 1)b1tc + (n − 1)τ

)

result. For the last term, the summation formula
∑n−1

k=1
n−k
p1
· n−k

p2
= 1

p

∑n−1
k=1 k2 =

1
p

n(n−1)(2n−1)
6 is used. The total parallel execution time is

T (n, p) = log p1

((
n(n + 1)

2
− 1

)
tc
p2
+ (n − 1)b2tc + (n − 1)τ

)

+
(

n(n − 1)

2

1

p1
+ (n − 1)b1

)
top

+ log p2

((
n(n − 1)

2

tc
p1

)
+ (n − 1)b1tc + (n − 1)τ

)

+
(

n(n − 1)(2n − 1)

6p
+ n(n−1)

2

(
b2

p1
+ b1

p2

)
+ (n−1)b1b2

)
2top.

The block sizes bi , 1 ≤ bi ≤ n/pi , for i = 1, 2 are contained in the
execution time as factors and, thus, the minimal execution time is achieved for
b1 = b2 = 1. In the resulting formula the terms (log p1+ log p2) ((n−1)(τ + tc)) =
log p ((n−1)(τ + tc)), (n− 1) · 3top, and n(n−1)(2n−1)

3p · top are independent of the

specific choice of p1 and p2 and need not be considered. The terms n(n−1)
2

1
p1

top

and tc
p2

(n − 1) log p1 are asymmetric in p1 and p2. For simplicity we ignore these
terms in the analysis, which is justified since these terms are small compared to
the remaining terms; the first term has top as operand, which is usually small, and
the second term with tc as operand has a factor only linear in n. The remaining terms
of the execution time are symmetric in p1 and p2 and have constants quadratic in n.
Using p2 = p/p1 this time can be expressed as

TS(p1) = n(n−1)

2

(
p1 log p1

p
+ log p−log p1

p1

)
tc + n(n−1)

2

(
1

p1
+ p1

p

)
2top .



378 7 Algorithms for Systems of Linear Equations

The first derivation is

T ′S(p1) = n(n−1)

2

(
1

p · ln 2
+ log p1

p
− log p

p2
1

+ log p1

p2
1

− 1

p2
1 · ln 2

)
tc

+n(n−1)

2

(
1

p
− 1

p2
1

)
2top .

For p1 = √p it is T ′S(p1) = 0 since 1
p − 1

p2
1
= 1

p − 1
p = 0, 1

p ln 2 − 1
p2

1 ln 2
= 0, and

log p1

p − log p
p2

1
+ log p1

p2
1
= 0. The second derivation T ′′(p1) is positive for p1 = √p

and, thus, there is a minimum at p1 = p2 = √p.
In summary, the analysis of the most influential parts of the parallel execution

time of the Gaussian elimination has shown that p1 = p2 = √p, b1 = b2 = 1 is
the best choice. For an implementation, the values for p1 and p2 have to be adapted
to integer values.

7.2 Direct Methods for Linear Systems with Banded Structure

Large linear systems with banded structure often arise when discretizing partial
differential equations. The coefficient matrix of a banded system is sparse with
non-zero elements in the main diagonal of the matrix and a few further diagonals.
As a motivation, we first present the discretization of a two-dimensional Poisson
equation resulting in such a banded system in Sect. 7.2.1. In Sect. 7.2.2, the solu-
tion methods recursive doubling and cyclic reduction are applied to the solution of
tridiagonal systems, i.e., banded systems with only three non-zero diagonals, and
the parallel implementation is discussed. General banded matrices are treated with
cyclic reduction in Sect. 7.2.3 and the discretized Poisson equation is used as an
example in Sect. 7.2.4.

7.2.1 Discretization of the Poisson Equation

As a typical example of an elliptic partial differential equation we consider the Pois-
son equation with Dirichlet boundary conditions. This equation is often called the
model problem since its structure is simple but the numerical solution is very simi-
lar to many other more complicated partial differential equations, see [60, 79, 166].
The two-dimensional Poisson equation has the form

−Δu(x, y) = f (x, y) for all (x, y) ∈ Ω (7.13)

with domain Ω ⊂ R
2.

The function u : R
2 → R is the unknown solution function and the function

f : R
2 → R is the right-hand side, which is continuous in Ω and its boundary. The

operator Δ is the two-dimensional Laplace operator
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Δ = ∂2

∂x2
+ ∂2

∂y2

containing the second partial derivatives with respect to x or y. (∂/∂x and ∂/∂y
denote the first partial derivatives with respect to x or y, and ∂2/∂x2 and ∂2/∂y2

denote the second partial derivatives with respect to x or y, respectively.) Using this
notation, the Poisson equation (7.13) can also be written as

−∂2u

∂x2
− ∂2u

∂y2
= f (x, y) .

The model problem (7.13) uses the unit square Ω = (0, 1) × (0, 1) and assumes a
Dirichlet boundary condition

u(x, y) = ϕ(x, y) for all (x, y) ∈ ∂Ω , (7.14)

where ϕ is a given function and ∂Ω is the boundary of domain Ω , which is
∂Ω = {(x, y) | 0 ≤ x ≤ 1, y = 0 or y = 1} ∪ {(x, y) | 0 ≤ y ≤ 1, x = 0 or x = 1}.
The boundary condition uniquely determines the solution u of the model problem.
Figure 7.7 (left) illustrates the domain and the boundary of the model problem.
An example of the Poisson equation from electrostatics is the equation

Δu = − ρ

ε0
,

where ρ is the charge density, ε0 is a constant, and u is the unknown potential to be
determined [97].

For the numerical solution of equation−Δu(x, y) = f (x, y), the method of finite
differences can be used, which is based on a discretization of the domain Ω ∪ ∂Ω

y

x

. . .

. . .

. .
 . . . .

y
(0,1)

(1,1)

u = fΔ−

u = ϕ

(0,0) (1,0) x

Poisson equation mesh for the unit square

boundary values
inner mesh points

Fig. 7.7 Left: Poisson equation with Dirichlet boundary condition on the unit square Ω = (0, 1)×
(0, 1). Right: The numerical solution discretizes the Poisson equation on a mesh with equidistant
mesh points with distance 1/(N + 1). The mesh has N 2 inner mesh points and additional mesh
points on the boundary
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in both directions. The discretization is given by a regular mesh with N + 2 mesh
points in x-direction and in y-direction, where N points are in the inner part and 2
points are on the boundary. The distance between points in the x- or y-direction is
h = 1

N+1 . The mesh points are

(xi , y j ) = (ih, jh) for i, j = 0, 1, . . . , N + 1 .

The points on the boundary are the points with x0 = 0, y0 = 0, xN+1 = 1, or
yN+1 = 1. The unknown solution function u is determined at the points (xi , y j ) of
this mesh, which means that values ui j := u(xi , y j ) for i, j = 0, 1, . . . , N + 1 are
to be found.

For the inner part of the mesh, these values are determined by solving a linear
equation system with N 2 equations which is based on the Poisson equation in the
following way. For each mesh point (xi , y j ), i, j = 1, . . . , N , a Taylor expansion is
used for the x or y-direction. The Taylor expansion in x-direction is

u(xi + h, y j ) = u(xi , y j )+ h · ux (xi , y j )+ h2

2
uxx (xi , y j )

+h3

6
uxxx (xi , y j )+ O(h4) ,

u(xi − h, y j ) = u(xi , y j )− h · ux (xi , y j )+ h2

2
uxx (xi , y j )

−h3

6
uxxx (xi , y j )+ O(h4) ,

where ux denotes the partial derivative in x-direction (i.e., ux = ∂u/∂x) and uxx

denotes the second partial derivative in x-direction (i.e., uxx = ∂2u/∂x2). Adding
these two Taylor expansions results in

u(xi + h, y j )+ u(xi − h, y j ) = 2u(xi , y j )+ h2uxx (xi , y j )+ O(h4) .

Analogously, the Taylor expansion for the y-direction can be used to get

u(xi , y j + h)+ u(xi , y j − h) = 2u(xi , y j )+ h2uyy(xi , y j )+ O(h4) .

From the last two equations, an approximation for the Laplace operator Δu = uxx+
uyy at the mesh points can be derived

Δu(xi , y j ) = − 1

h2
(4ui j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1) ,

where the higher order terms O(h4) are neglected. This approximation uses the mesh
point (xi , y j ) itself and its four neighbor points; see Fig. 7.8. This pattern is known as
five-point stencil. Using the approximation of Δu and the notation fi j := f (xi , y j )
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Fig. 7.8 Five-point stencil
resulting from the
discretization of the Laplace
operator with a finite
difference scheme. The
computation at one mesh
point uses values at the four
neighbor mesh points

(i,j)

(i,j–1)

(i,j+1)

(i–1,j) (i+1,j) y

y
x x x

0

0 i

yN+1

N+1

j

for the values of the right-hand side, the discretized Poisson equation or five-point
formula results:

1

h2
(4ui j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1) = fi j (7.15)

for 1 ≤ i, j ≤ N . For the points on the boundary, the values of ui j result from the
boundary condition (7.14) and are given by

ui j = ϕ(xi , y j ) (7.16)

for i = 0, N + 1 and j = 0, . . . , N + 1 or j = 0, N + 1 and i = 0, . . . , N + 1. The
inner mesh points which are immediate neighbors of the boundary, i.e., the mesh
points with i = 1, i = N , j = 1, or j = N , use the boundary values in their
five-point stencil; the four mesh points in the corners use two boundary values and
all other points use one boundary value. For all points with i = 1, i = N , j = 1,
or j = N , the values of ui j in the formulas (7.15) are replaced by the values (7.16).
For the mesh point (x1, y1) for example, the equation

1

h2
(4u11 − u21 − u12) = f11 + 1

h2
ϕ(0, y1)+ 1

h2
ϕ(x1, 0)

results. The five-point formula (7.15) including boundary values represents a linear
equation system with N 2 equations, N 2 unknown values, and a coefficient matrix
A ∈ R

N 2×N 2
. In order to write the equation system (7.15) with boundary values

(7.16) in matrix form Az = d , the N 2 unknowns ui j , i, j = 1, . . . , N , are arranged
in row-oriented order in a one-dimensional vector z of size n = N 2 which has the
form

z = (u11, u21, . . . , uN1, u12, u22, . . . , uN2, . . . .., u1N , u2N , . . . , uN N ) .

The mapping of values ui j to vector elements zk is

zk := ui j with k = i + ( j − 1)N for i, j = 1, . . . , N .
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Using the vector z, the five-point formula has the form

1

h2

(
4zi+( j−1)N − zi+1+( j−1)N − zi−1+( j−1)N − zi+ j N − zi+( j−2)N

)

= di+( j−1)N

with di+( j−1)N = fi j and a corresponding mapping of the values fi j to a
one-dimensional vector d . Replacing the indices by k = 1, . . . , n with k =
i + ( j − 1)N results in

1

h2
(4zk − zk+1 − zk−1 − zk+N − zk−N ) = dk . (7.17)

Thus, the entries in row k of the coefficient matrix contain five entries which are
akk = 4 and ak,k+1 = ak,k−1 = ak,k+N = ak,k−N = −1.

The building of the vector d and the coefficient matrix A = (ai j ), i, j =
1, . . . , N 2, can be performed by the following algorithm, see [79]. The loops over i
and j , i, j = 1, . . . , N , visit the mesh points (i, j) and build one row of the matrix A
of size N 2×N 2. When (i, j) is an inner point of the mesh, i.e., i, j 	= 1, N , the corre-
sponding row of A contains five elements at the position k, k+1, k−1, k+N , k−N
for k = i + ( j − 1)N . When (i, j) is at the boundary of the inner part, i.e.,
i = 1, j = 1, i = N , or j = N , the boundary values for ϕ are used.

/* Algorithm for building the matrix A and the vector d */
Initialize all entries of A with 0;
for ( j = 1; j <= N ; j ++)

for (i = 1; i <= N ; i ++) {
/* Build dk and row k of A with k = i + ( j − 1)N */
k = i + ( j − 1) · N ;
ak,k = 4/h2;
dk = fi j ;
if (i > 1) ak,k−1 = −1/h2 else dk = dk + 1/h2ϕ(0, y j );
if (i < N ) ak,k+1 = −1/h2 else dk = dk + 1/h2ϕ(1, y j );
if ( j > 1) ak,k−N = −1/h2 else dk = dk + 1/h2ϕ(xi , 0);
if ( j < N ) ak,k+N = −1/h2 else dk = dk + 1/h2ϕ(xi , 1);

}

The linear equation system resulting from this algorithm has the structure

1

h2

⎛

⎜⎜
⎜⎜
⎝

B −I 0

−I B
. . .

. . .
. . . −I

0 −I B

⎞

⎟⎟
⎟⎟
⎠
· z = d , (7.18)
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where I denotes the N × N unit matrix, which has the value 1 in the diagonal
elements and the value 0 in all other entries. The matrix B has the structure

B =

⎛

⎜⎜
⎜⎜
⎝

4 −1 0

−1 4
. . .

. . .
. . . −1

0 −1 4

⎞

⎟⎟
⎟⎟
⎠

. (7.19)

Figure 7.9 illustrates the two-dimensional mesh with five-point stencil (above) and
the sparsity structure of the corresponding coefficient matrix A of Formula (7.17).

In summary, Formulas (7.15) and (7.17) represent a linear equation system with a
sparse coefficient matrix, which has non-zero elements in the main diagonal and its
direct neighbors as well as in the diagonals in distance N . Thus, the linear equation
system resulting from the Poisson equation has a banded structure, which should
be exploited when solving the system. In the following, we present solution meth-
ods for linear equation systems with banded structure and start the description with
tridiagonal systems. These systems have only three non-zero diagonals in the main
diagonal and its two neighbors. A tridiagonal system results, for example, when
discretizing the one-dimensional Poisson equation.

7.2.2 Tridiagonal Systems

For the solution of a linear equation system Ax = y with a banded or tridiagonal
coefficient matrix A ∈ R

n×n , specific solution methods can exploit the sparse matrix
structure. A matrix A = (ai j )i, j=1,...,n ∈ R

n×n is called banded when its structure
takes the form of a band of non-zero elements around the principal diagonal. More
precisely, this means a matrix A is a banded matrix if there exists r ∈ N, r ≤ n,
with

ai j = 0 for |i − j | > r .

The number r is called the semi-bandwidth of A. For r = 1 a banded matrix
is called tridiagonal matrix. We first consider the solution of tridiagonal systems
which are linear equation systems with tridiagonal coefficient matrix.

7.2.2.1 Gaussian Elimination for Tridiagonal Systems

For the solution of a linear equation system Ax = y with tridiagonal matrix A,
the Gaussian elimination can be used. Step k of the forward elimination (without
pivoting) results in the following computations, see also Sect. 7.1:

1. Compute lik := a(k)
ik /a(k)

kk for i = k + 1, . . . , n.
2. Subtract lik times the kth row from the rows i = k + 1, . . . , n, i.e., compute

a(k+1)
i j = a(k)

i j − lik · a(k)
k j for k ≤ j ≤ n and k < i ≤ n .
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Fig. 7.9 Rectangular mesh in the x–y plane of size N × N and the n × n coefficient matrix
with n = N 2 of the corresponding linear equation system of the five-point formula. The sparsity
structure of the matrix corresponds to the adjacency relation of the mesh points. The mesh can be
considered as adjacency graph of the non-zero elements of the matrix

The vector y is changed analogously.

Because of the tridiagonal structure of A, all matrix elements aik with i ≥ k + 2 are
zero elements, i.e., aik = 0. Thus, in each step k of the Gaussian elimination only
one elimination factor lk+1 := lk+1,k and only one row with only one new element
have to be computed. Using the notation
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A =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

b1 c1 0
a2 b2 c2

a3 b3
. . .

. . .
. . . cn−1

0 an bn

⎞

⎟⎟⎟⎟⎟
⎟
⎠

(7.20)

for the matrix elements and starting with u1 = b1, these computations are

lk+1 = ak+1/uk, (7.21)

uk+1 = bk+1 − lk+1 · ck .

After n − 1 steps an LU decomposition A = LU of matrix (7.20) with

L =

⎛

⎜
⎜
⎜
⎝

1 0
l2 1

. . .
. . .

0 ln 1

⎞

⎟
⎟
⎟
⎠

and U =

⎛

⎜
⎜
⎜
⎝

u1 c1 0
. . .

. . .
un−1 cn−1

0 un

⎞

⎟
⎟
⎟
⎠

results. The right-hand side y is transformed correspondingly according to

ỹk+1 = yk+1 − lk+1 · ỹk .

The solution x is computed from the upper triangular matrix U by a backward sub-
stitution, starting with xn = ỹn/un and solving the equations ui xi + ci xi+1 = ỹi one
after another resulting in

xi = ỹi

ui
− ci

ui
xi+1 for i = n − 1, . . . , 1 .

The computational complexity of the Gaussian elimination is reduced to O(n) for
tridiagonal systems. However, the elimination phase computing lk and uk according
to Eq. (7.21) is inherently sequential, since the computation of lk+1 depends on uk

and the computation of uk+1 depends on lk+1. Thus, in this form the Gaussian elimi-
nation or LU decomposition has to be computed sequentially and is not suitable for
a parallel implementation.

7.2.2.2 Recursive Doubling for Tridiagonal Systems

An alternative approach for solving a linear equation system with tridiagonal matrix
is the method of recursive doubling or cyclic reduction. The methods of recursive
doubling and cyclic reduction also use elimination steps but contain potential par-
allelism [72, 71]. Both techniques can be applied if the coefficient matrix is either
symmetric and positive definite or diagonal dominant [115]. The elimination steps
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in both methods are applied to linear equation systems Ax = y with the matrix
structure shown in (7.20), i.e.,

b1 x1 + c1 x2 = y1,

ai xi−1 + bi xi + ci xi+1 = yi for i = 2, . . . , n − 1,

an xn−1 + bn xn = yn .

The method, which was first introduced by Hockney and Golub in [91], uses two
equations i − 1 and i + 1 to eliminate the variables xi−1 and xi+1 from equation
i . This results in a new equivalent equation system with a coefficient matrix with
three non-zero diagonals where the diagonals are moved to the outside. Recursive
doubling and cyclic reduction can be considered as two implementation variants for
the same numerical idea of the method of Hockney and Golub. The implementation
of recursive doubling repeats the elimination step, which finally results in a matrix
structure in which only the elements in the principal diagonal are non-zero and the
solution vector x can be computed easily. Cyclic reduction is a variant of recursive
doubling which also eliminates variables using neighboring rows. But in each step
the elimination is only applied to half of the equations and, thus, less computations
are performed. On the other hand, the computation of the solution vector x requires
a substitution phase.

We would like to mention that the terms recursive doubling and cyclic reduction
are used in different ways in the literature. Cyclic reduction is sometimes used for
the numerical method of Hockney and Golub in both implementation variants, see
[60, 115]. On the other hand the term recursive doubling (or full recursive doubling)
is sometimes used for a different method, the method of Stone [168]. This method
applies the implementation variants sketched above in Eq. (7.21) resulting from
the Gaussian elimination, see [61, 173]. In the following, we start the description of
recursive doubling for the method of Hockney and Golub according to [61] and [13].

Recursive doubling considers three neighboring equations i − 1, i, i + 1 of
the equation system Ax = y with coefficient matrix A in the form (7.20) for
i = 3, 4, . . . , n − 2. These equations are

ai−1xi−2 + bi−1xi−1 + ci−1xi = yi−1,
ai xi−1 + bi xi + ci xi+1 = yi ,

ai+1xi + bi+1xi+1 + ci+1xi+2 = yi+1.

Equation i − 1 is used to eliminate xi−1 from the i th equation and equation i + 1 is
used to eliminate xi+1 from the i th equation. This is done by reformulating equations
i − 1 and i + 1 to

xi−1 = yi−1

bi−1
− ai−1

bi−1
xi−2 − ci−1

bi−1
xi ,

xi+1 = yi+1

bi+1
− ai+1

bi+1
xi − ci+1

bi+1
xi+2

and inserting those descriptions of xi−1 and xi+1 into equation i . The resulting new
equation i is
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a(1)
i xi−2 + b(1)

i xi + c(1)
i xi+2 = y(1)

i (7.22)

with coefficients

a(1)
i = α

(1)
i · ai−1,

b(1)
i = bi + α

(1)
i · ci−1 + β

(1)
i · ai+1,

c(1)
i = β

(1)
i · ci+1, (7.23)

y(1)
i = yi + α

(1)
i · yi−1 + β

(1)
i · yi+1,

and

α
(1)
i := −ai/bi−1 ,

β
(1)
i := −ci/bi+1 .

For the special cases i = 1, 2, n − 1, n, the coefficients are given by

b(1)
1 = b1 + β

(1)
1 · a2, y(1)

1 = y1 + β
(1)
1 · y2,

b(1)
n = bn + α(1)

n · cn−1, y(1)
n = bn + α(1)

n · yn−1,
a(1)

1 = a(1)
2 = 0, and c(1)

n−1 = c(1)
n = 0 .

The values for a(1)
n−1, a(1)

n , b(1)
2 , b(1)

n−1, c(1)
1 , c(1)

2 , y(1)
2 , and y(1)

n−1 are defined as in
Eq. (7.23). Equation (7.22) forms a linear equation system A(1)x = y(1) with a
coefficient matrix

A(1) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

b(1)
1 0 c(1)

1 0
0 b(1)

2 0 c(1)
2

a(1)
3 0 b(1)

3

. . .
. . .

a(1)
4

. . .
. . .

. . . c(1)
n−2

. . .
. . .

. . . 0
0 a(1)

n 0 b(1)
n

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Comparing the structure of A(1) with the structure of A, it can be seen that the
diagonals are moved to the outside.

In the next step, this method is applied to the equations i − 2, i, i + 2 of the
equation system A(1)x = y(1) for i = 5, 6, . . . , n − 4. Equation i − 2 is used to
eliminate xi−2 from the i th equation and equation i + 2 is used to eliminate xi+2

from the i th equation. This results in a new i th equation

a(2)
i xi−4 + b(2)

i xi + c(2)
i xi+4 = y(2)

i ,

which contains the variables xi−4, xi , and xi+4. The cases i = 1, . . . , 4, n−3, . . . , n
are treated separately as shown for the first elimination step. Altogether a next equa-
tion system A(2)x = y(2) results in which the diagonals are further moved to the
outside. The structure of A(2) is
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A(2) =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎜
⎝

b(2)
1 0 0 0 c(2)

1 0
0 b(2)

2 c(2)
2

0
. . .

. . .

0
. . . c(2)

n−4

a(2)
5

. . . 0

a(2)
6

. . . 0
. . .

. . . 0
0 a(2)

n 0 0 0 b(2)
n

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎟
⎠

.

The following steps of the recursive doubling algorithm apply the same method
to the modified equation system of the last step. Step k transfers the side diagonals
2k − 1 positions away from the main diagonal, compared to the original coefficient
matrix. This is reached by considering equations i − 2k−1, i, i + 2k−1:

a(k−1)
i−2k−1 xi−2k + b(k−1)

i−2k−1 xi−2k−1 + c(k−1)
i−2k−1 xi = y(k−1)

i−2k−1 ,

a(k−1)
i xi−2k−1 + b(k−1)

i xi + c(k−1)
i xi+2k−1 = y(k−1)

i ,

a(k−1)
i+2k−1 xi + b(k−1)

i+2k−1 xi+2k−1 + c(k−1)
i+2k−1 xi+2k = y(k−1)

i+2k−1 .

Equation i − 2k−1 is used to eliminate xi−2k−1 from the i th equation and equation
i + 2k−1 is used to eliminate xi+2k−1 from the i th equation. Again, the elimination is
performed by computing the coefficients for the next equation system. These coef-
ficients are

a(k)
i = α

(k)
i · a(k−1)

i−2k−1 for i = 2k + 1, . . . , n, and a(k)
i = 0 otherwise,

c(k)
i = β

(k)
i · c(k−1)

i+2k−1 for i = 1, . . . , n − 2k, and c(k)
i = 0 otherwise, (7.24)

b(k)
i = α

(k)
i · c(k−1)

i−2k−1 + b(k−1)
i + β

(k)
i · a(k−1)

i+2k−1 for i = 1, . . . , n ,

y(k)
i = α

(k)
i · y(k−1)

i−2k−1 + y(k−1)
i + β

(k)
i · y(k−1)

i+2k−1 for i = 1, . . . , n

with

α
(k)
i := −a(k−1)

i /b(k−1)
i−2k−1 for i = 2k−1 + 1, . . . , n , (7.25)

β
(k)
i := −c(k−1)

i /b(k−1)
i+2k−1 for i = 1, . . . , n − 2k−1 .

The modified equation i results by multiplying equation i − 2k−1 from step k− 1
with α

(k)
i , multiplying equation i + 2k−1 from step k − 1 with β

(k)
i , and adding both

to equation i . The resulting i th equation is

a(k)
i xi−2k + b(k)

i xi + c(k)
i xi+2k = y(k)

i (7.26)
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with the coefficients (7.24). The cases k = 1, 2 are special cases of this formula.
The initialization for k = 0 is the following:

a(0)
i = ai for i = 2, . . . , n ,

b(0)
i = bi for i = 1, . . . , n ,

c(0)
i = ci for i = 1, . . . , n − 1 ,

y(0)
i = yi for i = 1, . . . , n .

and a(0)
1 = 0, c(0)

n = 0. Also, for the steps k = 0, . . . , �log n� and i ∈ Z \ {1, . . . , n}
the values

a(k)
i = c(k)

i = y(k)
i = 0 ,

b(k)
i = 1 ,

xi = 0

are set. After N = �log n� steps, the original matrix A is transformed into a diagonal
matrix A(N )

A(N ) = diag(b(N )
1 , . . . , b(N )

n )

in which only the main diagonal contains non-zero elements. The solution x of the
linear equation system can be directly computed using this matrix and the corre-
spondingly modified vector y(N ):

xi = y(N )
i /b(N )

i for i = 1, 2, . . . , n .

To summarize, the recursive doubling algorithm consists of two main phases:

1. Elimination phase: Compute the values a(k)
i , b(k)

i , c(k)
i , and y(k)

i for k=1, . . . ,�log n�
and i = 1, . . . , n according to Eqs. (7.24) and (7.25).

2. Solution phase: Compute xi = y(N )
i /b(N )

i for i = 1, . . . , n with N = �log n�.
The first phase consists of �log n� steps where in each step O(n) values are com-
puted. The sequential asymptotic runtime of the algorithm is therefore O(n · log n)
which is asymptotically slower than the O(n) runtime for the Gaussian elimination
approach described earlier. The advantage is that the computations in each step of
the elimination and the substitution phase are independent and can be performed in
parallel. Figure 7.10 illustrates the computations of the recursive doubling algorithm
and the data dependencies between different steps.

7.2.2.3 Cyclic Reduction for Tridiagonal Systems

The recursive doubling algorithm offers a large degree of potential parallelism but
has a larger computational complexity than the Gaussian elimination caused by
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i=1

i=2

i=3

i=4

i=5

i=6

i=7

i=8

k=0 k=1 k=2 k=3

Fig. 7.10 Dependence graph for the computation steps of the recursive doubling algorithm in the
case of three computation steps and eight equations. The computations of step k are shown in
column k of the illustration. Column k contains one node for each equation i , thus representing the
computation of all coefficients needed in step k. Column 0 represents the data of the coefficient
matrix of the linear system. An edge from a node i in step k to a node j in step k + 1 means that
the computation at node j needs at least one coefficient computed at node i

computational redundancy. The cyclic reduction algorithm is a modification of
recursive doubling which reduces the amount of computations to be performed. In
each step, half the variables in the equation system are eliminated which means that
only half of the values a(k)

i , b(k)
i , c(k)

i , and y(k)
i are computed. A substitution phase

is needed to compute the solution vector x . The elimination and the substitution
phases of cyclic reduction are described by the following two phases:

1. Elimination phase: For k = 1, . . . , 
log n� compute a(k)
i , b(k)

i , c(k)
i , and y(k)

i with
i = 2k, . . . , n and step size 2k . The number of equations of the form (7.26) is
reduced by a factor of 1/2 in each step. In step k = 
log n� there is only one
equation left for i = 2N with N = 
log n�.

2. Substitution phase: For k = 
log n�, . . . , 0 compute xi according to Eq. (7.26)
for i = 2k, . . . , n with step size 2k+1:

xi = y(k)
i − a(k)

i · xi−2k − c(k)
i · xi+2k

b(k)
i

. (7.27)

Figure 7.11 illustrates the computations of the elimination and the substitution
phases of cyclic reduction represented by nodes and their dependencies represented
by arrows. In each computation step k, k = 1, . . . , 
log n�, of the elimination phase,
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Fig. 7.11 Dependence graph illustrating the dependencies between neighboring computation steps
of the cyclic reduction algorithm for the case of three computation steps and eight equations in
analogy to the representation in Fig. 7.10. The first four columns represent the computations of the
coefficients. The last columns in the graph represent the computation of the solution vector x in
the second phase of the cyclic reduction algorithm, see (7.27)

there are n/2k nodes representing the computations for the coefficients of one equa-
tion. This results in

n

2
+ n

4
+ n

8
+ · · · + n

2N
= n ·


log n�∑

i=1

1

2i
≤ n

computation nodes with N = 
log n� and, therefore, the execution time of cyclic
reduction is O(n). Thus, the computational complexity is the same as for the
Gaussian elimination; however, the cyclic reduction offers potential parallelism
which can be exploited in a parallel implementation as described in the following.

The computations of the numbers α
(k)
i , β

(k)
i require a division by b(k)

i and, thus,
cyclic reduction as well as recursive doubling is not possible if any number b(k)

i is
zero. This can happen even when the original matrix is invertible and has non-zero
diagonal elements or when the Gaussian elimination can be applied without pivot-
ing. However, for many classes of matrices it can be shown that a division by zero
is never encountered. Examples are matrices A which are symmetric and positive
definite or invertible and diagonally dominant, see [61] or [115] (using the name
odd–even reduction). (A matrix A is symmetric if A = AT and positive definite if
xT Ax > 0 for all x . A matrix is diagonally dominant if in each row the absolute
value of the diagonal element exceeds the sum of the absolute values of the other
elements in the row without the diagonal in the row.)
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7.2.2.4 Parallel Implementation of Cyclic Reduction

We consider a parallel algorithm for the cyclic reduction for p processors. For the
description of the phases we assume n = p · q for q ∈ N and q = 2Q for Q ∈ N.
Each processor stores a block of rows of size q , i.e., processor Pi stores the rows of
A with the numbers (i − 1)q + 1, . . . , i · q for 1 ≤ i ≤ p. We describe the parallel
algorithm with data exchange operations that are needed for an implementation with
a distributed address space. As data distribution a row-blockwise distribution of the
matrix A is used to reduce the interaction between processors as much as possible.
The parallel algorithm for the cyclic reduction comprises three phases: the elimina-
tion phase stopping earlier than described above, an additional recursive doubling
phase, and a substitution phase.

Phase 1: Parallel reduction of the cyclic reduction in log q steps: Each pro-
cessor computes the first Q = log q steps of the cyclic reduction algorithm,
i.e., processor Pi computes for k = 1, . . . , Q the values

a(k)
j , b(k)

j , c(k)
j , y(k)

j

for j = (i − 1) · q + 2k, . . . , i · q with step size 2k . After each computation step,
processor Pi receives four data values from Pi−1 (if i > 1) and from processor Pi+1

(if i < n) computed in the previous step. Since each processor owns a block of
rows of size q, no communication with any other processor is required. The size of
data to be exchanged with the neighboring processors is a multiple of 4 since four
coefficients (a(k)

j , b(k)
j , c(k)

j , y(k)
j ) are transferred. Only one data block is received per

step and so there are at most 2Q messages of size 4 for each step.
Phase 2: Parallel recursive doubling for tridiagonal systems of size p: Proces-

sor Pi is responsible for the i th equation of the following p-dimensional tridiagonal
system

ãi x̃i−1 + b̃i x̃i + c̃i x̃i+1 = ỹi for i = 1, . . . , p

with

ãi = a(Q)
i ·q

b̃i = b(Q)
i ·q

c̃i = c(Q)
i ·q

ỹi = y(Q)
i ·q

x̃i = xi ·q

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

for i = 1, . . . , p .

For the solution of this system, we use recursive doubling. Each processor is
assigned one equation. Processor Pi performs �log p� steps of the recursive dou-
bling algorithm. In step k, k = 1, . . . , �log p�, processor Pi computes

ã(k)
i , b̃(k)

i , c̃(k)
i , ỹ(k)

i
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for which the values of

ã(k−1)
j , b̃(k−1)

j , c̃(k−1)
j , ỹ(k−1)

j

from the previous step computed by a different processor are required. Thus, there
is a communication in each of the �log p� steps with a message size of four values.
After step N ′ = �log p� processor Pi computes

x̃i = ỹ(N ′)
i /b̃(N ′)

i . (7.28)

Phase 3: Parallel substitution of cyclic reduction: After the second phase,
the values x̃i = xi ·q are already computed. In this phase, each processor Pi ,
i = 1, . . . , p, computes the values x j with j = (i − 1)q + 1, . . . , iq − 1 in
several steps according to Eq. (7.27). In step k, k = Q − 1, . . . , 0, the elements
x j , j = 2k, . . . , n, with step size 2k+1 are computed. Processor Pi computes x j with
j div q + 1 = i for which the values x̃i−1 = x(i−1)q and x̃i+1 = x(i+1)q computed by
processors Pi−1 and Pi+1 are needed. Figure 7.12 illustrates the parallel algorithm
for p = 2 and n = 8.

i=1
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i=5

i=6

i=7

i=8

k=0 k=1 k=2 k=3

8x
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x
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x

x
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1

3

5
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Q steps log p  steps Q steps

i=2

phase 1 phase 3phase 2

Fig. 7.12 Illustration of the parallel algorithm for the cyclic reduction for n = 8 equations and
p = 2 processors. Each of the processors is responsible for q = 4 equations; we have Q = 2. The
first and the third phases of the computation have log q = 2 steps. The second phase has log p = 1
step. As recursive doubling is used in the second phase, there are more components of the solution
to be computed in the second phase compared with the computation shown in Fig. 7.11
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7.2.2.5 Parallel Execution Time

The execution time of the parallel algorithm can be modeled by the following run-
time functions. Phase 1 executes

Q = log q = log
n

p
= log n − log p

steps where in step k with 1 ≤ k ≤ Q each processor computes at most q/2k

coefficient blocks of 4 values each. Each coefficient block requires 14 arithmetic
operations according to Eq. (7.23). The computation time of phase 1 can therefore
be estimated as

T1(n, p) = 14top ·
Q∑

k=1

q

2k
≤ 14

n

p
· top .

Moreover, each processor exchanges in each of the Q steps two messages of 4 values
each with its two neighboring processors by participating in single transfer opera-
tions. Since in each step the transfer operations can be performed by all processors
in parallel without interference, the resulting communication time is

C1(n, p) = 2Q · ts2s(4) = 2 · log
n

p
· ts2s(4) ,

where ts2s(m) denotes the time of a single transfer operation with message size m.
Phase 2 executes �log p� steps. In each step, each processor computes 4 coefficients
requiring 14 arithmetic operations. Then the value x̃i = xi ·q is computed according
to Eq. (7.28) by a single arithmetic operation. The computation time is therefore

T2(n, p) = 14�log p� · top + top .

In each step, each processor sends and receives 4 data values from other processors,
leading to a communication time

C2(n, p) = 2�log p� · ts2s(4) .

In each step k of phase 3, k = 0, . . . , Q−1, each processor computes 2k components
of the solution vector according to Eq. (7.27). For each component, five operations
are needed. Altogether, each processor computes

∑Q−1
k=0 2k = 2Q − 1 = q − 1

components with one component already computed in phase 2. The resulting com-
putation time is

T3(n, p) = 5 · (q − 1) · top = 5 ·
(

n

p
− 1

)
· top .
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Moreover, each processor exchanges one data value with each of its neighboring
processors; the communication time is therefore

C3(n, p) = 2 · ts2s(1) .

The resulting total computation time is

T (n, p) =
(

14
n

p
+ 14 · �log p� + 5

n

p
− 4

)
· top

"
(

19
n

p
+ 14 · log p

)
· top .

The communication overhead is

C(n, p) =
[

2 · log
n

p
+ 2�log p�

]
ts2s(4)+ 2 · ts2s(1)

" 2 · log n · ts2s(4)+ 2 · ts2s(1) .

Compared to the sequential algorithm, the parallel implementation leads to a small
computational redundancy of 14 · log p operations. The communication overhead
increases logarithmically with the number of rows, whereas the computation time
increases linearly.

7.2.3 Generalization to Banded Matrices

The cyclic reduction algorithm can be generalized to banded matrices with semi-
bandwidth r > 1. For the description we assume n = s ·r . The matrix is represented
as a block-tridiagonal matrix of the form

⎛

⎜⎜⎜⎜⎜⎜
⎝

B(0)
1 C (0)

1 0
A(0)

2 B(0)
2 C (0)

2

. . .
. . .

. . .

A(0)
s−1 B(0)

s−1 C (0)
s−1

0 A(0)
s B(0)

s

⎞

⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

X1

X2

...
Xs−1

Xs

⎞

⎟⎟⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜⎜⎜
⎝

Y (0)
1

Y (0)
2
...

Y (0)
s−1

Y (0)
s

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

where

A(0)
i = (alm)l∈Ii ,m∈Ii−1 for i = 2, . . . , s ,

B(0)
i = (alm)l∈Ii ,m∈Ii for i = 1, . . . , s ,

C (0)
i = (alm)l∈Ii ,m∈Ii+1 for i = 1, . . . , s − 1

are sub-matrices of A. The index sets are for i = 1, . . . , s

Ii = { j ∈ N | (i − 1)r < j ≤ ir}.
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The vectors Xi , Y (0)
i ∈ R

r are

Xi = (xl)l∈Ii and Y (0)
i = (yl)l∈Ii for i = 1, . . . , s.

The algorithm from above is generalized by applying the described computation
steps for elements according to Eq. (7.23) to blocks and using matrix operations
instead of operations on single elements. In the first step, three consecutive matrix
equations i − 1, i, i + 1 for i = 3, 4, . . . , s − 2 are considered:

A(0)
i−1 Xi−2 + B(0)

i−1 Xi−1 + C (0)
i−1 Xi =Y (0)

i−1,

A(0)
i Xi−1 + B(0)

i Xi + C (0)
i Xi+1 =Y (0)

i ,

A(0)
i+1 Xi + B(0)

i+1 Xi+1 +C (0)
i+1 Xi+2=Y (0)

i+1.

Equation (i − 1) is used to eliminate subvector Xi−1 from equation i and equation
(i + 1) is used to eliminate subvector Xi+1 from equation i . The algorithm starts
with the following initializations:

A(0)
1 := 0 ∈ R

r×r , C (0)
s := 0 ∈ R

r×r

and for k = 0, . . . , �log s� and i ∈ Z \ {1, . . . , s}

A(k)
i = C (k)

i := 0 ∈ R
r×r ,

B(k)
i := I ∈ R

r×r ,

Y (k)
i := 0 ∈ R

r .

In step k = 1, . . . , �log s� the following sub-matrices

α
(k)
i := −A(k−1)

i

(
B(k−1)

i−2k−1

)−1
,

β
(k)
i := −C (k−1)

i

(
B(k−1)

i+2k−1

)−1
,

A(k)
i = α

(k)
i · A(k−1)

i−2k−1 ,

C (k)
i = β

(k)
i · C (k−1)

i+2k−1 , (7.29)

B(k)
i = α

(k)
i C (k−1)

i−2k−1 + B(k−1)
i + β

(k)
i A(k−1)

i+2k−1

and the vector

Y (k)
i = α

(k)
i Y (k−1)

i−2k−1 + Y (k−1)
i + β

(k)
i Y (k−1)

i+2k−1 (7.30)

are computed. The resulting matrix equations are
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A(k)
i Xi−2k + B(k)

i Xi + C (k)
i Xi+2k = Y (k)

i (7.31)

for i = 1, . . . , s. In summary, the method of cyclic reduction for banded matrices
comprises the following two phases:

1. Elimination phase: For k = 1, . . . , �log s� compute the matrices A(k)
i , B(k)

i , C (k)
i

and the vector Y (k)
i for i = 2k, . . . , s with step size 2k according to Eqs. (7.29)

and (7.30).
2. Substitution phase: For k = 
log s�, . . . , 0 compute subvector Xi for i =

2k, . . . , s with step size 2k+1 by solving the linear equation system (7.31), i.e.,

B(k)
i Xi = Y (k)

i − A(k)
i Xi−2k − C (k)

i Xi+2k .

The computation of α
(k)
i and β

(k)
i requires a matrix inversion or the solution of

a dense linear equation system with a direct method requiring O(r3) computations,
i.e., the computations increase with the bandwidth cubically. The first step requires
the computation of O(s) = O(n/r ) sub-matrices; the asymptotic runtime for this
step is therefore O(nr2). The second step solves a total number of O(s) = O(n/r )
linear equation systems, also resulting in an asymptotic runtime of O(nr2).

For the parallel implementation of the cyclic reduction for banded matrices, the
parallel method described for tridiagonal systems with its three phases can be used.
The main difference is that arithmetic operations in the implementation for tridiag-
onal systems are replaced by matrix operations in the implementation for banded
systems, which increases the amount of computations for each processor. The com-
putational effort for the local operations is now O(r3). Also, the communication
between the processors exchanges larger messages. Instead of single numbers, entire
matrices of size r × r are exchanged so that the message size is O(r2). Thus,
with growing semi-bandwidth r of the banded matrix the time for the computa-
tion increases faster than the communication time. For p � s an efficient parallel
implementation can be expected.

7.2.4 Solving the Discretized Poisson Equation

The cyclic reduction algorithm for banded matrices presented in Sect. 7.2.3 is
suitable for the solution of the discretized two-dimensional Poisson equation. As
shown in Sect. 7.2.1, this linear equation system has a banded structure with
semi-bandwidth N where N is the number of discretization points in the x- or
y-dimension of the two-dimensional domain, see Fig. 7.9. The special structure has
only four non-zero diagonals and the band has a sparse structure. The use of the
Gaussian elimination method would not preserve the sparse banded structure of the
matrix, since the forward elimination for eliminating the two lower diagonals leads
to fill-ins with non-zero elements between the two upper diagonals. This induces a
higher computational effort which is needed for banded matrices with a dense band
of semi-bandwidth N . In the following, we consider the method of cyclic reduction
for banded matrices, which preserves the sparse banded structure.
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The blocks of the discretized Poisson equation Az = d for a representation as
blocked tridiagonal matrix are given by Eqs. (7.18) and (7.19). Using the notation
for the banded system, we get

B(0)
i := 1

h2
B for i = 1, . . . , N ,

A(0)
i := − 1

h2
I and C (0)

i := − 1

h2
I for i = 1, . . . , N .

The vector d ∈ R
n consists of N subvectors D j ∈ R

N , i.e.,

d =

⎛

⎜
⎝

D1
...

DN

⎞

⎟
⎠ with D j =

⎛

⎜
⎝

d( j−1)N+1
...

d j N

⎞

⎟
⎠ .

Analogously, the solution vector consists of N subvectors Z j of length N each, i.e.,

z =

⎛

⎜
⎝

Z1
...

Z N

⎞

⎟
⎠ with Z j =

⎛

⎜
⎝

z( j−1)N+1
...

z j ·N

⎞

⎟
⎠ .

The initialization for the cyclic reduction algorithm is given by

B(0) := B ,

D(0)
j := D j for j = 1, . . . , N ,

D(k)
j := 0 for k = 0, . . . , �log N�, j ∈ Z \ {1, . . . , N } ,

Z j := 0 for j ∈ Z \ {1, . . . , N } .

In step k of the cyclic reduction, k = 1, . . . , 
log N�, the matrices B(k) ∈ R
N×N and

the vectors D(k)
j ∈ R

N for j = 1, . . . , N are computed according to

B(k) = (B(k−1))2 − 2I ,

D(k)
j = D(k−1)

j−2k−1 + B(k−1) D(k−1)
j + D(k−1)

j+2k−1 . (7.32)

For k = 0, . . . , 
log N� Eq. (7.31) has the special form

− Z j−2k + B(k) Z j − Z j+2k = D(k)
j for j = 1, . . . , n . (7.33)

Together Eqs. (7.32) and (7.33) represent the method of cyclic reduction for the
discretized Poisson equation, which can be seen by induction. For k = 0, Eq. (7.33)
is the initial equation system Az = d . For 0 < k < �log N� and j ∈ {1, . . . , N } the
three equations
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− Z j−2k+1 + B(k) Z j−2k − Z j =D(k)
j−2k ,

− Z j−2k + B(k) Z j − Z j+2k = D(k)
j ,

− Z j + B(k) Z j+2k − Z j+2k+1 = D(k)
j+2k

(7.34)

are considered. The multiplication of Eq. (7.33) with B(k) from the left results in

− B(k) Z j−2k + B(k) B(k) Z j − B(k) Z j+2k = B(k) D(k)
j . (7.35)

Adding Eq. (7.35) with the first part in Eq. (7.34) and the third part in Eq. (7.34)
results in

−Z j−2k+1− Z j+B(k) B(k) Z j − Z j−Z j+2k+1 = D(k)
j−2k + B(k) D(k)

j + D(k)
j+2k ,

which shows that Formula (7.32) for k+ 1 is derived. In summary, the cyclic reduc-
tion for the discretized two-dimensional Poisson equation consists of the following
two steps:

1. Elimination phase: For k = 1, . . . , 
log N�, the matrices B(k) and the vectors
D(k)

j are computed for j = 2k, . . . , N with step size 2k according to Eq. (7.32).
2. Substitution phase: For k = 
log N�, . . . , 0, the linear equation system

B(k) Z j = D(k)
j + Z j−2k + Z j+2k

for j = 2k, . . . , N with step size 2k+1 is solved.

In the first phase, 
log N� matrices and O(N ) subvectors are computed. The com-
putation of each matrix includes a matrix multiplication with time O(N 3). The
computation of a subvector includes a matrix–vector multiplication with complexity
O(N 2). Thus, the first phase has a computational complexity of O(N 3 log N ). In the
second phase, O(N ) linear equation systems are solved. This requires time O(N 3)
when the special structure of the matrices B(k) is not exploited. In [61] it is shown
how to reduce the time by exploiting this structure. A parallel implementation of
the discretized Poisson equation can be done in an analogous way as shown in the
previous section.

7.3 Iterative Methods for Linear Systems

In this section, we introduce classical iteration methods for solving linear equa-
tion systems, including the Jacobi iteration, the Gauss–Seidel iteration, and the
SOR method (successive over-relaxation), and discuss their parallel implementa-
tion. Direct methods as presented in the previous sections involve a factorization
of the coefficient matrix. This can be impractical for large and sparse matrices,
since fill-ins with non-zero elements increase the computational work. For banded
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matrices, special methods can be adapted and used as discussed in Sect. 7.2. Another
possibility is to use iterative methods as presented in this section.

Iterative methods for solving linear equation systems Ax = b with coefficient
matrix A ∈ R

n×n and right-hand side b ∈ R
n generate a sequence of approximation

vectors {x (k)}k=1,2,... that converges to the solution x∗ ∈ R
n . The computation of an

approximation vector essentially involves a matrix–vector multiplication with the
iteration matrix of the specific problem. The matrix A of the linear equation system
is used to build this iteration matrix. For the evaluation of an iteration method it is
essential how quickly the iteration sequence converges. Basic iteration methods are
the Jacobi and the Gauss–Seidel methods, which are also called relaxation methods
historically, since the computation of a new approximation depends on a combina-
tion of the previously computed approximation vectors. Depending on the specific
problem to be solved, relaxation methods can be faster than direct solution methods.
But still these methods are not fast enough for practical use. A better convergence
behavior can be observed for methods like the SOR method, which has a similar
computational structure. The practical importance of relaxation methods is their use
as preconditioner in combination with solution methods like the conjugate gradient
method or the multigrid method. Iterative methods are a good first example to study
parallelism as it is typical also for more complex iteration methods. In the following,
we describe the relaxation methods according to [23], see also [71, 166]. Parallel
implementations are considered in [60, 61, 72, 154].

7.3.1 Standard Iteration Methods

Standard iteration methods for the solution of a linear equation system Ax = b are
based on a splitting of the coefficient matrix A ∈ R

n×n into

A = M − N with M, N ∈ R
n×n ,

where M is a non-singular matrix for which the inverse M−1 can be computed easily,
e.g., a diagonal matrix. For the unknown solution x∗ of the equation Ax = b we get

Mx∗ = N x∗ + b .

This equation induces an iteration of the form Mx (k+1) = N x (k)+b, which is usually
written as

x (k+1) = Cx (k) + d (7.36)

with iteration matrix C := M−1 N and vector d := M−1b. The iteration method is
called convergent if the sequence {x (k)}k=1,2,... converges toward x∗ independently
of the choice of the start vector x (0) ∈ R

n , i.e., limk→∞ x (k) = x∗ or limk→∞ ‖x (k) −
x∗‖ = 0. When a sequence converges the vector x∗ is uniquely defined by x∗ =
Cx∗ + d. Subtracting this equation from Eq. (7.36) and using induction leads to the



7.3 Iterative Methods for Linear Systems 401

equality x (k) − x∗ = Ck(x (0) − x∗), where Ck denotes the matrix resulting from k
multiplications of C . Thus, the convergence of Eq. (7.36) is equivalent to

lim
k→∞

Ck = 0 .

A result from linear algebra shows the relation between the convergence criteria
and the spectral radius ρ(C) of the iteration matrix C . (The spectral radius of a
matrix is the eigenvalue with the largest absolute value, i.e., ρ(C) = max

λ∈EW
|λ| with

EW = {λ |Cv = λv, v 	= 0}.) The following properties are equivalent, see [166]:

(1) Iteration (7.36) converges for every x (0) ∈ R
n .

(2) lim
k→∞

Ck = 0.

(3) ρ(C) < 1.

Well-known iteration methods are the Jacobi, the Gauss–Seidel, and the SOR
method.

7.3.1.1 Jacobi Iteration

The Jacobi iteration is based on the splitting A = D − L − R of the matrix A with
D, L , R ∈ R

n×n . The matrix D holds the diagonal elements of A, −L holds the
elements of the lower triangular of A without the diagonal elements, and −R holds
the elements of the upper triangular of A without the diagonal elements. All other
elements of D, L , R are zero. The splitting is used for an iteration of the form

Dx (k+1) = (L + R)x (k) + b,

which leads to the iteration matrix CJa := D−1(L + R) or

CJa = (ci j )i, j=1,...,n with ci j =
{−ai j/aii for j 	= i ,

0 otherwise .

The matrix form is used for the convergence proof, not shown here. For the practical
computation, the equation written out with all its components is more suitable:

x (k+1)
i = 1

aii

⎛

⎝bi −
n∑

j=1, j 	=i

ai j x
(k)
j

⎞

⎠ , i = 1, . . . , n . (7.37)

The computation of one component x (k+1)
i , i ∈ {1, . . . , n}, of the (k + 1)th approx-

imation requires all components of the kth approximation vector xk . Considering a
sequential computation in the order x (k+1)

1 , . . . , x (k+1)
n , it can be observed that the

values x (k+1)
1 , . . . , x (k+1)

i−1 are already known when x (k+1)
i is computed. This informa-

tion is exploited in the Gauss–Seidel iteration method.
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7.3.1.2 Gauss–Seidel Iteration

The Gauss–Seidel iteration is based on the same splitting of the matrix A as the
Jacobi iteration, i.e., A = D − L − R, but uses the splitting in a different way for
an iteration

(D − L)x (k+1) = Rx (k) + b .

Thus, the iteration matrix of the Gauss–Seidel method is CGa := (D − L)−1 R; this
form is used for numerical properties like convergence proofs, not shown here. The
component form for the practical use is

x (k+1)
i = 1

aii

⎛

⎝bi −
i−1∑

j=1

ai j x
(k+1)
j −

n∑

j=i+1

ai j x
(k)
j

⎞

⎠ , i = 1, . . . , n . (7.38)

It can be seen that the components of x (k+1)
i , i ∈ {1, . . . , n}, uses the new infor-

mation x (k+1)
1 , . . . , x (k+1)

i−1 already determined for that approximation vector. This is
useful for a faster convergence in a sequential implementation, but the potential
parallelism is now restricted.

7.3.1.3 Convergence Criteria

For the Jacobi and the Gauss–Seidel iteration the following convergence criteria
based on the structure of A is often helpful. The Jacobi and the Gauss–Seidel itera-
tion converge if the matrix A is strongly diagonal dominant, i.e.,

|aii | >
n∑

j=1, j 	=i

|ai j | , i = 1, . . . , n .

When the absolute values of the diagonal elements are large compared to the sum
of the absolute values of the other row elements, this often leads to a better conver-
gence. Also, when the iteration methods converge, the Gauss–Seidel iteration often
converges faster than the Jacobi iteration, since always the most recently computed
vector components are used. Still the convergence is usually not fast enough for
practical use. Therefore, an additional relaxation parameter is introduced to speed
up the convergence.

7.3.1.4 JOR Method

The JOR method or Jacobi over-relaxation is based on the splitting A = 1
ω

D− L −
R − 1−ω

ω
D of the matrix A with a relaxation parameter ω ∈ R. The component

form of this modification of the Jacobi method is
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x (k+1)
i = ω

aii

⎛

⎝bi −
n∑

j=1, j 	=i

ai j x
(k)
j

⎞

⎠+ (1− ω)x (k)
i , i = 1, . . . , n . (7.39)

More popular is the modification with a relaxation parameter for the Gauss–Seidel
method, the SOR method.

7.3.1.5 SOR Method

The SOR method or (successive over-relaxation) is a modification of the Gauss–
Seidel iteration that speeds up the convergence of the Gauss–Seidel method by intro-
ducing a relaxation parameter ω ∈ R. This parameter is used to modify the way in
which the combination of the previous approximation x (k) and the components of the
current approximation x (k+1)

1 , . . . , x (k+1)
i−1 are combined in the computation of x (k+1)

i .
The (k + 1)th approximation computed according to the Gauss–Seidel iteration
(7.38) is now considered as intermediate result x̂ (k+1) and the next approximation
x (k+1) of the SOR method is computed from both vectors x̂ (k+1) and x (k+1) in the
following way:

x̂ (k+1)
i = 1

aii

⎛

⎝bi −
i−1∑

j=1

ai j x
(k+1)
j −

n∑

j=i+1

ai j x
(k)
j

⎞

⎠ , i = 1, . . . , n , (7.40)

x (k+1)
i = x (k)

i + ω(x̂ (k+1)
i − x (k)

i ) , i = 1, . . . , n . (7.41)

Substituting Eq. (7.40) into Eq. (7.41) results in the iteration

x (k+1)
i = ω

aii

⎛

⎝bi −
i−1∑

j=1

ai j x
(k+1)
j −

n∑

j=i+1

ai j x
(k)
j

⎞

⎠+ (1− ω)x (k)
i (7.42)

for i = 1, . . . , n. The corresponding splitting of the matrix A is A = 1
ω

D − L −
R − 1−ω

ω
D and an iteration step in matrix form is

(D − wL)x (k+1) = (1− ω)Dx (k) + ωRx (k) + ωb .

The convergence of the SOR method depends on the properties of A and the value
chosen for the relaxation parameter ω. For example the following property holds: If
A is symmetric and positive definite and ω ∈ (0, 2), then the SOR method converges
for every start vector x (0). For more numerical properties see books on numerical
linear algebra, e.g., [23, 61, 71, 166].

7.3.1.6 Implementation Using Matrix Operations

The iteration (7.36) computing x (k+1) for a given vector x (k) consists of
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• a matrix–vector multiplication of the iteration matrix C with x (k) and
• a vector–vector addition of the result of the multiplication with vector d.

The specific structure of the iteration matrix, i.e., CJa for the Jacobi iteration
and CGa for the Gauss–Seidel iteration, is exploited. For the Jacobi iteration with
CJa = D−1(L + R) this results in the following computation steps:

• a matrix–vector multiplication of L + R with x (k),
• a vector–vector addition of the result with b, and
• a matrix–vector multiplication with D−1 (where D is a diagonal matrix and thus

D−1 is easy to compute).

A sequential implementation uses Formula (7.37), and the components x (k+1)
i ,

i = 1, . . . , n, are computed one after another. The entire vector x (k) is needed
for this computation. For the Gauss–Seidel iteration with CGa = (D − L)−1 R the
computation steps are

• a matrix–vector multiplication Rx (k) with upper triangular matrix R,
• a vector–vector addition of the result with b, and
• the solution of a linear system with lower triangular matrix (D − L).

A sequential implementation uses Formula (7.38). Since the most recently com-
puted approximation components are always used for computing a value x (k+1)

i ,
the previous value x (k)

i can be overwritten. The iteration method stops when the
current approximation is close enough to the exact solution. Since this solution is
unknown, the relative error is used for error control and after each iteration step the
convergence is tested according to

‖x (k+1) − x (k)‖ ≤ ε‖x (k+1)‖, (7.43)

where ε is a predefined error value and ‖.‖ is a vector norm such as ‖x‖∞ =
maxi=1,...,n |x |i or ‖x‖2 = (

∑n
i=1 |xi |2)

1
2 .

7.3.2 Parallel Implementation of the Jacobi Iteration

In the Jacobi iteration (7.37), the computations of the components x (k+1)
i , i =

1, . . . , n, of approximation x (k+1) are independent of each other and can be exe-
cuted in parallel. Thus, each iteration step has a maximum degree of potential par-
allelism of n and p = n processors can be employed. For a parallel system with
distributed memory, the values x (k+1)

i are stored in the individual local memories.
Since the computation of one of the components of the next approximation requires
all components of the previous approximation, communication has to be performed
to create a replicated distribution of x (k). This can be done by a multi-broadcast
operation.

When considering the Jacobi iteration built up of matrix and vector opera-
tions, a parallel implementation can use the parallel implementations introduced
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in Sect. 3.6. The iteration matrix CJa is not built up explicitly but matrix A is
used without its diagonal elements. The parallel computation of the components
of x (k+1) corresponds to the parallel implementation of the matrix–vector product
using the parallelization with scalar products, see Sect. 3.6. The vector addition
can be done after the multi-broadcast operation by each of the processors or before
the multi-broadcast operation in a distributed way. When using the parallelization
of the linear combination from Sect. 3.6, the vector addition takes place after the
accumulation operation. The final broadcast operation is required to provide x (k+1)

to all processors also in this case.
Figure 7.13 shows a parallel implementation of the Jacobi iteration using C nota-

tion and MPI operations from [135]. For simplicity it is assumed that the matrix
size n is a multiple of the number of processors p. The iteration matrix is stored in a
row-blockwise way so that each processor owns n/p consecutive rows of matrix A
which are stored locally in array local A. The vector b is stored in a corresponding
blockwise way. This means that the processor me, 0 ≤ me < p, stores the rows
me · n/p + 1, . . . , (me+ 1) · n/p of A in local A and the corresponding compo-
nents of b in local b. The iteration uses two local arrays x old and x new for
storing the previous and the current approximation vectors. The symbolic constant
GLOB MAX is the maximum size of the linear equation system to be solved. The
result of the local matrix–vector multiplication is stored in local x; local x is
computed according to Eq. (7.37). An MPI Allgather() operation combines
the local results so that each processor stores the entire vector x new. The iteration
stops when a predefined number max it of iteration steps has been performed or
when the difference between x old and x new is smaller than a predefined value
tol. The function distance() implements a maximum norm and the function
output(x new,global x) returns array global x which contains the last
approximation vector to be the final result.

7.3.3 Parallel Implementation of the Gauss–Seidel Iteration

The Gauss–Seidel iteration (7.38) exhibits data dependences, since the computation
of the component x (k+1)

i , i ∈ {1, . . . , n}, uses the components x (k+1)
1 , . . . , x (k+1)

i−1 of
the same approximation and the components of x (k+1) have to be computed one
after another. Since for each i ∈ {1, . . . , n} the computation (7.38) corresponds to a
scalar product of the vector

(x (k+1)
1 , . . . , x (k+1)

i−1 , 0, x (k)
i+1, . . . , x (k)

n )

and the i th row of A, this means that the scalar products have to be computed one
after another. Thus, parallelism is only possible within the computation of each sin-
gle scalar product: Each processor can compute a part of the scalar product, i.e., a
local scalar product, and the results are then accumulated. For such an implemen-
tation a column-blockwise distribution of matrix A is suitable. Again, we assume
that n is a multiple of the number p of processors. The approximation vectors are



406 7 Algorithms for Systems of Linear Equations

Fig. 7.13 Program fragment in C notation and with MPI communication operations for a par-
allel implementation of the Jacobi iteration. The arrays local x, local b, and local A are
declared globally. The dimension of local A is n local× n. A pointer-oriented storage scheme
as shown in Fig. 7.3 is not used here so that the array indices in this implementation differ from the
indices in a sequential implementation. The computation of local x[i local] is performed
in two loops with loop index j ; the first loop corresponds to the multiplication with array elements
in row i local to the left of the main diagonal of A and the second loop corresponds to the mul-
tiplication with array elements in row i local to the right of the main diagonal of A. The result
is divided by local A[i local][i global] which corresponds to the diagonal element of
that row in the global matrix A
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distributed correspondingly in a blockwise way. Processor Pq , 1 ≤ q ≤ p, com-
putes that part of the scalar product for which it owns the columns of A and the
components of the approximation vector x (k). This is the computation

sqi =
q·n/p∑

j=(q−1)·n/p+1
j<i

ai j x
(k+1)
j +

q·n/p∑

j=(q−1)·n/p+1
j>i

ai j x
(k)
j . (7.44)

The intermediate results sqi computed by processors Pq , q = 1, . . . , p, are accumu-
lated by a single-accumulation operation with the addition as reduction operation
and the value x (k+1)

i is the result. Since the next approximation vector x (k+1) is
expected in a blockwise distribution, the value x (k+1)

i is accumulated at the pro-
cessor owning the i th component, i.e., x (k+1)

i is accumulated by processor Pq with
q = �i/(n/p)�. A parallel implementation of the SOR method corresponds to the
parallel implementation of the Gauss–Seidel iteration, since both methods differ
only in the additional relaxation parameter of the SOR method.

Figure 7.14 shows a program fragment using C notation and MPI operations of a
parallel Gauss–Seidel iteration. Since only the most recently computed components
of an approximation vector are used in further computations, the component x (k)

i is
overwritten by x (k+1)

i immediately after its computation. Therefore, only one array
x is needed in the program. Again, an array local A stores the local part of matrix
A which is a block of columns in this case; n local is the size of the block. The
for loop with loop index i computes the scalar products sequentially; within the
loop body the parallel computation of the inner product is performed according to
Formula (7.44). An MPI reduction operation computes the components at differing
processors root which finalizes the computation.

7.3.4 Gauss–Seidel Iteration for Sparse Systems

The potential parallelism for the Gauss–Seidel iteration or the SOR method is lim-
ited because of data dependences so that a parallel implementation is only reason-
able for very large equation systems. Each data dependency in Formula (7.38) is
caused by a coefficient (ai j ) of matrix A, since the computation of x (k+1)

i depends on
the value x (k+1)

j , j < i , when (ai j ) 	= 0. Thus, for a linear equation system Ax = b
with sparse matrix A = (ai j )i, j=1,...,n there is a larger degree of parallelism caused
by less data dependences. If ai j = 0, then the computation of x (k+1)

i does not depend
on x (k+1)

j , j < i . For a sparse matrix with many zero elements the computation of

x (k+1)
i only needs a few x (k+1)

j , j < i . This can be exploited to compute components
of the (k + 1)th approximation x (k+1) in parallel.

In the following, we consider sparse matrices with a banded structure like the
discretized Poisson equation, see Eq. (7.13) in Sect. 7.2.1. The computation of x (k+1)

i
uses the elements in the i th row of A, see Fig. 7.9, which has non-zero elements ai j
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Fig. 7.14 Program fragment in C notation and using MPI operations for a parallel Gauss–Seidel
iteration for a dense linear equation system. The components of the approximations are computed
one after another according to Formula (7.38), but each of these computations is done in parallel by
all processors. The matrix is stored in a column-blockwise way in the local arrays local A. The
vectors x and b are also distributed blockwise. Each processor computes the local error and stores
it in delta x. An MPI Allreduce() operation computes the global error global delta
from these values so that each processor can perform the convergence test global delta >
tol

for j = i −√n, i −1, i, i +1, i +√n. Formula (7.38) of the Gauss–Seidel iteration
for the discretized Poisson equation has the specific form

x (k+1)
i = 1

aii

(
bi − ai,i−√n · x (k+1)

i−√n
− ai,i−1 · x (k+1)

i−1 − ai,i+1 · x (k)
i+1

− ai,i+√n · x (k)
i+√n

)
, i = 1, . . . , n . (7.45)

Thus, the two values x (k+1)
i−√n

and x (k+1)
i−1 have to be computed before the compu-

tation of x (k+1)
i . The dependences of the values x (k+1)

i , i = 1, . . . , n, on x (k+1)
j ,

j < i , are illustrated in Fig. 7.15(a) for the corresponding mesh of the discretized
physical domain. The computation of x (k+1)

i corresponds to the mesh point i , see also
Sect. 7.2.1. In this mesh, the computation of x (k+1)

i depends on all computations for
mesh points which are located in the upper left part of the mesh. On the other hand,
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Fig. 7.15 Data dependence
of the Gauss–Seidel and the
SOR method for a
rectangular mesh of size
6× 4 in the x–y plane. (a)
The data dependences
between the computations of
components are depicted as
arrows between nodes in the
mesh. As an example, for
mesh point 9 the set of nodes
which have to be computed
before point 9 and the set of
nodes which depend on mesh
point 9 are shown. (b) The
data dependences lead to
areas of independent
computations; these are the
diagonals of the mesh from
the upper right to the lower
left. The computations for
mesh points within the same
diagonal can be computed in
parallel. The length of the
diagonals is the degree of
potential parallelism which
can be exploited
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(a) Data dependences of the SOR method

(b) Independent computations within the diagonals

computations for mesh points j > i which are located to the right or below mesh
point i need value x (k+1)

i and have to wait for its computation.
The data dependences between computations associated with mesh points are

depicted in the mesh by arrows between the mesh points. It can be observed that
the mesh points in each diagonal from left to right are independent of each other;
these independent mesh points are shown in Fig. 7.15(b). For a square mesh of size√

n×√n with the same number of mesh points in each dimension, there are at most√
n independent computations in a single diagonal and at most p = √n processors

can be employed.
A parallel implementation can exploit the potential parallelism in a loop structure

with an outer sequential loop and an inner parallel loop. The outer sequential loop
visits the diagonals one after another from the upper left corner to the lower right
corner. The inner loop exploits the parallelism within each diagonal of the mesh.
The number of diagonals is 2

√
n − 1 consisting of

√
n diagonals in the upper left

triangular mesh and
√

n − 1 in the lower triangular mesh. The first
√

n diagonals
l = 1, . . . ,

√
n contain l mesh points i with

i = l + j · (√n − 1) for 0 ≤ j < l .
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The last
√

n − 1 diagonals l = 2, . . . ,
√

n contain
√

n − l + 1 mesh points i with

i = l · √n + j · (√n − 1) for 0 ≤ j ≤ √n − l .

For an implementation on a distributed memory machine, a distribution of the
approximation vector x , the right-hand side b, and the coefficient matrix A is
needed. The elements ai j of matrix A are distributed in such a way that the coeffi-
cients for the computation of x (k+1)

i according to Formula (7.45) are locally avail-
able. Because the computations are closely related to the mesh, the data distribution
is chosen for the mesh and not the matrix form.

The program fragment with C notation in Fig. 7.16 shows a parallel SPMD
implementation. The data distribution is chosen such that the data associated with

Fig. 7.16 Program fragment of the parallel Gauss–Seidel iteration for a linear equation system
with the banded matrix from the discretized Poisson equation. The computational structure uses
the diagonals of the corresponding discretization mesh, see Fig. 7.15
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mesh points in the same mesh row are stored in the same processor. A row-cyclic
distribution of the mesh data is used. The program has two loop nests: The first
loop nest treats the upper diagonals and the second loop nest treats the last diag-
onals. In the inner loops, the processor with name me computes the mesh points
which are assigned to it due to the row-cyclic distribution of mesh points. The
function collect elements() sends the data computed to the neighboring pro-
cessor, which needs them for the computation of the next diagonal. The function
convergence test(), not expressed explicitly in this program, can be imple-
mented similarly as in the program in Fig. 7.14 using the maximum norm for
x (k+1) − x (k).

The program fragment in Fig. 7.16 uses two-dimensional indices for accessing
array elements of array a. For a large sparse matrix, a storage scheme for sparse
matrices would be used in practice. Also, for a problem such as the discretized
Poisson equation where the coefficients are known it is suitable to code them directly
as constants into the program. This saves expensive array accesses but the code is
less flexible to solve other linear equation systems.

For an implementation on a shared memory machine, the inner loop is performed
in parallel by p = √

n processors in an SPMD pattern. No data distribution is
needed but the same distribution of work to processors is assigned. Also, no com-
munication is needed to send data to neighboring processors. However, a barrier
synchronization is used instead to make sure that the data of the previous diagonal
are available for the next one.

A further increase of the potential parallelism for solving sparse linear equation
systems can be achieved by the method described in the next section.

7.3.5 Red–Black Ordering

The potential parallelism of the Gauss–Seidel iteration or the successive over-
relaxation for sparse systems resulting from discretization problems can be increased
by an alternative ordering of the unknowns and equations. The goal of the reorder-
ing is to get an equivalent equation system in which more independent compu-
tations exist and, thus, a higher potential parallelism results. The most frequently
used reordering technique is the red–black ordering. The two-dimensional mesh is
regarded as a checkerboard where the points of the mesh represent the squares of the
checkerboard and get corresponding colors. The point (i, j) in the mesh is colored
according to the value of i + j : If i + j is even, then the mesh point is red, and if
i + j is odd, then the mesh point is black.

The points in the grid now form two sets of points. Both sets are numbered sep-
arately in a rowwise way from left to right. First the red points are numbered by
1, . . . , nR where nR is the number of red points. Then, the black points are numbered
by nR + 1, . . . , nR + nB where nB is the number of black points and n = nR + nB .
The unknowns associated with the mesh points get the same numbers as the mesh
points: There are nR unknowns associated with the red points denoted as x̂1, . . . , x̂nR

and nB unknowns associated with the black points denoted as x̂nR+1, . . . , x̂nR+nB .
(The notation x̂ is used to distinguish the new ordering from the original ordering
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of the unknowns x . The unknowns are the same as before but their positions in
the system differ.) Figure 7.17 shows a mesh of size 6 × 4 in its original rowwise
numbering in part (a) and a red–black ordering with the new numbering in part (b).

In a linear equation system using red–black ordering, the equations of red
unknowns are arranged before the equations with the black unknown. The equation
system Âx̂ = b̂ for the discretized Poisson equation has the form

1 2 3 4 5 6

7 8 9 11 1210

13 14 15 16 17 18

19 20 21 22 23 24

1 13 2 314 15

4 5 6

7 8 9

16 17 18

19 20 21

22 23 2410 11 12

(a) Mesh in the x−y plane with rowwise numbering

(b) Mesh in the x−y plane with red−black numbering

(c) Matrix structure of the discretized Poisson equation with red−black ordering

Fig. 7.17 Rectangular mesh in the x–y plane of size 6 × 4 with (a) rowwise numbering, (b) red–
black numbering, and (c) the matrix of the corresponding linear equation system of the five-point
formula with red–black numbering
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Â · x̂ =
(

DR F
E DB

)
·
(

x̂R

x̂B

)
=
(

b̂1

b̂2

)
, (7.46)

where x̂R denotes the subvector of size nR of the first (red) unknowns and x̂B denotes
the subvector of size nB of the last (black) unknowns. The right-hand side b of the
original equation system is reordered accordingly and has subvector b̂1 for the first
nR equations and subvector b̂2 for the last nB equations. The matrix Â consists
of four blocks DR ∈ R

nR×nR , DB ∈ R
nB×nB , E ∈ R

nB×nR , and F ∈ R
nR×nB .

The submatrices DR and DB are diagonal matrices and the submatrices E and F
are sparse banded matrices. The structure of the original matrix of the discretized
Poisson equation in Fig. 7.9 in Sect. 7.2.1 is thus transformed into a matrix Â with
the structure shown in Fig. 7.17(c).

The diagonal form of the matrices DR and DB shows that a red unknown x̂i ,
i ∈ {1, . . . , nR}, does not depend on the other red unknowns and a black unknown
x̂ j , j ∈ {nR + 1, . . . , nR + nB}, does not depend on the other black unknowns.
The matrices E and F specify the dependences between red and black unknowns.
The row i of matrix F specifies the dependences of the red unknowns x̂i (i <

nR) on the black unknowns x̂ j , j = nR + 1, . . . , nR + nB . Analogously, a row of
matrix E specifies the dependences of the corresponding black unknowns on the red
unknowns.

The transformation of the original linear equation system Ax = b into the
equivalent system Âx̂ = b̂ can be expressed by a permutation π : {1, . . . , n} →
{1, . . . , n}. The permutation maps a node i ∈ {1, . . . , n} of the rowwise numbering
onto the number π (i) of the red–black numbering in the following way:

xi = x̂π (i), bi = b̂π (i), i = 1, . . . , n or x = Px̂ and b = Pb̂

with a permutation matrix P = (Pi j )i, j=1,...,n, Pi j =
{

1 if j = π (i)
0 otherwise

. For

the matrices A and Â the equation Â = PT AP holds. Since for a permutation
matrix the inverse is equal to the transposed matrix, i.e., PT = P−1, this leads to
Âx̂ = PT AP PT x = PT b = b̂. The easiest way to exploit the red–black ordering
is to use an iterative solution method as discussed earlier in this section.

7.3.5.1 Gauss–Seidel Iteration for Red–Black Systems

The solution of the linear equation system (7.46) with the Gauss–Seidel iteration is
based on a splitting of the matrix Â of the form Â = D̂ − L̂ − Û , D̂, L̂, Û ∈ R

n×n ,

D̂ =
(

DR 0
0 DB

)
, L̂ =

(
0 0
−E 0

)
, Û =

(
0 −F
0 0

)
,

with a diagonal matrix D̂, a lower triangular matrix L̂ , and an upper triangular
matrix Û . The matrix 0 is a matrix in which all entries are 0. With this notation,
iteration step k of the Gauss–Seidel method is given by
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(
DR 0
E DB

)
·
(

x (k+1)
R

x (k+1)
B

)
=
(

b1

b2

)
−
(

0 F
0 0

)
·
(

x (k)
R

x (k)
B

)
(7.47)

for k = 1, 2, . . .. According to equation system (7.46), the iteration vector is split
into two subvectors x (k+1)

R and x (k+1)
B for the red and the black unknowns, respec-

tively. (To simplify the notation, we use xR instead of x̂R in the following discussion
of the red–black ordering.)

The linear equation system (7.47) can be written in vector notation for vectors
x (k+1)

R and x (k+1)
B in the form

DR · x (k+1)
R = b1 − F · x (k)

B for k = 1, 2, . . . , (7.48)

DB · x (k+1)
B = b2 − E · x (k+1)

R for k = 1, 2, . . . , (7.49)

in which the decoupling of the red subvector x (k+1)
R and the black subvector x (k+1)

B

becomes obvious: In Eq. (7.48) the new red iteration vector x (k+1)
R depends only

on the previous black iteration vector x (k)
B and in Eq. (7.49) the new black iteration

vector x (k+1)
B depends only on the red iteration vector x (k+1)

R computed before in the
same iteration step. There is no additional dependence. Thus, the potential degree of
parallelism in Eq. (7.48) or (7.49) is similar to the potential parallelism in the Jacobi
iteration. In each iteration step k, the components of x (k+1)

R according to Eq. (7.48)
can be computed independently, since the vector x (k)

B is known, which leads to a
potential parallelism with p = nR processors. Afterwards, the vector x (k+1)

R is
known and the components of the vector x (k+1)

B can be computed independently
according to Eq. (7.49), leading to a potential parallelism of p = nR processors.

For a parallel implementation, we consider the Gauss–Seidel iteration of the red–
black ordering (7.48) and (7.49) written out in a component-based form:

(
x (k+1)

R

)

i
= 1

âii

(

b̂i −
∑

j∈N (i)
âi j · (x (k)

B ) j

)

, i = 1, . . . , nR ,

(
x (k+1)

B

)

i
= 1

âi+n R ,i+n R

(

b̂i+nR−
∑

j∈N (i)
âi+nR , j · (x (k+1)

R ) j

)

, i = 1, . . . , nB .

The set N (i) denotes the set of adjacent mesh points for mesh point i . According to
the red–black ordering, the set N (i) contains only black mesh points for a red point
i and vice versa. An implementation on a shared memory machine can employ at
most p = nR or p = nB processors. There are no access conflicts for the par-
allel computation of x (k)

R or x (k)
B but a barrier synchronization is needed between

the two computation phases. The implementation on a distributed memory machine
requires a distribution of computation and data. As discussed before for the paral-
lel SOR method, it is useful to distribute the data according to the mesh structure
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such that the processor Pq to which the mesh point i is assigned is responsible for
the computation or update of the corresponding component of the approximation
vector. In a row-oriented distribution of a squared mesh with

√
n × √n = n mesh

points to p processors,
√

n/p rows of the mesh are assigned to each processor Pq ,
q ∈ {1, . . . , p}. In the red–black coloring this means that each processor owns 1

2
n
p

red and 1
2

n
p black mesh points. (For simplicity we assume that

√
n is a multiple of

p.) Thus, the mesh points

(q − 1) · nR

p
+ 1, . . . , q · nR

p
for q = 1, . . . , p and

(q − 1) · nB

p
+ 1+ nR, . . . , q · nB

p
+ nR for q = 1, . . . , p

are assigned to processor Pq . Figure 7.18 shows an SPMD program implement-
ing the Gauss–Seidel iteration with red–black ordering. The coefficient matrix A
is stored according to the pointer-based scheme introduced earlier in Fig. 7.3. After
the computation of the red components xr, a function collect elements(xr)
distributes the red vector to all other processors for the next computation.
Analogously, the black vector xb is distributed after its computation. The function
collect elements() can be implemented by a multi-broadcast operation.

Fig. 7.18 Program fragment for the parallel implementation of the Gauss–Seidel method with the
red–black ordering. The arrays xr and xb denote the unknowns corresponding to the red or black
mesh points. The processor number of the executing processor is stored in me
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7.3.5.2 SOR Method for Red–Black Systems

An SOR method for the linear equation system (7.46) with relaxation parameter ω

can be derived from the Gauss–Seidel computation (7.48) and (7.49) by using the
combination of the new and the old approximation vectors as introduced in Formula
(7.41). One step of the SOR method has then the form

x̃ (k+1)
R = D−1

R · b1 − D−1
R · F · x (k)

B ,

x̃ (k+1)
B = D−1

B · b2 − D−1
B · E · x (k+1)

R ,

x (k+1)
R = x (k)

R + ω
(

x̃ (k+1)
R − x (k)

R

)
, (7.50)

x (k+1)
B = x (k)

B + ω
(

x̃ (k+1)
B − x (k)

B

)
, k = 1, 2, . . . .

The corresponding splitting of matrix Â is Â = 1
ω

D̂ − L̂ − Û − 1−ω
ω

D̂ with the
matrices D̂, L̂, Û introduced above. This can be written using block matrices:

(
DR 0
ωE DB

)
·
(

x (k+1)
R

x (k+1)
B

)
(7.51)

= (1− ω)

(
DR 0
0 DB

)
·
(

x (k)
R

x (k)
B

)
− ω

(
0 F
0 0

)
·
(

x (k)
R

x (k)
B

)
+ ω

(
b1

b2

)
.

For a parallel implementation the component form of this system is used. On
the other hand, for the convergence results the matrix form and the iteration matrix
have to be considered. Since the iteration matrix of the SOR method for a given
linear equation system Ax = b with a certain order of the equations and the iter-
ation matrix of the SOR method for the red–black system Âx̂ = b̂ are different,
convergence results cannot be transferred. The iteration matrix of the SOR method
with red–black ordering is

Ŝω =
(

1

ω
D̂ − L̂

)−1 (1− ω

ω
D̂ + Û

)
.

For a convergence of the method it has to be shown that ρ(Ŝω) < 1 for the spectral
radius of Ŝω and ω ∈ R. In general, the convergence cannot be derived from the
convergence of the SOR method for the original system, since PT Sω P is not iden-
tical to Ŝω, although PT AP = Â holds. However, for the specific case of the model
problem, i.e., the discretized Poisson equation, the convergence can be shown. Using
the equality PT AP = Â, it follows that Â is symmetric and positive definite and,
thus, the method converges for the model problem, see [61].

Figure 7.19 shows a parallel SPMD implementation of the SOR method for
the red–black ordered discretized Poisson equation. The elements of the coeffi-
cient matrix are coded as constants. The unknowns are stored in a two-dimensional
structure corresponding to the two-dimensional mesh and not as vector so that
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Fig. 7.19 Program fragment of a parallel SOR method for a red–black ordered discretized Poisson
equation

unknowns appear as x[i][j] in the program. The mesh points and the correspond-
ing computations are distributed among the processors; the mesh points belong-
ing to a specific processor are stored in myregion. The color red or black of
a mesh point (i, j) is an additional attribute which can be retrieved by the func-
tions is red() and is black(). The value f[i][j] denotes the discretized
right-hand side of the Poisson equation as described earlier, see Eq. (7.15). The
functions exchange red borders() and exchange black borders()
exchange the red or black data of the red or black mesh points between neighboring
processors.

7.4 Conjugate Gradient Method

The conjugate gradient method or CG method is a solution method for linear equa-
tion systems Ax = b with symmetric and positive definite matrix A ∈ R

n×n , which
has been introduced in [86]. (A is symmetric if ai j = a ji and positive definite if
xT Ax > 0 for all x ∈ R

n with x 	= 0.) The CG method builds up a solution x∗ ∈ R
n

in at most n steps in the absence of roundoff errors. Considering roundoff errors
more than n steps may be needed to get a good approximation of the exact solution
x∗. For sparse matrices a good approximation of the solution can be achieved in less
than n steps, also with roundoff errors [150]. In practice, the CG method is often
used as preconditioned CG method which combines a CG method with a precon-
ditioner [154]. Parallel implementations are discussed in [72, 133, 134, 154]; [155]
gives an overview. In this section, we present the basic CG method and parallel
implementations according to [23, 71, 166].
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7.4.1 Sequential CG Method

The CG method exploits an equivalence between the solution of a linear equation
system and the minimization of a function.

More precisely, the solution x∗ of the linear equation system Ax = b, A ∈ R
n×n ,

b ∈ R
n , is the minimum of the function Φ : M ⊂ R

n → R with

Φ(x) = 1

2
xT Ax − bT x , (7.52)

if the matrix A is symmetric and positive definite. A simple method to determine the
minimum of the function Φ is the method of the steepest gradient [71] which uses
the negative gradient. For a given point xc ∈ R

n the function decreases most rapidly
in the direction of the negative gradient. The method computes the following two
steps:

(a) Computation of the negative gradient dc ∈ R
n at point xc:

dc = − grad Φ(xc) = −
(

∂

∂x1
Φ(xc), . . . ,

∂

∂xn
Φ(xc)

)
= b − Axc.

(b) Determination of the minimum of Φ in the set

{xc + tdc | t ≥ 0} ∩ M ,

which forms a line in R
n (line search). This is done by inserting xc + tdc into

Formula (7.52). Using dc = b − Axc and the symmetry of matrix A we get

Φ(xc + tdc) = Φ(xc)− tdT
c dc + 1

2
t2dT

c Adc . (7.53)

The minimum of this function with respect to t ∈ R can be determined using the
derivative of this function with respect to t . The minimum is

tc = dT
c dc

dT
c Adc

. (7.54)

The steps (a) and (b) of the method of the steepest gradient are used to create a
sequence of vectors xk, k = 0, 1, 2, . . . , with x0 ∈ R

n and xk+1 = xk + tkdk .
The sequence (Φ(xk))k=0,1,2,... is monotonically decreasing which can be seen by
inserting Formula (7.54) into Formula (7.53). The sequence converges toward the
minimum but the convergence might be slow [71].

The CG method uses a technique to determine the minimum which exploits
orthogonal search directions in the sense of conjugate or A-orthogonal vectors dk .
For a given matrix A, which is symmetric and non-singular, two vectors x, y ∈ R

n

are called conjugate or A-orthogonal, if xT Ay = 0. If A is positive definite, k
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pairwise conjugate vectors d0, . . . , dk−1 (with di 	= 0, i = 0, . . . , k − 1 and k ≤ n)
are linearly independent [23]. Thus, the unknown solution vector x∗ of Ax = b can
be represented as a linear combination of the conjugate vectors d0, . . . , dn−1, i.e.,

x∗ =
n−1∑

k=0

tkdk . (7.55)

Since the vectors are orthogonal, dT
k Ax∗ = ∑n−1

l=0 dT
k Atldl = tkdT

k Adk . This
leads to

tk = dk Ax∗

dT
k Adk

= dT
k b

dT
k Adk

for the coefficients tk . Thus, when the orthogonal vectors are known, the values tk ,
k = 0, . . . , n − 1, can be computed from the right-hand side b.

The algorithm for the CG method uses a representation

x∗ = x0 +
n−1∑

i=0

αi di (7.56)

of the unknown solution vector x∗ as a sum of a starting vector x0 and a term∑n−1
i=0 αi di to be computed. The second term is computed recursively by

Fig. 7.20 Algorithm of the CG method. (1) and (2) compute the values αk according to Eq. (7.58).
The vector wk is used for the intermediate result Adk . (3) is the computation given in Formula
(7.57). (4) computes gk+1 for the next iteration step according to Formula (7.58) in a recursive
way: gk+1 = Axk+1 − b = A(xk + αkdk )− b = gk + Aαkdk . This vector gk+1 represents the error
between the approximation xk and the exact solution. (5) and (6) compute the next vector dk+1 of
the set of conjugate gradients
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xk+1 = xk + αkdk, k = 1, 2, . . . , with (7.57)

αk = −gT
k dk

dT
k Adk

and gk = Axk − b . (7.58)

Formulas (7.57) and (7.58) determine x∗ according to Eq. (7.56) by computing αi

and adding αi di in each step, i = 1, 2, . . .. Thus, the solution is computed after at
most n steps. If not all directions dk are needed for x∗, less than n steps are required.

Algorithms implementing the CG method do not choose the conjugate vectors
d0, . . . , dn−1 before computing the vectors x0,..., xn−1 but compute the next con-
jugate vector from the given gradient gk by adding a correction term. The basic
algorithm for the CG method is given in Fig. 7.20.

7.4.2 Parallel CG Method

The parallel implementation of the CG method is based on the algorithm given
in Fig. 7.20. Each iteration step of this algorithm implementing the CG method
consists of the following basic vector and matrix operations.

7.4.2.1 Basic Operations of the CG Algorithm

The basic operations of the CG algorithm are

(1) a matrix–vector multiplication Adk ,
(2) two scalar products gT

k gk and dT
k wk ,

(3) a so-called axpy-operation xk + αkdk

(The name axpy comes from a x plus y describing the computation.),
(4) an axpy-operation gk + αkwk ,
(5) a scalar product gT

k+1gk+1, and
(6) an axpy-operation −gk+1 + βkdk .

The result of gT
k gk is needed in two consecutive steps and so the computation of one

scalar product can be avoided by storing gT
k gk in the scalar value γk . Since there are

mainly one matrix–vector product and scalar products, a parallel implementation
can be based on parallel versions of these operations.

Like the CG method many algorithms from linear algebra are built up from
basic operations like matrix–vector operations or axpy-operations and efficient
implementations of these basic operations lead to efficient implementations of the
entire algorithms. The BLAS (Basic Linear Algebra Subroutines) library offers
efficient implementations for a large set of basic operations. This includes many
axpy-operations which denote that a vector x is multiplied by a scalar value a and
then added to another vector y. The prefixes s in saxpy or d daxpy denote axpy-
operations for simple precision and double precision, respectively. Introductory
descriptions of the BLAS library are given in [43] or [60]. A standard way to par-
allelize algorithms for linear algebra is to provide efficient parallel implementations
of the BLAS operations and to build up a parallel algorithm from these basic parallel
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operations. This technique is ideally suited for the CG method since it consists of
such basic operations.

Here, we consider a parallel implementation based on the parallel implemen-
tations for matrix–vector multiplication or scalar product for distributed memory
machines as presented in Sect. 3. These parallel implementations are based on a data
distribution of the matrix and the vectors involved. For an efficient implementation
of the CG method it is important that the data distributions of different basic opera-
tions fit together in order to avoid expensive data re-distributions between the oper-
ations. Figure 7.21 shows a data dependence graph in which the nodes correspond
to the computation steps (1)–(6) of the CG algorithm in Fig. 7.20 and the arrows
depict a data dependency between two of these computation steps. The arrows are
annotated with data structures computed in one step (outgoing arrow) and needed
for another step with incoming arrow. The data dependence graph for one iteration
step k is a directed acyclic graph (DAG). There are also data dependences to the
previous iteration step k − 1 and the next iteration step k + 1, which are shown as
dashed arrows.

There are the following dependences in the CG method: The computation (2)
needs the result wk from computation (1) but also the vector dk and the scalar value
γk from the previous iteration step k − 1; γk is used to store the intermediate result
γk = gT

k gk . Computation (3) needs αk from computation step (2) and the vectors
xk, dk from the previous iteration step k − 1. Computation (4) also needs αk from

( 3 )

xk

xk+1

( 2 )

( 4 )

( 5 )

αk

β k

γk+1g k+1

gk γk

wk

wk

( 6 )

dk

dk+1

( 1 )

αk

gk+1

k−1

k

k+1

Iteration step

Iteration step

Iteration step

Fig. 7.21 Data dependences between the computation steps (1)–(6) of the CG method in Fig. 7.20.
Nodes represent the computation steps of one iteration step k. Incoming arrows are annotated by
the data required and outgoing arrows are annotated by the data produced. Two nodes have an
arrow between them if one of the nodes produces data which are required by the node with the
incoming arrow. The data dependences to the previous iteration step k−1 or the next iteration step
k+ 1 are given as dashed arrows. The data are named in the same way as in Fig. 7.20; additionally
the scalar γk is used for the intermediate result γk = gT

k gk computed in step (5) and required for
the computations of αk and βk in computation steps (2) and (5) of the next iteration step
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computation step (2) and vector wk from computation (1). Computation (5) needs
vector gk+1 from computation (4) and scalar value γk from the previous iteration
step k−1; computation (6) needs the scalar value from βk from computation (5) and
vector dk from iteration step k−1. This shows that there are many data dependences
between the different basic operations. But it can also be observed that computation
(3) is independent of the computations (4)–(6). Thus, the computation sequence
(1),(2),(3),(4),(5),(6) as well as the sequence (1),(2),(4),(5),(6),(3) can be used. The
independence of computation (3) from computations (4)–(6) is also another source
of parallelism, which is a coarse-grained parallelism of two linear algebra operations
performed in parallel, in contrast to the fine-grained parallelism exploited for a sin-
gle basic operation. In the following, we concentrate on the fine-grained parallelism
of basic linear algebra operations.

When the basic operations are implemented on a distributed memory machine,
the data distribution of matrices and vectors and the data dependences between oper-
ations might require data re-distribution for a correct implementation. Thus, the data
dependence graph in Fig. 7.21 can also be used to study the communication require-
ments for re-distribution in a message-passing program. Also the data dependences
between two iteration steps may lead to communication for data re-distribution.

To demonstrate the communication requirements, we consider an implementa-
tion of the CG method in which the matrix A has a row-blockwise distribution and
the vectors dk , ωk , gk , xk , and rk have a blockwise distribution. In one iteration
step of a parallel implementation, the following computation and communication
operations are performed.

7.4.2.2 Parallel CG Implementation with Blockwise Distribution

The parallel CG implementation has to consider data distributions in the following
way:

(0) Before starting the computation of iteration step k, the vector dk computed in
the previous step has to be re-distributed from a blockwise distribution of step
k − 1 to a replicated distribution required for step k. This can be done with a
multi-broadcast operation.

(1) The matrix–vector multiplication wk = Adk is implemented with a row-
blockwise distribution of A as described in Sect. 3.6. Since dk is now replicated,
no further communication is needed. The result vector wk is distributed in a
blockwise way.

(2) The scalar product dT
k wk is computed in parallel with the same blockwise dis-

tribution of both vectors. (The scalar product γk = gT
k gk is computed in the

previous iteration step.) Each processor computes a local scalar product for its
local vectors. The final scalar product is then computed by the root processor
of a single-accumulation operation with addition as reduction operation. This
processor owns the final result αk and sends it to all other processors by a
single-broadcast operation.

(3) The scalar value αk is known by each processor and thus the axpy-operation
xk+1 = xk + αkdk can be done in parallel without further communication. Each
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processor performs the arithmetic operations locally and the vector xk+1 results
in a blockwise distribution.

(4) The axpy-operation gk+1 = gk+αkwk is computed analogously to computation
step (3) and the result vector gk+1 is distributed in a blockwise way.

(5) The scalar product γk+1 = gT
k+1gk+1 is computed analogously to computation

step (2). The resulting scalar value βk is computed by the root processor of a
single-accumulation operation and then broadcasted to all other processors.

(6) The axpy-operation dk+1 = −gk+1 + βkdk is computed analogously to compu-
tation step (3). The result vector dk+1 has a blockwise distribution.

7.4.2.3 Parallel Execution Time

The parallel execution time of one iteration step of the CG method is the sum of
the parallel execution times of the basic operations involved. We derive the paral-
lel execution time for p processors; n is the system size. It is assumed that n is a
multiple of p. The parallel execution time of one axpy-operation is given by

Taxpy = 2 · n

p
· top ,

since each processor computes n/p components and the computation of each com-
ponent needs one multiplication and one addition. As in earlier sections, the time for
one arithmetic operation is denoted by top. The parallel execution time of a scalar
product is

Tscal prod = 2 ·
(

n

p
− 1

)
· top + Tacc(+)(p, 1)+ Tsb(p, 1) ,

where Tacc(op)(p, m) denotes the communication time of a single-accumulation
operation with reduction operation op on p processors and message size m. The
computation of the local scalar products with n/p components requires n/p multi-
plications and n/p− 1 additions. The distribution of the result of the parallel scalar
product, which is a scalar value, i.e., has size 1, needs the time of a single-broadcast
operation Tsb(p, 1). The matrix–vector multiplication needs time

Tmath vec mult = 2 · n2

p
· top ,

since each processor computes n/p scalar products. The total computation time of
the CG method is

TCG = Tmb

(
p,

n

p

)
+ Tmath vec mult + 2 · Tscal prod + 3 · Taxpy ,
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where Tmb(p, m) is the time of a multi-broadcast operation with p processors and
message size m. This operation is needed for the re-distribution of the direction
vector dk from iteration step k .

7.5 Cholesky Factorization for Sparse Matrices

Linear equation systems arising in practice are often large but have sparse coef-
ficient matrices, i.e., they have many zero entries. For sparse matrices with regu-
lar structure, like banded matrices, only the diagonals with non-zero elements are
stored and the solution methods introduced in the previous sections can be used. For
an unstructured pattern of non-zero elements in sparse matrices, however, a more
general storage scheme is needed and other parallel solution methods are applied.
In this section, we consider the Cholesky factorization as an example of such a
solution method. The general sequential factorization algorithm and its variants for
sparse matrices are introduced in Sect. 7.5.1. A specific storage scheme for sparse
unstructured matrices is given in Sect. 7.5.2. In Sect. 7.5.3, we discuss parallel
implementations of sparse Cholesky factorization for shared memory machines.

7.5.1 Sequential Algorithm

The Cholesky factorization is a direct solution method for a linear equation system
Ax = b. The method can be used if the coefficient matrix A = (ai j ) ∈ R

n×n is
symmetric and positive definite, i.e., if ai j = a ji and xT Ax > 0 for all x ∈ R

n with
x 	= 0. For a symmetric and positive definite n × n matrix A ∈ R

n×n there exists a
unique triangular factorization

A = L LT , (7.59)

where L = (li j )i, j=1,...,n is a lower triangular matrix, i.e., li j = 0 for i < j and
i, j ∈ {1, . . . , n}, with positive diagonal elements, i.e., lii > 0 for i = 1, . . . , n;
LT denotes the transposed matrix of L , i.e., LT = (lT

i j )i, j=1,...,n with lT
i j = l ji [166].

Using the factorization in Eq. (7.59), the solution x of a system of equations Ax = b
with b ∈ R

n is determined in two steps by solving the triangular systems Ly = b
and LT x = y one after another. Because of Ly = L LT x = Ax = b, the vector
x ∈ R

n is the solution of the given linear equation system.
The implementation of the Cholesky factorization can be derived from a column-

wise formulation of A = L LT . Comparing the elements of A and L LT , we obtain

ai j =
n∑

k=1

liklT
k j =

n∑

k=1

likl jk =
j∑

k=1

likl jk =
j∑

k=1

l jklik
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since l jk = 0 for k > j and by exchanging elements in the last summation. Denoting
the columns of A as ã1, . . . , ãn and the columns of L as l̃1, . . . , l̃n results in an
equality for column ã j = (a1 j , . . . , anj ) and columns l̃k = (l1k, . . . , lnk) for k ≤ j :

ã j =
j∑

k=1

l jk l̃k

leading to

l j j l̃ j = ã j −
j−1∑

k=1

l jk l̃k (7.60)

for j = 1, . . . , n. If the columns l̃k, k = 1, . . . , j − 1, are already known, the right-
hand side of Formula (7.60) is computable and the column l̃ j can also be computed.
Thus, the columns of L are computed one after another. The computation of column
l̃ j has two cases:

For the diagonal element the computation is

l j j l j j = a j j −
j−1∑

k=1

l jkl jk or l j j =
√√√√a j j −

j−1∑

k=1

l2
jk .

For the elements li j , i > j , the computation is

li j = 1

l j j

(

ai j −
j−1∑

k=1

l jklik

)

;

The elements in the upper triangular of matrix L are li j = 0 for i < j .
The Cholesky factorization yields the factorization A = L LT for a given matrix

A [65] by computing L = (li j )i=0,...,n−1, j=0,...,i from A = (ai j )i, j=0,...,n−1 column
by column from left to right according to the following algorithm, in which the
numbering starts with 0:

(I )

for (j=0; j<n; j++) {

l j j =
√

a j j −
j−1∑

k=0
l2

jk;

for (i=j+1; i<n; i++)

li j = 1
l j j

(

ai j −
j−1∑

k=0
l jklik

)

;

}
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Fig. 7.22 Computational structures and data dependences for the computation of L according
to the basic algorithm (left), the left-looking algorithm (middle), and the right-looking algorithm
(right)

For each column j , first the new diagonal element l j j is computed using the elements
in row j ; then, the new elements of column j are computed using row j of A and
all columns i of L with i < j , see Fig. 7.22 (left).

For dense matrices A, the Cholesky factorization requires O(n2) storage space
and O(n3/6) arithmetic operations [166]. For sparse matrices, drastic reductions in
storage and execution time can be achieved by exploiting the sparsity of A, i.e., by
storing and computing only the non-zero entries of A.

The Cholesky factorization usually causes fill-ins for sparse matrices A which
means that the matrix L has non-zeros in positions which are zero in A. The number
of fill-in elements can be reduced by reordering the rows and columns of A result-
ing in a matrix P APT with a corresponding permutation matrix P . For Cholesky
factorization, P can be chosen without regard to numerical stability, because no
pivoting is required [65]. Since P APT is also symmetric and positive definite for
any permutation matrix P , the factorization of A can be done with the following
steps:

1. Reordering: Find a permutation matrix P ∈ R
n×n that minimizes the storage

requirement and computing time by reducing fill-ins. The reordered linear equa-
tion system is (P APT )(Px) = Pb.

2. Storage allocation: Determine the structure of the matrix L and set up the sparse
storage scheme. This is done before the actual computation of L and is called
(symbolic factorization), see [65].

3. Numerical factorization: Perform the factorization P APT = L LT .
4. Triangular solution: Solve Ly = Pb and LT z = y. Then, the solution of the

original system is x = PT z.

The problem of finding an ordering that minimizes the amount of fill-in is
NP-complete [177]. But there exist suitable heuristics for reordering. The most
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popular sequential fill-in reduction heuristic is the minimum degree algorithm [65].
Symbolic factorization by a graph-theoretic approach is described in detail in [65].
In the following, we concentrate on the numerical factorization, which is considered
to require by far the most computation time, and assume that the coefficient matrix
is already in reordered form.

7.5.1.1 Left-Looking Algorithms

According to [124], we denote the sparsity structure of column j and row i of L
(excluding diagonal entries) by

Struct(L∗ j ) = {k > j |lk j 	= 0}
Struct(Li∗) = {k < i |lik 	= 0}

Struct(L∗ j ) contains the row indices of all non-zeros of column j and Struct(Li∗)
contains the column indices of all non-zeros of row i . Using these sparsity structures
a slight modification of computation scheme (I) results. The modification uses the
following procedures for manipulating columns [124, 152]:

(I I )
cmod(j,k) =

for each i ∈ Struct(L∗k) with i ≥ j :
ai j = ai j − l jklik ;

cdiv(j) =
l j j = √a j j ;
for each i ∈ Struct(L∗ j ) :

li j = ai j/ l j j ;

Procedure cmod ( j, k) modifies column j by subtracting a multiple with factor l jk

of column k from column j for columns k already computed. Only the non-zero
elements of column k are considered in the computation. The entries ai j of the
original matrix a are now used to store the intermediate results of the computa-
tion of L . Procedure cdiv ( j) computes the square root of the diagonal element and
divides all entries of column j by this square root of its diagonal entry l j j . Using
these two procedures, column j can be computed by applying cmod ( j, k) for each
k ∈ Struct(L j∗) and then completing the entries by applying cdiv ( j). Applying
cmod ( j, k) to columns k 	∈ Struct(L j∗) has no effect because l jk = 0. The columns
of L are computed from left to right and the computation of a column l̃ j needs
all columns l̃k to the left of column l̃ j . This results in the following left-looking
algorithm:
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(I I I )

left cholesky =
for j = 0, . . ., n − 1 {

for each k ∈ Struct(L j∗):
cmod( j, k);

cdiv( j);
}

The code in scheme (I I I ) computes the columns one after another from left to
right. The entries of column j are modified after all columns to the left of j have
completely been computed, i.e., the same target column j is used for a number of
consecutive cmod ( j, k) operations; this is illustrated in Fig. 7.22 (middle).

7.5.1.2 Right-Looking Algorithm

An alternative way is to use the entries of column j after the complete computation
of column j to modify all columns k to the right of j that depend on column j , i.e.,
to modify all columns k ∈ Struct(L∗ j ) by subtracting lk j times the column j from
column k. Because lk j = 0 for k /∈ Struct(L∗ j ), only the columns k ∈ Struct(L∗ j )
are manipulated by column j . Still the columns are computed from left to right. The
difference to the left-looking algorithm is that the calls to cmod() for a column j
are done earlier. The final computation of a column j then consists only of a call
to cdiv( j) after all columns to the left are computed. This results in the following
right-looking algorithm:

(I V )

right cholesky =
for j = 0, . . ., n − 1 {

cdiv( j);
for each k ∈ Struct(L∗ j ):

cmod(k, j);
}

The code fragment shows that in the right-looking algorithm, successive cmod()
operations manipulate different target columns with the same column j . An illus-
tration is given in Fig. 7.22 (right).

In both the left-looking and right-looking algorithms, each non-zero li j leads to
an execution of a cmod () operation. In the left-looking algorithm, the cmod ( j, k)
operation is used to compute column j . In the right-looking algorithm, the
cmod (k, j) operation is used to manipulate column k ∈ Struct(L∗ j ) after the com-
putation of column j . Thus, left-looking and right-looking algorithms use the same
number of cmod() operations. They also use the same number of cdiv() operations,
since there is exactly one cdiv() operation for each column.
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7.5.1.3 Supernodes

The supernodal algorithm is a computation scheme for sparse Cholesky factoriza-
tion that exploits similar patterns of non-zero elements in adjacent columns, see
[124, 152]. A supernode is a set

I (p) = {p, p + 1, . . . , p + q − 1}

of contiguous columns in L for which for all i with p ≤ i ≤ p + q − 1

Struct(L∗i ) = Struct(L∗(p+q−1)) ∪ {i + 1, . . . , p + q − 1} .

Thus, a supernode has a dense triangular block above (and including) row p+q−1,
i.e., all entries are non-zero elements, and an identical sparsity structure for each
column below row p+q−1, i.e., each column has its non-zero elements in the same
rows as the other columns in the supernode. Figure 7.23 shows an example. Because
of this identical sparsity structure of the columns, a supernode has the property that
each member column modifies the same set of target columns outside its supernode
[152]. Thus, the factorization can be expressed in terms of supernodes modifying
columns, rather than columns modifying columns.
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Fig. 7.23 Matrix L with supernodes I (0) = {0}, I (1) = {1}, I (2) = {2, 3, 4}, I (5) = {5}, I (6) =
{6, 7}, I (8) = {8, 9}. The elimination tree is shown at the right

Using the definitions first(J ) = p and last(J ) = p + q − 1 for a supernode
J = I (p) = {p, p+ 1, . . . , p+ q − 1}, the following additional procedure smod ()
is defined:

(V )

smod( j, J ) =
r = min{ j − 1, last(J )};
for k = f irst(J ), . . . , r

cmod( j, k);
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which modifies column j with all columns from supernode J . There are two cases
for modifying a column with a supernode: When column j belongs to supernode J ,
then column j is modified only by those columns of J that are to the left in node J .
When column j does not belong to supernode J , then column j is modified by all
columns of J . Using the procedure smod (), the Cholesky factorization can be per-
formed by the following computation scheme, also called right-looking supernodal
algorithm:

(V I )

supernode cholesky =
for each supernode J do from left to right {

cdiv( f irst(J ));
for j = first(J )+ 1, . . . , last(J ) {

smod( j, J );
cdiv( j);

}
for k ∈ Struct(L∗(last(J )))

smod(k, J );
}

This computation scheme still computes the columns of L from left to right. The
difference to the algorithms presented before is that the computations associated
with a supernode are combined. On the supernode level, a right-looking scheme is
used: For the computation of the first column of a supernode J only one cdiv()
operation is necessary when the modification with all columns to the left is already
done. The columns of J are computed in a left-looking way: After the computa-
tion of all supernodes to the left of supernode J and because the columns of J are
already modified with these supernodes due the supernodal right-looking scheme,
column j is computed by first modifying it with all columns of J to the left of j
and then performing a cdiv() operation. After the computation of all columns of
J , all columns k to the right of J that depend on columns of J are modified with
each column in J , i.e., by the procedure smod(k, J ).

An alternative way would be a right-looking computation of the columns of J .
An advantage of the supernodal algorithm lies in an increased locality of memory
accesses because each column of a supernode J is used for the modification of
several columns to the right of J and because all columns of J are used for the
modification of the same columns to the right of J .

7.5.2 Storage Scheme for Sparse Matrices

Since most entries in a sparse matrix are zero, specific storage schemes are used
to avoid the storage of zero elements. These compressed storage schemes store the
non-zero entries and additional information about the row and column indices to
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identify its original position in the full matrix. Thus, a compressed storage scheme
for sparse matrices needs the space for the non-zero elements as well as space for
additional information.

A sparse lower triangular matrix L is stored in a compressed storage scheme of
size O(n+nz) where n is the number of rows (or columns) in L and nz is the number
of non-zeros. We present the storage scheme of the SPLASH implementation which,
according to [116], stores a sparse matrix in a compressed manner similar to [64].
This storage scheme exploits the sparsity structure as well as the supernode structure
to store the data. We first describe a simpler version using only the sparsity structure
without supernodes. Exploiting the supernode structure is then based on this storage
scheme.

The storage scheme uses two arrays Nonzero and Row of length nz and
three arrays StartColumn, StartRow, and Supernode of length n. The array
Nonzero contains the values of all non-zeros of a triangular matrix L = (lk j )k≥ j

in column-major order, i.e., the non-zeros are ordered columnwise from left to
right in a linear array. Information about the corresponding column indices of non-
zero elements is implicitly contained in array StartColumn: Position j of array
StartColumn stores the index of array Nonzero in which the first non-zero
element of column j is stored, i.e., Nonzero[StartColumn[ j]] contains l j j .
Because the non-zero elements are stored columnwise, StartColumn[ j + 1]− 1
contains the last non-zero element of column j . Thus, the non-zeros of the j th
column of L are assigned to the contiguous part of array Nonzero with indices
from StartColumn[ j] to StartColumn[ j + 1]− 1. The size of the contiguous
part of non-zeros of column j in array Nonzero is N j := StartColumn[ j +
1]−StartColumn[ j]. The array Row contains the row indices of the correspond-
ing elements in Nonzero. In the simpler version without supernodes, Row[r ] con-
tains the row index of the non-zero stored in Nonzero[r ], r = 0, . . . , nz − 1.
Corresponding to the blockwise storage scheme in Nonzero, the indices of the
non-zeros of one column are stored in a contiguous block in Row.

When the similar sparsity structure of rows in the same supernode is addi-
tionally exploited, row indices of non-zeros are stored in a combination of the
arrays Row and StartRow in the following way: StartRow[ j] stores the index
of Row in which the row index of the first non-zero of column j is stored, i.e.,
Row[StartRow[ j]] = j because l j j is the first non-zero. For each column the row
indices are still stored in a contiguous block of Row. In contrast to the simpler
scheme the blocks for different rows in the same supernode are not disjoint but
overlap according to the similar sparsity structure of those columns.

The additional array StartRow can be used for a more compact storage scheme
for the supernodal algorithm. When j is the first column of a supernode I ( j) =
{ j, j + 1, . . . , j + k − 1}, then column j + l for 1 ≤ l < k has the same non-zero
pattern as row j for rows greater than or equal to j+ l, i.e., Row[StartRow[ j]+ l]
contains the row index of the first element of column j+ l. Since this is the diagonal
element, Row[StartRow[ j] + l] = j + l holds. The next entries are the row
indices of the other non-zero elements of column j + l. Thus, the row indices of
column j + l are stored in Row[StartRow[ j] + l], . . . ,Row[StartRow[ j] +
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Fig. 7.24 Compressed storage scheme for a sparse lower triangular matrix L . The array Nonzero
contains the non-zero elements of matrix L and the array StartColumn contains the positions
of the first elements of columns in Nonzero. The array Row contains the row indices of elements
in Nonzero; the first element of a row is given in StartRow. For a supernodal algorithm, Row
can additionally use an overlapping storage (not shown here)

StartColumn[ j+1]−StartColumn[ j−1]]. This leads to StartRow[ j+l] =
StartRow[ j]+ l and thus only the row indices of the first column of a supernode
have to be stored to get the full information. A fast access to the sets Struct(L∗ j ) is
given by

Struct(L∗ j ) =
{
Row[StartRow[ j]+ i] |0≤ i≤StartColumn[j + 1]

− StartColumn[ j − 1]
}
.

The storage scheme is illustrated in Fig. 7.24. The array Supernode is used for
the management of supernodes: If a column j is the first column of a supernode J ,
then the number of columns of J is stored in Supernode[j].

7.5.3 Implementation for Shared Variables

For a parallel implementation of sparse Cholesky factorization, we consider a shared
memory machine. There are several sources of parallelism for sparse Cholesky fac-
torization, including fine-grained parallelism within the single operations cmod( j, k)
or cdiv( j) as well as column-oriented parallelism in the left-looking, right-looking,
and supernodal algorithms.

The sparsity structure of L may lead to an additional source of parallelism which
is not available for dense factorization. Data dependences may be avoided when
different columns (and the columns having effect on them) have a disjoint spar-
sity structure. This kind of parallelism can be described by elimination trees that
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express the specific situation of data dependences between columns using the rela-
tion parent( j) [124, 118]. For each column j , 0 ≤ j < n, we define

parent( j) = min{i | i ∈ Struct(L∗ j )} if Struct(L∗ j ) 	= ∅,

i.e., parent( j) is the row index of the first off-diagonal non-zero of column j . If
Struct(L∗ j ) = ∅, then parent( j) = j . The element parent( j) is the first column
i > j which depends on j . A column l, j < l < i , between them does not depend
on j , since j /∈ Struct(Ll∗) and no cmod(l, j) is executed. Moreover we define for
0 ≤ i < n

children(i) = { j < i | parent( j) = i},

i.e., children(i) contains all columns j that have their first off-diagonal non-zero in
row i .

The directed graph G = (V, E) has a set of nodes V = {0, . . . , n − 1} with one
node for each column and a set of edges E , where (i, j) ∈ E if i = parent( j) and
i 	= j . It can be shown that G is a tree if matrix A is irreducible. (A matrix A is
called reducible if A can be permuted such that it is block-diagonal. For a reducible
matrix, the blocks can be factorized independently.) In the following, we assume
an irreducible matrix. Figure 7.25 shows a matrix and its corresponding elimination
tree.

In the following, we denote the subtree with root j by G[ j]. For sparse Cholesky
factorization, an important property of the elimination tree G is that the tree spec-
ifies the order in which the columns must be evaluated: The definition of parent
implies that column i must be evaluated before column j , if j = parent(i). Thus,
all the children of column j must be completely evaluated before the computation
of j . Moreover, column j does not depend on any column that is not in the subtree
G[ j]. Hence, columns i and j can be computed in parallel, if G[i] and G[ j] are
disjoint subtrees. Especially, all leaves of the elimination tree can be computed in
parallel and the computation does not need to start with column 0. Thus, the sparsity
structure determines the parallelism to be exploited. For a given matrix, elimination
trees of smaller height usually represent a larger degree of parallelism than trees of
larger height [77].
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Fig. 7.25 Sparse matrix and the corresponding elimination tree
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7.5.3.1 Parallel Left-Looking Algorithms

The parallel implementation of the left-looking algorithm (I I I ) is based on n col-
umn tasks Tcol (0), . . . ,Tcol (n− 1) where task Tcol ( j), 0 ≤ j < n, comprises the
execution of cmod( j, k) for all k ∈ Struct(L j∗) and the execution of cdiv( j); this
is the loop body of the for loop in algorithm (I I I ). These tasks are not indepen-
dent of each other but have dependences due to the non-zero elements. The parallel
implementation uses a task pool for managing the execution of the tasks. The task
pool has a central task pool for storing column tasks, which can be accessed by
every processor. Each processor is responsible for performing a subset of the column
tasks. The assignment of tasks to processors for execution is dynamic, i.e., when a
processor is idle, it takes a task from the central task pool.

The dynamic implementation has the advantage that the workload is distributed
evenly although the tasks might have different execution times due to the sparsity
structure. The concurrent accesses of the processors to the central task pool have to
be conflict-free so that the unique assignment of a task to a processor for execution
is guaranteed. This can be implemented by a locking mechanism so that only one
processor accesses the task pool at a specific time.

There are several parallel implementation variants for the left-looking algorithm
differing in the way the column tasks are inserted into the task pool. We consider
three implementation variants:

• Variant L1 inserts column task Tcol ( j) into the task pool not before all column
tasks Tcol (k) with k ∈ Struct(L j∗) have been finished. The task pool can be ini-
tialized to the leaves of the elimination tree. The degree of parallelism is limited
by the number of independent nodes of the tree, since tasks dependent on each
other are executed in sequential order. Hence, a processor that has accessed task
Tcol ( j) can execute the task without waiting for other tasks to be finished.

• Variant L2 allows to start the execution of Tcol ( j) without requiring that it can
be executed to completion immediately. The task pool is initialized to all column
tasks available. The column tasks are accessed by the processors dynamically
from left to right, i.e., an idle processor accesses the next column that has not yet
been assigned to a processor.

The computation of column task Tcol ( j) is started before all tasks Tcol (k)
with k ∈ Struct(L j∗) have been finished. In this case, not all operations
cmod( j, k) of Tcol ( j) can be executed immediately but the task can perform
only those cmod( j, k) operations with k ∈ Struct(L j∗) for which the corre-
sponding tasks have already been executed. Thus, the task might have to wait
during its execution for other tasks to be finished.
To control the execution of a single column task Tcol ( j), each column j is
assigned a data structure Sj containing all columns k ∈ Struct(L j∗) for which
cmod( j, k) can already be executed. When a processor finishes the execution
of the column task Tcol (k) (by executing cdiv(k)), it pushes k onto the data
structures Sj for each j ∈ Struct(L∗k). Because different processors might try
to access the same stack at the same time, a locking mechanism has to be used
to avoid access conflicts. The processor executing Tcol ( j) pops column indices
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Fig. 7.26 Parallel
left-looking algorithm
according to variant L2. The
implicit task pool is
implemented in the while
loop and the function
get unique index().
The stacks S1, . . . , Sn

implement the bookkeeping
about the dependent columns
already finished

k from Sj and executes the corresponding cmod( j, k) operation. If Sj is empty,
the processor waits for another processor to insert new column indices. When
|Struct(L j∗)| column indices have been retrieved from Sj , the task Tcol ( j) can
execute the final cdiv( j) operation.

Figure 7.26 shows the corresponding implementation. The central task pool
is realized implicitly as a parallel loop; the operation get unique index()
ensures a conflict-free assignment of tasks so that the processors accessing the
pool at the same time get different unique loop indices representing column tasks.
The loop body of the while loop implements one task Tcol ( j). The data struc-
tures S1, . . . , Sn are stacks; pop(Sj ) retrieves an element and push( j, Si ) inserts
an element onto the stack.

• Variant L3 is a variation of L2 that takes the structure of the elimination tree into
consideration. The columns are not assigned strictly from left to right to the pro-
cessors, but according to their height in the elimination tree, i.e., the children of a
column j in the elimination tree are assigned to processors before their parent j .
This variant tries to complete the column tasks in the order in which the columns
are needed for the completion of the other columns, thus exploiting the additional
parallelism that is provided by the sparsity structure of the matrix.

7.5.3.2 Parallel Right-Looking Algorithm

The parallel implementation of the right-looking algorithm (I V ) is also based on a
task pool and on column tasks. These column tasks are defined differently than the
tasks of the parallel left-looking algorithm: A column task Tcol ( j), 0 ≤ j < n,
comprises the execution of cdiv( j) and cmod(k, j) for all k ∈ Struct(L∗ j ), i.e., a
column task comprises the final computation for column j and the modifications of
all columns k > j right of column j that depend on j . The task pool is initialized to
all column tasks corresponding to the leaves of the elimination tree. A task Tcol ( j)
that is not a leaf is inserted into the task pool as soon as the operations cmod( j, k)
for all k ∈ Struct(L j∗) are executed and a final cdiv( j) operation is possible.

Figure 7.27 sketches a parallel implementation of the right-looking algorithm.
The task assignment is implemented by maintaining a counter c j for each col-
umn j . The counter is initialized to 0 and is incremented after the execution of
each cmod( j, ∗) operation by the corresponding processor using the conflict-free
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Fig. 7.27 Parallel right-looking algorithm. The column tasks are managed by a task pool TP.
Column tasks are inserted into the task pool by add column() and retrieved from the task
pool by get column(). The function initialize task pool() initializes the task pool
TP with the leaves of the elimination tree. The condition of the outer while loop assigns column
indices j to processors. The processor retrieves the corresponding column task as soon as the call
filled pool(TP,j) returns that the column task exists in the task pool

procedure add counter(). For the execution of a cmod(k, j) operation of a task
Tcol ( j), column k must be locked to prevent other tasks from modifying the same
column at the same time. A task Tcol ( j) is inserted into the task pool, when the
counter c j has reached the value |Struct(L j∗)|.

The differences between this right-looking implementation and the left-looking
variant L2 lie in the execution order of the cmod () operations and in the executing
processor. In the L2 variant, the operation cmod ( j, k) is initiated by the processor
computing column k by pushing it on stack Sj , but the operation is executed by
the processor computing column j . This execution need not be performed immedi-
ately after the initiation of the operation. In the right-looking variant, the operation
cmod ( j, k) is not only initiated, but also executed by the processor that computes
column k.

7.5.3.3 Parallel Supernodal Algorithm

The parallel implementation of the supernodal algorithm uses a partition into funda-
mental supernodes. A supernode I (p) = {p, p+1, . . . , p+q−1} is a fundamental
supernode, if for each i with 0 ≤ i ≤ q−2, we have children(p+ i+1) = {p+ i},
i.e., node p + i is the only child of p + i + 1 in the elimination tree [124]. In
Fig. 7.23, supernode I (2) = {2, 3, 4} is a fundamental supernode whereas supern-
odes I (6) = {6, 7} and I (8) = {8, 9} are not fundamental. In a partition into fun-
damental supernodes, all columns of a supernode can be computed as soon as the
first column can be computed and a waiting for the computation of columns outside
the supernode is not needed. In the following, we assume that all supernodes are
fundamental, which can be achieved by splitting supernodes into smaller ones. A
supernode consisting of a single column is fundamental.

The parallel implementation of the supernodal algorithm (V I ) is based on
supernode tasks Tsup(J ) where task Tsup(J ) for 0 ≤ J < N comprises the
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execution of smod( j, J ) and cdiv( j) for each j ∈ J from left to right and the
execution of smod(k, J ) for all k ∈ Struct(L∗(last(J ))); N is the number of supern-
odes. Tasks Tsup(J ) that are ready for execution are held in a central task pool that
is accessed by the idle processors. The pool is initialized to supernodes that are ready
for completion; these are those supernodes whose first column is a leaf in the elim-
ination tree. If the execution of a cmod(k, J ) operation by a task Tsup(J ) finishes
the modification of another supernode K > J , the corresponding task Tsup(K ) is
inserted into the task pool.

The assignment of supernode tasks is again implemented by maintaining a
counter c j for each column j of a supernode. Each counter is initialized to 0 and
is incremented for each modification that is executed for column j . Ignoring the
modifications with columns inside a supernode, a supernode task Tsup(J ) is ready
for execution if the counters of the columns j ∈ J reach the value |Struct(L j∗)|.
The implementation of the counters as well as the manipulation of the columns has
to be protected, e.g., by a lock mechanism. For the manipulation of a column k /∈ J
by a smod(k, J ) operation, column k is locked to avoid concurrent manipulation by
different processors. Figure 7.28 shows the corresponding implementation.

Fig. 7.28 Parallel supernodal
algorithm

7.6 Exercises for Chap. 7

Exercise 7.1 For an n×m matrix A and vectors a and b of length n write a parallel
MPI program which computes a rank-1 update A = A − a · bT which can be
computed sequentially by

for (i=0; i<n; i++)
for (j=0; j<n; j++)

A[i][j] = A[i][j]-a[i] · b[j];
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For the parallel MPI implementation assume that A is distributed among the p pro-
cessors in a column-cyclic way. The vectors a and b are available at the process
with rank 0 only and must be distributed appropriately before the computation.
After the update operation, the matrix A should again be distributed in a column-
cyclic way.

Exercise 7.2 Implement the rank-1 update in OpenMP. Use a parallel for loop to
express the parallel execution.

Exercise 7.3 Extend the program piece in Fig. 7.2 for performing the Gaussian
elimination with a row-cyclic data distribution to a full MPI program. To do so,
all helper functions used and described in the text must be implemented. Measure
the resulting execution times for different matrix sizes and different numbers of
processors.

Exercise 7.4 Similar to the previous exercise, transform the program piece in Fig. 7.6
with a total cyclic data distribution to a full MPI program. Compare the resulting
execution times for different matrix sizes and different numbers of processors. For
which scenarios does a significant difference occur? Try to explain the observed
behavior.

Exercise 7.5 Develop a parallel implementation of Gaussian elimination for shared
address spaces using OpenMP. The MPI implementation from Fig. 7.2 can be
used as an orientation. Explain how the available parallelism is expressed in your
OpenMP implementation. Also explain where synchronization is needed when
accessing shared data. Measure the resulting execution times for different matrix
sizes and different numbers of processors.

Exercise 7.6 Develop a parallel implementation of Gaussian elimination using Java
threads. Define a new class Gaussian which is structured similar to the Java
program in Fig. 6.23 for a matrix multiplication. Explain which synchronization
is needed in the program. Measure the resulting execution times for different matrix
sizes and different numbers of processors.

Exercise 7.7 Develop a parallel MPI program for Gaussian elimination using a
column-cyclic data distribution. An implementation with a row-cyclic distribution
has been given in Fig. 7.2. Explain which communication is needed for a column-
cyclic distribution and include this communication in your program. Compute
the resulting speedup values for different matrix sizes and different numbers of
processors.

Exercise 7.8 For n = 8 consider the following tridiagonal equation system:

⎛

⎜
⎜
⎜⎜⎜
⎜
⎝

1 1
1 2 1

1 2
. . .

. . .
. . . 1
1 2

⎞

⎟
⎟
⎟⎟⎟
⎟
⎠

· x =

⎛

⎜
⎜⎜⎜
⎜
⎝

1
2
3
...
8

⎞

⎟⎟
⎟⎟
⎟
⎠

.
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Use the recursive doubling technique from Sect. 7.2.2, p. 385, to solve this equation
system.

Exercise 7.9 Develop a sequential implementation of the cyclic reduction algorithm
for solving tridiagonal equation systems, see Sect. 7.2.2, p. 385. Measure the result-
ing sequential execution times for different matrix sizes starting with size n = 100
up to size n = 107.

Exercise 7.10 Transform the sequential implementation of the cyclic reduction
algorithm from the last exercise into a parallel implementation for a shared address
space using OpenMP. Use an appropriate parallel for loop to express the paral-
lel execution. Measure the resulting parallel execution times for different numbers
of processors for the same matrix sizes as in the previous exercise. Compute the
resulting speedup values and show the speedup values in a diagram.

Exercise 7.11 Develop a parallel MPI implementation of the cyclic reduction algo-
rithm for a distributed address space based on the description in Sect. 7.2.2, p. 385.
Measure the resulting parallel execution times for different numbers of processors
and compute the resulting speedup values.

Exercise 7.12 Specify the data dependence graph for the cyclic reduction algorithm
for n = 12 equations according to Fig. 7.11. For p = 3 processors, illustrate the
three phases according to Fig. 7.12 and show which dependences lead to communi-
cation.

Exercise 7.13 Implement a parallel Jacobi iteration with a pointer-based storage
scheme of the matrix A such that global indices are used in the implementation.

Exercise 7.14 Consider the parallel implementation of the Jacobi iteration in
Fig. 7.13 and provide a corresponding shared memory program using OpenMP
operations.

Exercise 7.15 Implement a parallel SOR method for a dense linear equation system
by modifying the parallel program in Fig. 7.14.

Exercise 7.16 Provide a shared memory implementation of the Gauss–Seidel method
for the discretized Poisson equation.

Exercise 7.17 Develop a shared memory implementation for Cholesky factorization
A = L LT for a dense matrix A using the basic algorithm.

Exercise 7.18 Develop a message-passing implementation for dense Cholesky fac-
torization A = L LT .
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Exercise 7.19 Consider a matrix with the following non-zero entries:

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∗
∗ ∗

∗
∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a) Specify all supernodes of this matrix.
(b) Consider a supernode J with at least three entries. Specify the sequence of

cmod and cdiv operations that are executed for this supernode in the right-looking
supernode Cholesky factorization algorithm.

(c) Determine the elimination tree resulting for this matrix.
(d) Explain the role of the elimination tree for a parallel execution.

Exercise 7.20 Derive the parallel execution time of a message-passing program of
the CG method for a distributed memory machine with a linear array as intercon-
nection network.

Exercise 7.21 Consider a parallel implementation of the CG method in which the
computation step (3) is executed in parallel to the computation step (4). Given a row-
blockwise distribution of matrix A and a blockwise distribution of the vector, derive
the data distributions for this implementation variant and give the corresponding
parallel execution time.

Exercise 7.22 Implement the CG algorithm given in Fig. 7.20 with the blockwise
distribution as message-passing program using MPI.
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101. J. Keller, C.W. Keßler, and J.L. Träff. Practical PRAM Programming. Wiley, New York,
2001.

102. J. Keller, T. Rauber, and B. Rederlechner. Conservative Circuit Simulation on Shared–
Memory Multiprocessors. In Proceedings of the 10th Workshop on Parallel and Distributed
Simulation (PADS’96), pages 126–134, ACM, 1996.

103. K. Kennedy, C. Koelbel, and H. Zima. The Rise and Fall of High Performance Fortran: An
Historical Object Lesson. In HOPL III: Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages, pages 7–1–7–22, ACM, New York, 2007.

104. T. Kielmann, H.E. Bal, and K. Verstoep. Fast Measurement of LogP Parameters for Message
Passing Platforms. In IPDPS ’00: Proceedings of the 15 IPDPS 2000 Workshops on Parallel
and Distributed Processing, pages 1176–1183, Springer, London, 2000.

105. S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads. Prentice Hall,
Englewood Cliffs, 1996.

106. G. Koch. Discovering Multi-core: Extending the Benefits of Moore’s Law. Intel White Paper,
Technology@Intel Magazine, 2005.

107. P.M. Kogge. An Exploitation of the Technology Space for Multi-Core Memory/Logic Chips
for Highly Scalable Parallel Systems. In Proceedings of the Innovative Architecture for
Future Generation High-Performance Processors and Systems, IEEE, 2005.

108. M. Korch and T. Rauber. A comparison of task pools for dynamic load balancing of irregu-
lar algorithms. Concurrency and Computation: Practice and Experience, 16: 1–47, January
2004.

109. D. Kuck. Platform 2015 Software-Enabling Innovation in Parallelism for the Next Decade.
Intel White Paper, Technology@Intel Magazine, 2005.

110. J. Kurose and K. Ross. Computer Networking, 3. Auflage. Addison Wesley, Wokingham,
2005.

111. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, 28(9): 690–691, September 1979.

112. J.R. Laurs and R. Rajwar. Transactional Memory. Morgan & Claypool Publishers, San
Rafael, 2007.

113. D. Lea. Concurrent Programming in Java: Design Principles and Patterns. Addison Wesley,
Reading, 1999.

114. E.A. Lee. The problem with threads. IEEE Computer, 39(5): 33–42, 2006.
115. F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann, San Mateo, 1992.
116. D.E. Lenoski and W.Weber. Scalable Shared-Memory Multiprocessing. Morgan Kaufmann,

San Francisco, 1995.



446 References

117. B. Lewis and D.J. Berg. Multithreaded Programming with Pthreads. Prentice Hall, New
Jersey, 1998.

118. J.W.H. Liu. The role of elimination trees in sparse factorization. The SIAM Journal on Matrix
Analysis and Applications, 11: 134–172, 1990.

119. D.T. Marr, F. Binus, D.L. Hill, G. Hinton, D.A. Konfaty, J.A. Miller, and M. Upton. Hyper-
threading technology architecture and microarchitecture. Intel Technology Journal, 6(1):
4–15, 2002.

120. T. Mattson, B. Sandor, and B. Massingill. Pattern for Parallel Programming. Pearson –
Addison Wesley, Reading, 2005.

121. F. McMahon. The Livermore Fortran Kernels: A Computer Test of the Numerical Perfor-
mance Range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory,
Livermore, 1986.

122. M. Metcalf and J. Reid. Fortran 90/95 Explained. Oxford University Press, Oxford, 2002.
123. R. Miller and L. Boxer. Algorithms Sequential and Parallel. Prentice Hall, Upper Saddle

River, 2000.
124. E.G. Ng and B.W. Peyton. A Supernodal Cholesky Factorization Algorithm for Shared-

Memory Multiprocessors. Technical Report, Oak Ridge National Laboratory, 1991.
125. L.M. Ni and P.K. McKinley. A survey of wormhole routing techniques in direct networks.

IEEE Computer, 26: 62–76, February 1993.
126. B. Nichols, D. Buttlar, and J. Proulx Farrell. Pthreads Programming. O’Reilly & Associates,

Sebastopol, 1997.
127. J. Nieplocha, J. Ju, M.K. Krishnan, B. Palmer, and V. Tipparaju. The Global Arrays User’s

Manual. Technical Report PNNL-13130, Pacific Northwest National Laboratory, 2002.
128. Nvidia. NVIDIA GeForce 8800 GPU Architecture Overview. Technical Report

TB-02787–001 v01, Nvidia, 2006.
129. S. Oaks and H. Wong. Java Threads. 3. Auflage. O’Reilly, Sebastopol, 2004.
130. OpenMP C and C++ Application Program Interface, Version 1.0. www.openmp.org,

October 1998.
131. OpenMP Application Program Interface, Version 2.5. www.openmp.org, May 2005.
132. OpenMP Application Program Interface, Version 3.0. www.openmp.org, May 2008.
133. J.M. Ortega. Introduction to Parallel and Vector Solutions of Linear Systems. Plenum

Publishing Corp., New York, 1988.
134. J.M. Ortega and R.G. Voigt. Solution of Partial Differential Equations on Vector and Parallel

Computers. SIAM, Philadelphia, 1985.
135. P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, San Francisco, 1997.
136. C.H. Papadimitriou and M. Yannakakis. Towards an Architecture-Independent Analysis of

Parallel Algorithms. In Proceedings of the 20th ACM Symposium on Theory of Computing,
pages 510–513, 1988.

137. D.A. Patterson and J.L. Hennessy. Computer Organization & Design – The
Hardware/Software Interface. 4th edition, Morgan Kaufmann, San Francisco, 2008.

138. S. Pelegatti. Structured Development of Parallel Programs. Taylor and Francis, London,
1998.

139. L. Peterson and B. Davie. Computer Networks – A Systems Approach, 3. Auflage. Morgan
Kaufmann, Los Altos, 2003.

140. G.F. Pfister. In Search of Clusters. 2nd edition, Prentice Hall, Upper Saddle River, 1998.
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146. T. Rauber and G. Rünger. A transformation approach to derive efficient parallel implementa-
tions. IEEE Transactions on Software Engineering, 26(4): 315–339, 2000.
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pthread join(), 261
pthread key create, 307
pthread key delete, 307
pthread mutex destroy(), 264
pthread mutex init(), 264
pthread mutex lock(), 264
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Standard mode in MPI, 212
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